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Abstract

The usage of data mining techniques in healthcare has exponentially increased in the last years.

Analyzing the huge amount of data that is nowadays produced by healthcare systems can lead

to the extraction of useful and interesting informations about patients and diseases, which can

be exploited to improve medical research and knowledge. Understanding how diseases and

other characteristics of a patient are interrelated is a crucial point because it can help health-

care specialists to focus only on important factors when addressing cures for a given clinical

case. Frequent itemset mining techniques are widely used for this purpose, but they can lead

to the retrieval of too many redundant or not interesting pieces of information. In this project

we study and report performances of a measure proposed to remove redundant and irrelevant

rules from data and suggest an approach to unveil the main comorbidities for a given disease,

along with the possibility to use the latter results to further filter not interesting informations.

Results show the effectiveness of the two studied methods as also proved by the main litera-

ture that was reviewed during the project, even if we suggest the collaboration with healthcare

specialists in order to get more relevant outcomes.

Keywords : healthcare analytics; itemset mining; chronic disease; interestingness measures;

suppport to clinical decision making; comorbidities analysis.
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Chapter 1

Introduction

1.1 Motivation

Chronic diseases affect health and quality of life. These are diseases that can affect a patient’s

life for at least 3 months, but that can easily persist for many years. A disease is usually defined

as chronic if it cannot be cured by current therapies and if its effects last for a long-term period.

The most prevalent chronic diseases in developed countries are heart diseases, stroke, cancer,

type 2 diabetes, obesity, and arthritis. Apart from being linked to more than half of the

deaths that occur each year, especially in economically developed countries, chronic diseases,

and in particular their related cures, are also responsible for the majority of the healthcare

costs, up to 70% according to estimations. This probably happens because the real causes of

chronic diseases are not well understood, so the treatments for these diseases are superficial or

stopgaps and never getting to the actual basis of these diseases. Moreover, most of the times

chronic diseases are present along with other diseases (comorbidities), often in combinations

that can turn out to be quite complex and that can also lead to further cost increments if the

relationships between them are unknown, or not taken into account.

Data mining techniques and methodologies can, in this regard, be used to analyze the data

produced by healthcare transactions, that are nowadays too complex and voluminous to be

processed and analyzed by traditional methods. To look into these combinations may find out

1



2 Chapter 1. Introduction

not obvious links and associations between diseases, that can be further explored by healthcare

specialists’ studies to figure out how to improve cures (and their related costs) for certain

diseases.

1.2 Context

Healthcare industry today produces huge amounts of different data about hospitals, diagnosis,

patients. Processing these data for knowledge extraction is a fundamental task because that

can give support for understanding complex informations in healthcare industry.

In last decade, there has been a boost in usage of data mining techniques on medical data to

determine useful trends or patterns that are used by health-care specialists in disease analysis

and decision making when it comes to diagnosis or drugs prescription. According to a survey

published by PubMed [30], data mining is becoming increasingly popular in health-care, if not

increasingly essential.

Pattern mining is a data mining technique used to identify patterns such as trees or se-

quences or sets of items within a database of transaction. It has in particular been used to

examine EHR, due to the huge availability of transactional records, where each patient is as-

sociated to a set of clinical information. Frequent patterns are itemsets or subsequences that

appear in a data set with frequency (defined as support) higher than a given threshold. Being

able to find this kind of patterns is crucial to mine associations, correlations or many other

interesting relationships among data. This is one of the reasons why frequent pattern mining

or frequent itemset mining have become widely used to analyze EHR.

One of the known issues of frequent itemset mining is the huge amount of itemsets that

are mined, many of which are not interesting, redundant or well known to the domain experts,

so a filter is needed. Apart from the support measure, different interestingness evaluation

criteria have been defined, either based only on the raw data (relying on theories in probability,

statistics, or information theory) or taking into account both the data and the user of these

data (using, if available, the user’s domain or background knowledge about the data). Some
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of these measures will be used in order to address the problem of redundancy, that appears

when two items A and B show an high association, but this association is not only dependent

on A and B, but on their stronger association to a common item C. In this perspective, the

theoretical concepts studied in a previous master thesis [43], also developed in UPC, will also

be used in our analysis to propose and evaluate an additional interestingness criterion and its

performances.

Studies have been conducted, applying frequent itemset mining, on how the treatment of

a disease can affect the co-existing other disorders (comorbidities) [31], or to identify tempo-

ral relationships between medications and accurately predict the next medication likely to be

prescribed for a patient [32]. Other ones have analyzed the comorbidities of diabetes filtering

results by considering contextual information (patient demographics, treatment, status) about

extracted patterns [33] or have used association rule mining for the same purpose [34]. Another

approach to study comorbidities will be developed in this work, in order to rank the most

important ones for a given diagnostic and to possibly help in further filtering of redundant and

not interesting associations.

This work has been carried out as part of a project in collaboration with the LARCA research

group of Universidad Politécnica de Catalunya, whose research line analyzes Electronic Health-

care Records (EHR) by means of data mining and machine learning algorithms. LARCA

cooperates with several health care institutions in Catalonia such as the Servei Català de la

Salut (CatSalut), Institut Català d’Oncologia, and Hospital de Sant Pau, who provide data to

be analyzed. In our project we analyze data from Hospital de Sant Pau.

The research group is currently working on the development of a software tool that should

help doctors in the search for interesting associations between diagnostics. The remarks and

observations of the specialists further confirmed the need to implement a tool able to remove

redundancy and other not interesting informations from the large quantity of output results

that are otherwise produced.
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1.3 Objectives

In order to remove or filter out from the analysis some of the many associations that are

mined, we use the metalift measure approach to detect not interesting itemsets and evaluate

its performances over different studied populations.

After removing the not interesting associations, we analyze the explanatory power of factors

that are strongly linked to the diagnostic of interest (e.g. comorbidities of a disease) on the

remaining itemsets. This approach allows us to:

• detect associations that are not directly affected by the diagnostics we are studying, but

that are explained by some factors that are related to them, and choose whether further

filtering them or studying them in depth;

• compare the effects of comorbidities and other factors (sex, age) on a diagnostic of interest

and rank the most important ones among these.

1.4 Structure of the report

This report is strucured as described as follows. This chapter has presented the motivation and

context of the study and pointed out the main goals we want to achieve.

Chapter 2 explains the main background notions about the healthcare domain and frequent

itemset mining, focusing also on some statistical measure of interest.

In Chapter 3, we report the results we found by reviewing literature about frequent itemset

mining and data mining approaches applied to healthcare problems.

Chapter 4 is used for a descriptive analysis of the data we studied and to outline the methods

we adopted to preprocess them in order to apply a standard itemset mining algorithm.

