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Summary

Emergency department physicians receive patients in a wide range of conditions
and must be able to take sensitive decisions in a small amount of time.

Lack of resources, in the form of medical personnel, diagnostic tools, and beds,
as well as improper emergency room access, often translate to high emergency
room crowding.

In addition to the lower perceived quality of service, emergency room crowding
and, in particular, excessive waiting times, are linked to major risks for the patient
health (complications, readmissions, leaves without being seen, greater hospital
length of stay etc) and higher mortality rate.

Analyzing the case of the Consorci Sanitari de Terrassa, in agreement with
which this work has been developed, we propose a methodology to predict hospi-
tal admission from the emergency department using machine learning, right after
triage.

Being able to anticipate hospitalizations at a so early stage could theoretically
allow eliminating waiting times between the physician final decision and the mo-
ment the patient is actually admitted in a hospital room.

Starting from a baseline which only uses data produced in the emergency room,
this thesis shows that integrating data from the patient’s medical history consider-
ably improves the model’s predictive power. A first methodology to remove trivial
cases is also discussed.

The obtained results show that a prediction could be obtained with a nontrivial
accuracy even when using highly interpretable models.
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Chapter 1

Introduction

In the broader health system, emergency rooms are arguably the single facility
which needs to be able to address the major number of diverse events.

Because of their nature, in fact, emergency rooms must deal with patients which
arrive without a prior appointment because they experience an acute condition for
which they need immediate treatment.

Moreover, emergency rooms are often used by subjects which have no access
to other forms of medical assistance and require a consultant in response to unex-
pected and worrying symptoms.

In this scenario, emergency rooms are often the primary access point to hospi-
tals: it is in the emergency room that the decision whether to visit and treat the
patient without a hospitalization or to admit him/her to the hospital is taken.

In the latter case, the patient can directly be admitted to the general hospi-
tal connected to the emergency room. However, it might also be the case that
the hospital is unable to host the patient, either because it is not featured with
the necessary diagnostic and therapeutic tools, or since the patient’s condition re-
quires a specific intervention; it might also be the case that, while the hospital
could theoretically meet the patient’s needs, it is congested and can not receive
new incoming patients. In case the general hospital connected to the emergency
room cannot admit the patient, he or she needs to be derived to another health
centre among the ones available in the area. The patient derivation can be a long
procedure, in which several actors must be coordinated.

In all the above cases, once the target hospital has been defined, a set of bu-
reaucratic procedures must be started to register the patient and officially admit
him or her.

Several studies have shown that longer waiting times result in greater risk of
readmission in less than 30 days, complications and, ultimately, higher mortality.
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1 — Introduction

[20] is a systematic review showing how emergency room crowding positively
correlates with mortality both among patients admitted to the hospital and dis-
charged home; an association is also reported with higher rates of patients leaving
the emergency room without being seen. The link between waiting time, hospital
length of stay and high rate of left without being seen is also reported in [15], where
accelerated care at triage is shown to lead to a decrease in the above metrics.

In [28], waiting room time is found to be a strong predictor of perceived com-
promised care.

In light of these findings, a great effort has been spent by the scientific commu-
nity in finding solutions to reduce waiting time in the emergency room.

Different works have proposed ways of minimizing emergency department crowd-
ing and reducing waiting times, for example by anticipating the triage phase, often
with the help of computer application, or by serving in parallel different subpopu-
lations of patients.

Moving from these considerations, this work proposes a methodology to min-
imize the waiting times between the specialist’s decision to admit the patient to
the hospital and the actual moment the person is admitted to a hospital room. As
anticipated, the time between the two events can be considerable due to managing
issues. In order to shorten admitted waiting times, we propose a method to obtain
an estimation of the likelihood of admission at a very early stage of the emergency
room process, to anticipate any action needed for proper hospitalization.

The project described in this thesis aims to build a model enabling emergen-
cies rooms to estimate the likelihood of admission just after the triage phase, in
which the level of severity of the patient’s condition is assessed and her symptoms
are firstly verified. This phase precedes the specialist consultant, which usually
determines, with the help of other diagnostic analysis, whether the patient’s status
require admission to the hospital.

We are aware that human intervention, in the form of an actual examination

by a physician, is far from being unnecessary, especially for critical decisions as the
ones described above.

However, knowing with a high level of confidence that a person will later need
to be admitted to the hospital can make the procedure to prepare a placing for
the patient (as well as any bureaucratic procedure needed) start earlier, highly
reducing the waiting time between the doctor decision and the actual admission,
while having likely no impact on the patient’s well-being and a fixed and likely low
cost for the hospital in case of false positives.

In this chapter, we briefly describe our case study and define the goal of the
developed project.
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1.1 Context

The Universitat Politécnica de Catalunya (UPC) has a collaboration agreement
with Consorci Sanitari de Terrassa (CST) to work on medical domain problems.
As part of this agreement, the University receives previously pseudo-anonymized
patients’ data for the structures in the Consortium. In particular, in this project,
electronic health records (CMBDs) from five different health facilities will be used.
The nature and structure of the data is described in Chapter 4.

The pseudo-anonymization, performed by the Consorci Sanitari de Terrassa
consists in removing all fields with identifying personal information (e.g., name,
identification documents, address etc) and replacing the unique identifier within
the Catalan information system with a hashed alphanumerical code. This hashed
code allows to find the same patient across files but does not identify him or her
in real life; the identity of any particular patient that is deemed ’interesting’ by
an analysis could, however, theoretically be recovered by Consorci Sanitari de
Terrassa.

The Consorci Sanitari de Terrassa setting is particularly interesting for many
reasons. First of all, the data to which we get access come from a number of
different medical facilities, including emergency rooms, hospitals, primary care
centres, sociosanitary centres and psychological facilities. The joint analysis of
this data allows building a broader picture on the patients’ situation and previous
clinical history. Secondly, all data is managed by the same organization, so that
their joint access could be possible in practice, while in non-related organizations
the problem of integrated access to distributed data is hard to solve. Thirdly,
the Consorci Sanitari de Terrassa is a relatively 'closed’ system: being the city
less subject to touristic flows than bigger cities (e.g, Barcelona), the majority of
the people registered in the emergency room data are resident in the area. This
means a) it is more likely that the emergency room is accessed for actual urgent
situations, and not as an improper way to receive sanitary assistance for people
who can not benefit from other services and b) that is more likely that people
using the emergency room also have used other medical facilities (e.g., primary
care, mental health centres, hospitals, etc.) in the past and that data is available.

1.2 Goal of the Project

The primary goal of the project described in this thesis is to propose several models
to predict the relative probability of admission to hospital for emergency room
patients at triage time, before a proper evaluation of the patient condition, leading
to a diagnosis, is carried out by a specialist.

This would allow for waiting times reduction and ultimately lead to a better
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1 — Introduction

patient experience and recovery on one hand while making the hospital able to
better use its resources on the other hand.

We chose to construct models by excluding diagnostic data (e.g., diagnostic
images) and using less expressive but easily available electronic health records.
Since the high majority of electronic facilities produce electronic health records,
our base model could be used, with minor modifications only, in many real world
emergency room facilities; in settings in which data can easily be shared among
different health centres, as in the case of the Consorci Sanitari de Terrassa, a highly
accurate model, integrating other forms of health data could also be deployed.

We require the model at hand to be accurate in its results and interpretable in
its internal logic: it is important for healthcare professionals who are not data sci-
entists to understand the basis on which decisions are taken in complex situations.

Starting from a baseline which only uses the emergency rooms’ own electronic
records, we aim at showing that integrating data from other types of emergency fa-
cilities highly improves the quality of the prediction and propose a way to integrate
such data.

Finally, we show how the model performs once trivial situations are excluded.

1.3 Structure of the Document

This thesis is structured in the following way: after this introduction, in Chapter
2 we present the background of this work, including a brief presentation of the
Catalan healthcare system in general and of the emergency room organization
and general protocol in particular. We then describe how machine learning can
help in health-related problems, and shortly describe the main machine learning
algorithms and concepts used in the making of this work.

In Chapter 3 we present a review of the literature of machine learning and
heath applications, focusing specifically on techniques used for emergency rooms’
crowding prevention and managing techniques.

In Chapter 4 we describe the datasets used to build the model, including the
main variables and descriptive statistics for such data.

The following chapters describe the models developed, with a focus on the
technical side.

We will first present a base model using emergency room data only (Chapter
5), which will later be integrated with data generated by other health facilities
(Chapter 6). In Chapter 7 we propose a way to exclude trivial cases from the
classification.

Finally, in Chapter 8, we draw our conclusions and present some possible ex-
tension of the presented work.



Chapter 2

Background

In this chapter, we describe the context for which this model has been developed.

We first focus on the health facilities, briefly describing their management;
then, we focus on the emergency room, describing their general organization and
protocols. Secondly, we describe some of the areas of health care in which machine
learning has contributed. In the last section, we describe the basic machine learning
concept that we are going to use in the following chapters.

