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Abstract
Over the last few years, deep learning (DL) has evolved becoming per-

vasive in many scientific and industrial fields. The effectiveness of DL
techniques, aided by the widespread availability of user-friendly tools de-
veloped by big ICT companies (like Google and Facebook, to name a
few), is pushing the state-of-the-art in artificial intelligence, allowing Con-
volutional Neural Networks (CNNs) to represent a de facto standard for
visual reasoning applications. CNNs are complex computational models
inspired by the mechanisms that regulate the primary visual cortex of the
brain, where images captured by the eyes are elaborated such to extrapo-
late a meaning, an information, from the surrounding environment (e.g.,
face recognition though feature detection). A typical CNN structure is
composed of an input layer handling images for computational stages, an
output layer that produces the final answer on the classification task, and
several hidden layers where the feature extraction takes place. Indeed,
from a functional perspective, CNNs can be divided in two main func-
tional regions: feature extraction, and classification. The former region
is where most computations take place, and it is mainly composed of a
specific kind of layer: the convolutional (CONV) layer, where several mul-
tidimensional matrix-vector multiplications are carried out between input
images (or feature maps) and abstract filters learned by the CNN itself.
Since even the simplest CNN model contains several thousands of different
filters, it is not surprising that the huge computational effort required to
run DL algorithms is rapidly becoming a serious concern. Such a problem
is exacerbated if we consider that most computing hardware platforms
are not yet tailored to execute DL algorithms efficiently. For these rea-
sons, a number of dedicated hardware accelerators for DL applications
have been recently introduced. Being composed of several processing ele-
ments (PE) capable to carry out specific mathematical operations, those
ad hoc solutions are capable to dramatically reduce execution times and
the energy per operation. However, in most cases, information sharing be-
tween each PE is partially exploited, thus leaving a space for substantial
performance improvements. In this thesis we present a hardware-software
co-design tool called INRI, which allows to deploy a fine-tuned dataflow for
specific architectures, such that superfluous data movements and power
consumption are minimized. We investigate different techniques including
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data reuse, smart activation/deactivation policies for PE in the idle state,
and specific pixel-clustering algorithms. The performance of the proposed
tool are supported by experimental results obtained with different hard-
ware configurations running well-known CNN models, such as AlexNet,
VGG-16 and ZFNet. Results demonstrate that our approach is capable
to reduce the energy of CNNs by 25%, still guaranteeing an acceptable
accuracy loss of 2%.
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Summary

Deep learning, in particular Convolutional Neural Network CNN, is
among the most powerful and widely used techniques in computer vision.
Applications vary from image classification to object detection, segmen-
tation, Optical Character Recognition (OCR), etc. On the other side,
they require a significant execution time, due to compute and memory
operation. Consequently, it is difficult integrating CNN algorithms into
IoT embedded systems with limited computing resources and energy sup-
ply. Most of researches tends to reduce computational CNN operation,
rather than memory accesses. Introducing an off-chip memory in a device
permits to store more datas, trading-off performance and energy saving.
Compared to on-chip memory, accessing off-chip memory can consume up
to 10x times more power consumption[1], and latency for obtaining data
up to 10x times slower[1]. A possible solution could be handling the datas
exploiting cloud technologies, waiting for the server returns the result, but
according to CISCO, 5 quintllion bytes of datas are produced every day
and by the year 2020, more than 30 billion of devices will be connected
in internet [2]. In order to not congesting internet traffic, IoT devices
must send datas to the network only when strictly necessary. Given the
context shown, it is necessary to develop a CNN high performing system
low power that executes most of the CNN operations locally. This work
proposes INRI a CNN architecture able to reach high performance while
reducing drastically memory access.

The architecture is based on five main modules: A CNN architecture,
in particular Matrix PE [11] and Chain PE [23] both based on systolic
paradigm, which the heart is the Processing Element (PE), a multiply
and accumulator with registers. A dispatcher unit, charged to orchestrate
the whole system operations and applying power saving technique, a 256
Kb local buffer for loading/storing datas and a Pixel Clustering module
that implements an innovative algorithm for compressing images reducing
drastically performance.

The system was developed mixing different program languages and
techniques. Three modules (PE, Pixel Clustering and Dispatcher) were
built via VHDL under QuestaSim environment and synthesised extract-
ing informations about area, power supply and slack. The informations
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obtained are integrated in a tool built in C language, able to return an
accurate approximation about area, energy, power consumption and clock
latency for operation of the system. The prediction was analysed sim-
ulating the system using Python with Keras frameworks, implementing
three CNN architectures with pre-trained filter values: AlexNet, ZfNet
and VGG16. Results demonstrate that is possible to achieve a significant
memory access reduction up to 4x times lower compared to a traditional
architecture without any memory access reduction techniques having an
average accuracy drop around 6%.
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Chapter 1

Introduction

1.1 Motivation
During last years Machine Learning has obtained the supremacy on com-
puter vision tasks occupying more and more a significant part of our
lifes. This phenomenon can be attribuited to its ability to get high accu-
racy, ranging from object recognition and detection. With the boosting
of amount of data, it is smart to think that technological progress will
be heavily influenced from smart data analysis. On the other side, Ma-
chine Learning algorithms require a significant execution time, due to
compute and memory operation. Consequently, it is difficult implement
CNN algorithms into IoT embedded systems with low hardware resources
and energy supply. Majority of the works try to investigate how to en-
hance computational efficiency solutions of CNNs, leaving memory effi-
ciency largely overlooked. Introducing an off-chip memory in a device
permits to store more datas, trading-off performance and energy saving.
Compared to on-chip memory, accessing off-chip memory can consume up
to 10x times more power consumption[1], and latency for obtaining data
up to 10x times [1]. Under these circumstances, it’s necessary to develop
a CNN system able to reduce power consumption, without affecting the
overall performance of the system.

In this work is described INRI, a dataflow for CNN architecture that
uses different techniques such as data reuse, local buffer, activation/de-
activation processing element(PE) and a compression algorithm in order
to achieve high performance with a contained power consumption. The
hardware part of the work, was built using HDL language (in particular
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VHDL) and C language. For software counterpart was used Python sup-
ported by Keras framework. The architecture is composed of a dispatcher,
in charge of handling, executing and monitorate the system, a CNN based
on systolic architecture that execute operations, a local buffer for storage
datas and last the Pixel Clustering module used that implements an in-
novative compression algorithm for reducing memory access. Comparing
to traditional systems, results shown that all these strategies reduce in
significant way the memory access (up to 4 times lower), hence the power
consumption and clock latency per operation.

1.2 Related Work
During the years, different techniques has been exploited for realising per-
forming CNN system using different technique such as data reuse, systolic
architecture ( MATRIX PE[22] or CHAIN PE [23] ) or proposing new
dataflows (EYERISS) . Most of state state CNN solutions exploit one or
more of these paradigms in order to achieve high performance.

• weight stationary : For optimising convolutional and filter reuse,
every filter weight remains fixed in the register file (RF) inside the
processing element (PE).

• output stationary: The aggregation of the partial sum(psum) re-
mains static in the RF. The output feature map (ofmap) stay in the
same RF for accumulation in order to reduce the psum accumulation
cost.

• no local reuse: It uses inter-PE communication for input feature
map (ifmap ) reuse and psum accumulation.