Chapter 5 outlines the main methods we developed and applied on the data we obtained

after the steps in chapter 4 along with their formal definitions.
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The main results and examples we found during the analysis are showed in Chapter 6 and

Chapter 7, along with some charts and graphics.

The last chapter highlights the main achievements of this thesis and suggests some future

applications that can benefit from this project.



Chapter 2

Background

In this chapter we will give the necessary background on how healtcare systems and facilities

are collecting their data and on the basics of frequent itemsets mining.

2.1 Electronic Healthcare

As explained in section 1.1, storing healthcare data in electronic records (EHR) can improve

healthcare quality while reducing its costs. Data mining techniques can be used and have been

used to retrieve useful and interesting relationships from the large amount of available EHR

data nowadays.

throughout . These codes are organized in a hierarchical model, in the format ddd.d or

ddd.dd where ddd specifies the general disease and the .d (or .dd) specifies the subgroup of

the ddd disease. For example, the code 250 identifies diabetes mellitus while the code 250.1 is

related to diabetes with ketoacidosis and 250.2 to diabetes with hyperosmolarity, while 250.21

encodes diabetes with hyperosmolarity type 1. Apart from numerical codes there are also

the so called V-codes, represented in the format of Vdd.d, added to deal with encounters for

circumstances other than a disease or injury, that are useful to classify patient anamnesis. They

represent a circumstance or past problem that is not the main reason of the current patient visit,

6
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but that the doctor should be aware of. For example, V15.82 indicates a history of tobacco use,

while V10.03 indicates that this patient also suffers or has suffered esophagus cancer - although

today he came for some other problem.

The ICD-9-CM coding system is now moving to a new coding set, ICD-10-CM. This newer

revision’s list of codes contains more than 68,000 diagnostic codes, compared to 13,000 in

ICD-9-CM. ICD-10-CM codes include also twice as many categories [35].

The majority of healthcare facilities started using ICD-10 codes at the end of 2015. Since

the data we were provided were gathered from 2014, ICD-9 standard was kept for this project.

2.2 Itemset mining

2.2.1 Basic Notions

A transaction is typically the description of an event, or, in the healthcare field, of a patient

admission, that is represented by a unique identification number (TID) and a list of the items

making up the transaction (for example, diseases found to be present in the patient at the mo-

ment of the admission). A transactional database consists of a file where each record represents

a transaction In the cases described in this project, we will refer to the transactional database

as the population we are working on. Within this project, an item is one particular disease

encoded by means of ICD-9 system or another information regarding personal attributes of a

given patient, such as age or sex. An itemset is a set composed of zero, one, or more items

among the ones present in the database. A k-itemset is an itemset of cardinality k.

2.2.2 Support and Lift

The support of an itemset is a measure that represents its frequency in the dataset. Let I be

an itemset and U = {t ∈ T |I ⊆ t} where T is the list of all transactions and suppabs(I) = |U |.

The relative support of the itemset I simply denoted as supp(I) represent the proportion of



8 Chapter 2. Background

the transactions that contains the itemset I among all the transaction in the dataset and it is

defined as supp(I) = |U |/|T | where |U | and |T | are the number of transactions contained in U

and T .

The lift of an itemset is one of the most used interestingness measures in itemset mining

and pattern mining. In particular, given an itemset I = {A,B}, lift(I) quantifies how much

the two items A and B are related to each other, by comparing the probability of finding both

together to the probability of them being completely independent. Formally:

lift({A,B}) =
supp(A ∪B)

supp(A) ∗ supp(B)

Its value can range from 0 to infinity. A value close to 1 shows that the the probability

of finding both items together in a transaction is really similar to the probability under the

independence assumption, so the two items should be considered uncorrelated and the itemset

not interesting. A lift greater than one, instead, indicates positive correlation between the two

items, meaning that the occurrence of item A increases (or lifts) the probability of B to be

in the same transaction. On the contrary, a lift value less than one shows that A and B are

negatively correlated and that the presence of A is linked to the absence of B.

So far, only the notion of lift for 2-itemsets has been explained. There could be many

reasonable definitions of lift for larger itemsets, in this project we decided to define it as the

maximum among the lifts of any possible partition in two subsets:

lift(I) = mina∈I

{
supp(I)

supp(a) ∗ supp(I \ {a})

}

This definition allows us to continue to look at itemsets with high lift as the ones that adds

more informations on the relationships between the items they contain.

Other definitions in the literature include taking the minimum over all partitions of I into

two subsets. This increases exponentially the number of checks to perform, and it is not clear

in practice that it adds much to our chosen definition. All our methods could be extended to

this other definition if desired.
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2.2.3 Risk ratio

Risk ratio is a statistic method that is often chosen to analyze binary events by looking at

binary factors, especially in cases where the probability of the event of interest is low. Having

a given exposure factor and an outcome of interest that has to be studied, risk ratio is the ratio

of the probability of the outcome occurring in the population where the exposure is true over

the probability of the same outcome occurring in the non-exposed population.

Given the contingency table shown in Table 2.1, the Risk Ratio for an exposure e and an

outcome o is defined as

RR(e, o) =
A/(A+B)

C/(C +D)

An RR ≈ 1 means that the exposure factor is not related to the presence of the outcome. An

RR < 1 means the outcome is less likely to be present in the population where the exposure

is present than in the one where the exposure is not present, that is the the presence of the

outcome is linked to the absence of the exposure. Backwards, RR > 1 says the presence of the

outcome is more probable when the exposure factor is present.

In this project, we will refer to the exposure as a binary factor x which the base population

can be split on, as an attribute for age or sex or a certain diagnostic. The outcome, instead, will

always be referred as the presence or the non-presence of an itemset I. So, in the cases studied

in this project, RR(x, I) will basically be the ratio of the support of I on the population having

x on the support of I on the remaining population.

One of the advantages of the risk ratio is that the statistical significance of its value can

be evaluated by means of confidence intervals. Confidence in a value is usually higher if the

noise (intended as values that are present in the analysis, but that are actually useless) is lower

and/or the sample size is larger.

In this project confidence intervals were calculated from RR(x, I) value referring to the

formula proposed by [44]. Also a p-value can be derived given a confidence interval.
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Table 2.1: Contingency table for risk ratio

Outcome Outcome

Exposure A B
Exposure C D

2.2.4 Algorithms

As mentioned before, we will focus on the branch of pattern mining involved in the discovery

of interesting itemsets among all the transactions.

An itemset is said to be frequent if its support is greater than or equal to a given threshold.