2.1 Emergency Room Context

2.1.1 Catalan Health Care System Organization

The Catalan health system is centered on a publicly funded system, accessible to
all residents of Catalonia.
Generally, the main services offered are:

o Primary attention: the primary attention centres (CAP) are the first health
facility a person is supposed to contact in case he or she is suffering a health
problem. All other service, in fact, should be accessed via the primary at-
tention centres.

A special type of primary attention centre, the CUAP (Centres d’atencié
primaria, continuada © urgent), are specifically designed to function contin-
uously through the day and deal with emergency situations.

« Specialized attention and general hospitals (hospitals d’aguts): they offer am-
bulatory specialized medical consultations, hospitalizations for severe illness,
surgery and similar services. Urgent situations and emergencies are addressed
in the hospitals’ Emergency Department.

5



2 — Background

e Sociosanitary attention: they are centres designed for chronically ill people,
or people with disabilities or little autonomy, which need a wide range of
continuities assistance, or palliative care.

e Mental health: such centres include ambulatory centres and psychiatric hos-
pitals, among the others.

e Emergency centres: emergencies are dealt with in a number of ways, de-
pending on their nature. Emergency centres include CUAPs and hospitals’
emergency departments. Inspected situations are also dealt by phone (ie., the
health professionals advise the patient on what to do autonomously or which

centre to contact, a doctor is sent to the patient’s place or an ambulance is
called).

In the following section, we will focus on how emergency rooms are organized
and what the main steps are in addressing an incoming patient.

2.1.2 Emergency Room Protocol

The general organization of an emergency room can highly vary across different
structures and hospitals.
However, there are some steps which are generally followed.

e The patient arrives at the hospital either by his own mean or by ambulance
or helicopter.

e The non-critical patient proceeds to the registration desk where she iden-
tifies herself, provides the required documents (including insurances, when
necessary) and follows a brief series of bureaucratic procedures.

This step is skipped in case the patient is in a visibly life-threatening condi-
tion, as patients in need of immediate care are sent directly to a treatment
area.

o The patient interacts with a health professional (typically a nurse) explaining
what symptoms or conditions led to her arrival to the centre.

The health professional briefly visits the patient and assigns a numeric code
defining how urgently the situation must be addressed by a specialist. This
operation is called ’triage’ and it is of high importance since it determines
most of the patient’s waiting time. The assigned code ranges from 1 (for
highly urgent situations, with an immediate risk for the patient’s life) to 5
(for non-urgent patients who can wait). When using an electronic health
record, the symptoms described by the patient are encoded in the variable
Motiu using a numeric code. In the case of our interest, the used code is
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2 — Background

ICD-9-CM (International Classification of Diseases, 9" revision - Clinical
Modification, CIM-9-MC in Catalan). [1]

Depending on the situation, some complementary diagnostic proofs can be
advised at this stage (for example, X-rays).

o At this point, the patient must wait for a specialist to visit him or her and
formulate a final diagnosis or require other diagnostic procedures.

Patients are often divided into different groups which are treated in parallel
and for which the assigned amount of resources depends on the triage level.

Once a diagnosis is finally formulated, the specialist decides if the patient
can be directly discharged, treated in the emergency department and then
sent home or if a hospitalization is required.

o In case the patient needs to be admitted to the hospital, if the emergency
has been dealt with in an emergency department linked to a general hospital
and the hospital provides the technologies needed to address the patient’s
condition, the patient is often hospitalized there directly. Otherwise, in case
the hospital is full or is unable to address the patient’s needs, other structures
must be contacted to find the proper arrangement.

In this work, we aim at providing a way of anticipating such procedures, in
order to reduce the patient’s waiting time. Our work shows that it is possible to
predict, with nontrivial confidence, whether a patient will need to be hospitalized
just after the triage has been conducted and his or her symptoms have been noted
by a health professional.

Having such a prediction, the hospital could start the bureaucratic procedures
needed to hospitalize the patient, or contact other health centres if it were not
possible to hospitalize him or her in the same structure. This could drastically
diminish the waiting time after the specialist’s visit, in case the prediction is con-
firmed.

2.2 Machine Learning in Healtchare

Machine learning defines a set of techniques that use statistics to enable computers
to improve their performances on a task with data (ie., ’learn’) without being
explicitly programmed.

Recently, the improvements in such techniques, as well as the unprecedented
amount of publicly available data, have exponentially increased the number of
machine-learning-based application in the most diverse fields.

Healthcare is one of such fields.
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Machine learning has been applied to solve a wide range of health-related prob-
lems. Examples include but are not restricted to:

« Diagnosis, including medical images processing for diseases identification (ex-
amples are [8, 22]).

» Robotics surgery [25, 31].

e Drug discovery [30] and drug-drug interaction identification [33], including
personalized treatments.

o Epidemic prediction and prevention [9].

o Predict patients’ no show [17], hospital readmissions [18], hospital time of
stay [16] and similar issues.

Here, we focus specifically on hospitalization management in the emergency
room.

Some of the applications listed, such as the ones dealing with the diagnosis of
a disease, often rely on data (for example, diagnostic images) that are difficult to
obtain.

In this work, we decided to only use electronic health records to develop our
model. Though the information contained in these data is generally limited, these
data are already produced in a great quantity from hospitals, so that our model
could immediately be used, with minor modifications, by any emergency room
producing electronic health records.

2.3 Machine Learning Concepts

In this section, we will briefly describe the machine learning techniques used in our
work.

A computer program is said to learn from experience E with respect to some
class of tasks T" and performance measure P, if its performance at tasks in 7', as
measured by P, improves with experience E. [26]

Historically, a wide range of algorithms has been developed to enable computers
to ’learn’. In this work, we focus on classification algorithms.

A classification algorithm is a supervised learning algorithm designed to assign
each input vector to one of a finite number of discrete categories (classes). [11]

Among the many well-known classification algorithms, we mainly focused on
decision trees and random forests, as both provide results that can be interpreted
to various degrees, unlike for example neural networks.

8
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We say that a classification algorithm is ’interpretable’ when at least part of
the process that led to the final classification can be understood by a nontechnical
observer.

Following this definition, a classification tree is a very interpretable model, as
a nontechnical reader could look at a visual representation of the tree and easily
follow the rules applied to split each note from the tree root to the ultimate leaf.
As a result, trees can be described as a 'white box’ model: the explanation for any
observable situation in the model is easily explained by boolean logic.

Random forests often produce better accuracy than decision trees but are less
interpretable, as no intuitive visual representation can be easily obtained. However,
it is possible to rank features by the 'importance’ the model assigned to each one,
and this is often satisfying for the non-technical user.

In the following, we briefly present those algorithms.

2.3.1 Classification Tree

Tree-based methods partition the feature space into a set of rectangles, and then
fit a simple model (for example, a constant) in each one. [21]

Different implementations have been proposed. In our work, we use an opti-
mized CART [13] implementation provided by the scikit-learn python library [27],
a free, open-source library, widely used for many classical machine learning tasks.

Given a vector of features z; € R”, i = 1, ...,1 and a vector of labels y € R!, a
decision tree recursively partitions the space so that the data points with the same
labels are split in partitions in which impurity is minimized.

If one calls @ the data instances at each node m, each split (4, t,,) consists of
a feature j and threshold t,, such that @ is split into

Qieft(0) = (z,y) x5 <t

and
Qright(0) = (z,y) 1 xj >ty

where Qicf+(0) and Qrignt (#) are the data instances in the left and right child node,
respectively.

The impurity at node m is computed using some function G(), whose choice
might vary.

The global cost function for a split is 6

H(Q,0) = S G(Queps (0)) + 52" G(Quigra(0))

The best split 8* is then chosen as the one minimizing the cost function H(Q, ).

9
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This procedure is repeated recursively in Qjcr+ and Qrigns until some stopping
criterion is met.

The measure of impurity used in this work is the Gini impurity index, defined
as

G(Xm) = mek(l — Pmk)
k

where p,,, is the proportion of observations belonging to class k in each region
Ry,
1

N,
™ 2,€Rm,

being N,, the number of observations in R, and K = {0,1} for a binary classifi-
cation task.

As a stopping criterion, we define a threshold on the minimum number of
data instances @ to split node m. For nodes containing fewer instances than the
threshold, the recursive process is stopped.

2.3.2 Random Forest

A random forest [12] is classification algorithm which combines the predictions of
several classification trees to improve robustness and avoid overfitting.

Two are the main modification to the algorithm made for each tree in the
ensemble: first, each tree is built from bootstrap sample (ie., a sample drawn with
replacement) from the training set data; second, the split chosen at each node is
the best split among a random subset of all the original features.

Given the set of trees, in the used scikit-learn implementation their probabilistic
prediction is then averaged.

The main parameters to define in a random forest are the number of estimators
(the larger the better in terms of accuracy, at the cost of a greater training time)
and the maximum number of features to be considered at each node.

In this work, we set the number of estimators to 50 and the maximum number
of features to ,/p, where p is the original number of features. For each individual
tree in the ensemble, a threshold on the minimum number of samples needed to
further split the node is set (see 2.3.1); the Gini index is used to compute the
impurity measure.

