PoLITECNICO DI TORINO
ACADEMIC YEAR 2017/2018

MASTER THESIS

MASTER IN COMPUTER ENGINEERING (SOFTWARE
AND DIGITAL SYSTEMS)

Embedded Linux distro
development with the Yocto

Project
Supervisor:
Prof. Massimo Violante Candidate:
Supervisor (Magneti Alessandro Flaminio
Marelli): 5241548

Cristiano Sponza

Turin, October 2018

Embedded Linux distro development with the
Yocto Project

Alessandro Flaminio
Supervised by:

Prof. Massimo Violante
Politecnico di Torino
Cristiano Sponza

Magneti Marelli

Abstract

The main purposes of this thesis are to develop an embedded Linux distribution for
a custom Arm-based board, and to provide a new simpler development workflow in
the context of the Magneti Marelli Connectivity team. All of these objectives were
reached by using the Yocto Project set of tools, and as output the TIIC! Linux
distro and an SDK? to be used by the development team were produced. During
this thesis a bottom-up approach was employed: starting from a study of the Yocto
Project technologies, to the development of a BSP? for the Magneti Marelli Step
03 custom board and, finally, to the automation of the compilation of the Marelli
Connectivity Framework software modules. All of these outputs are represented by
a set of metadata, contained in the built Yocto Project meta-mm layers.

LTIIC: Technology Innovation, Innovation Connectivity
2SDK: Software Development Kit
3BSP: Board Support Package

I1I

Dedication

I would like to express my gratitude to my family, in particular to my mother and
my father. They always supported me during this long path and I truly believe that
it is thanks to them that I am achieving this result.

IV

Contents

Introduction, Motivations and Goals

1.1 Introduction
1.2 Magneti Marelli
1.3 Motivations
1.4 Goals.

Embedded Linux

2.1 Embedded Linux
2.1.1 The Linux kernel L.
2.1.2 Therootfs
2.1.3 Init managers o
2.1.4 Device managers

2.2 Flash memory support
2.2.1 The MTD subsystem
2.2.2 UBI and the UBI File-System

2.3 Das U-Boot bootloader

2.4 Development tools
2.4.1 Cross-compiling toolchains L.
2.4.2 Build process management L.

The Yocto Project

3.1 Introduction
3.1.1 History.
3.1.2 The Yocto Project premises definition
3.1.3 Differences between the Yocto Project, Buildroot & OpenWrt
3.1.4 The Yocto Project architecture

3.2 Poky

3.3 BitBake
3.3.1 BitBake objectives oo oo
3.3.2 Shared state cache
3.3.3 The BitBake recipeso

3.4 The YP integrated tools 0.

CONTENTS

3.5

3.6

3.7

3.8

4 The
4.1
4.2
4.3
4.4

4.5

4.6

341 SDK & eSDK
3.4.2 Toaster
34.3 CROPS
OpenEmbedded-Core
3.5.1 Differences between OE-Core and OE-Classic
3.5.2 OpenEmbedded-Core scope
The Yocto Project metadata
3.6.1 Recipes
3.6.2 Conffiles
3.6.3 Layers
The general Yocto Project workflow
3.7.1 Getting started Lo
3.7.2 Developing a BSP layer
3.7.3 Developing an application layer
3.7.4 Developing a distro layer
3.7.5 Using the Yocto Project as a daily basis
Developer workflow with the eSDK

Magneti Marelli Connectivity Framework

Introduction
Vehicle-to-Everything o 0oL
Technology details
The Magneti Marelli Connectivity Framework
4.4.1 Connectivity protocol stacks
4.4.2 Facilitieso
443 Theusecases
The MM Connectivity hardware
4.5.1 The Magneti Marelli Step 03 board
452 TheCar PC
The MM Connectivity software
4.6.1 The version control system: Subversion
4.6.2 The cross-toolchain
4.6.3 The application unit building
4.6.4 The building and deploying automation
4.6.5 The current development workflow
4.6.6 Considerations

5 Development of the meta-mm layers

5.1
5.2
5.3

Introduction
Advantages of the YP within the MM Connectivity environment . . .
Development process
5.3.1 First phase: the BSP

47
47
47
48
49
50
50
o1
51
52
53
53
54
54
54
5}
95
o6

CONTENTS

5.3.2 Second phase: the Magneti Marelli Connectivity Framework
and applications
5.3.3 Third phase: the TIIC distro
5.3.4 Fourth phase: x86 porting of the TIIC distro
DA Layers . .o
5.4.1 meta-mm
5.4.2 meta-mm-distro
0.4.3 meta-mm-connectivity

5.5 The eSDK and the new YP-based workflow in the Magneti Marelli
Connectivity environmento
5.6 Issues and solutionso Lo
5.6.1 The Step 03 kernel

5.6.2 Git repositories and cloud computing
Conclusion
6.1 Results.

6.2 Future developments (Yocto Project context)
6.2.1 Git migration
6.2.2 Centralised build machine
6.2.3 Step 03 QEMU support

6.3 Future developments (Linux kernel context)
6.3.1 Adaptation of the customised Step 03 Linux kernel
6.3.2 Real-time Linux support

Magneti Marelli Connectivity Yocto Project User Manual

A.1 Yocto Project installation and usage
A.1.1 Requirements
A.1.2 Instructions (with git)
A.1.3 Instructions (without git)

A.2 Flashing the TIIC distro on the Step 03
A.2.1 Requirements
A.2.2 Instructions

eSDK User Manual
B.1 User manual for building the eSDK
B.1.1 Instructions

MM Connectivity Layers Directory Trees

C.l meta-mm
C.2 meta-mm-connectivity L.
C.3 meta—mm-distro

VII

73
73
73
73
74
74
74
5
75

76
76
76
7
78
81
81
82

83
83
83

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8

4.1
4.2

4.3

5.1
5.2

2.3
5.4

6.1

The make menuconfig graphical configuration utility.
The DTB is loaded in RAM with the kernel image.
The UBI/UBIFS stack.
The binaries produced from a native toolchain and a cross-toolchain.

The Yocto Project architecture.
The Poky architecture.
The Yocto Project development environment.
The different kinds of recipe inheritance.
The three main types of layers, with all of the metadata that can

contain.o
The Yocto Project general workflow.
Development workflows supported by the Yocto Project eSDK for

adding a new recipe.o
Development workflows supported by the Yocto Project eSDK for

modifying an existing recipe.

The ETSI ITS-G5 and WAVE frequency allocation [5].
The MM V2X Framework architecture. In the facilities common
to ETSI and WAVE standards, in the ETSI-specific compo-

nents, while in blue the WAVE-specific components.
The Step 03 board.

The developed Yocto Project layers for Magneti Marelli TIIC (Tech-
nology Innovation - Innovation Connectivity).
The recipes arrangement in the BSP meta-mm layer.
The recipes arrangement in the distro meta-mm-distro layer.

The recipes arrangement in the application meta-mm-connectivity

Development environment with a server-hosted shared state cache. . .

IX

74

List of Tables

3.1

3.2

4.1

5.1

0.2

The main differences between the Yocto Project, Buildroot &
OpenWrt.
Differences between the Yocto Project Standard SDK and the Ex-
tended SDK.

Medium differences between WAVE and ETSI ITS-G5.

Differences between the Yocto Project workflow and the existing Mag-
neti Marelli Connectivity projects workflow.
The different Linux Kernel flavours tested on the Step 03 board. . . .

Chapter 1

Introduction, Motivations and
Goals

1.1 Introduction

An embedded system is a computing device specifically crafted for a limited set
of purposes in a particular context. Embedded systems control many electrical and
mechanical devices that we use and, nowadays, they are almost everywhere. We
have embedded systems in our pocket, in our homes and, especially, in our vehi-
cles.

These systems are extremely peculiar and application-specific by definition, and, for
that reason, their development is fundamentally different from general purpose sys-
tems. An embedded system is composed by custom-made hardware and specifically
developed software; for that reason specific tools are needed for working proficiently
on the development process of both.

In the automotive context, embedded systems are employed for many different tasks
such as the ECU (Engine Control Unit), infotainment systems, safety systems,
etc.

The last years have been characterised by an emerging demand for smarter vehicles,
and one of the hottest topics in this context has been the vehicular communica-
tion. The V2X (Vehicle-to-Everything) technology enables cars to communicate
to each other, to city infrastructures, to pedestrians, etc. Of course, as vehicular
communication is fulfilled via a coupling of hardware and software components, the
development of new V2X embedded platforms is needed.

The case study of this thesis is based on the Magneti Marelli Connectivity
(V2X) Framework, a work that aims to implement the V2X vehicular and in-
frastructure communication. Being that an embedded system development project,
developed in a big company like Magneti Marelli, several challenges need to be
addressed. By using state of the art technologies, the development, testing and
deploying processes could be vastly improved and simplified.

CHAPTER 1. INTRODUCTION, MOTIVATIONS AND GOALS

1.2 Magneti Marelli

Magneti Marelli was founded in 1919, starting from the 1891 company Ercole
Marelli, as a company specialised in ignition magnetos. In the last 100 years
Magneti Marelli expanded its portfolio to body control systems, powertrain con-
trol systems, electronic instrument clusters, automotive lightning systems, sus-
pension systems, motorsport and other products. Magneti Marelli is a big player in
the embedded systems industry, developing and producing embedded platforms for
several purposes in the automotive industry.

Magneti Marelli has also several R&D (Research & Development) divisions such as
the Autonomous Driving and the Innovation Connectivity ones. In particular,
the Innovation Connectivity team is developing a full solution for enabling V2X
communication.

1.3 Motivations

As already cited, this work is focused on the development process of the Magneti
Marelli Connectivity Framework. The procedures adopted by the development team,
before the introduction of the workflow developed through this work, were mostly
custom-made and so, for that reason, were difficult to maintain and to extend. In
fact, the existing methods require an extensive knowledge of the environment and
several human interactions are required. The main areas of improvement that
can be identified in the "older" development workflow are the following:

e Compiling and deploying the Linux kernel must be performed manually.

e The BSP (Board Support Package) must be generated manually.

e Generating complete images of the embedded operating system, including
the Connectivity software modules, is difficult because all the required appli-
cations must be integrated separately.

e Updating the existing libraries and utilities requires manual intervention.

e Keeping track of the development toolchains distributed among different de-
velopers is cumbersome.

e Creating a new project release version requires a manual rewriting of several

files.

e The developed embedded software is not easily scalable to other platforms
and architectures.

CHAPTER 1. INTRODUCTION, MOTIVATIONS AND GOALS

1.4 Goals

Given the points reported above, the aim of this thesis is to find ways to enhance
the development workflow with the following improvements:

Compilation of the custom embedded Linux kernel without manual interaction.
Automated generation of the BSP specific to a board.

Automatic compilation of the software to be deployed on the system.

Easy update of libraries and utilities used on the embedded device.

Seamless generation of a unique development toolchain.

Simplified project versioning management.

Simple scalability of the whole software to other platform and architectures.

All of those improvements can be achieved by using one of the most versatile, com-
prehensive and powerful build systems in the embedded Linux field: the Yocto
Project.

In particular, this work was targeted towards guaranteeing complete support to the
custom Arm-based Magneti Marelli Step 03 board but, given the great scalability
of the Yocto Project, a porting to the x86 architecture was also easily performed.
In particular, the following deliverables were produced as result of this work:

meta-mm, meta-mm-distro, meta-mm-connectivity metadata: a set of meta-
data to be parsed by the tools included in the Yocto Project that contains all
the rules, configurations, parameters, etc. needed for fulfilment of all the
objectives reported above.

eSDK: the set of all the tools needed by developers in order to write, test and
deploy software on a target embedded platform. The eSDK is automatically
generated starting from the Yocto Project and its metadata.

Chapter 2

Embedded Linux

Over the last years the Linux kernel has significantly gained popularity as operating
system for embedded platforms. In the following chapter are detailed the most
relevant features of the Linux kernel in the context of embedded systems.

2.1 Embedded Linux

Since 2000, the Linux kernel and several open-source components related to it are
increasingly used in the context of embedded systems. The Linux kernel, when used
in conjunction with other software units in embedded systems, is often referred as
Embedded Linux. At the time of writing Linux is de facto the standard choice for
embedded platforms. Linux have in general some key advantages, some of which are
particularly relevant in embedded environments:

e Open-source: All the Linux source code is freely available online, which
means that all the kernel components are maintained by a large community
of developers. Reusability is also highly encouraged because the open-source
ecosystem already provides all the elements needed for typical requirements,
but also for specific uses.

e High quality: The components of the Linux kernel are widely-used and,
being developed by a large community, are maintained by several developers.

e Low cost: Since Linux is free of charge, there are no licenses to be paid when
deploying it on an embedded platform.

e Customisability: The kernel behaviour and features can be easily customised
by directly modifying the open-source code. Any modification to the operating
system can be performed in any moment, without having to rely on third-
parties.

CHAPTER 2. EMBEDDED LINUX

The main components that characterise an Embedded Linux distribution are: The
Linux kernel, a rootfs (containing utilities, libraries and applications such as
BusyBox) and a bootloader.

In order to develop software for an embedded platform, several development tools
are needed: a cross-compiling toolchain, build systems to ease the compilation
phases of the software such as CMake and autotools and, eventually, an IDE for
coding.

2.1.1 The Linux kernel

The Linux kernel was created in 1991 by Linus Torvalds, and nowadays is one of the
most successful open-source projects ever created. It is a monolithic kernel, which
means that the whole operating system works in kernel space. The main features of
the Linux kernel are the following:

e Portability: can be compiled and run on the most popular architectures.

e Scalability: it is possible to run it on embedded devices up to supercomput-
ers.

e Compatibility: Linux is compliant to the Single UNIX Specification and to
POSIX, thus ensuring source code portability.

e Security and Reliability: being open-source, every Linux component is re-
viewed by many expert developers.

e Modularity: thanks to its complete configuration utility, the kernel can be
customised to include only what it is needed.

Kernel configuration (Kconfig)

In order to minimise the size of the resulting compiled kernel, a complete configura-
tion mechanism is provided by Linux. Starting from the kernel source code, several
options can be configured:

e Architecture specifications
e Device drivers

e Filesystem drivers

e Network protocols

The Linux kernel configuration is saved into a .config file located in the root
directory of the kernel source code. This file contains a set of tuples key=value
that represents each kernel compilation option. It is strongly advised not to edit

CHAPTER 2. EMBEDDED LINUX

manually configuration files because some options can have several dependencies.
Various interfaces can be used for managing .config files that also take care of all
the dependencies such as make menuconfig. All of those interfaces can be invoked
by using make with the Makefile located in the root directory of the Linux source
code.

There are several default configuration files for each CPU architecture, but new
ones can be created with make savedefconfig. This command creates a new
defconfig file containing all the selected options.

Linux Kernel vZ.6.11.6 Configuration

Arrow keys navigate the menu. <Enter> selects submenus —->.
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Esc><{Esc> to exit, <7> for Help, <>
for Search. Legend: [%*] built-in [1 excluded <M> module < >

Code maturity level optioms —3>

eneral setup —>

oadable module support -—3>

rocessor type and features ——>

ower management options (ACPI, APMY —>
us options (PCI, PCMCIA, EISA, MCA, ISA) —>
xecutable file formats —3>

evice Drivers ——>

ile systems ——>

rofiling support -——3

ernel hacking —>

< Exit > < Help >

Figure 2.1: The make menuconfig graphical configuration utility.

Kernel compilation

After having correctly configured the kernel and having obtained a .config file,
kernel compilation can be started by simply issuing the make command. The build
process produces as output a set of files (kernel image and, eventually, the initramfs
image), depending on the configuration options.

Kernel images

A kernel image contains all the objects that have been compiled based on the
selected configuration options. The kernel image is a single file that is loaded from

7

CHAPTER 2. EMBEDDED LINUX

the bootloader when starting the system. These are some of the most used types of
kernel image:

e Image: an uncompressed file that contains all the informations needed to
obtain a live working copy of the Linux kernel.

e zImage: a compressed version of the Image. It is self-extracting when being
loaded from the bootloader.

e ulmage: a file that wraps a generic kernel image with an header used by the
U-Boot bootloader.

e fitlmage (Flattened Image Tree): similarly to the ulmage, it contains U-
Boot-specific informations plus other data such as the DTB files to be loaded
from the U-Boot in order to pass the correct hardware informations to the
kernel.

Kernel headers

The Linux kernel headers are a set of header files that represents the APIs exposed
by the Linux kernel. These files are used in order to correctly compile the kernel
modules for a specific version of the Linux APIs.

Kernel modules

Based on the kernel configuration, some features (such as device drivers) can be
unbundled from the kernel image and included separately in the rootfs as kernel
modules (.ko files). In general, installing a driver for a certain peripheral on
Linux means compiling a kernel module by using the kernel headers of the operating
system. Modules can be loaded and unloaded dynamically after the filesystem is
mounted by the kernel, for that reason kernel modules are available only after the
initial boot phase.

Device Tree Source & Blob

DTB (Device Tree Blob) files allow a Linux kernel compiled for a specific architec-
ture to boot with different hardware configurations. The Device Tree Blob is pro-
duced from a dtc (Device Tree Compiler) starting from DTS (Device Tree Source)
files. Follows an example fragment of a DTS file (taken from [6]) that specifies some
hardware informations to the kernel in order to make it recognise a flash memory:

localbus@e0000000 {
#address-cells = <2>;
#size-cells = <1>;
compatible = "simple-bus";

CHAPTER 2. EMBEDDED LINUX

reg = <0xe0000000 0x5000>;
interrupt-parent = <&mpic>;

ranges = <0x0 0x0 0xff£000000 0x01000000>; /*16MB Flashx*/

f1ash@0,0 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "cfi-flash";
reg = <0x0 0x0 0x1000000>;
bank-width = <2>;
device-width = <2>;
partition@0x0 {
label = "free space";
reg = <0x00000000 0x00£80000>;
+;
partition@0x100000 {
label = "bootloader";
reg = <0x00£80000 0x00080000>;
read-only;
+;
+;
};

DTRB files, together with the kernel image, are loaded in RAM from the bootloader
(figure 2.2), and the address at which the DTB data is located is passed to the kernel
(via the CPU r2 register) as a parameter. In this way the kernel is able to correctly
recognise the specified peripherals.

As said above, DTB files can be included in the kernel fitlmage, but it is also
possible to manually load standalone D'TB files via the bootloader.