Frequent itemset mining is most of the times explained by its usage for market basket

analysis. Market basket analysis is performed using algorithms to identify associations, or

patterns (itemsets), among the various items that have been chosen by a particular customer

and placed in their market basket during the same shopping session. Several itemset associations

are usually found (milk, bread and beer, diapers are two of the most common/famous examples),

even in small datasets. Support and lift are generally exploited as a preliminary filter to remove

some of them.

Since the first algorithm was developed in 1993 [1], several other implementations and en-

hancement have been proposed. Looking for all the possible combinations of items requires

several database scans, so all the most famous implementations focus more on improving mem-

ory and CPU usage, and less on dealing with the huge amount of frequent itemsets that are

mined, especially when the minimum support threshold is low.

Usually, an end user is interested in a small subset of all the patterns that are mined,

but, due to the abstract nature of interestingness, there is no common agreement on a formal

definition of it in this context.

Most of the time interestingness is more linked to domain-specific knowledge than to mere

data properties. For this reason, many other interestingness measures have been studied and

applied to real data.
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Different algorithms and interestingness measures proposals will be described in the next

chapter.



Chapter 3

State of The Art

3.1 Frequent Itemset Mining

The topic of frequent itemset mining has experienced an increasing interest from the data

mining research community towards it in the last 25 years. This has led to great progresses in

this field, bringing itemset mining algorithms from being used for applications similar to market

basket analysis to become nowadays used also in complex machine learning tasks such as time

series classification and clustering or leading to the development of deep learning models to

solve pattern recognition problems.

The idea of mining frequent itemsets from data was first proposed by Agrawal et al., who

developed Apriori, an algorithm to generate all the significant association rules between items

in a transactional database [1]. The algorithm makes many searches in database to find frequent

itemsets where k-itemsets are used to generate (k + 1)-itemsets. Each k-itemset support must

be greater than or equal to a minimum support threshold to be considered as frequent. It scans

the whole database to find supports of 1-itemsets. The support of the 1-itemsets is used to find

the 2-itemsets and so on until there are no more k-itemsets for the considered k. The search

space is pruned by means of the Apriori principle [2], stating that if a k-itemset is not frequent,

none of its (k + 1)-superset will be either.

12
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Apriori algorithm’s main weakness is that it is costly in terms of time to explore a huge

number of candidate sets that appears if a low minimum support threshold is set or if the

frequent itemsets’ cardinality becomes too large. For example, if there are 104 frequent 1-

itemsets, the algorithm will generate more than 107 2-itemsets as candidates [3]. Moreover,

it might potentially generate 2100 candidate itemsets to detect frequent pattern composed by

100 items [4] (although that rarely happens in practice). Apart from potentially checking

a large number of candidates, it will also scan the database many times repeatedly to find

candidate itemsets, once per every k. Then, Apriori can turn out to be very low and inefficient,

especially when memory and CPU resources are limited. To overcome these limitations, several

extensions have been proposed such as hashing techniques [5], sampling approach [6], dynamic

itemset counting [7], incremental mining [8], parallel and distributed mining [5, 9, 8, 10].

The FP-Growth approach by [11] was developed to eliminate some of the bottlenecks in

Apriori, candidate generation and several database scans. It uses a structure called an FP-

Tree. In an FP-Tree each node is used to represent an item and its support, and each branch

represents an association between two nodes it links. The biggest benefit of FP-Growth is

that the algorithm only needs to read the file twice, avoiding database scan for every iteration

like Apriori. Another huge advantage is that it removes the need to calculate the pairs to be

counted, which is very processing heavy, because it uses the FP-Tree. This makes it O(n)

which is much faster than Apriori [12]. The FP-Growth algorithm keeps in memory a compact

representation of the database.

Several extension of FP-growth have been published. [13] proposed a depth-first generation

of frequent itemsets, an hyper-structure mining of frequent patterns approach was carried out

by [14] using recursive exploration of the structure and top-down and bottom-up traversal

method was developed by [15].

Apart from being mined in horizontal format transactions (where each transaction is asso-

ciated to its Transaction ID), itemsets can also be mined in vertical format transactions (where

each item is associated to the list of the transactions it appears in). Algorithms based on verti-

cal format mining are among the most common algorithms currently being used and researched
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because they implement fast support counting and automatic pruning of irrelevant data.

One of the most famous vertical format mining algorithm is ECLAT [16]. It requires only

two scans of the database, similar to FP-Growth, the first to eliminate items that are found to

be infrequent, and the second, to load the transactions in vertical format.

Most of the existing vertical format based algorithms are modifications of ECLAT, [17]

showed that some data mining problems can also be solved using the general purpose database

management systems (DBMS) and storing data in vertical format with quite impressive results.

One of the biggest issues when mining frequent itemsets from real (large) datasets is the

genaration of a huge number of itemsets, especially when the minimum support threshold is

low. This happens because, as explained by the Apriori principle, if an itemset is found to

be frequent, each of its subsets is frequent. To address this problem, closed frequent itemset

mining [18] was developed, using an Apriori-based algorithm called A-Close. An itemset A is

a closed frequent itemset in a dataset if A is frequent in the dataset and a superset of A with

A’s same support does not exist.

For the same reason maximal frequent itemset mining [19] was also proposed, stating that

an itemset A is a maximal frequent itemset in a dataset if A is frequent all its supersets are

not frequent.

Other important work on closed itemset mining include studies like CLOSET [20], FPClose

[21], CLOSET+ [22], CHARM [23].

Apart from trying to remove the hundreds of frequent itemsets that are produced by the

algorithms mentioned above, a good itemset mining approach should distinguish the most useful

patterns from those that are obvious or are already well known to the domain specialists. It

is necessary to filter out those patterns through the use of some measure of ”usefulness” or

”interestingness”.

Different works has been carried out to determine what is interesting, with an agreement

that interestingness is basically subjective. While there is no single definition of interestingness
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yet, the shared idea among experts is that finding interesting rules is a very difficult problem,

requiring domain knowledge and/or user interaction.

As [24] explains well, interestingness measures are divided into objective measures, that rely

on the statistical properties of the discovered itemsets, and subjective measures which exploit

the users knowledge of their particular problem domain. Classical objective interestingness

measures are the lift (in [25] defined as interest) and the support, that were explained in

subsection 2.2.1, but the total amount is quite huge and includes measures such as Jaccard

index or the cosine, both used to determine similarities [26] [27].

An extensive review of 21 measures was conducted by [25] who examined objective interest-

ingness measures, comparing them using several properties and showing that the validity and

performance of an interestingness measure, often depends on the domain of the data which the

measure is used for and that there is no measure that is better than the others in all cases.

As for subjective measures, we will cite two of them: The one proposed in [28] exploits

user’s domain knowledge to classify simple rules to quickly eliminate the non interesting rules

and to construct a domain knowledge base. And the work in [29], with a Bayesian approach to

determine when a rule can be classified as ”unexpected”, by relying on a set of rules that the

end user marked as true or not.

