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Sommario

In questo progetto viene presentato un nuovo approccio per eseguire analisi di sensi-

tività su sistemi dinamici caotici. L’analisi di sensitività è uno strumento ben noto ed

efficiente utilizzato per comprendere come le variabili di progetto che caratterizzano un

dato sistema, ad esempio forma e geometria di un corpo aerodinamico, influiscano su

un determinato osservabile del sistema, quale ad esempio la resistenza aerodinamica del

corpo stesso. L’analisi di sensitività è in grado di fornire il gradiente dell’osservabile

del sistema rispetto a queste variabili e dunque risulta uno strumento estremamente

efficace per risolvere problemi di ottimizzazione. Oggigiorno in applicazioni aeronau-

tiche, ad esempio, l’analisi di sensitività può essere accoppiata a simulazioni Reynolds-

Averaged-Navier-Stokes (RANS) per la progettazione di corpi aerodinamici del gruppo

ala-fusoliera o per applicazioni nel campo delle turbomacchine. La necessità di svilup-

pare nuovi metodi per eseguire analisi di sensitività risiede nel fatto che, applicata a

sistemi dinamici con comportamento caotico come la turbolenza, i classici algoritmi

falliscono, fornendo gradienti che non rispecchiano la fisica del problema in esame. Tale

fenomeno si verifica poiché un’infinitesima perturbazione nelle variabili di progetto di un

sistema caotico, ad esempio la viscosità del fluido, si riflette in un’evoluzione dello spazio

degli stati che diverge esponenzialmente dalla traiettoria di riferimento caratterizzante

il sistema non perturbato. Dato che le simulazioni su flussi turbolenti assumeranno un

ruolo sempre più importante nei cicli di progettazione dell’avvenire e dato che gli attuali

algoritmi di analisi di sensitività risultano completamente inefficaci quando accoppiati a

tali simulazioni, risulta comprensibile la necessità di sviluppare dei metodi per colmare

questa mancanza.

Il metodo per l’analisi di sensitività su sistemi caotici che viene presentato in questa tesi

prende il nome di Periodic Shadowing (Lasagna, arXiv:1806.02077, 2018). In partico-

lare lo scopo di questo progetto è quella di validare l’efficacia del metodo applicandolo

a due sistemi caotici a bassa dimensionalità di complessità crescente, derivanti da prob-

lemi di convezione naturale in celle fluide delimitate da due piastre poste a temperature

differenti. In particolare verrà valutata la sensitività della media temporale di una quan-
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tità correlata al trasferimento di calore nelle celle fluide rispetto ad un parametro fisico

proporzionale alla differenza di temperatura tra le piastre.

Dai risultati è stato possibile osservare che mentre la sensitività media converga per

traiettorie di lungo periodo, il confronto con l’approssimazione del gradiente ottenuto

mediante differenze finite presenta un bias coerente e riproducibile. Si congettura che

questo errore sia una caratteristica dei sistemi a bassa dimensionalità e che tuttavia di-

verrebbe trascurabile qualora venissero considerati sistemi caotici con molteplici gradi

di libertà, come i flussi turbolenti ad alto numero di Reynolds. Lo sviluppo di una

piena e solida comprensione di questo aspetto è attualmente oggetto di ricerca.
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Abstract

This project, partially carried out at the Politecnico di Torino and at the University of

Southampton, describes a new approach for sensitivity analysis of chaotic dynamical

systems. Sensitivity analysis is a well-known and efficient tool used to understand how

design and control variables characterizing a given system, e.g. the shape of an aerody-

namic body, affect a specific output of interest, e.g. the drag of the body. Sensitivity

analysis provides the gradient of the output with respect to these parameters and, for

this reason, is very useful to solve optimization problems. Nowadays, for instance, in

aeronautical applications, sensitivity analysis is coupled to steady Reynolds-Averaged-

Navier-Stokes (RANS) for aerodynamic shape design of wing-fuselage bodies or for

turbomachinery applications. The need to develop new methods for sensitivity analysis

lies in the fact that, applied to chaotic systems like turbulence, classical algorithms fail,

providing non-physical gradients. This occurs because in a chaotic system a small per-

turbation of the design variables, e.g. the fluid viscosity, is reflected in an evolution of

the trajectory that diverges exponentially from the reference trajectory characterizing

the non-perturbed system. Since scale-resolving turbulent flow simulations will take an

increasingly larger role in the engineering design cycle and since the current generation

of sensitivity methods is completely ineffective when coupled to unsteady turbulent flow

simulation, the development of new methods to make up for this lack is necessary.

In this thesis a new sensitivity analysis method suitable for chaotic systems, called

Periodic Shadowing (Lasagna, arXiv:1806.02077, 2018), is presented. The aim of

this project is to validate the effectiveness of this method by applying it to two low-

dimensional chaotic systems of increasing complexity, arising from natural convection

problems in fluid cells bounded by two plates and heated from below. We evaluate the

sensitivity of the time average of a quantity related to the heat transfer in the fluid

cells with respect to a physical parameter proportional to the temperature difference

between the plates.

We observed that while the time average sensitivity converges for long time trajectories,

the comparison with the finite-difference approximation of the gradient shows a consis-
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tent bias error. It is conjectured that this error is a feature of these low-dimensional

systems, but it would be negligible for chaotic systems with many degrees of freedom,

like turbulent flows at high Reynolds number. Developing a fundamental understanding

of this aspect is currently subject of research.
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Chapter 1

Introduction

“Optimization” term is a leitmotif widely used in the modern approach industry. Tak-

ing a look at the Cambridge Dictionary, optimization represents the process of making

something work as effectively as possible, which is another way to say better solution

and, in the engineering environment, more saving. The typical optimization problem in

the aeronautic field is to find the optimal configuration, shape or structure which min-

imizes/maximizes a certain cost functional and which satisfies some given constraints.

To achieve these results, sensitivity analysis can be used coupled to other numerical

tools in order to exploit gradient information and rapidly obtain the optimal solution

at a cost smaller then what is required to explore large parameter spaces.

In practice, a wide range of optimization problems requires an estimate of the sensitiv-

ity of model-simulated quantities to changes in initial conditions, boundary conditions,

or external forcing. Sensitivity analysis achieves this by evaluating the gradient of the

time averaged observables of interest with respect to design and control variables, e.g.

how the shape of an aerodynamic body influences the drag of the body itself. With

the significant advances in computer technology over the last thirty years, industries

which design and manufacture high-performance products are increasingly interested

in exploiting the advantages of computer-aided design, numerical analysis and optimal

design methods. Classical examples that can be found in literature refer to turbulent

combustion or shape design optimization for wing-fuselage bodies and turbomachinery

applications [1, 2]. In figure 1.1, we present some examples of mentionable and current

fields of application of sensitivity analysis, starting from geometry optimization of the

free-form surfaces in a water pump, panel (a), to aerodynamic shape optimization, pan-

els (b) and (c). In particular, considering panel (c) of figure 1.1, the example refers to

an aerodynamic shape design process where sensitivity analysis is carried out coupled

to steady Reynolds-Averaged-Navier-Stokes (RANS) equations. The drag coefficient is

1



Chapter 1. Introduction

(a) (b)

(c)

Figure 1.1: Shape optimization of water pumps with shrouded impellers using commercial software

(a), RANS simulation of supersonic business jet configuration with blade sting mount using mesh

adaptation based on the adjoint solution for the off-body pressure signature [Eric Nielsen, The FUN3D

Develompent Team, NASA] (b) and wing geometry optimisation [3] (c).

minimized subject to lift, pitching moment and geometric constraints. As stated, all the

optimization processes can be performed through a computational path before to any

time-consuming, expensive and labour physical experiments. For that reason, compu-

tational methods for sensitivity analysis are an efficient tool in modern computational

science and engineering.
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Tangent and Adjoint Sensitivity Analysis

1.1 Tangent and Adjoint Sensitivity Analysis

The way to approach the sensitivity analysis depends on the type of problem under

examination. In fact, to select the optimal sensitivity analysis method to be applied, it

is necessary to consider the number of design variables with respect to which we need

to evaluate the sensitivity of the observable of interest. To provide a very broad view

of the topic, we can subdivide the sensitivity analysis methods in tangent or adjoint

approaches. The tangent method allows calculating the sensitivity of the observable of

interest with respect to a variation in one (or few) design parameters. If the sensitivity

with respect to several parameters is required, the tangent algorithm must be repeated

for each perturbation applied. To make it clearer, the typical optimization problem

has a single objective function (possibly combining multiple objectives through suit-

able weights) that has to be minimized or maximized with respect to a large number,

or even a continuum, of input variables. In such a context, the tangent method be-

comes computationally expensive and, therefore, the adjoint methods are preferable. A

clarifying conceptual scheme is presented in the figure 1.2.

p1 p2 p3 p4

Jdp

Adjoint
approach

p

Jdp Jdp Jdp Jdp

Tangent
approach

Figure 1.2: Tangent (left) and adjoint (right) sensitivity analysis methods conceptual schemes. The p

represents an input parameter whilst the Jdp represents the gradient of the observable of interest with

respect to a perturbation in parameter p.

In figure 1.2 we have indicated with p the generic design parameter whilst with Jdp the

gradient of the observable of interest with respect to the parameter (or parameters if

an adjoint approach is considered). The strength of adjoint methods lies in the fact

that instead of computing the gradient explicitly, the adjoint methods allow computing

gradients with the same cost regardless of the number of parameters perturbations.
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1.2 Limitations of Current Approaches

The aforementioned examples are just some of currently sensitivity analysis applica-

tions coupled to steady simulations. However, trends in computer resources suggest

that scale-resolving, unsteady turbulent flow simulations will take in the next decades

an increasingly larger role in the engineering design cycle. This will dramatically im-

prove prediction ability of unsteady multi-scale flow phenomena, potentially leading to

more cost-effective greener design.

The need to develop a new method for sensitivity analysis lies in the fact that, applied

to an unsteady simulation, classical sensitivity algorithms fail. When the equation is

marched in time, in order to obtain the convergence of the long-time statistics of the

observable of interest, the sensitivity does not converge but rather grows exponentially

in time [4], resulting in non-physical gradients. Unfortunately, this characteristic is in

conflict with the modern trend in computing resources and in industrial demands. In

fact, obtaining an optimized solution of the problem relatively quickly is a crucial factor

for the industries of the future. However, these insights on possible developments in

the industry would be in vain if it is not possible to couple unsteady turbulent flow

simulations with an effective sensitivity analysis method to reduce the computational

cost of the optimization process.

More precisely, the current generation of tangent and adjoint sensitivity methods are

completely ineffective when coupled to unsteady turbulent flow simulation due to the

chaotic nature of the turbulence. Chaotic systems, by definition, present high sensitiv-

ity to initial conditions and evaluating effect of the parameter perturbations is anything

but a trivial process. For instance, this phenomenon is clearly visible in figure 1.3a,

where a small finite perturbation (10−4) in the initial condition of the chaotic system

arising from the Lorenz equations [5], leads to a completely different state-space evo-

lution of the attractor after a small time relative to the time scale of the system. In

panel (b) of figure 1.3 we observe that the time evolution of both third components do

not show the difference in initial conditions up to a threshold value (this is not absolute

value but specific for parameters and system considered). In panel (c) it is depicted

how the distance between the reference and perturbed trajectories evolves over time.

The distance, starting from the perturbation introduced in the problem, evolves expo-

nentially and saturates when the attractor is completely developed. We will discuss

this particular in depth in next chapters. Summing up, this breakdown is a serious lim-

itation because many aerospace applications involve physical phenomena that exhibit

chaotic dynamics. For this reason, it is necessary to develop new approaches to take

a step forward in sensitivity analysis field and in unsteady turbulent flow simulations
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comprehension.
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Figure 1.3: Lorenz attractor for a perturbation δx3 = 10−4 (a), time-evolution of third components

(b) and time evolution of the distance between the trajectories (c). The simulation was performed

using 4th order Runge-Kutta scheme with initial condition x0 = (1, 1, 1), x0 = (1, 1, 1 + 10−4) and

(σ, β, ρ) = (10, 8/3, 28) over T = 40 time units.

Thus, given that most of the major engineering observables of interest, e.g. the drag of

aerodynamic bodies, in chaotic turbulent flows are long-time averaged quantities and

given the problem of not being able to carry out long-term integration of sensitivity

analyses on them, the frontiers of fluid mechanics have been pushed more and more to

find accurate and computationally cheap methods to obtain gradient informations.

1.3 Recent Advances

Over the years, different methods have been proposed, both from the standpoint of the

formulation and the computational cost. However, as discussed by Lea et al in Ref. [4],

all the proposed adjoint methods are revealed (some less than others) wrong. Recently,

to overcome this problem and evaluate the sensitivity of an observable of interest with

respect to parameter perturbations, has been proposed to use the Shadowing Lemma

[6]. The starting point of the development of this kind of algorithms has been given by

Bowen in Ref. [6] more then 40 years ago, but only in the last years this property was
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Chapter 1. Introduction

used in sensitivity analysis applications. This lemma guarantees that every pseudo-

orbit stays uniformly close to a true trajectory (with slightly altered initial position).

In other words, a pseudo-trajectory is “shadowed” by a true one. This Lemma is better

known in the computational sciences community for its use in justifying finite-precision

calculations of trajectories affected by round-off error. It is important to underline

that the lemma assumes hyperbolic dynamic. In the context of sensitivity analysis

of dynamical systems, the Shadowing Lemma can be used to show the existence of a

trajectory of the perturbed system that starts at a different initial condition and remains

uniformly close in time to the trajectory of the unperturbed system, as presented in

figure 1.4. In particular, we depict a trajectory and its shadow of a generic state-space

evolution of the Lorenz attractor (see equations 6.6) and of the time-evolution of them

third components, in panel (a) and (b), respectively.
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Figure 1.4: Shadowing for chaotic trajectories of the Lorenz equations for the perturbation parameter

γ, defined in section 6, equation (6.6). The shadow trajectory (x′0), solution of the perturbed equations

at γ = 0.9, stays uniformly close in time to the reference trajectory x0, solution of the unperturbed

equations at γ = 1.

Since the two trajectories remain uniformly close to each other, the linearisation con-

cerning the time evolution of the distance between the trajectories holds throughout

and accurate gradients can be obtained. This is important because conventional sensi-

tivity methods based on a linearised problem fail to obtain a gradient that reflect the

actual behaviour of the problem. The main cause of this error are the growing modes
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Organisation of the Thesis

that are not considered during linearisation process.

Although the Shadowing Lemma guarantees the existence of the shadowing direction,

it does not suggest practical algorithms to determine it. If for periodic trajectories

the shadowing direction is also periodic in time, and thus it is possible to derive peri-

odic boundary conditions in time for the sensitivity equations, for chaotic trajectories,

however, it currently appears unlikely that an efficient strategy exists. In fact, so far,

it is impossible to provide exact initial/boundary conditions and ones need to rely on

approximations.

Among the first work which exploited the shadowing-direction in the sensitivity analysis

field, there is Ref. [7] presented by Wang and Hu and named Least Square Shadowing

(LSS). The peculiarity of this method is that it determines the solution of the sensi-

tivity analysis problem with the least square average norm over the time span T . An

another remarkable step in recent developments is the one presented by Lasagna in Ref.

[8], where a well-behaved sensitivity technique is formulated on unstable time periodic

trajectories. All these contributions were important for understanding the problem and

allowed us to develop the new method here proposed.

The project presents a novel shadowing-based algorithm, which an alternative approx-

imation to find the shadowing direction. The key idea of the present method is to

enforce periodic boundary condition in time to the sensitivity equations, leading to the

name Periodic Shadowing.

1.4 Organisation of the Thesis

The present work is subdivided as follows. Chapter 2 reviews the past work on ap-

proaches used to perform sensitivity analysis on chaotic systems. In particular, it

focuses on the merits and limitations of the various methods developed. Chapter 3 de-

scribes the aim and the objectives that will be accomplished. In chapter 4 the tangent

and the adjoint Periodic Shadowing methods will be presented from the conceptual

standpoint and they will be analytically derived. Chapter 5 describes the numerical al-

gorithm used to solve the boundary value problems formulated in chapter 4. Chapter 6

focuses on describing two low-dimensional chaotic systems arising from natural convec-

tion problems which will be used as application models. The results of the sensitivity

analysis are presented in chapter 7 whilst in chapter 8 we outline conclusions and list

few outstanding issues for future developments.