2.1.2 The rootfs

In general, filesystems are used in order to organise as a hierarchy files and direc-
tories on storage devices. In UNIX systems, filesystems are mounted in specific
directories so that applications can access to filesystems as simple folders in the hi-
erarchy. For that reason, every Linux system must have a root filesystem (called
rootfs) in which other filesystems can be eventually mounted. The rootfs is
mounted automatically during the boot phase by the kernel at the root of the global
hierarchy (/), and cannot be mounted manually as others filesystems. The location
of the rootfs is specified by a parameter passed to the kernel by the bootloader.
There are two ways to handle the mounting of the rootfs during the boot process

[2]:

CHAPTER 2. EMBEDDED LINUX

DTB

\ Z RAM

ulmage
rl = don't care
r2 = <pointer to DTB>

Figure 2.2: The DTB is loaded in RAM with the kernel image.

e Without a minimal filesystem: with this technique the rootfs is mounted
during the kernel initial tasks:

1. Bootloader: loads the kernel (and eventually the DTB) passing to it
the root= parameter and starts it.

2. Kernel: Prepares devices and kernel components, mounts the rootfs
based on the root= parameter and starts the init manager that completes
the system startup.

e With the initramfs: with this technique the rootfs is mounted after mount-
ing a minimal filesystem (called initramfs):

1. Bootloader: loads the kernel (and eventually the DTB) and loads the
initramfs archive (if it is not included in the kernel image).

2. Kernel: Prepares devices and kernel components, mounts the initramfs
and starts a basic init manager.

3. init: starts some user space commands, loads drivers to access the real
rootfs, mounts the rootfs and starts the complete init manager that
finishes the system startup.

Synthetic filesystems

Synthetic (virtual) filesystems are used by Linux to expose statistics and system
informations to the user and to user space applications. Synthethic filesystems are
mounted exactly like standard filesystems, but the data that they represent are
generated by the kernel. There are two main virtual filesystems:

10

CHAPTER 2. EMBEDDED LINUX

e /proc: provides statistics about running processes and implements (via the
virtual directory /proc/sys) a way for adjusting some kernel parameters.
Applications like ps require the abstraction provided by /proc.

e /sys: this virtual filesystem gives to the user space the representation of the
buses, devices and drivers as seen by the kernel. This abstraction is needed
by applications that require a list of the available hardware.

Libraries

One of the key elements included in the rootfs (under the /1ib directory) are the
dynamic libraries used by the applications. In particular, the rootfs certainly
contains all the system libraries, such as the C library (1ibc). Non-basic libraries
can be included in the /usr/1ib directory.

Applications

Basic programs (such as the command shell, etc.) are included in the /bin folder,
basic system binaries are in the /sbin folder (such as the init manager, the mount
command, etc.), while non-basic binaries are put in the /usr/bin and /usr/sbin
folders.

BusyBox

Every Linux system requires several binaries to be able to function properly such
as the init manager, the shell and several other utilities. In standard Linux
systems all of those binaries are maintained separately and are integrated into the
system with all the features they offer. In the context of embedded systems this
is not desirable because every bit of storage can be crucial, and likely not all the
features provided by the standard binaries are required. BusyBox provides a single
binary containing every needed application rewritten into a single project, with all
the needed utilities represented by symbolic links to it. When compiling BusyBox,
it is also possible to configure the applications in a way to strip certain unneeded
features.

2.1.3 Init managers

In Linux systems init managers have the purpose to startup services during the
boot process. Most services are in the form of daemons, and there could be several
dependencies between one service and another. The startup process is organised
in multiple steps, identified by runlevels. Essential services are put on lower
runlevels, so that non-basic services can be started afterwards.

The two main init managers employed in Linux systems are the following:

11

CHAPTER 2. EMBEDDED LINUX

e SysVinit: this is the most used init manager in Linux, derived from the
UNIX System V init style.

e systemd: created to be the successor to SysVinit, as it was designed to over-
come the shortcomings of it.

2.1.4 Device managers

A device manager is a component that manages devices, making them virtually
available in the /dev directory. The de facto standard device manager is udev that,
when using systemd as init manager, is incorporated in it. After the device drivers
recognise the peripherals, udev is notified, which then "mounts" the devices under
the /dev directory. There are two main types of devices that are treated differently
by udev:

e Character devices: also known as raw devices, are peripherals to which
data is transferred one character at a time. Typical examples of character
devices are serial connections, keyboards, etc.

e Block devices: devices that support the transfer of (buffered) blocks of data.
Typical devices are hard disks, pen drives, etc.

2.2 Flash memory support

One of the most used storage options in embedded devices is flash memory. This
kind of memories has specific requirements such as wear leveling for preserving
endurance over time. The Linux kernel was extended for completely supporting
flash memories and several file systems such as UBIFS, YAFFS, JFFS2, etc. were
specifically created. In particular, one of the most used architecture of subsystems
used in flash-based devices is the following [14] (figure 2.3):

e MTD subsystem: provides an interface to access raw flash chips.

e UBI subsystem: manages the wear-leveling and the UBI volumes man-
agement of the flash device.

e UBIFS file system: placed on top of UBI volumes.

2.2.1 The MTD subsystem

The MTD (Memory Technology Device) subsystem provides a device file in Linux
for accessing raw flash memory. With this abstraction layer, flash devices are rep-
resented in Linux as /dev/mtd MTD devices. MTD is used with devices that do not
provide an MTL (Memory Translation Layer).

12

CHAPTER 2. EMBEDDED LINUX

UBIFS

$

UBI

$

MTD

NAND NOR OneNAND etc.

{

Flash hardware (NAND, NOR, etc.)

Figure 2.3: The UBI/UBIFS stack.

2.2.2 UBI and the UBI File-System

UBI (Unsorted Block Images) is a layer placed on top of MTD that supervises the
bad block management of the flash device (tracking of bad blocks, wear leveling)
and provides the notion of UBI volumes that can be dynamically created, removed
and re-sized.

UBIFS (Unsorted Block Image File System) is the filesystem that lies on top of the
UBI subsystem and is characterised by the following main features:

e Improved speed: UBIFS presents improved speeds (with respect to JEFS2)
in several operations like I/O, mounting and accessing large files.

e Power-cuts tolerance: since UBIFS is a journaled file system (it keeps a
log of all the operations that performs on the media), it can easily recover
from unclean shutdowns.

e Integrity: UBIFS creates checksums for everything written on the media, so
that data corruptions are not unnoticed.

2.3 Das U-Boot bootloader

U-Boot is an open source bootloader primarily used in embedded devices. U-Boot
is both a first-stage and a second-stage bootloader: during the first stage it
configures memory controllers and SDRAM, while during the second-stage loads

13

CHAPTER 2. EMBEDDED LINUX

the operating system. As already mentioned, U-Boot also supports DTB hard-
ware descriptions. Before booting the operating system, U-Boot can also provide
a command-line interface from which several commands can be issued. Those
directives can be used to manipulate flash memory partitions, load files (such as
the Linux kernel) in RAM, set environment variables, etc.

2.4 Development tools

In order to proficiently develop software for an Embedded Linux platform, several
development tools must be used. The main difference between x86 development and
embedded (typically Arm) development resides in the different architectures. This
means that the standard native compiler cannot be used for embedded development.

2.4.1 Cross-compiling toolchains

A compiler that compiles for an architecture different from the host machine one is
called cross-compiler. For example, a cross-compiler is needed for compiling Arm
binaries while developing on a x86 machine. A native Arm compiler could be used on
the target system, but this is very impractical to do because often the target device
is restricted in terms of available storage and memory. A cross-compiler attached
to the Binutils', the kernel headers, libraries and a debugger represent the
so-called cross-toolchain. Since Arm is one of the most used architectures in the
embedded development context, the typical scenario involves using an Arm cross-
toolchain (figure 2.4).

The ABI

The ABI (Application Binary Interface) is an interface between two software compo-
nents that defines calling conventions (how function arguments are passed, how
values are returned), data alignments and data types. An ABI must be defined
when building a toolchain, and all the system binaries should be compiled with the
same ABI. In particular, in the context of the C/C++ languages, the ABI gives
standards for implementing the language, ensuring interoperability between parts
compiled separately.

Binary stripping

In order to make debugging possible, when compiling a binary, the compiler has
to include some debug symbols. This is done for enabling the correspondence
between the executing binary and the source code it derives from. Debug symbols
are not needed when deploying binaries on the target for production, so a binary

!Binutils: a set of tools to generate and manipulate binaries for a given CPU architecture.

14

CHAPTER 2. EMBEDDED LINUX

stripping operation is executed in order to remove the debug informations from
files.

Source code

Compilation
\7 v prié

Cross-compiling machine
Native toolchain i
toolchain

x86
) Execution
x86 binary ARM binary machine
%86 ARM

Figure 2.4: The binaries produced from a native toolchain and a cross-toolchain.

2.4.2 Build process management

Building a software unit requires a variable amount of effort, depending on the com-
plexity of the unit. In general, it is possible to directly invoke the cross-compiler,
or to call make for executing automatically a certain number of tasks. For large
projects, it is impossible to manually compile and link each component, and it is
cumbersome to write by hand a Makefile for each unit. For that reason, some
utilities like CMake and autotools are employed.

CMake

CMake is a tool that helps managing the building, testing and packaging processes of
software development in large projects. Its main goal is to automatically generate a
Makefile to be used with make. For each project, CMake parses a CMakeLists.txt
file that can be modified by the user in order to control the build process. CMake
supports directory hierarchies, dependencies from multiple libraries and can be fully
used with cross-compilation.

CMake-based projects are characterised by the following workflow:

1. Write a CMake toolchain file that specifies which compiler (cross-compiler)

should be used and that, eventually, contains the compilation options to be
used.

15

CHAPTER 2. EMBEDDED LINUX

2. Write the CMakeLists.txt file that defines headers, libraries, etc. needed by
the project to compile and specifies how the results of the build process should
be packaged.

3. In the project folder, call cmake passing the toolchain file as a parameter.

4. Since a Makefile has been generated, call make to complete the build process.

Autotools

The Autotools (also known as GNU Build System) are a set of tools that were
created primarily to allow portability of software on different UNIX systems. As
CMake, Autotools work to generate a Makefile to be used by make and fully support
cross-compilation. Autotools consist of Autoconf, Automake and Libtool that
are used in order to build a project.

16

Chapter 3

The Yocto Project

3.1 Introduction

The Yocto Project is an open source set of tools specifically addressed to the creation
of custom embedded Linux distributions. It is managed by the Linux Foundation
and it is supported by a dedicated community and by several corporate members
such as vendors, open source operating systems and hardware manufacturers that
share the same purpose: to build Linux-based embedded systems. By sharing the
efforts made on embedded products development, each organisation can drastically
reduce the time spent on the very same issues: in fact the Yocto Project is completely
designed to enhance and encourage modularity, customisation and sharing.

3.1.1 History

The Yocto Project derives directly from another open source project: OpenEm-
bedded. In 2003 some of the developers of the OpenZaurus project (a project for
the Sharp Zaurus PDAs lineup) founded OpenEmbedded. Their goal was to create
a build system for embedded Linux distributions based on a task scheduler inspired
by the Gentoo Portage package system. This build system was dubbed BitBake.
OpenEmbedded was used by several organisations, but, due to its uncoordinated
development model, it was unsuitable to be used in production environments, giv-
ing the difficulty to maintain.

In the meantime, in 2006, the embedded Linux start-up OpenedHand created a
fork of OpenEmbedded (called Poky) that was a cleaner and more supportable
version of OE. Poky had a good reputation in the embedded systems field, in fact
some of the technical developments of the OpenEmbedded project came via Poky.
OpenedHand was acquired by Intel in 2008. OE continuously evolved for support-
ing more machines and configurations and, after some years, the OpenEmbedded
Project became so cumbersome, that the original repository containing the recipes
(the main form of metadata to be parsed by BitBake) reached a count of more than

17

CHAPTER 3. THE YOCTO PROJECT

7500 different recipes [8].

For that reason, in 2010, the Yocto Project was founded in the context of the Linux
Foundation, giving the needed manpower to the OpenEmbedded Project for coher-
ently organising the metadata produced for building software for embedded systems.
Poky was also donated by Intel for becoming the reference distribution of the project,
thanks to its improvements to the OpenEmbedded build system [11]. Over the next
years several organisations joined the Yocto Project Members, thus enhancing the
set of metadata ready to be used in the Yocto Project. Some of the most influential
companies in the Yocto Project are [18]: Intel, Texas Instruments, NXP, Renesas,
Dell, LG Electronics.

3.1.2 The Yocto Project premises definition

The purpose of the Yocto Project can be simply explained in that way [12]: the
YP build system takes as input the specifications of the desired Linux embedded
distribution and produces as output the main components of an embedded Linux-
based OS:

e The Linux kernel for the embedded system
e A rootfs containing the desired applications, libraries, utilities, etc.

e A developer SDK specifically tailored for the target embedded platform

All of those tasks are performed by the tools contained into the Yocto Project by
employing an agnostic environment: almost every task that is performed by the
YP to achieve the aforementioned results is executed within a freshly compiled build
environment, following the Yocto Project internal rules. In this way each utility and
executable has always the same version and it is always configured in the same
fashion. These premises guarantee that, even with different host build machines,
the non-determinism of the building process is kept to the minimum.

3.1.3 Differences between the Yocto Project, Buildroot &
OpenWrt

The three most commonly used build systems for customised embedded Linux
distros are the YP (Yocto Project), Buildroot and OpenWrt. Each of these tools
generates a rootfs image to be deployed on the target, a kernel image and a
cross-toolchain. Nevertheless, there are several differences between these tools
(outlined in the table 3.1):

e Ease of getting started: OpenWrt and Buildroot are completely based
on elements that every embedded Linux developer should be familiar with:
Makefiles, patches and Kconfig. On the other hand, the Yocto Project uses
a whole new paradigm represented by recipes and layers.

18

CHAPTER 3. THE YOCTO PROJECT

e Industry support: since the Yocto Project has several corporation members,

support is often provided directly from the vendors. Differently, Buildroot
and OpenWrt are completely community-based. That difference is a double-
edged sword: by using the YP you have complete and costant support by the
hardware vendors while, by using OpenWrt and Buildroot, you can generally
have more freedom and customisability.

Configurability and scalability: both OpenWrt and Buildroot use Kcon-
fig for configuring the builds, which means that every build configuration is
contained in one unique file, thus making scalability and expandability to other
platforms very cumbersome. The Yocto Project, instead, with its configura-
tion metadata organized in the Layer Model, guarantees an high degree of
reusability and expandability.

Package management: all the build systems cited above have support to
package management, but only the Yocto Project and OpenWrt can natively
manage .rpm packages (Red Hat Package Manager).

Feature The Yocto Project | Buildroot | OpenWrt
Ease of getting started | Difficult Medium Easy
Industry support Yes No No
Configurability Yes Yes Kind of
Scalability Yes No No
Package management | Yes Kind of Kind of

Table 3.1: The main differences between the Yocto Project, Buildroot & Open-
Wrt.

3.1.4 The Yocto Project architecture

The Yocto Project is an "umbrella" project [20], in a sense that incorporates three

main development components:

1.

The Poky reference embedded distribution

Core)

The Yocto Project integrated tools

19

. The OpenEmbedded build system (BitBake) and metadata (OpenEmbedded-

CHAPTER 3. THE YOCTO PROJECT

YOCTO PROJECT (YP)
POKY

YP Compatible BSPs (e.g. meta-intel, meta-ti, etc)
YP Compatible Layers
Yocto-Autobuilder (QA)
Development Tools (For the User)
ey Production Tools (To byild the Project)
BitBake (build engine) Other Layers and Project Components
Pseudo
Documentation

meta-poky
meta-yocto-bsp
Documentation

meta-openembedded

OPENEMBEDDED

Figure 3.1: The Yocto Project architecture.

3.2 Poky

In the context of the Yocto Project, Poky is a term that can mean different things.
First of all, Poky is a fork of the original OpenEmbedded project, and it represents
the core (containing OpenEmbedded-Core and BitBake, figure 3.2) of the YP.
Poky is also a reference distribution of the Yocto Project that can serve as
a starting point for creating a custom embedded Linux distribution. Poky has
primarily the following purposes:

1. Provide a minimal functional distro used to delineate how to customise a
distro.

2. Serve as a test bench for validating and testing the Yocto Project components.

3. Being a self-contained package to be obtained from the users for downloading
the Yocto Project.

When you start using the Yocto Project, you download (or clone, using the git
terminology) Poky. Generally, after having defined some of the details about the
target machine, you test that everything works correctly by building a minimal
image for booting the board (called core-image-minimal). What you obtain after
this build process is an image containing the Poky Linux embedded distribution
and an image enclosing a compiled Linux kernel.

20

CHAPTER 3. THE YOCTO PROJECT

Poky Build Tool

BitBake (bitbake)

OpenEmbedded-Core (meta)

Poky distro metadata (meta-poky)

Yocto Project reference BSP (meta-yocto-bsp)

Figure 3.2: The Poky architecture.

3.3 BitBake

BitBake is a make-like build tool that is the main core of the Yocto Project build
system. BB is a task execution engine that combines both sh and Python com-
mands in a parallel way, handling complex dependencies between each task. BitBake
is completely written in the Python language and the parsing unit of BitBake is
called a recipe: a file that must me be written in a BB-specific syntax.

BitBake is very similar to Make because it controls how software is built, but it can
be used for much more complex tasks, such as building an entire embedded Linux
distribution. The main differences between make and BB are the following:

e BitBake executes tasks by referring to the metadata associated to them. The
metadata is stored in recipes and configuration files and contains directives on
what tasks to run and the needed dependencies between tasks.

e BB is able to fetch the source code from different places such as local directo-
ries, remote servers and source control systems.

e BitBake provides a client/server abstraction that makes it accessible both from
command line and from a XML-RPC-based service. Various user interfaces
are provided.

3.3.1 BitBake objectives

As already said, BitBake derives from the OpenEmbedded project and extensively
utilises the OpenEmbedded-Core metadata. The main BitBake goals that delineated
over the years are to:

21

CHAPTER 3. THE YOCTO PROJECT

e Provide extensive support for cross-compilation.
e Handle complex dependency chains between packages.

e Support different kinds of tasks within a package recipe like sources fetching,
patching, configuring, etc.

e Being able to interpret tasks written in standard sh or in Python.
e Be architecture and Linux distro agnostic (for both build and target system).
e Be self contained in a specific part of the build host root filesystem.

e Provide a checksum checking mechanism for improved build speed (shared
state).