All these paradigms propose interesting solutions for enhancing per-
formance of the system, but they consider often the operation efficiency
rather than also analyse memory efficiency. Considering as example the
two systolic architecture introduced (MATRIX PE[11], CHAIN PE[23]).
They suggest useful solutions for executing CNN operations faster, but
they do not answer to the question how to access in a more efficient way
to the datas to manipulate, making the off-chip memory access the bot-
tleneck of the system. This research goes to investigate how to enhancing
both memory and execute operations.
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1 – Introduction

In summary, the main contributions of this work includes

• data reuse

• hardware optimizations

• test comparison among CNN

• new algorithm able to reduce data movement off-chip to on-chip (
pixel clustering)

1.3 Purpose and research questions
The entire research attempt to reply to the following questions :

• How to realise a high-performance CNN architecture ?

• Is it possible to build a system both performing and low-power con-
suming ?

• if is it positive the previous question, how much prediction score is
affected ?

1.4 Approach and Methodology
The work proposes a high-performance and low-power convolutional neu-
ral network architecture (CNNA) exploiting systolic architecture and com-
pression algorithms in order to improve efficiency of the system. Different
experiments were executed in order to obtain the best setup with the low-
est hardware implementation. They can be classified in two categories,
the former finding the best trade-off among hardware resource and perfor-
mance. Second, develop and test how to orchestrate the whole architecture
with best performance power consumption ratio.

1.5 Scope and Limitation
The main purpose of this work is to develop a low-power performing sys-
tem with a good image patterns recognition accuracy . The system obtains
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an interesting prediction score around 70% (where traditional systems ob-
tained an average around 76%) with an average memory access reduction
around 60% compared to a traditional setup. It can be considered a good
result, but some interesting investigation could be take place.

Considering local buffer. INRI implements SRAM local buffer 256 kb 32
bit word cell size.It uses 16 bits for data and 3 bits for implementing Pixel-
Clustering algorithm.13 bits does not contain any useful informations.
Differents researches demonstrate that data inputs and weights could be
represented that up to 8 bit[12], without loosing significant accuracy A
possible improvements could be reduce the data value to 8 bits in order
to fit both data and algorithm in 16 bits.

Another limitation is data streams inside CNNA, in particular, how
information pass through processing element (PE) . The communication
among them happen only in vertical or horizontal way because of limita-
tion provided by the algorithm (Pixel Clustering). A further step could a
totally freedom PE communication (introducing the oblique data move-
ment), modifying the structure.

1.6 Outline
The report is structured in the following way. Chapter 2 introduce theo-
retical background about machine learning, paying attention on artificial
neural network, in particular convolution neural network. Chapter 3 ex-
plains the motivation behind this paper, describing briefly the stream
execution. Chapther 4 shows in details which technologies were used to
develop and testing the system. Chapter 5 explain in details how architec-
ture works and on which technique is based. Chapter 6 describe the result
obtained by experiment, concluding with final considerations in chapter
7.
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Chapter 2

Theoretical Background

2.1 Introduction
Machine learning is a subfield of artificial intelligence (AI) that permits
to a program to "understand" how to solve a specific purposes with datas
received, without being explicitly instructed. A more formal definition was
formulated by Tom M. Michell says “A computer program is said to learn
from experience E with respect to some class of tasks T and performance
measure P if its performance at tasks in T, as measured by P, improves
with experience E.” [24] Machine learning algorithms can be divided into
two categories supervised and unsupervised algorithms, depending on how
they "learn" to make predictions

• Supervised algorithms: Supervised learning is the paradigm most
used for machine learning. It is when the program tries to to learn the
mapping function from the input (X) to the output(Y). The input are
the data send by user for training/testing part, while the outcome is
the prediction value. Learning method can be compared to a student
learning from a teacher.

Y = f(X)

The purpose is to develop a mapping function that is able to predict
the output variables (Y) when it receives new input data (X) . Com-
pared to others solutions, it has the advantages that you can make a
perfect decision boundary to distinguish different classes accurately,
specifying by user how many classes desire to have and besides after
training, it’s not necessary keep the training example in the memory,
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it’s necessary just the mathematical forumula “decision boundary”
for classifying future inputs. On the other side, the decision might
be overtrained or it tries to predict decision even through the input
received was never classified into a category. Last, the training mode
requires a lot of computation time. Typical supervised algorithm are
linear regression, based on a linear equation where the prediction is
obtained inserting parameters in the equation formed during training,
random forest, that is based on a binary decision tree and support
vector machines:

• Unsupervised algorithms: Unlike supervised learning, in unsuper-
vised learning, the answer are not labelled and it is duty of the algo-
rithm, to group datas correctly. It acts more closely to "true artificial
intelligence" [5]. It is more complex to implement compared to su-
pervised algorithms but it permits to the program, to solve problems
never faced, building new classes.Some popular examples of unsuper-
vised learning algorithms are k-means, based on centroid point called
k used as point of reference for building a new class. Each k value is a
"cluster" of element belonging to the same class or apriori algorithm .

.

2.2 CNN Overview
CNNs are complex computational models inspired by the mechanisms that
regulate the primary visual cortex of the brain, where images captured by
the eyes are elaborated such to extrapolate a meaning, an information,
from the surrounding environment (e.g., face recognition though feature
detection). A typical CNN structure is composed of an input layer han-
dling images for computational stages, an output layer that produces the
final answer on the classification task, and several hidden layers where
the feature extraction takes place. Indeed, from a functional perspective,
CNNs can be divided in two main functional regions: feature extraction,
and classification. The former region is where most computations take
place, and it is mainly composed of a specific kind of layer: the convolu-
tional (CONV) layer, where several multidimensional matrix-vector mul-
tiplications are carried out between input images (or feature maps) and
abstract filters learned by the CNN itself. Typical layers used for CNN are
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2 – Theoretical Background

convolutional, pooling, activation, normalization, fully connected and soft-
max. Some of the most famous CNN architectures are: LeNet, AlexNet,
VGG, GoogleNet, ResNet. Figure 2.2 depicts LeNet, the first CNN archi-
tecture ever built. It was born for banks purposes, in order to recognise
the digits written in the checks. The architecture receives as input, hand-
written digits in the check, returning the prediction about which numbers
could be.

Figure 2.1: LeNet CNN architecture [14]

Nowdays, CNN architecture are more complex and filters are able to
identificate curves, lines, borders going up to more complicate patterns
such as eyes, bodies, etc..

2.2.1 Convolution
Considered the heaviest CNN operation (it consumes up to 90% of execu-
tion time) convolutional layers, as the name suggest, perform a convolution
operation to the input received. Introducing convolution operation to the
architecture, permits to the network to be deeper with lower parameters,
compared to same network based only on fully connected layers and ex-
tracting patterns on the images in order to obtain useful informations of
the object analysed. Figure 2.3 displays a convolution operations with an
input 3x7x7 and a kernel 3x3x3. The input was applied a padding =1.
The output results is a ofmap 3x3x3
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Figure 2.2: convolution on an image 3x5x5 with padding=1 with a kernel
3x3x3[16]
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2 – Theoretical Background

2.2.2 Pooling
One of the main flaw of a CNN is that requires a significant execution
time, due to compute and memory operation. Introducing a layer that
"cut-off" unuseful informations permits to make the system faster. For
this reason, convolutional networks typically has different pooling layers,
permitting to reduce the size of a certain input, producing the outputs of
neurons group at one layer into a single neuron in the next layer. Pooling
can be splitted in the pooling techniques: max pooling, where the output
is the maximum value from a group of node, while average pooling, as
name suggests, returns as output the average value from a group of node.
Figure 2.4 shows an example of using Pooling resize to a 4x4 input, resizing
it to 2x2. On the left is applied Max Pooling algorithm, while on the right
Average Pooling one.