7



Chapter 1. Introduction

1.5 Programming Language

All results and graphs presented in this project were obtained using the Julia program-

ming language. Julia is a high-level general-purpose dynamic programming language

that was originally designed to address the needs of high-performance numerical anal-

ysis. Julia provides ease and expressiveness for high-level numerical computing, in the

same way as languages such as R, MATLAB, and Python. Since the 2012 launch, the

Julia community has grown, with over 2 million downloads as of August 2018.

Figure 1.5: Official Julia logo.
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Chapter 2

Literature Review

The purpose of this chapter is to present the best contributions provided to the develop-

ment of modern sensitivity analysis methods. The digression will follow a chronological

order, initially giving an overview about the state of the art of sentivity analysis per-

fomered on chaotic systems and then focusing on recent developments obtained by

exploiting the Shadowing Lemma [6].

2.1 Historiography of the methods developed

Since the great advancement of new computing technologies and the rapid development

of new technique, numerical simulation become an indispensable tool for aerodynamic

optimizations. However, it is still very time-consuming to obtain large amounts of data

when high-fidelity methods are used for flow solutions. Nowadays, to decrease this

computational cost, numerical simulations such as RANS-based methods are coupled

to sensitivity analysis to exploit the gradient information. As stated previously, the

limitations of this pairing lie in the fact that currently sensitivity analysis methods are

no applicable to unsteady turbulent flow simulations due to the chaotic behaviour of

turbulence. Before going into modern approaches it is necessary to present what were

the most important contributions provided on this topic.

2.1.1 Direct Method and Chaotic Systems

The Direct Method (DM) was the first approach that managed to obtain practical

applicability for the sensitivity analysis of chaotic systems. This approach has been

demonstrated in details by Lea et al. in Ref. [4] for the chaotic system arising from

Lorenz equations [5] (see chapter 6, equations (6.1)). In particular, the sensitivity of an
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observable of interest with respect to a physical parameter related to the temperature

has been demonstrated convergent to the true (or so-called macroscopic) sensitivity of

the problem if the integration time is very large relative to the time scale of the system.

In figure 2.1 the averaged sensitivity as a function of the parameter is presented for

different integration time.

Figure 2.1: Averaged sensitivity of an observable of interest related to the heat transfer with respect

to physical parameter r evaluated for increasing time span. Descriptions placed at the top left of each

plot refer to the integration time considered: T = [0.1, 0.44, 2.26, 131.36] for short, intermediate, long

and very long time span, respectively. Values of z are evaluated at intervals of r = 0.005. [4].

The time spans considered are been chosen with a very specific purpose. In particular,

the short integration only traverses part of an orbit around the Lorenz attractor, the

intermediate integration completes a full orbit, the long integration completes several

such orbits and the very long integrations travel around the attractor O(100) times [4].

Considering panel (d) of figure 2.1, we observe the nearly linear dependence of averaged

z on r with a slope of around 0.96, which is the macroscopic sensitivity.

10
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Limitations of Direct Approaches

The direct method, also called forward or tangent, has shown good results in the ap-

plication to a low-dimensional chaotic system such as the ones arising from Lorenz

equations. However, from a practical point of view, evaluate the sensitivity with re-

spect to only one design variable it is a countercurrent approach if we consider the

contemporary industrial progress. In fact, if the sensitivity of many parameters is re-

quired, the direct method becomes prohibitively from the computational cost since the

sensitivity must be evaluated separately for each design variable. It is foreseeable that

this problem, coupled to the ever increasing engineering requirements, became the bot-

tleneck for a multi-parametric sensitivity analysis: for this reason, it is preferable to go

through the adjoint methods.

2.1.2 Adjoint Sensitivity Methods

Instead of computing the gradient explicitly, the adjoint methods allow computing

gradients with the same cost regardless of the number of parameters perturbations.

Actually, this approach has not been invented recently and specifically for sensitiv-

ity analysis: in fact, the first one who used this term was Lagrange in 1763 in his

“Mélanges de Philosophie et de Mathématique”, who used “équation adjointe” to de-

scribe a method to lower the order of a general linear ordinary differential equation

and applied it to problems as diverse as fluid motion, vibrating strings and the orbit

of planets [9]. Certainly, over the years the applications of this algorithm have been

multiple, starting from a general approach to perturbation theory in neutronics [10]

passing to electromagnetism [11] and geophysical system [4], but all of them had the

common goal of performing sensitivity analysis. The adjoint formulation is useful when

is seeking to obtain the sensitivity of few outputs of interest of a given system for a

wide range of design and control variables. In fact, the typical optimization problem

has a single objective function (possibly combining multiple objectives through suitable

weights) that has to be minimized or maximized with respect to a large number, or

even a continuum, of input variables [9]. This approach has also changed the point of

view of sensitivity analysis since it allows to examine an ensemble of perturbations.

Outcomes and Limitations of Classical Adjoint Methods on Chaotic Systems

Important findings in the application of the adjoint method to chaotic systems are pre-

sented in the aforementioned Ref. [4]. In that work, the authors compare the sensitivity

results evaluated through the direct method and adjoint formulation. The chaotic sys-

11
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tem arising from Lorenz equations and the sensitivity evaluated for an observable of

interest with respect to the temperature are once more chosen. The adjoint method,

applied for four increasing integration intervals, provides results that are highly un-

representative of how a perturbation in design variable really affects the sensitivity.

Results are presented in figure 2.2.

Figure 2.2: Sensitivity of an observable of interest related to the heat transfer with respect to the

physical parameter r evaluated for increasing time span. Descriptions placed at the top left of each

plot refer to the integration time considered: T = [0.1, 0.44, 2.26, 131.36] for short, intermediate, long

and very long time span, respectively. The dashed line, in (a) and (b), shows an estimate of the

macroscopic climate sensitivity, equals to 0.96 [4].

The short integrations in panel (a), (b) produce a stable (i.e. only weakly dependent

on initial condition) but incorrect estimate of the sensitivity, exactly as in the direct

method. The long integration time in panel (c) shows gradients that peak near 104,

completely wrong if compared to ≈ 0.96 value of the true sensitivity evaluated with the

direct method. The results appear strongly dependent on initial conditions and this

12
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behaviour is amplified considering ever larger integration times as in panel (d).

Several remedies have been proposed to apply an adjoint approach on chaotic systems,

such as the ensemble average methods presented in Refs. [12, 13, 14, 15]. In particular,

one of the first techniques developed to reduce the errors is to average results from an

ensemble of intermediate length integration as proposed in Ref. [14]. However, the

length of the integration segment must be chosen carefully, and in practical simulation

even several segments are tested for seek stable results. Subsequently, Lea et al. in Ref.

[15] suggest that averaging an ensemble of adjoint gradients (over N samples) might

provide a better estimate of the sensitivity. Supported by the evidence, the authors

proposed that adjoint sensitivity consists of two components: an underlying “parametric

sensitivity”, and a random state space dependent sensitivity. By ensemble averaging it

is possible to remove the state-space dependent part and reveal the sensitivity [15]. In

fact, it is proven in Ref. [12] that using N = 299 samples produced a sensitivity accurate

to about 10%, whereas a single adjoint calculation for a time-average of duration 299

time units produced an estimate too large by 100 orders of magnitude (as presented in

figure 2.2d). However, to obtain 1% accuracy N ≈ 6.4× 1014 samples are required. In

figure 2.3, taken from the discussion section of Ref. [15], the convergence between the

median of N = 10000 samples and the macroscopic sensitivity for the Lorenz system is

presented.

Figure 2.3: An ensemble-adjoint plot for the Lorenz (1963) system. This plot shows that the median

(solid line) of the ensemble-adjoint converges to the macroscopic climate sensitivity (dashed line). The

dash-dot lines represent the 95 and 5 percentile, respectively. [15].
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In a subsequent work [12], Eyink et al. proposed a further ensemble-adjoint approach

which has a convergence rate essentially the same of the one aforementioned. However,

the importance of this work lies in the fact that they focused the attention on the statis-

tical distribution of the sensitivity. In fact, the authors showed that both methods are

very slowly converging in the number of samples and therefore a very large ensemble for

even modest accuracy improvement in the sensitivity is required. This occurs because

the probability distributions of the adjoint gradient presents a Lévy-type power-law

tail, as it can be observed in figure 2.4, and thus the central limit theorem breaks down.

In this way, the error bars in the ensemble-average gradient are not governed by the

standard central limit theorem and are much more slowly decreasing than would be

expected.

Figure 2.4: Histogram of the adjoint gradient values for N = 106 samples. The dashed line is the best

power-law fit to the tail in loglog plot ≈ 0.2718x−(1+1.185) [12].

The physical interpretation can be traced back to the fact that certain rare dynamical

trajectories of the chaotic system under consideration, which pass very close to the

unstable fixed point at the origin in phase space, present an enormous adjoint gradient.

Another approaches to solve the problem related to the use of an adjoint formulation on

chaotic systems are based on the analysis of the invariant probability density function

and its adjoint, which are presented, for instance, in Refs. [16, 17]. However, both

method suffers from the curse of dimensionality, in fact, the computational costs grow

explosively with the increase of the attractor dimensions.
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2.2 Shadowing-based Methods

In recent years, major advances and more refined solutions have been obtained, i.e. in

Refs. [18, 19], by exploiting the so-called Shadowing Lemma, a theoretical result proved

by Bowen in Ref. [6], that exclusively applies to systems with hyperbolic dynamics.

The subject of Shadowing Lemma concerns the existence of true orbits near pseudo-

orbits, where the latter are defined as orbits that arise when a stochastic perturbation is

applied to the system or when a round-off error is present in the numerical computation

[20]. The property asserts that the original and the pseudo-orbit (it shadow), initially

spaced due to small parameters perturbation, remains uniformly close for the whole

integration time if the system under consideration is uniformly hyperbolic.

2.2.1 Shadowing Lemma and Sensitivity Analysis

Transporting this idea into the context of the sensitivity analysis for chaotic systems, the

Shadowing Lemma can be used to show the existence of a trajectory of the perturbed

system that starts at a different initial condition and remains uniformly close in time

to the trajectory of the unperturbed system [18, 21]. This concept is depicted in figure

2.5.

Figure 2.5: Shadowing for chaotic (a) and periodic (b) trajectories of the Lorenz equations. The

shadow trajectory stays uniformly close in time to the reference trajectory [21].

Since the two trajectories remain uniformly close to each other, the linearisation con-

cerning the time evolution of the distance between the trajectories holds throughout and

accurate gradients can be obtained. The special case depicted in figure 2.5b represents
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the shadowing direction applied to a period trajectory. The use of this theory allowed

to observe that if the pseudo-orbit is periodic, then the true orbit which shadows it

is unique and periodic with the same period [22]. This intuition was at the base of

Ref. [8] where the adjoint problem is formulated on time periodic rather than on open

trajectories. Coupling periodic boundary conditions to the sensitivity equation, the

solution remains bounded over time span considered and does not exhibit the typical

unbounded exponential growth observed (remember figure 2.2) on open unstable tra-

jectories. Applying such constraints allow passing from an ill-conditioned initial values

problem to a well-conditioned boundary value problem.

Figure 2.6: Panel (a): The n = 20 Unstable Periodic Orbit (UPO) (T ≈ 15.1827) of the Lorenz

attractor used as reference trajectory to solve the adjoint boundary value problem (BVP) and initial

value problem (IVP) presented in Ref. [8]. Panel (b) represents the norm of the adjoint variables from

solution of these two problems.

In figure 2.6a the long UPO (T ≈ 15.1827) is depicted whilst in panel (b) the time

histories of the norm of the adjoint variables from the solution of BVPs and IVPs are

reported. In this way the exact sensitivity of period averaged statistics with respect

to problem parameters can be evaluated. In fact, applying this method on the chaotic

system arising from the Lorenz equations, the sensitivity with respect to the physi-

cal parameter related to the temperature results ≈ 1.01847, representing physically

meaningful value. Applying the analogous concept of determining the exact initial (or

boundary) conditions, however, is unlikely if chaotic systems are considered, and thus,

it has been necessary to develop methods based on approximations. Wang in Ref. [18]

proposed to divide the perturbed coordinate system into stable, neutral and unstable

components, each one corresponding to one of Lyapunov’s exponents, and solve the

sensitivity equations forward/backward, respectively. This approach, computationally
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expensive, is then superseded by the same author through a new method [7] called

Least Square Shadowing (LSS).

2.2.2 Least Square Shadowing

This method approximates the unknown shadowing direction by determining the so-

lution of the sensitivity equations with the least square average norm over the time

span T . The minimisation ensures that exponentially growing modes that would highly

contribute to the solution norm are effectively controlled, so that the optimal solution

remains bounded, providing useful gradients [21]. In figure 2.7 the resulting sensitivity

of the Lorenz system computed with Least Square Shadowing is depicted.

Figure 2.7: Finite difference (∆ρ = 2) approximation of the gradient using (left) and the sensitivity

evaluated with Least Square Shadowing (right) [7].

Since the results obtained with LSS and presented in panel (b) are very similar to ones

obtained by finite difference approximation of the gradient, panel (a), we can assert

the good response of the method on this low-dimensional chaotic system. Recently, an

improvement of the method using multiple-shooting strategies and suitable for high-

dimensional systems has been presented in Ref. [19]. As we can understand, however,

this method modifies the nature of the problem, switching to an optimization problem

[21].

2.3 Periodic Shadowing

By combining all the contributions presented up to now, it has been possible to develop

a new, potentially simpler, method for performing sensitivity analysis on chaotic sys-
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tems. The key idea of the presented method is to approximate the shadowing direction

enforcing periodic boundary condition in time to the sensitivity equation. For this rea-

son, the here presented method is called Periodic Shadowing. Rather than formulating

an optimisation problem, as in the Least Square Shadow method, the Periodic Shadow-

ing solves a boundary value problem in time from which it is possible to obtain bounded

(periodic) solutions almost always, resulting in physically meaningful sensitivity. The

boundary value problem requires appropriate numerical methods for the solution, such

as the multiple-shooting approach implemented for this project.

2.4 Open Questions

The main purpose of developing a new shadowing-based algorithm is to provide to the

scientific landscape an alternative method to perform sensitivity analysis on chaotic

system. Furthermore, by observing the results and the numerical features of the Least

Square Shadowing, some questions remain nowadays still open. First of all, the Least

Square Shadowing formulation implies the multiplication of the left-hand side matrix

of the corresponded linear system for its transpose. During the resolution process,

i.e. when the matrix inversion is required, this feature, even if the condition number

remains bounded with respect to classical adjoint methods, leads to compute a matrix

whose condition number is the square of the previous one. The issues related to it are

well-known. Another aspect that we intend to improve with this project is to increase

the knowledge on the statistical quantities of the computed sensitivities. In fact, if

in figure 2.7b the sensitivity is computed for only 10 different initial conditions, we

will concentrate particularly on the probability distribution of more than 106 evaluated

sensitivity. In this way, we can also understand how the number of samples affects the

convergence rate of the results.
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Chapter 3

Research Objectives

3.1 Research Aims and Objectives

The primary aim of this project is to verify and understand the Periodic Shadowing

approach for sensitivity analysis of chaotic systems. The method will be applied to

two low-dimensional chaotic system arising from natural convection problems in fluid

cells bounded by two plates and heated from below. In particular, we select the chaotic

system arising from Lorenz equation [5] and from the nine-states problem presented by

Reiterer et al. [23]. For both systems, we select an observable of interest related to

the heat transfer in the fluid cells whilst the parameter perturbation will be applied

separately on two different physical design variables. In order to obtain the convergence

of the long-time statistics of the observable of interest, the equations are marched until

the integration time is highly longer relative to the time scale of the problem. The

increasing complexity of the systems allows us to obtain sensitivity results on problems

that have the same roots, but different dynamics.

The achievement is accomplished by fulfilling the following research objectives:

• consider the Lorenz system, we evaluate the sensitivity of the time averaged ob-

servable of interest with respect to a parameter describing the state evolution

under a coordinate transformation. The statistical results are compared to the

gradient obtained with by finite-difference approximation;

• consider the Lorenz system we evaluate the sensitivity with respect to the param-

eter related to the temperature difference between the plates of the fluid cells. In

this way we computed statistical quantities that can be compared with the Least

Square Shadowing sensitivity results and finite-difference approximation of the

gradient;
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• analyse the nine-states model representing the three-dimensional cells in dissipa-

tive Rayleigh-Bénard convection and investigate the response of the statistical

quantities computed with respect to a coordinate transformation;

• replicate the previous analysis evaluating the sensitivity of the same observable

of interest with respect to the physical parameter related to the temperature and

compare the results with the finite-difference approximation of the gradient.

