
POLITECNICO DI TORINO

Master of Science in Computer Engineering

Master Thesis

Protecting In-Vehicle Services
with a Secure SOME/IP Protocol

Supervisors
prof. Fulvio Risso
prof. Riccardo Sisto
dott. Fulvio Valenza

Candidate
Marco Iorio

Company tutor
Italdesign

dott. ing. Massimo Reineri

Academic year 2017-2018

Abstract

Vehicles are becoming every generation more smart and ICT oriented: modern cars
are characterized by dozens of different Electronic Control Units (ECUs), each one
hosting one or more applications devoted to monitor and manage every single aspect
of the vehicle itself. Advanced Driving Assistance Systems, nowadays becoming
a standard, are going further, moving the control of safety critical systems, like
braking and steering, to computers, algorithms and software.

Previous research demonstrated that many security flaws do exist in commer-
cially available vehicles due to the massive presence of software. Network protocols
designed without taking into proper account security design principles and applica-
tion bugs have been exploited by researchers to remotely take over the control of
different vehicular systems, without the possibility for the actual drivers to react.

The thesis originates from these problems, and focuses on novel mechanisms and
algorithms to provide improved security to the applications that are executed in
the vehicle, which are based on the principle of defining exactly who can talk to
whom, hence allowing each service to be contacted only from trusted parties.

The desire for a future-proof solution, compatible with service relocatability
and not tied to static configurations, has driven the research towards an emerging
communication middleware designed for automotive use-cases: SOME/IP. While
being very promising as a protocol, thanks to the service-oriented abstraction and
the transparent service discovery functionalities, it is characterized by no security
features for protection from malicious or compromised ECUs.

After having identified the major areas requiring protection, a security framework
integrated with SOME/IP has been designed. It aims at guaranteeing both the
authentication of the different parties involved in the communications and the
protection of the actual messages transmitted over the network, without giving up
the dynamism typical of this middleware.

The designed framework has been implemented as a proof of concept inside the
vsomeip stack, an open source implementation of the SOME/IP specifications.
The functionalities and performances have been evaluated both quantitatively,
by measuring the penalties introduced by the modifications, and by means of a
demonstrator, which shows the different features of the proposed solution in an
environment mimicking various ECUs deployed within a vehicle.

2

Contents

1 Introduction 5
1.1 Goal of the thesis . 6
1.2 Structure of the work . 6

2 Background 8
2.1 Vehicular networks . 8

2.1.1 In-vehicle networks . 9
2.1.2 The CAN bus . 9
2.1.3 Automotive Ethernet . 11

2.2 Car Hacking . 11
2.2.1 Jeep Cherokee Hacking . 12

2.3 Related works . 14

3 SOME/IP 16
3.1 Communication paradigms . 16

3.1.1 Request/Response . 17
3.1.2 Publish/Subscribe . 17

3.2 Transport protocol bindings . 18
3.2.1 UDP . 19
3.2.2 TCP . 19

3.3 On wire format . 20
3.4 Service discovery . 21
3.5 vsomeip . 23

3.5.1 Example of applications . 24
3.5.2 Configuration files . 25
3.5.3 Architectural description . 26
3.5.4 Security functionalities . 28

4 Securing SOME/IP 29
4.1 Security levels . 29

4.1.1 Nosec . 30
4.1.2 Authentication . 30

3

4.1.3 Confidentiality . 31
4.2 Cryptography overview . 31

4.2.1 Symmetric cryptography . 31
4.2.2 Asymmetric cryptography 32

4.3 Security protocol . 32
4.3.1 Keys granularity . 33
4.3.2 Session establishment . 34
4.3.3 Message protection . 37

4.4 High-level architecture . 41
4.4.1 Security module . 41
4.4.2 Secure storage . 42
4.4.3 Execution manager . 42

4.5 Limitations . 43

5 PoC Implementation 44
5.1 Cryptography . 44

5.1.1 Cryptography libraries . 45
5.1.2 Cryptography algorithms . 46
5.1.3 Benchmark methodology . 46
5.1.4 Results evaluation . 48

5.2 Functional modules . 53
5.2.1 Cryptography abstraction 53
5.2.2 Session establishment . 54
5.2.3 Message protection . 55

5.3 Security configuration . 56
5.3.1 Digital certificates . 56
5.3.2 Configuration files . 57

6 Experimental Evaluation 60
6.1 Automatic testing . 60
6.2 Performance measurements . 62

6.2.1 Benchmark methodology . 62
6.2.2 Results evaluation . 64

6.3 The demonstrator . 74
6.3.1 Dashboard . 74
6.3.2 Services . 75
6.3.3 Attacker . 76
6.3.4 Conclusions . 77

7 Conclusions and Future Work 79

Bibliography 81

4

Chapter 1

Introduction

During recent years, the automotive sector has known a tremendous innovation,
evolving at a speed previously inconceivable for an already mature industry. While
the basic mechanical components which enable a vehicle to accelerate, steer and
brake still resemble the ones already in use many years ago, a completely different
world, made of copper, silicon and lines of code, has made his way inside every type
of car, from low-cost to luxury, and is gaining every day more and more prominence.

On one side, tens of Electronic Control Units1 (ECUs), interconnected through
a wired nervous system, monitor thousands of values and parameters coming from
sensors positioned everywhere in the car, to guarantee its perfect functioning and to
take countermeasures in case something weird is detected: vehicles are safety-critical
systems after all. On the other one, advanced infotainment systems, equipped
with functionalities that only a couple of years ago were defined futuristic, are
becoming one of the most distinctive features to make every new car model unique
and somehow special. Artificial intelligence, advanced driving-assistance systems
and autonomous driving are marketing buzzwords which all point towards more
computational power, algorithms, communication networks and protocols: bits are
stealing the stage to the steel.

Computerization does not only bring advantages to the automotive world: a
whole new group of challenges is thrown inside a sector whose first goal must be the
safety, the protection from hazards which can easily become deadly. Nonetheless,
while testing mechanical components is already an established practice, controlled by
strict standards and made easier by years and years of experience, the same cannot
be said for what regards software, which is often devoted to much less life-threatening
activities. Furthermore, with the increase in the number of automatized functions
and connections towards external systems, software and network communications
are becoming tempting targets for a wide variety of dishonest and wicked individuals,

1Any embedded system in automotive electronics that controls one or more of the electrical
systems or subsystems in a vehicle.

5

1 – Introduction

which can leverage the decennial experience in both local and remote attacks in the
ICT world to insinuate themselves inside the “computers on wheels” and eventually
gain the control. How long will it last before the first automotive malware is
discovered?

1.1 Goal of the thesis
This thesis work, which has been carried on as a collaboration between the Computer
Networks Group of Politecnico di Torino and Italdesign, a design and engineering
company part of the Volkswagen Group based in Moncalieri (Italy), originates
from the increasing sensibility about the importance of cybersecurity inside the
automotive world. It focuses on novel mechanisms and algorithms to provide
improved security to the applications that are executed in the vehicle, by providing
a framework to express and enforce high-level policies defining which are the allowed
communications, preventing services from being contacted by malicious parties.

Before starting thinking about any possible solution, an initial investigation
has been carried on to understand which are the main architectures and network
protocols which play an important role inside every vehicle. Two of them, in
particular, emerged prominently: on one side the CAN bus, which constitutes the
nervous system of the current generation of vehicles, and on the other Automotive
Ethernet, which is deemed to gain more and more importance in the near future.

Aiming at the design of a future proof solution, compatible with emerging trends
like on-demand services and independent of hard-coded configurations, the research
turned the attention towards the analysis of an emerging communication middleware
designed for typical, Ethernet oriented, automotive use-cases: SOME/IP. Most of
the work has been devoted to the design of a security framework integrated into
SOME/IP, and to its implementation inside the open source vsomeip stack. Fi-
nally, the goodness of the approach has been verified both by means of quantitative
measurements of the introduced latencies and by the development of a demonstrator
which, mimicking different ECUs deployed within a vehicle, shows how the unpro-
tected system is easily compromised by an attack, while the secured one is able to
survive.

1.2 Structure of the work
The remainder of the discussion is structured as follows:

• Chapter 2 outlines some background aspects concerning vehicular networks,
depicts successful episodes of car hacking and concludes with an analysis of
possible solutions already available in literature;

6

1 – Introduction

• Chapter 3 provides an in-depth overview of the SOME/IP framework and
its open source implementation vsomeip, upon which the security features
are designed;

• Chapter 4 describes in great detail the design of the proposed solution, with
emphasis on the security properties provided by each functionality;

• Chapter 5 offers a discussion of the main architectural choices performed
during the implementation of the conceived solution and motivates the decision
about the selected cryptography library;

• Chapter 6 explains how the implementation of the proof of concept has been
validated, shows the results of the quantitative measurements and describes
the realization of the demonstrator;

• Chapter 7 closes this thesis work with final conclusions and proposals for
future enhancements.

7

Chapter 2

Background

In this chapter, an overview about different network technologies exploited in the
automotive industry is presented, with a particular emphasis on two important
standards for in-vehicle communications: the well-established CAN bus and the
emerging Automotive Ethernet. Subsequently, the car hacking problem is analyzed,
by showing the results of previous research demonstrating that commercially available
vehicles are vulnerable to cyberattacks. Finally, a discussion about related works is
introduced, by considering different solutions already available to protect in-vehicle
communications.

2.1 Vehicular networks
The different computer systems distributed throughout the vehicle cannot operate in
complete isolation: communications between the different units must be established
to exchange useful information and to provide the requested services. Moreover,
the number of signals coming from outside the chassis, being them GPS data or
warnings originated from preceding vehicles, is going to increase in the near future
to guarantee better security and to enhance the on-board experience. Vehicular
networks can be mainly divided into three broad areas:

• In-vehicle, which represent the nervous system in charge of interconnecting
the different ECUs present in a vehicle both one to another and with the
plethora of sensors deployed all over the vehicle;

• Vehicle-to-Vehicle (V2V), which allow automobiles to “talk” to each other
forming an ad-hoc wireless network, exchanging information to, e.g., automat-
ically adapt the speed to the preceding vehicles or to react faster to braking,
even with limited visibility;

• Vehicle-to-Infrastructure (V2I), a communication model which allows vehicles
to share information through short range wireless signals with the so-called

8

2 – Background

Roadside Units, smart devices such as traffic lights, lane markers, streetlights,
signage and parking meters, in order to receive real-time advisories for increased
safety and fuel economy.

Furthermore, even if not strictly related to the automotive sector, modern vehicles
are becoming equipped with a great amount of network interfaces common in
our smartphones, to provide every day a more complete infotainment experience:
Bluetooth, Wi-Fi and 4G are all technologies which are gaining more and more
prominence also inside the cars.

2.1.1 In-vehicle networks
Being this thesis work focused on in-vehicle services, an analysis in greater detail
of the different network technologies and protocols exploited by these systems is
carried on in the following, with particular emphasis on the two most relevant media:
the CAN bus and Automotive Ethernet.

In modern vehicles, multiple communication buses, realized with different tech-
nologies and characterized by distinct network protocols do coexist for two main
reasons: on one side, such design choice is due to the need for keeping physically
separated systems which operate at different levels of criticality: nobody wants that
a faulty radio makes the ABS unusable. On the other one, different systems have
different requirements in terms of bandwidth, timings and positioning: while the
vast majority of the interconnections is realized with wired technologies, a small role
is also played by really low bandwidth wireless media, as in the case of tire pressure
monitoring systems. Figure 2.1 shows the complexity of a typical automotive wiring
harness design, which is already the third heaviest and third most costly component
of automotive designs [1].

A central gateway plays the role of an aggregator, by collecting and analyzing
the signals coming from the different interfaces, and forwarding through the other
buses only the ones of interest; moreover, this device often acts also as a terminator
for the information originating from both the external world and the on-board
diagnostic interfaces, and routes them towards the expected destinations.

2.1.2 The CAN bus
A Controller Area Network (CAN bus) is a robust and widespread vehicle bus
standard designed to allow microcontrollers and devices to communicate with
each other at a maximum transfer speed up to 1 Mbps. It is a broadcast and
message-based protocol, whose most noteworthy feature is the usage of a lossless
bitwise arbitration method of contention resolution, which prevents the need for
retransmissions when multiple nodes try to send a message at the same time. This
behavior makes it suitable for strongly real-time oriented communications.

9

2 – Background

Figure 2.1: Typical wiring harness in a car.

Every CAN packet is composed by two main elements: an arbitration ID, which
uniquely identifies the type of transmitted data and acts as a priority field, and the
actual payload, which can be up to eight bytes long; both identifiers and payloads
meanings are not standardized, being different for each car maker. Extensions have
been proposed to increase the identifier size and to allow longer payloads by using
packet chaining.

Messages transmitted over the CAN bus can be broadly divided into three
categories:

• Informative, which are periodically sent to advertise the readings coming from
sensors (e.g. the speed of each wheel);

• Requesting an action, which target a specific device, although the message
is anyway broadcasted, to ask for an action to be performed (e.g. to lift a
window in consequence of a stimulus);

• Diagnostic, which are transmitted by mechanics through particular instruments
to obtain diagnostic information or to trigger specific functions.

A very simple broadcast communication protocol used in the automotive industry
to complement the CAN bus is called Local Interconnect Network (LIN). It is
designed to be as inexpensive as possible and can support up to 16 slave nodes
which primarily just listen to the master device, often connected to the CAN bus.

10

2 – Background

The maximum speed of 20 kbps makes it useful only for very low-end peripheral
systems.

2.1.3 Automotive Ethernet
While new applications are requiring every day more and more communication
bandwidth to fulfill their requirements, existing high-speed proprietary standards,
such as the MOST Protocol1 and the FlexRay bus2, are arising new challenges due
to the complexity in the implementation and the expensiveness caused by licensing
issues.

Although Ethernet is a mature and standardized technology with over thirty
years of use in the networking market, it has not been widely adopted in the
automotive industry until recent years, mainly due to the strict electromagnetic
interference (EMI) requirements for the sector. In order to overcome this limitation,
the OPEN (One-Pair Ethernet) alliance, made up of car makers, suppliers and
semiconductor companies, started sponsoring the Broadcom’s 100 Mbps BroadR-
Reach solution, which enables full-duplex transmission over a single pair at a reduced
base frequency to meet the automotive EMI specifications. Later on, this technology
has been standardized by the IEEE 802.3 group as 100BASE-T1 [2] (100 Mbps) and
1000BASE-T1 [3] (1000 Mbps) and it is usually referred to as Automotive Ethernet.

Two main advantages can be associated to Automotive Ethernet: firstly, it is
characterized by a wider bandwidth with respect to the other networking media
used for in-vehicle communications, which is of particular relevance for demanding
video streams (e.g. those required by autonomous driving) and multimedia applica-
tions. Secondly, being the modifications only at the physical layer, it is completely
compatible with the protocols used every day together with vanilla Ethernet, thus
offering the possibility to leverage all the knowledge already acquired in the ICT
world. Nonetheless, new protocols are currently under development, which aim at
providing functionalities required by the automotive industry: one example includes
SOME/IP, a service-oriented middleware laid on top of the TCP/IP stack which,
being the backbone of the work, will be analyzed in great detail in chapter 3.

2.2 Car Hacking
With the advent of more and more computer-based systems inside the vehicles,
a whole new set of challenges, previously unknown for the automotive world, are

1Media Oriented Systems Transport Protocol: a high-speed multimedia network technology
optimized by the automotive industry, which is used in almost every car brand worldwide.

2A high-speed bus (10 Mbps) that is geared for time-sensitive communications, such as drive-
by-wire, steer-by-wire, brake-by-wire and so on.

11

2 – Background

threatening the life of millions of unaware drivers. During recent years, different
researchers concentrated their efforts in studying the feasibility of carrying on
attacks to vehicles by exploiting both bugs in ECUs’ software and specifically
crafted messages injected into vehicular networks, both locally and remotely: the
discoveries are certainly not encouraging for the industry.

In 2008, Tobias Hoppe et al. [4], depicted four different attack scenarios which,
exploiting messages injected into the CAN network and the broadcast nature of
the transmissive medium, allowed the researchers to perform simple actions. In
particular, two offenses, aiming at opening the window lift when a specific condition
was met and keeping the anti-theft system off, were based on flooding the network
with malicious messages to cause message confliction, which arises when the target
ECU receives opposing information. Different ECUs may react differently to this
condition but, usually, simpler ones merely consider valid the last message received:
the attacks succeed even if legit messages, which are periodically broadcast, are
not removed from the medium. The researchers also demonstrated that it was
possible to replace an entire system, such as the airbag, with a bogus chip which,
sending messages mimicking the original device, made the substitution unnoticeable;
furthermore, they showed that, due to implementation flaws, it was possible to
exploit diagnostic messages to extract privacy sensitive information from the vehicle.