Figure 2.3: example of applications of max and average pooling [15]

"!



Nicolò Morando et al.

2.2.3 Fully connected
Typically implemented in the last layers of CNN, fully connected layer
links each node of a layer to every node in the next one. It received the
input from a previous layer and returns a vector of size N, where N is
the number of classes that the user decided to implement, reporting the
percentage score that the input belongs to a given class.

Figure 2.4: fully connected layer [17]

fully connected layer is based on artificial neural network (ANN) .
ANN are based on input layer, hidden layer (could be one or more

layers) and an output layer. Figure 2.6 displays the structure of an ANN
Figure 2.7 shows more in details how a single node inside the hidden

layer works. It receives the weighted sum of the inputs produced by the
previous layer passing them through an activation function decided by
user. The output realised passes to the node in the next layer as input.
The final output is obtained by executing this procedure for all the nodes.
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2 – Theoretical Background

Figure 2.5: Overview of a ANN[29]

Figure 2.6: hidden layer in detail[29]
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2.2.4 Padding
After a convolution, the height and the width of the new output are al-
ways lower compared to the previous input. Sometimes, in order to achieve
higher accuracy, it is convenient having deep networks . Padding technique
allows to control the spatial size of the output volumes, useful when it is
necessary to preserve the spatial size of the input volume so the input and
output width and height are the same. The method consists of surround-
ing the input volume with zero around the border. Figure 2.6 shows an
input volume 32x32x2, where was applied a padding of 2, getting a final
volume of 36x36x3

Figure 2.7: the original size is 32x32x3. After applying a padding=2 now
we have 36x36x3[20]
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2 – Theoretical Background

2.2.5 Non Linearity (ReLU)
Introducing a non-linearity property in the CNN architecture, permits
to obtain better performance compared to a linear one. For this reason,
usually, after a convolution a Relu (Rectified Linear Unit) operation is
applied. Relu is operation applied to every matrix value inputs replacing
all negative values in the feature map with zero, permitting to introduce
a non-linearity property in the CNN architecture.

Figure 2.8: relu representation[6]

This is the most used activation function because is the one that has the
closest behaviour to real neuron. In the picture 2.10 is depicted the algo-
rithm implementation. On the left the image pre-relu processing, where
the black colour stands for negative values. On the right the same im-
age which applied ReLU algorithm, containing only positive value, hence
the black colour is not more visioble.The output feature map here is also
referred to as the ‘Rectified’ feature map.

Even through ReLU is the activation layer with the closest neuron be-
haviour, it has several flaws. As displayed in figure 2.9, ReLU is not
zero-centered, it is ubounded and could happen that ReLu neurons goes
into states in which they become inactive for every inputs receiving, with
no gradients flow backward through the neuron
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Figure 2.9: image which applied relu[6]
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2 – Theoretical Background

2.3 CNN architecture
Interested in ANN started almost 80 years ago, after experimental works
start understanding how mammalian visual cortex works, permitting to
scientists to build model similar to biological neural networks.[19]

From this scenario, Convolutional Neural Network raised up. A typical
CNN structure is composed of an input layer handling images for com-
putational stages, an output layer that produces the final answer on the
classification task, and several hidden layers where the feature extraction
takes place. Indeed, from a functional perspective, CNNs can be divided
in two main functional regions: feature extraction, and classification. The
former region is where most computations take place, and it is mainly
composed of a specific kind of layer: the convolutional (CONV) layer,
where several multidimensional matrix-vector multiplications are carried
out between input images (or feature maps) and abstract filters learned
by the CNN itself. Every years differents CNN architectures challenge in
a competition each other in order to obtain the highest score prediction.
This competition is the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC), based on ImageNet project. The ImageNet project is
database containing over 14 million images used for training or predicting
patterns for CNN . In the 2011, Before the spreading of CNN, the best
prediction score obtained in a top-5 rank was to 26.2%. The following
year, AlexNet reached a 15.3% top-5 rank score.

2.3.1 AlexNet
AlexNet [25] (fig2.9) is a CNN architecture come into the limelight for
being the 2012 ImageNet[31] LSVRC-2012 [28] competition winner by a
large margin (15.3% VS 26.2% (second place) top-5 error rates). The
network was trained for 6 days using two GTX 580 3Gb GPUs. It is
based on 5 convolutional layers and 3 fully connected layers. Relu is
applied after every convolutional and fully connected layer and padding
layer is applied before the first and the second fully connected layer. The
network has 62.3 million parameters, and needs 1.1 billion computation
for completing the whole CNN operations. Convolution layers are only 6%
of all operations, but it consumes 95% of the whole computation. Going
in details, figure 2.9 show the overall architecture. The first layer is based
of a convolution with 96 filters 3x11x11 with a stride=4. The outputs
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produced go to the second layer, which applies first a max pooling and
then a 256x96x5x5 convolution. Similar behaviour for the third layer,
differing just for the filter size of 384x256x3x3. The last two convolution
layers have the same weight size 384x384x3x3. After completing this part,
the output is "flatted" passing through the two fully connected layer, giving
finally the result.

Figure 2.10: overall AlexNet architecture [25]
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2.3.2 ZfNet
ZfNet[26](fig 2.10) is CNN that won the competition ILSVRC 2013 [30]
reaching a top-5 error rate of 14.8%. It has almost the same structure
of AlexNet, tweaking the hyper-parameters of AlexNet and adding more
CNN layers.

Figure 2.11: overall ZfNet architecture [26]
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2.3.3 VGG16
Another important CNN architecture is VGG16 [27](fig 2.11). It based
on a long chain of convolution layer (13), with size 3x3. It reaches 70,5%
Top-1 Accuracy and 90 % Top-5 accuracy. VGGNet is built on 16 con-
volutional layers using a uniform architecture. It executes 3◊33 times
33◊3 convolutions and 2◊22 times 22◊2 pooling requiring about 140 mil-
lion parameters, resulting difficult to handle.Nevertheless, it is currently
the most preferred choice in the community for extracting features from
images. Picture 2.11 shows the whole architecture

Figure 2.12: Vgg19 architecture [27]
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Chapter 3

Hardware architecture
for CNN

In CNN architecture, accessing in memory off-chip and computing op-
erations require considerable execution time. Most of the works mainly
focus on the computational efficiency of CNNs, without being interested
in memory efficiency of CNNs. Compared to on-chip memory, accessing
off-chip memory can consume up to 10x times power consumption[1], oc-
cupying the 30% of the whole execution time for completing a certain
task[10].Consequently, it is difficult integrating CNN algorithms into IoT
embedded systems with limited hardware resources. A possible solution
could be elaborate datas on cloud, but according to CISCO, 5 quintllion
bytes of datas are produced every day and by the year 2020, more than 30
billion of devices will be connected in internet [2]. So in order to not con-
gesting internet traffic, in cloud computing can not be the solution. Datas
have to be manipulate locally, but it means execute a significant memory
transaction on/off-chip and viceversa, degrading both power and timing
performance of the system. Considering a traditional system, based on
Von Neumann architecture, memory off-chip accesses degrade the overall
performance of the system. The CPU must wait for DRAM data, often
wasting clock cycle because the operation cannot be executed if not re-
ceived the data from off-chip memory. A possible solution could be logic
in memory, a memory with some combinational logic associated with each
storage element. This is an interesting solution, but it’ s still a new tech-
nology not tested enough. After having analysed this context carefully, it
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was opted to reduce memory access via compression algorithm and util-
ising systolic paradigms for CNN architecture. In particular was opted
to study two architectures: PE CHAIN an MATRIX PE. They’re both
based on systolic architecture, where the primitive module is the process-
ing element (PE).