Though the majority of interestingness measures were developed in order to be applied to

evaluate association rules mining, the concepts can be extended to the more general task of

frequent itemset mining.

3.2 Data Mining for Healthcare

As mentioned before in this work, last decade has witnessed a boost in usage of data mining

techniques on healthcare data in order to discover patterns that are used by specialists in disease

analysis and decision making when it comes to diagnosis or drugs prescription. As stated by

[30], data mining is becoming increasingly popular in health-care, if not increasingly essential.
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Studies like [32] have been conducted to find out that sequential pattern mining is an

effective technique to identify temporal relationships between medications and can be used to

predict next steps in a patients medication regimen and that accurate predictions can be made

without using the patients entire medication history. Frequent sequence mining (a branch of

frequent pattern mining where also the order in which the items appear is important, and is

taken into account) was applied in a study that aimed to analyze the effect that the treatment

for a given disease also affects its co-existing other disorders (comorbidities) [31].

One study carried out by [36] aimed to predict patients who are at risk of developing heparin-

induced thrombocytopenia and presented a framework to generate a small set of predictive and

relevant patterns, filtering those who were considered not useful to the classification task.

Maximal frequent itemsets was applied to outpatient records gathered by the Bulgarian

National Health Insurance in 2010-2016 for more than 5 million citizens yearly in order to

analyze the comorbidities of diabetes, schizophrenia and hyperprolactinemia and then filtering

results by considering contextual information (patient demographics, treatment, status) about

extracted itemsets [33] while [34] used association rule mining to analyze comorbidity in pa-

tients with type 2 diabetes mellitus. A comorbidity network for different types of cancer was

constructed by[37] by applying large-scale itemset mining approach among millions of patients

and used this to show associations between cancers and their comorbidity relationships with

various kinds of diseases.
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Dataset and Data Preprocessing

4.1 Dataset

The data used in this project were provided by Hospital Sant Pau, Barcelona, under an agree-

ment with UPC (and its data science research group, LARCA).

The dataset is a collection of Electronic Health-care Records, gathered between 2014 and

2016 and stored in CSV format, where each row contains informations related to a single hos-

pital visit or admission. Each record reports basic informations on the patient (anonymized

id, date of birth, sex) and on the hospital episode (date of admission, date of release, urgency,

priority, reason of release) along with the detailed descriptions of the diagnostics and the pro-

cedures related to the episode. The diagnostics and procedure informations are classified in

several columns, from the main diagnostic, labeled with column name DP, to other secondary

diagnostics (up to 14 of them, labeled with column names from DS1 to DS14) and from the

main procedure, if any, applied to the patient, labeled with column name PP, to secondary

procedures (up to 10 of them, labeled with column names from PS1 to PS10).

Within this project, columns related to procedures were discarded and only the basic infor-

mations (excluding the anonymized patient ID, considered not relevant for the analysis) and

the diagnostics ones were kept. Concerning the diagnostics, the main diagnostic DP might be

17
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considered more important than the secondary diagnostics DSi, but the order within secondary

diagnostics is generally considered not relevant.

Diseases and other health-care informations were encoded by means of the ICD-9-CM stan-

dard, described in section 2.1. In the original dataset, and additional column was present for

each of the ICD-9-CM encoded columns, to provide a textual description of the code. These

columns were removed for the analysis.

The dataset contains information for 79533 episodes, and only 18 columns (sex, admission

circumstances, and the 15 ones related to diagnostics) were kept out of the original 60 column.

Table 4.1 shows the distribution of the patients in our dataset by age group and sex in terms

of absolute value (and in terms of percentage value over the whole dataset), while figure 4.1

compares the supports of the most prevalent diagnostics in the dataset. The most prevalent

diagnostics for different population subsets are listed in appendix B. Essential hypertension

(401.9), Hyperlipidemia (272.4), Atrial fibrillation (427.31) and Diabetes mellitus (250.00) are

the most common diagnostics, especially the first two of them.
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Figure 4.1: Most prevalent diagnostics
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Table 4.1: Absolute (%) distribution of the patients by age group and sex

M F

<40 5728 (7.2%) 8896 (11.18%) 14624 (18.39%)
≥ 40, <65 10479 (13.17%) 9929 (12.48%) 20408 (25.66%)
≥ 65, <85 16293 (20.48%) 15573 (19.58%) 31866 (40.06%)
≥ 85 4545 (5.71%) 8090 (10.17%) 12635 (15.89%)

37045 (46.59%) 42488 (53.41%) 79533 (100%)

4.2 Data preprocessing

The important columns described in section 4.1 were extracted from the original data and

an additional column reporting the age of the patient at the moment of the admission was

computed for the analysis.

To be included in a transactional database, all the continuous attributes need to be dis-

cretized using some criteria.

In this case, the computed age was the attribute to discretize. The standard age ranges

suggested by doctors doctors are 0-39, 40-64, 65-84, >85, so age should be replaced with four

distinct binary attributes. However, in our analysis, we decided to encode age in another way,

cumulatively, with 6 items: ≥ 40, ≥ 65, ≥ 85, and <40, <65, <85. The last three give the

possibility of having itemsets that apply to young people. With this encoding method, age is

translated into a set of three items, depending on its continuous value.

The ICD-9-CM codes that appeared to have a support lower then a specified threshold were

excluded from analysis, because diseases that were present only in a small percentage of the

whole population were considered not useful. Figure 4.2 shows the amount of diagnostics that

are left to analyze in the dataset after setting the said threshold to several values. It is possible

to notice that even with a low threshold (0.1%) the number of diagnostics that will be analyzed

reduces to 12.81% and that this threshold, on this dataset, has a significant impact until it is

set to about 1%.

The given data were converted into transactional format, by describing each patient with a

list of the diseases he/she had at the moment of the episode and with the categorical informa-
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Figure 4.2: Effects of the support threshold on the diagnostics to analyze

tions referring to age and sex.

4.3 Itemset mining

The original data, after being preprocessed as described above, were then used as input for the

Equivalence Class Transformation (ECLAT) algorithm [10], which we used to retrieve frequent

itemsets from our data. The implementation we used [38] allowed us to perform an efficient and

fast mining, giving also the possibility of choosing among different settings and parameters.