In 2010, researchers from the University of Washington and the University of
California San Diego [5] went further and showed that if they were able to inject
messages into the CAN bus of a vehicle, they could make physical changes to the
car, such as controlling the display on the speedometer, killing the engine, as well
as affecting braking. The research received widespread criticism because people
claimed there was not a way for an attacker to inject these types of messages without
being close to the vehicle and, with that type of access, they could just cut a cable
or perform some other physical attack. The next year, the same research group [6]
showed that they were able to remotely perform the attacks, by exploiting interfaces
such as the MP3 parser of the radio, the Bluetooth stack and the telematics unit to
get the code executed.

2.2.1 Jeep Cherokee Hacking
In 2015, Charlie Miller and Chris Valasek ended the debate by clearly demonstrating
that remote car hacking of an unaltered vehicle was indeed possible, as stated by
the journalist who took part to the experiments [7], and detailed by the authors
themselves [8].

The vehicle chosen by the researchers to perform their tests was a 2014 Jeep
Cherokee, depicted in figure 2.2, which was deemed to provide the best opportunities
of success after having evaluated the attack surface, the network architecture and
other parameters. The internal architecture was interesting from the researchers’
point of view, thanks to the presence of a central unit, which was the source for

12

2 – Background

Figure 2.2: 2014 Jeep Cherokee.

infotainment, Wi-Fi and cellular connectivity, navigation and apps, while being
connected at the same time to both the CAN buses present in the vehicle. Most of the
functionalities were executed on a single 32-bit ARM processor running the QNX3

operating system, while a low-power microcontroller managed the communications
through the CAN buses.

Different possible entry points for an attacker have been identified by the
researchers, with the most promising being the Bluetooth stack, which would
anyway require the attacker to be near to the target, the pay-per-use Wi-Fi hotspot
service available in the Jeep, again suffering from a limited range, and the cellular
radio used to retrieve information from the Internet. During their analysis, the
hackers discovered serious vulnerabilities, comprising the faulty generation of the
WPA2 password which could be easily obtained by an attacker and the presence
of different TCP and UDP open ports, including one dedicated to D-Bus over
IP, a protocol allowing inter-process communication and remote procedure call
mechanisms. Exploiting the newly discovered backdoor, accessible both from Wi-Fi
and the cellular network and lacking any authentication system, the researchers
succeeded in controlling almost every parameter related to the infotainment system,
including changing the radio station or the volume, setting the fans to arbitrary
speed, obtaining the GPS coordinates of the vehicle and so on.

3A commercial Unix-like, real-time and micro-kernel based operating system, aimed primarily
at the embedded systems market.

13

2 – Background

Being the compromised system not able to communicate directly through the
CAN bus, gaining access to vital systems of the vehicle required a great effort from
the hackers, which needed to reverse engineer the firmware of the microcontroller to
forward messages from and to the main unit. They exploited one more time the
available D-Bus connection to flash the modified software and eventually succeeded
in injecting whichever message they wanted into both CAN buses, obtaining the
possibility to shut down the engine or disable the brakes issuing commands through
a laptop wherever in the US.

The research clearly demonstrates that remote car hacking is possible and real,
although accessing life-threatening features required very strong hacking skills and
motivation: the attackers spent months in reverse engineering and disassembling
firmwares, understanding messages and deeply analyzing core system files in order
to achieve their goals. Nonetheless, it highlights how the trend of adding more and
more functionalities inside the vehicles to make them appear like smartphones is
exposing the automotive industry to new dangers, which are mainly caused by the
incorrect integration of systems developed and manufactured by different companies,
whose specifications and implementations are almost always kept secret.

2.3 Related works
Being a vital system in every vehicle, CAN bus has been the subject of a high
number of studies to increase the security and prevent malicious attacks. Both
active protections, exploiting cryptographic functions to guarantee message authen-
tication [9], and intrusion detection systems, continuously monitoring the network
to detect traffic pattern changes [4], have been proposed. Nonetheless, they all
suffer from strong limitations due to the reduced computational power typical of
microcontrollers and the challenging real-time needs characterizing this protocol.

Moving to more powerful systems and Ethernet-based communications, the
security of messages exchanged between remote devices has already been tackled
by many researchers, especially in the broader field of ICT networking. Various
protocol suites are in use today, which approach the problem at different levels to
guarantee the features required by the specific use-cases. Firstly, security can be
provided at the network layer of the ISO/OSI stack by the IPSec protocol [10], which
establishes secured tunnels between interconnected hosts; secondly, it is possible
to climb up to the transport layer, where the ubiquitous TLS [11] is in charge of
protecting connections between applications residing on remote systems. Although
being both characterized by proved effectiveness and maturity, they appear not
to fit well the peculiarities of in-vehicle networks and especially of the SOME/IP
framework: the former is restricted by a limited granularity due to application
unawareness, while the latter does not play well with multicast communications and
requires a rather complex authentication handshake.

14

2 – Background

Mohammad Hamad et al. [12] recently proposed a framework that targets modern
vehicular networks and aims at providing secure communications between ECUs
by exploiting security policies to define who should talk to whom. The described
solution is made up of two main building blocks: on one side, a framework used to
build secure communication policies gradually by integrating them throughout the
design and life cycle of the software component, which enforces trust relationships
and allows delegation through the usage of a Public Key Infrastructure (PKI). On
the other one, a security module which acts as a connection policy checker vetting
the incoming and outgoing communications and enforcing the security policies in a
distributed manner. While being the proposed solution undoubtedly noteworthy,
and in a certain way adopting a solution similar to the one presented in this
thesis work, different elements push towards the adoption of a completely divergent
approach which, leveraging the integration with SOME/IP, aims at exploiting
provided functionalities, such as service discovery, to simplify the infrastructure and
relax the need for low-level policies.

15

Chapter 3

SOME/IP

Scalable service-Oriented MiddlewarE over IP (SOME/IP) is a communication
middleware designed for typical, Ethernet oriented, automotive use-cases. It has
been standardized by AUTOSAR,1 as part of the effort in the development of a
solution which is oriented towards emerging scenarios like highly automated driving,
requiring high-performance computing hardware and intense network communica-
tions. According to its specifications [14], the main reasons behind the definition
of a new Remote Procedure Call (RPC) mechanism include the desire for fulfilling
the hard requirements regarding resource consumption in vehicles, the need for
scalability from tiny to large platforms running different operating systems and the
inclusion of all the features required by automotive use-cases.

3.1 Communication paradigms
SOME/IP is designed to provide a service-oriented abstraction on the top of one
or more different transport protocols, mainly UDP and TCP. In the terminology
introduced by the middleware, a service represents an atomic entity that groups
together zero or multiple methods, events and fields, the building blocks which make
it possible for distinct applications to transmit information from one to another;
different instances of the same service may coexist at the same time, and reside on
different ECUs as well as on the same device.

Two different communication patterns, request/response and publish/subscribe,
are offered by SOME/IP which, due to their importance, are analyzed in the
following. Additionally, by their combination, the concept of field originates: it
represents a value associated to a getter, a setter and a notification event.

1AUTomotive Open System ARchitecture, a worldwide development partnership of automotive
interested parties founded in 2003 which pursues the objective of creating and establishing an
open and standardized software architecture for automotive ECUs [13].

16

3 – SOME/IP

Client Server

Request

Response

(a) Classical request/response.

Client Server

Request

(b) Fire & forget.

Figure 3.1: Request/response communication diagrams.

3.1.1 Request/Response
One of the most common communication paradigms is the one referred to as
request/response, which corresponds to standard Remote Procedure Call. This
pattern aims at providing the possibility to invoke functions which do not belong
to the application currently under execution but, instead, are made available by a
remote service and identified as methods, according to the SOME/IP terminology.

The process, depicted in figure 3.1a, starts whenever a communication partner,
playing the role of a client, wants to trigger a remote execution: a designated
SOME/IP message is constructed, identifying the target destination and containing
the possible parameters which the caller may want to include in. When the message is
correctly delivered to the destination, the server can decode the request and perform
any involved operation: once the processing terminates, a response containing either
the result of the computation or an identifier of the occurred error is finally generated
and dispatched, and the invocation terminates.

One special case of the pattern under examination, represented by figure 3.1b,
is defined fire & forget, and entails a one-way communication by not requiring the
callee to send back a response: its only purpose consists in requesting a remote node
to perform an action, without caring about the result.

3.1.2 Publish/Subscribe
The alternative messaging pattern available in SOME/IP is represented by the
notification concept, depicted in figure 3.2, which is rather typical in automotive
networks. It decouples the sender from the recipients of the messages: whenever
a value changes, the service in charge of it publishes a new notification targeting
the corresponding event; applications willing to receive updates, on the other hand,
express their interest by subscribing to the event. This way, publishers do not
program the messages to be sent directly to specific receivers but, instead, leave the
middleware the task of delivering them only to the intended destinations.

17

3 – SOME/IP

Server Client

Subscribe

Notify

Notify

Notify

Figure 3.2: Publish/subscribe communication diagram.

Depending on the specific use case, different strategies for sending notifications
are possible: common examples include cyclic updates, where an updated value is
sent in a fixed interval, updates on change, dispatched as soon as a modification
of the tracked value is detected and epsilon change, transmitted only when the
difference with respect to the last value is greater than a certain threshold.

One of the main advantages offered by the adoption of the publish/subscribe
communication paradigm is related to traffic optimization: by knowing the number
and the location of the subscribers, the middleware is able to transparently exploit
features offered by lower network layers, such as multicast messages, to save trans-
missions on the communication medium; moreover, it can also completely avoid
sending notifications when no applications are interested in them.

SOME/IP, actually, takes care only of the notification phase, while the initial
subscription procedure is managed by SOME/IP–SD, a companion protocol which is
entailed of managing service discovery functionalities, and that is described in §3.4.

3.2 Transport protocol bindings
As seen before, SOME/IP operates on the top of a transport protocol, which is in
charge of providing the functionalities needed to deliver messages from the sender to
the recipient(s). Two main bindings are currently supported, corresponding to the
protocols that make the communication across the Internet possible: UDP and TCP;
nonetheless, external transport mechanisms, such as Network File System (NFS) or
Automotive Pixel Link, could be used if more suited for the specific use-case.

18

3 – SOME/IP

3.2.1 UDP
Being a connectionless protocol, the delivery is achieved by enveloping SOME/IP
messages in UDP packets and simply transmitting them across the network, without
prior connection establishments. In order to save transmissions, it is possible for
multiple messages, clearly all targeting the same destination, to be grouped together
and to become part of the same datagram: the recipient is able to separate the
various slices by exploiting the length field contained in every SOME/IP header,
and comparing it with the remaining amount of data still to be read.

The UDP binding is able to transport only SOME/IP messages that fit directly
into an unfragmented IP packet: the maximum allowed payload size has been
arbitrarily fixed to 1400 bytes, considering the Ethernet Maximum Transmission
Unit (MTU), equal to 1500 bytes, and leaving some extra space to allow for future
changes to the protocol stack (e.g. changing to IPv6 or adding security means).

To permit the delivery of bigger messages over UDP, a protocol extension, named
SOME/IP Transport Protocol [15], has been standardized by the same consortium:
it implements the message fragmentation concept directly within the framework, by
providing the possibility of splitting extra-sized payloads in multiple parts, each one
with a copy of the header and additional information necessary for the recreation,
transmitted in different UDP datagrams.

According to the guidelines provided by the specifications, UDP should be the
preferred binding, either vanilla or using the SOME/IP–TP functionalities in case
of large messages, being a very lean protocol which introduces few overhead and is
suitable also in case of hard latency requirements. Indeed, due to the cyclic nature
of many communications in automotive applications, the best approach to errors
often consists in just waiting for the next data transmission, instead of trying to
repair the last one. Finally, it supports multicast messages, thus offering a way to
optimize the network utilization.

3.2.2 TCP
The alternative choice to convey SOME/IP messages entails TCP, a much more com-
plex transportation protocol which integrates different robustness features directly
out-of-the-box, by transparently managing packet losses, reordering and duplications,
and by automatically issuing retransmission requests whenever necessary.

A new TCP connection towards the service provider is opened by the client when
the first message has to be transmitted, and it is reused for all methods, events
and fields belonging to the same service instance; in a corresponding manner, the
connection is closed by the client when of no more use.

Being a heavyweight protocol, which introduces features regarding flow and
congestion control, TCP is suggested to be used only in case of very large chunks of
data need to be transported and no hard latency requirements in case of error exist.

19

3 – SOME/IP

0 7 8 15 16 23 24 31

Transport Protocol Header
(variable size)

Service ID Method ID

Length

Client ID Session ID

Protocol
Version

Interface
Version

Message Type Return CodeSO
M

E/
IP

H
ea

de
r ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Payload (variable size)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

C
overed

by
Length

Figure 3.3: SOME/IP message.

3.3 On wire format
A typical SOME/IP message, depicted in figure 3.3, is composed by a header, which
specifies the communication parties and the type of the message, and a payload,
which contains the actual data to be transferred.

The header, 16 bytes long and encoded in network byte order, is made up of the
following fields:

• Service ID, which uniquely identifies the targeted service and, together
with the Method ID, forms the Message ID; it is worth noting that there is no
way to distinguish a specific instance of a service, which is instead specified
by the used transport layer port;

• Method ID, that specifies, within the chosen service, the RPC method to be
executed or the event to which the notification belongs;

• Length, containing the length in bytes starting from the Client ID until the
end of the SOME/IP message;

• Client ID, which identifies the application triggering the specific request;
together with the Session ID, it forms the Request ID, to differentiate multiple
parallel uses of the same method or event;

• Session ID, an identifier incremented whenever a new message is sent;

20

3 – SOME/IP

• Protocol Version, specifying the SOME/IP version;

• Interface Version, indicating the major version of the service interface;

• Message Type, used to differentiate the type of the message: possible
values include REQUEST, REQUEST_NO_RETURN, RESPONSE, ERROR and
NOTIFICATION, plus the corresponding counterparts used when the payload
is fragmented according to the SOME/IP–TP specifications;

• Return Code, specifying, in case of a response, whether the requested
operation succeeded or identifying the occurred error.

In case consecutive data exists, it forms the payload which, depending on the
message type, may convey different pieces of information: parameters in case of a
request, results of computations for responses or updated data in notifications. The
specifications of SOME/IP do also provide the serialization rules to be adopted for
the payload, regarding both basic numerical types and more complex data structures,
including strings and arrays.

3.4 Service discovery
One of the main features introduced by SOME/IP is the one named service discovery,
which is provided by its companion protocol SOME/IP–SD. According to the
specifications [16], defining formats, message sequences and semantics of the protocol,
its main tasks include communicating the availability of the different services as
well as advertising and managing the subscription phase regarding events.

It enables the decoupling between the application providing a given service,
which merely announces its capabilities to the framework, and the ones requiring
it to operate, that, similarly, just have to signal their need. Furthermore, being
able to detect where the various applications are located, SOME/IP–SD relaxes the
requirement for static configurations specifying the network parameters of all the
services willing to communicate with: dynamism is guaranteed by the possibility
of starting and stopping applications at any moment, as well as of transparently
relocating them.

SOME/IP–SD messages are sent by exploiting the features offered by SOME/IP,
although the transport protocol is constraint to be UDP; they can be delivered either
in unicast, in case directed to a specific client, or exploiting multicast functionalities,
to reach all the listening parties.

As outlined by figure 3.4, messages are composed by one or more entries, each
one used to synchronize the state of a service instance or for publish/subscribe
handling; moreover, different options are often associated to each entry, to specify
additional pieces of information like, e.g., the network parameters, in terms of

21

3 – SOME/IP

SOME/IP Header

SD Entry 1 (Offer Service S2) - Option 1,2

SD Entry 2 (Offer Service S9) - Option 1,3

SD Entry 3 (Find Service S17)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Entries

Endpoint option 1-IPv4:10.0.1.5, UDP Port:9857

Endpoint option 2-IPv4:10.0.1.5, TCP Port:9857

Endpoint option 3-IPv6:FE80::18, UDP Port:9857

SO
M

E/
IP

–S
D

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

O
ptions

Figure 3.4: Structure of a SOME/IP–SD message.

addresses and ports, at which the advertised service is accessible. The main types
of entries include:

• Offer Service, advertising the availability of a given service instance, char-
acterized by a certain version, together with the network parameters of the
endpoint where the instance is accessible; it is periodically sent by the pro-
tocol, and can also be used to declare that a service is no more available, by
specifying a TTL value equal to zero;

• Find Service, used to speed-up the detection process, by requesting a specific
service if its current state is still unknown;

• Subscribe Eventgroup, that, as the name suggests, it used by a client to
subscribe to an eventgroup2 offered by a remote service, by specifying also
the endpoint where the notifications shall be delivered;

• Subscribe Eventgroup Acknowledgement, communicating whether the
subscription has been accepted or not by the provider and, in the positive
case, announcing the network parameters used for multicast notifications.