Processing Element is based on a multiply and accumulator (MAC) 4
registers ,3 inputs and 2 outputs. It makes a multiplication among ’a’ and
’b’, and then with the value obtained makes an addition with ’x’. ’a’ will
take two clock cycle for set out as output, instead the sum result only one.
Figure 3.1 shows an PE hardware structure.

Figure 3.1: PE logic block rappresentation

The PE can be setup in 2 different setups: "normal mode" and "passing
mode". The former is activated when PE is in charge of executing a certain
CNN operation, viceversa the PE is set in a "idle mode", and it just passes
the data received to the next PE.

Many systolic architectures were analysed, but because of Pixel Clus-
tering algorithm nature ( convolution kernel window must slide on the
input row by row). the choice was to implement 2 predefined structure :
PE CHAIN an MATRIX PE. The former is useful when good performance
is not the primary target but rather than power consumption, viceversa
Matrix PE is advised.
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3.1 CHAIN PE

Figure 3.2: PE logic block rappresentation[23]

Chain PE [23] is 1D chain architecture developed in order to improve the
energy efficiency of the system. As the name suggests, PEs organization
forms a chain, as depicted in figure 4.3. Chain PE is controlled by INRI
Dispatcher that setups the environment to work correctly The dataflow
execution is like this :

1. INRI Dispatcher sets up the CHAIN NN to CNN parameters received
by the user.

2. It computes how many kernel fit in the PEs, activating the useful ones
and switching to "passing mode" the others.

3. IINRI Dispatcher start charging kernel into PEs

4. The CNN operation desired begins.

Compared to a traditional CNN, chain_NN has following advantages:

1. Good energy efficiency compared to the others systolic architecture.

2. It just required KxK PEs to work correctly (where K is the kernel
size).
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3. It is highly reconfigurable permitting to obtain high performance for
different CNN parameter.

Figure 3.3: An example of how a 1D chain architecture is divided into
cascaded systolic primitives for various kernel size K [23]
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In Fig. 3.3, the PE chain is splitted into 1D primitives according to
the kernel size. The upper side displays when 1D primitive contains 9
PEs (K=3) while the lower one K=2. The first PE of the chain receives
the input from INRI Dispatcher, while the last one send the result to the
Pixel Clustering module. For this research, it was opted to use a systolic
chain composed of 121 PEs. Table 3.1 shows different possible kernel size
combinations that can be obtained having 121 PEs.

Table 3.1

Kernel size # of PEs primitive # of active primitives # of active PE Efficiency
3x3 9 13 117 96%
4x4 16 7 112 92 %
7x7 49 2 98 81%
9x9 81 1 81 66%

11x11 121 1 121 100%

For implementing 1d chain architecture, every primitive for convolu-
tions are are represented as 1D implementation.This is obtained using
pipeline technique, forming a chain of multiply-accumulate operations
(MAC) depicted in Fig. 4.5 designing a systolic architecture called 1D
systolic primitive. 1D systolic primitives are based on a group of KxK
identical PEs displayed in Fig. 4(a). The KxK PEs have the same size of
a convolutional kernel window. Every PE, before start the "real" opera-
tions, has charged by INRI Dispatcher with a specific kernel weight.
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Figure 3.4: Each pipeline stage forms a basic process engine (PE). The
cascading PEs form a 1D systolic architecture for a 2D convolution
operation[23]
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3 – Hardware architecture for CNN

Thus, this type of architecture are able to pass and reused both in-
put data and partial sums during convolution, without accessing external
memory. Meanwhile, it has a fixed input bandwidth requirement and a
constant output delay regardless of the kernel size. Therefore, this 1D sys-
tolic primitive can not only decrease the memory accesses, but also can be
designed according the performance and kernel size desired. Concluding,
This architecture is easy to build and implementing , but it presents some
flaws. The more the matrix kernel is big and the less inefficient is. in
fact for example considering a convolution with a matrix kernel 3x3 and
stride 1, the 33% of the clock cycle bring useful information. Doing the
same thing, but with a matrix kernel 11x11, only 1 clock cycle to 11 bring
useful information, reducing the efficentess of the system.

3.2 PE Matrix
This architecture [11] is developed in order to achieve very high perfor-
mance. In order to get it, it needs (KxK)xN. where K is the size of the
matrix kernel and N is equal to the M-K+1, where M is the heigh of the
matrix input.

Here below a picture of the system:

Figure 3.5: PE Matrix overview [11]
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Explaining in details, the CNN evaluated based its architecture using
a systolic one, where the basic element is the PE. As the name suggest,
the PEs are positioned forming a matrix, where a PE communicates with
every module around it. The input value stays in a the PE for two clock
cycle passing from the two registers, while the partial sum remains just
for one clock.The inputs enter in the PE and it is executed the multi-
plication with the filter value previously stored by INRI Dispatcher.The
result multiplication obtained is summed with the partial result received.
Meanwhile, the value stored in the first register goes in the second one,
while the value stored in the second register become the output of the
PE. Then, the row-interface cell handles the whole partial sums produced
making and addition and subsequently sending to Pixel Clustering mod-
ule. Given the area required for implementing this kind of architecture
(first AlexNet layer would require 25894 PE) ,was opted to use a simplified
version of it, inserting only a single matrix PE 11x11

Figure 3.6: LowPE Matrix overview [11]

. Performance are affected but not so much as it can expected for one
reason: often in the convolution the stride is not equal to one, so we have
different primitive matrix PE that waste power computational producing
not useful results.This is avoided using only one primitive matrix PE.
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Chapter 4

Hardware software
co-design for CNN
Memory off-chip accesses, are most of the times, the bottleneck of high
performing systems.

The microprocessor speed grows much faster compared the rate of im-
provement in DRAM speed.It can not be considered as solution down-
streaming the CPU frequency because it would stil worse the performance.
Picture 4.1 shows CPU and DRAM performance growing through the
years. CPU has an exponential growth, while DRAM a linear one.

Figure 4.1: growth comparison among CPU and DRAM [8]

To overcome this gap , new technologies are arising, such for exam-
ple logic in memory, a memory with some combinational logic associated
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with each storage element. This is an interesting solution, but it is still
an immature technology, and for INRI development was preferred to use
traditional CMOS facilities.