After selecting a minimum support threshold of 0.25% and without filtering by lift (to

avoid cases in which an itemset is not important in the general population, but it becomes

interesting when other factors are considered), we obtained 4510 frequent itemset, along with

their associated informations about support and lift measures.
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Metalift and Explanatory Variables

5.1 Metalift measure

Metalift is a measure that was studied in a previous project carried out at UPC [43] as mentioned

in section 1.2. Given a base population A (the population we extracted after preprocessing the

original data), we can select a proper subpopulation B by requiring the presence of one item x

in all of B’s transactions. So we can formally define B = {a ∈ A|x ∈ a}. For an itemset I that,

after itemset mining, turns out to be frequent on both populations A and B, metalift(I, A,B)

is formally defined as follow:

metalift(I, A,B) =
liftB(I)

liftA(I)

Its value can range from 0 to infinite. In the cases described in this project, specific diseases

or age and sex attributes will be used as items x to define subpopulations. By requiring the

presence of x in the subset B, we aim to exclude its effects on the frequent itemsets we found,

to eventually check the importance it has in making those association stronger or weaker.

A metalift < 1 indicates that the items in the itemset I are less related in subpopulation B

than what they were in the general population, because their association depends somehow on

the x factor. While a metalift > 1 suggests that the items in I show an increased association

21
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between them when the item x is present.

Hence, these itemsets that show significant changes in the lift value may be classificated

as important or interesting by doctors or healthcare specialists because these cases add infor-

mations about the effects of the x factor on the diseases contained in the itemset. But, in

section 6.1, we also described similar cases that can be marked as not interesting or obvious

by specialists, so, in general, these are associations that require further studies or opinions by

healthcare insiders.

When metalift ≈ 1, instead, the itemset shows no major changes in term of lift value

between its components, so the x factor can be considered as a non influent factor for the

association among them and the given itemset can be filtered from the analysis.

5.2 Filtering by metalift

We applied this filtering method as a preliminary step before further analyzing the itemsets,

introducing a parameter εmetalift to set the range of metalift values to filter. In particular

we used this approach, for different diagnostics x, on all the itemsets that were found to be

frequent, after applying the algorithm described in section 4.3, both in the general population A

and in the subpopulation B, filtering all the itemset I where |1−metalift(I, A,B)| ≤ εmetalift.

5.3 Explanatory variables

Another method we used to analyze lift variations and try to understand relationships between

itemsets was to also look at variations in the support of the itemsets, with respect to other

factors linked to the selected x disease a user is interested in. For example, as said in section 5.1,

cases where metalift < 1 may represent situations where the given itemset I seems to be related

to x so that, when the effects of x are removed, the associations between items in I disappears

too.
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An hypothetical example that describes well the situation we are going to address is repre-

sented by the association between the diagnotics in the itemset

I ={Breast Cancer, Having had child}.

In a population of 2000 individuals, half males and half females, we notice that 10 of them

(supp(I) = 0.005) show the presence of both diagnostics in I and that 100 show one of them

only (supp(Breast cancer) = supp(Having had a child) = 0.05). The resultant lift on the overall

population is thus lift(I) = 2, that shows a significant association between the two items.

However, if we consider only the female population, we will notice that the absolute supports

remained unchanged, but, since the number if individuals is now 1000, suppF (I) = 0.01 and

supp(Breast cancer) = supp(Having had a child) = 0.1. This lead to liftF (I) = 1, showing that

the items are not associated anymore in the female population. This means that the apparently

high lift may be almost totally explained by Sex, so reporting it as a pattern is misleading,

as it says nothing interesting beyond the fact that females have can both children and breast

cancer. So if we report the associations, that are trivial from a healthcare-knowledge point of

view, {Sex=F, Having had a child} and {Sex=F, Breast cancer} it is best not to report this

itemset I.

The lift reduction may be directly caused by a factor x chosen to select a subpopulation, as

it’s showed in the example above. But it can also be caused by another factor y that is strongly

related to x, so that when the effects of x are removed, also y ones are eliminated, as explained

in section 7.1 (Example 2 ).

In both cases we say that the association between elements of the itemset I is explained by

y or that y is an explanatory variable for the itemset in the population affected by x .

Formally, we say that, in a population affected by disease d, x is an explanatory variable

for the association of items in the itemset I if x is linked with d and RR(x, I) > 1 with a

statistically significant confidence interval (or p-value). Since the itemsets that are analyzed

when a disease d is selected are only the ones which d has a major impact on (metalift 6≈ 1),

RR(x, I) > 1 would mean that I is rare on people without x and common on people with x
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and this could help explain the association between the items in I. Being a factor that has

to be used to filter a population, x can be any binary variable present in the dataset, from a

diagnostic to age (encoded as a set of 3 binary variables as explained in section 4.2) and sex

(M or F).

These informations need to be checked by healthcare domain specialists, because they can

be trivial like the two examples cited above, which associations can be explained by diabetes and

by sex, thus they could be further filtered. But there can be cases in which these informations

may be actually interesting like the one showed in section 7.1 (Example 3 ).

Of course, also the problem of choosing which factors have to be analyzed for a given disease

x is left to healthcare specialists or to reviews of the literature regarding x. Different ones can

also be chosen by looking at the most frequent diagnostics (comorbidities) or attributes that

appear with x. The last two approaches, checking comorbidities by reviewing literature and

looking for most frequent factors, were the ones that we used in our different analyses.

5.4 Explanatory power

Using the method described above, we define explanatory power of a factor x for a disease d

as the number of itemsets I which x is an explanatory variable for. This let us create a rank

of the diseases with most explanatory power for a given disease, so that the most important

comorbidities for a given disease can be highlighted.

Apart from this rank of diseases, age or sex were added to the rank even if their influence

was calculated, by means of the same method described in section 5.3, separately, because as

one might expect these are two factors that highly and mostly influence all the association

between the analyzed diagnostics.
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5.5 Software Implementation

We implemented the different approaches described above in a software tool that provides

the final user with the most important findings of the analysis. Our implementation, after

preprocessing the data as explained in section 4.2, initially performs a frequent itemset mining

on the original data by applying the concepts described in section 4.3.

The users can then choose an interesting subpopulation by applying filters on sex or on

age ranges or selecting one or more diseases the cases in the subpopulation should be affected

by. The mining algorithm is applied on the subpopulations and its most frequent patterns are

extracted.

The two set of frequent itemsets, the one mined from the original population and the one

mined from the selected subpopulation, are then compared applying the metalift measure as

described in section 5.1 and section 5.2, in order to filter out the itemsets that are not showing

major changes between the two population (i.e. the ones that are potentially not interesting,

according to the user’s preferences).

The itemsets that are left are the ones that will be analyzed with the techiques described

in section 5.3 and section 5.4.

In particular the users are asked to select a set of diagnostics that they want to study

the explanatory role for. Age and sex are factors that are automatically included into the

analysis if they are not selected, because they are considered the most important ones. For

each itemset to analyze, the Risk Ratio of each potential explanatory variable is calculated,

to discover how each of the factors included in the users-selected set affect the presence of the

itemset. The factors that show an higher significant risk ratio are the ones that may be more

important in explaining one association. The explanatory power of each one of this factors for

the subpopulation the users are interested in is then computed.