2A logical grouping which includes one or more events offered by the same service; every event
may be part many eventgroups.

22

3 – SOME/IP

3.5 vsomeip
The vsomeip stack3 is an open-source C++ implementation of the SOME/IP
specifications, designed as part of the GENIVI4 project. The stack, currently at
version 2.10.21 dated May 2018, consists of three main modules, described in the
following.

• libvsomeip.so, the main library, which is in charge of providing all the
basic functionalities according to the protocol specifications. It encompasses
creation and serialization of message headers, establishment of connections,
management of the communication endpoints and packets transmission; more-
over, it provides the event loop abstraction which simplifies the development
of applications based on the vsomeip stack. libvsomeip.so, however,
does not provide functionalities for the serialization of data structures com-
posing the payload: the task is left to the application developer, possibly by
exploiting the SOME/IP binding of CommonAPI, a higher-level framework
which abstracts the inter-process communication protocol chosen through the
logical definition of application interfaces and the automatic generation of
stub code [18].

• libvsomeip-sd.so, a companion library implementing the service discov-
ery functionalities as described by SOME/IP–SD. It is automatically loaded
only in case it is required and manages both the detection of running service
instances and the subscription phase concerning event notifications: while not
being mandatory, therefore, it must be activated to enable the publish/sub-
scribe communication paradigm.

• libvsomeip-cfg.so, whose main task consists in the interpretation of
the json configuration files which specify all the necessary parameters for
application execution, as described in §3.5.2, and in providing easy access to
them from the other modules.

While mainly sticking to the SOME/IP specification, some described features
are currently not implemented by vsomeip: these include mainly the already men-
tioned payload serialization, the SOME/IP–TP protocol for message fragmentation,
explained in §3.2.1, and some special options defined by the SOME/IP–SD protocol,
like the one for load balancing between different instances of the same service, which
seem to be simply ignored by the framework.

3https://github.com/GENIVI/vsomeip
4GENIVI is a nonprofit industry alliance committed to driving the broad adoption of open

source, In-Vehicle Infotainment (IVI) software and providing open technology for the connected
car. [17]

23

https://github.com/GENIVI/vsomeip

3 – SOME/IP

Listing 3.1: Server example code.
1 #include <...>
2 #include <vsomeip/vsomeip.hpp>
3
4 std::shared_ptr<vsomeip::application> app;
5
6 int main() {
7 app = vsomeip::runtime::get()->create_application("Server");
8 app->init();
9 app->register_message_handler(SERVICE_ID, INSTANCE_ID, METHOD_ID, on_message);

10 app->offer_service(SERVICE_ID, INSTANCE_ID);
11 app->start();
12 }
13
14 void on_message(const std::shared_ptr<vsomeip::message> &request) {
15 auto its_response = process_request(request);
16 app->send(its_response);
17 }

3.5.1 Example of applications
Before continuing in the analysis of the vsomeip internals, an example of two
programs, respectively a server and a client which communicate between them
through the request/response paradigm is presented, to provide the reader an idea
about how applications based on this stack are implemented.

Listing 3.1 depicts the very basic instructions – no error checks are performed –
necessary to implement a simple vsomeip based server, which continuously listens
for new messages and responds to them. Firstly, in the main function, an object of
type application, which provides access to most of the middleware functionalities,
is created; secondly its init method is executed, to load the configuration and set-
up the whole framework. A message handler is then registered and the framework
is informed about which are the services offered by the application. Finally, the
start method is executed, which begins the event loop: it never terminates until
the corresponding stop function is called.

The interaction between vsomeip and the application is highly based on han-
dlers, callback functions which are specified during the initialization and linked
to specific circumstances, like reception of messages, changes in the availability of
services or subscriptions to events: whenever the corresponding action is triggered,
the stored function is invoked, by passing the correct parameters to characterize
the occurred event. Back to the example, on_message is executed every time a
message targeting the method of interest is received: it processes the request and
finally sends back the prepared response, by exploiting the specific method of the
application class.

Listing 3.2, on the other hand, illustrates its counterpart, again stripped down
to the essentials; the basic structure is very similar to the previous case, with an
initialization phase, where the handlers are registered and the needed service is

24

3 – SOME/IP

Listing 3.2: Client example code.
1 #include <...>
2 #include <vsomeip/vsomeip.hpp>
3
4 std::shared_ptr<vsomeip::application> app;
5
6 int main() {
7 app = vsomeip::create_application("Client");
8 app->init();
9 app->register_availability_handler(SERVICE_ID, INSTANCE_ID, on_availability);

10 app->register_message_handler(SERVICE_ID, INSTANCE_ID, METHOD_ID, on_message);
11 app->request_service(SERVICE_ID, INSTANCE_ID);
12 app->start();
13 }
14
15 void on_availability(...) {
16 if (/* the requested service is available */) {
17 vsomeip::message request = prepare_request();
18 app->send(request);
19 }
20 }
21
22 void on_message(vsomeip::message response) {
23 process_response(response);
24 }

requested, followed by the start invocation. When the service discovery module
detects5 a running instance of the requested service, the on_availability
function is executed, which, in this case, simply sends a request to the server; as
before, if a response is received, it is delivered directly to the on_message method.

It is worth noting that, except for very simple examples like the ones presented
here, the exploitation of background threads is mandatory: being the start method
blocking, it is not possible to perform further operation once it is executed; moreover,
long-lasting computations cannot occur within message handlers, to avoid blocking
the threads directly managed by vsomeip.

3.5.2 Configuration files
The configuration of a wide number of parameters, ranging from network addresses
associated to each offered service to logging features, is managed by means of json
files, which are loaded during application initialization. While not deepening into the
details, exhaustively described by the user guide available together with vsomeip,
simple configuration files, which may be used for the examples presented in §3.5.1,
are depicted in listings 3.3 and 3.4. Four main properties are specified:

5In case this functionality is disabled, whether or not a service is available depends on the
parameters specified in the configuration file.

25

3 – SOME/IP

Listing 3.3: Server configuration.
1 "unicast" : "192.168.12.1",
2 "applications" : [{
3 "name" : "Server",
4 "id" : "0x1343"
5 }],
6 "services" : [{
7 "service" : "0x1234",
8 "instance" : "0x5678",
9 "reliable" : { "port" : "31000"},

10 "unreliable" : "31000"
11 }],
12 "service-discovery" : {
13 "enable" : "true",
14 "multicast" : "224.244.224.245",
15 "port" : "30490",
16 "protocol" : "udp"
17 }

Listing 3.4: Client configuration.
1 "unicast" : "192.168.12.2",
2 "applications" : [{
3 "name" : "Client",
4 "id" : "0x1344"
5 }],
6 "service-discovery" : {
7 "enable" : "true",
8 "multicast" : "224.244.224.245",
9 "port" : "30490",

10 "protocol" : "udp"
11 }

• unicast, indicating the local interface which is used for transmitting messages
towards remote ECUs;

• applications, listing the names of the applications associated to each
configuration, along with the corresponding identifiers used as Client IDs
inside the SOME/IP header;

• services, stating which are the service instances offered by the applications,
together with the transport protocols, and the corresponding ports, to be used;
in case the publish/subscribe paradigm is exploited, this section describes also
available eventgroups and relative multicast addresses;

• service-discovery, configuring whether this optional feature is enabled,
together with the network parameters necessary for its operation.

It is worth noting that the services section does not need to enumerate
requested ones, since they are automatically detected by the service discovery
module: in case it is disabled, on the other hand, it is mandatory to state all of
them, together with the network parameters at which they are reachable.

3.5.3 Architectural description
A representation of the architecture provided by vsomeip is depicted in fig-
ure 3.5 [19], which shows two ECUs interconnected through an Ethernet link.
Different applications, based on the vsomeip communication framework, are being
executed at the same time on the top of a Linux kernel, each one characterized by
its own instance of the vsomeip library, which can be further subdivided into two
main building blocks.

26

3 – SOME/IP

Application

vsomeip API

Local Endpoint

Routing Manager
Proxy

Application

vsomeip API

Routing Manager

Routing Manager
Stub

Local Endpoint

Service Discovery

TCP/UDP
Endpoint

Application

vsomeip API

Routing Manager

Routing Manager
Stub

Service Discovery

TCP/UDP
Endpoint

ECU 1 ECU 2

Ethernet

Figure 3.5: vsomeip architecture.

In the upper part, it is possible to glimpse the module which provides the public
API exploited by all applications for the interaction with the library itself. It
is mainly constituted by the application class already seen previously in the
examples, which implements the event loop abstraction and acts as an interface
between the applications and the underlying core module of the library. Moreover,
it comprises the classes which allow the representation and automatic creation of
SOME/IP messages and that, by means of serializers and deserializers,
can be converted to and from the on-wire format mandated by the standard.

The core part of the library, on the other hand, is the one whose cornerstone is
constituted by the routing_manager class, responsible for the actual delivery
of the messages towards either applications residing on the same ECU, by means
of Inter-Process Communication (IPC) mechanisms, or remote devices, using one
of the available transport protocols. As exemplified by the picture, it is possible
to have two different fashions of the routing manager that, anyway, are completely

27

3 – SOME/IP

transparent from the applications’ point of view:

• routing manager, the full-fledged version of the module, which is loaded
by only one application per each device, either the first which is executed or
according to the configuration files. This instance is the only one responsible for
sending messages to and receiving them from applications residing on remote
devices, by actually establishing the network connections and managing the
transport endpoints (i.e. the TCP and UDP sockets). Furthermore, it is
in charge of loading the libvsomeip-sd.so library in case the service
discovery functionalities are enabled, advertising to the other ECUs all the
services offered by the applications executed inside the same device and
internally propagating the received information.

• routing manager proxy, that is executed by all the other instances and
performs only local communications, towards one of the other applications
residing on the same ECU, by means of IPC mechanisms. Messages which
need to be dispatched to remote recipients are, therefore, firstly sent to the
central routing manager and then forwarded to the intended destination,
where the inverse process may need to be carried on. Service information
are constantly exchanged between the proxies and the master instance, to
share the knowledge about offered and required services and to manage the
problematics related to events.

3.5.4 Security functionalities
According to the vsomeip documentation, the framework includes some security
features which are based on UNIX credentials, and therefore available only for local
communications. In case this mechanism is activated by means of the configuration
file, every local connection is authenticated during the establishment by exploiting
the standard UNIX credential passing mechanism. It entails the usage of user and
group IDs, which are matched against the policies specified in the configuration
to decide whether the communication is allowed or not. Furthermore, information
about other parties in the system must be received from the authenticated routing
manager, to avoid malicious applications faking it and being able to wrongly inform
other clients about services running on the system.

While being certainly an improvement with respect to the completely unsecured
version standardized by the specifications, these features appear to be somehow
limited and weak, due to the total lack of protection for what regards network-
based communication between remote devices and the usage of unauthenticated
configuration files.

28

Chapter 4

Securing SOME/IP

This chapter presents in great detail the security framework designed during the
thesis work, which aims at protecting the communications occurring between in-
vehicle services. It has been conceived tightly integrated within the SOME/IP
middleware, due to its emerging importance in the automotive industry and with
the desire of exploiting as much as possible its peculiar characteristics, especially
the service discovery functionalities, to avoid the need for static configurations.

Dynamism and backward compatibility of applications have been two main
cornerstones of the research, with the goal of providing a future-proof solution which
is easily configurable without delving into low-level parameters. At the same time,
the challenging vehicular environment, made up of a variety of different devices with
unique characteristics has been kept in mind: while the usage of cryptography limits
the target of the presented solution to only microprocessor-based ECUs, trade-offs
have been considered to avoid the design of a very powerful but completely unusable
framework.

4.1 Security levels
The security framework has been designed to operate at a service instance granu-
larity, thus considering each instance of a SOME/IP service as a unique entity to
which a specific application can be either allowed or denied access. Such decision,
strongly influencing the whole design, has been taken as a compromise between two
conflicting needs: on the one hand the requirements for strong isolation, which push
towards a very fine granularity discriminating methods and events, and on the other
one the constrained resources, which limit the number of session establishments
and authentications that can be performed without increasing the latency to an
unsustainable level. Nonetheless, being services logical abstractions grouping to-
gether methods and events, but unrelated from the concept of application, the final
granularity depends on the architectural decisions made by application developers.

29

4 – Securing SOME/IP

The conceived solution, beyond offering the possibility to specify for each applica-
tion which are the service instances that can be offered or required, allows developers
to associate to each one a specific security level, which selects the cryptographic
function used to protect the actual messages transmitted across the network. De-
pending on the criticality of each service, different levels of security may be suitable,
considering again a balance between protection and computational complexity, which
may fruitlessly increase the latency and saturate the physical device. Three different
security levels are provided by the designed framework, respectively denominated
nosec, authentication and confidentiality, which are analyzed in the following.

4.1.1 Nosec
The nosec level is the simplest one, which merely corresponds to vanilla SOME/IP.
While not providing any security guarantee, it has been made available for compati-
bility reasons, since it adds no complexity to the transmission; moreover, it may
be useful for services which do not impose security requirements, to avoid wasting
ECUs’ power in useless computations.

In case of services operating at nosec level, potential wicked individuals, gained
access to the transmissive medium, are expected to be able to both sniff messages,
thus reading the exchanged information, and to inject spoofed packets, faking the
legit sender without the possibility for the receivers to detect the attack.

4.1.2 Authentication
The second available security level in the proposed framework is named authen-
tication: it guarantees that only allowed applications are able to send messages
associated to a specific service, providing message authentication.

Before a SOME/IP packet is sent out by the middleware, a cryptographic
signature, technically denominated Message Authentication Code (MAC), is attached
to it. When the destination receives a message, the signature can be verified: in case
it matches, the receiver knows that the packet originates from a trusted party and
has not been modified while passing through the network; in other words, it can be
sure about its authenticity and integrity. Furthermore, by adding a sequence number
whose trustworthiness is guaranteed by the signature, it is possible to prevent replay
attacks, which are characterized by the capture of valid packets for a subsequent
retransmission to, in case no protection is in place, trigger again the same action.

Wrapping up, in case of authentication-level services, an attacker continues to be
able to sniff information transmitted across the network, but loses the capability of
injecting fake messages, which can be easily detected and dropped by the receivers.
It can be considered a good trade-off since, while exchanged data may not need to
remain secret, it is usually of the most importance to avoid that wicked individuals
are able to trigger physical actions by means of spoofed commands.

30

4 – Securing SOME/IP

4.1.3 Confidentiality
Finally, the most complete level is denominated confidentiality. It includes all the
security properties offered by the previous one, thus guaranteeing authenticity and
integrity of the exchanged messages, and preventing replay attacks. In addition,
before the transmission of every message takes place, the payload1 is encrypted with
a cryptographic function, to prevent unauthorized parties from accessing it: data
confidentiality is assured.

An intruder, in case of services operating at confidentiality level, is therefore
neither able to inject messages into the network, which are discovered through
signature verification, nor to sniff the transmitted data, missing the key necessary
to extract the semantic meaning from random strings of bytes. Concluding, this is
clearly the security level which provides the greatest number of guarantees but, at
the same time, also the most expensive from the computational point of view: a
careful analysis should be carried on by application designers, to decide whether
the additional functionalities are worth the introduced penalties in terms of latency.

4.2 Cryptography overview
Before deepening into the analysis of the security framework, a brief overview about
cryptography is presented: while certainly not being an exhaustive dissertation, it
provides a description of the main concepts used in the following discussion.

Talking about cybersecurity, cryptography is clearly one of the most important
building blocks, the Swiss Army knife necessary to protect private communications
between applications across a computer network. It can be broadly divided into
two areas, depending on the characteristics of the keys required by the algorithms.

4.2.1 Symmetric cryptography
Symmetric cryptography uses the same secret key for encryption and decryption
operations, which must be known and shared between all the different parties
participating in the communication. It is commonly used for protecting great
amounts of data from access and modifications with relatively limited requirements
in terms of computational power. Its main limitation resides in the need for a key
sharing phase, which is clearly critical from the security point of view.

In the proposed solution, symmetric cryptography algorithms are extensively
used for message protection, in case of services operating both at authentication
and confidentiality level. The two main classes include:

1It is clearly not possible to encrypt the header, since its information must be accessed to
complete the delivery; nonetheless, it is authenticated by the signature, and therefore it is not
possible for an attacker to modify the specified parameters.