The building and testing of the project required the adoption of differ-
ent programs and code languages. The first idea was to develop the whole
system using HDL programming, in particular VHDL, but during the
first experiment, was noticed that syntesis of the whole system required
long time. For this reason was opted to mix both hardware and soft-
ware techniques for simulating the system. Starting from the beginning,
the essential parts of architecture (PE, Pixel Clustering module and the
dispatcher) was written using HDL language (VHDL) using Questasim
10.4 IDE, testbenched for observing the correct behaviour, synthesized
them and extracted informations about their main value (area occupied,
power and timing necessary to work correctly ). After gathered the main
informations from the synthesis, it was developed a tool written in C us-
ing XCode able to provide the energy, power consumption and the clock
latency per operation of the system. After completed the hardware sim-
ulation part, concerning the prediction part, it was built a tool written
in Python with Keras framework, feed with inputs data by ImageNet, a
very large dataset used for official CNN competition. Figure 4.2 shows
the overall architecture

.
It is composed from these modules:

• Two Pixel Clustering

• Dispatcher

• CNN architecture

• Local buffer

The system works in the following way:

1. The first step is retrieving data from the memory off chip. Datas pass
through pixel clustering module that apply the algorithm.

2. The dispatcher knowing in advance the type of CNN architecture from
the data received by user chose place the data in the right order for
it
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4 – Hardware software co-design for CNN

Figure 4.2: INRI design representation

3. based on operation requested it activate/deactivated the PE, in order
to improve energy efficeness

4. Then, starts the operation desired ( the most of the test was done
using convolution operation because of complexity, able to reach the
90% of overall performance of the operations).

5. Later, datas pass again to pixel clustering module, before stored in a
second local buffer. Completed it, they re sent again to the memory.

4.1 Dispatcher
The first CNN built, was LeNet-5 in 1998. It was used by several banks
in order to hand-written digits on checks. [14] Compared to 20 years old,
the CNN complexity raised of different orders of magnitude( today a CNN
architectures can reach 100 million parameters, LeNet-5 compared to it,
it has 60k parameters [13]), permitting to reach high accuracy predic-
tion. This spreading happens for two main reasons: first the increasing
of computational power has allowed to complete complex task in accept-
able amount of time and second the lowering cost of memory, allowing
to store a huge amounts of data. For this reason, in the actual CNN, it
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is necessary to implement a module that orchestrates the whole opera-
tions. For example, a bad accessing ram management leads to degrade
the speed of the system, and if it doesn’t respect the DRAM idle time, it
could provide an unexpected value conducting the operation to return the
result wrong. Another case could be leave activated some modules even
if not used. Considering a PE that just passes information to another PE
without computing any operation, it will consume the same even through
is not necessary.

Starting from this postulates, it was introduce an hardware dispatcher
in the system: INRI Dispatcher. Its duty is to handle the whole op-
erations, outlining when read/write in local buffer/memory, which CNN
operation execute, which PE activate and so on.

In order to achieve this enhancement, the Dispatcher is supported by a
local buffer and CNN systolic architecture. Thanks to this optimizzation,
is possible to achieve high performance, reducing power consumption.

It was realised using HDL language and simulated developing a tool.

4.1.1 Hardware
The hardware realization, starts with coding the module using VHDL un-
der Questa Sim-64 10.6 program. After completing it, was build differents
testbenches for confirming the correct behaviour. Then, it was synthesised
with CMOS045_SC_14_CORL_LS_bc_1.05V_105C library using de-
sign compiler. The INRI Dispatcher ,to set environment correctly, needs
to receive two macro groups inputs from user: information about CNN
structure and data to parse. The former is about the number of PEs that
compose the system, local buffer size, CNN operation desired, filter size
and the type of CNN architecture chosen, while the latter is the image
with its size. After gathered all these informations, the dispatcher starts
doing optimizzation, computing how many matrix filters can fit in the
PEs, inserting in each of them, the filter values withdrawn from off-chip
. then the PEs not exploited for any computation, change their status
in "passing mode", where their duty is only passing the value to the next
PE .Next step, it’s withdraw data inputs from DRAM and place them
correctly in the local buffer. After setting up the environment, the dis-
patcher launches the operation desired and feeds the CNN architecture
with datas. The dispatcher had to know in advance t which clock cycle
contains useful partial sum to store in local buffer or not. These steps are
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repeated until the operation is completed. Figure 4.1 shows an example of
convolution operation. The dispatcher sets the environment charging the
filter value in PEs and stores the input datas inside local buffer.It launches
the convolution and waits for the right clock for getting the partial value
to store it in the on-chip memory. These steps continue until all filter
kernel are parsed

Figure 4.3: example of dispatcher execution flow

4.1.2 Software
Given the complexity of the whole system, it wasn’t possible to synthe-
sised it, because it would have required too much time. For this reason, it
was opted to build a simulation tool that returns the main informations
(area occupied, power consumed, clock latency for completing an opera-
tion an energy ) about architecture. The software is called "Performance
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Extractor" and it was built using C language
It works receiving two macro groups informations from user: infor-

mation about CNN structure and Hardware architecture. The former is
about the number of PE that compose the system, the local buffer size ,
the CNN operation desired, while the latter is the input size, kernel size
and channel, stride and padding. Based on these inputs, the tool is able to
elaborate it and report information about time latency, area occupied and
power consumed. Figure 4.2 shows a dataflow execution of the software.
This tool doesn’t give any information about the prediction score.

Figure 4.4: Software dataflow

4.2 Pixel Clustering
Reducing memory space requirement is important to many applications,
in particular for embedded systems, permitting to drastically reduce the
memory latency hence the energy consumption.

CNNs manipulate a huge quantity of datas, coming from input data,
weight parameters and activations as an input propagates through the
network.For example, ResNet network has the 50-layer that handles about
26 million weight datas, computing about 16 million activations in the
forward pass. If not applied any optimizations, huge quantity of memory
is necessary, making the system more expensive, bigger and power hungry.
To overcome these issues, it was developed a compression algorithm able to
reduce up to 4x times the memory access, without affecting in significant
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way the prediction of the system. The module was produce in hardware
and simulated using Python. It was called "Pixel Clustering". The idea
behind the algorithm is that given an image, the pixels contained in a
certain row, the ones close each other , under a certain threshold, have the
same value. Exploiting this postulate developing a tailored architecture, it
is possible to drastically reduce the input size, leaving almost unchanged
the image, hence reducing memory access.

4.2.1 Hardware
The hardware realization, starts with coding the module using VHDL un-
der Questa Sim-64 10.6 program. After completing it, was build differents
testbenches for confirming the correct behaviour. Then, it was synthe-
sised with CMOS045_SC_14_CORL_LS_bc_1.05V_105C library us-
ing design compiler . For making this module compatible with INRI, was
slightly modified the architecture and the way reading data . Values are
stored inside on 32 bit but only 19 bits are effectively used. 16 bit contain
the data value while the last three ones are used to indicate how many
times is repeated. Figure 4.3 illustrate how it is implemented in a memory
word cell.

Figure 4.5: word cell rappresentation

Starting from the beginning, the module receives the input data, setting
it as "primary value". Based on decision user, the module will build a
range J, where J= primary value±T . The next inputs are approximated
to the "primary value" if their value are included inside J range. The other
parameter set by user is G. With this parameter we define how many times
at most we can inglobate the values under J range.

The operation completes when a value goes out J or has been reached
the maximum elements for a group. the module returns as output the
data indicating how many times repeat it. This operation is performed
when we access the very first time in off-chip memory and when the CNN
operation is performing a convolution.

#$



Nicolò Morando et al.