An example of the final output of the software we implemented is shown in figure Figure 5.1.

The analyzed subpopulation of interest is the one suffering from Depressive disorder (ICD9 code
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Figure 5.1: Resume table for the itemset analyzed in the population affected by Depressive
disorder

= 311). For every itemset, the first column in Figure 5.1 shows the metalift and the remaining

ones the risk ratios for the different factors analyzed, ’nan’ values represent cases in which

the calculated risk ratio were not statistically significant. Age (≥ 40 and ≥ 65) and Sex (F )

parameters were chosen by looking at the most representative of the population while the

diagnostics by reviewing the literature looking for most common comorbidities of depression.

The chart showing the explanatory power of the different factors is also shown as output

(Figure 5.2).
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Figure 5.2: Explaining power of the analyzed factors in the population affected by Depressive
disorder
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Results - Metalift

6.1 Metalift examples

As explained in section 5.1, metalift value can range from 0 to infinite.

The cases in which metalift < 1 can be interpreted in different ways. For example the

itemset

{Minor diseases of respiratory system, Congestive heart failure}

showed a liftA = 3.76 in the general population, but it decreased to liftB = 2.56 when

the population was restricted to people who suffers from Hyperlipidemia (metalift = 0.68).

This information could be quite known, so not interesting, to healthcare specialists, since it is

known that hyperlipidemia (i.e. high levels of cholesterol) in associated with COPD (Chronic

Obstructive Pulmonary Disease) [39], that lead both to heart and respiratory diseases.

However, cases like the itemset

{Minor diseases of respiratory system, Acute respiratory failure}

28
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were observed. This itemset led to metalift = 0.59 when x=Urinary tract infection (UTI) was

considered. The metalift value is similar to the first case, but we did not find much literature

regarding a direct association between UTI and respiratory problems.

As a metalift > 1 example, the itemset

{Knee joint replacement, Programmed visit to the hospital}

shows inverse association in base population, liftA = 0.84, but turns out to be associated,

liftB = 2.22, in the population affected by Parkinson’s disease, metalift = 2.64. Another

example is the itemset

{Long-term (current) use of insulin, Personal history of tobacco use}

that led to a metalift = 1.60 when it was considered in the population where x=Pleural

effusion. The first case may be not interesting, because it could be explained by age, as we will

show in section 5.3, but the second may be.

The cases where metalift ≈ 1 are the ones that we want to filter, because they show

no difference with respect to the whole population, and therefore tell nothing new about the

subpopulation that the expert is examining today.

For example, itemset

{Venous insufficiency, Atrial fibrillation}

showed liftA = 2.112 in the general population and liftB = 2.118 in the population where x

= acute posthemorrhagic anemia, resulting in a metalift = 1.003.

Another example is the association between items

{Old myocardial infarction, Chronic ischemic heart disease}
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that are highly associated (quite obviously, since both are associated with heart problems) with

a liftA = 12.55 in the general population. This association persisted (liftB = 11.78) also when

it was analyzed in the population suffering from Urinary tract infection, confirming that this

last disease is not particularly related to heart problems (metalift = 1.06).

These associations, as the cases where lift ≈ 1 described in subsection 2.2.1, can be consid-

ered not interesting for a user that has chosen to study the population where the x is present.

Therefore, these cases are some of the itemsets can be filtered from the analysis.

6.2 Filtering by metalift

The figures 6.1 and 6.2 show the results obtained by this method after being applied on the

populations affected by Hypertension and x=Tobacco use disorder are showed, while the results

obtained on the most frequent diagnostics of the dataset are listed in appendix C.
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Figure 6.1: Effects of the metalift threshold on the population suffering from Hypertension

The first bar of each chart, the one showing the percentage of itemsets left after applying
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Figure 6.2: Effects of the metalift threshold on the population with Tobacco use disorder

εmetalift = 0.0, is not corresponding to the 100% as one might expect. This happens because,

before applying the metalift filter to an x-affected population, we removed all the itemsets

containing x since analyzing them would have had no reason, considering that it is obvious

that an itemset containing x is strictly related to x.

From the two examples in the figures 6.1 and 6.2 it is possible to see that more itemset

are filtered because of the presence of the x of interest in the case of Hypertension than in the

case of Tobacco use disorder. That is explained by the fact that 401.9 - Hypertension (supp =

29.34%) is more frequent than 305.1 - Tobacco use disorder (supp = 9.54%) in the general

population. The more acute effect of εmetalift on Tobacco use disorder affected population than

on Hypertension shows that Hypertension is mostly involved as a relevant factor in associations

between diseases, leading to metalifts that are far from 1, while Tobacco use disorder leads

more to metalift ≈ 1 cases.

From the results above and from those listed in the appendix C, it is possible to understand

that filtering by metalift has different effects depending on the populations a user is interested

in, but this approach shows in general relevant reduction on the number of itemsets that has
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to be analyzed.
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Results - Explanatory Variables

7.1 Explanatory variables

While looking for potential explanatory variables we analyzed the effects of several ones for each

diagnostic x, by reviewing x-related literature or searching for most frequent variables in x-

affected population. Age and sex were also analyzed for each case, and, as expected, they often

showed high values for the risk ratio (see also values for age and sex attributes in Figure 5.1 in

section 5.5), meaning that they are often important factors to explain an associations. However,

we omitted the informations about them in the results explained in this sections (except for

Example 2 ) because we preferred to focus on relationships between diseases and comorbidities.

Of course we obtained different effects and different risk ratio values depending on the factors

we were analyzing, showing that some of them have a bigger impact on a given association than

others. For simplicity, for each reported case, we report only the explanatory variable that

turned out to have the biggest effects on the studied association. We show here the examples

we consider to be more important or representative, other results are listed in appendix D.

Example 1 : The itemset

I ={Osteoporosis, Alzheimer’s disease}

33
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showed a lift decrement by a metalift = 0.57 with x=Diabetes mellitus. Studies have actually

reported that Diabetes mellitus is one of the risk factors associated to both Osteoporosis [40]

and Alzheimer’s disease [41], explaining the association in I.

Example 2 : The itemset

{Acquired absence of breast, Personal history of malignant neoplasm of breast}

showed metalift = 0.56 when population suffering by Depressive disorder was analyzed. Know-

ing that Depressive disorder is more prevalent in women than in men [42], makes it easy to

understand that the real factor (or one of the factors, the one that showed up by analyzing this

population) that links those two diseases is being a female.