31

4 – Securing SOME/IP

• Message Authentication Code (MAC): a cryptographic checksum pro-
duced by a function which takes in input the message to be protected and
the secret key; the output can be used by the receivers, knowing the same
secret key, to detect modifications of the transmitted data, both accidental
and intentional, and to verify that the originator owned the same key.

• Authenticated Encryption with Associated Data (AEAD): a class
of symmetric algorithms which combine together message encryption and
MAC computation, with the usage of a unique key, to provide faster and less
error-prone programming interfaces; they are particularly suitable for network
packets, being able to encrypt the payload and at the same time authenticate
the whole message, comprising the headers.

4.2.2 Asymmetric cryptography
Asymmetric cryptography, also known as public cryptography, differently from
the previous case, needs a pair of related keys for its operation. While being
interchangeable from the mathematical point of view, the two keys are distinguished
according to how they are conserved: the former, referred to as private, is kept secret
by its owner, while the latter is made available to everybody, usually by means of a
public certificate; it is emitted by a trusted authority and associates the public key
with the identity of its owner.

Public cryptography is characterized by being highly computational demanding
and usable only with very limited amounts of data. Within network protocols,
it is mainly used during an initial handshake phase, to exchange the secret key
later used for actual message protection and to authenticate the participants to the
communication by computing digital signatures.

4.3 Security protocol
The core part of the conceived solution resides in the design of the security protocol
which, given in input the level associated to each service, provides the actual
protection to the messages across the transmissive medium.

An approach similar to the one adopted by the widespread Transport Layer
Security (TLS) protocol, made up of an initial handshake phase for session estab-
lishment followed by subsequent message transmissions, has been chosen during the
design. This decision, which provides a clear separation of roles between the two
phases, originates from the need for the usage of different cryptographic techniques:
asymmetric algorithms to authenticate the applications and verify whether they are
allowed to offer or request specific services and symmetric cryptography to limit
the computational time required when a packet has to be sent out. While it were
possible, from the theoretical point of view, to avoid the session establishment phase

32

4 – Securing SOME/IP

(a) Alternative 1. (b) Alternative 2.

Figure 4.1: Comparison of strategies for protection of messages belonging to a
service instance — different colors correspond to different symmetric keys.

and directly authenticate network messages by means of asymmetric cryptography,
large latencies would have been introduced due to the computational complexity
brought in by public cryptography, exacerbated in case of embedded systems with
processors of limited power.

4.3.1 Keys granularity

The desire for a solution which does not impose limitations on the SOME/IP
protocol makes it necessary to consider not only unicast communications but also to
allow for multicast messages, exploited for efficient delivery of notifications to all the
interested subscribers. Two possible strategies can be conceived to secure messages
belonging to a given service instance: on the one hand, as shown in figure 4.1a, it is
possible to use a different symmetric key between the offerer and each requester,
plus an additional one for multicast packets (depicted as dotted lines in figure),
known by all communication parties; on the other one, represented by figure 4.1b,
only a single key can be shared between all applications granted access to a specific
service instance.

As a trade-off between security and complexity, the second alternative, associating
a single symmetric key to each service instance, has been chosen for the designed
solution: while the former provides a better isolation within a service instance, the
additional complexity introduced is considered not being worth for two reasons.
Firstly, symmetric keys, being automatically regenerated every time a service is
started, are deemed to last only for a very limited time, reducing to a great extent
the possibilities for a successful attack; secondly, in case an intruder gets the control
of an application, all the services to which it has access would be anyway easily
compromised, also in case different keys were used.

33

4 – Securing SOME/IP

Offerer Requester

Figure 4.2: Session establishment handshake.

4.3.2 Session establishment
According to the chosen key granularity, whenever an application starts offering
a service instance, a new symmetric key is randomly generated by the framework
and stored within a local data structure. At this point, the session establishment
phase consisting of an exchange of messages carried on separately between each
application willing to require the service and its offerer, can start. It aims at
mutually authenticating both parties in order to verify whether they should be
allowed access or not and, in case of success, to exchange the parameters, including
the secret key, necessary for subsequent communication.

Before delving into the details, it is fundamental to notice that each application
needs to be accompanied by a private key and the corresponding signed digital
certificate, which enumerates in a trustworthy manner all the instances of services
that it is allowed to either offer or request, along with the minimum security level
which must be guaranteed for each of them. For the time being, it is assumed that
private keys are kept secret and accessible only to the corresponding application,
while digital certificates are stored in a public area replicated on each ECU: later
on, in §4.4, a more in-depth analysis is carried on about which are the security
properties that must be guaranteed for the cryptographic material, and how they
can be provided.

Protocol description

Figure 4.2 depicts the simple protocol that constitutes the session establishment
phase, made up of two message exchanges. The process is started by the client,
sending an initial message to begin the communication and pointing out its digital
certificate, the manifest stating its allowed capabilities. Once the request is received
by the service provider, the certificate is retrieved and, after its validation by means
of the trusted root certificate, it is verified whether the handshake can continue or
the request shall be denied. In case of successful outcome, the response is built up

34

4 – Securing SOME/IP

by the server, to share its own certificate and the parameters necessary for later
communications, including the symmetric key which is encrypted with the public
key contained in certificate of the requester. Finally, the server affixes its own
digital signature to the message and dispatches the response: the client, after having
validated the certificate and verified the capabilities of the offerer, can check the
digital signature and, in case of match, decrypt and store the symmetric key, which
will be used for later protection of actual messages.

It is worth noting that the security level at which a service instance operates is
decided preventively by the offerer and must be greater than the one stated within
its own certificate: otherwise, every subsequent session authentication would fail,
rejected by the clients discovering that the offerer is violating its constraints. At
the same time, during the handshake, the offerer verifies the service level marked in
the peer’s certificate and, in case it is greater than the provided one, refuses the
connection, to prevent the access to a service which is less secure than its needs.

As outlined before, two main tasks are carried on during the session establishment
phase:

• Mutual authentication, to verify that both the server and the client have
respectively the right to offer and request the considered service. It is based
on the usage of asymmetric cryptography, to show the association between a
digital certificate and an application by demonstrating the possession of the
corresponding private key. The verification is carried on differently for what
regards the server and the client: the former performs an explicit authenti-
cation, by signing the response with its own private key, while the latter is
implicitly authenticated, since it needs to use its private key to decipher the
transferred symmetric key.

• Symmetric key transfer, to let the client, in case the authentication suc-
ceeds, to acquire the secret key necessary for the subsequent communication:
it is a clearly critical task since, in case an attacker obtained the cryptographic
material, the protection for the whole service would be lost. To avoid being
accessed by malicious parties, the symmetric key is transferred across the
network in encrypted form, by using the public key contained in the digital
certificate of the client: only the intended destination, in fact, owns the cor-
responding private key necessary for the decryption. Moreover, as explained
above, the successful deciphering constitutes a proof which guarantees the
authenticity of the peer.

Messages description

As seen in the previous section, the session establishment handshake follows the
request/response communication pattern: being the security framework designed
to be part of SOME/IP, the middleware is clearly exploited for the delivery of

35

4 – Securing SOME/IP

0 7 8 15 16 23 24 31

Version
Asymmetric

Algorithm ID
Message Digest
Algorithm ID Unused

Challenge (32bytes)

Certificate Fingerprint (variable size)

Figure 4.3: Authentication request message.

the messages. Specifically, all pieces of information are transported by SOME/IP
packets, targeting the service for which the authentication is carried on and, in
particular, a special method which has been devoted to the task.

Figure 4.3 depicts the fields constituting an authentication request, which are
now analyzed in detail:

• Version: the version of the handshake protocol;

• Asymmetric Algorithm ID: the identifier of the asymmetric cryptogra-
phy algorithm that is used during the handshake, corresponding to the type
of the public key stored in the certificate;

• Message Digest Algorithm ID: the identifier of the cryptographic hash
function that is used to compute the certificate fingerprint;

• Unused: reserved for future usage;

• Challenge: a randomly generated sequence of bytes, which is used to
associate a request to the corresponding response, preventing that a valid
message previously sniffed by an attacker can be replayed with success;

• Certificate Fingerprint: the identifier of the digital certificate of the
requester; its length depends on the digest function used for the computation.

It is worth noting that, while it were possible to transfer every time the whole
digital certificate, it would be certainly a waste of network bandwidth due to its
considerable size (few kilobytes). Moreover, being the vehicle a closed system, it
is possible to assume the placement of the necessary cryptographic material inside
every ECU at applications deploy time. For these reasons, according to a well-
established practice, certificates are identified by a fingerprint, a unique identifier
computed by means of a cryptographic hash function.2

2A mathematical algorithm that maps data of arbitrary size to a bit string of a fixed size (a
hash) and is designed to be a one-way function, that is, a function which is infeasible to invert [20].

36

4 – Securing SOME/IP

Figure 4.4, on the other hand, shows the structure of an authentication response
message which, in addition to the initial identifiers with the same meaning as before,
the challenge which is copied from the request and the fingerprint of the digital
certificate of the offerer, consists of:

• Security Level ID: the identifier of the security level (nosec, authentica-
tion or confidentiality) at which the service instance is offered;

• Symmetric Algorithm ID: the identifier of the symmetric cryptography
algorithm used to guarantee the specified security level;

• Instance ID: an identifier associated by the offerer to each communication
party, which may be used, in case it is required by the chosen symmetric
algorithm, to form the initialization vectors;

• Encrypted Key Length: the length of the encrypted symmetric key trans-
mitted as the consecutive field;

• Encrypted Symmetric Key: the symmetric key necessary for the run-
time protection of the messages, encrypted with the public key contained in
the digital certificate pointed out by the request;

• Signature Length: the length of the digital signature transmitted as the
consecutive field;

• Digital Signature: the digital signature computed among all the pre-
vious fields by the offerer, to guarantee the integrity of the message and
demonstrate the possession of the private key.

4.3.3 Message protection
After having successfully established a secure session, it is possible to start trans-
mitting the messages containing application data. The technique adopted for the
run-time protection varies, clearly depending on the security level at which the
service operates. While in case of nosec services, with no guarantees in place, vanilla
SOME/IP messages are simply serialized, authentication and confidentiality-level
packets are respectively processed by the selected Message Authentication Code
and Authenticated Encryption algorithm, and the additional information necessary
for later verification are appended to the message before the dispatch. Similarly,
when a message is received, its level is firstly compared against the expected one;
secondly, authentication and confidentiality-level packets are processed by the cor-
responding cryptographic function to verify their authenticity and, in the latter
situation, decrypt the payload: if a mismatch is detected, the message is immediately
discarded.

37

4 – Securing SOME/IP

0 7 8 15 16 23 24 31

Version
Asymmetric

Algorithm ID
Message Digest
Algorithm ID Unused

Challenge (32bytes)

Certificate Fingerprint (variable size)

Security
Level ID

Symmetric
Algorithm ID Instance ID

Encrypted Key Length

Encrypted Symmetric Key

Signature Length

C
ov

er
ed

by
th

e
sig

na
tu

re

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Digital Signature

Figure 4.4: Authentication response message.

38

4 – Securing SOME/IP

0 7 8 15 16 23 24 31

Service ID Method ID

Length

Client ID Session ID

Protocol
Version

Interface
Version

Message Type Return Code

Payload (variable size)

En
cr

yp
te

d ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Support Data (variable size)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

A
uthenticated

Message Authentication Code (variable size)

Figure 4.5: Secured SOME/IP message.

Figure 4.5 shows the format of a secured packet, highlighting in bold the
differences with respect to a vanilla SOME/IP packet. While both in case of
authentication and confidentiality levels the entire message, including the SOME/IP
header, is authenticated, the latter provides also the encryption of the payload,
which carries application data. The modifications are analyzed in the following:

• Length: since the secured packet comprises more information with respect
to vanilla SOME/IP, the content of the length field needs to be updated to
reflect the changes, in order to allow for a correct deserialization at reception
side;

• Message Type: to specify which is the security level of the current packet,
two previously unused bits of the message type field are exploited as flags, as
depicted in figure 4.6;

• Support Data: includes all the pieces of information required to be trans-
mitted along with the Message Authentication Code, to perform validation
and decryption when the message is received; while its size and content varies
depending on the adopted algorithm, it always consists of a sequence number,
which can be used for replay protection;

• Message Authentication Code: the output of the cryptographic func-
tion, which allows the receiver to verify the authenticity and integrity properties
of the message; its size depends on the specific symmetric algorithm decided
by the offerer of the service instance.

39

4 – Securing SOME/IP

0 1 2 3 4 5 6 7

X X X X 0 0 X X

(a) Nosec.

0 1 2 3 4 5 6 7

X X X X 1 0 X X

(b) Authentication.

0 1 2 3 4 5 6 7

X X X X 1 1 X X

(c) Confidentiality.

Figure 4.6: SOME/IP message type – Security level flags.
0123456789101112131415

· · · X X X X X X X X X X · · ·

Figure 4.7: Sliding window for replay protection.

The protection from message replay is guaranteed through the usage of an
authenticated sequence number, which is added to every message of service instances
operating at authentication and confidentiality level. While SOME/IP already
includes a Session ID which is incremented whenever a new message is sent out,
its usage is mandated only when the request/response communication pattern is
exploited: it is, therefore, not suitable for replay protection of notifications.

Being SOME/IP usable both on top of reliable and unreliable transport protocols,
it is possible to assist to message losses and reordering: for these reasons a sliding
window technique, similar to the one adopted by Datagram Transport Layer Security
(DTLS) [21], is adopted. For each communication party of every service instance
with an established secure session, a data structure like the one depicted in figure 4.7
is maintained: it remembers, starting from the biggest sequence number received
up to now, the history of whether the messages characterized by the preceding
identifiers have already been received or not. A sequence number may fall into three
different positions, with respect to the sliding window:

• to the left, meaning it is older than the last recorded packet and shall be
automatically discarded;

• inside: the data structure can be checked to verify whether the message has
already been received or not; in the first case, the packet is rejected, otherwise
it is processed and the stored information updated;

• to the right, signifying it is newer than all the previously received messages:
in this case the sliding window moves to the right, until it comprises the newly
detected sequence number.

The exploitation of a sliding window mechanism, instead of storing all the received
sequence numbers, is dictated by efficiency reasons; while the choice of the length
of the window itself is left implementation dependent, the mechanism shall be able
to record at least the status of the last 32 packets.

40

4 – Securing SOME/IP

O
T

H
E

R
SW

.

APPLICATION 1

SECURITY
MODULE

SOME/IP
MIDDLEWARE

APPLICATION 2

SECURITY
MODULE

SOME/IP
MIDDLEWARE

LINUX KERNEL

E
X

E
C

U
T

IO
N

M
A

N
A

G
E

R

SE
C

U
R

E
ST

O
R

A
G

E

ECU

Ethernet

Figure 4.8: High level architecture.

4.4 High-level architecture
The conceived solution, designed to be integrated within the SOME/IP middleware,
is composed by multiple modules necessary for its operation. Figure 4.8, with
reference to the architecture provided by the vsomeip implementation, depicts a
typical microprocessor-based ECU interconnected with other devices by means of
an Ethernet link; internally, a Linux based operating system runs user applications
exploiting the SOME/IP middleware to transparently manage the communications,
as well as other software, which handles different tasks in background. Finally, the
blocks highlighted in red constitute the solution which is being presented and are
analyzed in the following.

4.4.1 Security module
The security module represents the core part of the solution, the one strictly bound
to the SOME/IP middleware, which provides the actual protection to the messages
transmitted across the network. It is designed to implement the two phases of the
protocol analyzed in §4.3, thus including both the session establishment handshake
and the run-time protection of the messages. Moreover, it manages all the related

41

4 – Securing SOME/IP

aspects, such as the coordination with the other parts of the middleware and the
processing of signed configuration files specifying security options.

4.4.2 Secure storage
One of the main assumptions made during the design of the handshake protocol
relates to the security properties guaranteed to each piece of the cryptographic mate-
rial: in case some of those fall through, the whole solution becomes useless. Firstly,
private keys shall be actually kept secret by the framework, and made accessible
uniquely to the corresponding application: in case an attacker took possession of one
of them, he would become able to successfully carry on authentications on behalf
of the legit owner and either access or provide the same services. Secondly, while
applications certificates do not need special protection, being their authenticity
and integrity guaranteed by means of a digital signature, the same is not true for
what regards the root certificate, the one, unique for each vehicle, that contains
the public key necessary to verify all the other signatures, that is self-signed. Once
a wicked individual succeeded in replacing the root certificate stored within the
various ECUs, counterfeit certificates would be considered valid by the framework
and forbidden communications would be enabled.