Figure 4.4 depicts a real application of Pixel Clustering. In this case was
opted to set G=4 and T=3. In this example, exploiting this stratagem,
the memory access is 15x times reduced.

Figure 4.6: Pixel Clustering application

4.2.2 Software
Given the complexity of the whole system, it wasn’t possible to synthesised
it, because it would have required too much time. For this reason, it was
opted to build a simulation tool of the module that returns the image
compressed and memory access savings. The software is called "Pixel
Clustering " and it was built using Python language. It receives as inputs
the grouping and threshold value for the clustering and the input to apply
the algorithm. The program reads the datas and apply the clustering. It
returns the data compressed and the memory access savings. Image 4.5
displays an example of the algorithm application. The image on the left
is without any compression technique. User send as input the image on
the left,setting the g=4 and k=5 in this case. The program produces as
output the image on the right . The image obtained was feed on CNN
AlexNet returning a prediction score of 79% that the picture contains a
cat ( the original one reach a score of 86% including the same sentence),
but lowering 4x times memory access.

4.3 CNN simulator framework
During the first phases of the work, it was noticed that wasn’t possible
to realise the whole system via hardware, because of the amount required
of time requested for synthesis. The system analysis was splitted in two
parts: one concerning performance analysing power consumption, clock
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Figure 4.7: On left the original picture, on the right the same image with
pixel clustering applied with cluster =4and threshold = 5. Even through
they look like the same picture, the second image feed as input in INRI
architecture reduces the memory access 4 times lower.

latency per operation and overall area of the system and the second one
about a performance prediction. From hardware analysis the first step
was developed PE, INRI Dispatcher and Pixel Clustering modules.

For every module was done the following steps:

• HDL module coding : Each module was written in VHDL simu-
lated using Questa Sim-64 10.6.

• Testing the module behaviour: For every module was developed
a testbench in VHDL in order the test the correct working. The
program used was Questa Sim-64 10.6.

• Synthesis & Constraints : Every module was synthesized using De-
sign Vision with CMOS045_SC_14_CORL_LS_bc_1.05V_105C li-
brary, setting the clock constraint to 8 ns.

• Extracting information : with the commands “report_area”,”report_timing”,
“report_power” was extracted respectively information about area
size, slack violation and power/energy consumption

In table 4.1 are shown the information extracted:
After gathering all the informations of the macro blocks , in order to

analysing the performance of the complete system was developed a tool
using C language.

The program returns as outputs the power consumption, the energy
and the clock latency for completing the operation of the system.
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Table 4.1: Synthesis results

report power report area slack
PE 312e2 mW 704,188802 5,18ns

INRI DISPATCHER 512e2 mW 1539,1455 3,5ns
Pixel Clustering Module 2,48e2 mW 455,4648 5,4ns

(a) PE RTL design (b) INRI dispatcher RTL design

(c) pixel clustering RTL design

Figure 4.8

About Prediction, it was developed a tool that returns a top 1/3/5 CNN
architecture and then it makes a percentage score comparison with an
image without any modification and its counterpart with Pixel Clustering
algorithm applied. The tools is "Result Comparison" and it is written
in Python. It was chosen Python because of its good integration with
machine learning frameworks.

The CNN architecture implemented was AlexNet, VGG19 and ZfNet.
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Chapter 5

Results

5.1 Experimental Setup
The experiments proposed trying to demonstrate the possible performance
improvements achievable using INRI architecture concerning memory ac-
cess, clock latency and power savings without loosing significant percent-
age in prediction. The INRI hardware configuration used for the test is
256kb local buffer SRAM, 121 PE and 125 Mhz frequency. Summarising,
the topics of interest covered with experiments are:

• Memory access

• Accuracy drop

• Prediction score drop

• Power savings

It was analysed both INRI with different setup Pixel Clustering algorithm
configurations ( grouping values equal to 4,7 and threshold 5,7,15) and tra-
ditional system without any reduction technique.Charts results obtained
are an average score among the three CNN architecture VGG16, AlexNet
and ZfNet, including all their layers. Completing the part about memo-
ry transaction, was investigated the accuracy compared to a traditional
system. It was analyse how INRI top1 prediction score differs from a
traditional architecture, with same inputs, filter and CNN architecture.
The INRI configuration used is grouping values equal 4 and 7 and for
each of them threshold values equal 5,7,15. Terminated it, was also tested
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the INRI prediction score. Then was effectuated a test concerning power
consumption, making an analysis with traditional system and INRI.

5.1.1 Dataset

For testing INRI, the dataset chosen was ImageNet, using more than 10k
image of different randomly classes. ImageNet contains over 14 million of
images labelled splitted on 20 thousand categories [31]. It was opted to
using these database because is the most used for CNN challenges.

5.1.2 Program languages and frameworks

For the hardware simulation, it was used C language with XCode IDE.
Pixel clustering and result comparison was implemented using Python.
It was chosen because it’s a very powerful scripting language and it’s
extremely supported for machine learning. Concerning about CNN and
prediction parts, it was simulated using Keras.

Keras is a powerful framework for Python able to execute some of
the most famous CNN pre trained architecture model such as VGG-18,
GoogleNet, AlexNet. Besides is also possible to build its own CNN archi-
tecture. For this reason it was chosen to be used in the CNN implemen-
tation.

The Keras installation is the same one for every Operating System, just
open Pyhton terminal and write "pip3 Keras".

5.1.3 Hardware simulation

The code was developed in C language. If you are in a windows environ-
ment, it just to double click on the .exe file and execute the program. If
you’re under unix open the terminal and through the commands goes to
the folder where the program is placed and launch it. After launching the
program, it bring you step by step asking you the topology and the main
characteristic of the system. It gives as output, the power consumption,
the energy and the clock latency for completing the operation.
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5.1.4 Pixel Clustering
To set the environment, put the program and the images you want to
apply the algorithm on the same folder, just they’re are named with "im-
ageXXXX.jpg (where XXXX is a number that goes from 0001 to 9999).

After downloading the program, open the Python shell and goes through
the folder where there is the program. Launch the program and after the
conversion you should have the images converted called "imageXXXXopt.jpg".
It also returns the average memory accesses reduction.

5.1.5 Result comparison
Put the program in two folders: the one where is present the images
without Pixel Clustering and the one where is applied

Launch the program and it produces a .txt value where, according to
user choice, writes the top 1/3/5 prediction score results. (in the folder
containing image applied Pixel Clustering algorithm the file produce is
called "opt.txt", while in the other folder is "norm.txt").

The part about the prediction was developed using Keras and its pre-
trained model.

5.1.6 Result comparison2
After producing the two txt files, put them in folder where is present
"result_comparison2.py". It give the percentage of how the two systems
produce the same prediction.