While the nature of a random forest does not make it possible to understand the
complete sequence of decisions which lead to the final classification, it is possible
to consider the relative importance of each feature in the classification.

10
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The rank is computed by considering at which depth the feature is used in each
estimator. Features used near the tree root contribute more to the classification
(ie., are more discriminative) than features used near the leaves, as they impact
a larger number of samples. Thus, the relative importance of a feature can be
computed by considering the fraction of the samples it contributes to. The relative
importance of each feature is then averaged among all trees to compute the final
rank. See the original description for details [12].

11



Chapter 3

State of the Art

In this chapter, we describe some of the main scientific production in healthcare as
approached under a statistical and computer-science point of view, with a specific
attention to machine learning inspired solutions.

As described in section 2.2, the recent scientific contribution has been huge and
has ranged in a number of different areas, including disease prevention, diagnostics,
therapy and service management.

In the latter area of study, the scientific production focuses on identifying the
critical issues impacting the quality of service and their source or in proposing
methods to eliminate such issues.

Some of this production focuses on admission prediction, which is directly re-
lated to the topic analyzed in our work.

In [24], for example, the author proposes a method to evaluate an individual’s
risk of being admitted to hospital as an emergency inpatient within a year. The
aim of the study is to be able to identify patients at higher risk, to allow the health
system to explicitly target such patients with preventive and anticipatory care.
The method, called SPARRA (Scottish Patients At Risk of Readmission and Ad-
mission), uses a huge quantity of data (4.2 million patients are analyzed) from the
Scottish National Health System. A logistic regression-based algorithm is trained
using patients’ medical history (hospitalizations, pharmaceutic prescriptions, emer-
gency department records, outpatients and psychiatric admissions) during a given
period; this information is then linked to whether or not the patient experienced
an emergency admission in the following year to compute his or her degree of risk.

While the problem addressed by the paper is closely related to the one analyzed
in our work, SPARRA predicts admission in a wide period; our work, on the other
hand, tries to use timely data to predict the outcome of each single emergency
room contact.

12
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Note, however, how the method used in the paper is a 'white box’ which lets
the authors identify risk factors in addition to obtaining the prediction itself.

Many of the studies targeting quality of service in the emergency departments
have identified crowding as a great reason of concern.

In a systematic review of the English-language literature for the years 1989-2007
[10], emergency room crowding is associated with an increased risk of in-hospital
mortality, longer times to treatment for patients suffering pneumonia or acute pain,
and a higher probability of leaving the Emergency Department against medical
advice or without being seen.

[29] identifies among the commonly proposed solutions of crowding additional
personnel, observation units, hospital bed access, nonurgent referrals, ambulance
diversion, destination control, crowding measures, and queuing theory.

Note how most of these solutions imply a nontrivial additional cost for the
hospital.

Recently, machine learning has increasingly being used to address a number of
problems strictly related to crowding and the emergency department in general.

An electronic triage [23] which outperforms the Emergency Severity Index (ESI)
in accurately differentiating patients using machine learning was recently proposed
by Levin et al.

The study uses a random forest trained using several patient’s triage data to
predict the need for critical care, emergency procedures, and inpatient hospitaliza-
tion. The predicted outcomes are then translated to a triage level.

The used data were age, sex, arrival mode, vital signs (temperature, pulse
rate, respiratory rate, systolic blood pressure, and oxygen saturation), reason of
admission and active conditions documented in the electronic health record.

Even if the central problem the study aims to address is different from the one
under consideration in this work, the model developed to predict hospitalizations
is conceptually very similar to the one developed in this work; the used data, how-
ever, are somehow more specific and are not always easily available from electronic
records.

The problem specifically addressed by this work has also recently been studied
in [19)].

Here, data from two hospitals in Northern Ireland are used to predict the ad-
missions from the emergency department.

Three algorithms were used to build the predictive models: logistic regression,
decision trees, and gradient boosted machines (GBM).

The models predicted whether the patient is admitted to hospital based on
the hospital site, the date and time of attendance, the age and gender, the arrival
model, the care group (a category indicating the pathway a patient should take),

13



3 — State of the Art

the triage and whether the patient had a previous admission to the hospital within
the last week, month, or year. No previous medical history data is used.

Although GBM performed best, the paper proposes logistic regression as a
candidate for implementation when interpretability is important.

With respect to the reviewed literature, our approach presents many points
of contact. First of all, many of the considered variables (e.g., demographic, ar-
rival model, triage, motivation, previous admissions) are consistently used in the
literature for such previsions. Many of the reviewed articles also share a special
attention for interpretable models.

The main novelty of our approach, on the other hand, consists of a systematic
use of the patient past medical history, from different types of health facilities, to
perform the prediction.

14



Chapter 4

Dataset

This chapter describes the datasets used to develop the models.
Five different datasets were available, each referring to a different type of Con-
junt Minim Bdsic de Dades (CMBD).

In the following, we first explain what a CMBD is and its main purposes; then,
we briefly describe every single dataset, including its structure, the main variables
we used in the model and some descriptive statistical information.

4.1 Conjunt Minim Basic de Dades (CMBD)

The Conjunt Minim Basic de Dades or CMBD - Catalan for "Minimal Basic Data
Set’ is a set of standards for encoding patient and attention information defined in
detail by the Catalan Department of Health. The standard comprises six different
file formats to cover different types of attention:

o Emergencies ('Urgéncies’)

o Acute Hospitalizations (’Hospital d’aguts’)
e Primary Care (’Atencid primdria’)

o Ambulatory Mental Health

 Socio-sanitary (Long-term, low-intensity hospitals, e.g., for recovery or people
who can’t make independent life)

e Mental Health Specialized Hospitals

15
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The Acute Hospital level is standardized over all Spain and is in fact an exten-
sion of a European standard [32] that sets the minimum that should be gathered
in all EU countries. The other file types have only partially implanted in the rest
of Spain, and Catalonia is unique in that it has defined all six.

The primary use of the CMBD is to establish a common standard of encod-
ing for the information that the central agency in each region or country needs to
collect from all health-care organizations. It is not intended to contain all clinical
information collected about a patient or contact, which would be really compli-
cated because of the diversity of software in use. Instead, it defines a number of
variables that are easy to extract and encode from any system (say, with a SQL
query). The main uses that it currently have are a) statistical studies, for example
for planning the deployment of new infrastructures and b) billing, namely, a hos-
pital uses CMBD to report all the actions it has performed on patients and gets
billed accordingly by the central funding agency (in the public or publicly-funded
systems).

4.2 Emergency Centre Dataset

The central dataset used in the making of this work is a database of electronic
records produced in the emergency rooms, as defined in the CMBD-UR standard.
[4]

Each row of the dataset represents a contact, defined as any type of assistance
given to a patient by any of the emergency resources. These include hospitals’ emer-
gency services, specialized primary attention centres (dispositius d’atencié primaria
d’alta resolucid) and the System of Medical Emergencies (SEM), which deals with
patients either by phone or outside of conventional medical centres (public spaces,
the patient’s house etc).

In the following, we briefly describe the variables we took into account to de-
velop our model. For a more comprehensive description of variables, please refer

to the official CMBD-UR manual.

We uniquely identify patients by their Historia (History), which is a patient id
previously pseudo-anonymized by the hospital.

Some of the patient’s personal data are recorded: in particular, the patient
Date of birth (D_naiz) and Sex (Sexe), encoded as 0 for males, and 1 for females.

Information on the patient’s residence includes his or her City (Muni), District
(Distr), and Country (Pais), all encoded using numeric codes. The variable Pais
represents the country of residence, while Pais orig is the country of birth.
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Figure 4.1: Age distribution in the CMBD-UR
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Figure 4.2: Male and female patients in the CMBD-UR

The variable T'_act (Type of activity) refers to the place of intervention and, in
our dataset, only assumes values corresponding to the ER centre or to the patient
own place. The first value is much more common than the second one, as figure
4.3 shows.

The variable Iniciativa (Initiative) encodes the entity that took the initiative
to bring the person to the emergency centre. It is encoded using five categories:
the patient’s own initiative (1), the legal guardian initiative (2), medical initiative
(3, if the patients arrive from another medical centre), authority initiative (4, e.g.
the police) or a juridical order (5).

"Mitja_a’ (Mean of transport) refers to the means of arrival to the emergency
room; it can refer to the patient’s own means (1, car, public transportation etc),
the ambulance (2), the helicopter (3) or other means.

Where the patient was before coming to ER is recorded in the variable Preceden-
cia (Precedence). The value 1 represents the patient’s house or any other private
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Figure 4.3: Type of activity in the CMBD-UR
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Figure 4.4: Initiative in the CMBD-UR

or public place which is not a general or psychiatric hospital (2), a socio-sanitary
health centre (3), a mental health centre (4), a public or private primary attention
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Figure 4.5: Mean of transport in the CMBD-UR
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centre (5); the value 6 is used if the patient was in a home-hospitalization regime,
while 7 means that the patient arrived following an external consult of the same
hospital.