3.3.2 Shared state cache

One of the best features of BitBake is that it is based on the concept of checksum [1].
A checksum is a particular signature calculated from the inputs fed to a task, and
it can be used for determining if a certain task needs to be re-executed. Trivially, if
the inputs to a task change from one build to another (for example after modifying
a recipe), the task needs to be done again, otherwise the already built artifacts can
be reused. The sstate engine works both with sh-based tasks and with Python-
written tasks.

After verifying that the signature of a task to execute is exactly the same of an
already executed one, BitBake starts the setscene process. The setscene process
allows BB to correctly arrange the pre-built artifacts in the current build context.

3.3.3 The BitBake recipes

As already mentioned, every task that is executed by BitBake is completely de-
scripted in specifc files: recipes and configuration files. These two kinds of
metadata are described in detail in the section 3.6.

3.4 The YP integrated tools

The Yocto Project integrated tools are primarily tools for aiding the development
process and for managing the production environment [19]:

22

CHAPTER 3. THE YOCTO PROJECT

3.4.1 SDK & eSDK

The YP provides two Software Development Kit flavours [16]: the Standard SDK
and the Extensible SDK (eSDK). Like every SDK they mainly include those
features:

e Cross-development toolchain: it contains a compiler, a debugger and other
tools specifically crafted for the target machine and its architecture.

e Libraries, headers and symbols: these elements are exactly targeted to
the target machine and a chosen image.

e Environment setup script: an sh script that configures the cross-development
environment and correctly sets all the needed variables.

The SDKs produced by the Yocto Project are completely self-contained, which
means that they include an architecture-specific cross-toolchain and matching sys-
roots for the native and target machines. All of these elements are built by the
OpenEmbedded build system, and they are based on the set of metadata that char-
acterises the custom embedded Linux distribution. A great advantage of the Yocto
Project-generated SDKs is that, by using these tools, most of the compatibility is-
sues typically encountered in an embedded software development environment are
avoided. A common example could be the gcc compiler. If a C++ developer using
an older gcc version doesn’t follow the latest C++ language specification, probably
nothing would happen, because the compiler wouldn’t return any error or warning.
If the same application is built by the build engineer (that should deploy the whole
embedded software on the target board) using a newer version of gcc, the software
unit probably would not build correctly, since the compiler is aware of the new lan-
guage specifications. All of those problems are completely avoided with the Yocto
Project SDKs.

Furthermore, both the SDK and the eSDK optionally provide the following compo-
nents:

e QEMU (Quick EMUlator): it is a tool that aids the development process
by simulating the target hardware on the development machine. QEMU is
a hosted virtual machine monitor, which means that it virtualizes the target
machine CPU by means of dynamic binary translation. Furthermore, QEMU
has support for KVM (Kernel-based Virtual Machine), which allows to use
the Linux kernel as a VM hypervisor, thus allowing to run virtual machines
at almost native speed.

e Performance-related tools: tools like Valgrind, OProfile, RPM, System-
Trap, GCov, GProf, LTTng, etc. that can be used for optimising the develop-
ment process.

23

CHAPTER 3. THE YOCTO PROJECT

e Eclipse IDE Yocto Plug-in: a component for the popular Eclipse open-
source IDE that integrates seamlessly the Yocto development workflow into
the Eclipse environment.

How the SDK fits into the development process

As already said, the SDKs are directly produced by a complete Yocto Project instal-
lation. This means that in a development environment there will be three types of
machines: a Yocto Project Machine, an SDK Machine and the Target Ma-
chine (figure 3.3). The developers can independently develop applications, kernel,
modules, etc. on their SDK machines, and, when their objects are ready for integra-
tion, they can be propagated to the Yocto Project maintainer that, on the machine
with the full YP installed, can deploy the final image on the embedded system.

In the section 3.8 of this chapter a complete workflow of the development processes
with the Yocto Project eSDK is reported, while a manual for producing the SDK
on the YP machine can be found in the appendix B.1.

SDK Machine

Yocto Project Machine
Compile Code

Debug Code
Hosts an SDK

Objects

SDK Machine

Compile Code
Debug Code
Hosts an SDK

SDK Machine

Target Hardware

Objects Compile Code
Boots and Runs Images Debusg Code

Real Time Debugging Hosts an SDK
Runs Applications

Figure 3.3: The Yocto Project development environment.

Differences between the eSDK and the Standard SDK

The main difference between the two flavours of SDKs is that the eSDK contains
tools for adding applications and libraries to an image, directly testing the applica-
tions on the target hardware, modifying the source of a component and integrating

24

CHAPTER 3. THE YOCTO PROJECT

the application into the final build system. All of these tasks are performed via a
command-line tool called devtool. Other differences between the Standard SDK
and the eSDK are reported in the following table:

Feature Standard SDK | eSDK
Toolchain Yes Yes
Debugger Yes Yes

Size 100+ MB 1+ GB
devtool No Yes

Build images No Yes
Updateable No Yes
Managed sysroot | No Yes
Installed packages | No Yes
Construction Packages Shared state

Table 3.2: Differences between the Yocto Project Standard SDK and the Extended
SDK.

Sysroots

In general, a sysroot is the root directory in which headers and libraries are looked
up by development tools. Since, as already mentioned, the Yocto Project (and its de-
rived SDKs) is platform-agnostic, the sysroot is handled differently than traditional
SDKs. The YP Standard SDK and eSDK contain in fact two different sysroots:
one that is built basing on the root filesystem image of the target board, and one
that represents a standardised development environment. This choice guarantees
that each developer uses the same version of libraries, compilers, cross-compilers
and tools, thus avoiding compatibility issues.

Furthermore, in the case of the eSDK, the sysroots are managed by devtool, hence
minimizing the possibilities of corrupting the SDK sysroot when trying to add ad-
ditional libraries.

Shared state tasks

One of the great advantages of the eSDK is that is built upon the concept of BitBake
shared state tasks. The shared state cache directory containing pre-build objects
can be shared among different developers using the Yocto Project eSDK (for example
by means of an FTP server). That can aggressively reduce the building times; for
example [3], without shared state, a QEMUx86 core-image-minimal image takes
35 minutes to be built, while, with shared state cache enabled, it would take only
1 minute. Another advantage of shared state construction is that it can be used

25

CHAPTER 3. THE YOCTO PROJECT

directy for adding additional items to the SDK after installation without compiling
from source, similarly to a package manager.

devtool

The most remarkable added value of the Yocto Project eSDK is devtool. devtool
is a command-line tool that helps developers in building, packaging and testing the
software created in the eSDK environment. devtool provides support for adding,
modifying and upgrading recipes via several subcommands.

The devtool has a command line arranged similarly to the git CLI (Command
Line Interface), with a certain number of sub-commands for each task. The three
main subcommands that developers would use in the eSDK environment are:

e devtool add: it is used for creating a BitBake recipe for building new
software.

e devtool modify: it uses a previously created recipe for setting up the envi-
ronment for modifying the source of an existing component.

e devtool upgrade: it is used for updating an existing version for building
newer versions of source files.

In the section 3.8, a typical workflow using devtool is reported.

3.4.2 Toaster

Toaster is a web interface to the Yocto Project build system. It is a friendly in-
strument for configuring and starting builds and for visualising build informations.
Since Toaster can be deployed on a server, it is particularly suitable for configuring
a remote build server. The main features of Toaster are the following:

e Project organization: each build performed via Toaster is organised in a
project. Each project is characterized by the version of the YP build sys-
tem.

e Layer browser based on specified layer sources and on the OpenEmbedded
Metadata Index. This interface lists images, recipes and machines that are
included in each layer.

e Easy steps for adding the needed layers to the project, setting configuration
variables and building the selected targets.

e Interface for browsing the directory structure of the built image.

e Interoperability between the BitBake command line and the Toaster web in-
terface.

26

CHAPTER 3. THE YOCTO PROJECT

Furthermore, Toaster stores and provides detailed informations about the build
process executed both by the web interface and by BitBake command line (provided
that Toaster was up when the tasks started). These are some of the collected
statistics:

What is built and included in the final image

Error and warnings generated during the build process

BitBake tasks executed, shared state usage and environment variables set

Dependency informations between each unit of the build process

Performance details of the build machine such as CPU usage, etc.

3.4.3 CROPS

CROPS (acronym for CROssPlatformS) is an open source development framework
that uses the Docker containers virtualization technology for providing a cross-
platform environment (also to) the Yocto Project. CROPS is in fact used for running
the YP tools on Windows and macOS hosts. In general, CROPS consists of three
components [4]:

e CREED: is executed on the development host and exposes an API to Inte-
grated Development Environments (IDEs) or CLI callers.

e TURFF: runs in a container and services requests from CODI.

e CODI (COntainer DIspatcher): is executed in a container and stores all
the executing TURFF instances. CODI transfers the CEED requests to the
corresponding TURFF instance.

In the context of the Yocto Project, CROPS offers the support to three containers
that are specific to three core components of the YP:

e poky-container: an image that, once deployed in a container, drops to a shell
specifically configured for installing the full Poky build system (containing all
the Yocto Project tools, including BitBake and all the metadata).

e extsdk-container: an image that can be configured for automatically in-
stalling the Yocto Project Extended Software Development Kit. Once de-
ployed, it drops to a shell in which all the eSDK tools (including devtool)
can be used.

e toaster-container: an image for running the Toaster server in a container.

27

CHAPTER 3. THE YOCTO PROJECT

3.5 OpenEmbedded-Core

OpenEmbedded-Core is a set of metadata (recipes, etc.) that are taken from
the original OpenEmbedded Project. After the foundation of the Yocto Project 1.0,
the original recipes from OpenEmbedded (called subsequently OpenEmbedded-
Classic) were divided in several layers for improving supportability. OE-Core is the
main Yocto Project layer, in fact it is mantained both by the OpenEmbedded com-
munity and by the Yocto Project. This layer contains the core recipes for building
an embedded Linux distribution.

3.5.1 Differences between OE-Core and OE-Classic

The main difference between OpenEmbedded-Classic and OpenEmbedded-Core
is that [10], while OE-Classic represented a giant set of metadata, OE-Core rep-
resents the foundation on the top of which machine, application and distribution
layers are placed. With OpenEmbedded-Classic, machine and distro-specific over-
rides were all placed within the same layer, while, with the OE-Core YP model,
they should be put in appropriate machine support layers (BSP layers) and distro
layers respectively.

Another considerable difference between the two OE flavours is that OE-Classic was
based on a push model on which every developer committed their contributions
on the main OpenEmbedded git repository, leading often to inconsistent results.
OpenEmbedded-Core is instead based on a pull model, in which patches are sent
to the OE mailing list for review, and than, if considered useful by the maintainer,
are merged.

3.5.2 OpenEmbedded-Core scope
The purpose of OE-Core is to provide to the Yocto Project:

e Only recipes needed by almost any configuration and use case

e Support for the main architectures (both 32-bit and 64-bit): ARM, x86, Pow-
erPC and MIPS

e Distro-less environment (as said before, a distro layer should be put on top of
OE-Core)

e Support to QEMU emulated machines
e Only the latest version of each recipe

Since older recipe versions are systematically removed from OE-Core, if an older
recipe is needed, it should be provided by one of the layers that are added on top
of OpenEmbedded-Core.

28

CHAPTER 3. THE YOCTO PROJECT

3.6 The Yocto Project metadata

The metadata is the core concept on which to the whole Yocto Project is built. The
metadata is represented by the set of the several configuration files on which all the
YP processes are based, and contains informations about all the software that it’s
used, the commands that need to be executed in order to build each component,
the patches that need to be performed on a specific software unit, etc.

In particular, to express all the features of an embedded Linux distributions, several
different kinds of metadata are employed in the Yocto Project [20]:

e Recipe: file containing several settings and tasks that need to be performed
by the build system in order to compile, install and package a required software
unit. Packagegroups and images are specific kind of recipes:

— Packagegroup: a particular kind of recipe that groups the output pack-
ages of several recipes into one package.

— Image: the set of packages that should be included in the output rootfs
to be deployed on the destination machine. An image could also be
considered like the entity that represents the desired output of the full
build process.

e Configuration file: a form of metadata that contains variable definitions
used by the build system, hardware configuration infos, etc. Configuration
files can be limited to a specific build instance, or could be included in an
established set of metadata like the distro and machine .conf files:

— Distro: a configuration file that contains the specific policies employed
in the custom embedded Linux distribution to build.

— Machine: settings and parameters that are tied to a specific embedded
system and architecture are put in a machine conf file.

e Layer: a way of organizing coherent sets of recipes and configuration files.

It can be noticed that some of the concepts explained above have slightly different
meaning within the Yocto Project with respect to the classical Linux terminology
that has been presented in the previous chapter.

3.6.1 Recipes

Recipes are the prevailing form of metadata employed through the Yocto Project.
A recipe is a .bb file that is parsed by the YP build system (BitBake) in order
to obtain an output package (or several ones); an example of that would be the
compilation of a source file (as specified by the example below) into a binary to be
included in the rootfs via a specific package. Recipes specify dependencies, patches

29

CHAPTER 3. THE YOCTO PROJECT

to be applied to the source code and detail each step that needs to be performed
in order to get the desired output. The tasks can be specified in Python or in sh
standard commands. The essential tasks that are, in order, executed by the build
system when parsing a recipe are the following [7]:

1

2.

3.

7.

8

. do_fetch: downloads the data from upstream.

do_unpack: unpacks the downloaded data.

do_patch: applies patches to the source code.

do_configure: configures the source tree.

do_compile: compiles the prepared source code.

do_stage: installs the compilation results into the staging area.
do_install: performs the installation into the packaging area.

. do_package: creates a package containing the desired output.

Generally, the only tasks that the user needs to specify in a recipe are the do_configure,
do_compile and do_install ones. The remaining tasks are automatically defined

by the YP build system. Following there is an example helloworld recipe (taken
from [17]):

SUMMARY = "Simple helloworld application"

SECTION = "examples"

LICENSE = "MIT"

LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;\
nd5=0835ade698e0bcf8506ecda2f 7h4f302"

SRC URI = "file://helloworld.c"
S = "${WORKDIR}"
do_compile() {

${CC} helloworld.c -o helloworld
}
do_install() {

install -d ${D}${bindir}

install -m 0755 helloworld ${D}${bindir}
}

30

CHAPTER 3. THE YOCTO PROJECT

The most relevant tasks that will be executed when calling bitbake helloworld
are the following:

1. do_fetch: in this case, since the specified SRC_URI variable points to a local
file, BitBake will simply copy the file in the recipe WORKDIR. This is why the
S environment variable (which represents the source code location) is set to
WORKDIR.

2. do_compile: when executing this task, BB will invoke the C cross-compiler
for compiling the helloworld.c source file. The results of the compilation
will be in the folder pointed by the B environment variable (that, in most of
the cases, is the same as the S folder).

3. do_install: this task specifies where the helloworld binary should be in-
stalled into the rootfs. It must be noticed that this installation will only
happen within a temporary rootfs folder within the recipe WORKDIR (pointed
by the variable D.

4. do_package: in this phase the file installed in the directory D will be packaged
in a package named helloworld. This package will be used later from BitBake
when eventually building a rootfs image containing the helloworld recipe
package.

Inheritance mechanisms with recipes in BitBake

BitBake provides different ways for sharing common functionalities between recipes.
With the mechanisms reported in figure 3.4 a recipe could import tasks and variables
defined elsewhere:

e Class (.bbclass files): these special recipes could be considered like ab-
stract classes in the object-oriented programming paradigm, in a sense that
they contain (task) definitions that can be inherited by other recipes, but can-
not be executed directly by BitBake. When a .bbclass is inherited, all the
functionalities specified in that file are available to the inheriting recipe. It is
also possible to inherit multiple classes. A great advantage of the inherit di-
rective used for classes is that the inheritance can be performed conditionally
by using BitBake overrides or Python scripts.

e Include (.inc files): these kind of files are much like an include directive in
the C programming language. BitBake parses the recipe and, when encoun-
ters the include or the require directive, inserts the content of that file in
that location. The main difference between the two directives is that, if the
included file is not found by BB, with include a warning is returned, while
with require a parsing error is thrown, thus blocking the build process.

31

CHAPTER 3. THE YOCTO PROJECT

foo.bbclass

include foo require foo

Figure 3.4: The different kinds of recipe inheritance.

Another sharing mechanism offered by BitBake is represented by the .bbappend
files. Append files extend or override metadata written in an already defined recipe.
When BB encounters a .bbappend file it expects to find a recipe with exactly the
same name of the append file, otherwise a fatal error is returned. This instrument is
particularly useful when you need to modify the behaviour of a recipe that is defined
in a layer that is out of your control (for example one of the Yocto Project core
layers). It is in fact extremely dangerous to directly modify already defined recipes,
because, in case of future updates of the Yocto Project, all the changes made would
be lost.

Common recipes for building software units

Some software units that have common building processes can be standardised by us-
ing BitBake .bbclass recipes. For example, the Yocto Project completely supports
several build paradigms like the Autotools (Autoconf, Automake and Libtool),
CMake, Make and direct calling of the compiler (cross-compiler). Each of those
systems is handled differently by BitBake:

e Autotools & CMake-based software: these programming tools, even if sub-
stantially different from each other, have in common the purpose of easing the
work of the programmer by automating several steps of the building process.
The workflows of these tools don’t change too heavily when working with an
application or another, for that reason in the oe-core layer have been defined
the recipe classes cmake.bbclass and autotools.bbclass that contain the
common tasks performed when using these build paradigms. These classes,
when inherited from a recipe, offload the recipe, almost completely automat-
ing the build process. The packaging process of the outputs is also handled
autonomously by predefined tasks.

32

CHAPTER 3. THE YOCTO PROJECT

e Make and GCC-based software: of course it is possible to compile using
classic compile methods like using a Makefile or directly invoking the cross-
compiler. It should be noticed that in the do_compile tasks of the recipes
make, gcc and g++ cannot be called directly, instead the wrappers oe_runmake,
${CC} and ${CXX} must be used. That is because BitBake automatically
generates and passes the right compilation flags to be passed to make and
GCC.

e The Linux Kernel: each different flavour of the Linux Kernel has its own
BitBake recipe. That is because the source code location is different, but also
because each version of the Linux Kernel could require different compilation
flags, patches to be applied to the source code, or a different defconfig file
for configuring the kernel compilation.

e Kernel modules: these compilation units require peculiar procedures be-
cause, at compilation time, they depend from the Linux source code and the
output .ko files must be packaged in a specific way. In fact, the kernel module
packages should be included automatically when building a base image for a
compatible machine, but shouldn’t be included for a minimal image that
only has the purpose of booting to a working shell. For that reason the recipe
class module.bbclass handles automatically all of these matters.