The prevalence of females over males in the depressive disorder affected population, or also

the suggestion that sex could be one of the factors to analyze to understand an association,

can be pointed out by doctors or healthcare specialists, but it can also be noticed by looking

at the support of males and females in this population (population B). Sex = F turns out to

be prevalent over Sex = M with a support ratio supp({F})
supp({M}) = 2.46.

The explanatory role of Sex = F in this example can be highlighted by calculating the

Risk Ratio, setting Sex = F as exposure and the said association as outcome. In this way the

support of the I in the female population is compared to its support in the male population,

confirming (RR(Sex = F, I) > 1 and with a significant p-value< 0.0001) that the association

is partly explained by Sex.

Example 3 : The case of

I ={Pneumonitis due to inhalation, Acute respiratory failure},

which showed metalift = 1.34 when the population affected by x =Coronary atherosclerosis

was analyzed, but, looking at the Risk Ratios, no correlations between the items in I and x (or

the factors related to x that we checked) justifying the metalift greater than 1 were found.

Example 4 : The itemset
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I ={Glaucoma, Hyperlipidemia, Hypertension}

showed metalift = 0.58 for x = Diabetes and RR(x, I) = 3.22 with a p-value < 0.0001,

showing that diabetes explains the association as confirmed by links between it and the three

diagnostics in I [45, 46, 47].

The apparent conclusion is that if one reports the three itemsets

{Glaucoma, Diabetes}, {Hyperlipidemia, Diabetes}, and {Hypertension, Diabetes}

one need not report the itemset {Glaucoma, Hyperlipidemia, Hypertension}.

The catch here is that we interpret this finding in the sense that Diabetes is the explana-

tory variable, and the other three he explained ones. But it could also happen that, similarly,

Glaucoma numerically explains the association between Diabetes, Hypertension, and Hyperlipi-

demia, or in general, that the direction of ”explanation” could go in several ways. Yet, every

single clinician will confirm that it is Diabetes that explains anything related to Glaucoma. You

do not get Diabetes because you have Glaucoma, it goes the other way round.

Additional information such as temporal information, causal information, or a notion of

”seriousness” of a disease provided by clinicians could be used to break symmetries in an

automated way. This is a very interesting avenue for future work. Still, see the next section

on Explanatory Power for a first approach to determine what the most central, serious, or

explanatory variables are.

Example 5 : In the population affected by x = Hypertensive chronic kidney disease, the item-

set

I ={ Use of anticoagulants, Acute respiratory failure, Hyperlipidemia, Urgent admission}

showed a metalift = 0.53 and y =Atrial fibrillation was found to be strictly linked to x [48] and

showed RR(y, I) = 34.68 and a 95% CI=[25.63, 46.92]. A review of the literature confirmed
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the relationships between Atrial fibrillation and the diagnostics in I ([49, 50, 51]) and that it

could explain I

Example 6 : The itemset

I ={ Hearing loss, Hyperlipidemia, Urgent admission}

showed a metalift = 0.55 when the population affected by x =Hypertensive chronic kidney

disease was analyzed.

The association between diagnostics in I is still unclear [60].

With our approach we found a possible link between the two diseases, since d =Chronic

kidney disease, that is the general case of x, has a RR(d, I) = 3.07 with a 95% confidence

interval of [2.23, 4.23] and could explain this association. Literature confirming the relationship

between both d and Hearing loss [58] or d and Hyperlipidemia [59] was found.

In general, strong relationships between cardiovasculatory, respiratory and kidney problems

were the main ones that often appeared through the analysis. These are well known associations

among healthcare specialists [75], and keeping those into account we were able to reveal their

explanatory role in most of the itemsets we analyzed. In particular our approach was able

to reveal the explanatory factors also when analyzing longer itemsets (containing 3 or more

diagnostics) as stated in examples 4, 5, 6.

7.2 Explanatory Power

As described in section 5.4, we computed a rank of the most explanatory factors and comor-

bidities for a given diagnostic x by looking at the amount of important associations for x that

a factor/association explains.

To obtain these results, we did not keep track of the values obtained from the metalift and

the risk ratio of each factor involved in the analysis (as we did in section 7.1, where we showed
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only the most important ones), so that a factor is either classified as explanatory or not for an

association, without quantitative informations.

So, to clarify, a factor f has explanatory power = 10 for diagnostic x if there are 10 important

associations among the important ones for x that are explained by f .

Some of the main results are showed in this section, other findings are listed in appendix E.

In figure 7.1 the rank for Depression affected population is showed. As expected age is

the factor that explains most of the associations studied for the population. In particular,

we point out that Diabetes and Atrial fibrillation turn out to be two of the most important

comorbidities, explaining about the 70% of the associations. This is a result that was found

in the literature, that suggests how, ”due to potential negative health consequences associated

with comorbid diabetes and depression, both conditions should be optimally treated to maximize

patient outcome” [71] and that ”to achieve more comprehensive atrial fibrillation (AF) symptom

relief, treatment of both AF and psychological comorbidities may be beneficial.” [70].

0 20 40 60 80 100
Explanatory power (% of explained associations)

Age

Diabetes mellitus

Atrial fibrillation

Hyperlipidemia

Hypertension

Sex

Explanatory power rank for 'Depression'

Figure 7.1: Explanatory power of different factors for depression-affected population

The figure 7.2 shows again the close dependency of diabetes by age, that is involved in all

the association analyzed for this population.
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Our approach was able to reveal the strongest comorbidities of diabetes [72], like hyper-

tension, hyperlipidemia or atrial fibrillation. We were not able to find a relevant explanatory

power for sex in this case but [73] states that ”It is often assumed that there is little or no

sex bias within either Type I (insulin-dependent) or Type II (non-insulin-dependent) diabetes

mellitus”, so this is an information that may need to be checked by specialists.

0 20 40 60 80 100
Explanatory power (% of explained associations)

Age

Atrial fibrillation

Hyperlipidemia

Anamnesis of tobacco use

Hypertension

Explanatory power rank for 'Diabetes mellitus'

Figure 7.2: Explanatory power of different factors for diabetic population

From the rank for the explanatory power of factors related to Urinary trait infection (UTI)

in figure 7.3 it is possible to see that, apart from age explaining almost all the associations

found, Escherichia Coli is a factor that significantly affects more that 30% of the relationships,

this because, as stated by [74] ”Escherichia coli is the most predominant pathogen causing

80-90% of community-acquired UTIs”.
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0 20 40 60 80 100
Explanatory power (% of explained associations)

Age

Atrial fibrillation

Hyperlipidemia

Hypertension

Effects of E. Coli

Sex

Explanatory power rank for 'Urinary trait infection'

Figure 7.3: Explanatory power of different factors for population suffering of urinary trait
infection



Chapter 8

Conclusion and Future Work

8.1 Summary of Thesis Achievements

The application of the metalift-based filtering method showed that interesting results can be

obtained when looking for associations that have nothing to do with a disease of interest.