While a simple solution to guarantee the required protections could involve the
separation mechanisms provided by the operating system, such as the creation of
a different user for each application and the careful setting of file permissions, a
software protection, alone, would be inherently weak, being easily bypassable by
an attacker with physical access. Stronger protection requires hardware support,
providing tamper-resistant storage and burned-in keys that can be exploited to
build up, together with software functionalities, the necessary guarantees in terms
of security and trustiness. Being cryptographic hardware modules already quite
widespread in the general computing world, standardized as Trusted Platform
Modules and offered in different flavors by all the main CPU vendors, the topic is
not deepened further in this discussion and it is assumed that available technologies
are able to secure the required cryptographic material.

4.4.3 Execution manager
The final element considered in the presented architecture is the one named execution
manager, a software module acting as an interface between the security module
and the hardware storage, to abstract the low-level and platform-dependent aspects
inherent the access of the protected cryptographic material. It is conceived to
cooperate with and exploit the functionalities provided by the hardware support to
authenticate the applications and the whole framework at start-up time, granting
access to the corresponding private keys only in case all the elements correspond
to the expected ones. Also in this case, while the thematic is so wide to require

42

4 – Securing SOME/IP

an extensive dissertation, for the current analysis it is not deepened anymore,
concentrating the efforts on the security module.

4.5 Limitations
While being carefully designed to try to reduce as much as possible the vulnerabilities,
the solution presented in this discussion is characterized by a few weak points, both
due to the trade-offs necessary to avoid a too heavyweight solution and the implied
limitations of every security protocol.

Primarily, in addition to the considerations already performed in previous sections
and especially about the service instance granularity (§4.1), it is worth noting that
the conceived solution does not provide any type of protection against Denial of
Service (DoS) attacks, which try to make applications and services unavailable by
overloading them with tons of invalid requests. Moreover, while the introduction of
cryptographic functions, constituting the backbone of the security framework, is
mandatory to protect the data transmitted across the network, it accentuates the
risk of DoS attacks: being relatively expensive from the computational point of view,
in fact, the additional mechanisms may become targets of attacks which aim at
overloading the ECUs to prevent the execution of the actual applications. Possible
malicious behaviors may target both the session establishment phase, by flooding
a huge amount of authentication requests to force the offerer performing useless
but expensive computations to provide a response, and the run-time protection,
by overwhelming the framework with tons of unauthenticated SOME/IP packets.
While DoS attacks can be the cause of many problems, it is actually hard to find
possible countermeasures able to prevent them without, at the same time, exposing
new vulnerabilities which can be exploited for the same purpose.

One of the SOME/IP functionalities for which no protection is provided by the
conceived solution is the service discovery module: while, due to its importance, it
could certainly be the target of a possible attack to redirect legit requests towards
malicious applications, the authentication of SOME/IP–SD messages would increase
the computational load of the devices and introduce new possible vulnerabilities for
a DoS attack without, at the same time, increasing the overall security. Hijackings,
in fact, are already prevented by the mutual authentication carried on during the
handshake phase, which prevents the connection if one of the two peers is not
authorized to either offer or request the specific service, depending on its role.

Finally, being the considered solution conceived to operate within the SOME/IP
middleware to secure communications between user applications, it does not provide
protection against attacks targeting lower levels of the network stack, like IP, TCP
and UDP, either aiming at preventing the correct transmission and reception of
messages or trying to exploit vulnerabilities in smaller companion protocols to make
the victim ECU execute malicious code.

43

Chapter 5

PoC Implementation

This chapter, which presents the main insights about the implementation of the
solution presented in chapter 4, is divided into three broad parts. Firstly, being
cryptography the backbone of the conceived solution, a comparison about different
cryptographic libraries and algorithms, corroborated by the results of performance
measurements, is proposed to justify the preliminary decisions took at the beginning
of the implementation process. Secondly, a high-level description of the modules
developed within the vsomeip framework is presented, to show the designed
features that have been implemented as a proof of concept, together with the
main developed abstractions. Finally, an overview of the configuration options is
presented, to show how it is possible to both specify the level at which each service
instance operates and configure the broad range of security parameters influencing
the behavior of the implementation under discussion.

5.1 Cryptography
Before starting the actual implementation of the conceived solution within the
vsomeip framework, an analysis about the different available possibilities for the
computation of the necessary cryptographic functions has been carried on for two
main reasons. On one side, being the designed security protocol deeply based on
the usage of cryptographic algorithms and the target of the conceived solution
embedded systems with possibly limited computational capabilities, it becomes
fundamental to select an efficient and highly optimized implementation to avoid the
introduction of unnecessary performance penalties. Secondly, while the subsequent
PoC development has been driven by the usage of abstractions hiding as much as
possible low-level details, the selected cryptography library is a so important building
block that, guiding some architectural choices, becomes with no doubt difficult to
be replaced at a later stage. The initial decision about a specific algorithm, on
the other hand, is certainly less fundamental, being possible to provide multiple

44

5 – PoC Implementation

implementations and let the possibility to select the most suitable one by means of
the configuration: nonetheless, for the sake of completeness, a comparison between
different alternatives is also depicted.

5.1.1 Cryptography libraries
From an initial scouting phase, narrowed down both by the desire of avoiding any
bound with proprietary software for the proof of concept and by the requirement
for C or C++ APIs mandated by the vsomeip implementation, four different open-
source candidates primarily emerged for a more in-depth comparison, which are
briefly described in the following.

OpenSSL,1 a robust, commercial-grade, and full-featured toolkit for the Transport
Layer Security (TLS) and Secure Sockets Layer (SSL) protocols. It is made up
of two modules: on one side libcrypto, a general-purpose cryptography library
developed in C and implementing a wide range of algorithms accessible through
both low-level and more consistent high-level interfaces; on the other one libssl
that, combining the functionalities of the core module, provides an open-source
implementation of the SSL and TLS protocols. It is licensed under a permissive
Apache-style license.

LibreSSL,2 a cryptography library and TLS implementation forked from OpenSSL
in 2014 by the OpenBSD project, with goals of modernizing the codebase, improving
security, applying best practice development processes and removing obsolete or
broken features. It is characterized by a similar structure and API with respect to
OpenSSL and is licensed under BSD-style Open Source licenses.

CryptoPP,3 a free C++ library for cryptographic schemes including ciphers,
message authentication codes, one-way hash functions and public-key cryptosystems.
The library is licensed as a compilation under the Boost Software License 1.0, while
the individual files are all public domain.

Botan,4 a cryptography library written in C++11, which implements a wide range
of symmetric and asymmetric cryptographic algorithms as well as high-level, ready
to use, protocols such as the well-known TLS; it is licensed under the permissive
Simplified BSD license.

1https://www.openssl.org/
2https://www.libressl.org/
3https://www.cryptopp.com/
4https://botan.randombit.net/

45

https://www.openssl.org/
https://www.libressl.org/
https://www.cryptopp.com/
https://botan.randombit.net/

5 – PoC Implementation

5.1.2 Cryptography algorithms
Before presenting the methodology used during the benchmarking phase and ana-
lyzing the obtained results, a brief discussion about the cryptography algorithms
chosen for the comparison is provided. In order to see the overall picture, a com-
mon subset of candidates provided by all the libraries and belonging to the three
categories exploited by the security framework has been identified, by considering
well-established and widespread competitors. For a fair comparison, moreover, the
same security strength, corresponding to 128 bits, has been considered in every
case,5 by adapting the key length according to the characteristics of the algorithms.

The first investigated grouping embraces authenticated encryption, the class
of algorithms belonging to the symmetric cryptography branch that are used to
guarantee data authentication, integrity and confidentiality. Two different candidates
have been considered for this initial evaluation, AES-CCM and AES-GCM: they
are both modes of operation combined with the ubiquitous Advanced Encryption
Standard (AES) block cipher, that can operate with data of any size.

Secondly, algorithms computing Message Authentication Codes have been taken
into account, due to their usage in protecting communications of services operating
at authentication level. In this category, the two selected candidates are represented
by the authentication-only variants of the ones chosen for the previous category,
which are used without feeding data to be encrypted.

Finally, the last considered category includes asymmetric cryptography algo-
rithms fundamental during the session establishment phase described in §4.3.2; only
the well-known RSA has been investigated as a candidate for this grouping, due to
the lack of possible competitors with comparable functionalities and speed.

5.1.3 Benchmark methodology
After having identified the candidates for the comparison, four different C++ appli-
cations, corresponding to the considered libraries, have been developed and, for each
different algorithm, a function following the logic depicted by the pseudocode in
listing 5.1, which refers to authenticated encryption, has been implemented. Trying
to remove as much as possible potential factors of interference, the core instructions
are executed repeatedly within a loop and the total elapsed time is considered in
the throughput computation; moreover, all plaintexts are generated in advance and
initialization vectors, if necessary, are kept fixed during all the different iterations.
To represent various message sizes, functions are executed with four different values
for the plaintext length, which are deemed to be quite representative: 16 bytes,

5Actually, this statement is not true for what regards RSA that, if a 2048 bits key is used as in
this case, provides only 112 bits of equivalent security; nonetheless, the obtained results are not
invalidated since no comparison is performed between symmetric and asymmetric algorithms.

46

5 – PoC Implementation

Listing 5.1: Authenticated encryption benchmark function.
1 function bench_algorithm(algorithm, iterations, size)
2 begin body
3 plaintexts <- random_plaintexts(iterations, size)
4
5 start_time <- now()
6 for i from 1 to iterations
7 (ciphertext, MAC) <- encrypt(algorithm, plaintexts[i])
8 (plaintext, auth) <- decrypt(algorithm, ciphertext, MAC)
9 assert(auth is true)

10 end for
11 end_time <- now()
12
13 print_throughput(start_time, end_time, iterations, size)
14 end body

64 bytes, 256 bytes and 1024 bytes; in case of asymmetric algorithms, only the latter
is considered since, for small sizes, the difference between one and the other is
negligible. Finally, it is worth mentioning that, for every cryptography library, the
latest stable version available at the time has been downloaded and compiled with
out-of-the-box settings; moreover, applications have been built all in release mode
with always the same set of compilation flags.

Since the PoC under implementation is thought to be run mainly on embedded
systems, benchmarks have been executed on two different environments:

• a laptop constituted by an Intel Core i7-4600U CPU operating at 2.10 GHz,
8 GB of RAM and running Debian Stretch as operating system;

• a development board, characterized by two ARM Cortex-A7 cores operating
at 1.20 GHz, 1 GB of RAM and executing an embedded Linux distribution
built through Yocto Project.6

As an effort in trying to further reduce possible interferences, CPU scaling func-
tionalities have been temporarily disabled on both systems and other applications
or unnecessary background tasks terminated. Each benchmark has been executed
ten times specifying as a parameter the number of iterations for the main loop
of each algorithm, selected as a tread-off to achieve good precision while limiting
the execution time: 100 000 and 1000 repetitions have been chosen respectively for
symmetric and asymmetric algorithms in case of the x86 device, while they have
been reduced by ten and five times each for the less powerful ARM-based board.
The results have been post-processed by means of a custom script to compute, for
each library, algorithm and size, the average execution time t̄ and the corresponding
standard deviation σt, calculated according to equation (5.1); finally, the throughput

6https://www.yoctoproject.org/

47

https://www.yoctoproject.org/

5 – PoC Implementation

value has been derived, together with the associated standard deviation, and plotted
for easier comparison.

σt =
√∑N

i=1(ti − t̄)2

N
(5.1)

5.1.4 Results evaluation
Considering the results depicted in figures 5.1 to 5.6, it emerges at a first glance the
huge difference in terms of performance between the laptop with a x86 processor
and the ARM based embedded system, which justifies the considerations made
during the design phase about the necessary trade-offs to avoid the introduction of
excessive overheads.

Looking more in detail at the different libraries, and limiting the analysis to
x86 benchmarks, it emerges that, both for what regards authenticated encryption
and MAC algorithms, OpenSSL and LibreSSL achieve similar throughputs, except
in few cases where the former tends to be more optimized; Botan and CryptoPP,
instead, are characterized by performance limited, in most situations, to less than
one half the ones provided by the competitors. Finally, considering asymmetric
algorithms, OpenSSL is again the leader, with CryptoPP chasing and the other
libraries more distant. Switching to ARM, although the ranking is confirmed in
most situations, OpenSSL emerges as being the most optimized library providing,
in many cases, twice as much throughput with respect to the others. Concluding
the analysis, it is clear that OpenSSL, being particularly performing both with x86
and ARM processors, is the chosen library for the PoC implementation.

Before going on, a further comparison has been performed, to select the algo-
rithms offering the best throughput, both in case of authenticated encryption and
message authentication codes. For what regards the first category, CHACHA20-
POLY1305, a combination of two algorithms designed to be efficient when imple-
mented in software, and AES-OCB have been added to the previously considered
competitors; the second group, instead, saw the inclusion of both the authentication-
only variant of CHACHA20-POLY1305 and the HMAC algorithm combined with
the widespread SHA256 cryptographic hash function. Figure 5.7 shows the results
of the benchmark in case of the x86 processor, where AES-GCM, and its GMAC
variant, emerge as clear winners in both categories. Instead, considering the re-
sults obtained with the embedded system, shown in figure 5.8, it is evident the
efficient software implementation of CHACHA20-POLY1305 which, especially in
case of bigger message sizes, is two or three times more performing with respect
to the other competitors. Wrapping up, two different algorithms, AES-GCM and
CHACHA20-POLY1305, have been selected for the implementation due to the
provided throughputs: they are both able to protect service instances operating at
either authentication or confidentiality level.

48

5 – PoC Implementation

0

100

200

300

400

500

600

16 64 256 1024 16 64 256 1024

T
hr

ou
gh

pu
t

(M
B/

se
c)

Data size (Bytes) and Algorithm

Botan 2.6.0
CryptoPP 7.0.0

LibreSSL 2.7.3
OpenSSL 1.1.0

AES128-GCMAES128-CCM

Figure 5.1: Libraries benchmark — Authenticated Encryption — x86

0

2

4

6

8

10

12

16 64 256 1024 16 64 256 1024

T
hr

ou
gh

pu
t

(M
B/

se
c)

Data size (Bytes) and Algorithm

Botan 2.6.0
CryptoPP 7.0.0

LibreSSL 2.7.3
OpenSSL 1.1.0

AES128-GCMAES128-CCM

Figure 5.2: Libraries benchmark — Authenticated Encryption — ARM

49

5 – PoC Implementation

0

100

200

300

400

500

600

700

800

900

16 64 256 1024 16 64 256 1024

T
hr

ou
gh

pu
t

(M
B/

se
c)

Data size (Bytes) and Algorithm

Botan 2.6.0
CryptoPP 7.0.0

LibreSSL 2.7.3
OpenSSL 1.1.0

AES128-GMACAES128-CMAC

Figure 5.3: Libraries benchmark — MAC algorithms — x86

0

5

10

15

20

25

30

16 64 256 1024 16 64 256 1024

T
hr

ou
gh

pu
t

(M
B/

se
c)

Data size (Bytes) and Algorithm

Botan 2.6.0
CryptoPP 7.0.0

LibreSSL 2.7.3
OpenSSL 1.1.0

AES128-GMACAES128-CMAC

Figure 5.4: Libraries benchmark — MAC algorithms — ARM

50

5 – PoC Implementation

0

2000

4000

6000

8000

10 000

12 000

14 000

16 000

18 000

20 000

RSA2048-SHA256 Sign RSA2048-SHA256 Verify

T
hr

ou
gh

pu
t

(O
pe

ra
tio

ns
/s

)

Botan 2.6.0
CryptoPP 7.0.0
LibreSSL 2.7.3
OpenSSL 1.1.0

Figure 5.5: Libraries benchmark — Asymmetric algorithms — x86

0

500

1000

1500

2000

2500

RSA2048-SHA256 Sign RSA2048-SHA256 Verify

T
hr

ou
gh

pu
t

(O
pe

ra
tio

ns
/s

)

Botan 2.6.0
CryptoPP 7.0.0
LibreSSL 2.7.3
OpenSSL 1.1.0

Figure 5.6: Libraries Benchmark — Asymmetric algorithms — ARM

51

5 – PoC Implementation

0

100

200

300

400

500

600

700

800

900

16 64 256 1024 16 64 256 1024

T
hr

ou
gh

pu
t

(M
B/

se
c)

Data size (Bytes) and Algorithm

AES128-CCM

AES128-GCM

AES128-OCB

CHACHA20-POLY1305

AES128-CMAC

AES128-GMAC

CHACHA20-POLY1305

HMAC-SHA256

Message Authentication CodeAuthenticated Encryption

Figure 5.7: Symmetric cryptography algorithms benchmark — x86

0

10

20

30

40

50

60

70

80

90

100

16 64 256 1024 16 64 256 1024

T
hr

ou
gh

pu
t

(M
B/

se
c)

Data size (Bytes) and Algorithm

AES128-CCM

AES128-GCM

AES128-OCB

CHACHA20-POLY1305

AES128-CMAC

AES128-GMAC

CHACHA20-POLY1305

HMAC-SHA256

Message Authentication CodeAuthenticated Encryption

Figure 5.8: Symmetric cryptography algorithms benchmark — ARM

52

5 – PoC Implementation

5.2 Functional modules
After having decided the cryptography library and algorithms to be used, the actual
implementation as a proof of concept of the conceived security framework took place.
In particular, most of the efforts have been concentrated on the integration of the
functionalities designed as part of the security module, including the authentication
phase and the run-time protection, within vsomeip; moreover, an entire new group
of configuration options, described more in detail in §5.3.2, has been introduced, to
let the possibility to customize various aspects of the provided solution.