GCC has been cited above because it is the default compiler and cross-compiler
adopted by the Yocto Project, but support for the Clang LLVM front-end for C
based languages is provided by the layer meta-clang.

The relationship between recipes and packages

Most of the times, a recipe is written in order to perform the compilation, installation
on the rootfs and packaging of a software unit. Given that, it would be easy to
think that building a recipe means to build the package represented by that recipe,
but that is not true in the Yocto Project. By default, given the recipe foo.bb, the
YP build system automatically produces the following packages [9]:

e foo: this is the main package originated from the recipe build process. It
contains all the library and the binaries obtained through the compilation
tasks for the recipe, and any other file needed for running the artifact on the
target system. All the binaries in this package are stripped from the debug
symbols.

e foo-dbg: this package contains the debugging informations previously stripped
from libraries and executables. By default the dbg packages are not deployed
on a standard image, while are included when enabling debug features.

33

CHAPTER 3. THE YOCTO PROJECT

e foo-dev: all files required for development purposes are included in that pack-
age, such as shared library symlinks, headers, etc. These packages are very
unlikely to be deployed on the target rootfs, in fact the dev packages are
only used for handling dependencies when executing the compiling tasks of
depending recipes.

e foo-staticdev: same concepts of the dev packages, but these packages con-
tain only static libraries.

e foo-doc: this package contains documentation files, including man pages.
These documents are almost never useful on an embedded system, because
the end user wouldn’t be able to read it anyway.

e foo-locale: translation support files are stored in these packages. Generally,
only the translations of user applications are included in the rootfs.

Package group

Packages can be selectively added to an image rootfs by using several techniques
that will be explained in the following section, but it is cumbersome to keep track
of all the packages that are needed in an image. For that reason packages can be
grouped in so-called package groups. The class recipe packagegroup.bbclass
handles the package groups and performs the correct generation of all the dev, dbg,
etc. packages. An example of package group is the following:

DESCRIPTION = "My Custom Package Groups"
inherit packagegroup

PACKAGES = "\
packagegroup-custom-apps \

packagegroup-custom-tools \
"

RDEPENDS_packagegroup-custom-apps = "\
dropbear \

portmap \

psplash"

RDEPENDS_packagegroup-custom-tools = "\
oprofile \
oprofileui-server \
lttng-tools"

34

CHAPTER 3. THE YOCTO PROJECT

RRECOMMENDS _packagegroup-custom-tools = "\
kernel-module-oprofile"

This example packagegroup defines two packages called packagegroup-custom-apps
and packagegroup-custom-tools that contain the specified packages, but also the
packagegroup-custom-*-dev and packagegroup-custom-*-dbg, etc. are gener-
ated when applicable.

Image

The top-level recipes are the image recipes. An image is a BitBake recipe that
contains all the packages that should be included in the target rootfs. These are
some of the several images that are defined in the Yocto Project core metadata that
can be temporarily customised or inherited for defining new images:

e core-image-minimal: a very small image that contains only the required
components for booting the target system. It doesn’t contain kernel mod-
ules.

e core-image-base: a full console-only image that supports the target system
by also including the board kernel modules.

e core-image-sato: an image that supports the Sato graphical environment,
particularly suitable to mobile devices. It contains all the device support and
some multimedia and productivity tools.

Packages can be added to an already existing image via variable definitions in the
local.conf file. For example an example-pkg could be added to the core-image-base
image by adding IMAGE_INSTALL_append_core-image-base = " example-pkg" vari-
able to the configuration.

3.6.2 Conf files

Configuration files are files that store hardware configuration informations, global
declarations and definitions of variables and user-defined ones. In general they give
to BitBake clues on what to build and install into the rootfs in order to support
a particular platform. There are several .conf files distributed among the layers
of the Yocto Project. Configuration files are the first elements parsed by BitBake
during each build process.

bblayers.conf & local.conf conf files

These configuration files are built by the environment initialisation script that must
be executed before invoking BitBake. They are the core files needed by BB for
starting the build processes.

35

CHAPTER 3. THE YOCTO PROJECT

e bblayers.conf contains all the references to the layers that will be scanned
by BitBake during the recipes parsing process. A new layer can be added by
directly adding the path to its root folder in this file, otherwise it can be done
by using the bitbake-layers add-layer command.

e local.conf is a local configuration file that characterises the current build
environment. In this file two crucial variables are defined: MACHINE that spec-
ifies the target machine, and DISTRO that specifies which distro is being used
for the target image. Further global variables can be defined in this file, for
example IMAGE_INSTALL append for installing other packages into the output
image.

Distro

In the Yocto Project context a distro .conf file specifies the build configuration
policies, high level features of the output Linux embedded distribution, details about
the SDK, preferred versions of certain recipes and packages, etc. The most important
variables that are defined within the distribution configuration file are the following;:

e DISTRO_FEATURES: specifies the software support that is needed in the distri-
bution for various features. Usually, a value added to the DISTRO_FEATURES
variable means that, in the do_configure task of some recipes, support for
that specific feature will be enabled. An example is the x11 feature: if added
in the distro configuration, the software recipes that support X11 will compile
providing X11 support.

e PREFERRED PROVIDER_*: since a specific functionality could be provided by
several recipes, a recipe could add an alias to the PROVIDES variable. A typical
example of that mechanism is encountered in the Linux Kernel recipes that
must provide the virtual/kernel functionality. The distro configuration file
is the right place where the PREFERRED PROVIDER_foo for the example feature
foo should be specified.

e PREFERRED VERSION *: this statement must be used when multiple versions
of a certain recipe are available, and the build system must be forced to select
a specific version.

Machine

This configuration file contains statements and configuration variables that are spe-
cific for supporting a target board. These parameters can control each aspect of
the whole Linux distro generated for a specific machine such as device options, the
rootfs image format, etc. Following there are the most common directives specified
in a machine .conf file.

36

CHAPTER 3. THE YOCTO PROJECT

e TARGET_ARCH: specifies the target machine architecture. Some of the architec-
tures supported by the Yocto Project are ARM, x86, PowerPC and several
others.

e PREFERRED PROVIDER_virtual/kernel: defines the Linux Kernel that should
be built for that machine. As already said, there could be several Linux Kernel
versions defined in multiple recipes.

e MACHINE FEATURES: similarly to the variable DISTRO_FEATURES, this state-
ment specifies the hardware features that the machine is capable of supporting.
Some examples are the pci, bluetooth, wifi, etc. features that could have
a direct correspondence to a specific package, or they could simply configure
differently certain recipes.

e KERNEL DEVICETREE: specifies the DTS files that should be compiled into
DTB files and included in the Linux Kernel image.

e KERNEL IMAGETYPE: with this variable the Kernel image format is specified.
Some of the supported values are uImage, zImage and fitImage. The fitImage
will include the DTB files specified in the previous variable and the Kernel
zImage.

e IMAGE_FSTYPES: specifies the image format of the rootfs. Some of the sup-
ported values are ubi, ext3, tar.bz2, etc.

3.6.3 Layers

As already said, one of the great improvements of the Yocto Project over the classic
OpenEmbedded project is the classification of metadata into specific layers. This
paradigm is called the Layer Model and it guarantees eased collaboration and
customisation. Each layer is logically separated from each other, but the metadata
that have been previously defined in a layer can simply be reused and customized
in other layers. All the Yocto Project compatible layers are listed and documented
in the OpenEmbedded Layer Index that can be used as a reference catalogue
when looking for new packages (defined in recipes) to include in a project.

The naming convention for the Yocto Project layers is meta-name, where meta stands
for metadata. There are mainly three categories of layers that can be defined (figure
3.5), but, if it possible to logically isolate a set of metadata, it is encouraged to create
other ones.

The layer.conf layer configuration file

This particular configuration file is reported in this section because, even if it
is strictly needed by BitBake, doesn’t provide any customisation option to the

37

CHAPTER 3. THE YOCTO PROJECT

Layers

Distro conf Recipes
Recipes Packagegroups
Images

Figure 3.5: The three main types of layers, with all of the metadata that can contain.

user (like the MACHINE and DISTRO configuration metadata or the local.conf and
bblayers. conf files reported above).

Each Yocto Project layer has a directory called conf that contains a file named
layer.conf. This file incorporates the informations that are needed from BitBake
for recognising the layer and the whole set of metadata contained in it. In particular,
this file contains the variable BBPATH that specifies the root directory of the layer in
which BitBake should be able to find all the files inherited by recipes. Furthermore,
the BBFILES variable specifies the paths in which BitBake expects to find recipes.
Dependencies between layers must be expressed instead by the LAYERDEPENDS x*
variable.

BSP layer

This layer contains all the metadata that characterise machines. Each configuration
file and recipe included in this layer should never modify the behaviour of tasks
defined in other layers, unless you are building for the specified MACHINE. The Bit-
Bake mechanisms that are employed to automatically perform this distinction are
the following:

e Folder filtering: when a recipe example_1.0.0.bb includes a local file with
the variable SRC_URI = "file://foo.patch", BitBake searches this file in
some predefined paths (specified in the layer. conf file). If the file foo.patch
needed by the BB recipe has some machine-specific features when building for
machl or for mach2, the following solution can be adopted:

000

| recipes-example

example_1.0.0.bb
example
machl

38

CHAPTER 3. THE YOCTO PROJECT

Lfoo.patch
mach?2
Lfoo.patch

This technique guarantees that BitBake will include only the right foo.patch
file when compiling for a certain MACHINE.

e Variable and task overriding: by appending _machine to a task or a
variable, the definition (or override) is executed only for that specific ma-
chine. An example would be the definition VARIABLE machl = foo or the
task do_task_mach1().

The main elements that are found in a BSP layer are the following:
e MACHINE conf file
e Kernel modules recipes and kernel-related utilities recipes

e Packagegroups gathering core packages by topic

Distro layer

The distro layer mainly contains files that define the embedded Linux distribution:
e DISTRO conf file

e Image recipes that specify the different images of the distribution that can
be generated

e .bbappends that customise the behaviour of predefined recipes for the custom
distribution

Software layer

This layer represents the container of the developed application units and it should
contain:

e Library recipes for compiling, packaging and installing the libs that are re-
quired by the applications

e Application recipes for building the apps and specifying their build and
runtime dependencies

e Packagegroups for organising the application packages in coherent groups

39

CHAPTER 3. THE YOCTO PROJECT

3.7 The general Yocto Project workflow

At this point it is obvious that the Yocto Project is an extremely valuable tool for
creating custom embedded Linux distributions. The main issue with the YP is that
the learning curve for mastering its components is quite steep; but an organised
approach to the initial development phases could dramatically ease these phases.
This is not meant to be a guide, but just an overview of the typical workflow for
getting started with the Yocto Project.

3.7.1 Getting started

The first task to do is to prepare an host machine for running the Yocto Project.
That can be done on a native Linux operating system, on a virtual machine with
Linux installed in it, in a cloud-based virtual machine or by using CROPS. After do-

ing that, you should check that you are able to build a Poky-based core-image-minimal
for the gemux86 (an x86 machine to be emulated by QEMU). If everything works
fine, the development of the custom distribution can start.

3.7.2 Developing a BSP layer

Before creating a custom distro for a specific target, some hardware-specific meta-
data must be provided to the Yocto Project build system. Of course, if the target
board is a commercial one, it is extremely plausible that a complete BSP layer
already exists and could be found via the OpenEmbedded Layer Index. If a
maintained BSP layer is available, it is strongly recommended to use it; otherwise a
custom BSP layer must be developed.

A BSP layer can provide support to several different machines that have the same
architecture in common but differ by other details. Considering a newly create BSP
layer targeted to a single board, first of all a MACHINE configuration file should be
defined. As explained in the 3.6.2 in that file the basic details of the hardware should
be specified. After doing that, the tasks that follow should be performed.

Choosing the correct Linux Kernel

Of course, if the target hardware is completely supported by a maintained BSP layer,
the kernel choice is quite straightforward, and the vendor documentation should be
examined for eventually choosing a different kernel flavour.

If there is the need of creating a custom BSP layer, there are various approaches for
selecting the right Linux Kernel for an embedded distro. Several vendors (like Intel
and Freescale) provide BSP layers containing kernel recipes pointing to Linux ker-
nel sources heavily customised for their architectures that could be reused for the
custom embedded system. A first approach would be to define .bbappend files to
these Kernel recipes and apply patches to the kernel source via the BitBake do_patch

40

CHAPTER 3. THE YOCTO PROJECT

task, or simply overriding some of the BB predefined tasks. In that way it is possible
to pass the kernel configuration delta file (defconfig) to the build system, in a way
that the built kernel will be correctly configured for the target hardware. Another
common objective that can be achieved with the aforementioned method is adding
DTS files (cited in section 2.1.1) to the arch/*/boot/dts folder of the kernel source
code so that the Kernel can correctly detect the onboard devices while booting.

If the hardware has too much customisation with respect to the vendor reference de-
signs, a stock Linux Kernel probably wouldn’t work correctly on the board. Then,
the second approach is to create by scratch a kernel recipe that fetches the cus-
tomised Linux Kernel sources, likely hosted on a VCS (Version Control System).

Defining kernel module recipes

Kernel modules are required for providing full support to all the devices that are
available on the hardware. For each device that requires a kernel module a BitBake
recipe should be defined. These recipes, as explained in 3.6.1, will produce the .ko
files starting from the vendor device driver source code.

Creating board support recipes

All the other recipes that help to provide the appropriate hardware support to the
distro should be inserted into the BSP layer. A typical example is a recipe for
installing the Udev (one of the Linux device managers) rules to the rootfs, or a
recipe for adding SysVinit or systemd init scripts.

Testing the built BSP layer

After having performed all the previous steps, you should be able to build a minimal
working operating system (kernel image + rootfs) to test on the embedded system.
A straightforward way for testing that everything works correctly is by configuring
a build environment (and then editing the local.conf file) with MACHINE set to the
newly defined machine and DISTRO set to Poky. By building a core-image-minimal
with BitBake, you should obtain a working Poky distribution for your target board.

3.7.3 Developing an application layer

While the most part of the software layer will be developed after the distribution
of the SDK to application developers, it is crucial to create a layer that serves as a
skeleton on which building all the app recipes.

Including required library recipes

The OpenEmbedded Layer Index contains an huge number of recipes, and it

is very likely that any required library is already available. For that reason, sim-

41

CHAPTER 3. THE YOCTO PROJECT

ply putting DEPENDS += "library" (if it is a build dependency) or RDEPENDS +=
"library-pkg" (if it is a runtime dependency) inside an application unit recipe
should make it compile without any problem. Of course, if a recipe is provided by
a particular layer, this must be inserted in the bblayers.conf file. On the other
hand, if the library is custom-made, or it is an external library not provided by any
recipe, a new recipe should be created for building it.

Creating application recipes

As already said, the generation of application recipes should be strictly coupled to
the software development process. This means that every recipe of this kind will be
generated by using devtool when using the Yocto Project eSDK.

Generating packagegroups

In order to organise efficiently the inclusion of building artifacts into the rootfs,
packagegroups should be created by grouping the packages output by the application
recipes.

Setting application-specific policies and testing

Some configuration policies could be required for proficiently compiling all the soft-
ware units. These policies should be included in the DISTRO conf file, but, since
a custom distribution is yet to be created at this point, all of these options can
be reported in the build configuration file local.conf. In that way, by using the
IMAGE_INSTALL_append variable, it is possible to build an image based on Poky
that contains the developed software in order to test that everything works correctly.

3.7.4 Developing a distro layer

As already said, the distro layer is the place where the shape of your embedded
Linux distribution is descripted. It contains informations about package alternative
selections, compile-time options, other low-level configurations and describes the
different rootfs images that can be built.

Setting the configuration policies

All the configuration settings that are required for the application layer to work
correctly should be reported here. In general, all the variables that were previously
defined in the local.conf file should be moved into the DISTRO configuration file.
A typical example is specifying the wanted implementation of the C and C++
standard libraries.

42

CHAPTER 3. THE YOCTO PROJECT

Choosing different system managers

In the distribution .conf file the default device manager and startup daemon can be
specified. In particular, with the VIRTUAL-RUNTIME_dev_manager variable udev or
mdev can be selected as device managers, while with the VIRTUAL-RUNTIME _init manager
definition sysvinit or systemd can be selected. These two variables use a corre-
sponding mechanism as the PROVIDES method explained in 3.6.2.

Creating images

Creating an image substantially means to list every thing that you would like to
include on the rootfs to deploy on the target development machine. An image
recipe could inherit the core-image-* images predefined in the OpenEmbedded-
Core layer (reported in 3.6.1), or could be created by scratch. On both cases, by
adding values to the variable IMAGE_INSTALL, packages are included into the output
image.

3.7.5 Using the Yocto Project as a daily basis

After having successfully designed and tested the several layers that make up an
embedded Linux distribution, the whole set of tools included in the Yocto Project
can be used for daily development, testing and deploying tasks. In particular, after
having built and distributed the eSDK based on the defined distribution, all the
development work can be performed with the aid of the Yocto Project tools, as
reported in the following section.

Open Embedded Architecture Workflow

G Local SCMs
Project P tonal
Releases jects (optional) Upstreamn Sorce Output Packages
Metadata/Inputs Pracess Steps (tasks)
G s Build System . Output Image Data
User Package Feeds
Configuration Source .deb

Fetching generation

Meta
Qutput Image SDK

.bb tch 3 2 n
(bb + patches) Analysis for Generation Generation

Patch package Jpm QA
Application splitting plus generation Tests

Machine BSP e
Configuration ol nis o
Config/ Applicati
Compile/ -ipk Development
" Autoconf generation SDK
Bk as needed
Configuration

Figure 3.6: The Yocto Project general workflow.