It is important to underline that all the aforementioned analyses were subordinated to

the comprehension of the probability distribution of sensitivity results. In particular

we focused on the decay law of the right tails of the full distribution, in order to verify

which statistical quantities is the most representative for each systems.
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Chapter 4

Sensitivity Analysis of Chaotic

Systems

Conventional sensitivity analysis methods can lead to incorrect solutions if they are

applied to chaotic systems like those presented in chapter 6. This occurs because the

property of being dynamically unstable leads to an initial value problem inherently

ill-conditioned. This manifests itself in a great sensitivity to parameters perturbation,

especially when the time interval is expanded, i.e. when is required the sensitivity

of long-term statistics. The computed sensitivity grows exponentially over time and

leads to a non-physical gradient that does not coincide in the limit with the required

sensitivity of the time average. The chapter will be divided as follows. In the first

section, the conventional methods will be presented whilst in the remaining ones the

tangent and adjoint formulations of the Periodic Shadowing will be described.

4.1 Conventional Methods

The choice on which approach, tangent or adjoint, to be used for the analysis of sensi-

tivity depends on how the problem arises and what our goals are. As stated previously,

the tangent (or direct) method finds its practical response in problems where the num-

ber of observables of interest is higher than design and control variables. If the situation

were reversed, the direct method would become extremely computationally expensive

and therefore the adjoint method is preferable.
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4.1.1 Tangent Method

Consider the following dynamical system as the interpretation of a time dependent

simulation

ẋ(t) = f(x(t),p) (4.1)

where x(t) ∈ RN , f(x(t),p) : RN × R is a vector function of x(t) and p is the set of

design and control variables (for simplicity in the following we will consider single scalar

parameter p). To take a practical example, for a computational fluid dynamics (CFD)

simulation, the x(t) represents the vector containing the conserved quantities and p

could include, for instance, geometry or flow properties [19]. The trajectory originated

at x0 is denoted as x(t;x0, p). We assume that the vector function on the right-hand side

is sufficiently smooth with respect to its arguments, so that existence and uniqueness

of solutions are formally guaranteed. The observables of interest, represented by the

scalar-valued function J(x(t), p), is a function of the initial condition, parameters value

and model state x(t), which itself evolves in time in a way dependent on the parameter

p. Generally, since such simulations are performed with time-varying forces, e.g. in

turbulent flows applications, the goals of the optimisation processes are focused on the

finite-time averaged observables of interest

J T (x0, p) =
1

T

∫ T

0

J(x(t;x0, p), p)dt (4.2)

The dependence on the initial condition can be avoided assuming ergodicity, so

J∞(p) = lim
T→∞

J T (x0, p) (4.3)

The sensitivity analysis aims at the knowledge of how observables of interest modify

due to a parameter perturbation δp = p′ − p. For small perturbations around some

reference p, this information, encoded by the gradient J∞dp (p), is formally defined as

J∞dp (p) = lim
δp→0

1

δp
[J∞(p′)− J∞(p)]

= lim
δp→0

1

δp

[
lim
T→∞

J T (x0, p
′)− lim

T→∞
J T (x0, p)

] (4.4)

Since the superscript was used to indicate the perturbed parameter, the related dynamic

system is

ẋ′(t) = f(x′(t), p′) (4.5)

Terming the difference between the two trajectories as

δx(t) = x′(t)− x(t) (4.6)
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and considering a small perturbation δp, we can write the following linearisation

δx(t) = y(t)δp+O(δp2) (4.7)

where y(t) is considered the sensitivity of the system. Linearising the observable of

interest around the reference trajectory we obtain

J(x′(t), p′) = J(x(t), p) + J∂x(x(t), p)(t)δx(t) + J∂p(x(t), p)δp+O(δp2)

(4.7)
= J(x(t), p) + J∂x(x(t), p) · y(t)δp+ J∂p(x(t), p)δp+O(δp2)

(4.8)

Exploiting (4.2), it is possible to rewrite (4.4) as

J∞dp (p) = lim
δp→0

lim
T→∞

1

δp

[
1

T

∫ T

0

J(x′(t;x0, p
′), p′)dt− 1

T

∫ T

0

J(x(t;x0, p), p)dt

]
(4.8)
= lim

δp→0
lim
T→∞

1

δp

1

T

{∫ T

0

[J∂x(x(t), p) · y(t)δp+ J∂p(x(t), p)δp] dt

}
= lim

T→∞

1

T

{∫ T

0

[J∂x(x(t), p) · y(t) + J∂p(x(t), p)] dt

} (4.9)

Performing the differentiation of (4.6) with respect to the time, we get the equation for

the evolution of y(t)

δẋ = ẋ′(t)− ẋ(t)

(4.5)
=

(4.1)
f(x′(t), p′)− f(x(t), p)

= ẏ(t)δp

(4.10)

Linearising the vector field around the reference trajectory leads to

f(x′(t), p′) = f(x(t), p) + f∂x(x(t), p)δx(t) + f∂p(x(t), p)δp+O(δp2)

(4.7)
= f(x(t), p) + f∂x(x(t), p) · y(t)δp+ f∂p(x(t), p)δp+O(δp2)

(4.11)

and substituting it in (4.10) we obtain

ẏ(t)δp = f∂x(x(t), p) · y(t)δp+ f∂p(x(t), p)δp (4.12)

where f∂x(x(t), p) ∈ RN×N is the system Jacobian containing the partial derivatives

of the vector field with respect to the state space coordinates whilst f∂p(x(t), p) ∈
RN is a vector containing the partial derivatives of the vector field with respect to

the parameters. Coupling (4.12) with the initial condition y(0) = 0, which is the
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linearisation of x′0 = x0, we obtain the initial value problem for the conventional tangent

approach {
ẏ(t) = f∂x(x(t), p) · y(t) + f∂p(x(t), p), t ∈ [0, T ]

y(0) = 0

(4.13a)

(4.13b)

This choice arises from optimal control theory ideas, where the focus is typically on

the effects of parameter perturbations on the future evolution of the system, starting

from the same initial condition.

4.1.2 Adjoint Method

When the sensitivity with respect to several parameters is required, we rewrite the

initial value problem in such a way we do not have to explicitly compute y(t). For this

reason we introduce the adjoint variable q(t) ∈ X ≡ RN and we combine it with the

sensitivity equation (4.12), obtaining the identity

1

T

∫ T

0

qᵀ(t) [ẏ(t)− f∂x(x(t), p) · y(t)− f∂p(x(t), p)] dt = 0 (4.14)

Expanding the multiplication we obtain

1

T

∫ T

0

[qᵀ(t)ẏ(t)− qᵀ(t)f∂x(x(t), p) · y(t)− qᵀ(t)f∂p(x(t), p)] dt = 0 (4.15)

and integrating by parts the first term leads to

qᵀ(t)ẏ(t) = [qᵀ(t)y(t)]

∣∣∣∣T
0

−
∫ T

0

q̇ᵀ(t)y(t)dt (4.16)

Substituting in (4.15) leads to

1

T

∫ T

0

{
[−q̇ᵀ(t)− qᵀ(t)f∂x(x(t), p)] · y(t)− [qᵀ(t)f∂p(x(t), p)]

}
dt+

+
1

T
[qᵀ(t) · y(t)]

∣∣∣∣T
0

= 0 (4.17)
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Since the identity to the null value is verified, adding this term to (4.9) and considering

finite-time integration

J T
dp(p) =

1

T

∫ T

0

[J∂x(x(t), p) · y(t) + J∂p(x(t), p)] dt+

1

T

∫ T

0

{
[−q̇ᵀ(t)− qᵀ(t)f∂x(x(t), p)] · y(t)− [qᵀ(t)f∂p(x(t), p)]

}
dt+

+
1

T
[qᵀ(t) · y(t)]

∣∣∣∣T
0

(4.18)

Factoring out y(t)

J T
dp(p) =

1

T

{∫ T

0

[−q̇ᵀ(t)− qᵀ(t)f∂x(x(t), p) + J∂x(x(t), p)] · y(t)dt+

+

∫ T

0

[−qᵀ(t)f∂p(x(t), p) + J∂p(x(t), p)] dt

}
+

+
1

T
[qᵀ(t) · y(t)]

∣∣∣∣T
0

(4.19)

To avoid the explicit computation of y(t), contained in the first and last term of (4.19),

for each design variable we need to select a particularly adjoint variable q(t) which

allows obtaining

q̇ᵀ(t) + qᵀ(t)f∂x(x(t), p) = J∂x(x(t), p) (4.20)

and

1

T
[qᵀ(t) · y(t)]

∣∣∣∣T
0

=
1

T
[qᵀ(T )y(T )− qᵀ(0)y(0)]

(4.13b)
=

1

T
qᵀ(T )y(T )

(4.21)

Thus, choosing qᵀ(T ) = 0 for the adjoint variables, we obtain qᵀ(t) solving backward

in time the following system{
q̇ᵀ(t) + qᵀ(t)f∂x(x(t), p) = J∂x(x(t), p)

qᵀ(T ) = 0
(4.22)

Thus, the sensitivity is

J T
dp =

1

T

∫ T

0

[−qᵀ(t)f∂p(x(t), p) + J∂p(x(t), p)] dt (4.23)
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4.1.3 Limitations of Conventional Methods

For a chaotic system with unstable dynamic, the initial values problems (4.13) and

(4.22) are ill-conditioned. Thus, the computed sensitivity derivative (4.12),(4.23) di-

verges to infinity rather than converging to the sensitivity derivative of the statistical

quantity [4]. In particular, these approaches fail when the observable of interest is av-

eraged over a time span T long relative to the time scale of the problem. This occurs

because a chaotic dynamical system is extremely sensitive to initial conditions pertur-

bations causing an exponential growth of the linearised initial value problem, as we can

observe in figure 4.1. In figure 4.1 we show the time evolution of the distance between

0 10 20 30 40 50 60
t

10−8

10−5

10−2

101

104

107

1010

‖δ
x‖
t)‖

NonLinear
e0.9075

Linear

Figure 4.1: Time evolution of the distance between trajectories of Lorenz system initially spaced by

10−9. The blue and green lines represent the nonlinear and linearised simulation, respectively. The

regression line corresponds to the maximal Lyapunov exponent of the system.

the trajectories considering nonlinear (6.1) and linearised system. We observe that the

positive slope for the nonlinear simulation only holds up for the first 35 time units

and, after that, the curve levels off. This occurs because all trajectories of the Lorenz

system wind up in its attractor. On the other hand, linearised simulation grows un-

til that threshold with the same slope of the nonlinear simulation, but after that, they

cannot describe the phenomenon related to the saturation of the distance. In fact, after

that threshold, there is an endless increase in distance ‖y(t)‖δp as T →∞. Thus, the

sensitivity obtained is too large and does not represent the real behaviour of the system.
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Role of Lyapunov Exponent

The growth rate of distance between the reference and perturbed trajectories is eλt,

where λ is the maximal Lyapunov exponent of the system under consideration. Lya-

punov exponents are characteristic quantities of dynamical systems which provide a

measure of the rate of separation of infinitesimally close trajectories in phase space.

Consider two points x(t) and x(t) + δx(t) of N -dimensional chaotic system spaced by

infinitesimal δx(t) at time t. Figure 4.2 shows a snippet of an evolution in the state

spaces of two generic trajectories.

x(t)

x(t) + δx(t)

δx(t)

Figure 4.2: Evolution of two different trajectories initially spaced δx0

The rate of change of δx(t) over time is provided by the maximal Lyapunov exponent

of the system, defined as

λ = lim
t→∞

1

t
ln
‖δx(t)‖
‖δx(0)‖

(4.24)

where δx(0) is the initial distance between the trajectories. Dynamical systems has a

spectrum of Lyapunov exponents, one for each dimension of its phase space and the

maximal Lyapunov exponent is responsible for the dominant behaviour of a system.

Using (4.24) we can obtain the maximal Lyapunov exponent as the gradient of the

distance between the trajectories plotted as a function of time, as depicted in figure

4.1. The maximal Lyapunov exponent evaluated is ≈ 0.9075, but if we average over

many trajectories we can obtain the more accurate value of ≈ 0.906 [24].

4.2 Tangent Periodic Shadowing

Our aim is to obtain the gradient (4.27) using a linear method, with a tangent or

adjoint formulation. Consider again the dynamic system presented in equation (4.1).

As stated, the observable of interest depends on the initial condition and parameters

value, and it is represented by the scalar-valued function J(x(t), p), which its finite-time

average is

J T (x0, p) =
1

T

∫ T

0

J(x(t;x0, p), p)dt (4.25)
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The dependence on the initial condition can be avoided assuming ergodicity, so

J∞(p) = lim
T→∞

J T (x0, p) (4.26)

To understand how the observable of interest modifies due to a small parameter per-

turbation δp = p′ − p, we need to evaluate the gradient J∞dp (p), formally defined as

J∞dp (p) = lim
δp→0

1

δp
[J∞(p′)− J∞(p)]

= lim
δp→0

1

δp

[
lim
T ′→∞

J T ′
(x′0, p

′)− lim
T→∞

J T (x0, p)
] (4.27)

Expression (4.27) is the basis of the familiar finite-difference gradient approximation.

However, the existence of this limit, i.e. the differentiability of the infinite-time averages

of a dynamical system, is a long-standing question in dynamical systems theory, but,

as stated in Ref. [25] it exists if uniformly hyperbolic systems are considered.

The dynamic system characterized by the perturbed parameter is formally expressed

as

ẋ′(t) = f(x′(t), p′) (4.28)

and defined over a time span [0, T ′] where T ′ = T + δT . Using different time span

does not affect (4.27) and it can be advantageous for the approach we will explain in

the following. For this reason, we start defining the distance between the reference and

perturbed trajectories, leaning on the Linstedt-Poincaré technique by which, introduc-

ing ω = T ′/T term representing how the time scales of the trajectories are related, it

is possible to define

δx(t) = x′(tω)− x(t) (4.29)

This technique (see e.g. Refs. [26, 27]), allows to define equation (4.29) over t ∈ [0, T ]

but actually extending the time to the entire interval [0, T ′] on the perturbed trajectory.

This means that t ∈ [0, T ] represents now the independent variable parameterising

points of the perturbed system. Using different time span, relation (4.29) would not be

T -periodic due to the algebraically growing modes known as secular terms introduced

performing the linearisation [28]. It can be therefore understood that the choice of ω

is not completely arbitrary, but should reflect the change in the relevant time scale of

the system under parameter perturbations.

Considering a small δp, we can write the linearisation of the distance between the

trajectories as

δx(t) = y(t)δp+O(δp2) (4.30)
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where y(t) is the sensitivity of the system.

Using this term to linearise the observable of interest around the reference trajectory

leads to

J(x′(tω), p′) = J(x(t), p) + J∂x(x(t), p) · y(t)δp+ J∂p(x(t), p)δp+O(δp2) (4.31)

with t ∈ [0, T ] as discussed in (4.29). Now it is possible to rewrite (4.27) as

J∞dp (p) = lim
δp→0

lim
T,T ′→∞

1

δp

[
1

T ′

∫ T ′

0

J(x′(t;x′0, p
′), p′)dt− 1

T

∫ T

0

J(x(t;x0, p), p)dt

]

= lim
δp→0

lim
T→∞

1

δp

[
1

T ′

∫ T

0

J(x′(tω;x′0, p
′), p′)dtω − 1

T

∫ T

0

J(x(t;x0, p), p)dt

]
(4.31)
= lim

δp→0
lim
T→∞

1

δp

1

T ′
ω

∫ T

0

[J∂x(x(t), p) · y(t)δp+ J∂p(x(t), p)δp] dt

= lim
T→∞

1

T

∫ T

0

[J∂x(x(t), p) · y(t) + J∂p(x(t), p)] dt

(4.32)

Performing the differentiation of (4.29) with respect to the time t we get the equation

for the evolution of y(t)

δẋ = ωẋ′(tω)− ẋ(t)

(4.1)
=

(4.28)
ωf(x′(tω), p′)− f(x(t), p)

= ẏ(t)δp

(4.33)

Linearising the vector field around the reference trajectory x(t) like in (4.31)

f(x′(tω), p′) = f(x(t), p) + f∂x(x(t), p) · y(t)δp+ f∂x(x(t), p)δp+O(δp2) (4.34)

and substituting it in the evolution equation (4.33)

ẏ(t)δp = ω[f(x(t), p) + f∂x(x(t), p) · y(t)δp+ f∂p(x(t), p)δp]− f(x(t), p)

= ωf∂x(x(t), p) · y(t)δp+ ωf∂p(x(t), p)δp+ (ω − 1)f(x(t), p)

Since to the first order ω = 1 +
Tdp
T
δp and dividing by δp

ẏ(t) =

(
1 +

Tdp
T
δp

)
f∂x(x(t), p) · y(t) +

(
1 +

Tdp
T
δp

)
f∂p(x(t), p) +

Tdp
T

f(x(t), p)
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Performing the δp→ 0 limit we obtain the sensitivity equations

ẏ(t) = f∂x(x(t), p) · y(t) + f∂p(x(t), p) +
Tdp
T

f(x(t),p) (4.35)

where f∂x(x(t), p) ∈ RN×N is the system Jacobian containing the partial derivatives of

the vector field with respect to the state space coordinates whilst f∂p(x(t), p) ∈ RN is a

vector containing the partial derivatives of the vector field with respect to the param-

eters.