Precedence
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Figure 4.6: Precedence in the CMBD-UR

The variable Pr_ungencia identifies in which emergency centre (if any) the
patient was prior to his or her arrival to the hospital (the value is 0 if the patient
does not come from another emergency centre).

The urgency code which was activated is registered in the variable Code wurg,
which defines the protocol (where 0 indicates that no particular protocol was ac-
tivated) used to face a given situation. Example include ictus, heart attack, sepsis
ete.

The day and time of the start of the contact and of its finish are recorded in
Starting Date, Starting hour and End Date, End Time, respectively.
Our dataset includes contacts from 31-12-2014 to 03-12-2017.

In addition, the dataset includes important diagnostic and procedural variables.

The variable Triatge (Triage) refers to the triage level of the patients, which
represent his or her degree of priority. The triage code is represented by a number
from 1 to 5 (where 1 means ’resuscitation needed, with life-threatening conditions
(immediate attention needed)’ and 5 means 'not urgent situation, which can be
programmed, with no risk for the patient’.

The variable is missing in the 0.6% of cases.

Date and time of the triage are recorded in the variables Date of triage and
Hour of triage.

The variable Motiu (Reason) refers to what motivated the patients to go to the
centre, as described in the previous chapter.

The variable is encoded using ICD-9 codes. In this representation, the first
three digits represent the more general pathology or condition, which could further
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Figure 4.7: Triage levels in the CMBD-UR

be specified by using up to two other digits. For example, the code 300 indicates
’Anxiety, dissociative and somatoform disorders’, while 300.2 refers to the subclass
of 'phobic disorders’, further specifying that 300.21 is ’agoraphobia with panic
disorders’.

The variable assumes 269 different values in our dataset, once preprocessed
keeping the first three digits only, and is missing in the 0.5% of the cases.

The main diagnosis, as well as the secondary diagnostics, are also recorded.

Other information includes the external causes leading to the condition and all
principal and secondary proceedings.

Finally, the variable S_alta (Exit situation) includes information on the pa-
tient’s situation when leaving the hospital.

It can assume the following values: exit with post-triage derivation (0); exit (1);
admission to the same centre (2); exit with post-assistance derivation (3); voluntary
exit (4); evasion or administrative discharge (5); death (6); home hospitalization
(7); arrival with cardiorespiratory arrest (8).

Values 1 and 3 refers to situations in which the patient is sent to another medical
centre for various reasons, either immediately after triage or after a visit from a
health professional.

Value 8 identifies people who arrive in the emergency room with an irreversible
cardiorespiratory arrest which led to death before arriving at the centre. We re-
moved these patients from our analysis.
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Figure 4.8: ER exit situation in the CMBD-UR

4.3 Hospital Dataset

The second dataset collects entries from the CMBD-HA (hospital d’agut), which
contains information about conventional hospitalizations, major and minor surg-
eries, day-hospitals (hospital de dia) and home hospitalizations.

In the following, we briefly describe the main variables. A more comprehensive
description of variables can be found in the official CMBD-HA manual [3].

In addition to the unique patient identifier Historia and the patient’s personal
data, the dataset includes the hospitalization start date and time and the end date
and time.

The variable C_ingres (circumstance of entry) defines if the visit was pro-
grammed or not, while C'_alta describes the exit circumstance.

The type of activity is encoded in the variable T _act which assumes three
values: conventional hospitalization, major ambulatory surgery and day-hospital
(among the possible ones).

The variable T'_wisita describes the type of visits (initial visit or a follow-up).

The diagnosis, the procedures, and similar information are also included, with
a similar interpretation than the one described in section 4.2.

Moreover, some specific diagnostic variables are included: UCI defines if the
patient needed intensive care, with other variables recording its starting and ending
date and time.

The variable F_Apache (Acute Physiology and Chronic Health Evaluation IT)
describes the grade obtained by the patient in the Apache IT test, which evaluates
a set of physiological parameters of the patient in the first 24 hours of intensive
care.

A_ funcional, A__cognitiv and A__social describe the result of functional, cogni-
tive and social tests, respectively, as performed when the patient leaves the hospital.
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4.4 Primary Care Dataset

This dataset contained entries from the CMBD-AP [6].

The basic unit of the register is the visit, which is considered as any existential
activity performed for a patient by any professional in a CAP or a continued
attention centre and which generates an entry in the patient’s clinical history.

In our analysis, we consider data gathered between 2015 and 2017. Since the
format of the transmitted data slightly changed in 2016, we actually obtained two
different datasets.

Each entry contains the Historia and the personal data of the patient, as well
as the starting and ending dates and times. The variable C_contacte describes if
the visit was previously programmed or not.

The variable T _act describes the type of activity involved, namely if the ac-
tivity was carried out in a health centre, at the patient’s house (or socio-sanitary
centre), by phone or electronically.

The variable Programa is either missing or has value ATDOM (domiciliary
attention).

The field Derivacié encodes if the patient was sent to another health centre
or specialist, and its type (specialist; CUAP or emergency room; socio-sanitary
unit; mental health centre; drug addiction centre; sex-health centre; work-health
centre).

An interesting variable is Tprof, which encodes the main professional figure
which conducted the visit: family doctor (1), pediatrician (2), dentist (3), nurse
(4), social worker (5).

Other variables include the principal diagnostic and when it was first diagnosed,
secondary diagnostics, performed procedures etc.

4.5 Mental Heath Dataset

Another dataset taken into account was the CMBD-CSM (Conjunt Minim Bdsic
de Dades dels Centres de salut mental ambulatoria) [2]

In addition to the identifier (Historia) and personal data, the dataset con-
tains information on the health centre, if any, the patient was prior to admission
(Pr_ingres), the circumstance of the admission (C_ingres, namely if the visit was
programmed or not), the exit state C'_alta, and the classical diagnostical variables
recording principal and secondary diagnosis, external causes and procedures.
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Moreover, the CMBD contains some variables which are specific for the ambu-
latory health centres.

The variable PV describe if the entry corresponds to a first visit of the patient
with a psychologist or psychiatrist or to a follow-up; in that case, the variable
SV contains the number of visits the patient had during the notification period,
while the variable PC' contains the number of complementary proofs for a specific
evaluation in the same period.

The notification period corresponds to a natural trimester (January-March,
April-June, July-September, October-December). As a result, information has a
lower granularity than the one contained in the previously CMBDs, where each
entry corresponded to a single contact.

The number individual (PI), group (PG) and family (PF') psychotherapy ses-
sion in the notification period is included.

In addition, the dataset contains number of times a patient required the at-
tention of a nurse (AI), of a social worker (T'S) or needed home-based attention
(VD); the number of non-programmed visits is contained in VNP.

The variable TMS (Severe mental disorder) indicates if the patient carries a
pathology associated with a severe mental disorder (eg. schizophrenia, major de-
pression, severe paranoia, autism etc), while Prg_TMS indicates if the patient
follows a specific treatment program for his or her severe mental disorder.

4.6 Sociosanitary Dataset

The last dataset taken into account corresponds to the entries of a CMBD-RSS
(Congunt Minim Bdsic de Dades dels recursos sociosanitaris) [5].

The basic unit of the register is the episode. This includes the hospitalization,
ambulatory visits, and home care. Data is registered at the entrance, periodically,
if the patient’s condition drastically changes and at exit (practices vary depending
on the type of service the patient needs).

Many different subcategories of assistance (Codi__ambit) are theoretically pos-
sible. In our case, the only two possible values are SLE (Sociosanitaris llarga
estada), for long-stay and SPA (Sociosanitaris pal - liatives i altres), for palliative
care.

The type of activity refers to hospitalization (21*), home-based care (22*) or
ambulatory care (23%).

The date in which the entry was inserted is in the variable D walor in case of
SLE records; in case this variable is not present, we refer to the date the data was
transmitted to estimate it.

In addition to the common diagnostic variables, the CMBD also contains spe-
cific variables.
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They are related to the cognitive state (e.g. Coma, Memoria recent), to the
communication capability, the mood and the behavioural patterns, the physical
autonomy, the capability of continence, some commonly diagnosed diseases (e.g.
Diabetis mellitus) or other health problems (e.g. Febre); other variables are related
to the nutrition, the skin, the state of day-time wake, the pharmacy administration,
treatments and special procedures (e.g. Quimioterapia), or other therapies.

In our analysis, we only considered a subset of these variable, sometimes aggre-
gating similar variables.
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Chapter 5

Basic Predictive Model

In this chapter, we propose a model to predict a patient’s probability of admission
to hospital following an emergency contact, developed by using the previously
described CMBD-UR dataset only.

5.1 Model Definition

For each contact in the CMBD-UR dataset, given some of the variables available
right after the triage assessment, we want to predict the probability that the contact
will result in a hospital admission, using machine learning.

We suppose the following variables are theoretically available: all the patient’s
personal variable (sex, date of birth, geographical information); who took the initia-
tive to bring the patient to the emergency room (Iniciativa); the mean of transport
used (Mitja__arr); if the patient comes from another health centre (and its type)
or not (Precedencia); if the patient comes from another emergency centre and its
type (Pr_urg); the triage level; the symptoms described in the patient’s (Motiu).
We also take into account if the assistance has been carried out directly in the
emergency room or elsewhere (type of activity).