43

CHAPTER 3. THE YOCTO PROJECT

3.8 Developer workflow with the eSDK

After the complete deployment of the YP-based system, with a full conversion of
the (eventually) existing building workflow into corresponding BitBake recipes and
Yocto Project layers, the development of new software functions (and the mainte-
nance of the already existing ones) can be made by using the Yocto Extensible
Software Development Kit (eSDK). The general workflow for developing new
libraries, applications, etc. ([16] and [15]) can be described as follows:

0. Install the Yocto eSDK on the development machine.

1. Create with devtool add a new recipe pointing to the new software source
code. That could be a local folder on the development machine or a remote
repository of one of the several SCM tools supported by BitBake like Apache
Subversion, Git, etc.

2. Check that the recipe automatically created by devtool has the desired vari-
ables and tasks defined in it, otherwise fix them by using devtool edit-recipe.

3. Build the newly created recipe with devtool build.

4. Test the recipe by deploying the generated package on the target with devtool
deploy-target, that exploits an SSH server running on the destination ma-
chine.

5. If the results are satisfactory, commit the newly created recipe to a permanent
layer with devtool finish.

After having built (and tested) the new recipe, any modification to it can be con-
veniently made via the devtool modify command. Two comprehensive diagrams
depicting the various development workflows supported by the eSDK (taken from
[16]) are the 3.7 and the 3.8.

44

CHAPTER 3. THE YOCTO PROJECT

Upstream Source

Upstream Source
srctree
SRC_URI SRC_URI srotres —m
i T T

devtool add recipe fetchuri

@

devtool add recipe srctree fetchun devtool add recipe srctree

workspace * workspace * *srctree workspace *

wdl appends wdl appends wd appends
wd recipes wdl recipes il recipes
il sources

Editor

@

% devtool edit-recipe recipe

@
workspace ¢ ioq build recipe €)]
i recipes ar
% bitbake recipe

% devtool build-image image

Build Cutput Build Output

®

% devtool deploy-target recipe target

o
&

srctree @

‘+ % devtool finish recipe layer

Commits .
Patch Files
workspace layer

w conf

Figure 3.7: Development workflows supported by the Yocto Project eSDK for
adding a new recipe.

45

CHAPTER 3. THE YOCTO PROJECT

Local Layer Upstream Source | Layer Upstream Source

Local Layer
(recipe) (recipe) (recipe) srctree
1—» SRC_URI —- ?—-— SRC_URI i srctree — -l
@ @ ; + @

devtool modify recipe devtool modify recipe srctree devtool modify -n recipe srctree

workspace * workspace * *5”5"99 workspace *

wid appends i appends 2 ul appends

. sources

Editor

Edit Source Files Using Your
Favorite Editor

Build Output

@

% devtool deploy-target recipe target

ol

srctree @

H % devtool finish recipe layer
Commits
Patch Files
workspace + +Iayer

il conf

Figure 3.8: Development workflows supported by the Yocto Project eSDK for mod-
ifying an existing recipe.

46

Chapter 4

The Magneti Marelli Connectivity
Framework

4.1 Introduction

This chapter reports some concepts about the Vehicle-to-Everything communica-
tion and the Magneti Marelli Technology Innovation - Innovation & Connectiv-
ity Framework developed in order to support it. Furthermore, details about the
hardware and software facilities employed in the Connectivity Framework project
are reported.

4.2 Vehicle-to-Everything

The Vehicle-to-Everything (often referred as V2X) communication consists in the
transmission of different kinds of messages between vehicles, infrastructures,
pedestrians, etc. Different standards are in development for the implementation
of this technology, but in this work only the European and North American ones
are considered. There are several uses cases that can be made possible thanks to
these technologies, and most of them could greatly improve the safety of modern
vehicles and pedestrians. In particular, the most common use cases that can be
implemented by using the V2X standards are the following:

e Vehicle-to-Vehicle (V2V): is the technology that enables automobiles to
"'speak" to each other. In this context the vehicle is often referred as ITS
(Intelligent Transportation System). Some of the use cases that are possible
thanks to that type of communication are:

— Blind Spot Warning (BSW): can inform the driver that another ve-
hicle is located in the blind spot area.

47

CHAPTER 4. THE MAGNETI MARELLI CONNECTIVITY FRAMEWORK

— Control Loss Warning (CLW): warns other drivers that the vehicle
is out of the control of the driver.

— Electronic Emergency Brake Light (EEBL): a vehicle broadcasts
a message saying that it is braking, so that other vehicles receiving the
message could avoid a collision.

— Forward Collision Warning (FCW): warns drivers of a possible up-
coming collision with another vehicle ahead in traffic.

— Intersection Movement Assist (IMA): advises drivers when its haz-
ardous to enter an intersection due to an high collision probability with
other vehicles.

— Left Turn Assist (LTA): warns drivers during an unsafe left turn at-
tempt. That would happen when there is a car approaching on the same
path with no intent of stopping.

— Stationary Vehicle (SV): informs the driver of a stationary vehicle on
the same road (a still vehicle with the hazard lights on).

e Vehicle-to-Infrastructure (V2I): is the wireless exchange of messages be-
tween vehicles and road infrastructures like traffic lights, etc. The most
common V2I use cases are the following:

— Green Light Optimised Speed Advise (GLOSA): the vehicle can
provide a suggested speed according to the time it takes to the traffic
light to give a green light.

— In-Vehicle Road Sign (IVRS): the car cockpit can display informa-
tions about road signs such as speed limits, warnings, etc.

e Vehicle-to-Pedestrian (V2P): the technology that provides messages ex-
changing between pedestrians and vehicles, mostly for pedestrian safety pur-
poses (for avoiding the pedestrian to be hit).

e Vehicle-to-Network (V2N): the technology that provides network services
and cloud services to the vehicles.

e Vehicle-to-Device (V2D): the connection of smart devices like smartphones,
tablets, etc. to the car.

4.3 Technology details

Several wireless technologies are employed in the V2X in order to provide vehicular
communication. In particular the following different technologies can be listed:

48

CHAPTER 4. THE MAGNETI MARELLI CONNECTIVITY FRAMEWORK

e IEEE 802.11p: this IEEE (Institute of Electrical and Electronics Engineers)
standard specifies the wireless frequencies, timings, etc. for enabling Dedicated
Short-Range Communications (DSRC). 802.11p is based on 802.11 (known
as Wi-F1i), so it is suitable only for relatively short range applications.

e C-V2X: this standard is based on 4G and 5G cellular communication tech-
nologies in order to provide wider ranges applications.

V2X messages have different specifications and protocols, according to the country
in which the technology is deployed. In particular, for the United States and Europe,
the defined standards are the following (compared in table 4.1):

e Wireless Access in Vehicular Environments (WAVE): is a standard devel-
oped by the IEEE (Institute of Electrical and Electronics Engineers), based
on the IEEE 802.11p communication standard.

e European Telecommunications Standards Institute Intelligent Transport Systems
(ETSI ITS-G5):

u Control channel D Service channels l Reserved |:| Future use

United States
CH 172 CH 174 CH 176 CH 178 CH 180 CH 182 CH 184

Y Y o A W | |
5.860 5.870 5.880 5.890 5.900 5910 | 5.920 (Féeﬁ;ency
LmMHz'
' 20 MHz

Europe

SCH4 SCH3 SCH1 SCH2 CCH
IEEE 172 IEEE174 IEEE 176 IEEE 178 IEEE 180

I Y O l

5.860 5.870 | 5.880 5.890 5.900 | 5910 5.920 (Féeﬁzl;ency

ITS-G5B ' ITS-G5A

Figure 4.1: The ETSI ITS-G5 and WAVE frequency allocation [5].

4.4 The Magneti Marelli Connectivity Framework

The Technology Innovation - Innovation and Connectivity division of Magneti Marelli
is developing a software Framework for handling V2X communications via DSRC,

49

CHAPTER 4. THE MAGNETI MARELLI CONNECTIVITY FRAMEWORK

Specification WAVE ETSI ITS-G5
Bandwidth 75 MHz 50 MHz

Frequency range 5.855 - 5.925 GHz | 5.855 - 5.905 GHz
Service channels 6 4

Default MAC support | 802.11p 802.11p, Wi-Fi, 4G/5G

Table 4.1: Medium differences between WAVE and ETSI ITS-G5.

C-V2X and compliant with the WAVE and ETSI standards. The MM Connec-
tivity Framework has a layered structure, characterised by three mian layers: the
middleware, the facilities and the use cases. The Framework architecture is
reported in figure 4.2.

4.4.1 Connectivity protocol stacks

This layer provides support to the different connectivity technologies used by V2X
applications, such as 802.11p or the various C-V2X flavours. Drivers and libraries
for transferring informations to/from the devices used by the Framework are placed
in this layer.

4.4.2 Facilities

This layer contains a set of software modules and data definitions (such as messages)
that provide the required support to the use cases. Each entity can be common to
the communication standards ETSI and WAVE, or specific to one of those. In the
following subsections some of those architectural elements are descripted.

Common facilities

The following facilities are common between the ETSI and WAVE standards:

e Local Dynamic Map (LDM): this entity works as a database that stores
relevant data received from vehicles, infrastructures, etc.

e Topology Message (MAP): a component that manages a specific kind of mes-
sage with the same name. This message contains detailed infos about the
current road.

e Human Machine Interface (HMI): it has the responsibility of communicating
the informations such as warnings, hazards, etc. to the user (for example by
showing them on the vehicle instrument panel display).

e POsitioning TIming (POTI): this component provides vehicle location infor-
mations such as latitude, longitude and altitude.

20

CHAPTER 4. THE MAGNETI MARELLI CONNECTIVITY FRAMEWORK

e Vehicle Data Provider (VDP): coupled with the POTI, supplies to the upper
layer components other vehicle informations such as its dynamic (coming from

the CAN network).

WAVE-specific elements
The following entities are specific to the WAVE part of the Framework:

e Basic Safety Message (BSM): a component that handles a kind of message
that is periodically sent by the vehicles. The BSM message contains informa-
tions about the position, the speed, the dynamics, etc. of the vehicle.

e Traveler Information Message (TIM): this component manages messages
about traffic, street signs, speed limits, etc.

e WAVE Service Advertisement (WSA): this message type represents the an-
nouncement of an I'TS.
ETSI-specific elements

The following entities are only present in the ETSI part of the Framework:

e Decentralized Enviromental Notification Message (DENM): it is a message
that is used for warning users of a street hazardous situation.

e Cooperative Aware Message (CAM): this message is similar to the BSM
(WAVE). It is sent periodically by the ITS.

4.4.3 The use cases

The MM Connectivity Framework aims to implement all the V2X use cases cited in
4.2 via separate software modules that lie on top of the common facilities. This
layered architecture (figure 4.2) guarantees that the use case components are not
dependent on the underlying technology details (such as DSRC or C-V2X).

4.5 The MM Connectivity hardware

The MM Connectivity Framework has been deployed on several platforms and ar-
chitectures, but it is mainly targeted to Arm-based embedded hardware. The main
hardware components that must be available on board to enable the correct func-
tioning of the framework software units are the following:

e CAN network for processing vehicle data and for sending it to the car displays.

o1

CHAPTER 4. THE MAGNETI MARELLI CONNECTIVITY FRAMEWORK

Magneti Marelli Connectivity Framework

Applications / Use Cases

[Safety] [Traffic Efficency] [Infotainment & Business]
Facilities
[LDM ’ ‘ MAP] [HMI ’ ‘ POTI J [VDP SPAT } FOt.h.e.r
acilities
) " Other Other
‘1 DENM ‘ ‘ CAM ‘ [BSM 1 { LY J [WSA 1 FaCIlItIeS‘ [Facilities}
Middleware

V2X/C-V2X Protocol stack

Figure 4.2: The MM V2X Framework architecture. In the facilities common
to ETSI and WAVE standards, in the ETSI-specific components, while in
blue the WAV E-specific components.

e GPS/GLONASS device for obtaining location informations.

e 802.11p transceiver for enabling the standard V2X communications using the

WAVE and ETSI-G5 protocols.
e 4G /5G modem for working with the C-V2X applications.

Different boards have been used through the development phases of the Framework,
but in this work only the Step 03 proprietary board and an industrial Car PC are
considered.

4.5.1 The Magneti Marelli Step 03 board

The Step 03 board (figure 4.3) is a Magneti Marelli custom board, developed in the
Electronic Systems division. It is based on the NXP-Freescale Smart Application
Blueprint for Rapid Engineering (SABRE) i.MX 6QuadPlus reference design,
and it was originally developed for vehicle infotainment purposes. The board has
been modified for V2X functions and has the following specifications:

e Arm Cortex-A9-based i.MX 6QuadPlus processor

e 1 GB DDR3L RAM

92

CHAPTER 4. THE MAGNETI MARELLI CONNECTIVITY FRAMEWORK

512 MB NAND

e 32 GB eMMC

CAN High Speed & Low Speed

GPS, Wi-Fi, Bluetooth, 4G modem
e 302.11p transceiver

For a limitation of the i.MX6 6QuadPlus System-on-Chip, the Step 03 supports
only two Flexible Controller Area Network (FlexCAN) buses. FlexCAN modules
provide a full implementation of the CAN protocol specification. In order to commu-
nicate with other on-vehicle CAN buses, the PEAK-System PCAN-USB interface is
used.

4.5.2 The Car PC

Another device on which the Connectivity Framework is

deployed is a Car PC. Car PCs are industrial fanless PCs = e o
suitable for in-vehicle usage. The Car PC in question is £ /////’ /fm m ‘
f

an x86 machine with the following specifications: _:E _ "7 1\l =__:
q |||\ P
e Intel Core i7-6820EQ processor a Js
e 32 GB DDR3 RAM Figure 4.3: The Step 03
board.

e 512 GB SSD (with several expansion slots)

e Wi-Fi, 4G modem

4.6 The MM Connectivity soft-
ware

The Magneti Marelli Connectivity Framework is com-

pletely written in the C4++ programming language. It requires some libraries (and
drivers) for interfacing with the onboard peripherals such as the CAN, the GPS,
the V2X connectivity devices and the modem. The build process is managed with
CMake, and all the software source code is uploaded on a Subversion repository.

23

CHAPTER 4. THE MAGNETI MARELLI CONNECTIVITY FRAMEWORK

4.6.1 The version control system: Subversion

The version control system used by the MM Connectivity Framework development
team is Apache Subversion. Each component of the Framework is contained in
a module on the Svn repository that is organised in the conventional Svn directory
structure:

e trunk: this is the main development area. The next release version of the
software module should be contained here.

e branch: every time the code contained in the trunk needs a bug fix or a
major change, a new branch should be created. In that way the integrity of
the trunk can be preserved.

e tag: represents a milestone of the software. Most of the times the tags contain
stable versions of the software module that must be preserved.

4.6.2 The cross-toolchain

The toolchain provided to the Framework developers consists in a VirtualBox vir-
tual machine containing the GCC cross-compiler, the debugging tools, the re-
quired libraries, etc.

4.6.3 The application unit building

Every software unit is built by using CMake (and Make). Every application defines
a CMakeLists. txt file that contains the CMake directives for generating a Makefile
and correctly compiling the application component. Via the CMAKE_TOOLCHAIN FILE
variable, the developer can specify a particular CMake toolchain file. Fach of
those files contains informations on the location of the cross-compiler, the target
architecture, the build flags and the directory in which the binaries should be put.
The following toolchain files are defined in the context of the MM Connectivity
development environment:

e toolchainArm.x*.Debug: this file specifies the cross-compiler location for the
Arm architecture and enables the GCC debug flags.

e toolchainArm.*.Release: this file specifies the cross-compiler location for
the Arm architecture without enabling the GCC debug flags.

e toolchainX86.*.Debug: this file specifies the native compiler location for
the x86 architecture and enables the GCC debug flags.

e toolchainArm.*.Release: this file specifies the native compiler location for
the Arm architecture without enabling the GCC debug flags.

o4

CHAPTER 4. THE MAGNETI MARELLI CONNECTIVITY FRAMEWORK

The * in the toolchain file names means that there is a WAVE and an ETSI version
for each of the files listed above. That detail simply means that the output binaries
directory is different when compiling for a standard or for another.

Of course, if an application unit requires specific libraries for compiling (or for
running), the needed library should be manually compiled (by using CMake or in
other ways) and its location should be specified in the CMakeLists.txt file. Once
the software binaries are obtained, the developers can test their unit by deploying
them via scp! on the target hardware. At this point, if they selected one of the Debug
toolchain files, debugging can be performed by using gdb? via an SSH connection
to the target board.

4.6.4 The building and deploying automation

Since it would be cumbersome to build and deploy the whole Framework component
by component with the method described above, a set of sh scripts is defined in order
to automate the building process of all the Framework components. All the required
source code is fetched from the Subversion repository of the Framework, from the
tag directory of each module. There are two different types of scripts based on the
technology for which the Framework must be compiled (ETSI or WAVE). These
scripts perform the following steps:

1. All the needed libraries and Framework dependencies are compiled by invoking
cmake and make or by using their specific build method.

2. The Framework common facilities are compiled with cmake.

3. The Framework ETSI-specific or WAV E-specific components are compiled,
based on the script that was started.

4. The Use Cases units are compiled.
5. All the previous results are packaged in a .tar.gz archive.

6. The created archive is deployed via scp on the target board.

4.6.5 The current development workflow

The development workflow currently employed by Framework developers can be
described by the following phases:

e Creation of a new module for containing the software component on the Frame-
work Subversion repository.

!scp: a UNIX tool based on SSH that securely transfers files from a computer to another.
2gdb: the GNU Debugger.

95

CHAPTER 4. THE MAGNETI MARELLI CONNECTIVITY FRAMEWORK

e Compilation of the libraries needed by the application unit.
e [teration of the following phases until the development is complete:

— Coding phase with an IDE chosen by the developer.
— Compilation of the software unit via cmake with debug options enabled.

— Deploying of the software unit and of the required libraries on the target
via scp.

— Debugging via gdb.
— Manual deletion of the test binaries from the target.
— Commit of the generated code on the trunk area of the Subversion mod-

ule.

e Creation of a tag in the Subversion module containing the finished software
unit.

e Adding references to the newly created component in the sh scripts that com-
pile the whole Framework.

4.6.6 Considerations

The methods described above are extremely easy and fast to use, but, with the
constantly increasing complexity of the Framework, several issues could arise:

e It could be difficult to align the version of a specific library between all the
developers that use it.

e The sh scripts that generate the Framework package must be updated man-
ually with all the right components. That operation is extremely prone to
erTors.

In the following chapter all the improvements that the Yocto Project could provide
to the Framework development team are analysed.