Note that the gradient Tdp is still an unknown and “arbitrary” quantity. Once obtained

the equation of sensitivity we need to introduce the initial condition for it. Recalling the

ergodicity assumption performed on (4.26), we are free to choose any initial condition

for the perturbed system (4.28), i.e. in a linearised formulation it corresponds to select

an arbitrary y(0). Classical sensitivity analysis methods (4.13) select the initial condi-

tion y(0) = 0, the linearisation of x′0 = x0, as used for instance in (4.13b). However, it

was proven that two trajectories originating at the same point separate initially at an

exponential rate, and the difference saturates in a finite-time around a finite value due

to global boundedness, as seen in figure 4.1. The problem that arises from the linearised

formulation is that (4.12), by definition, does not model the nonlinear effects, and thus

y(t) continues growing at an average exponential rate for all the considered time span

[4]. In other words, for any finite δp, there is a finite T at which the linearisation

fails and higher order terms neglected in (4.7) and (4.11) become important [17]. This

growth is reflected in a non-physical exponential increase of the gradient (4.32) as T is

increased [4].

In order for the linearisation to remain valid, and thus for the gradient (4.32) to con-

verge while integrated on T → ∞, the sensitivity should remain bounded. Regarding

this, the shadowing lemma gives us the necessary theoretical aid, although it does not

formulate algorithms to provide initial or boundary conditions that can be used to solve

(4.35). In the following the required trajectory is called shadow trajectory for a finite

perturbation and shadowing direction for an infinitesimal one. The peculiarity of the

method developed and here proposed as Periodic Shadowing is precisely on the choice

of the periodic boundary conditions. The key idea is that it is imposed the condition

that the end points of the perturbed trajectory move in the same unspecified direction

by the same unspecified amount, as presented by the arrows in panel (a) and (b) of

figure 4.3 for aperiodic and periodic trajectory, respectively.

From a mathematical standpoint this feature is expressed as

x′0 − x0 = x′(T ′;x′0, p
′)− x(T ;x0, p)

whose linearisation with respect to the reference trajectory, obtained by dividing both
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Tangent Periodic Shadowing

Figure 4.3: Geometry of the periodicity condition 4.36, for aperiodic (a) and periodic (b) trajectories

of the Lorenz equations [21].

sides by δp and taking the δp→ 0 limit, leads to

y(0) = y(T ) (4.36)

Combining the relationship (4.35) with (4.36) the sensitivity problem is only partially

defined because, unlike the conventional tangent method, there is an additional term

related to the time gradient. In fact, considering only the periodic boundary conditions,

there are no constraints which allow us to determine the gradient Tdp, which remains

arbitrary. If we hypothesize to forcibly set Tdp = 0 we do not get an accurate solution

because neglecting the growth of algebraic modes produces a spurious sensitivity error

that does not vanish as T → ∞. In the following, an approach that is frequently

employed in bifurcation analysis for periodic systems [29] are presented. Rather than

fixing the gradient Tdp a priori, we impose that the solution of the sensitivity equations

(4.35) satisfies the additional orthogonality condition

f(x(0), p)ᵀ · y(0) = 0 (4.37)

at the trajectory initial point.

Finally, combining the sensitivity equations (4.35), the periodic boundary conditions

(4.36) and the orthogonality constraint (4.37) we obtain the tangent Periodic Shadowing

problem as
ẏ(t) = f∂x(x(t), p) · y(t) + f∂p(x(t), p) +

Tdp
T

f(x(t), p), t ∈ [0, T ]

y(0) = y(T )

f(x(0), p)ᵀ · y(0) = 0

(4.38)
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From a mathematical viewpoint, this set of equations represents a boundary-value prob-

lem. The periodic boundary conditions ensure that the solution will remain bounded

for all the time span, regardless the choice of T .

Having a problem of this type involves to use of a dedicated numerical method for

boundary value problems. An efficient numerical methods to solve such problems is

based on shooting technique [30], presented in the next chapter.

4.3 Adjoint Periodic Shadowing

The tangent method presented in the previous section allows calculating the sensitivity

of the observable of interest to a variation in one of design parameters. If the sensitivity

with respect to several parameters is required, the algorithm must be repeated for each

perturbations applied. In such a context, the tangent method becomes computationally

expensive, and therefore, as mentioned in the introductory chapter, adjoint methods

are preferable.

To obtain the adjoint Periodic Shadowing method we introduce again the adjoint vari-

ables q(t) ∈ X ≡ RN defined over [0, T ] and we combine it with the sensitivity equation

(4.35) leads to the identity

1

T

∫ T

0

qᵀ(t)

[
ẏ(t)− f∂x(x(t), p) · y(t)− f∂p(x(t), p)− Tdp

T
f(x(t), p)

]
dt = 0 (4.39)

Expanding the multiplication

1

T

∫ T

0

[
qᵀ(t)ẏ(t)− qᵀ(t)f∂x(x(t), p) · y(t)− qᵀ(t)f∂p(x(t), p)− qᵀ(t)

Tdp
T

f(x(t), p)

]
dt = 0

(4.40)

and integrating by parts the first term

qᵀ(t)ẏ(t) = [qᵀ(t)y(t)]

∣∣∣∣T
0

−
∫ T

0

q̇ᵀ(t)y(t)dt (4.41)

Replacing it in (4.40) and rearranging

1

T

∫ T

0

[−q̇ᵀ(t)− qᵀ(t)f∂x(x(t), p)] · y(t)dt+

+
1

T

∫ T

0

[
−qᵀ(t)f∂p(x(t), p)− Tdp

T
f(x(t), p)

]
dt+

1

T
[qᵀ(t) · y(t)]

∣∣∣∣T
0

= 0 (4.42)
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Now it is possible to add this term (since the identity to null value is verify) to (4.32),

leading to

J∞dp (p) = lim
T→∞

1

T

{∫ T

0

[J∂x(x(t), p) · y(t) + J∂p(x(t), p)] dt+

+

∫ T

0

[−q̇ᵀ(t)− qᵀ(t)f∂x(x(t), p)] · y(t)dt+

+

∫ T

0

[
−qᵀ(t)f∂p(x(t), p)− qᵀ(t)

Tdp
T

f(x(t), p)

]
dt+ [qᵀ(t) · y(t)]

∣∣∣∣T
0

}
(4.43)

Factoring out y(t)

J∞dp (p) = lim
T→∞

1

T

{∫ T

0

[−q̇ᵀ(t)− qᵀ(t)f∂x(x(t), p) + J∂x(x(t), p)] · y(t)+

+

∫ T

0

[
−qᵀ(t)f∂p(x(t), p)− qᵀ(t)

Tdp
T

f(x(t), p) + J∂p(x(t), p)

]
dt+

+ [qᵀ(t) · y(t)]

∣∣∣∣T
0

}
(4.44)

The key idea that makes the Periodic Shadowing adjoint method so powerful is to

select, as done for the conventional approach, a particularly adjoint variables to avoid

the explicit computation of y(t) for every parameter of interest. To achieve this goal

we need to select a particularly adjoint variable q(t) which allows to obtain

q̇ᵀ(t) + qᵀ(t)f∂x(x(t), p) = J∂x(x(t), p) (4.45)

Secondly, the last term can be treated as

1

T
[qᵀ(t) · y(t)]

∣∣∣∣T
0

=
1

T
[qᵀ(T )y(T )− qᵀ(0)y(0)]

(4.36)
=

1

T
y(0)[qᵀ(T )− qᵀ(0)]

(4.46)

Thus, choosing the periodic boundary condition qᵀ(T ) = qᵀ(0) for the adjoint variables

as well, allow us to obtain qᵀ(t) from{
q̇ᵀ(t) + qᵀ(t)f∂x(x(t), p) = J∂x(x(t), p)

qᵀ(T ) = qᵀ(0)
(4.47)

in order to evaluate J∞dp without compute y(t) explicitly for each design variables.

Thus, the sensitivity is

J∞dp = lim
T→∞

1

T

∫ T

0

[
−qᵀ(t)f∂p(x(t), p)− Tdp

T
f(x(t), p) + J∂p(x(t), p)

]
dt (4.48)
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Chapter 4. Sensitivity Analysis of Chaotic Systems

The periodic boundary conditions guarantee that the adjoint solution remains bounded,

i.e. it does not exhibit the typical exponential growth. This method is extremely

powerful if we were to evaluate the influence of more perturbations.

The gradient Tdp is obtained from the resolution of an additional adjoint problem.

Mathematical details about how obtain this term are presented in appendix B of Ref.

[21].
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Numerical Methods

Once the boundary value problems (4.38) and (4.47) have been formulated, it is neces-

sary to use appropriate numerical methods for the solution. In fact, as known, the suc-

cess of a numerical process depends on a combination of two factor: a well-conditioned

problem and a stable algorithm to solve it. Generally, finding the solution of boundary

value problems is more diffult than finding the solution of initial value problems due to

the more complex structure. Thus it makes sense to use a numerical method for a given

boundary value problem by relating the problem to corresponding (easier) initial value

problem and solving the latter numerically [30]. To perform this, shooting technique

are used. This chapter will provide an overview of the shooting methods: starting from

the single shooting and its limitations, we will reach the multiple shooting formulation

for the tangent approach of Periodic Shadowing.

5.1 Shooting Methods

The key idea of shooting method is to reduce the given boundary value problem to

several initial value problems. The name of these methods perfectly represents the

way they work: in fact, the goal is to shoot out trajectories in different directions

until we find a trajectory that has the desired boundary value. This techniques are

widely used because, in addition to the different structure of the problem, for the latter,

good numerical methods are well understood and a wide range of software own simple

and flexible mathematical library. They are applicable to both linear and non-linear

boundary value problems and, once the “conversion” into an initial value problem is

done, the resulting system is solved iteratively.

For both of following descriptions tangent formulation of Periodic Shadowing (4.38)

will be considered.
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Chapter 5. Numerical Methods

5.1.1 Single Shooting Method

The simplest shooting technique is the single shooting method. Its easy understanding

and implementation are balanced by the possible presence (as in our case) of instability

drawbacks. Consider the problem of tangent Periodic Shadowing (4.38)
ẏ(t) = f∂x(x(t), p) · y(t) + f∂p(x(t), p) +

Tdp
T

f(x(t), p), t ∈ [0, T ]

y(0) = y(T )

f(x(0), p)ᵀ · y(0) = 0

(5.1a)

(5.1b)

(5.1c)

Based on the principle of superposition discussed in detail in Refs. [31, 32], any solution

of (5.1a) can be written as a linear combination of N linearly independent solution,

where N is the dimension of the square matrix f∂x(x(t), p). Thus, the general solution

can be represented by

y(t) = Y(t) · y0 + h(t) +
Tdp
T

f(x(t), p), t ∈ [0, T ] (5.2)

where Y(t) is the fundamental matrix solution, y(t) ∈ RN is the parameter vector and

h(t) is a particular solution. For definiteness, the fundamental matrix solution is an

N × N matrix such that det(Y(t)) 6= 0 ∀t, i.e. the N columns of Y(t) are linearly

independent. The fundamental matrix solution satisfies{
Ẏ(t) = f∂x(x(t), p) ·Y(t), t ∈ [0, T ]

Y(0) = I
(5.3)

where I is the identity matrix. The particular solution is defined by the initial value

problem {
ḣ = f∂x(x(t), p) · h + f∂p(x(t), p), t ∈ [0, T ]

h(0) = 0
(5.4)

Thus, the N columns of Y(t) and the vector h(t) can be computed as solution of N + 1

initial value problems. The boundary value problem solution y(t) is given as their

superposition in equation (5.2). Exploiting (5.1b) it is possible to write

Y(T ) · y0 + h(T )
(5.2)
= y(T ) = ·y(0) (5.5)

which is equivalent to

(Y(T )− I)y0 = −h(T ) (5.6)
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Shooting Methods

The boundary value problem (5.1) has a unique solution iff (if and only if) the (Y(T )− I)

matrix is nonsingular. Solving (5.6) and then (5.2) we obtain obtain the solution. How-

ever, as mentioned above, the single shooting method cannot always be applied due to

its stability drawbacks. In fact, the initial value problems integrated in the process

could be unstable even if the boundary value problem is well posed. The major trouble

is connected with the roundoff error accumulation as described in Ref. [30]. In figure

5.1 we present examples of the left-hand side matrix (Y(T ) − I) condition numbers

obtained with single shooting method fixing the initial conditions and time step.

0 25 50 75 100 125 150 175 200
T

10−5
1012
1029
1046
1063
1080
1097
10114
10131

co
nd

[L
H
S]

Figure 5.1: Condition number of the left-hand side matrix for the single shooting algorithm. Fixed

the initial condition and the time step (∆t = 10−2) the condition number is computer for increasing

time span, T = [1, 2, 5, 10, 20, 50, 100, 200].

We observe that in for small time intervals the condition number remains bounded, but

considering integration time long relative to the time scale of the system, the condition

number explode numerically. To reduce these spurious effects and make the results

more trustworthy, methods that work by reducing the interval over which the initial

values problems are solved have been developed. One of them is the multiple shooting

method.

5.1.2 Multiple Shooting Method

Having to keep the roundoff error limited, the logical expedient adopted is to consider

smaller time interval over which integrate the initial value problems. For this reason

the whole time span of integration [0, T ] is subdivided into a mesh of N shooting points
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Chapter 5. Numerical Methods

evenly spaced at

ti = i
T

N
, i = 0, . . . , N − 1

The number of fragments in which to subdivide the whole integration time is an im-

portant input parameter that must be chosen appropriately. In fact, the T/N ratio

is strictly connected to the condition number of the associated matrix. Thus, it is

therefore clear that the correct number of shooting points must be chosen in order to

maximize the efficiency of the algorithm in terms of computational cost and to not

undermine the solution of the problem. The key point is, therefore, to perform the

steps presented in the previous section on each subinterval i ∈ [ti, ti+1] created.

t

y

0 Tt1 t2 t3

Figure 5.2: Graphical representation of multiple shooting technique.

Using the previous notation, it is possible to express the solution yi(t) over the i-th

subinterval originating from a particular initial condition y0
i as

yi(t) = Yi(t,xi) ·
{
y0
i +

∫ t

ti

Y−1i (s,xi) ·
[
f∂p(x(s), p) +

Tdp
T

f(x(s), p)

]
ds

}
= Yi(t,xi) · y0

i + hi(t) + (t− ti)
Tdp
T

f(x(t)), i = 0, . . . , N − 1

(5.7)

The fundamental matrix solution and the particular solution are still obtained solving

the initial values problems (5.3) and (5.4) but now referred to the i-th segment. Now

it is possible to solve the problem looking for the initial condition y0
i , i = 0, . . . , N − 1,

such that the overall solution is continuous at the shooting point [21]. The system

obtained, considering also the condition of orthogonality, turns out to be

y0
i+1 = Yi(ti+1,xi) ·y0

i +hi(ti+1)+(ti+1−ti)
Tdp
T

f(x(ti+1), p), i = 0, . . . , N−1 (5.8)
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which can be written in matrix form as
Y0(t1, x0) −I · · · f(t1)

...
. . . . . .

...
. . . −I

−I YN−1(tN ,xN−1) f(tN)

fᵀ(0) 0ᵀ · · · 0ᵀ 0

 ·


y0
0
...

y0
N−1

T 0
dp/N

 = −


h0(t1)

...

hN−1(tN)

0


(5.9)

The bordering vector represents the orthogonality constraint included in system (4.38).

The system is solved using L,U factorisation. The left-hand side matrix is a sparse

matrix which takes, for instance, the configuration presented in figure 5.3 for the Lorenz

system (6.6) with twenty shooting points.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Top: configuration of left-hand side matrix of (5.9) computed for four shooting points (a)

and the LU factorisation in (b) and (c), respectively. Bottom: configuration of left-hand side matrix

of (5.9) computed for forty shooting points (d) and the LU factorisation in (e) and (f), respectively.