We model the underlying problem as a supervised classification problem, in
which the previously described variables play the role of features and the exit
status, C_alta, plays the role of label. The label will be binarized, to reduce the
classification problem to an admitted (1) versus discharged (0) binary classification.
The specific exit status (e.g, derivation to another hospital), depends on several
factors (for example the number of free beds in the hospital) and is not interesting
for our purposes.

The main aim of the model is to output a probability of admission.
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To do so, instead of simply considering the class in which the entry has been
classified, we retrieve the probability that the entry belongs to the positive class
(admitted patients).

Since the final decision on the admission depends on numerous, various and
not easily predictable factors (for example, hospitals tend to be more congested
in given periods of the year), in fact, we want to obtain not only a binary label
indicating admission or discharge but also the probability of such admission.

Moreover, having a rank of probabilities could theoretically allow the hospital
to estimate the global cost of admission and discharges depending on how many pa-
tients are admitted, and find the optimal threshold which maximizes the patient’s
well-being while minimizing costs.

Among the requirements for the model, interpretability played an important
role, as anticipated.

Knowing the main factors or - even better - the whole sequence of rules by which
a decision is made can lead the user to a better confidence about model reliability
and helps to highlight bias. Moreover, it could help in gaining an insight into the
main 'factors of risk’ which determine admission from the emergency department.

5.2 Data Preprocessing

In order to obtain the required model, a set of proprocessing step was needed.

Data with unknown target were removed, as well as cases for which the exit
state indicated that they arrived at the emergency with a cardiorespiratory arrest
(so that no other intervention was possible).

After this action, the dataset contained 321691 rows.

Moreover, the dates of birth were transformed into a more intuitive age repre-
sentation.

We decided to remove any subclass of the variable Motiu and keep only a 3-
digit representation. This decision was made in order not to further increase the
number of distinct categories and reduce sparsity.

Moreover, three new variables were manually created.

The first one, (ZER__urg), is a counter of the number of the previous contact
with the emergency room the patient had in the past. In practice, given a pa-
tient code, his or her records are put in chronological order and the counter is
incremented for each new record (having the first record in time #FER_urg=1).

The second one, #H_urg corresponds to the number of times a patient went
to the ER and was later admitted to the hospital, as suggested by his exit status,
in the past. In this case, the first time a patient gets admitted to the hospital, the
counter is not increased to 1, to avoid to implicitly suggest the label (otherwise,
all cases with #ER = 0 could be automatically classified as non-hospitalized).
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The third new variable, #H norm_ urg is a normalized version of the second
one, obtained as #H_norm_urg = %.

In order to train the model on binary classified data, the variable indicating the
exit state was binarized as follows: patients with label 1, 4 and 5 were considered
non-entry (meaning they were not admitted to hospital), and mapped to the value
0, while all the other categories were mapped to 1, meaning they were admitted to
the hospital.

This lead to a very unbalanced situation, as shown in figure 5.1. Only 7.4% of
the contacts, in fact, resulted in a hospital admission.
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Figure 5.1: Absolute number of patient admitted to the hospital

5.3 Model Evaluation

The main method to evaluate the model was the following: we first obtained the
probability that each contact belongs to the positive class of admitted patients and
sorted such probabilities in descending order.

We put on the x-axis a counter which increments with the descending proba-
bilities (1,2,...N where N is the total number of contacts under consideration).

We retrieved the true label associated with the data and put on the y-axis the
cumulative sum of such labels; in this way, the y-axis represents the number of
truly admitted patients.

For example, imagine ten patients
x = [x1, 29,23, Tq, T5, Te, L7, g, Tg, T10]
(where each z; is described by a number of features) with true labels
y=1[0,1,1,0,1,0,0,0,0,1]
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Say that the probability predicted by our model for each patient is
p=1[0.1,0.9,1,0.5,0.7,0.3,0.2,0, 0.8, 0.6]

The patients and their relative label will be sorted in order of decreasing prob-
ability of admission
Tsorted = T3, T2, T9, T5, T10, T4, L6, L7, T1, Tg]
Ysorted = [17 17 Oa 13 17 07 07 Oa Oa 0]

A curve will be drawn putting on the x-axis the values 1 to 10, while the y-axis
will contain the cumulative sum of true entry

Yeumsum = [1, 2,2,3,4,4,4,4,4, 4]

The area under this curve (computed numerically) will be the evaluation metric
for our model.

AUC =0.7375
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Figure 5.2: AUC example

The area under the Receiver operating characteristic (ROC) [21], using the true
positive rate against the false positive rate, is also computed.

The area under the curve (obtained with our method or with a ROC) is an
estimation of the model performances: good models will have areas close to 1,
while bad models (close to random) will have area under curve close to 0.5.

We chose these methods of evaluation and not, for example, accuracy, for a
number of reasons.

First, the aim of the classifier is not to simply predict the class of each contact,
but to produce the probability of the a record to belong to one class (the positive
class in our case), for reasons already explained.
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Secondly, both our primary evaluation method and the Receiver Operating
Characteristic are well suitable for situations in which there’s a great class imbal-
ance, as they evaluate if the produced probabilities are in consistent ordering.

Using again an example to illustrate class imbalance, say we have

T = [5617$2,$3,$4,$57$67$7,$8,5€9,$107 m$20]

with true labels
y=10,1,1,0,0,0,0,0,0,0,...,0]

. in which only 2 out of 20 true labels belong to class 1.
In case our classifier is able to output probabilities which distinguish between
the two classes, for example

p=1[0,0.99,0.98.0.1,0.11,0.12,0,13,0.14,0.15,0.16, ..., 0.26]

one would have a very high area under curve, both for our evaluation method (AUC
= 0.94) and for a ROC curve (AUC = 1).

In case, on the contrary, the system is unable to correctly predict probabilities
and generates, say,

p=1[0,0.1,0.11.0.12,0.13,0.14, 0,15,0.16,0.17, 0.18, ..., 0.28]

the obtained area under the curve would be 0.1 for our evaluation metric and 0.05
for a ROC.

In case the majority class (in our case 0) is well predicted as having a low prob-
ability, while the minority class is predicted randomly (say one record is predicted
as having very high probability and the other as having very low probability), as,
for example in

p=1[0.1,1,0,0.11,0.12,0.13,0.14,0.15,0.16,0.17, ..., 0.27]

one obtains an area under curve of 0.49 and 0.5 for our evaluation method and
the ROC curve respectively, reflecting the behaviour in the positive class (despite
being highly underrepresented in the data).

Concluding, our evaluation metrics evaluate to which extent the model is able to
discriminate the classes involved by analyzing if the produced order of probability
is consistent with the true labels. This process is insensitive to class imbalance.

Model evaluation is performed using hold-out, with 80% of the data used for
training and 20% used for test.
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5.4 Learning Models

As previously stated, interpretability was one of the most important requirements
for the model.

As a result, we mainly focused on two learning models: random forest and
simple classification tree.

We will describe the two approaches, including the results obtained, separately.

For each model, we performed some preprocessing steps on the data, trans-
forming the categorical variables into their one-hot representation and the ordinal
variables to their ordinal representation.

Tree-based methods do not support missing values (which are very few in the
dataset) so that they were imputed using the mean.

For each learning model, we performed two experiments.

In the first one, we only considered the data which are directed available when
the patient arrives to the Emergency Department, excluding any past history ob-
tained from health centres other than the Emergency Room. The considered vari-
ables are sex, age, the type of activity (in one-hot representation), the precedence
(Precedencia, in one-hot), the means of arrival to the emergency room (one-hot),
the triage level (ordinalized), the entity which took the initiative (Iniciativa, in
one-hot), the symptoms which motivated the patient to go to the ER (Motiu, one-
hot), the type of health centre the patient was in (Precedencia, in one-hot), the
previous ER, if any (Pr_urgencia, in one-hot) and the emergency code activated
(Code__urg, one-hot).

In the second one, we also included the past Emergency Department data as
encoded in the variables (#ZER_urg, #H wurg, and #H_norm_urg).

5.4.1 Random Forest

We used 50 estimators and decided to tune the minimum number of samples re-
quired to split an internal node; for this value, we trained the model in the range
26,27 .21 and took the value 2% = 256 22 = 512 for the two experiments, respec-
tively.

5.4.2 Classification Tree

We selected 2'1 = 2018 as the optimal minimal number of samples to split, in both
cases.
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5.5 Results

5.5.1 Random Forest

The results obtained using random forest are reported in the following.

Table 5.1 reports the parameters used to train the model, for the two different
settings.

When considering only timely data available when the patient arrives to the
Emergency Department, without considering his past contact (figures 5.3 and 5.4),
we obtain an area under the curve of 0.877 and 0.907 for our evaluation method
and the Receiver Operating Characteristic, respectively.