26

Chapter 5

Development of the meta-mm layers

5.1 Introduction

As described in the previous chapter, The Magneti Marelli Connectivity projects
are characterised by an increasing complexity and constantly evolving specifications.
For that reason, the Yocto Project is the perfect match for handling seamlessly and,
most of all, automatically the build and integration processes. The following chap-
ter explains in detail all the choices that have been taken in order to integrate the
Yocto Project into the existing MM Connectivity working environment, including
the required changes to the current workflow that need to be employed.

5.2 Advantages of the YP within the MM Con-
nectivity environment

As already mentioned, the Yocto Project could greatly improve the workflow and
the development environment of the projects of the Magneti Marelli TIIC division.
These are the main improvements (summarised in the table 5.1):

e Learning curve: the Yocto Project offers a complete set of tools that are
based on a paradigm that is quite different from the one used from the devel-
opment team. This means that adapting to the YP eSDK workflow requires a
self-education effort. An typical example of that is the cross-compiler: while it
is still possible to invoke the cross-compiler within the eSDK generated rootfs,
using devtool for compiling software units is the recommended method.

e Focus on business logic: after mastering the Yocto Project and completely
arranging the development environment, the focus of the developers can be
completely oriented towards the business logic of the software, and not to the
build process details.

57

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

e Unified cross-compiler: as already stated before, using non-aligned cross-
compiler versions could lead to severe integration problems. During the de-
velopment of the Magneti Marelli application layer, that exact issue was
encountered with one of the core software units of the Framework. Of course,
if the aforementioned software unit was developed using the eSDK from the
start, that issue wouldn’t have occurred.

e Standardised libraries: when a new library is needed from a developer,
it must be integrated into his SDK so that he can work on his application.
There is no guarantee that other developers, if needing the same library, will
download the same library version. Of course that issue could be solved with
proper communication and documentation between the developers, but the
Yocto Project eSDK completely eradicates the issue. In fact, the most com-
monly used libraries are all available through the OpenEmbedded Layer
Index, and, for a specific Yocto Project version, will always have the same
version.

e Easy updatability: updating compilers, libraries, utilities, etc. would be
extremely difficult in the TIIC development environment because that would
require to update each component separately and then redistribute a new SDK
among the developers. The YP, instead, updates all of the maintained recipes
for each release, so updating the Yocto Project and redistributing the eSDK
would automatically update all the included software.

e Platform agnostic: the TIIC SDK is distributed in the form of a VirtualBox
Ubuntu virtual machine containing the operating system and the whole SDK.
With the Yocto Project the eSDK is self-contained and can be installed easily
on several Linux distributions and, by using CROPS, could be even deployed
on a Docker container running on Windows or macOS.

e IDE integration: by using the Eclipse IDE with the Yocto Project plug-in
installed, all the development phases (coding, building, debugging, deploying)
can be performed via the Eclipse GUI. Of course, if another IDE is chosen, all
the development tools are always accessible by the devtool CLI. The TIIC
SDK, instead, gives you complete freedom on the IDE choice, but it forces you
to use the CLI toolchain components.

e Web interface: the YP contains Toaster, that can be used for managing
remote builds with an easy user interface, even without a deep knowledge of
how the Yocto Project build system works.

e Deterministic image generation: being BitBake completely based on the
concept of rules (recipes) to follow, the output rootfs images produced with it
contain only and exactly the packages that have been specified in the dedicated

o8

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

recipe. The TIIC SDK doesn’t have a standardised way of producing images
to deploy on the target hardware, because the packages are inserted into a
pre-built core image by using a set of sh scripts.

Feature Yocto Project Standard MM TIIC
workflow

Learning curve Steep Gentle

Focus on business logic Complete Partial

Unified cross-compiler Yes No

Standardised libraries Yes No

Easy updatability Yes No

Platform agnostic Yes No

IDE integration Eclipse No

Web interface Yes No

Deterministic image gen- | Yes No

eration

Table 5.1: Differences between the Yocto Project workflow and the existing Magneti
Marelli Connectivity projects workflow.

5.3 Development process

In the following section the development process of the Yocto Project support to the
Magneti Marelli Connectivity Framework is reported. This work is mainly focused
on the 802.11p WAVE flavour of the Framework, but can be easily extended to
other versions of the Framework.

5.3.1 First phase: the BSP

The first goal of this work was to create a Yocto Project-compatible Board Support
Package (BSP) for the Magneti Marelli Step 03 board. Since the Step 03 is based on
the NXP-Freescale i.MX 6QuadPlus SABRE-AI reference design, the starting point
for the Step 03 BSP was the MACHINE imx6qdlsabreauto, contained in the layer
meta-freescale.

The Linux kernel for the Step 03

The phases for selecting a proper Linux kernel for the Step 03 TIIC distribution
support were executed in a bottom-up fashion, starting from an almost vanilla
Freescale Linux kernel up to an highly customised kernel. The motivations of this

29

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

choice are further explained in the subsection 5.6.1. These are the main steps that
were taken:

1. The first step was to try to build a Poky-based core-image-minimal with the
default Linux kernel for the imx6qgdlsabreauto to see if the operating system
was booted correctly. The default Kernel (dubbed linux-fslc) is a fork of
the original Linux Kernel, and its default version on the Rocko!-compatible
meta-freescale is the 4.1. Unfortunately the Step 03 was not booting with
that configuration because the kernel was not able to recognise all the onboard
devices.

2. The second step was then to include the correct Device Tree Source (DTS)
files in the linux-fslc kernel. As explained in 3.6.2 and 3.7.2, DTS files
can be included in the kernel sources via patches or by specifying BitBake
task appends. FEven if the kernel was now recognising some of the needed
devices, the boot process was stuck at a certain point. It became clear that
the 1inux-fslc kernel was too generic for the highly customised Step 03
board.

3. The third step was then to obtain from the git repository of the original Step
03 hardware/software designers team the Linux Kernel 4.1.15 source code
customised for the Step 03. This kernel was developed for the board (targeted
to infotainment purposes) from which the Step 03 derives. This source code
was integrated into the TIIC Subversion repository, and then a new recipe for
building this kernel was created in a new BSP layer. This recipe was written
for automatically fetching the kernel source code from the repository and for
correctly compiling the kernel. By using also a Step 03-specific defconfig
file, the board successfully completed the boot process.

The table 5.2 summarises the three steps performed before obtaining a working
Linux Kernel.

The imx6gpstep3 machine

After having successfully tested a minimal core-image-minimal rootfs based on
the imx6gpsabreauto machine, some tweaks related to the Step 03 were consolidated
in the imx6qpstep3.conf machine configuration file:

#

Machine configuration for the Magneti Marelli i.MX6QP Step 03
Type: MACHINE

S0C: 1i.MX6QP

'Rocko: codename of the Yocto Project 2.4 release. The meta-freescale layer releases, like
every other maintained layer, follow the Yocto Project release cadence.

60

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

Linux Kernel Kernel configu- | DTS files Booting process
ration
linux-fslc 4.1 Default configura- | Default Not booting
tion imx6gdlsabreauto
DTS files
linux-fslc 4.1 Default configura- | Custom Step 03 | Hung
tion DTS files
Custom Linux | Custom Step 03 | Custom Step 03 | Booting
Kernel 4.1.15 defconfig file DTS files

Table 5.2: The different Linux Kernel flavours tested on the Step 03 board.

Maintainer: Alessandro Flaminio

<alessandro.flaminio@external .magnetimarelli.com>
Copyright (C) 2018 Magneti Marelli S.p.A.

#

MACHINEOVERRIDES =. "mx6:mx6q:mx6dl:"

require conf/machine/include/imx-base.inc
require conf/machine/include/tune-cortexa9.inc

PREFERRED PROVIDER_virtual/kernel = "linux-mm"

An UBI volume is generated (to be flashed by using ubiformat)
IMAGE_FSTYPES = "ubi"

The following parameters are specific to the Step 03 MID partitions
MKUBIFS_ARGS = " -m 2048 -e 126976 -c 3920 "

UBINIZE_ARGS = " -m 2048 -p 128KiB -s 2048 "

Changes the volume name of the rootfs
UBI_VOLNAME = "ev_fs"

KERNEL DEVICETREE = " \
imx6qp-g25-prs1-1280x480.dtb \

A kernel fitImage is generated
KERNEL_CLASSES += "kernel-fitimage"
KERNEL_IMAGETYPE = "fitImage"

In case a not minimal image is built, the packages containing

61

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

kernel modules, Udev rules, etc. are included
MACHINE_EXTRA_RRECOMMENDS += "packagegroup-mm-step3"

These are the most important details included in the imx6qpstep3.conf configura-
tion file:

The variable PREFERRED PROVIDER_virtual/kernel specifies that the Linux
kernel to be used with the Step 03 is the customised Magneti Marelli kernel
cited previously.

The variables IMAGE_FSTYPES, MKUBIFS_ARGS and UBINIZE ARGS are used for
correctly generating the UBI volume image of the rootfs that must be flashed
on the NAND.

KERNEL_DEVICETREE specifies which DTS should be compiled in DTB by the
dtc compiler.

The variable KERNEL IMAGETYPE defines the kernel image to be generated.

MACHINE_EXTRA_RRECOMMENDS is used in order to automatically include certain
packages when building a non-minimal image. In this case, the packagegroup
packagegroup-mm-step3, as explained later, contains some Step 03 BSP com-
ponents.

Kernel modules for the Step 03

Since, as explained in 4.5.1, the Step 03 board is equipped with an 802.11p transceiver
and should support external PCAN-USB adapters, some kernel modules are re-
quired for correctly interfacing the Linux kernel and applications with these devices.
Principally there are two drivers for which have been defined two different recipes:

PEAK-System PCAN-USB driver: the recipe for building this kernel
module instructs BitBake to fetch the driver from the PEAK-System website,
apply a patch to the module Makefile, and package the outputs of the building
process. The Makefile patch is needed because the building process requires
both the Linux Kernel source code and the output artefacts of the Kernel
compilation. Since the YP build system stores these files in different locations,
some of the environment variables contained in the Makefile needed to be
changed.

Cohda Wireless V2X driver: since this driver cannot be directly obtained
from the web, the defined recipe is coupled with a tar.gz archive contain-
ing the source code. In this recipe the binary stripping process (reported in

62

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

2.4.1) performed by the Yocto Project build system was disabled because the
kernel object, once stripped from its debug symbols, somehow was not loaded
correctly by the operating system.

Udev rules for the Step 03

In order to make the gpsd GPS daemon recognise the GPS serial interface, a Udev
rule needs to be defined. This rule specifies the Step 03 serial interface to bind to
the GSP daemon. The recipe developed for this purpose packages the .rule file in
order to be installed on the rootfs in the right location (/etc/udev/rules.d).

5.3.2 Second phase: the Magneti Marelli Connectivity Frame-
work and applications

After correctly deploying a minimal rootfs on the Step 03 and having tested all
the needed peripherals, the focus of this work shifted towards the creation of a set
of metadata for building and packaging the MM Connectivity Framework.

Miscellaneous tools

First of all, some basic application tools such as an SSH server, network tools, GPS
tools, etc. needed to be included into the rootfs. For adding those tools into the
filesystem these are the general steps that were followed:

1. Finding on the OpenEmbedded Layer Index which layer was providing a
recipe containing the required package.

2. Eventually adding the needed layer in the bblayers.conf file.

3. Building and including the required binaries into the output image via the
IMAGE_INSTALL_append variable.

In the following section is explained how those tools were packaged in specific pack-
agegroups to be included in newly defined images.

The libraries and applications

New BitBake recipes were defined for each proprietary library and application com-
ponent of the Framework. Since every software unit of the Framework is built by
using cmake, the cmake.bbclass class recipe was used extensively. Considering
that the Yocto Project automatically manages the toolchain, there is no need to
pass extra variables to cmake in order to correctly locate and configure the cross-
compiler, etc. That is a big difference with the toolchain configuration explained in
4.6.3, and for that reason some adaptations needed to be made. In particular, all

63

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

the CMakeLists.txt of the Framework components contain some variables (such as
specifications about the C+-+11-compliant compiler, etc.) that conflicted with the
configurations automatically performed by the Yocto Project build system. There
were two options: modifying all the CMakeLists.txt directly on the Svn repository
or patching all the CMakeLists.txt in each software unit recipe. The second choice
was made, because, in that way, the compatibility with the older build system was
not broken.

Furthermore, all the dependencies from open source libraries were handled by adding
the appropriate values to the DEPENDS variable, thus taking advantage of all the
recipes contained in the OpenEmbedded Layer Index.

Below there is the recipe (called 1ibutility_3.0.6.bb) for building the 1ibUtility
library of the Connectivity Framework:

Recipe for building the 1libUtility

Maintainer: Alessandro Flaminio
<alessandro.flaminio@external .magnetimarelli.com>
Copyright (C) 2018 Magneti Marelli S.p.A.

H OH OH OH O H R

LICENSE = "CLOSED"
LIC_FILES_CHKSUM = ""

NOTE: the fetcher will work only if you have saved your Subversion
username and password in the variables SVN_USER and SVN_PSWD.
You can define these variables in local.conf.

#

#

#

#

SRCREV is the revision of the source code to checkout.

The version of the recipe is used for fetching the correct

source code tag.

SRC_URI = "${SVN_PATH}/10_Framework_src/common/libUtility/tags/;\
module=1ibUtility-${PV};\
protocol=http;path_spec=${PN}-${PV};\
user=${SVN_USER}; pswd=${SVN_PSWD}\

n
SRCREV = "7223"
SRC_URI [md5sum] = "51e5fb8d2f1500fe45ec8987d97fc865"

SRC_URI += " file://0001-fix-CMakeLists.patch"

inherit cmake
inherit mm-cmake

64

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

DEPENDS += "boost libconfig"

Specify any options you want to pass to cmake using EXTRA_OECMAKE:
EXTRA_QOECMAKE = ""

In particular, some interesting details about the reported recipe are:

e The source code of the 1ibUtility is fetched by the BitBake Svn fetcher
from the Framework repository. The variables $SVN_PATH, $SVN_USER and
$SVN_PSWD are all custom defined, and should be assigned in the local.conf
file. These variables represent, respectively, the path of the Svn repository,
the Svn username and the Svn password.

e The patch 0001-fix-CMakeLists.patch is applied before of the build process
to the CMakeListst.txt file for the reasons explained above.

e The recipe inherits the class mm-cmake that contains some CMake variable
assignments common to all the Framework recipes.

e The DEPENDS statement specifies that the recipe, during the build process,
depends on the Boost and libconfig library recipes.

The C++11 ABI issue

The C++11 standard issued in 2011 extensively modified the C++ language with
additions and modifications. One of the main changes was made in the imple-
mentations of the std::string and std::1list classes; in fact C4++11 forbids the
Copy-On-Write strings and requires to keep track of string sizes in lists [13]. This
implementation changes led the GNU libstdc++ to change its ABI (Application
Binary Interface) starting from GCC version 5.1.

The Magneti Marelli Connectivity Framework makes use of a proprietary V2X li-
brary: the Marben V2X stack. This library is distributed pre-compiled using
GCC 4.8, thus using the older 1libstdc++ ABI. In order to be able to correctly
compile the Framework with the Yocto Project Rocko default GCC version (7.3.0),
a macro needed to be passed to the compiler so that the old ABI was used. This
macro (_GLIBCXX_USE_CXX11_ABI=0) was included in the TARGET_CXXFLAGS Bit-
Bake variable in the local.conf configuration file.

5.3.3 Third phase: the TIIC distro

After having built and tested the Linux kernel, the BSP, the rootfs minimal
contents and the whole Magneti Marelli Connectivity Framework, the wrapping
up phase of this work was to define the new Distribution.

65

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

Definition of the tiic.conf DISTRO configuration file

In this file the basic features of the distro were defined such as ipsec and
ssh-server-dropbear to provide support to IPsec and the SSH server Dropbear
respectively. Furthermore, the GCC macro _GLIBCXX_USE_CXX11 ABI=0 cited above
was also included in the tiic.conf file for correctly compiling the Framework.

Definition of packagegroups

In order to efficiently keep track of all the defined packages, the following package-
groups where defined:

e packagegroup-mm-step3: this packagegroup contains the BSP for the Step
03 board. It was in fact inserted in the variable MACHINE_EXTRA_RRECOMMENDS
in the imx6qpstep3.conf MACHINE configuration file.

e packagegroup-mm-tools: encloses the basic tools needed by the TIIC. This
packagegroup is machine-independent.

e packagegroup-mm-connectivity-common: this packagegroup contains the pack-
ages produced by building the recipes related to the Framework common fa-
cilities.

e packagegroup-mm-connectivity-wave: consists of all the built WAV E-specific
Framework components.

e packagegroup-mm-connectivity-config: encloses all packages containing
Framework-related sh scripts and configuration files for supporting different
vehicles.

Definition of images

The following distro images have been defined:

e core-image-mm: this is a basic image based on the Poky core-image-base.
This image contains a BusyBox-based set of utilities and the contents of the
packagegroup-mm-tools package. If the selected machine is imx6qpstep3,
also packagegroup-mm-step3 is included.

e mm-image-v2x-wave-all: this image is based on the core-image-mm and
includes all the WAVE V2X (DSRC) Connectivity Framework software.

66

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

5.3.4 Fourth phase: x86 porting of the TIIC distro

After having developed and tested the TIIC distro for the Step 03 board, a further
step was to port the distro on a x86 Car PC and configure dual-booting with an
existing Ubuntu installation. Given the great scalability of the Yocto Project,
generating the distribution image for another architecture required only a limited
amount of effort.

Intel metadata

Even if the meta-yocto-bsp provides out-of-the-box support to the genericx86
machine, the meta-intel layer guarantees a better support for x86 Intel CPUs.
meta-intel provides a few carefully selected tune options and generic hardware
support to cover the majority of current Intel CPUs and devices. Furthermore, the
kernel recipe linux-intel is included, that brings better Intel hardware support to
the current LTS (Long Term Support) Linux kernel. Since the Car PC has an Intel
Core i7 CPU, the machine intel-corei7-64 was selected in the local.conf file.

Image generation

Exactly like the build process for the imx6qpstep3, the image recipe mm-image-v2x-wave-all
can be used with TIIC to generate an image for intel-corei7-64. The main dif-

ference between the two processes is that, when building for Arm-based devices, a

kernel image and a rootfs image are generated, while, for an x86 system, the recipes

contain rules for generating a .wic image that consists of the complete Linux distro.