After filtering the not-interesting rules for several populations of interest our approach was

able to filter, on average, 28.08% of the mined itemsets, with the best case of 69.55% associations

filtered for the population affected by Tobacco use disorder. This, combined to other filtering

methods, can help to reduce the huge amount of itemsets that are commonly produced as an

output of a pattern mining algorithm, helping domain (in this case healthcare) specialists in

the analysis.

By means of the explanatory variable study, instead, we were able to reveal more poten-

tially not-interesting associations, also providing statistical significance informations about the

variables explaining associations. By ranking the different factors we analyzed for each popu-

lation of interest we managed to point out which are the most important comorbidities for a

disease. These informations can help doctors and specialists in the decision-making process,

giving suggestions on which comorbidities a greater attention should be given to while taking

care of a patient

40
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However, all the explanatory power rankings we found some results that are already reported

in the general healthcare literature. This is probably due to the fact that we based our choice

for factors and comorbidities to analyze only on reviews of the existent literature, finding only

obvious or well known links between diagnostics.

As already explained in this report, help of healthcare specialists is required to improve the

results, since, in this case of healthcare analysis but also in general, the notion of interestingness

is mostly subjective and strictly linked to domain-specific knowledge.

8.2 Future Work

The main future step of this project concerns the development of a software to automatically

analyze the given data from the preprocessing step and to the display of the results.

Given a graphic user interface for the software we developed, a given specialist should be

able to select a population of interest and tune the parameters used to modify the filters applied

to the mined associations.

The list of explanatory factors to analyze could be chosen by the user, but we also intend

to automate the search for explanatory variables, showing the user only the real and most

important ones.
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Appendix A

ICD9 codes

The ICD9 codes used in this report and their description are reported in the table below.

ICD9 code Description

041.49 Effects of E. Coli

244.9 Hypothyroidism

250.00 Diabetes mellitus

272.4 Hyperlipidemia

276.7 Hyperpotassemia

278.00 Obesity

294.10 Dementia

300.4 Dysthymic disorder

305.1 Tobacco use disorder

311 Depression

365.9 Glaucoma

389.9 Hearing loss

401.9 Hypertension

403.90 Hypertensive chronic kidney disease

414.01 Coronary atherosclerosis
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414.9 Chronic ischemic heart disease

426.3 Left bundle branch block

427.31 Atrial fibrillation

428.0 Heart failure

496 Chronic airway obstruction

518.81 Respiratory failure

518.84 Acute and chronic respiratory failure

553.3 Diaphragmatic hernia

584.9 Acute kidney failure

585.3 Chronic kidney disease (moderate)

585.9 Chronic kidney disease

599.0 Urinary trait infection

715.90 Osteoarthrosis

733.00 Osteoporosis

V10.3 Personal history of malignant neoplasm of breast

V15.82 Anamnesis of tobacco use

V45.01 Cardiac pacemaker

V45.71 Acquired absence of breast and nipple

V58.61 Long term use of anticoagulants

V58.66 Long term use of aspirin

V58.67 Long term use of insulin

Table A.1: ICD9 codes and their respective description



Appendix B

Diagnostics prevalences

The most prevalent diseases for the studied population when stratified by age and sex are listed

below.
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Figure B.1: Diagnostics in the male population

53



54 Appendix B. Diagnostics prevalences

40
1.
9

27
2.
4

42
7.
31

25
0.
00

42
8.
0

51
8.
81

V2
7.
0

73
3.
00

59
9.
0

V5
8.
61

40
3.
90

24
4.
9

30
5.
1

36
6.
9

V5
8.
66

Disease

0

5

10

15

20

25

Su
pp

or
t %

Most frequent diseases in the female population

Figure B.2: Diagnostics in the female population
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Appendix C

Effects of filtering by metalift on

different diagnostics

The effects of εmetalift on the number of itemsets to analyze after filtering by metalift was

applied to different x-affected populations are shown in the charts below. As expected, the

cases in which the percentage of itemsets removed before applying the filter εmetalift = 0.0, with

the criteron explained in section 5.2 is higher are the ones where x corresponds to the most

frequent diagnostics as Hyperlipidemia (272.4) or Hypertension (401.9).
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Appendix D

Explanatory Variables

Itemset
Studied

population
Metalift

Explanatory
variable

Risk Ratio
(p-value)

Literature

{041.49, 401.9, Urgent} 250.00 0.69 599.0 61.29 (< 0.0001) [52, 53]

{294.10, 518.81} 250.00 0.59 427.31 2.54 (< 0.0001) [54, 50]

{585.9, V58.61, 428.0} 250.00 0.50 427.31 31.94 (< 0.0001) [55, 49, 56]

{276.7, 584.9} 403.90 0.23 585.9 9.21 (< 0.0001) [57]

{389.9, 272.4, Urgent} 403.90 0.55 585.9 3.07 (< 0.0001) [58, 59]

{715.90, 427.31} 403.90 0.53 250.00 2.72 (< 0.0001) [61, 62]

{496, V58.61, Urgent} 428.0 0.69 427.31 25.53 (< 0.0001) [63, 49]

{426.3, 250.00} V15.82 0.63 272.4 5.05 (< 0.0001) [64, 46]

{585.3, 403.90, 428.0,
272.4, Urgent} V15.82 0.69 427.31 8.06 (< 0.0001) [55, 56, 51]

{518.84, 272.4} V15.82 0.51 250.00 4.65 (< 0.0001) [65, 46]

{V58.67, V58.66,
250.00, 272.4} V15.82 0.65 401.9 4.09 (< 0.0001) [66, 47, 67]

{300.4, 428.0, Urgent} 272.4 0.6 427.31 5.45 (< 0.0001) [68, 64]

{V45.01, 250.00} 272.4 0.57 427.31 3.99 (< 0.0001) [69, 62]

{V45.71, V10.3} 311 0.56 Sex=F 228.86 (< 0.0001) [42]

{365.9, 272.4, 401.9} 250.00 0.58 250.00 3.22 (< 0.0001) [45, 46, 47]

{V58.61, 518.81,
272.4, Urgent} 403.90 0.53 427.31 34.68 (< 0.0001) [49, 50, 51]
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Some of the most important findings about diagnostics explaining associations are reported

above, along with the relative literature confirming our results.



Appendix E

Explanatory Power

More explanatory power ranks we found interesting are listed below.
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0 20 40 60 80 100
Explanatory power (% of explained associations)

Age
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Explanatory power rank for 'V45.82'

(k)V45.82
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