When also using ER historical data (figure 5.5 and 5.6), the obtained area under
curve using our validation method is 0.892; using a validation based on the ROC
curve, we obtain an area of 0.923.

Note that using historical data (even when limited to the electronic records
produced in the Emergency Department), we obtain an improvement of 1.5% in
the area under curve.

Table 5.2 reports a list of the most important features used by the model, when
also using historical data.

As shown in table 5.2, the new handcrafted variables play a very important role
in the classification, as the two first most important variables refer to the patient’s
past history.

Random forest Parameters

Without past data | With past data
Number of estimators 50 50
Number of samples for split 256 512
Number of features for best split /D N/

Table 5.1: Random forest: parameters for the emergency room data

5.5.2 Classification Tree

The results obtained using the classification tree are reported in the following.
Table 5.3 reports the parameters used to train the model in the two experiments.

The area under the curve obtained was of 0.883 (AUC for our evaluation
method, figure 5.7) and 0.914 (for ROC curve, figure 5.8) when using only timely
data; it slightly increased to 0.888 (figure 5.9) and 0.918 (figure 5.6) for the two
evaluation methods when using the patient’s past ER data only.
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Figure 5.3: AUC for the ER data using a Random Forest, without historical data
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Figure 5.4: ROC AUC for the ER data using a Random Forest, without historical

data

Note that in this experiment, all used past data come from the CMBD-URs, so
that we use record coming from the emergency room only and not linked to other
types of health services.
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AUC = 0.8917
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Figure 5.5: AUC for the ER data using a Random Forest, including ER historical
data
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Figure 5.6: ROC AUC for the ER data using a Random Forest, including ER
historical data
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Feature Importance
#H_ norm_ urg 0.240
#H_ urg 0.207
Motiu: full-term uncomplicated delivery 0.140
Mitja_arr: 1 (own) 0.076
Mitja_ arr: 2 (ambulance) 0.059
Age 0.056
Motiu: Heart failure 0.015
#ER 0.014
Motiu: Chronic bronchitis 0.011
Motiu: Pneumonia, organism unspecified 0.009
Motiu: Dyspnea and respiratory abnormalities 0.009
Motiu: Transcervical fracture 0.008
Precedencia: 2 (psychiatric hospital) 0.007
Code__urg: 0 (none) 0.007
Motiu: Other nonorganic psychoses 0.006
Iniciativa: 2 (guardian) 0.006
Motiu: Other disorders of eye 0.006
Motiu: Acute, but ill-defined, cerebrovascular disease 0.005

Table 5.2: Random forest: feature importance for emergency data only

Classification Tree Parameters
Without past data | With past data
Number of samples for split 2048 2048

Table 5.3: Classification tree: parameters for the emergency room data
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AUC = 0.8829
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Figure 5.7: AUC for the ER data using a Classification Tree, without historical
data
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Figure 5.8: ROC AUC for the ER data using a Classification Tree, without histor-
ical data
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AUC = 0.8875
10 [ —

0.8 4
0.6 A
0.4 4

|

0.0 4

Cumulative sum of real entries

0 10000 20000 30000 40000 50000 60000
Samples in descending order of probability of entry

Figure 5.9: AUC for the ER data using a Classification Tree, including ER histor-
ical data
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Figure 5.10: ROC AUC for the ER data using a Classification Tree, including ER
historical data
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Chapter 6

Predictive Model: Clinical
History Integration

In Chapter 5, we presented a basic model obtained by only using the data contained
in the CMBD-UR dataset.

In this chapter, we want to investigate whether integrating data from the other
CMBDs would improve the model predictive power.

We will use historical information that could be available at triage time only.
While these data are not necessarily accessible at the moment for an emergency-
room professional, this could be made possible, especially in a context of a Consorci
Sanitari, where data is managed by the same organization.

In the following, we will present a model which uses data related to the patient’s
clinical history to predict his/her hospitalization at triage time.

6.1 Data Preprocessing

Excluding data cleaning, the aim of this step is to 'summarize’ the data available
in each CMBD for a given patient at a given point in time.

Conceptually, when one queries a dataset looking for entries of a specific patient,
the system could return no data if the patient has never used that service, or one
or more rows depending on how many times the patient used it.

In the latter case, we need to represent the returned data using variables which
summarize multiple records into a single value which could later be used in the
integrated model.

To do so, we will manually create a number of feature for each dataset.
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We explain the data cleaning and the feature creation process for each CMBD
separately.

6.1.1 Hospital Data

After a first data cleaning, we sorted the data using the time and date of the
contact as index. The following variables were created:

o #Visits _ha: a counter of records for each patient, starting from the first
available record in time and ending at the day of the contact under consid-
eration.

For example, for patient A, one would have:

Id | Date_hospitalization | #Visits_ha

A 01-01-2015 1
A 05-07-2015 2
A 13-11-2016 3

o #Visits_non-progr_ah: a counter which is incremented only considering
visits which where not previously programmed, as reported in the variable
C_contact of the CMBD.

For each contact, only the patient id (Historia), the date of the hospitalization
and the new variables were saved.

6.1.2 Primary Care Dataset

We cleaned, unified (two different primary care available, with a slightly different
format, for 2015 and 2016-2017) and sorted the data.
After some experimental work, we created the following variables:

e #Visits _ap: a counter of records for each patient, starting from the first
available record in time and ending at the day of the contact under consid-
eration.

o #Visits derivation__ap: a counter incremented only considering visits af-
ter which the patient was sent to another, specialized, centre (as reported
in the Derivacio until 2015 and in the DER1 D1 ... DERS3 D6 variable
afterwards).

For example, for patient A, one would have:
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Id ‘ Date_ visit ‘ #Visits_ap ‘ #Visits_ derivation_ ap

A | 01-01-2015 1 1
A | 05-07-2015 2 1
A | 13-11-2016 3 2

where after the first and third visit the patient was sent to a specialist.

o #Visits _non-progr_ap: a counter which is incremented only considering
visits which were not previously programmed, as reported in the variable
C _contact of the CMBD.

o #Visits _no-dentist _ap: a counter which is incremented only considering vis-
its which where not addressed by a dentist. The type of specialist who took
care of the patient is originally recorded in the variable Tprof.

o #Visits doctor__ap: a counter which is incremented only considering visits
which where addressed by a doctor (for adult people) or a pediatrician.

For each contact, only the patient id, the date of the contact and the new
variables were saved.

6.1.3 Mental Heath Dataset

After some experimental work, we created the following variables:

e #Visits_mh: a counter of visits for each patient; in this case, we did not
simply count the number of records, but summed the number of first and
secondary visits for each notification period.

o #Visits _mon-progr_mh: a counter of not previously programmed visits.

o #Th individual _mh: the cumulative sum of the number of individual ther-
apy sessions (originally in the PI variable).

e #Th group mh: the cumulative sum of the number of group therapy ses-
sions (originally in the PG variable).

e #Th_famil _mh: the cumulative sum of the number of familiar therapy ses-
sions (originally in the PF variable).

e #Th_mh: the cumulative sum of the number of all the therapy sessions.
For each record, #Th_mh = #Th_individual _mh + #Th__group_mh +
#Th__ famil_mh. We created this variable as a summary of the previous
ones.
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e #Nurse_mh: the cumulative sum of the times the patient needed the atten-
tion of a nurse.

e #Social-w_mh: the cumulative sum of the times the patient needed the
attention of a social worker.

e #Home_mh: the cumulative sum of the times the patient needed a domestic
visit.

For each contact, only the patient id (Historia), the date and the new variables
were saved.

6.1.4 Sociosanitary Dataset

For the sociosanitary data, we selected the reference date as follows: we used the
date the measurement was taken if that was not missing; otherwise, we used the
date the data were transmitted.

After some experimental work, we created the following variables:

o #Visits ss: a counter of records for each patient, starting from the first
available record in time and ending at the day of the contact under consid-
eration. This measure is less accurate than the similar ones reported for the
other dataset since a record can be inserted for various reasons (start of the
hospitalization, change of condition, periodical measurements etc), but it still
provides an idea of how much attention the patient needed.

o #SLFE_ss: a counter of records for each patient, considering the ones of
long-term care only.

o #SPA_ ss: a counter of records for each patient, considering the ones of
palliative care only.

This distinction was necessary since there are patients which are initially
hospitalized under a long-term care regime but then (possibly due to the
worsening of their condition) start to have SPA records only.

In addition to these variables, we also grouped the diagnostic ones.

e Neuro_ss: groups the value of the diagnostic variables which are associated
with a brain illness or condition (for example brain paralysis, hemiplegia etc).

o Wound__ss: groups the value of the diagnostic variables which are associated
with wounds.

e Tumor_ss: groups the value of the diagnostic variables which are associated
with tumors and related therapies.
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e Breath_ss: groups the value of the diagnostic variables which are associated
with breathing problems.

e Therapies_ss: groups the value of variables which are associated with ther-
apies.

e Diagn_ss: groups all the diagnostic variables.

Even though these variables are a very coarse representation of the information,
they can still give an idea of the seriousness of the patient’s condition.