This difference is explained by one main distinction between general purpose sys-

tems and embedded (Arm-based) ones: embedded devices have integrated memories,

while PCs have HDDs/SSDs.

Dual-booting the TIIC distro and Ubuntu

The .wic generated image is compatible with the UEFI (Unified Extensible Firmware
Interface), in fact it consists of two partitions, one containing the UEFI data and
the kernel image and one containing the rootfs. This means that, in order to con-
figure a dual-booting of the pre-existing Ubuntu installation with the TIIC distro
modifications to the bootloader and to the partitioning of the hard drive needed to
be performed. In particular:

1. A new partition was created on the hard drive in order to accomodate the
TTIC rootfs partition of the .wic image.

2. The UEFT partition of the Car PC was modified by including in it the gener-
ated Linux kernel image and the Intel microcode.

67

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

3. A new entry to the GRUB bootloader (the default bootloader included with
Ubuntu) was created in order to correctly load the newly installed TIIC distro.

5.4 Layers

All the work described above was organised by using the Yocto Project Layer
Model. In particular, the three typical layer types were defined: BSP, distro and
application layers.

Magneti Marelli TIIC layers

ViR meta-mm-connectivity
(application layer)

AGNEM,
Mager!)

meta-mm-distro (distro layer)

AGN
MASEDD)

meta-mm (BSP layer)

Poky metadata and Freescale metadata

Figure 5.1: The developed Yocto Project layers for Magneti Marelli TIIC (Technol-
ogy Innovation - Innovation Connectivity).

5.4.1 meta-mm

This is the BSP layer and it is organised as reported in figure 5.2. The complete
directory tree of the metadata contained in meta-mm can be found in appendix C.1.

68

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

meta-mm

conf/machine [l recipes-core

imx6qpstep3.cont packagegroup-mm-step3

init-scripts
udev-rules-step3
set-pps-time

recipes-kernel recipes-navigation

linux-mm gpsd-machine-conf

kernel-module-cohda-v2x
kernel-module-peak-pcanusb

Figure 5.2: The recipes arrangement in the BSP meta-mm layer.

5.4.2 meta-mm-distro

This is the distro layer and it is organised as reported in figure 5.3. The com-
plete directory tree of the metadata contained in meta-mm-distro can be found in
appendix C.3.

5.4.3 meta-mm-connectivity

This is the first application layer defined for the Magneti Marelli Connectivity
Framework. It contains all the V2X-related recipes (figure 5.4). The complete
directory tree of the metadata contained in meta-mm-connectivity can be found
in appendix C.2.

5.5 The eSDK and the new YP-based workflow
in the Magneti Marelli Connectivity environ-
ment

As already said, the deployment of the Yocto Project in a development environ-
ment significantly changes (in better) the workflow. First of all, for starting using

69

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

meta-mm-distro

conf/distro recipes-core

tiic.conf

packagegroup-mm-tools
core-image-mm

recipes-wave

mm-image-v2x-wave-lanciay
mm-image-v2x-wave-giulietta
mm-image-v2x-wave-renegade
mm-image-v2x-wave-all

Figure 5.3: The recipes arrangement in the distro meta-mm-distro layer.

the Yocto Project facilities, the eSDK should be generated and distributed. In
particular, the workflow described in 4.6.5 is modified in the following way:

e Identification of the required libraries and dependencies of the software module
from the OpenEmbedded Layer Index.

e Creation of a new module for containing the software component on the Frame-
work Subversion repository.

e Generation of the software unit recipe by using devtool add and fine-tuning
of the recipe via devtool edit-recipe.

e [teration of the following phases until the development is complete:

— Coding phase with an IDE chosen by the devleoper.
— Compilation of the software unit via devtool build.

— Automatic deploy of the unit and all the required libraries via devtool
deploy-target.

— Debugging via gdb.

— Automatic undeploy of the unit with all of its dependencies via devtool
undeploy-target.

70

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

meta-mm-connectivity

classes recipes-config recipes-

support
mm-cmake ackagegroup-mm-
connectivity-confi asnic

can-xml boost
config-files libcre

ldm-schema sqlite-extension-
fw-scripts functions

recipes-common recipes-wave

packagegroup-mm- packagegroup- rsu
connectivity-common mm- sender-and-
lib* connectivity-wave receiver
marben-stack lib* tim
can-data-provider bsm use-cases
vehicle-data-provider Idm

Figure 5.4: The recipes arrangement in the application meta-mm-connectivity
layer.

— Commit of the generated code on the trunk area of the Subversion mod-
ule.

e Creation of a tag in the Subversion module containing the finished software
unit.

e Commit of the generated recipe in the meta-mm-connectivity repository

e On the Yocto Project machine, integration of the software module in the
TIIC distro images.

5.6 Issues and solutions

During the development and testing phases of the meta-mm-* layers and the TIIC
distribution several issues were encountered. Most of all the problems were caused
by the inherent custom nature of the Step 03 board, while other problems were
caused by the Magneti Marelli corporate firewall.

71

CHAPTER 5. DEVELOPMENT OF THE META-MM LAYERS

5.6.1 The Step 03 kernel

As already cited, the biggest difficulty encountered with the Step 03 was to find
a working Linux kernel for it. The approach of this work was bottom-up: in a
sense that I started from testing an almost vanilla Freescale Linux kernel, up
to an highly customised kernel for the board from which the Step 03 derives. This
approach was taken because the customised kernel contains several references to
components and peripherals that are not used in the Connectivity context (for
example the audio controller, the HDMI support, etc.). Unfortunately, since
the Step 03 shares the majority of its components with its ancestor board, the only
Linux kernel working without further modifications was the aforementioned custom
one.

5.6.2 Git repositories and cloud computing

Another issue faced during development phases of the MM Connectivity Yocto
Project support, was the difficulty of accessing external Git repositories from
inside Magneti Marelli. This is prevented by the company firewall for security rea-
sons, but that makes almost impossible to execute the BitBake fetch tasks of the
recipes that reference source code stored in Git repositories. The only solution is
to fetch all the required repository data by using an external internet connection,
and that is in fact the approach that was taken towards the final phases of the
work. Anyway, that was unfeasible at the early stage of the work, because several
attempts and testing needed to be performed. In order to solve that, I used the
Google Cloud Platform cloud computing services in order to create a remote
virtual machine that could temporarily host the Yocto Project build system. This
method also significantly improved build times, because the technical specifica-
tions of the Cloud Platform virtual machines are unquestionably better than my
local computer.

72

Chapter 6

Conclusion

6.1 Results

As seen in the previous chapters, the Yocto Project is a set of extremely powerful
tools that can enhance and simplify the development of embedded software and
custom Linux distributions. In the context of Magneti Marelli Connectivity the
developed solution brings several enhancements, both to the BSP (Board Support
Package) team and to the software development team. It will be extremely easy to
generate an entire operating system that contains out-of-the-box support to the MM
Connectivity Framework, and, thanks to the Yocto Project eSDK, the development
process will be highly simplified.

6.2 Future developments (Yocto Project context)

Even if the developed meta-mm layers provide a substantial number of benefits,
several areas of improvement can be identified in order to enhance the possibilities
given by the Yocto Project.

6.2.1 Git migration

Git is the de facto VCS (Version Control System) standard for open source devel-
opment and, especially, for the Linux kernel. Git was in fact created specifically
for that purpose: facilitating the collaboration in the context of the Linux kernel
development. It presents several improvements with respect to other systems like
Subversion, and, for that reason, the Yocto Project is built upon the Git principles.
Migrating the Magneti Marelli Connectivity source code from Subversion to Git
would further improve the development process. devtool completely supports Git,
so less steps would be needed for committing the generated source code.

73

CHAPTER 6. CONCLUSION

6.2.2 Centralised build machine

Thanks to the shared state cache mechanism (cited in 3.3.2), the Yocto Project
fully supports distributed environments (figure 6.1), both in the Poky context and
in the eSDK context. In the MM Connectivity development environment a server
hosting a the shared state cache could dramatically improve build times on develop-
ers eSDK machines because all the results of previous compilations could be reused.

eSDK machine eSDK machine

Centralised
shared state
cache

eSDK machine eSDK machine

Figure 6.1: Development environment with a server-hosted shared state cache.

6.2.3 Step 03 QEMU support

As cited in 3.4.1, the Yocto Project includes support for the QEMU emulator and
virtualizer. By developing proper support for the Magneti Marelli Step 03 board
in the QEMU emulator, the software debugging and testing phases could be per-
formed directly on a virtualized environment on the development machine, without
deploying the software component on the target board.

6.3 Future developments (Linux kernel context)

During the development of the TIIC distro for MM Connectivity, some areas of im-
provement have emerged. In particular, the main field in which some enhancements
could be performed is the Linux kernel.

4

CHAPTER 6. CONCLUSION

6.3.1 Adaptation of the customised Step 03 Linux kernel

As already mentioned in the previous chapters, the Step 03 board design derives
from a Magneti Marelli custom-designed infotainment board. The Linux kernel
to be deployed on this device was heavily customised in order to obtain proper
compatibility with the onboard peripherals. A substantial number of devices needed
on this infotainment board are not used for Connectivity purposes, so the Linux
kernel could be offloaded from these additions.

6.3.2 Real-time Linux support

Since some of the use cases provided by the Connectivity Framework are strictly
safety-related, in certain situations there are some timing constraints to comply
with. In a R&D context timeliness can be loosely enforced with some programming
constructs, but of course the operating system scheduler would operate indepen-
dently these choices, thus making them useless. For that reason, another big im-
provement that could be made to the kernel would be to bring real-time support
to it. The Yocto Project provides support to the Real-Time Linux Project (also
called PREEMPT_RT), but another suitable alternative could be RTAIL

5

Appendix A

Magneti Marelli Connectivity
Yocto Project User Manual

The following appendix completely describes how to install the Yocto Project
(Poky) on a machine, how to generate the TIIC distro for the Step 03 board
and how to flash it.

A.1 Yocto Project installation and usage

This section explains how to install the Yocto Project (Poky) and the Freescale
sets of metadata on the build machine. Furthermore, it is reported how to build
the kernel and two rootfs flavours for the Magneti Marelli Step 03 board using the
Yocto build system. The reference Yocto Project version is 2.4.3 (Rocko).

A.1.1 Requirements

There are some requirements that need to be satisfied in order to have a working
build environment:

e Make sure to comply with the system requirements specified by the Yocto
Project Quick Start Guide.

e The build machine must be able to use the git protocol for fetching the source
code from the required repositories. In case this access is not available, the
workaround specified in A.1.3 should be used.

e Access to the Subversion repository containing the Magneti Marelli Technology
& Innovation, Innovation Connectivity layers and the Connectivity Framework
source code.

76

https://www.yoctoproject.org/docs/2.4.3/yocto-project-qs/yocto-project-qs.html
https://www.yoctoproject.org/docs/2.4.3/yocto-project-qs/yocto-project-qs.html

APPENDIX A. MAGNETI MARELLI CONNECTIVITY YOCTO PROJECT
USER MANUAL

A.1.2 Instructions (with git)

By following these steps you can compile the Step 03 Linux kernel 4.1.15 and
generate the UBI filesystem to be flashed on the board.

1. Install the repo tool on your host machine:

$ sudo apt-get install -y repo

2. Create on your host machine the directory /opt/yocto/:

$ sudo install -o $(id -u) -g $(id -g) -d /opt/yocto

3. Install the Freescale BSP Yocto release with the following commands:

$ mkdir /opt/yocto/fsl-community-bsp

$ cd /opt/yocto/fsl-community-bsp

$ repo init -u https://github.com/Freescale/fsl-community-bsp-platform \
-b rocko

$ repo sync

4. Checkout the the meta-mm layers in /opt/fsl-community-bsp/sources/:

cd /opt/yocto/fsl-community-bsp/sources

svn checkout <url to_svn_repo>/meta-mm

svn checkout <url_to_svn_repo>/meta-mm-connectivity
svn checkout <url to_svn_repo>/meta-mm-distro

€hH L H &H

Check that MM TIIC layers are in the sources folder

5. In /opt/yocto/fsl-community-bsp/ Initialise the build environment:

$ MACHINE=imx6qpstep3 DISTRO=tiic source setup-environment build

6. In /opt/yocto/fsl-community-bsp/build/conf/local.conf add the fol-
lowing lines:

SVN_USER
SVN_PSWD

"your Subversion username"
"your Subversion password"

7

APPENDIX A. MAGNETI MARELLI CONNECTIVITY YOCTO PROJECT
USER MANUAL

These two variables are required from the BitBake fetcher for accessing to the
TIIC Subversion repository.

7. In /opt/yocto/fsl-community-bsp/build/conf/bblayers.conf add the fol-
lowing lines:

BBLAYERS = " \
${BSPDIR}/sources/meta-openembedded/meta-python \
${BSPDIR}/sources/meta-openembedded/meta-networking \
${BSPDIR}/sources/meta-mm \
${BSPDIR}/sources/meta-mm-distro \
${BSPDIR}/sources/meta-mm-connectivity \

8. To compile the kernel and generate a minimal rootfs (containing only basic
utilities and kernel modules, without the MM Connectivity Framework) issue
the following commands:

$ cd /opt/yocto/fsl-community-bsp/build
$ bitbake core-image-mm

9. To obtain a complete image (containing also the MM Connectivity Frame-
work):

$ cd /opt/yocto/fsl-community-bsp/build
$ bitbake mm-image-v2x-wave-all

10. The build outputs can be found under the . ../build/tmp/deploy/images/
imx6qpstep3/ folder: in particular you will find the kernel fitImage (named
fitImage) and the selected rootfs (named mm-image-v2x-wave-all-imx6qpstep3.ubi
or core-image-mm-imx6qpstep3.ubi).

A.1.3 Instructions (without git)

In case the build machine is not granted access to external git repositories, the
following steps should be followed. Please notice that this method is not recom-
mended, because that makes the Yocto Project very difficult to update to a new
version.

1. Create on your host machine the directory /opt/yocto/:

78

APPENDIX A. MAGNETI MARELLI CONNECTIVITY YOCTO PROJECT
USER MANUAL

$ sudo install -o $(id -u) -g $(id -g) -d /opt/yocto

2. Install the Freescale BSP Yocto Project release with the following commands
(included in the sh script install_fsl_yocto_rocko.sh):

$ mkdir /opt/yocto/fsl-community-bsp

$ cd /opt/yocto/fsl-community-bsp

$ mkdir sources

$ cd sources

$ wget -P /tmp/yocto/ https://github.com/Freescale
/Documentation/archive/rocko.zip

$ wget -P /tmp/yocto/ https://github.com/Freescale
/fsl-community-bsp-base/archive/rocko.zip

$ wget -P /tmp/yocto/ https://github.com/Freescale
/meta-freescale/archive/rocko.zip

$ wget -P /tmp/yocto/ https://github.com/Freescale
/meta-freescale-3rdparty/archive/rocko.zip

$ wget -P /tmp/yocto/ https://github.com/Freescale
/meta-freescale-distro/archive/rocko.zip

$ wget -P /tmp/yocto https://github.com/openembedded/
/meta-openembedded/archive/rocko.zip

unzip "/tmp/yocto/rocko.zipx"
mv Documentation-rocko Documentation

v fsl-community-bsp-base-rocko base

meta-freescale-rocko meta-freescale

meta-freescale-distro-rocko meta-freescale-distro

meta-freescale-3rdparty-rocko meta-freescale-3rdparty

mv meta-openembedded-rocko meta-openembedded

=]

8B B
< <

€hH P L fH P P fH
B
<

$ wget -P /tmp/yocto/ http://downloads.yoctoproject.org
/releases/yocto/yocto-2.4.3/poky-rocko-18.0.3.tar.bz2

$ tar jxf /tmp/yocto/poky-rocko-18.0.3.tar.bz2

$ mv poky-rocko-18.0.3 poky

$ In -s $PWD/base/setup-environment ../setup-environment
$ 1In -s $PWD/base/README ../README

$ rm -rf /tmp/yocto

3. Checkout the the meta-mm layers in /opt/fsl-community-bsp/sources/:

79

APPENDIX A. MAGNETI MARELLI CONNECTIVITY YOCTO PROJECT
USER MANUAL

cd /opt/yocto/fsl-community-bsp/sources

svn checkout <url to_svn_repo>/meta-mm

svn checkout <url_to_svn_repo>/meta-mm-connectivity
svn checkout <url_to_svn_repo>/meta-mm-distro

€hH H HB P

Check that MM TIIC layers are in the sources folder

4. In /opt/yocto/fsl-community-bsp/ Initialise the build environment:

$ MACHINE=imx6qpstep3 DISTRO=tiic source setup-environment build

5. In /opt/yocto/fsl-community-bsp/build/conf/local.conf add the fol-
lowing lines:

SVN_USER
SVN_PSWD

"your Subversion username"
"your Subversion password"

These two variables are required from the BitBake fetcher for accessing to the
TIIC Subversion repository.

6. In /opt/yocto/fsl-community-bsp/build/conf/bblayers.conf add the fol-
lowing lines:

BBLAYERS = " \
${BSPDIR}/sources/meta-openembedded/meta-python \
${BSPDIR}/sources/meta-openembedded/meta-networking \
${BSPDIR}/sources/meta-mm \
${BSPDIR}/sources/meta-mm-distro \
${BSPDIR}/sources/meta-mm-connectivity \

7. At this point you have to copy an already populated downloads folder in
/opt/yocto/fsl-community-bsp/. That is needed because several recipes
of the Poky and Freescale metadata use git as a fetcher. By putting the
downloads folder already containing the required files, BitBake can skip the
git fetching tasks.

8. To compile the kernel and generate a minimal rootfs (containing only basic
utilities and kernel modules, without the MM Connectivity Framework) issue
the following commands:

80

APPENDIX A. MAGNETI MARELLI CONNECTIVITY YOCTO PROJECT
USER MANUAL

$ cd /opt/yocto/fsl-community-bsp/build
$ bitbake core-image-mm

9. To obtain a complete image (containing also the MM Connectivity Frame-
work):

$ cd /opt/yocto/fsl-community-bsp/build
$ bitbake mm-image-v2x-wave-all

10. The build outputs can be found under the . ../build/tmp/deploy/images/imx6qpstep3/
folder: in particular you will find the kernel fitlImage (named fitImage)
and the selected rootfs (named mm-image-v2x-wave-all-imx6qpstep3.ubi
or core-image-mm-imx6qpstep3.ubi).