As already stated before, for what regards the PoC implementation, crypto-
graphic material, comprising the root certificate and private keys, has been assumed
to be protected by means of operating system facilities. While, as described in §4.4.2,
only limited guarantees are provided this way, the decision strongly simplifies the
initial development, leaving more time for working on important parts of the solution
instead of concentrating on hardware-dependent technological aspects.

Back to the description, the implementation can be divided at a high-level
into different functional modules, made up of tightly bound classes cooperating to
provide a specific set of functionalities, which are briefly analyzed in the following.

5.2.1 Cryptography abstraction
Being the depicted solution highly based on cryptography, a quite significant number
of classes has been designed to abstract the various functionalities, decoupling as
much as possible the interface from the actual implementation, which is clearly
based on the APIs provided by OpenSSL.

Considering symmetric cryptography, for example, two different interfaces have
been designed, abstracting respectively the concepts of authenticated encryption
and authentication-only. They allow the transparent coexistence of multiple im-
plementations based on different algorithms, hiding specific and low-level aspects.
Moreover, every derived class may choose to tackle the replay protection differently
to exploit, if possible, part of the initialization vector as a sequence number.

Similarly, in case of asymmetric cryptography, different interfaces are used to
represent private and public keys, along with the functionalities enabled by each
one. The same occurs for what regards digital certificates, defining the methods
available to both access the contained information, according to the format described
in §5.3.1, and verify their authenticity, by traversing the chain of truth. Furthermore,
the concept of certificate store has been introduced, to keep in cache the digital
certificates already loaded during the current execution and prevent the need for
repeated validations, which are expensive from the computational point of view.

Finally, a set of enumerations has been introduced, to associate numeric identifiers
to the various algorithms, and utility methods provided for easy conversion from
and to the human-readable format used in configuration files and logs.

53

5 – PoC Implementation

message_impl

<<abstract>>
session_establishment_message

session_establishment_request session_establishment_response

Figure 5.9: Session establishment messages inheritance diagram.

5.2.2 Session establishment

The first core functionality provided by the PoC is the one implementing the
session establishment phase according to the protocol designed in §4.3.2. It is
integrated directly within the routing_manager_base class, to detect the ac-
tions requested by the applications and react consequently. For instance, when the
offer_service method is executed, the framework performs an initial check to
verify, according to the digital certificate associated to the application,7 whether
the operation is allowed and which is the minimum security level to be guaranteed:
depending on the outcome, either the session parameters are initialized or the request
is rejected. Similarly, for the client side, the execution of the request_service
function triggers a verification, which can culminate into the block of the request
itself: nonetheless, also in case of positive outcome, no authentication messages are
sent until an available instance of the requested service is detected. When this event
occurs, the message handshake mandated by the protocol can start: it is managed
entirely within the routing manager, in a transparent way from the applications
point of view, by intercepting the packets targeting the special method devoted to
the specific purpose. If the authentication phase succeeds, the client obtains the
session parameters necessary for the communication and the service availability is
advertised to the application. Otherwise, different behaviors may occur depending
on the situation: in case either an authentication request or a response is fallacious,
or the peer is not authorized to perform the specific operation, the process is imme-
diately aborted, with no further exchanges. If no authentication response is received
from the offerer, on the other hand, the client may retry establishing the session
multiple times, according to the configured parameters, before giving up.

7It is worth noting that, in this initial phase, the framework does not verify whether the
application has access to the private key corresponding to the certificate, which is instead checked
during the mutual authentication phase.

54

5 – PoC Implementation

<<abstract>>
message_serializer

+ serialize_message()

message_serializer_nosec message_serializer_authentication

message_serializer_confidentiality

Figure 5.10: Message serializer inheritance diagram.

Figure 5.9 shows the inheritance diagram of the main classes used to represent
the messages exchanged during this phase: the root is formed by message_impl,
already present in vsomeip, which abstracts a standard SOME/IP packet by
providing accessors for the various header fields, together with serialize and
deserialize methods to convert to and from the on-wire format. Immediately
below, it is introduced the session_establishment_message abstract class,
which implements the common part of authentication messages, present both in
requests and responses, and its serialization, by extending the above-mentioned
methods. Finally, the two leaves of the diagram represent the actual messages:
the response, in particular, provides the functionalities to transmit and retrieve
the session parameters, including the encrypted symmetric key, necessary for the
subsequent run-time protection.

5.2.3 Message protection
The second fundamental feature included inside the PoC consists in the run-time
protection of all exchanged messages, according to the specifications provided
in §4.3.3. It is implemented through two main class hierarchies: the one depicted in
figure 5.10, and the symmetrical one devoted to message deserialization.

With reference to the mentioned diagram, the root of the inheritance is consti-
tuted by message_serializer, an abstract class which encapsulates a vanilla
serializer object, as provided by vsomeip, and provides a single method,
receiving in input the message to be processed and returning in output the stream
of bytes ready to be transferred. According to the instantiated specialization, which
depends on the parameters exchanged during the session establishment phase, the
behavior of the function changes, to guarantee the corresponding security level. Con-
sidering message_serializer_authentication, for instance, it performs
two main operations during serialization: firstly, the encapsulated serializer
object is exploited to convert the message into raw bytes and the header is modified

55

5 – PoC Implementation

according to the specifications, by setting the corresponding flags and adapting
the length value. Secondly, serialized data is processed by the object implementing
the symmetric cryptographic algorithm associated to the current session and the
additional pieces of information, including both the initialization vector and the
actual Message Authentication Code, are appended to the original stream of bytes,
ready to be dispatched.

5.3 Security configuration
One of the main driving aspects emerged during the initial design of the solution
under analysis is related to the usage of high-level rules to define the security
guarantees associated to each service. In the following, a brief analysis of the
possibilities for configuring security-related aspects of the PoC implementation is
presented, to show how the defined goal has been reached thanks to the integration
of the functionalities within SOME/IP, which abstracts the low-level aspects of the
network communication.

Two different techniques have been adopted to fulfill the task: on one side,
information related to the capabilities of each application are directly embedded
within its associated digital certificate. On the other one, json files, already used
for vsomeip configuration, are extended with additional security options: moreover,
to guarantee the authenticity and integrity of the contained information, a digital
signature is stored and verified every time the file is read by the framework.

5.3.1 Digital certificates
Being the security framework based on the concept of defining for each application
the associated capabilities, in terms of services allowed to be offered or requested,
it is clearly necessary to provide the possibility to specify the needed information
in a simple and trusted way. It is, in fact, an essential requisite to guarantee that
the configured values cannot be altered by a possible attacker, otherwise the whole
provided security would fall down like a house of cards. Since the parameters under
examination are exploited during the session establishment phase, which is highly
based on the usage of asymmetric cryptography to perform the authentication, it
is deemed to be quite straightforward the storage of security information directly
within the digital certificate associated to each application, whose trustworthiness
is certified by an authority and verified before extracting the contained data.

More in detail, with reference to the X.509 specifications defining the format
of public certificates, a specific extension, denominated Subject Alternative Name
(SAN), has been exploited for the purpose. It allows listing, within the certificate,
a set of names, according to different possible standards, that are bound to the
stored public key: a URI-like format, depicted in figure 5.11, has been chosen to list

56

5 – PoC Implementation

vsomeip : 0x1234 : 0x5678 / offer = authentic

Keyword Service ID Instance ID Offer or
Request

Minimum
security level

Figure 5.11: Format of a vsomeip SAN entry inside the digital certificate.

the capabilities of each application. It is composed by five different elements: the
initial vsomeip keyword, which characterizes the type of the entry, followed by the
identifiers of the considered service instance, according to the SOME/IP format,
and the capabilities associated to the application. In particular, it is specified
whether the application is allowed to either offer or request the service and
the minimum security level that must be guaranteed during the communication.
No bounds are dictated about the number of entries that can be present within a
certificate, which are only influenced by how many different services can be accessed
by the considered application.

Furthermore, two additional digital certificates are requested for the correct
operation of the framework: the former, already mentioned different times, is the
self-signed root certificate which is used to validate all the others. The latter, on the
other hand, contains the public key necessary to verify the signatures affixed to con-
figuration files and is identified by the vsomeip:configuration-signature
Subject Alternative Name.

While configuration parameters considered up to now clearly adhere to the
demand for high-level rules, criticism may arise about the complexity of embed-
ding actual entries, according to the presented format, within digital certificates.
Nonetheless, it is deemed to be trivial the development of a GUI-based application,
which abstracts the whole process by hiding low-level details.

5.3.2 Configuration files
While the core security rules are specified through digital certificates, as explained in
the previous section, a wide range of additional parameters may be tuned by means
of extended vsomeip configuration files. In the following, the various security
options available are briefly described, referring to the example shown in listing 5.2;
before continuing, it is worth noting that fingerprints and signatures, shown in a
shortened format to avoid lengthy lines, must be written in full inside the actual
json files for being accepted. Configuration options can be broadly divided into
three groups, corresponding to the main json objects shown in the example.

57

5 – PoC Implementation

Listing 5.2: Security configuration options example.
1 ...
2 "applications" : [{
3 "name" : "example-application",
4 "id" : "0x0001",
5 "private-key-path" : "./example-application.key",
6 "certificate-fingerprint" : "910F4D028E63CD8B..31A8A2B53A900163",
7 "application-fingerprint" : "A0EEF580CAE3B616..A6D1D0AC87542FFA"
8 }],
9

10 "service-security" : {
11 "certificates-path" : "/var/certificates",
12 "root-certificate-fingerprint" : "63ED9DB6A52A4B5C..1414A5E72EB5F3C5",
13
14 "services" : [{
15 "service" : "0x1234",
16 "instance" : "0x5678",
17 "security-level" : "confidential",
18 "security-algorithm" : "aes-gcm-128"
19 }],
20
21 "default-algorithms" : [{
22 "security-level" : "authentic",
23 "security-algorithm" : "chacha20-poly1305-256"
24 },{
25 "security-level" : "confidential",
26 "security-algorithm" : "aes-gcm-256"
27 }],
28
29 "repetitions-max" : "3",
30 "repetitions-delay" : "1000" ,
31 "repetitions-delay-ratio" : "2.0",
32
33 "check-application-fingerprints" : "true"
34 },
35
36 "configuration-security" : {
37 "signature-algorithm" : "rsa2048-sha256",
38 "certificate-fingerprint" : "08F7338656BEDEBE..36A623EC3720E33A",
39 "signature" : "5507C9115B288C167C830875AD328081..9B84494A671AD986C45D2733DA4C633E"
40 }
41 ...

58

5 – PoC Implementation

• applications, enumerating additional parameters strictly related to the
actual applications. Three main pieces of information may be specified: on
one side, it is necessary to tell the framework where it is possible to retrieve
the required private key, along with the identifier of the corresponding digital
certificate. On the other one, it is possible to specify the expected fingerprint of
the application: if the optional verification is enabled, the framework compares
the indicated value against the actual one, and the execution is aborted in
case a mismatch is detected. While no strong guarantees are provided, since
libraries are not checked for genuineness, it implements an initial form of
authentication of the applications.

• service-security, providing the possibility to redefine most of the pa-
rameters influencing the behavior of the framework: nonetheless, two pieces
of information are mandatory, to specify both the folder containing all the
necessary certificates and the fingerprint identifying the root one. Addition-
ally, for what regards each offered service instance, it is possible to configure
both the security level, which cannot be lower than the one mandated by
the certificate, and the cryptographic algorithm chosen for the protection. If
no explicit settings are present, the framework defaults in one case to the
value advertised by certificate, and in the other one to either the algorithm
associated to the given security level or, if not provided, to a predetermined
choice. For what concerns requested services, on the other hand, it is possible
to modify the behavior in case an authentication response is not received, by
specifying the maximum number of requests that can be performed before
giving up and the time which should elapse between one and the subsequent.
Finally, it is possible to decide whether the verification of the application
fingerprint is enabled or not, by setting the corresponding property.

• configuration-security, specifying the information required to verify
the authenticity and integrity of the whole json file. In particular, it points
out the asymmetric cryptography algorithm used for the computation and
the digital certificate containing the public key necessary for verification.
Furthermore, the actual signature is stored: it is computed among the entire
file, with the signature value replaced by a number of zeros corresponding
to its expected length. After having loaded a configuration file, the security
framework verifies the genuineness of the contained signature and, in case of
mismatch, the execution is immediately terminated.

59

Chapter 6

Experimental Evaluation

This chapter, which can be broadly divided into three main parts, examines the
methodologies adopted to evaluate the functionalities of the developed proof of
concept and presents the results of performance measurements. Firstly, a brief
description of the automatic tests part of the vsomeip bundle is provided, together
with an analysis about the incompatibilities with the implemented security frame-
work. Secondly, the benchmark methodology is depicted, showing the results of
quantitative measurements carried on to evaluate the penalties introduced by the
additional features. Finally, the design of the demonstrator, realized to exhibit the
implemented security functionalities in a simple and effective way by mimicking the
variety of ECUs present in modern vehicles, is presented to the reader.

6.1 Automatic testing
While, during the initial phases of the PoC implementation, simple application
examples, based on both request/response and publish/subscribe communication
patterns, have been exploited to check the correct functioning of the additional
modules, a more systematic testing phase has soon become necessary. Luckily, a set
of test cases, made up of more than one hundred units implemented by means of the
Google Test framework,1 is already shipped together with the vsomeip source code.
They are mostly composed by two or more applications, communicating between one
another either locally or across the network according to the possibilities provided
by the vsomeip framework; moreover, various combinations of configuration files
are exploited, to cover a wide range of available settings.

Since a great amount of test cases needs to be run on two different devices
interconnected by a network, the necessary testing environment has been deployed
before starting the actual execution of the applications. For the sake of simplicity,

1https://github.com/google/googletest

60

https://github.com/google/googletest

6 – Experimental Evaluation

virtualization has been exploited to prevent the need for a complex staging: two
lightweight Docker containers have been created within the development machine
and interconnected through a virtual switch, to mimic the expected configuration.
Subsequently, all the json files used for the set-up of the vsomeip framework
have been modified, by including the pieces of information necessary to enable
the security functionalities. To prevent unneeded complexities, a single certificate
allowing access to all the service instances part of the tests has been created: while
being clearly a bad practice from the security point of view, it is deemed to be a
fully acceptable strategy to be adopted during this testing phase, which aims at
verifying the global functioning of the framework.

Completed the initial set-up of all the necessary elements, the actual test and fix
phase could start. Multiple iterations of the process have been performed for each
failing test case: unnecessary limitations have been removed and correct operation
enabled also for specific corner cases overlooked during the initial analysis of the
vsomeip source code. Finally, after having completed the procedure, it is possible
to state that the developed proof of concept is almost completely compatible with
vanilla vsomeip: only a handful of unit tests is still failing, due to reasons explained
in the following, which mainly depend on the introduced security guarantees.

Starting the analysis about problematic tests, it is necessary to mention that,
in few situations, they have been implemented by sending hand-crafted SOME/IP
packets through raw endpoints, without exploiting the abstractions provided by the
framework. It is obvious that, being the security functionalities designed exactly to
prevent the communication with unauthenticated parties, these kinds of messages
are immediately blocked by the receivers, forcing the failure of the involved tests.
Similarly, the behavior in very specific corner cases may slightly vary: considering the
subscription to two eventgroups comprising both the same event, for example, vanilla
vsomeip delivers twice every notification, while the secured version only once; the
second message, in fact, would be anyway detected as replayed and discarded by the
framework. Furthermore, it is worth mentioning that slight adaptations of a couple
of tests has been made necessary to account for the modifications introduced by the
run-time protection. They mainly concern the reduction of the maximum payload
size, necessary to make room for authentication data in case of limited UDP packets:
although it would have been possible to extend the maximum SOME/IP message
length and preserve the payload, a different strategy has been adopted during the
development of the PoC, to account for authentication data of different lengths.