The black squares represent the non-zero element.

The spy plot of figure 5.3a represents the configuration of the left-hand side matrix

considering four shooting points, i.e. a time span of T = 20 time units, for the multiple

shooting formulation of the tangent Periodic Shadowing approach applied to Lorenz

equations (a) whilst in panels (b) and (c) the L,U factors is presented. The features

of the matrix in panel (a) depends on two factors: number of shooting points and

system dimensions. Primarily, the sparsification of the matrix increases with increasing

time interval considered, i.e. the number of shooting points. This, also dependent on

dimensions of system analysed. In fact, hypothetically considering high-dimensional
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systems, e.g. Navier-Stokes equations, coupled with a long integration time, the matrix

would become so large that a block elimination method could not be applied. From

what is evident, the considerable increase in storage and/or computation requirements

are nowadays the bottleneck of this application.

The choice in how many shooting points to subdivide the whole trajectory is performed

following the verification of the condition number of the matrix. In fact, choosing a

few shooting points increases the speed of the code but we stumble in the problems

related to single-shooting. On the other hand, if we use too many shooting points the

dimensions of the matrix increases more and more spoiling the condition number. In

figure 5.4 we plot the condition number of the left-hand side matrix for the Lorenz

equation as a function of T/N ratio fixed the initial condition and time step. We
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Figure 5.4: Condition number of the left-hand side sparse matrix as a function of T/N ratio for T = 10

(a) T = 20 (b) T = 100 (c) time units. The red points corresponds to T/N = 5.

observe that the red markers, at T/N = 5, correspond (on average) to the ratio that

provides the minimum condition number. For this reason, for both systems we select

T/N = 5 as input parameter.

5.2 Numerical Solution of Linearised Equations

The numerical integration of nonlinear and linearised equation is obtained trough a

classical fourth-order Runge-Kutta scheme with step size dt = 10−3. This value is

chosen as step size in order to obtain accurate solution will be discussed in more detail
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Numerical Solution of Linearised Equations

in the appropriate subsection. The linearised equations are solved in a coupled manner

with the nonlinear equations by propagating forward in time the augmented system

[21]. ẋ(t) = f(x(t))

ẏ(t) = f∂x(x(t), p) · y(t) + f∂p(x(t), p) +
Tdp
T

f(x(t),p)
(5.10)

The shooting points are then created starting from a position on the trajectory obtained

by propagating the initial condition for a number of temporal units sufficiently high to

eliminate the spurious effects of the initial transient, as represented in figure 5.5.
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x 3

Shooting Point

Figure 5.5: Representation of the shooting points in the Lorenz attractor. The ratio between the time

span and the number of shooting points must be, for the chaotic system arising from Lorenz equations,

not greater than 5.

In figure 5.5 we present a classical trajectory of the Lorenz attractor and the shooting

points used to construct the matrix. It must be underlined that, for the Lorenz system,

the relationship between the integration time T and the number of shooting points N

must never be greater than 5. To obtain the sensitivity of the observable of interest

(4.32) with respect a certain design variable p, the system 5.10 is augmented coupling

a quadrature equation, leading to
ẋ(t) = f(x(t))

ẏ(t) = f∂x(x(t), p) · y(t) + f∂p(x(t), p) +
Tdp
T

f(x(t),p)

q̇(t) = g(x(t),y(t))

(5.11)

and when integrated, q(T ) is equal to the integral

q(T ) =

∫ T

0

g(x(t),y(t))dt (5.12)
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with high accuracy.

5.3 Convergence Analysis

In this section, the mutual interaction between the time step used in the integration

process and the number of shooting points considered to subdivide the whole time span

will be analysed. Indeed it is necessary to verify that the time step is enough small

to analyse the system correctly. In order to observe this, we present in figure 5.6 the

time evolutions of the sixth component of Reiterer system obtained by integrating the

equations (6.9) and using ∆t = [0.01, 0.02, 0.04], in panel (a),(b) and (c), respectively.

We fix the integration time T = 20 and we modify the number of shooting points in

order to obtain three different T/N ratio: N = [4, 8, 16]. We observe that if we select

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

−200

0x 6
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(b)

(c)

Figure 5.6: Time evolution of the sixth component using an increasing number of shooting points for

∆t = 0.01 (a), ∆t = 0.02 (b) ∆t = 0.04.

a time step too wide, the number of shooting points in which we subdivide the whole

time span affects the results. This phenomenon should be avoided because the dynamic,

and thus the sensitivity, of the system are corrupted by the mathematical model. By

contrast, if ∆t = 0.01 the N value does not affect the results and thus will be the input

for all the following analysis. In what follows, we have used ∆t = 0.01 for both Lorenz

and Reiterer systems.
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Mathematical Models

This chapter describes the mathematical and physical models of the low-dimensional

chaotic systems used as application models for the sensitivity analysis presented in this

project. Both systems arise from natural convection problem in fluid cells bounded

by two plates and heated from below. To investigate and validate the response of the

method, it was necessary initially to use a chaotic system with low computational cost.

For this reason, our choice fell on from Lorenz equations [5], whose low-dimensionality

and the vast amount of literature sources make it particularly suitable for testing and

validation. Subsequently, we apply it to a system of nine nonlinear ordinary differential

equations describing the three-dimensional cells in Rayleigh-Bénard convection problem

[23]. This chapter contains the physical model of the chaotic systems and describes the

influence on the chaotic behaviour of the temperature difference between the plates.

For both systems the most important views of the arising attractors will be presented

whilst in the last sections, the coordinate transformation and the linearisation will be

introduced.

6.1 The Lorenz System

“Does the Flap of a Butterfly’s wings in Brazil Set Off a tornado in Texas?”

Surely this sentence has already been heard, probably mistakenly associated with the

philosophical or poetic field. Actually, it is the title [33] given by Edward Lorenz, fol-

lowing suggestions from colleagues, for a talk held at the 139th meeting of the American

Association for the Advancement of Science in 1972. To appropriately contextualize

the above quotation it is necessary to know that Lorenz was an American meteorologist

whose goals ware to construct a mathematical model that could represent accurately
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the phenomenology related to long-term weather forecasts, due to his scepticism about

the linear statistical models used in the ’50. This study led him to be the first to

recognize what is now called chaotic behaviour in the mathematical modelling, and he

realized that small differences in the initial condition of a dynamic system characterized

by chaotic nature, could trigger vast and often unsuspected results.

From the late seventies to today, literature has grown a lot with regard to the mutual

relationship between fluid dynamic and chaos theory, in particular for interpreting the

increasing complexity of the dynamics all along the cascade of instabilities leading to

turbulence [34, 35]. Lorenz developed a simplified mathematical model of the two-

dimensional convection of Rayleigh-Bénard, i.e. the flow between two infinite parallel

plates spaced h where the lower one is heated like represented in figure 6.1. The change

in density due to temperature variations gives rise to a flow generated by buoyancy,

which opposes to the viscous forces in the fluid. The equilibrium between these forces

determines whether the flow is stable or not: such system has a steady state solution,

in which there is no movement and the temperature varies linearly with depth, and an

unstable one, in which the phenomenon of convection arisen. This simple convection

problem can be considered a drastically simplified model of the Earth’s atmosphere.

T0 + ∆T

T0

Figure 6.1: Graphical representation of fluid cells bounded by two plates and heated from below. This

illustrationn represents Rayleigh-Bénard convection problem.

The upper and lower plates have a temperature of Tu = T0 and TL = T0 + ∆T , re-

spectively, and the fluid contained between these has density ρ, kinematic viscosity ν,

thermal diffusivity κ and thermal diffusivity α. The starting point of the Lorenz digres-

sion is the system constituted by the Navier-Stokes equations coupled to the thermal

energy equation upon which the Boussinesq approximation is applied, i.e. the variations
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in fluid properties were ignored except for the density ρ = ρ(p, T ) multiplied by the

gravitational acceleration g. The boundary conditions of this problem are the constant

temperature of both plates and no-slip condition. From this system, Lorenz succeeded

in obtaining, through dimensionless variable, Fourier expansion and Galerkin trunca-

tion as presented in Ref. [5], the system of ordinary differential equations written in

the canonical form 
ẋ1 = σ(x2 − x1)
ẋ2 = x1(ρ− x3)− x2
ẋ3 = x1x2 − βx3

(6.1)

where x1 is proportional to the intensity of the convective motion, x2 is related to the

temperature difference between the ascending and descending current (same signs of x1
and x2 mean that warmer fluid is rising) while x3 is proportional to the distortion of

the vertical temperature profile from linearity (positive value means strong gradients

occur near the boundaries). The constants σ, ρ and β are system parameters and

correspond to the Prandtl1 number, a value proportional to Rayleigh2 number and

characteristic dimension of the domain, respectively. If the σ and β parameters are

generally considered constant and equal to σ = 10 and β = 8/3, become important

to pay attention to the parameter ρ, which is the so-called reduced Rayleigh number.

The two parameters σ and β are kept constant unless otherwise specified whilst the

influence of this term will be resumed later. The value of the system at the generic

time t can be illustrated by a single point with components x1, x2, x3. Over time the

state of the system changes and the correspondent displacement of the point in the

phase space along a curve is called trajectory which, under particular constraints, takes

the well-known form of the Lorenz attractor presented in figure 6.2.

Figure 6.2: Lorenz attractor obtained for standard parameters values.

1Pr =
kinematic viscosity

thermal diffusivity
=
cpµ

κ
2The Rayleigh number is a dimensionless number that is associated with buoyancy-driven airflow

and can be regarded as a measure of the driving forces of natural convection: Ra ∝ ∆Th3
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6.1.1 Mathematical Properties of the Lorenz System

Before entering into details of the chaotic behaviour it is necessary to describe the

properties of this system:

- nonlinearity: the nonlinearity behaviour of the system is given by the x1x3 and

x1x2 terms in the second and third equation, respectively;

- symmetry: equations are invariant under (x1, x2)→ (−x1,−x2). Hence, if

(x1(t);x2(t);x3(t)) is a solution, (−x1(t);−x2(t);x3(t)) is also one. This can be

seen by simple substitution into the Lorenz equations (6.1);

- dissipative: a system is termed dissipative when the divergence of f is negative.

Considering the system
div(f) =

∂(σ(x2 − x1))
∂x1

+
∂(x1(ρ− x3)− x2))

∂x2
+
∂(x1x2 − βx3)

∂x3
= −(1 + σ + β)

σ = 10

β = 8/3

it turns out that div(f) < 0 so, volumes shrink exponentially fast under the

function V (t) = V (0)e−(1+σ+β) to limiting of zero volume;

- fixed points: the origin (x1, x2, x3) = (0, 0, 0) is a fixed point for all values of the

parameters. If ρ = 1 a symmetric pair of fixed points appears in addition to the

previous one

(x1, x2, x3) = (±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1) (6.2)

Lorenz called them C+ and C−, and represent the left/right turning convection

rolls. So, if ρ = 1+ a pitchfork bifurcation occurs, i.e. the system evolves from

one to three fixed points.

6.1.2 Role of the Parameter ρ

The ρ value, proportional to the temperature gradient between the two plates, rep-

resents the reduced Rayleigh number (Rayleigh number reduced to the critical value

Rc = 27π4/4) and plays a fundamental role in the analysis of the trajectory con-

figuration. For ρ < 1, the origin is globally stable, while, as stated previously, for

1 < ρ < ρa ≈ 14 there are two stable fixed points: C+ and C−.
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Figure 6.3: Stable fixed points values for 0 < ρ < ρa (a) and trajectories obtained with (σ, ρ, β) =

(10, 8, 8/3) with initial condition x0 = (∓5,±18, 8) and integration time T = 40 time units (b).

From the images of figure 6.3 the continuity of the results can be verified, e.g. if ρ = 8,

through the equation (6.2) we obtain (±4.32,±4.32, 7), corresponding to C+ and C−

in figure 6.3a, respectively. Continuing to increase the ρ value up to

ρhb =
σ(σ + β + 3)

σ − β − 1
= 24.73 (6.3)

we enter into the “transient chaos” or “semi-chaotic zone”. At ρ = ρhb a subcritical

Hopf bifurcation occurs3 by which the stable points for C± lose their stability creating

an unstable periodic orbit. Once this value is exceeded, the chaotic behaviour is mani-

fested through the presence of the strange attractor, also named Lorenz attractor. The

characteristic of a strange attractor is hardly to foresee due to the switching between

attraction and repulsion effects.

With the configuration set in figure 6.4, the macroscopic shape of the Lorenz attractor

(sometimes so-called the Lorenz butterfly due to its shape) doesn’t change significantly

in time and the trajectory never repeats itself. The graph that represents the temporal

trend of the components of the system is decidedly more usable, in fact, starting from

the same initial condition, it is possible to observe in figure 6.5 the two different time-

evolutions for a non-chaotic and chaotic configuration. As it can be seen, after an

initial transient, the solution settles into an irregular oscillation that persists in time

but which never repeats exactly.

3In Hopf bifurcation a complex conjugate pair of eigenvalues becomes purely imaginary
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Figure 6.4: Lorenz attractor simulation with (σ, ρ, β) = (10, 470/19, 8/3) with integration time of

T = 50 time units.
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Figure 6.5: Time evolution of the components obtained with initial condition x0 = (−5, 18, 8) for a

non-chaotic (σ, ρ, β) = (10, 15, 8/3) (a) and chaotic (σ, ρ, β) = (10, 28, 8/3) (b) behaviour.
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The peculiarity of this system, or better, of all the chaotic systems in general, is the

high sensitivity on initial conditions. The distance between two arbitrarily selected and

almost coincident points diverges exponentially when the integration interval starts to

become relatively long. This, coupled with the unstable periodic dynamics that ensures

that the trajectory will never escape from the attractor, creates a complex structure on

which it is difficult to perform sensitivity analysis. In figure 6.6a the two trajectories
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Figure 6.6: Lorenz attractor (a) and time evolution of its third component (b) for two trajectories

initially spaced out by 10−4 with (σ, β, ρ) = (10, 8/3, 28).

initially divided by an infinitesimal perturbation overlap until a certain integration time

(T ≈ 10 time units) beyond which they do not contain common elements. This feature

can be noticed more easily in the time evolution plot of the x3-component, as figure

6.6b reports. We observe that until ≈ 25 time units, the initial perturbation does not

manifest itself clearly in the time evolution.

If we increase the ρ value to approximately ρ ≈ 145, we pass from the chaotic regime

to one called Double Periodic Orbits. Further increasing the value of ρ > 165 entails

entering into an intermittent chaotic regime. The regimes for these values are not

subject of discussion in this project but more information are present in the cited

references inherent to Lorenz equations. Everything we have discussed in this section

represents a small part of the physical characteristics of Lorenz equations. For our

sensitivity analyses, we will focus on parameter values for which chaotic behaviour

occurs.
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6.2 Nine-Dimensional System

The chaotic system that will be analysed in this section has the same physical roots as

the one presented in the previous section (see figure 6.1). The difference between the two

formulations lies in the fact that, once applied the Boussinesq-Oberbeck approximation

and boundary conditions, Lorenz equations have been expanded with a double Fourier

series [5], whilst Reiterer et al. in Ref. [23], in order to obtain an higher-dimensional

model, applied a triple Fourier series ansatz up to second order. From a physical

standpoint Lorenz approach corresponding to the description of two-dimensional “fluid

rolls” whereas in this case the analysis has as its object three-dimensional cells.

From that point, operating according to Ref. [23], the system of nine nonlinear ODEs

is presented.

ẋ1(t) = −σβ1x1(t)− x2(t)x4(t) + β4x
2
4(t) + β3x3(t)x5(t)− σβ2x7(t)

ẋ2(t) = −σx2(t) + x1(t)x4(t)− x2(t)x5(t) + x4(t)x5(t)− σx9(t)/2
ẋ3(t) = −σβ1x3(t) + x2(t)x4(t)− β4x22(t)− β3x1(t)x5(t) + σβ2x8(t)

ẋ4(t) = −σx4(t)− x2(t)x3(t)− x2(t)x5(t) + x4(t)x5(t) + σx9(t)/2

ẋ5(t) = −σβ5x5(t) + x22(t)/2− x24(t)/2
ẋ6(t) = −β6x6(t) + x2(t)x9(t)− x4(t)x9(t)
ẋ7(t) = −β1x7(t)− ρx1(t) + 2x5(t)x8(t)− x4(t)x9(t)
ẋ8(t) = −β1x8(t) + ρx3(t)− 2x5(t)x7(t) + x2(t)x9(t)

ẋ9(t) = ρx4(t)− x9(t)− ρx2(t)− 2x2(t)x6(t) + 2x4(t)x6(t) + x4(t)x7(t)− x2(t)x8(t)
(6.4)

where σ, ρ, βi refer to the Prandtl number, reduced Rayleigh number and particular

physical dimensions of the fluid layer,respectively. This nine-dimensional system is a

very interesting model for investigating chaotic dynamics in a phase space with dimen-

sions greater than 3.