In addition to the id, the date and the new variables, also the original variables
indicating the patient condition were saved.

6.2 Data Integration

Session 6.1 describes the variables which were created from each available CMBD
to enrich the information with the other patient’s electronic records.

Given a CMBD type, the data we obtained consist of the patient id, the date
in which they were taken (or the date in which the data were transmitted, in case
such information was unavailable), and a number of variables, most of which are
counters or zero-one indicators.

Id Date Varl | Var2 | ... | VarN
A | 01-01-2015 1 0 0
B | 05-07-2015 2 1 1
B | 15-09-2015 3 1 0
A | 13-11-2016 3 1 1
C | 13-11-2016 1 0 0

Given a row from the preprocessed CMBD-URG, we conceptually extracted
the patient id and the date of the contact; given these values, for each other
preprocessed CMBD, we extracted, among the rows corresponding to the same
patient (if any) the one having the closer previous date.

Having found the correct row, we unified the two CMBDs by adding the new
variables to the CMBD-URG.

For example, given the following row from the CMBD-URG dataset:

CMBD-URG
Id Date Varl_urg | ... | VarN_ urg
A | 05-07-2016 1 4

and the following data for the CMBD__AP:
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CMBD-AP

Id Date Varl_ap | ... | VarM_ ap

A | 02-04-2014 0 1

A | 05-04-2015 2 9

C | 05-07-2016 3 7

B | 11-07-2016 1 4

A | 05-09-2016 1 4

A | 05-11-2016 1 4
We selected the second row and obtained:

CMBD-URG + CMBD-AP

Id Date Varl_urg | ... | VarN_urg | Val_ap | ... | VarM_ap
A | 05-07-2016 1 4 2 9

We used the same procedure to integrate all CMBDs.

Table 6.1 reports the percentages of rows in the CMBD-URG for which it was
possible to find a correspondence in each CMBD.

For entries which did not have a correspondence, the value zero or NaN (NULL)
was used depending on the variable.

CMDBD-HA | CMDBD-AP | CMDBD-CSM | CMDBD-RSS
CMBD-URG 23.1% 59.1% 3.5% 3.6%

Table 6.1: Percentage of ER data for which corresponding information was found
in other CMBDs

6.3 Model Evaluation

The model was evaluated following the methodology explained in section 5.3.

6.4 Learning Models

A random forest and a classification tree were trained using all variables.
Results are reported in the following.
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6.5 Results
6.5.1 Random Forest

The results obtained using random forest are reported in the following.
Table 6.2 reports the parameters used to train the model. Figure 6.1 and 6.2
report the area under curve obtained (0.928 and 0.963 for our evaluation method

and for the ROC curve respectively).

It can be noted that the area under curve increased of more than 4% with
respect to the model obtained using the CMBD-URG data only.

Moreover, the table of features clearly shows that the new features are very
important for the decisions taken by the model: the most important variable in
the classification is, in fact, the number of past non-programmed hospitalization.
Other important features include sociosanotary records and primary care visits

performed by a doctor.

Random forest Parameters
Number of estimators 50
Number of samples for split 128
Number of features for best split | /p

Table 6.2: Random forest: parameters using data for all CMBDs

AUC = 0.9284
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Figure 6.1: AUC for the all data using a Random Forest
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ROC curve - AUC = 0.9629
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Figure 6.2: ROC AUC for the all data using a Random Forest

Feature Importance
#Visits_ non-progr_ ah 0.174
#H_norm_ urg 0.121
#H_urg 0.119
#HA_ all 0.105
Triatge > 4 0.070
#SPA_ss 0.041
Motiu: full-term uncomplicated delivery 0.040
#ER 0.037
Triatge > 3 0.035
#Visits_ ss 0.033
Age 0.024
Mitja_arr: 1 (own) 0.019
Mitja_arr: 2 (ambulance) 0.013
#Visits_ doctor__ap 0.012
#Visits_ no-dentist_ ap 0.012
#Visits_ap 0.009
#Visits_ non-progr_ ap 0.007
Motiu: Heart failure 0.005
Code__urg: 0 (none) 0.005

Table 6.3: Random forest: feature importance for all CMBDs
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6.5.2 Classification Tree

Table 6.4 shows the parameters used in the training of the classification tree; fig-
ures 6.3 and 6.4 show the areas under the curve (0.888 and 0.918 when using our
evaluation method and the ROC curve respectively).

Again, note that the result is 4% higher than the one obtained using emergency

room data only.

Classification Tree Parameters
Number of samples for split ‘ 2048

Table 6.4: Classification tree: parameters using data for all CMBDs
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Figure 6.3: AUC for the all data using a Classification Tree
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ROC curve - AUC = 0.9605
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Figure 6.4: ROC AUC for the all data using a Classification Tree
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Chapter 7

Removing Trivial Motius

In the previous chapters, we described a model using data available when a patient
arrives at the emergency room, as well as his clinical history, to predict whether or
not he or she will need to be admitted to the hospital, in order to reduce waiting
times.

The previously described model is a classifier built by using all the available
records. One could object that some of the cases into consideration are actually
rather easy to be classified by a human health professional.

A person which arrives at the emergency room with a superficial injury, for
example, is very unlikely to be later hospitalized regardless of the other param-
eters. On the contrary, someone with a major heart attack will for sure require
hospitalization.

In this chapter, we describe a model obtained by removing such cases from
the classification. The goal is double: to force the classifier building algorithm to
focus on the cases which are harder to predict by humans, and to make a more
interpretable model in which at least some cases have a trivial interpretation.

The model works in two different steps: first, it identifies the main Motius
(reasons, as registered when the patient first arrives at the emergency room) which
almost always imply hospitalization or discharge and directly estimate the prob-
ability of entry for the record using the variable Motiu only; then, after having
removed these records, it performs the classification on the remaining data, and
obtains the probabilities of entry from the classifier, using all variables. The results
of the two steps are then combined to obtain a final result.

In the following, we describe how these steps are performed and report the
results.
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7.1 Motius Identification

The aim of this step is to identify records which could be predicted with a very
high confidence using the variable Motiu only.

The variable Motiu is the one which better represents a condition. Some of
the described conditions are often associated whith risky conditions (for which
an hospitalization is often required) or with trivial ones, easily solvable in the
emergency room directly.

Moving from this consideration, we try to extract the values of the variable
Motiu for which the classification is trivial.

Given the training data, for each Motiu m, we define the probability of admis-
sion simply as the number of records in which the variable Motiu has value m for
which the exit status is 1 (hospitalized), normalized by the total number of records
for m

# Admitted,,
#Total,,

In order to obtain Motius which lead to very high or very low probability of
admission, we define the following thresholds:

pladmission)men =

e T cases: this value defines the minimum number of cases with the considered
Motiu which must be present in the training data to extract a 'unary rule’
(ie. automatically classify records with the given motiu). The idea behind
this threshold is that data must be numerous enough to generalize.

o T _Admission: this is the minimum value p(admission)m,cpr can have in
order to create the rule of the type m = admission.

o T Discharge: this is the maximum value p(admission)m,en can have in
order to create the rule of the type m = discharge.

Given the prior distribution of classes, while T'_Discharge must be very low (ie.
almost all records with the given Motiu must be hospitalized), while T'_Admission
could, in theory, be less strict.

Given a Motiu m with a total of N cases, the model computes the probability
of admission.

Then, if N > T _cases and p(admission)menr > T Admission, for all records
with the given Motiu, the probability of admission will directly be p(admission)menm
(these Motius are considered as trivially implying admission).

The same appens if N > T cases and p(admission),en < T__Discharge
(these Motius are considered as trivially implying discharge).

If none of these conditions holds, no decision is taken at this step.
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7.2 Learning Model

Trivial records as identified during the previous procedure are removed from the
training set.

A learning algorithm is then run on the remaining records, following the same
procedure illustrated in the previous chapters.

In particular, a Random Forest was used as learning model; however, similar
results could be obtained by using a classification tree or other algorithms. The
complete set of features form all CMBDs were used in the classification.

7.3 Model Evaluation

In order to evaluate the model, we assign p(admission)m,ecpn computed on the
training set as probability to each test record whose Motiu has been identified as
leading to admission or discharge in the training phase.

After removing these elements from the test set, we predict the remaining test
records using the learned model and retrieve the probability associated to each
entry.

In order to obtain a final evaluation figure, we calibrate the probabilities ob-
tained from the learning model and later use results from both steps to compute
the area under curve.

Calibration is the process by which a raw score provided by a classifier is turned
into an actual probability of belonging to one class. For example, an instance may
have a score of 2.3 for class 1 (which cannot even be interpreted as a probability).
After calibration, the calibrated score could be 0.7. This means that the instances
with raw score about 2.3 have probability about 70% of belonging to class 1.

Some predictors (e.g., logistic regression) produce calibrated scores by design,
while for others (e.g., Naive Bayes, Support Vector Machines and Random Forests)
the raw scores must be calibrated to correspond to probabilities.

Looking at the probabilities predicted by a Random Forest, one sees that the
ones close to 0 or 1 are very rare. This is due to the fact that the model averages
a set of basic predictions obtained from trees.