A.2 Flashing the TIIC distro on the Step 03

Since the Step 03 board is equipped with an onboard flash memory, for installing
the generated TIIC distro on it some flashing operations are needed.

A.2.1 Requirements

In order to perform the flashing operations the following tools are needed:
e A computer with a serial console like PuTTY.

e A pen drive with a FAT32 partition containing a working Linux fitImage and
a rootfs partition.

e On the Linux rootfs on the pen drive, the mtd-utils should be available.

e The Step 03 NAND memory should be already partitioned with 3 MTD par-
titions (bootloader, kernel and rootfs) in the following way:

device nand0 <gpmi-nand>, # parts = 3

#: name size offset mask_flags
0: boot 0x00560000 0x00000000 0
1: kernel-appl 0x00800000 0x00560000 0
2: ev_f£s 0x1ea00000 0x00d60000 0

81

APPENDIX A. MAGNETI MARELLI CONNECTIVITY YOCTO PROJECT
USER MANUAL

A.2.2 Instructions

Those are the steps to follow for installing the TIIC distro on the Step 03:

1.

Connect the board to a computer via serial communication, and start the
serial console.

Copy the fitImage and the UBI rootfs volume on the FAT32 pen drive
partition.

Connect the pen drive via USB OTG to the board.

. Turn on the board and drop to the U-Boot bootloader console.

. With the following U-Boot commands erase the UBI kernel partition and flash

the Linux kernel fitImage in it (please notice that these commands are
valid only with the Step 03 specific UBI partitions):

$ usb start; fatload usb 0:1 0x12000000 fitImage;
$ nand erase 0x00560000 0x00800000
$ nand write 0x12000000 0x00560000 0x00800000

Erase the rootfs with the following command:

$ flash erase /dev/mtd2 0x00d60000 0x1ea00000

Boot from the Linux kernel fitImage loaded on the pen drive (for example
called mykernel):

$ setenv mybootargs setenv bootargs console=ttymxc3,115200
noinitrd root=/dev/sda2 rootwait rw

$ usb start; fatload usb 0:1 0x12000000 mykernel

$ run mybootargs; bootm 0x12000000#conf@1

On the booted Linux mount the FAT32 partition containing the .ubi of the
TIIC rootfs.

Flash the UBI rootfs (for example called image.ubi):

$ ubiformat /dev/mtd2 -f image.ubi

82

Appendix B
eSDK User Manual

B.1 User manual for building the eSDK

The following manual explains how to generate a Yocto Project eSDK Installer
starting from a complete installation of the YP.

B.1.1 Instructions

1. Follow the instructions reported in A.1 and make sure that the mm-image-v2x-
wave-all image is built without problems.

2. With the Build Environment set (with the setup-environment script) exe-
cute:

$ bitbake mm-image-v2x-wave-all -c populate_sdk_ext

The eSDK installer should be located in /opt/yocto/fsl-community-bsp/build/
tmp/deploy/sdk.

3. Distribute the sdk folder to the developers.

4. The eSDK can be installed by executing the sh script contained in the sdk
folder.

5. Specify the target folder for installing the eSDK.

83

Appendix C

MM Connectivity Layers
Directory Trees

The following directory trees represent the structure of the metadata layers devel-
oped for the Magneti Marelli Connectivity environment. It must be noticed that
all the patches made to the CMakeLists.txt (cited in 5.3.2) are omitted from these
trees in order to not overcrowd the diagrams.

C.1 meta-mm

meta-mm
| README
| _recipes-navigation

psd
F;gpsd—machine—conf_%.bbappend
psd-machine-conf
fl,imeqpstep3
gpsd-machine
| recipes-core
| _udev-rules-step3
‘udev—rules—stepB.bb
udev-rules-step3
tll—stepS—serial.rules
45-pcan.rules

| _init-scripts
init-scripts.bb
init-scripts
l;,imeqpstepB
mmGpsUpdateSystemTimeOneShot . py
defboard

84

mm-network
mm-v2x
| images
core—image-mm.bb
| packagegroups
packagegroup-mm. bb
| set-pps-time
set-pps-time_1.0.2.bb
set-pps-time
| 0001-fix-CMakeLists.patch
| recipes-kernel
| peak-can-driver
peak-linux-driver_8.5.1.bb
files
L,OOO1—Fixed—Makefile—kernel—path.patch
| cohda-v2x-driver
cohda-linux-driver_12.9.0.bb
cohda-linux-driver
tMKSradioInit .sh
V2X_LLC_Remote_V12.9.0.tar.gz
| linux
linux-mm 4.1.15.bb
linux-mm.inc
linux-mm-4.1.15
imx6qpstep3
0001-fix-CAN-dts.patch
0002-fix-CAN-dts.patch
imx6qpstep3_old
defconfig

| conf
layer.conf
machine
LA,imeqpstep3.conf

C.2 meta-mm-connectivity

meta-mm-connectivity
lg,recipes—common
lib-ucm-communication
| lib-ucm-communication 1.0.0.bb
positioning-timing

85

‘poti—mediator_l.O.S.bb
gps-data-provider_1.0.5.bb
| _marben-stack
marben-stack_1.3.1.bb
lib-v2x-marben-nosec_4.8.bb
marben-stack
L70001—fix-Makefile.patch
| hmi-messages—-dispatcher
hmi-messages-dispatcher_1.0.0.bb
| uc-manager
ucm-tester_3.0.9.bb
uc-manager_3.0.9.bb
| lib-ipc
| 1ib-ipc_1.0.5.bb
| 1lib-logger—-benchmarking
lib-logger-benchmarking 1.1.4.bb
| lib-can
lib-can-interface-genivi_2.2.4.bb
lib-can-interface 2.1.3.bb
lib-log-can_1.0.3.bb
| packagegroups
packagegroup-connectivity—-common.bb
| lib-pps-ticker
lib-pps-ticker_1.0.0.bb
| lib-utility
| 1lib-utility 3.0.6.bb
| vehicle-data-provider
tcan—data—provider_l.O.5.bb
vdp-mediator_1.0.7.bb
| _recipes-wave
sender—-and-receiver
L,sender—and—receiver—wave_2.0.3.bb
rsu
| rsu-backend 1.0.6.bb
bsm
driver-can-bsbs—-giulietta_3.0.5.bb
bsm-fca_3.0.8.bb
bsm_3.0.8.1inc
lib-interface-driver-can-network 3.0.4.bb
driver-can-bsbs-lanciay_3.0.5.bb
bsm-renegade_3.0.8.bb
driver-can-bsbs-fca_3.0.5.bb

86

driver—-can-bsbs-renegade_3.0.5.bb

bsm-giulietta_3.0.8.bb

bsm-lanciay_3.0.8.bb

lib-driver-vehicle-can-network

| lib-middleware
tlib—interface—mw_l.O.1.bb
lib-marben-mw_1.0.6.bb

| 1dm

Lg,ldm—sqlite_2.0.4.bb

| packagegroups

packagegroup-connectivity-wave.bb

| _use-cases

clw_3.0.5.bb

fcw_3.0.5.bb

ivrs_3.0.5.bb

sv_3.0.5.bb

eebl _3.0.6.bb

ima_3.0.6.bb

lta_3.0.6.bb

| _tim

| tim 3.0.2.bb

| lib-utility-wave

| 1ib-utility-wave 2.0.5.bb

| lib-asn-wave
Lflib—asn—wave_1.2.3.bb

. _recipes-support

| sqlite-extension-functions

sqlite-extension-functions_1.0.0.bb

| _boost

boost-inc.inc

boost_1.57.0.bb

boost-1.57.0.1inc

bjam-native_1.57.0.bb

boost

Lg,arm—intrinsics.patch

| _asnlc

kasnlc.bb
files
tfix_type.patch
skeletons_dir_fix.patch

| _libcrc
| libcrc 2.0.bb

87

L,libcrc

| CMakeLists.txt
| _conf
Lg,layer.conf
| recipes—-config
| ldm-schema
LA,ldm—schema_l.O.O.bb
| config-files
| config-files-all 1.1.2.bb
| start-scripts
start-scripts_1.1.2.bb
start-scripts
stopV2Xfw_MM_WAVE.sh
FrameworkStatus.sh
startV2Xfw_MM_WAVE.sh
startRSU_MM_WAVE.sh
stopRSU_MM_WAVE.sh
| packagegroups
packagegroup-connectivity-config.bb
| _can-xml
can-xml-renegade_1.0.0.bb
can-xml-lanciay_1.0.0.bb
can-xml-giulietta_1.0.0.bb
can-xml.inc
| _classes
lg,mm—cmake.bbclass

C.3 meta-mm-distro

meta-mm-distro

| _recipes-wave

images
mm-image-v2x-wave-renegade. inc
mm-image-v2x-wave-base.inc
mm-image-v2x-wave-giulietta.inc
mm-image-v2x-wave—all.bb
mm-image-v2x-wave-fca.inc
mm-image-v2x-wave-lanciay.inc

| conf
tlayer.conf
distro

88

Ltiic.conf

89

Bibliography

BitBake User Manual - Checksums (Signatures). URL: https://www.yoctoproject.
org/docs/2.4.3/bitbake-user-manual/bitbake-user-manual . html#
checksums (visited on 07/23/2018).

Bootlin. Embedded Linuz system development. URL: http://free-electrons.
com/doc/training/embedded-1linux/embedded-1linux-slides.pdf (visited
on 08/27/2018).

H. Bruce. Yocto Project Fxtensible SDK: simplifying the workflow for appli-
cation developers. 2017. URL: https://events.static.linuxfound.org/
sites/events/files/slides/2017%20ELC%20Henry%20Bruce . pdf (visited
on 07/22/2018).

CROPS GitHub Repository. URL: https://github.com/crops/crops/blob/
master/README.md (visited on 07/22/2018).

1609 WG - Dedicated Short Range Communication Working Group. [EEE
Std 1609.1-2006 - Trial-Use Standard for Wireless Access in Vehicular Envi-
ronments (WAVE). Tech. rep. VT - IEEE Vehicular Technology Society, 2006.

Christopher Hallinan. Bootloaders in Embedded Linuz Systems. URL: http:
//www . informit . com/articles/article . aspx?p=1647051 (visited on

08,/27/2018).

C. R. Martinez-Eiroa and C. Schmitz. OpenEmbedded € Bitbake: Open Source
Software. 2012. URL: https ://www . denx . de/wiki /pub/ELDKHistory /
DocumentationLinks/OpenEmbeddedvl.ppt.

OpenEmbedded Classic GitHub Repository. URL: https : // github . com/
openembedded/openembedded/tree/master/recipes (visited on 10/12/2018).

OpenEmbedded Manual - Packaging: Defining packages and their contents.
URL: http://www.embeddedlinux. org.cn/0EManual/recipes_packages.
html (visited on 07/24/2018).

OpenEmbedded-Core. URL: https://www.openembedded. org/wiki/OpenEmbedded-
Core (visited on 08/28/2018).

R Purdie. Yocto Project Architecture Whitepaper. 2009. URL: https://wiki.
yoctoproject.org/wiki/Yocto_Architecture.

90

https://www.yoctoproject.org/docs/2.4.3/bitbake-user-manual/bitbake-user-manual.html#checksums
https://www.yoctoproject.org/docs/2.4.3/bitbake-user-manual/bitbake-user-manual.html#checksums
https://www.yoctoproject.org/docs/2.4.3/bitbake-user-manual/bitbake-user-manual.html#checksums
http://free-electrons.com/doc/training/embedded-linux/embedded-linux-slides.pdf
http://free-electrons.com/doc/training/embedded-linux/embedded-linux-slides.pdf
https://events.static.linuxfound.org/sites/events/files/slides/2017%20ELC%20Henry%20Bruce.pdf
https://events.static.linuxfound.org/sites/events/files/slides/2017%20ELC%20Henry%20Bruce.pdf
https://github.com/crops/crops/blob/master/README.md
https://github.com/crops/crops/blob/master/README.md
http://www.informit.com/articles/article.aspx?p=1647051
http://www.informit.com/articles/article.aspx?p=1647051
https://www.denx.de/wiki/pub/ELDKHistory/DocumentationLinks/OpenEmbeddedv1.ppt
https://www.denx.de/wiki/pub/ELDKHistory/DocumentationLinks/OpenEmbeddedv1.ppt
https://github.com/openembedded/openembedded/tree/master/recipes
https://github.com/openembedded/openembedded/tree/master/recipes
http://www.embeddedlinux.org.cn/OEManual/recipes_packages.html
http://www.embeddedlinux.org.cn/OEManual/recipes_packages.html
https://www.openembedded.org/wiki/OpenEmbedded-Core
https://www.openembedded.org/wiki/OpenEmbedded-Core
https://wiki.yoctoproject.org/wiki/Yocto_Architecture
https://wiki.yoctoproject.org/wiki/Yocto_Architecture

BIBLIOGRAPHY

[12] O. Salvador and Angolini, D. Embedded Linuz Development using Yocto Projects
- Second Edition: Learn to leverage the power of Yocto Project to build efficient
Linux-based products. Packt, 2017. 1SBN: 9781788477833.

[13] The GNU C++ Library Manual - Dual ABI. URL: https ://gcc . gnu.
org/onlinedocs/libstdc++/manual /using dual _abi.html (visited on
08/02,/2018).

[14] UBIFS - UBI File-System. URL: http://www.linux-mtd.infradead.org/
doc/ubifs.html (visited on 08/30,/2018).

[15] Trevor Woerner. “Yocto Project Developer Workflow Tutorial”. In: 2015. URL:
https://drive.google.com/a/linaro.org/file/d/0B3KGzY5fW71aTDVxUXo3UDRvd2s/
view (visited on 07/27/2018).

[16] Yocto Project Application Development and the Extensible Software Develop-
ment Kit (eSDK). URL: https://www.yoctoproject.org/docs/2.4.3/sdk-
manual/sdk-manual.html (visited on 09/01/2018).

[17] Yocto Project Development Tasks Manual. URL: https://www.yoctoproject.
org/docs/2.4.3/dev-manual/dev-manual.html (visited on 07/12/2018).

[18] Yocto Project Members. URL: https://www.yoctoproject.org/ecosystem/
members/ (visited on 10/12/2018).

[19] Yocto Project Overview and Concepts Manual. URL: https://www.yoctoproject.
org/docs/2.5/overview-manual / overview - manual . html (visited on

08,/28,/2018).

[20] Yocto Project Software Overview. URL: https://www.yoctoproject.org/
software-overview/ (visited on 07/12/2018).

91

https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html
http://www.linux-mtd.infradead.org/doc/ubifs.html
http://www.linux-mtd.infradead.org/doc/ubifs.html
https://drive.google.com/a/linaro.org/file/d/0B3KGzY5fW7laTDVxUXo3UDRvd2s/view
https://drive.google.com/a/linaro.org/file/d/0B3KGzY5fW7laTDVxUXo3UDRvd2s/view
https://www.yoctoproject.org/docs/2.4.3/sdk-manual/sdk-manual.html
https://www.yoctoproject.org/docs/2.4.3/sdk-manual/sdk-manual.html
https://www.yoctoproject.org/docs/2.4.3/dev-manual/dev-manual.html
https://www.yoctoproject.org/docs/2.4.3/dev-manual/dev-manual.html
https://www.yoctoproject.org/ecosystem/members/
https://www.yoctoproject.org/ecosystem/members/
https://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html
https://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html
https://www.yoctoproject.org/software-overview/
https://www.yoctoproject.org/software-overview/

	Introduction, Motivations and Goals
	Introduction
	Magneti Marelli
	Motivations
	Goals

	Embedded Linux
	Embedded Linux
	The Linux kernel
	The rootfs
	Init managers
	Device managers

	Flash memory support
	The MTD subsystem
	UBI and the UBI File-System

	Das U-Boot bootloader
	Development tools
	Cross-compiling toolchains
	Build process management

	The Yocto Project
	Introduction
	History
	The Yocto Project premises definition
	Differences between the Yocto Project, Buildroot & OpenWrt
	The Yocto Project architecture

	Poky
	BitBake
	BitBake objectives
	Shared state cache
	The BitBake recipes

	The YP integrated tools
	SDK & eSDK
	Toaster
	CROPS

	OpenEmbedded-Core
	Differences between OE-Core and OE-Classic
	OpenEmbedded-Core scope

	The Yocto Project metadata
	Recipes
	Conf files
	Layers

	The general Yocto Project workflow
	Getting started
	Developing a BSP layer
	Developing an application layer
	Developing a distro layer
	Using the Yocto Project as a daily basis

	Developer workflow with the eSDK

	The Magneti Marelli Connectivity Framework
	Introduction
	Vehicle-to-Everything
	Technology details
	The Magneti Marelli Connectivity Framework
	Connectivity protocol stacks
	Facilities
	The use cases

	The MM Connectivity hardware
	The Magneti Marelli Step 03 board
	The Car PC

	The MM Connectivity software
	The version control system: Subversion
	The cross-toolchain
	The application unit building
	The building and deploying automation
	The current development workflow
	Considerations

	Development of the meta-mm layers
	Introduction
	Advantages of the YP within the MM Connectivity environment
	Development process
	First phase: the BSP
	Second phase: the Magneti Marelli Connectivity Framework and applications
	Third phase: the TIIC distro
	Fourth phase: x86 porting of the TIIC distro

	Layers
	meta-mm
	meta-mm-distro
	meta-mm-connectivity

	The eSDK and the new YP-based workflow in the Magneti Marelli Connectivity environment
	Issues and solutions
	The Step 03 kernel
	Git repositories and cloud computing

	Conclusion
	Results
	Future developments (Yocto Project context)
	Git migration
	Centralised build machine
	Step 03 QEMU support

	Future developments (Linux kernel context)
	Adaptation of the customised Step 03 Linux kernel
	Real-time Linux support

	Magneti Marelli Connectivity Yocto Project User Manual
	Yocto Project installation and usage
	Requirements
	Instructions (with git)
	Instructions (without git)

	Flashing the TIIC distro on the Step 03
	Requirements
	Instructions

	eSDK User Manual
	User manual for building the eSDK
	Instructions

	MM Connectivity Layers Directory Trees
	meta-mm
	meta-mm-connectivity
	meta-mm-distro

		Politecnico di Torino
	2018-10-17T09:09:51+0000
	Politecnico di Torino
	Massimo Violante
	S