6.2.1 Role of the Parameter ρ

In order to analyse the effects of the temperature difference between the plates on

chaotic behaviour, the Prandtl number σ and the geometric characteristics βi of the

system will be fixed while the reduced Rayleigh number ρ will be varied, exactly as

performed for the Lorenz equations. To aid the comparison with the results presented

in Ref. [23], we select σ = 0.5. For ρ < 1 the trivial fixed point is stable and the

fluid is at rest, while for ρ = 1 that point become unstable and a new equilibrium,

characterized by a stationary convective flow, is established. Continuing to increase the
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temperature difference, we observe that for ρ ≈ 13.07 a limit cycle is generated thanks

to Hopf bifurcation. This limit cycle is clearly visible in figure 6.7, where the nonlinear

solution is plotted on x7(x6) and x9(x6) graphs, respectively.

−5 −4 −3 −2 −1 0
x6

−6

−5

−4

−3

−2

−1

0

x 7

−2.00 −1.98 −1.96 −1.94
x6

−6.41

−6.40

−6.39

−6.38

−6.37

−6.36

−6.35

−6.34

−6.33

−6.32

x 7

−5 −4 −3 −2 −1 0
x6

0

1

2

3

4

5

6

7

x 9

−2.00 −1.98 −1.96 −1.94
x6

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

x 9

(a) (b)

(c) (d)

Figure 6.7: Phase space x6-x7 (a),(b) and x6-x9 (c),(d) of the nine-dimensional chaotic system for

(σ, ρ) = (0.5, 13.07) and integration time T = 1000 time units. In panel (b) and (d) a close-up of the

respective limit cycle is presented.

The bifurcation which leads to the limit cycle can be supercritical or subcritical, result-

ing in stable or unstable limit cycle. The choice of using these two projection planes

will be clearer later, when, it will be necessary to use particular representations in order

to observe the attractors for the chaotic behaviour.
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To achieve the chaotic behaviour it is necessary to exceed the value of ρ ≈ 14.22. In

fact, in the range ρ ∈ [14.10, 14.22] the period-doubling cascade is easily identified and

does not seem to depend on the plane projections used. Once this threshold is exceeded,

differences in the representations of the dynamics are clearly visible and, to have con-

tinuity of results with those of Ref. [23], the attractor will be projected on x7(x6) and

x9(x6) planes.

−5 −4 −3 −2 −1 0
x6

−8

−7

−6

−5

−4

−3

−2

−1

0

x 7

−5 −4 −3 −2 −1 0
x6

−8

−6

−4

−2

0

x 7

(a) (b)

Figure 6.8: Trajectories projected on x6-x7 for (σ, ρ) = (0.5, 14.22) (a) and (σ, ρ) = (0.5, 14.3) (b).

In figure 6.8 is reported the effect of parameter ρ in the trajectory in x7(x6) projection.

This system response is also observable, albeit with some differences, in the projection

plane x9(x6) of the attractor, presented in figure 6.9. A different element between the

two figures appears, for instance, considering ρ = 14.30: a double attractor is observed

in the x7(x6) plane projection (figure 6.8) whilst a simple attractor is found in the

x9(x6) plane projection (figure 6.9).

To observe the chaotic behaviour, it is more representative to highlight the strong

dependence on initial conditions. For this reason in figure 6.10 we evaluate the time

evolution of two trajectories originating from identical initial condition except for ∆x6 =

10−7. We observe in figure 6.10(a) that the effect of the perturbation does not manifest

clearly into the time evolutions, however, exceeded the value of 500 time units (this

value is not absolute and depends on the initial conditions and parameters value) the

two trajectories start to be completely unrelated to each other, symptom of the strong

dependence on initial conditions characteristic of chaotic system.
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Figure 6.9: Trajectories projected on x6-x9 for (σ, ρ) = (0.5, 14.22) (a) and (σ, ρ) = (0.5, 15) (b).
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Figure 6.10: Time evolutions of two x6-components over T ∈ [0, 500] (a) and T ∈ [500, 800] (b) obtained

for (σ, ρ) = (0.5, 14.3). The initial condition are spaced out by 10−7 in x6 state.
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6.3 Coordinate Transformation

For our project, it was necessary to include an additional parameter within the equa-

tions of both models given the fact that, a perturbation in a design variable representing

a coordinate transformation does not lead the problem into bifurcation. In other words,

it means that the attractor characterizing the system remains unchanged from a topo-

logical standpoint. The solutions are analogous to the case of hyperbolic systems where

the perturbed system is topologically conjugate to the original one [21, 36]. To obtain

the system containing this parameter it was necessary to consider the equations with the

transformed coordinate x′ = hγ(x(t)). The coordinate transformation hγ represents a

stretching or a compression of the evolution of the state spaces in a particular direction

for γ > 1 or γ < 1, respectively. Differentiating this expression with respect to time

and then using the chain rule and the inverse h−1γ we obtain the new set of equations

containing γ. The most important justification for considering this new formulation

lies in the fact that the shadowing direction could be known explicitly, enabling a veri-

fication of the theoretical prediction. Furthermore, the stretching (or the compression)

does not affect the temporal dynamics of the problem. More details about this topic

can be found in Ref. [21].

6.3.1 Lorenz System

For the Lorenz system, the coordinate transformation will be applied to the third state.

From a practical point of view, to obtain the new set of equations, it is necessary to

divide the interested state, x3(t), and multiply the third equation by γ.

hγ : (x1, x2, x3)→ (x1, x2, γx3) (6.5)

Thus, the new set of equations are

ẋ(t) =

 ẋ1(t)

ẋ2(t)

ẋ3(t)

 =

 σ(x2(t)− x1(t))
ρx1(t)− x2(t)− x1(t)x3(t)/γ

γx1(t)x2(t)− βx3(t)

 = f(x(t),p) (6.6)

For a trajectory defined by (6.6), the shadowing direction yS(t) = [0, 0, z(t)]ᵀ is the

solution of the sensitivity equations at γ = 1. Thus, the sensitivity can thus be found

analytically as

J T
∂γ(x0, γ) =

1

T

∫ T

0

J∂x(t)ᵀ · y(t)dt =

∫ T

0

x3(t)dt = J T (x0, γ) (6.7)
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In panel (a) of figure 6.11 we present a common (γ = 1) and a compressed (γ = 0.8) in

x3-direction attractors. The panel (b) shows the time evolution of the third state for

both systems.

−10 0 10
x1

5

10

15

20

25

30

35

40

45

x 3

γ=1
γ=0.8

0 1 2 3 4
t

5

10

15

20

25

30

35

40

45

x 3
(t)

γ=1
γ=0.8

(a)
(b)

Figure 6.11: Lorenz attractor in plane projections x1-x3(a) with the non-perturbed and compressed

orbit in x3-direction. Panel (b) represents the time-evolution of their third components (b). The initial

condition of the trajectory for γ = 0.8 is obtained by applying the transformation (6.5) to the initial

condition [1, 4, 35] of the trajectory for γ = 1.

We observe in figure 6.11 that the stretching affects only the third component of the

attractor. The applied transformation also does not change the time scale of the system.

In fact, as will be clearer in the chapter 7 concerning results, considering longer and

longer trajectories, the time gradient Tdp/T → 0.

6.3.2 Nine-Dimensional System

For the latter chaotic system, the coordinate transformation representing a stretching

(or a compression) will be performed along the x6-direction. This choice will be justified

in detail in the following chapter. Temporarily neglecting motivation, the coordinate

transformation hγ for this system is defined by

hγ : (x1, x2, x3, x4, x5, x6, x7, x8, x9)→ (x1, x2, x3, x4, x5, γx6, x7, x8, x9) (6.8)
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which, as yet stated, represents a stretching or a compression of the evolution of the

state spaces in x6-direction for γ > 1 or γ < 1, respectively. To introduce this addi-

tional parameter into the equations, the analogous procedure described for the Lorenz

equations is followed. The resulting system is

ẋ(t) =



−σβ1x1(t)− x2(t)x4(t) + β4x
2
4(t) + β3x3(t)x5(t)− σβ2x7(t)

−σx2(t) + x1(t)x4(t)− x2(t)x5(t) + x4(t)x5(t)− σx9(t)/2
−σβ1x3(t) + x2(t)x4(t)− β4x22(t)− β3x1(t)x5(t) + σβ2x8(t)

−σx4(t)− x2(t)x3(t)− x2(t)x5(t) + x4(t)x5(t) + σx9(t)/2

−σβ5x5(t) + x22(t)/2− x24(t)/2
−β6x6(t) + x2(t)x9(t)γ − x4(t)x9(t)γ

−β1x7(t)− ρx1(t) + 2x5(t)x8(t)− x4(t)x9(t)
−β1x8(t) + ρx3(t)− 2x5(t)x7(t) + x2(t)x9(t)

ρx4(t)− x9(t)− ρx2(t)−
2x2(t)x6(t)

γ
+

2x4(t)x6(t)

γ
+ x4(t)x7(t)− x2(t)x8(t)


(6.9)

The applied transformation is reflected in an effective compression of the attractor in

x6-direction, as figure 6.12a shows.
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Figure 6.12: Phase space projections of the 9D attractor on the x6-x9 plane (a) with non-perturbed

and compressed orbits in x6-direction and time-evolution of their sixth components (b). The initial

condition of the trajectory for γ = 0.8 is obtained by applying the transformation (6.8) to the initial

condition of the trajectory for γ = 1.

It is necessary to underline that in the plot of figure 6.12b only the initial fragment of
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the time evolutions of the sixth states of the simulation presented in figure 6.12a are

shown. This is justified because to observe the attractor of this chaotic system (panel

(a)) it is necessary to march in time up to a value such that the actual dynamic of the

shadow (panel (b)) could not have been clearly observed. The sensitivity of the system

can, therefore, be calculated analytically as

J T
∂γ(x0, γ) =

1

T

∫ T

0

J∂x(t)ᵀ · y(t)dt =

∫ T

0

x6(t)dt = J T (x0, γ) (6.10)

6.4 Linearisation

The formulated problems (4.38) and (4.47) still need the implementation of the Jaco-

bian matrix containing the derivatives with respect to the state space and parameter

considered. In the following subsections, the linearisation required for the Periodic

Shadowing application will be presented for both systems.

6.4.1 Lorenz System

Considering (6.6), the linearisation with respect to the state space is

ẏ(t) =

 ẏ1(t)

ẏ2(t)

ẏ3(t)

 =

 −σ σ 0

ρ− x3(t)/γ −1 −x1(t)/γ
γx2(t) γx1(t) −β

 ·
 y1(t)

y2(t)

y3(t)

 = f∂x(x(t),p) · y(t)

(6.11)

The Jacobian containing the derivatives with respect to the parameter considered, rep-

resenting the forcing functions for the non-homogeneous sensitivity equations, depends

on which sensitivity analyses we will perform. In particular, we compute the sensitivity

with respect to parameters γ and ρ. Thus, the forcing terms are respectively

∂f(x(t))

∂γ
=


0

x1(t)x3(t)

γ2

x1(t)x2(t)

 = f∂γ(x(t)) (6.12)

∂f(x(t))

∂ρ
=

 0

x1(t)

0

 = f∂ρ(x(t)) (6.13)

From a computational standpoint, once the nonlinear and linearised equations were

implemented, the forcing term related to the problem that you want to solve is passed

as input for the latter.

57



Chapter 6. Mathematical Models

6.4.2 Nine-Dimensional System

Considering (6.9), the Jacobian matrix containing the linearisation with respect to the

states becomes

−σβ1 −x4 β3x5 −x2 + 2β4x4 β3x3 0 −σβ2 0 0

x4 −σ − x5 0 x1 + x5 −x2 + x4 0 0 0 −σ/2
−β3x5 x4 − 2β4x2 −σβ1 x2 −β3x1 0 0 σβ2 0

0 −x3 − x5 −x2 −σ + x5 −x2 + x4 0 0 0 σ/2

0 x2 0 −x4 −σβ5 0 0 0 0

0 x9γ 0 −x9γ 0 β6 0 0 x2 − x4γ
−ρ 0 0 −x9 2x8 0 −β1 2x5 −x4
0 x9 ρ 0 −2x7 0 −2− x5 −β1 x2

0 −ρ− 2x6
γ
− x8 0 ρ+

2x6
γ

+ x7 0
−2x2 + 2x4

γ
x4 −x2 −1


(6.14)

The forcing functions for the non-homogeneous sensitivity equations for this system can

be written as

f∂γ(x(t)) =

[
0, 0, 0, 0, 0, x2(t)x6(t)− x1(t)x6(t), 0, 0,

2x2(t)x3(t)

γ2
− 2x1(t)x3(t)

γ2

]
(6.15)

f∂γ(x(t)) = [0, 0, 0, 0, 0, 0,−x1, x3,−x2 + x4] (6.16)

At this point it is possible to proceed with the calculation of the sensitivity with respect

to γ and ρ for both chaotic systems. In the following chapter we present the sensitivity

analysis results obtained by application of the Periodic Shadowing.
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Results

This section will present the most relevant results concerning the application of the Pe-

riodic Shadowing method on the chaotic systems described in the previous chapter. In

particular, the chapter is organized as follows: the Lorenz and the Reiterer model will

be described separately, explaining the results of the sensitivity analysis with respect

to the parameters γ and ρ. In the last section, the convergence analysis performed will

be detailed. All the results treated in this chapter refer to the tangent approach (4.38)

of Periodic Shadowing.

7.1 Periodic Shadowing and Lorenz System

The application of the Periodic Shadowing allows obtaining solutions of a linearised

problem that remain bounded as the time span is increased. In fact, recalling figure

4.1, the linearised problem arisen from conventional methods is not able to grasp the

saturation of the system. The solution remains bounded over time and does not show

the classical exponential growth. In figure 7.1 we compare the time evolution of the

distance between the trajectories computed with conventional linearised methods and

Periodic Shadowing. In particular, we select two trajectories initially spaced out 10−9

and we perform the integration with ∆t = 0.01. We observe that even in the distance

between the trajectory is comparable for small time span, the conventional sensitivity

methods show an evolution of the distance between the trajectories which is high un-

representative of the system behaviour. On the other hand, Periodic Shadowing allows

to obtain a bounded solution for the time evolution of the distance.
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Figure 7.1: Time evolution of the distance between trajectories obtained with conventional sensitivity

analysis methods and Periodic Shadowing.

7.1.1 Sensitivity Analysis with Respect to γ

Since the distance between the trajectories remains bounded, linearisation holds and

therefore time evolutions of the solution obtained remain bounded as well. Panel (a) of

0 200 400 600 800 1000

101

102

‖y
‖t)
‖

0 10 20 30 40 50
t

−50

−25

0

25

50

75

100

y 3
‖t)

(a)

(b)

Figure 7.2: Time evolution of the normed solution t ∈ [0, 1000] (a) and its third state over the fragment

t ∈ [0, 50] (b). Vertical lines in panel (b) represent the shooting points which subdivide the whole time

interval.
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figure 7.2 shows that the integration over a time span very long relative to the time scale

of the system produces a bounded solution, whilst in panel (b) we focus the attention

on the first fragment of the time evolution of the third component of x(t).

As hinted above, despite such systems being deterministic, due to their chaotic nature

it was necessary to hold a statistical approach in order to actually validate the method.

In fact, attention has been placed not only on the mean (median) values but also

on the relative error bars (confidence intervals). For each time interval considered,

the Periodic Shadowing method is applied to consecutive trajectory segments lying on

the attractor thanks to the propagator function already used and defined in chapter

5 in order to analyse a different initial condition for each iteration. Results of the

statistical distribution of J T
dγ are reported in figure 7.3. Panel (a) shows the normalized

distribution of J T
dγ, panel (b) depicts a close-up of the right tail of the distribution. The

value C, subtracted to J T
dγ, is the sensitivity obtained for long integration time. The

samples are obtained by repeating the sensitivity calculation over 106 different initial

conditions.
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Figure 7.3: Normalized distribution of the sensitivity J Tdγ for increasing time spans (a) and a close-up

of the right tail of the full distribution (b).