Concluding this discussion, the relationship between the security framework and
the service discovery functionalities presented in §3.4 is briefly analyzed. Albeit
not being strictly mandatory from the operational point of view, the usage of
the automatic detection features provided by SOME/IP is strongly suggested
in conjunction with the conceived solution, to prevent the occurrence of critical
situations. In case the service discovery module was disabled, for example, client
applications would have absolutely no way to detect the reboot of the offerer,

61

6 – Experimental Evaluation

preventing the correct reestablishment of the session. Nonetheless, this requirement
is not deemed to be a limitation, being the additional module already necessary to
enable the publish/subscribe communication pattern.

6.2 Performance measurements
After the competition of the proof of concept implementation and the successful
verification of the correct functioning through automatic tests, a quantitative analysis
of the performance has been carried on. It aimed at measuring the extra latencies
introduced by the additional security functionalities that, being highly based on
cryptographic functions, are with no doubt computationally expensive. In particular,
the attention turned to the run-time protection, evaluating the penalties associated
to each security level, to understand whether they are bearable or not in critical and
constrained environments like the automotive one. In the following, the benchmark
methodology is firstly introduced, to continue with the analysis of the results.

6.2.1 Benchmark methodology
In order to perform the necessary measurements, two applications, clearly based
on the framework under analysis, have been developed to communicate between
each other. In particular, a couple of test cases already provided for benchmarking
purposes together with vsomeip have been adapted to the specific needs. The
former implements a server, in charge of offering a service instance and answering
to the received messages, while the latter is a client, which performs repeated
requests to the peer and measures the round trip time necessary to obtain the
acknowledgement.

Three different strategies have been adopted for performance evaluations, corre-
sponding to alternative implementations of the core function executed by the client.
Firstly, it is considered the request/response communication pattern through the
logic depicted in listing 6.1, which adopts a synchronous approach: after having
sent a request to the server, in fact, the corresponding response is awaited before
proceeding with the next iteration of the loop. This way, the measured round trip
time comprises the elapsed time from the very beginning of the request to the
reception of the response, including both the latencies introduced by the framework
and the ones due to the transmission across the network. As always, to reduce the
variabilities and obtain more consistent results, the process is repeated within a
loop, and the total elapsed time is considered for the final computation: the number
of iterations varies according to the specific situation, to obtain a good compro-
mise between precision and execution time. Secondly, an asynchronous approach
is adopted, by waiting for the reception of the responses only at the end of all
iterations. Although the measured quantity does not strictly correspond to a round

62

6 – Experimental Evaluation

Listing 6.1: Synchronous request/response benchmark function.
1 function rtt_benchmark(payload_size, iterations)
2 begin body
3 request <- create_request(payload_size)
4
5 start_time <- now()
6 for i from 1 to iterations
7 send_request(request)
8 wait_response()
9 end for

10 end_time <- now()
11
12 print_rtt(start_time, end_time, iterations)
13 end body

trip time, it aims at highlighting as much as possible the penalties introduced by the
framework through the continuous delivery of messages at the highest possible pace.
Finally, the alternative communication pattern, publish/subscribe, is considered,
to verify whether the usage of notifications alters the results obtained with the
previous techniques.

In addition to round trip time measurements, CPU usage has been evaluated
during each execution run, to check whether the introduced security functionalities
influence the processor load. The estimation is performed exploiting the statistics
provided by Linux through the procfs pseudo-filesystem, by computing the per-
centage of time spent for actually executing the core loop of the benchmark with
respect to the total CPU time elapsed in the meanwhile. While being characterized
by a limited precision due to the coarse granularity of the information reported
by the kernel, obtained results allow for a high-level analysis of possible variations
caused by the modifications.

Each benchmark has been executed both exploiting vanilla vsomeip, took as a
reference, and the proof of concept implementation: in the second case, all the three
possible security levels have been used, to compare the overheads introduced by each
one; for what regards authentication and confidentiality-level services, CHACHA20-
POLY1305 has been picked up as selected cryptographic algorithm. Applications
based on the request/response pattern have been executed considering all the three
types of network bindings offered by vsomeip. On one side, performance related
to local communications, occurring between applications residing on the same ECU
by means of Unix sockets, is considered; on the other one, remote services have been
taken into account, by evaluating the message round trip time both in case UDP
and TCP are chosen as transport protocols. Finally, for what regards notifications,
only UDP is exploited, to allow for multicast messages. Additionally, message size
variability has been kept in mind, by repeating the measurements with different
payload lengths, ranging from 1 byte to 1024 bytes, which are deemed to be quite
representative of actually used values: only the requests are modified between one

63

6 – Experimental Evaluation

execution and the subsequent, while acknowledges are always characterized by the
absence of the payload.

Similarly to what already performed for the evaluation of cryptography libraries,
as explained in §5.1.3, measurements have been executed considering both a x86
based device and embedded systems equipped with ARM processors. It is worth
noting that, for what regards the first case, only the laptop already presented in
the above-mentioned discussion has been used: for the sake of simplicity, in fact,
virtualization has again been exploited to emulate remote communications. In the
second one, on the other hand, two identical NXP’s SABRE Boards for Smart
Devices, already used for cryptography benchmarking purposes, and interconnected
by means of a Fast Ethernet link2 composed the actual benchmark environment.
They are based on the i.MX 7Dual Applications Processor, characterized by two
ARM Cortex-A7 cores operating at 1.20 GHz, and equipped with 1 GB of RAM.

As already explained previously, moreover, many precautions have been adopted
to reduce as much as possible any possible factor of interference, stopping all
unnecessary background tasks and executing ten times every benchmark. It is worth
pointing out that, especially for measurements adopting an asynchronous pattern,
causing the transmission of high quantities of data in limited time, it has been
necessary to tweak some operating system parameters related to the size of UDP
buffers, to prevent the loss of packets due to saturation.

At the end of the benchmarking phase, the obtained results have been post-
processed to compute the average values among the repeated executions, together
with the associated uncertainties. Moreover, a comparison with respect to vanilla
vsomeip has been extracted, to point out the penalties introduced by the security
modifications; finally, the results have been plotted for easier analysis.

6.2.2 Results evaluation
In the following, the outcome of the different benchmarks is presented, both for
what regards the x86 system and the embedded devices. All depicted graphs are
organized in three parts. Firstly, the measured round trip time is presented, followed
by a direct comparison of each security level against vanilla vsomeip, to highlight
the differences. Finally, CPU usage measurements are plotted, to verify whether
correlations with the other values do exist.

x86 benchmarks

Starting with the analysis related to the x86 system, figures 6.1 and 6.2 depict
a subset of the obtained results, which are deemed to be enough for a high-level

2Although the development boards are equipped with Gigabit Ethernet interfaces, the speed
has been limited to 100 Mbps to emulate the connection types available within actual vehicles.

64

6 – Experimental Evaluation

evaluation. Being all the benchmarks performed on a single device, in fact, only
limited variabilities are introduced by the usage of different transport bindings,
thanks to the absence of the latencies due to the transmission over physical networks.
Additionally, before going further, it is worth pointing out that, for what regards
CPU loads, the maximum possible value is limited to 50 %, due to the contemporary
execution of two applications on the same machine.

Analyzing more in detail the first chart, which shows the results of the syn-
chronous request/response benchmark across UDP, it is possible to notice a slight
difference between vanilla vsomeip and the secured version operating at nosec level.
While no additional operations are carried on by the latter, variations can be proba-
bly ascribed to modifications regarding the usage of some thread synchronization
primitives, required for the correct operation of the proof of concept. Considering
greater security levels, on the other hand, latencies introduced by cryptographic
functions become a bit more evident, although still remaining confined in the 15 %
to 20 % band. Moving the attention towards CPU usage, it emerges an opposite
trend with respect to the previous case, due to the limitations imposed by the
security measures: replay protection, in fact, prevents the concurrent authentication
of multiple messages belonging to the same service instance, slightly reducing the
maximum exploitable parallelism.

Obtained results are mostly confirmed also by the second plot, shown in figure 6.2:
while the average round trip time is much lower than the situation analyzed before,
due to the asynchronous approach adopted, the same global trend can be inferred.
Although the statistical error is more prominent in this specific case, due to the
smaller time intervals took into consideration, penalties introduced by authentication
and encryption are still quite contained, never accounting for more than 15 %; for
what regards CPU usage, on the other hand, a homogeneous situation is presented,
with no noticeable differences between the various cases.

Wrapping up, analyzed measurements demonstrate that, at least in case of
powerful x86 systems, implemented security functionalities do not introduce unsus-
tainable latencies, given the quite limited increases in the round trip time. Moreover,
no evident differences are present between authentication and confidentiality levels,
with the latter just slightly slower, and across the different payload sizes considered.
Finally, although not having presented the graphic, definitely similar conclusions
can be drawn also in case the publish/subscribe pattern is exploited, characterized
by an absolute correspondence with the values depicted in figure 6.1.

ARM benchmarks

Being the intended targets of the developed solution, a more complete overview
of the results related to embedded systems is presented. Moreover, having used
two physical devices for benchmarking purposes, the difference between local and
remote communications is clearly more evident, highlighting the significant latencies

65

6 – Experimental Evaluation

introduced by the actual transmission across the medium. Nonetheless, talking
about transport protocols, definitely similar results have been obtained both with
UDP and TCP: for the sake of brevity, only the plots about the former are presented
and analyzed in the following.

Beginning with synchronous request/response benchmarks, shown in figures 6.3
and 6.4, it is evident at a first glance the huge difference between the involved
round trip times, almost ten times bigger in case of actual network communications.
Being the variation so pronounced, it greatly influences all the considerations about
the PoC implementation. While in case of local communications, in fact, security
functionalities do introduce additional latencies accounting for about one third of
the total round trip time, the same differences are almost negligible if packets flow
across Ethernet. Similarly, although in the first situation the CPU load is certainly
noteworthy, considering the 50 % limit due to the execution of two applications at
the same time, the second one shows an almost completely idle processor. Finally,
considering the results concerning notification-based communications, depicted in
figure 6.5, no evident differences can be extrapolated with respect to the simpler
request/response pattern.

Moving the attention towards the second exploited benchmarking technique,
characterized by the continuous dispatch of messages at the highest possible pace,
similar results, shown respectively in figures 6.6 and 6.7, are obtained both in case of
local and remote communications. Comparing vanilla vsomeip with authentication
and confidentiality levels, additional penalties accounting for at most one half
the reference time are introduced by the implemented protections. At the same
time, the processor appears to be quite overloaded, becoming a possible bottleneck:
nonetheless, comparing the values associated to the different security levels with
the reference implementation, they are all contained within the same band.

Wrapping up, analyzed data demonstrates that, also for what concerns em-
bedded systems, the security functionalities integrated within vsomeip do not
dictate unsustainable penalties. Considering the likely situation of UDP or TCP
based communications, in fact, additional latencies are definitely negligible, also
in a constrained environment like the automotive one. Anyhow, even stressing the
use-case, by overloading the devices with an excessive amount of traffic, slowdowns
are deemed to be still sustainable. Moreover, similarly to the x86 situation, au-
thentication and confidentiality levels appears to be characterized by very similar
performance, with a higher cost associated to the latter which becomes noticeable
only for bigger payloads.

66

6 – Experimental Evaluation

0
20
40
60
80

100
120
140
160
180

1 4 16 64 256 1024

0

5

10

15

20

25

1 4 16 64 256 1024

0

5

10

15

20

25

30

1 4 16 64 256 1024

R
ou

nd
Tr

ip
T

im
e

(µ
se

c)

Payload size (bytes)

Round Trip Time
RT

T
D

iff
er

en
ce

(%
)

Payload size (bytes)

Round Trip Time — Comparison with respect to vanilla vsomeip

C
PU

Lo
ad

(%
)

Payload size (bytes)

CPU Load

Vanilla vsomeip

Secure vsomeip – Nosec
Secure vsomeip – Authentication
Secure vsomeip – Confidentiality

Figure 6.1: Synchronous request/response benchmark — UDP — x86

67

6 – Experimental Evaluation

0
5

10
15
20
25
30
35
40
45
50

1 4 16 64 256 1024

−15
−10
−5

0
5

10
15
20

1 4 16 64 256 1024

0
5

10
15
20
25
30
35
40
45

1 4 16 64 256 1024

R
ou

nd
Tr

ip
T

im
e

(µ
se

c)

Payload size (bytes)

Round Trip Time
RT

T
D

iff
er

en
ce

(%
)

Payload size (bytes)

Round Trip Time — Comparison with respect to vanilla vsomeip

C
PU

Lo
ad

(%
)

Payload size (bytes)

CPU Load

Vanilla vsomeip

Secure vsomeip – Nosec
Secure vsomeip – Authentication
Secure vsomeip – Confidentiality

Figure 6.2: Asynchronous request/response benchmark — UDP — x86

68

6 – Experimental Evaluation

0
50

100
150
200
250
300
350

1 4 16 64 256 1024

−30
−20
−10

0
10
20
30
40
50
60
70

1 4 16 64 256 1024

0
5

10
15
20
25
30
35
40

1 4 16 64 256 1024

R
ou

nd
Tr

ip
T

im
e

(µ
se

c)

Payload size (bytes)

Round Trip Time
RT

T
D

iff
er

en
ce

(%
)

Payload size (bytes)

Round Trip Time — Comparison with respect to vanilla vsomeip

C
PU

Lo
ad

(%
)

Payload size (bytes)

CPU Load

Vanilla vsomeip

Secure vsomeip – Nosec
Secure vsomeip – Authentication
Secure vsomeip – Confidentiality

Figure 6.3: Synchronous request/response benchmark — Same device — ARM

69

6 – Experimental Evaluation

0

500

1000

1500

2000

2500

3000

1 4 16 64 256 1024

−1
−0.5

0
0.5

1
1.5

2
2.5

3
3.5

4

1 4 16 64 256 1024

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 4 16 64 256 1024

R
ou

nd
Tr

ip
T

im
e

(µ
se

c)

Payload size (bytes)

Round Trip Time
RT

T
D

iff
er

en
ce

(%
)

Payload size (bytes)

Round Trip Time — Comparison with respect to vanilla vsomeip

C
PU

Lo
ad

(%
)

Payload size (bytes)

CPU Load

Vanilla vsomeip

Secure vsomeip – Nosec
Secure vsomeip – Authentication
Secure vsomeip – Confidentiality

Figure 6.4: Synchronous request/response benchmark — UDP — ARM

70

6 – Experimental Evaluation

0

500

1000

1500

2000

2500

3000

1 4 16 64 256 1024

−1
−0.5

0
0.5

1
1.5

2
2.5

3
3.5

4

1 4 16 64 256 1024

0

1

2

3

4

5

6

1 4 16 64 256 1024

R
ou

nd
Tr

ip
T

im
e

(µ
se

c)

Payload size (bytes)

Round Trip Time
RT

T
D

iff
er

en
ce

(%
)

Payload size (bytes)

Round Trip Time — Comparison with respect to vanilla vsomeip

C
PU

Lo
ad

(%
)

Payload size (bytes)

CPU Load

Vanilla vsomeip

Secure vsomeip – Nosec
Secure vsomeip – Authentication
Secure vsomeip – Confidentiality

Figure 6.5: Publish/subscribe benchmark — UDP — ARM

71

6 – Experimental Evaluation

0
20
40
60
80

100
120
140
160
180

1 4 16 64 256 1024

−20

0

20

40

60

80

100

1 4 16 64 256 1024

0

10

20

30

40

50

60

1 4 16 64 256 1024

R
ou

nd
Tr

ip
T

im
e

(µ
se

c)

Payload size (bytes)

Round Trip Time
RT

T
D

iff
er

en
ce

(%
)

Payload size (bytes)

Round Trip Time — Comparison with respect to vanilla vsomeip

C
PU

Lo
ad

(%
)

Payload size (bytes)

CPU Load

Vanilla vsomeip

Secure vsomeip – Nosec
Secure vsomeip – Authentication
Secure vsomeip – Confidentiality

Figure 6.6: Asynchronous request/response benchmark— Same device — ARM

72

6 – Experimental Evaluation

0
20
40
60
80

100
120
140

1 4 16 64 256 1024

−20
−10

0
10
20
30
40
50

1 4 16 64 256 1024

0
10
20
30
40
50
60
70
80
90

1 4 16 64 256 1024

R
ou

nd
Tr

ip
T

im
e

(µ
se

c)

Payload size (bytes)

Round Trip Time
RT

T
D

iff
er

en
ce

(%
)

Payload size (bytes)

Round Trip Time — Comparison with respect to vanilla vsomeip

C
PU

Lo
ad

(%
)

Payload size (bytes)

CPU Load

Vanilla vsomeip

Secure vsomeip – Nosec
Secure vsomeip – Authentication
Secure vsomeip – Confidentiality

Figure 6.7: Asynchronous request/response benchmark — UDP — ARM

73

6 – Experimental Evaluation

6.3 The demonstrator
As a final task of this thesis work, a demonstrator has been designed and developed,
to illustrate why security is important in network communications and which are the
functionalities introduced by the implemented proof of concept. Being the research
under analysis strictly anchored to the automotive world, it has been realized
to mimic different ECUs deployed within a vehicle: three different development
boards, interconnected by an Ethernet switch, have been used to execute vsomeip
applications which communicate between one another by means of the conceived
framework. Additionally, a standard laptop has been used to represent an attacker
that, by means of a specific application, tries both to extract information from the
exchanged messages and to inject malicious packets into the network to trigger
unwanted actions.