5.2 Memory access
In the x-axis are set all systems tested, represented with diferents colour,
while in y-axis shows normalized values in percentage memory access off-
chip drops compared to a traditional system. For example if a certain
system has a y value equal 0.1 it means that compared to the same system
without any smart facilities, it accesses in memory 10 times less. As
depicted the figure 5.1 the CNN architecture with the lowest memory
access is INRI set with g=4 and t=15 (red bar), reducing the accesses
about 3x times.
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Figure 5.1

Figure 5.2 repeats the same experiments, but change g=7. In this case,
it is possible to obtain even an higher memory access off-chip reduction ,
reaching a percentage about 75% (4x times lower)

Figure 5.2

Evaluating INRI with EYERISS, a dataflow state of art for CNN, it
achieves a better ratio memory access/operation, requiring less data trans-
fer on-off chip for operate correctly. Figure 5.3 shows an average reduction
of 30% using CNN Alexnet an INRI g=4,k=5.
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Figure 5.3
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5.3 Accuracy
An important parameter for a CNN architecture is accuracy. A good
prediction score is around 80% for top-1 chart and 90% for top-5 one. , For
analizing it , it was used 10k randomly images from ImageNet. For every
image was applied the Pixel Clustering and then it was compared with its
same one but with applied the algorithm and see if they have the same top
1.Y-axis shows in percentage normalised by 10 how much the INRI top-1
output is equal to a system without Pixel Clustering. For instance if a
certain system get a score equal ’1’, means that it has obtained, for every
image, the same top-1 prediction with a system feed with no modified
image. x-axis shows all architecture. So it wasn’t analysed directly the
prediction of the INRI, but rather, in percentage, how the outputs differ
from a traditional system.

The setup used was ZFNet, AlexNet and VGG 18 implementing them
on a system without any memory deduction technique and INRI with
g=4,7 and t=5,7,15.

(a) ZfNet (b) AlexNet

(c) Vgg19

Figure 5.4: CNN comparison with g=4

As we can notice in figure 5.4 , a good performance has reached when
g=5 with an average loss around 5%, achieving its best performance has
reached when g=5 and k=4. When g=7 (figure 5.5) the accuracy has
lower performance, with an average around 15%.
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(a) ZfNet (b) AlexNet

(c) Vgg19

Figure 5.5: CNN comparison with g=7

The best trade off among memory access/ accuracy is setting g=4 and
k=5. With this experiment was not analyse the prediction of iNRI , but
rather how differs the outputs from a traditional architecture.

5.4 Prediction

CNNs are used most of the times for image and video recognition. For
this reason the main purpose is realise a machine that achieves a good
prediction.

In this section was analyse the INRI prediction score top-1. It was used
a set of 30 images coming from 5 categories (cat, dog, cow, car, chair) and
AlexNet, VGG-16 and ZfNet as CNN .

The results in figure 5.6 shows INRI achieved an average score of 70%
in the three CNN, while a tradition system reached 76,6% .
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5.5 Bottom-up: training and testing a CNN
architecture with INRI

The tests done until now has demonstrated a significant memory reduction
without affecting too much performance (above all using INRI with g=5
and t= 4 settings), next step was about built a CNN from the bottom,
training the system with Pixel Clustering images input and after starting
the predictions.

For this reason was developed a CNN able to recognise if the input
received contains was a dog or a cat. The source code is here available

https://github.com/nmorando/realtb/blob/master/thesis/dogcat
. For this experiment was trained two networks, one with Pixel Custer-

ing algorithm and the other one without any algorithm. Then for every
network was send the same dataset with and without Pixel Clustering
algorithm. For training the networks was used a dataset containing 1k
image splitted halved for both.

(https://github.com/nmorando/realtb/blob/master/thesis/dogcat.)
For the prediction set, was used 100 randomly image of cat or dog
( https://github.com/nmorando/realtb/blob/master/thesis/dogcat)
. Both CNN architecture achieve a score about 90% of accuracy, with-

out any significant different among them.

5.6 Area & power consumption
The introduction of a dispatcher and a Pixel Clustering bring improve-
ments in terms of system performance and memory access, garantueeing
reasonable containment in terms of area and power consumption.

The main area is occupied by the PE, followed by the INRI dispatcher
and then to the Pixel Clustering Module.

5.6.1 Area
The overall area occupied by the system (local buffer excluded) is equal
to . A single PE size is 7744um2 , but in the system 121 PEs are presents,
occupying 937024um2. The whole area occupied is equal to 939473um2.
The insertion of a dispatcher and a pixel clustering , occupy in percentage,
only the 3,30% total area.
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Table 5.1: Area results

total area um2 total area %
PE 7744 96,7

INRI DISPATCHER 1539,14 2,78
Pixel Clustering Module 455,46 0,52

5.6.2 Energy & Power consumption
Concerning about the power supply, as depicted in table 5.2, PIxel caster-
ing module consumes 2,48 mW, while INRI DISPATCHER 51,2 mW and
PE 32 mW.

The module off-chip memory considered was Micron DDR DRAM. Dur-
ing operation mode, it consumes 81 mW. More informations are available
on this link https : //www.micron.com/parts/dram/ddr4≠sdram/mt40a512m16jy≠
062e?pc = 6BD1DB2E ≠ A721 ≠ 4109 ≠ 8CE3 ≠ 420A8A22E528.

Table 5.2: power consumption

power consumption mW
PE 32

INRI DISPATCHER 51,2
Pixel Clustering Module 2,48

Table 5.3 shows INRI power consumption and average energy consumed
to complele a CNN layer considering off-chip memory. The average en-
ergy necessary to complete a layer is equal to 4465 J ( The measure was
obtained doing an average between all layers of all CNN architectures), A
traditional system, without any stratagem to reduce memory access con-
sume 6577 J. In comparison it was able to achieve an energy reduction
equal about 35%.
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Table 5.3: power & energy consumption

power consumption mW energy consumption J
Memory 81 11902,00

INRI DISPATCHER 51,2 1539,15
Pixel Clustering Module 2,48 2222,00
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5 – Results

Figures 5.6 shows the average energy reduction concerning memory
accesses. A traditional system consumes about 30517 J, while INRI system
11902 J a reduce around 0,4%. The tests consider the partial sum, ofmaps,
ifmaps, weights.

Figure 5.6
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Chapter 6

Conclusion
Compared to a traditional system, this works demonstrates that imple-
menting a systolic architecture and pixel clustering algorithm, is possible
to reduce 3 times memory off-chip reducing up to 70% power consump-
tion. This can be useful above all in that system that needs to implement
vision recognition, without having high performance system.

Besides was also demonstrate that is possible to train. the network
achieving interesting result. A further step enharced of the system could
be a better memory management concerning the pixel clustering algo-
rithm.

The system implement a SRAM with 32 bit word size cell, but only 19
(16 bit contains data,3 bit for algorithm) of them are really use.

An interesting implementation could be reduce the bit data to 8 (dif-
ferent studies demonstrate that up to 8 bit, the accuracy of CNN is still
accettable),testing the performance and so implementing a sram with 16
bit word cell.
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Chapter 7