The increase of time interval causes a reduction in the dispersion of results. The fast

drop of the right tail of the full probability distributions, presented in a log-log plot to

highlight the asymptotic trend, means that both mean and standard deviation converge

as the number of samples is increased. In fact, analysing the law of decay of tails, it

is possible to state that it is not a heavy-tailed distribution (with, for instance a decay
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law ∼ a/(b + cx2)). If the distribution were heavy-tailed, as it will happen for the

9-state system, it is necessary to select the median and interquartile range as statistical

properties.

The results of the sensitivity calculations are compared with the approximation of the

gradients obtained with centred second-order finite difference (FD) scheme

J T,FD
dγ (x0) =

J T (x0, γ + ∆γ)− J T (x0, γ −∆γ)

2∆γ
(7.1)

with ∆γ = 0.5 and results are shown in figure 7.4. The arithmetic averages of the

sensitivity obtained from multiple repetitions of both algorithms are reported in panel

(a), while panel (b) shows the sample standard deviation. The number of samples N
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Figure 7.4: Mean (a) and standard deviation (b) of the sensitivity J Tdγ computed for the Lorenz

system using Periodic Shadowing. The line in (b) represents the predicted standard deviation scaling

of finite-difference and Periodic Shadowing algorithms.

used is sufficiently high (≥ 106) to decrease opportunely the error bars related to the

confidence level of 99.73%. In particular the error bars shown in figure 7.4a (and in all

the following figures inherent the sample mean) enclose the values

mean[J T
dγ]± 3

std[J T
dγ]√
N

where we use mean[?] and std[?] to indicate sample mean and standard deviation. As

can be seen in figure 7.4a, the averaged sensitivity value obtained through Periodic
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Shadowing converges to the gradient obtained from the finite differences approxima-

tion as the integration time increases, as predicted in (6.7). For short trajectories the

average effect of the initial condition is reflected in a gap reducing by considering longer

integration intervals. Regarding panel (b) of figure 7.4, the trend of the sample stan-

dard deviation is in line with what has been stated in the error analysis section of Ref.

[21]. In that work it is proven that the error is composed by the sum of two different

terms. The former is the random error of the finite-time sensitivity J T,S
dp of the shad-

owing trajectory while the latter, is the error of the same quantity with respect to the

sensitivity J T,P
dp computed using the periodic solution of (4.38). Thus, the global error

ET (x0, p) = ET0 (x0, p) + ET1 (x0, p) =
CT

0 (x0, p)√
T

+
CT

1 (x0, p)

T
(7.2)

where CT
0 (x0, p) and CT

1 (x0, p) are statistically distributed according to a certain prob-

ability density function (PDF) that is independent of T , but only depends on the

dynamics (4.1) and the choice of the observable. The rapid 1/T decay implies that

for some sufficiently large T the shadowing error ET1 (x0, p) will be, on average, smaller

than that of the random error ET0 (x0, p) and the global error is mostly dominated by

the first term.

We now consider the gradient Tdγ/T , related to how the parameter perturbation affects

the time scale of the system. Panel (a) of figure 7.5 shows the mean of Tdγ/T computed

for the same amount of different initial conditions whilst panel (b) depicts its standard

deviation and its decay rate.

It can be observed that the ratio Tdγ/T decays towards zero. In fact, the parameter γ

is a simply coordinate transformation, so it does not change the time scales of the prob-

lem. In other words, the most important result of the figure 7.5 is that the stretched

system has the same time scale of the non-perturbed one when T →∞.

To understand the behaviour of Periodic Shadowing, we represent a quantity that would

allow us to verify the real influence of considering longer and longer integration time.

Our choice fell on

χ(x0, T ) =
1

N

N∑
i=1

‖y(ti)‖2 (7.3)

where N is the number of samples (different initial conditions) and y(ti) is the solution

evaluated in the i-shooting point. In other words, this quantity represents the mean of

the squared norm solutions evaluated at the shooting points. We consider 106 samples

and the results are reported in figure 7.6. The convergence of χ(x0, T ) as T → ∞
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Figure 7.5: Arithmetic average (a) and standard deviation (b) of the gradient Tdγ/T as a function of

time span computed for 106 iteration of the Periodic Shadowing.
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Figure 7.6: Averaged χ(x0, T ) as a function of time span obtained by repeating the algorithm for 106

different initial conditions.

depicted in the figure 7.6 is supported by the fact that a perturbation of the parameter

γ does not violate the assumption of Periodic Shadowing.
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7.1.2 Sensitivity analysis with Respect to ρ

The application of the Periodic Shadowing to evaluate the sensitivity of the observable

of interest with respect parameter ρ leads to a solution which remains bounded in time

as obtained in figure 7.2 for a perturbation with respect to γ. In figure 7.7 we present

the time evolution of the normedsolution and the time evolution of its third component,

in panel (a) and (b), respectively.
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Figure 7.7: Time evolution of the normed solution norm for t ∈ [0, 1000] (a) and its third state over

the fragment t ∈ [0, 50] (b). Vertical lines in panel (b) represent the shooting points which subdivide

the whole time interval.

The results obtained in figure 7.7 show a bounded behaviour of the solution instead of

presenting characteristic numerical explosion underlined in Ref. [4]. In panel (b) we

depict only the first 50 time units of the evolution in order to make clearly visible the

matching boundary condition in the shooting points, represented by the vertical gray

lines.

Distributions of J T
dρ for increasing time span are report in figure 7.8. Panel (a) shows

the normalized distribution whilst panel (b) depicts a close-up of the right tail. We

notice that the increase of time interval causes a reduction in the dispersion of results.

In panel (b) are presented the right tail of the full distribution for two different time

spans: the way in which the decay of the tails takes place, therefore, admits the con-

vergence of sample mean and standard deviation.
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Figure 7.8: Normalized probability distribution of J Tdρ for increasing time span (a) and a close-up of

the right tail of the full distribution (b).

In this analysis the results will not be compared exclusively with those computed from

the finite-difference approximation (7.1) with ∆ρ = 0.5, but also with a digitization of

the data points obtained from the Least Square Shadowing (LSS) method reported in

figure 6 of Ref. [7]. However, we underline that in Ref. [7] the algorithm was applied to

only 10 different initial conditions, while for the method presented here the iterations

performed for 106 samples. Results are reported in figure 7.9. The arithmetic average of

the sensitivity obtained from multiple repetitions of the various algorithms is reported

in panel (a) of figure 7.9, whilst panel (b) shows the sample standard deviation. The

values obtained through the present algorithm underline that the arithmetic average of

the sensitivity converges to a value around J T
dρ ' 1.017. Similar values of the gradients

can be found also in the digitalization of the Least Square Shadowing method in Ref. [7]

and in the results section of Refs. [8, 21, 37]. It is immediately evident the presence of a

gap in figure 7.9a between the sensitivity computed through shadowing-based methods

and the finite difference approximation of the gradient. It was carefully checked that

this difference is not led by wrong choice of the step size of the numerical integration

or in the ∆ρ applied to obtain the approximation. This feature represents a crucial

point of this analysis but, at the same time, provides valuable indications for future

developments. Further details are provided in the final chapter. Concerning how the

standard deviation of the sensitivity evolves as a function of the time span, figure 7.9b
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Figure 7.9: Arithmetic average (a) and standard deviation (b) of the sensitivity J Tdρ computed for the

Lorenz system using Periodic Shadowing (PS), finite-difference (FD) and Least Square Shadow (LSS).

The lines in (b) represent the predicted standard deviation scaling.

shows that it initially decays as 1/T and asymptotically as 1/
√
T . The threshold at

which the decay rate changes is around 5000 time units, in agreement with the results

obtained from the digitization of results of the Least Square Shadowing. This threshold

is higher than what observed in figure 7.4b for the sensitivity with respect to γ.

As already performed for the sensitivity analysis with respect to γ, the averaged gradi-

ent Tdρ/T , related to the time scales of the two trajectory, is evaluated and expounded.

In panel (a) of figure 7.10 the time gradient Tdρ/T is reported, whilst its standard devi-

ation is reported in panel (b) of the same figure. The key result of figure 7.10a is that

the gradient Tdρ/T converges, if T →∞, to the well defined value −2.42 · 10−2, which

is the same obtained from periodic orbits in Ref. [8], characterized by no shadowing

error. As regards the standard deviation, panel (b) shows that the convergence to the

asymptotic value is achieved at a 1/T rate initially and then at a 1/
√
T rate for time

spans longer than 200 time units.

We now consider the quantity χ(x0, T ). We select two random initial condition to

compute χ(x0, T ) for increasing time span and the results are reported in figure 7.11.

We observed in panel (a) that χ(x0, T ) grows weakly (∼
√
T ) when considering longer

time intervals while panels (b) and (c) provide a detail of the same quantity for the

time interval t ∈ [520, 740],t ∈ [673, 683], respectively. The importance of panel (b) and
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Figure 7.10: Arithmetic average (a) and standard deviation (b) of the period gradient Tdρ/T computed

for the Lorenz system using Periodic Shadowing. The lines in (b) represent the standard deviation

decay ratio for this term.
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Figure 7.11: Time evolution of χ(x0, T ) for two different initial condition (a) and a particular fragments

over t ∈ [520, 740] (b) and t ∈ [673, 683] time unit. The green line in panel (a) represents how mean

squared norms increase considering different time span.
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(c) of figure 7.11 is to check that the solution does not present asymptotes considering

increasing time span. To underline that this growth is actually characteristic of the

interaction chaotic system/Periodic Shadowing and not a trend brought by the initial

conditions considered, we repeat the algorithm for several (106) different initial condi-

tions. Results of the averaged χ(x0, T ) as function of time span are reported in figure

7.12. We observe a weak growth (∼
√
T ) in averaged quantity unlike what presented
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Figure 7.12: Averaged χ(x0, T ) as a function of time span obtained by repeating the algorithm for 106

different initial conditions.

for the sensitivity with respect to γ. This trend is very low if compared to the numerical

explosion of the solution obtained using conventional methods (remember figure 2.2).

The results obtained by the application of the Periodic Shadowing on chaotic system

arising by the Lorenz equations, and summarized in this section, show a good response

of the method for both sensitivity evaluated with respect to γ and ρ. In fact, if on the

one side the sensitivity evaluated with respect to the coordinate transformation matches

the analytical solution for T →∞, on the other hand, the sensitivity with respect to a

ρ perturbation is supported by other methods already present in the bibliography.

7.2 Periodic Shadowing and Reiterer Equations

This application allows us to go further and test our method on a chaotic system of

greater complexity. Similarly to what has been done with the Lorenz system, the
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sensitivity with respect to γ and ρ perturbations will be computed. However, unlike

before, a brief premise about non-linear analyses of the system is necessary.

7.2.1 Nonlinear Analysis

The choice to apply the coordinate transformation hγ on the third component was a

guided operation due to the double symmetry in x1 and x2 of the Lorenz system. In

this case it was necessary to carry out a more complete analysis in order to understand

on which state the transformation could applied and so, on which one evaluate the

sensitivity. In particular, we perform an analysis concerning the relationship between

the long time average of the states and the parameter ρ, and results are reported

in figure 7.13. Remember that in this case ρ is defined differently with respect to

the previous problem from an analytical standpoint, however, it always refers to the

reduced Rayleigh number which is proportional to the temperature difference between

the plates of the fluid cell.
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Figure 7.13: Evolution as a function of ρ of the time averaged nine states xi of Reiterer equations (a)

and a close-up of the interval ρ = [25, 31] (b) for T = 20000 time units. The red marker in panel (b)

shows the value of the average for ρ = 28.

Panel (a) shows the trend of the long time average states whilst panel (b) focuses on

sixth state and on the range containing the value ρ = 28 considered for the further

analysis. For the results presented in figure 7.13, ρ is varied with a step size ∆ρ = 0.1

and the finite time average is evaluated over T = 20000 time units. We observe that the

trends of x1, x2, x3, x4, x5 and x9 present an asymptotically behaviour characterized by
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a constant value of the average. In fact, neglecting some ρ values which induce strong

perturbations in the finite time average (as, for instance, it happens for the x9 state

considering ρ = [22, 23]), evaluating the effect of a variation of parameter ρ for these

states would not be a quantity of particular interest since they are not particularly

influenced by it. Among the remaining states, the choice is made according to the

following principles. All three remaining states (x6, x7, x8) show a strong influence with

respect to the parameter ρ. However, since in chapter 6 all the representations of the

attractor had been performed on projection plans containing x6, we decided to use the

sixth as state on which to calculate the sensitivity. The choice to use this state instead

of the others is certainly questionable but, thusly, we can also provide a continuity of

analysis with what is done in Ref. [23]. Furthermore, our interest is on the response of

the algorithm, not the physics of the problem. For this reason, from now, the sixth state

will be selected for both coordinate transformation and sensitivity analysis calculation.

7.2.2 Sensitivity Analysis with Respect to γ

The time evolution of the sixth state remains bounded when Periodic Shadowing

method is applied to the 9-states system to evaluate the sensitivity of the observable

of interest with respect γ. In figure 7.14 we present the time evolution of the solution

and the time evolution of its sixth component, in panel (a) and (b), respectively. For

an example we select trajectory of length T = 1000 time units and originating from

the origin. This result allows us to verify that Periodic Shadowing method responds

correctly also for a greater complexity chaotic system. Since the trajectories remain

close for whole integration time, the correct sensitivity can be computed.

In figure 7.15 we show the probability distribution of J T
dγ obtained by applying the

method for 106 different initial conditions and for different time spans. Looking at the

figure 7.15a, we observe that the dispersion of J T
dγ decreases with the increase of the

time span. However, the close-up of the right tail depicted in panel (b) shows a decay

law characteristic of the heavy-tailed distribution. For this reason, it is necessary to

underline that the statistical quantities taken into consideration in this analysis are the

median and the interquartile range instead sample mean and standard deviation. The

median is the value separating the higher half from the lower half of a data sample

whilst the interquartile range (indicated as iqr in the following), is a measure of sta-

tistical dispersion, being equal to the difference between 75th and 25th percentiles. In

fact, considering this particular type of distribution, the Central Limit Theorem (CLT)

does not work [38] and so the computed sample mean and standard deviation would be

very misleading. Using the median instead of the mean also implies a new definition of
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Figure 7.14: Time evolution of the normed solution t ∈ [0, 1000] (a) and its sixth state over the

fragment t ∈ [500, 700] (b). Vertical lines in panel (b) represent the shooting points which subdivide

the whole time interval.
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Figure 7.15: Normalized probability distribution of J Tdγ for increasing time span (a) and a close-up of

the right tail of the full distribution (b).

the error bar. In fact in this case the confidence interval is 95%, which can be written

as

J T
dγ[lower] < J T

dγ < J T
dγ[higher] (7.4)
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where lower and higher represent the
lower =

N

2
− 1.96

√
N

2
th element

higher =
N

2
+

1.96
√
N

2
th element

(7.5)

of the sorted vector containing N-J T
dγ elements [39].

At this point it is possible to compare the median of the sensitivity computed for

different initial conditions and the approximate value of the gradient obtained with

centred second-order finite difference scheme (7.1) with ∆γ = 0.5. Results are reported

in figure 7.16. The plots show the median of J T
dγ and the interquartile range of J T

dγ as a

function of time span, panel (a) and (b) respectively. As noticeable in figure 7.16a the
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Figure 7.16: Median (a) and interquartile range (b) of the sensitivity J Tdγ computed for the three-

dimensional cells in natural convection using Periodic Shadowing. The line in (b) represents the decay

of the interquartile range of the finite-difference and Periodic Shadowing algorithms.

statistical (106 different initial conditions on the trajectory) convergence of the time

averaged sensitivity with respect to parameter γ is therefore also verified for a system

of greater complexity compared to Lorenz equations. For increasing T the sensitivity

converges to ≈ −5.92, value already presented in figure 7.13b and also obtained with

the second-order finite-difference approximation.

Regarding how the time scales of the systems are related to each other as a function

of the integration time, it is necessary to plot Tdγ/T quantity for different time span.

Results are reported in figure 7.17.
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Figure 7.17: Median (a) and interquartile range (b) of the time gradient Tdγ/T as a function of the

time span. The line in (b) represents the decay of the interquartile range of this gradient.

As obtained for the sensitivity with respect to γ for the Lorenz system, the statistical

quantity converges to zero if T → ∞, because, as previously stated, a perturbation in

this parameter does not affect the time scale of the problem.