From [7]: "Because predictions are restricted to the interval [0,1], errors caused
by variance tend to be one-sided near zero and one. For example, if a model should
predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees
predict zero. If we add noise to the trees that bagging is averaging over, this noise
will cause some trees to predict values larger than O for this case, thus moving
the average prediction of the bagged ensemble away from 0. We observe this effect
most strongly with random forests because the base-level trees trained with random
forests have relatively high variance due to feature subsetting.”
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There are several calibration algorithms. We used the one based on on Platt’s
sigmoid model [14].

While calibration was not important for evaluation using the previously de-
scribed methods, because the area under curve only depends on the relative order
of probabilities, it has to be used now because we must merge the instances from
the two steps; thus, we need to merge using the same type of values, i.e. probabil-
ities computed in step 1 and predicted probabilities (from the classifier), not raw
scores.

The results obtained varying the values of the thresholds are reported in the
following section.

7.4 Results

In this section, we report the results obtained when modifying the values of the
previously specified thresholds.

First of all, we establish two baselines:

o Predict the probability of entry based on Motiu only (for non-null Motius).
For each Motiu, the associated probability of entry p(admission)men was
computed. The classifier was run for entries with null Motiu only. Probabil-
ities obtained through the classifier were calibrated and the join area under
the curve, for all entries, resulted in 0.82.

o Predict the probability always based on all features (as done in the previous
chapter). The obtained area under curve is 0.928.

Note that using a proper classifier makes the result almost 11% better than
the one obtained by considering the symptoms of the patients as noted at triage
(Motiu) only.

Given this baseline, we try to investigate results using more realistic values for
the thresholds.

For all the following experiments, we will set to T"_cases = 10. Note that this
value has only been chosen in order to exclude extremely rare conditions. A more
realistic value should be chosen in accordance with a domain expert.

Following a ’conservative’ approach, we set T'_Admission = 1 and T Discharge =
0 for the first classification. In practice, only Motius which always imply discharge
or admission (in 100% of the cases in training case), will have their probability of
entry estimated using Motiu only.

Doing so, we only remove 1% of records in the first step.

In this setting, no Motiu implies admission, while 29 imply discharge. Table 7.1
reports a summary of the Motius which were surely associated with a discharge.
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Motiu Number of cases

Fracture of one or more phalanges of foot 191

Disorders of iris and ciliary body 168

Fracture of carpal bone(s) 27

Disorders of external ear 108

Pruritus and related conditions 150

Burn of wrist(s) and hand(s) 71
Open wound of genital organs (external),

including traumatic amputation 17

Sexual and gender identity disorders 31

Effects of heat and light 31

Foreign body in trachea, bronchus, and lung 57

Superficial injury of hand(s)

except finger(s) alone 35

Atopic dermatitis and related conditions 63

Disorders of lacrimal system 303

Open Wound Of Upper Limb 14

Other disorders of female genital organs 45

Strabismus and other disorders
of binocular eye movements 18
Other diseases due to viruses

and Chlamydiae 62

Superficial injury of trunk 11

Dislocation of foot 13

Multiple fractures of hand bones 16

Erythematous conditions 22

Sprains and strains of sacroiliac region 76

Burn of trunk 13

Infectious mononucleosis 11

Effects of air pressure 11

Other venereal diseases 22

Gingival and periodontal diseases 23
Superficial injury of other, multiple, and

unspecified sites 17

Foreign body in anus and rectum 10

Table 7.1: Motius having zero probability of entry

Using a Random forest with 50 estimators (requiring at least 64 samples to
split an internal node), a joint area under curve of 0.923 was obtained (while the
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classifier considering non-trivial Motiu only scored AUC=0.923).

Note that using a less strict threshold, as for example p(admission)men <
0.005, meaning considering trivial all Motius which imply admission in less than
0.5% of cases, 14.43% of cases are classified according to their Motiu only.

The joint area under curve obtained with this setting is 0.915, while the one of
the non-trivial classifier is 0.923 (both slightly decrease).

Further increasing p(admission),eym to 1% would already consider 64% of
cases as trivial.

No Motiu leads to admission in more than 95% of the cases.

In general, one could say that a balance should be found among the advanced
deriving from considering some Motius as trivial and the inevitable error made by
using such a simple classification algorithm as the one discussed for the 'first step’:
note, in fact, that the area under curve decreases as a greater portion of data is
considered as trivially classifiable.

The optimal value for the thresholds could possibly be chosen in accordance
with a domain expert.

An alternative to this approach could be to obtain a list of trivial Motius from
a domain expert and exclude those from the classification. In this way, the model
could be developed paying attention to the ’grey area’ only.
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Chapter 8

Conclusions and Future

Work

Following a widely active area of research, this work proposes a methodology to
predict the probability of hospital admission from the emergency department.

Firstly, it considers a model built using data directly collected in the emergency
room only and shows that the probability of admission can be predicted with a
nontrivial accuracy.

In this setting, the features which better predict the admissions are the number
of past emergency room visits and hospitalizations, the means of arrival, the age
and some specific conditions (e.g, pregnancy).

Secondly, it proposes a new way to integrate the patient’s medical data from
other health services and shows that the quality of the prediction improves.

These data show that some features obtained from the past medical history
(e.g., the number of non programmed hospital admissions, the total number of
hospital record and some sociosanitary features) are highly important in the pre-
diction.

The results obtained for each setting are reported in table 8.2

As the table shows, including past data helps both when using Emergency
Department data only (in the best setting, we obtain an improvement of 1.5%),
and when using data from other health centres. Including both ER past data and
information from the other CMBDs, we obtain an improvement of about 4.5% for
the Classification Tree and of 5.15% for the Random Forest. Note that all values
are above 87%.

Regarding the classification obtained using a two-steps approach, the area under
curve slightly decreases both when totally removing trivial Motius, and when trying
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Results
Setting AUC | ROC AUC
CMBD-UR data (without historical ER variables)
Classification Tree 0.8829 0.9139
Random Forest 0.877 0.9072
CMBD-UR data (with historical ER variables)
Classification Tree 0.8875 0.918
Random Forest 0.8917 0.9231
All CMBDs
Classification Tree 0.9262 0.9605
Random Forest 0.9284 0.9629

Table 8.1: Results obtained without removing trivial cases

Results
Setting
T cases | T__Admission | T _Discharge | AUC without trivial cases | Join AUC
0 0 1 0.8207 0.8195
(Predict all record based on Motiu only)
10 1 0 0.9229 0.9230
10 0.98 0.005 0.9229 0.9149
10 0.98 0.01 0.9174 0.9062

Table 8.2: Results obtained by removing trivial cases

to join the prediction obtained in the two classification steps.

However, a classifier using this kind of approach might be preferred for two
reasons: first, it makes the classification straight forward for trivial yet common
cases, for which the medical professionals are surely well trained; secondly, it would
allow future work to focus on complex cases only, studying ad hoc models to better
discriminate among intricate situations.

When evaluating which model to deploy, interpretability should be central.
Even if classification trees are often regarded as intuitive both in their representa-
tion and in their functioning, their practical interpretative power depends on the
dimensions of the tree (very big trees become difficult to interpret); moreover, if
has been proven that a small modification in the data can produce very different
splits. Random forests, on the other hand, produce a clear rank of feature, even if
they can’t be intuitively represented.
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8 — Conclusions and Future Work

As a practical recommendation, the obvious need to make this work really rele-
vant is to implement this method as part of the software that the triage personnel
use for their work.

Right now, the developed models are separated from the software used to reg-
ister patients’ data. In a stressful situation, as the Emergency Department is, the
professional cannot be expected to be using two piece of software simultaneously,
so that our work should be integrated in the existing one and emit its predic-
tions, for example, as a non-intrusive label that is computed in the background
and appears automatically on the patient’s record once all relevant information
has been introduced. This integration work could be performed by the hospital’s
IT department.

Future works should consider other ways to engineer features from the avail-
able data (for example, trying to better use the diagnostic data, which have been
dismissed in most of this project) and possibly, test the model on a real setting to
obtain a forward prediction study.

In a multidisciplinary team setting, it could also be worth excluding some trivial
cases from the model training data and focus on cases for which a prediction is
difficult for a domain expert only. This possibility is briefly investigated in this
work but should be better evaluated.

Moreover, the actual reduction in waiting time that can be achieved should be
considered both from a theoretical point of view and once the system is studied in
real setting.

Considering the false positive rates and the false negative rates of the classifiers,
the number of patients that need admission, their current waiting time, and the
extent to which the system can anticipate the admission process, a first evaluation
of the improvements introduced by the system could be evaluated, but a pilot study
in a real system is surely need before a formal adoption.

In the long run, being able to predict admissions with a nontrivial confidence
(which is theoretically allowed by the system developed in this work) could im-
pact emergency room crowding and reduce waiting times, reducing the index of
premature death, the rate of complications and even costs for the system.

The developed project only represents the first step in this direction, but the
obtained results show that it is a direction worth to be taken.
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