FIles
In https://github.com/nmorando/realtb/blob/master/thesis/pe

are available all files described in the previous chapters, where is pos-
sible to download an make every modification in order to make improve-
ments.
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Appendix A

image_converter.py
import cv2

import numpy as np
from PIL import Image
import os
# read image into matrix.
directory = os.fsencode("/home/nicolomorando/Desktop/testset")
counter_p=1
fc = 0
fco = 0
for file in os.listdir(directory):
filename = os.fsdecode(file)
if filename.endswith(".jpg") and filename.find("opt") == -1:
if(counter_p<10) :
m = cv2.imread("image_000" + str(counter_p) + ".jpg" )

if(counter_p<100) and (counter_p>=10) :
m = cv2.imread("image_00" + str(counter_p) + ".jpg" )
if(counter_p<1000) and (counter_p>=100):

m = cv2.imread("image_0" + str(counter_p) + ".jpg" )
# get image properties.
h,w,bpp = np.shape(m)
counter=0
tmp=0
counter_noOpt=0
counter_op=0
# BLUE = 0, GREEN = 1, RED = 2.
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for i in range(0,3):
for px in range(0,h):
for py in range(0,w):

if(counter==0):
tmp=m[px][py][i]

counter_op=counter_op+1
if((m[px][py][i]>tmp-5) and (m[px][py][i]<tmp+5)):

m[px][py][i]=tmp
counter=counter+1

else:
counter=0

if counter==3:
counter=0
counter_noOpt=counter_noOpt+1

cv2.imwrite(’img_R-G.jpg’,m)
print(counter_op)
print(counter_noOpt)
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Appendix B

comparison_result.py
from keras.preprocessing.image import load_img

from keras.preprocessing.image import img_to_array
from keras.applications.vgg19 import preprocess_input
from keras.applications.vgg19 import decode_predictions
from keras.applications.vgg19 import VGG19
import cv2
from time import sleep
# load the model
import os
# read image into matrix.
files = open("opt.txt","w")
directory = os.fsencode("/home/nicolomorando/Desktop/opt")
model = VGG19() # AlexNet() ZfNet()
counter_p = 1
# load an image from file
for file in os.listdir(directory):

filename = os.fsdecode(file)
if(counter_p<10) :

image = load_img("image_000" + str(counter_p) +"opt"+
".jpg", target_size=(224, 224))

if(counter_p<100) and (counter_p>=10) :
image = load_img("image_00" + str(counter_p) + "opt"+

".jpg", target_size=(224, 224))
if(counter_p<1000) and (counter_p>=100):
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image = load_img("image_0" + str(counter_p) + "opt"+
".jpg", target_size=(224, 224))

# convert the image pixels to a numpy array
image = img_to_array(image)
# reshape data for the model
image = image.reshape((1, image.shape[0], image.shape[1], im-

age.shape[2]))
# prepare the image for the VGG model
image = preprocess_input(image)
# predict the probability across all output classes
yhat = model.predict(image)
# convert the probabilities to class labels
label = decode_predictions(yhat)
# retrieve the most likely result, e.g. highest probability
label = label[0][0]
# print the classification

files.write(label[1]+"
n")
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Appendix C

comparison_result.py
pt2
c = 0

ce = 0
with open("norm.txt") as f1, open("opt.txt") as f2:

for x, y in zip(f1, f2):
x = x.strip()
y = y.strip()
c+= 1
if x==y :

ce+= 1
print(ce/c)
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Appendix D

performance_extractor
#include <stdio.h>

#include <stdlib.h>
FILE *f;
int n_ram_access=0;
float energy_ram_access = 0;
float energy_conv =0 ;
int clk_ram=0;
int clk_tot=0;
float energy_tot=0;
float pe_energy=0.00000135;
float ram_energy=0.228;
int stride = 0 ;
int padding = 0;
int image_size = 0;
int kernel_image_depht = 0 ;
int kernel_size = 0;
int kernel_pack = 0;
int pe = 0;
int average_mem_access = 0;
int local_buffer_size = 0 ;
int total_memory_access= 0;
float total_number_element=0;
int quante_conv_posso_fare = 0;
int is_1dd = 0;
float how_many_time_i_split=0;
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int main(int argc, const char * argv[])
f = fopen("info.txt","r");
if ( f != NULL )

char line [ 128 ]; /* or other suitable maximum line size */
while ( fgets ( line, sizeof line, f) != NULL ) /* read a line */
if(f != NULL)

fputs ( stride, atoi(fgets ( line, sizeof line, f) ) );
fputs ( padding, atoi(fgets ( line, sizeof line, f) ) );
fputs ( image_size, atoi(fgets ( line, sizeof line, f) ) );
fputs ( kernel_image_depht, atoi(fgets ( line, sizeof line,

f) ) );
fputs ( kernel_size, atoi(fgets ( line, sizeof line, f) ) );
fputs ( kernel_pack, atoi(fgets ( line, sizeof line, f) ) );
fputs ( average_mem_access, atoi(fgets ( line, sizeof

line, f) ) );
fputs ( local_buffer_size, atoi(fgets ( line, sizeof line, f)

) );
fputs ( is_1dd, atoi(fgets ( line, sizeof line, f) ) );
fputs ( pe, atoi(fgets ( line, sizeof line, f) ) );

fclose ( f );
total_number_element = (float)(average_mem_access*image_size*image_size*kernel_image_depht);
if (total_number_element>local_buffer_size)

how_many_time_i_split=(float)(total_number_element/local_buffer_size);

if((int)(how_many_time_i_split)==0)
n_ram_access= total_number_element + kernel_image_depht*kernel_size*kernel_size*kernel_pack;

else
n_ram_access= total_number_element*kernel_pack+kernel_image_depht*kernel_size*kernel_size*kernel_pack;

quante_conv_posso_fare=pe/(kernel_size*kernel_size);
if(is_1dd==0)

clk_tot = (padding*2+image_size-kernel_size)*(kernel_size/quante_conv_posso_fare)*kernel_image_depht*kernel_pack;
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if(is_1dd==1)

clk_tot = (padding*2+image_size-kernel_size+kernel_size*kernel_size)*(kernel_size/quante_conv_posso_fare)*kernel_image_depht*kernel_pack;

energy_ram_access = n_ram_access+ram_energy;
energy_conv = clk_tot*pe_energy;
energy_tot= energy_ram_access+energy_conv;

return 0;
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Appendix E

Processing_Element.vhd
library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity PE is
Port (

clk : in std_logic;
rst: in std_logic;
a : in std_logic_vector (7 downto 0);
b : in std_logic_vector (15 downto 0 );
y : out std_logic_vector (15 downto 0);
a1: out std_logic_vector(7 downto 0)

);
end PE;
architecture BEH of pe is

signal reg1 : std_logic_vector(7 downto 0);
begin
process(clk,rst)
begin

if(rst=’0’) then
reg1<=a;
y<="0000000000000000";
a1<=reg1;

else
if(rising_edge(clk)) then
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y<=a*reg1+b;
reg1<=a;
a1<=reg1;

end if;
end if;

end process;
end beh;
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Appendix F

Pixel_Clustering.vhd
library ieee;

use ieee.std_logic_1164.all;
use ieee.numericstd.ALL;
useieee.stdlogicarith.all;
useieee.stdlogicunsigned.all;
entity pixel_clustering is
Port (
clk : in std_logic;
rst: in std_logic;
a : in std_logic_vector (15 downto 0);
b : out std_logic_vector (15 downto 0 );
th,c: in std_logic_vector( 2 downto 0);
write_en : out std_logic
);
end pixel_clustering;
architecture BEH of pixel_clustering is
signal th1,counter,counter1 : std_logic_vector(2 downto 0) := "000";
signal sel : std_logic_vector(15 downto 0);
begin
process(clk,rst)
begin

if(rst=’0’) then
th1<=th;
counter<=c;
else

’)



Nicolò Morando et al.

if(rising_edge(clk)) then
if((counter1>counter) or (( sel<a+th1 ) and (sel>a-

th1))) then
counter1<=counter1+1;
write_en<=’0’;

else
b<=a;

sel<=a;
counter1<="000";
write_en<=’1’;

end if;
end if;

end if;
end process;
end beh;
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