To observe how the solution behaves, the quantity χ(x0, T ) for different time span is

presented. To construct this result, plotted in figure 7.18, two random initial conditions

are selected and the time span is increased for logarithmic spaced time in the range

T = [10, 1000]. Panel (b) and (c) of figure 7.18 show the presence of asymptotes in

χ(x0, T ) as a function of time span. In particular we depict in panel (c) the asymptotic

value found approximatively at T = 156.305 for that initial condition. To justify the

trend of panel (a), we now consider the median value of χ(x0, T ) obtained by repeating

the algorithm for 103 different initial conditions. Results are reported in figure 7.19.

The error bar are represent the 95% confidence interval and they are constructed using

(7.5). We observe in figure 7.19 a convergence of χ(x0, T ) as T →∞. This behaviour

is analogous to what found for the sensitivity evaluated for Lorenz system.

74



Periodic Shadowing and Reiterer Equations

101 102 103
T

103

106

χ

x0
x′
0

145.0 147.5 150.0 152.5 155.0 157.5 160.0 162.5 165.0
T

104

107

χ

0.000 0.002 0.004 0.006 0.008 0.010
T +1.563e2

106
108
1010

χ

(a)

(b)

(c)

Figure 7.18: Value of χ evaluated in the shooting points for two different initial condition (a) and a

particular fragments over T ∈ [144, 166] (b) and T ∈ [156.3, 156.31] time units.
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Figure 7.19: Averaged χ as a function of time span obtained by repeating the algorithm for 106

different initial conditions.
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7.2.3 Sensitivity Analysis with Respect to ρ

We now discuss sensitivity analysis with respect to the parameter ρ. The time evolution

of the solution obtained with Periodic Shadowing and the sixth state are presented in

figure 7.20. We select a trajectory of length T = 10000 time units and originating in
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Figure 7.20: Time evolution of the complete solution (a) of its sixth component (b) and a detail of y6
over t = [5250, 5300] time units. The vertical grey lines in panel (c) represent the shooting points.

the origin. We observe in panels (a) and (b) that the solution and the sixth component

remain bounded for the whole time span. However, we note in panel (b) that the sixth

component is characterized by the presence of peak values significantly high although

the periodic boundary condition y(0) = y(T ) and the continuity in the shooting points

(observable in panel (c)) are satisfied. This behaviour can be arisen by the lack of

hyperbolicity of the system led by perturbation in parameter ρ.

As performed in previous section, the whole discussion is subordinated to the analysis

of the probability distribution of J T
dρ. The normalized probability distribution of J T

dρ

for increasing time span is presented in panel (a) of figure 7.21, whilst panel (b) shows

a close-up of the right tail in a log-log plot. In particular, in panel (a) we observe a

behaviour contrary to what has been observed so far because the dispersion does not

reduce when the time span is increased. This phenomenon is also coupled to the fact

that the close-up in panel (b) shows a decay law characteristic of heavy-tailed distri-

bution with power-law a/(b+ cx2). This kind of distributions goes to zero slower than

the previous presented, which means there are many outliers with very high values. For

76



Periodic Shadowing and Reiterer Equations

−15 −10 −5 0 5 10 15
Tdγ

10−4

10−3

10−2

10−1

100

p(

T dγ
)

T=10
T=100
T=1000

10−1 100 101

log(Tdγ−C)

10−4

10−3

10−2

10−1

100

p(

T dγ
)

T=10
a

b+ x2

(a) (b)

Figure 7.21: Normalized probability distribution of J Tdγ for increasing time span (a) and a close-up of

the right tail of the full distribution (b).

this reason, median and interquartile range will be chosen as statistical quantity to be

studied instead sample mean and standard deviation.

The sensitivity of the observable of interest with respect ρ computed for different initial

condition is presented as a function of time span considered in figure 7.22. The approx-

imation of the gradient obtained with a centred second-order finite-difference scheme

(∆ρ = 0.5) is also presented. The red errors bars represent the 95% confidence interval,

obtained with (7.5) for 106 different initial condition. Panel (a) of figure 7.22 shows

that the sensitivity converges to the value approximately equals to ≈ −0.471. On the

other hand panel (b), depicts the noticeable increase of the interquartile range of J T
dρ

computed with Periodic Shadowing. In particular, we observe that before T = 100 time

units the iqrJ T
dρ grows very weakly (∼ T 0.05), but after this threshold, it grows more

rapidly as ∼ T 0.7. This results is coherent with the non-decreasing dispersion of the

full distribution shown in panel (a). As occurred for the Lorenz system, the sensitivity

solutions obtained with the Periodic Shadowing method are affected by a bias error

with respect to the value obtained through finite differences.

Regarding how the time scales of the systems are related to each other as a function

of the integration time, it is necessary to plot Tdρ/T quantity for different time span.

Results are reported in figure 7.23. We observe that the time gradient between the

reference and perturbed trajectories has a weaker convergence to the value −0.0625.

As observed in panel (b) of figure 7.22, the interquartile range grows considering longer
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Figure 7.22: Median (a) and interquartile range (b) of the sensitivity J Tdρ computed for the three-

dimensional cells in natural convection using Periodic Shadowing. The gray line in panel (b) shows

the decay/growth of the interquartile range.
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Figure 7.23: Median (a) and interquartile range (b) of the time gradient Tdρ/T as a function of the

time span obtained by repeating the algorithm for 106 different initial conditions. The gray lines in

panel (b) represent the growth of the interquartile range of Tdρ/T .

time span. In particular, we observe that after 100 time units the interquartile range

grows as
√
T . This occurs because the normalized distributions of the sensitivity present
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an increasing dispersion if longer intervals are considered.

We now consider χ(x0, T ). In figure 7.24 we present the values assumed by χ(x0, T )

(for two different initial condition in panel (a)) considering increasing time span up to

1000 time units. Panels (b) and (c) represent a close-up of the range T ∈ [48, 78] and

T ∈ [57.288, 57.290] time units, respectively.
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Figure 7.24: Value of χ(x0, T ) for two different initial conditions (a) and a particular fragments over

T ∈ [48, 78] (b) and T ∈ [57.288, 57.290] time unit. The green line in panel (a) represents how mean

squared norms increase considering different time span.

The importance of panel (b) and (c) of figure 7.24 is to check if χ(x0, T ) presents

asymptotes in the solution. In particular we depict in panel (c) the asymptotic value

found approximatively at T = 57.2893 for that initial condition. To underline that this

growth is actually characteristic of the interaction chaotic system/Periodic Shadowing

and not a trend brought by the initial conditions considered, we repeat the algorithm

for several (105) different initial conditions. Results of the averaged χ(x0, T ) as function

of time span are reported in figure 7.25. We observe that the quantity χ(x0, T ) grows

rapidly (∼ T 2.7) as a function of time span. In particular, also in this case the threshold

after which it is possible to recognize the growth rate is near T = 100 time units.

This application of Periodic Shadowing to a chaotic system characterised by greater

complexity than the one arising from the Lorenz equations manifests itself in a complete

solution (figure 7.20) that results with higher values than those presented in figure 7.7,

but at the same time it remains bounded between values significantly smaller than those
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different initial conditions.

obtained with the application of conventional methods.
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Chapter 8

Conclusions

In this project a new shadowing-based sensitivity analysis method is presented and

applied to two low-dimensional chaotic systems arising from natural convection prob-

lems. Sensitivity analysis is still an important tool when coupled with other numerical

simulations, e.g. the pairing with Reynolds-Averaged Navier-Stokes equations in the

aerodynamic shape design of wing-fuselage bodies or in turbomachinery applications.

The need to develop a new approach lies in the fact that when chaotic systems are

considered, as during unsteady turbulent flow simulations, the extremely sensitivity on

the initial conditions leads the current generation of sensitivity analysis methods to be

completely ineffective. The major contribution of this thesis is to provide an alternative

shadowing-based sensitivity algorithm to evaluate how a small perturbations in design

and control variables of a chaotic systems affect certain observables of interest. Periodic

Shadowing algorithm is applied to the chaotic systems arising from Lorenz equations [5]

and from a greater complexity system characterised by six additional states [23]. The

sensitivity of the time average of a quantity related to the heat transfer in the fluid cells

with respect a coordinate transformation γ and to a physical parameter ρ proportional

to the temperature difference between the plates is evaluated. In the present chapter we

outline the most important results obtained from the application of the Period Shad-

owing to the considered chaotic system and then, we express our intentions for future

development.

8.1 Discussion

The obtained results show an excellent response of the method when perturbations in

parameter γ are considered. In fact, for both systems, the averaged sensitivity com-

puted for repeated samples converges to the approximation of the gradient obtained
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through a second-order finite difference scheme as T → ∞. In parallel, the standard

deviation of the computed sensitivity decays with the same rate of the sensitivity error

presented in section 3 of Ref. [21]. The rapid 1/T decay implies that for some suffi-

ciently large time span the shadowing error ET1 (x0, p) will be, on average, smaller than

that of the random error ET0 (x0, p) and the global error is mostly dominated by the first

term.

As well underlined in Ref. [8], using a periodic trajectory for sensitivity analysis, the

error ET1 (x0, p) is identically zero and only the random error ET0 (x0, p) affects the sen-

sitivity results.

The time gradient Tdγ/T between the reference and perturbed trajectories tends to

0 as T → ∞, which means that stretched (or compressed) state space evolution has

the same time scale of the reference trajectory if integration time is sufficiently long.

Furthermore we observe that the mean of the squared norm of the linearised solution

evaluated in shooting points tends to a constant value for both Lorenz and Reiterer

systems, respectively. These results can all be justified by the fact that the introduc-

tion of a coordinate transformation like the one proposed in the chapter 6, does not

bring the system into bifurcations.

Concerning the average sensitivity of the observable with respect to parameter ρ, we

observe converging values if longer and longer time span are considered. However, they

present a consistent, reproducible bias between the finite difference gradient approxima-

tion. The gap, shown in figure 7.9 and figure 7.22, is imputable due to the fact that the

chaotic systems considered and described by (6.6),(6.9) are not completly hyperbolic

and thus not structurally stable, as stated in Refs. [40, 41, 42]. On the other hand,

it may seem that dynamical behaviour of Lorenz attractor is very robust, that is that

nonlinear simulation which provides, for instance, the classical “butterfly” of Lorenz

attractor looks like pretty much the same (obviously considering the chaotic field) if we

take slightly different values for the design parameters σ, β, ρ. The first question that

comes to mind after these statements should be: how can this be true, if this system is

unstable? The answer to this problem is the key presence of a weak form of hyperbol-

icity that in Ref. [41] is called singular hyperbolicity. The authors of Ref. [43] prove

that any robust attractor containing an equilibrium point is singular hyperbolic. The

fact of not being a complete hyperbolic system, leads the attractive set always infinitely

close to the bifurcations [44]. These bifurcations cause a discontinuity in the statistical

quantities such as (4.26), and hence not differentiable with the parameters. In such

situations, the limit (4.27) does not itself formally exist, as the infinite time average

is not a continuous function of the parameters. However, the empirical observation on

this set of equations suggest that statistics appear as if they were smooth functions
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of ρ. The details on the hyperbolic characteristics of chaotic systems are not object

of discussion in this project but more information are present in the cited references,

especially in Ref. [45] concerning the Lorenz equations.

This feature, known for low dimensional systems [46], is expected to be a general prop-

erty of many physical systems characterized by a non complete form of hyperbolicity.

Logically, therefore, the use of an approach based on the shadowing lemma such as

Periodic Shadowing or Least Square Shadowing can be questionable. The perturbed

trajectory obtained from the linear problem may not belong to the attractor of the

perturbed system, although it may lie close to it. Hence, in the calculation of a statis-

tical convergence of the sensitivity, a spurious contribution is introduced (we underline

that the gap between the two results is ∼ 1.5% for the Lorenz system), resulting in a

sensitivity error that does not vanish as T → ∞. This outcome does not preclude the

effective validity of the method because it is supported by the results of the application

of other algorithms such as those presented in Refs. [7, 8, 37]. The presence of the

bias can also be connected with the so-called “chaotic hypothesis” [47]. The hypothesis

asserts that if the dimension of the system is large enough, perturbations in design

parameter which can induce bifurcations, such as ρ, do not lead to such a noticeable

evidence in the calculation of the average statistic of the sensitivity with respect to

it. In other words, the greater the number of states, the greater is the stability of the

systems with respect to small parameter perturbations, and so they behave as they

were hyperbolic [48]. In this way the bias error should be reduced if high-dimensional

systems are considered. To date, this turns out to be a conjecture but research in

this direction is currently under way to provide additional support to shadowing-based

algorithms.

8.2 Future Development

There are several important aspects requiring further research. Firstly, develop a fun-

damental understanding of how the proposed method performs in high-dimensional

systems is warranted. In other words, it is necessary to understand how the number of

degrees of freedom affects the aforementioned bias error, verifying the validity of the

conjecture. The achievement is accomplished by analysing the effects of the lack of

hyperbolicity of systems on the shadowing error. A better understanding and charac-

terization of the spectral properties of the multiple-shooting system resulting from the

Periodic Shadowing approach is also needed. A further research problem is to imple-

ment the Least Square Shadowing method to observe how sensitivity distributions. In

this way, it will also be possible to compare the computational cost and accuracy of the
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methods and understand how Least Square Shadowing behaves for chaotic systems of

greater complexity than the one arising from Lorenz equations. Finally, find alternative

strategies to set the gradient Tdp are required. The aim would be to prevent that the

boundary value problem (4.38) and the multiple-shooting system (5.9) become singu-

lar. This might in turn improve the conditioning of the problem and result in a more

favourable probability distribution of the sensitivity. We wish to address these aspects

in future work.
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Appendix A

Lagrangian Approach for Adjoint

Sensitivity Method

A classical Lagrangian approach [49][21] starts by constructing the finite-time La-

grangian function

LT = J T (p) +
1

T

∫ T

0

qᵀ(t) ·
[
ẏ(t)− f∂x(x(t), p) · y(t)− f∂p(x(t), p)− Tdp

T
f(x(t),p)

]
dt

(A.1)

LT : R → R, by adding the sensitivity equation 4.35 (as second term in right-hand

side) to the cost function 4.25, with the adjoint variables q(t) ∈ X ≡ RN . Since the

sensitivity equation just added is satisfied for all p and for all t ∈ [0, T ] along the

trajectory, LT (p) = J T (p) for every p and thus LTdp = J T
dp. This identity is exploited

to obtain the gradient J T
dp from LTdp at a much reduced computational cost when the

sensitivity with respect to many parameters is required. As foreseeable, the derivative

of the finite-time Lagrangian with respect to the parameter is defined as

LTdp(p) = lim
δp→0

1

δp

[
LT ′

(p′)− LT (p)
]

(A.2)

where LT ′
(p′) and LT (p) refer to the perturbed and reference trajectories, respectively.

Now, replacing into A.1 the 4.32 and expanding the multiplication on the additional

term leads to

LTdp(p) =
1

T

∫ T

0

[J∂x(t) · y(t) + J∂p(t)] dt+
1

T

∫ T

0

[
qᵀ(t) · ẏ(t)−

+ qᵀ(t)f∂x(t) · y(t)− qᵀ(t)f∂p(t)− qᵀ(t)
Tdp
T

f(t)

]
dt (A.3)
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Integrating by parts the qᵀ(t) · ẏ(t) term

qᵀ(t) · ẏ(t) = [qᵀ · y(t)]

∣∣∣∣T
0

−
∫ T

0

q̇ᵀ · y(t)dt

and rearranging correctly

LTdp(p) =
1

T

∫ T

0

[J∂x − q̇ᵀ(t)− qᵀ(t) · f∂x]︸ ︷︷ ︸
A

·y(t) + J∂p − qᵀ(t) ·
[
f∂p(t) +

Tdp
T

f(t)

] dt−

− 1

T
[qᵀ · y(t)]

∣∣∣∣T
0︸ ︷︷ ︸

B

(A.4)

The key idea of this approach to obtain the adjoint formulation is to select q(t) variables

such that both A and B vanish identically, to avoid the explicit computation of y(t)

for every parameter of interest.

Requiring A to vanish leads to an adjoint equation whilst B = 0 is obtained imposing

periodic boundary condition in time on the adjoint problem. This leads to the adjoint

Periodic Shadowing problem{
q̇(t) = J∂x(x(t), p) · q(t)− f∂x(x(t), p), t ∈ [0, T ]

q(0) = q(T )
(A.5)

Upon the solution of A.5 we obtain the sensitivity of the time average as

J T
dp = LTdp =

1

T

∫ T

0

J∂p(x(t), p)− qᵀ(t) ·
[
f∂p(x(t), p) +

Tdp
T

f(x(t), p)

]
dt (A.6)
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