Before going on with a more in-depth analysis of the various elements composing
the demonstrator, a very high-level overview of the adopted topic for the showcase is
presented. The desire for an immediate and easily understandable staging has driven
the decision of realizing the simulation of a typical car’s instrument panel: while one
application displays the dashboard, actual values to be shown are transmitted across
the network exploiting vsomeip functionalities. Additionally, in order to make the
whole fitting much more realistic, a hardware printed circuit board (PCB), made
up of knobs, switches and buttons, has been prototyped to emulate the presence of
actual sensors. Finally, physical switches are also exploited to configure the security
level at which the services operate, providing an easy way to move from one to
another and compare the provided guarantees.

6.3.1 Dashboard
The first element of the demonstrator analyzed during this discussion is the dash-
board, implemented by a C++ application. It is made up of two different building
blocks: on one side, the graphical user interface depicting a typical car’s instrument
panel and, on the other one, the communication module, which receives the data to
be displayed from the network.

Talking about the GUI, whose screenshot is shown in figure 6.8, it has been
realized exploiting the Qt framework and, in particular, the QML declarative language,
which allowed the creation of a nice interface in a relatively easy way. In this regard,
it is necessary to admit that a quite gorgeous QML dashboard was already provided
as an example shipped together with the framework,3 which has been exploited
for the realization by tweaking some parameters and implementing the interfaces
necessary to read the data received from the communication module. For the sake of

3https://doc-snapshots.qt.io/qt5-5.12/qtquickextras-dashboard-example.html

74

https://doc-snapshots.qt.io/qt5-5.12/qtquickextras-dashboard-example.html

6 – Experimental Evaluation

Figure 6.8: Dashboard GUI screenshot.

completeness, it is worth mentioning that the actually used GUI is characterized by
a more appealing dark theme, which has been adapted for the current presentation
due to graphical reasons.

Moving to the communication module, on the other hand, it is composed by a set
of classes that, exploiting the vsomeip framework, act as a client of the different
available services, by subscribing to the offered events and receiving the associated
notifications. Whenever a new value is received, the dashboard is immediately
updated through the peculiar functionalities offered by Qt, namely signals and
properties, which allow the communication across the C++ to QML boundary.

Concluding the discussion about the dashboard, the considered application
is executed by an embedded system composed of an Embedded Artists’ iMX6
Quad COM Board, equipped with a high-performance quad-core Cortex-A9 ARM
processor operating at 1 GHz, 2 GB of RAM and supporting both 2D and 3D
graphical acceleration. It is bundled with the COM Carrier Board developed by
the same vendor, providing a wide range of input/output interfaces towards the
external world. An Embedded Linux operating system, compiled through the
Yocto Project build system, is run on the top of bare hardware, to execute the
application of interest which, together with the developed security framework, has
been cross-compiled by exploiting the available SDK.

6.3.2 Services
Going on with the discussion, the second building block of the demonstrator is
composed by two applications, running on distinct devices. Each one is associated
to a different set of instruments displayed by the cluster and is in charge of obtaining
and transmitting the information to be shown. As in the previous situation, two
modules can be identified as the base of each program, corresponding to the distinct
tasks that have to be performed.

75

6 – Experimental Evaluation

Starting with the analysis of the communication part, it is organized in different
vsomeip services, each one in charge of a specific gauge. A publish/subscribe
approach has been adopted to notify the dashboard for the presence of a new available
value: while being deemed to be the most suitable strategy for the particular use-case,
thanks to the decoupling between senders and receivers, the chosen communication
technique allows the usage of multicast messages which, as explained later on, greatly
simplify the implementation of the attacker.

Secondly, each application is required to obtain the values to be transmitted:
albeit it was easy to input the data by means of a keyboard and a textual inter-
face, the result would have been visually poor, losing each association with the
automotive world. For this reason, as already stated in the introduction, a more
appealing staging has been realized, to emulate the information that would normally
be provided by sensors, through the usage of physically controllable knobs and
switches. After having completed the construction of the PCB comprising the vari-
ous components, it has been connected to the two development boards by exploiting
both general-purpose input/output interfaces (GPIO) and a ready-to-use analog
to digital converter. Moving to the software side, input values are continuously
accessed by the applications through the facilities provided by the Linux kernel
and, particularly, by reading the content of special files located within the sysfs
pseudo-filesystem. Finally, raw data is converted to calibrated values, ready to be
dispatched within the corresponding notification.

Two identical development boards, already exploited for benchmarking purposes,
have been used to run the considered applications. Custom scripts have been
prepared to automatically execute the programs, by setting the necessary parameters
without the need for user intervention. Moreover, they allow switching back and
forth between the three different security levels provided by the proof of concept by
simply acting on the buttons part of the PCB. Finally, a bunch of leds are managed
by the same piece of code, to provide an immediate and visual feedback about the
current operating mode.

6.3.3 Attacker
Given that the conceived security framework aims at protecting in-vehicle commu-
nications, the third fundamental element constituting the demonstrator is clearly
an attacker, which tries to perform different malicious operations to subvert legit
message exchanges. It is represented by a C++ application, which is meant to be run
on a standard laptop connected to the same Ethernet switch of the other devices.
For the sake of simplicity, as already introduced before, multicast messages have
been used for service communications: this way, the attacker is able to automatically
receive all the exchanged packets, by just subscribing to the same group, without
the need for putting in place additional malicious techniques. Nonetheless, it is
worth noting that, while not being of any benefit for the showcase under analysis,

76

6 – Experimental Evaluation

Figure 6.9: Attacker application screenshot.

the execution of man-in-the-middle attacks, forcing the packets flowing through the
hijacker’s device, would have been similarly trivial, by exploiting off-the-shelf tools.

Analyzing more in detail the developed application, implemented exploiting
the functionalities provided by the Qt framework, it is constituted by a back-end,
in charge of managing network communications, and a front-end, responsible for
visually presenting both the intercepted information and a simple control panel.
Starting with latter, figure 6.9 depicts the aspect of the QML based graphical user
interface, which is divided into two parts corresponding to the available typologies
of offenses: the topmost area shows the results of a sniffing attack, carried on by
passively listening for the messages exchanged between legit applications. The
second section, on the other hand, provides the possibility to perform a spoofing
attack, by flooding the network with a high volume of specifically crafted messages,
trying to force the dashboard showing malicious information. Looking under the
hood, bare network sockets are managed through the abstractions provided by the
Qt framework, allowing both to listen for multicast messages and to send fake
SOME/IP packets used to try fooling the dashboard.

6.3.4 Conclusions
Switching back and forth between the three security levels offered by the implemented
proof of concept, the demonstrator provides a clear picture about the differences in
terms of guaranteed protections, by observing whether each attack has success or is

77

6 – Experimental Evaluation

prevented by the framework. Starting with the nosec level, corresponding to vanilla
SOME/IP messages, the attacker does not encounter any kind of opposition, being
able both to read the exchanged information and to force the dashboard showing
injected data. Increasing the security level by adding authentication functionalities,
it becomes immediately evident that, while sniffing is still possible, message flooding
becomes completely useless, being no more able to condition the values displayed by
the different gauges. Finally, going further and enabling the confidentiality level, the
attacker loses also the capability of intercepting exchanged messages: although every
packet continues to be received, in fact, the encryption prevents the extraction of
useful data from the payload and the malicious application displays only meaningless
information.

78

Chapter 7

Conclusions and Future Work

During this thesis work, a security framework integrated within SOME/IP has been
conceived to protect the communications between in-vehicle services. Although
different well-established protocols do already exist to prevent attacks to network
transmissions in the broader ICT world, the challenging environment dictated
by the automotive sector and the desire for a future-proof solution pushed the
research towards a new approach. After an initial analysis, SOME/IP emerged as a
promising communication framework, driven by dynamism and oriented towards high-
bandwidth and computationally demanding applications. Albeit comprising a wide
range of functionalities, no reference to cybersecurity is made inside the framework
specifications, leaving the transmitted information completely unprotected from
malicious attacks.

Most of the work has been devoted to the design of a protocol aiming at protecting
SOME/IP messages flowing across the network by defining, for each service, the
set of allowed communications through high-level rules. It has been conceived to
avoid introducing any limitations to the original framework, and is organized in two
distinct parts: an initial session establishment phase, which mutually authenticates
applications willing to communicate between one to another, and the run-time
enforcement engine, applying the necessary protection to actual network packets.
Moreover, a complete security-oriented architecture has been outlined, to point out
the functional modules necessary to achieve a full protection.

The depicted solution has been mostly implemented as a proof of concept within
the vsomeip stack, and a demonstrator has been developed to visually show up the
goodness of the approach by mimicking different ECUs deployed within a vehicle.
Moreover, benchmarks have been performed to quantitatively measure the impact
of the additional features: although obviously certifying the introduction of some
penalties from the latency point of view, the results are deemed to be pretty promising
for a still improvable implementation. Considering a typical communication across
the network, in fact, cryptography functions never impacted for more than five
percent of the total round trip time. Furthermore, also in case of more extreme

79

7 – Conclusions and Future Work

benchmarks, simulating devices overloaded by excessive amounts of traffic and
neglecting network overheads, additional latencies never exceeded unsustainable
thresholds. Anyway, additional measurements should still be performed both to
quantify the overheads introduced by the initial session establishment phase and
to explore the possibility of exploiting available hardware accelerators to fatherly
reduce the penalties, especially in case of more limited embedded systems.

As a future work, the designed security protocol could be reviewed by means
of formal analysis, to verify the correctness and guarantee the absence of faults;
moreover, known limitations shall be examined in great detail to conceive possible
solutions. In particular, for what regards the security granularity, initially confined
for the fear of introducing excessive overheads, in the light of the performance results
it may be possible both to increase the number of available security levels and to
differentiate the communications belonging to the same service, by introducing the
usage of multiple symmetric keys. Furthermore, denial of service attacks should
be reconsidered, to verify whether it would be possible to put in place additional
protections aiming at reducing their effectiveness.

Another important future plan could consist in exploring the different technolo-
gies necessary to complete the realization of the security architecture outlined during
this thesis work. Techniques available both in the ICT field and already provided by
automotive grade devices may be analyzed, to study the different possibilities that
could be exploited both for cryptographic material binding and platform integrity
verification. Finally, it should be evaluated the capability of assembling all the
different building blocks, by always keeping in mind the constrained environment
dictated by the automotive world.

80

Bibliography

[1] Micha Risling. In-Vehicle Connectivity: Dealing with the “Elephant in the Car”.
Apr. 2018. url: https://innovation-destination.com/2018/04/
26/in-vehicle-connectivity-dealing-with-the-elephant-
in-the-car/.

[2] “IEEE Standard for Ethernet Amendment 1: Physical Layer Specifications
and Management Parameters for 100 Mb/s Operation over a Single Balanced
Twisted Pair Cable (100BASE-T1)”. In: IEEE Std 802.3bw-2015 (Amendment
to IEEE Std 802.3-2015 (Mar. 2016), pp. 1–88. doi: 10.1109/IEEESTD.
2016.7433918.

[3] “IEEE Standard for Ethernet Amendment 4: Physical Layer Specifications
and Management Parameters for 1 Gb/s Operation over a Single Twisted-Pair
Copper Cable”. In: IEEE Std 802.3bp-2016 (Amendment to IEEE Std 802.3-
2015 as amended by IEEE Std 802.3bw-2015, IEEE Std 802.3by-2016, and
IEEE Std 802.3bq-2016) (Sept. 2016), pp. 1–211. doi: 10.1109/IEEESTD.
2016.7564011.

[4] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. “Security threats to automo-
tive CAN networks — Practical examples and selected short-term counter-
measures”. In: Reliability Engineering & System Safety 96.1 (2011). Special
Issue on Safecomp 2008, pp. 11–25. issn: 0951-8320. url: http://www.sc
iencedirect.com/science/article/pii/S0951832010001602.

[5] K. Koscher et al. “Experimental Security Analysis of a Modern Automobile”.
In: 2010 IEEE Symposium on Security and Privacy. May 2010, pp. 447–462.
doi: 10.1109/SP.2010.34.

[6] Stephen Checkoway et al. “Comprehensive experimental analyses of automotive
attack surfaces.” In: USENIX Security Symposium. San Francisco. 2011, pp. 77–
92.

[7] Andy Greenberg. Hackers Remotely Kill a Jeep on the Highway — With Me
in It. July 2015. url: https://www.wired.com/2015/07/hackers-
remotely-kill-jeep-highway/.

[8] Charlie Miller and Chris Valasek. “Remote exploitation of an unaltered pas-
senger vehicle”. In: Black Hat USA (2015), p. 91.

81

https://innovation-destination.com/2018/04/26/in-vehicle-connectivity-dealing-with-the-elephant-in-the-car/
https://innovation-destination.com/2018/04/26/in-vehicle-connectivity-dealing-with-the-elephant-in-the-car/
https://innovation-destination.com/2018/04/26/in-vehicle-connectivity-dealing-with-the-elephant-in-the-car/
https://doi.org/10.1109/IEEESTD.2016.7433918
https://doi.org/10.1109/IEEESTD.2016.7433918
https://doi.org/10.1109/IEEESTD.2016.7564011
https://doi.org/10.1109/IEEESTD.2016.7564011
http://www.sciencedirect.com/science/article/pii/S0951832010001602
http://www.sciencedirect.com/science/article/pii/S0951832010001602
https://doi.org/10.1109/SP.2010.34
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

BIBLIOGRAPHY

[9] Q. Wang and S. Sawhney. “VeCure: A practical security framework to protect
the CAN bus of vehicles”. In: 2014 International Conference on the Internet of
Things (IOT). Oct. 2014, pp. 13–18. doi: 10.1109/IOT.2014.7030108.

[10] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC
4301. RFC Editor, Dec. 2005. url: http://www.rfc-editor.org/rfc/
rfc4301.txt.

[11] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446. RFC Editor, Aug. 2018. url: http://www.rfc-editor.org/
rfc/rfc8446.txt.

[12] M. Hamad, M. Nolte, and V. Prevelakis. “A framework for policy based secure
intra vehicle communication”. In: 2017 IEEE Vehicular Networking Conference
(VNC). Nov. 2017, pp. 1–8. doi: 10.1109/VNC.2017.8275646.

[13] Wikipedia contributors. AUTOSAR — Wikipedia, The Free Encyclopedia.
2018. url: https://en.wikipedia.org/w/index.php?title=
AUTOSAR&oldid=856923595.

[14] AUTOSAR. SOME/IP Protocol Specification. 2016. url: https://www.a
utosar.org/fileadmin/user_upload/standards/foundation/
1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf.

[15] AUTOSAR. Specification on SOME/IP Transport Protocol. 2017. url: https:
//www.autosar.org/fileadmin/user_upload/standards/clas
sic/4-3/AUTOSAR_SWS_SOMEIPTransportProtocol.pdf.

[16] AUTOSAR. SOME/IP Service Discovery Protocol Specification. 2017. url:
https://www.autosar.org/fileadmin/user_upload/standard
s/foundation/1-3/AUTOSAR_PRS_SOMEIPServiceDiscoveryPro
tocol.pdf.

[17] GENIVI Alliance. url: http://genivi.org/.
[18] CommonAPI C++. url: https://genivi.github.io/capicxx-

core-tools/.
[19] Genivi. vsomeip in 10 minutes. url: https://github.com/GENIVI/

vsomeip/wiki/vsomeip-in-10-minutes.
[20] Wikipedia contributors. Cryptographic hash function — Wikipedia, The Free

Encyclopedia. 2018. url: https://en.wikipedia.org/w/index.php?
title=Cryptographic_hash_function&oldid=860912721.

[21] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Version 1.2.
RFC 6347. RFC Editor, Jan. 2012. url: http://www.ietf.org/rfc/
rfc6347.txt.

82

https://doi.org/10.1109/IOT.2014.7030108
http://www.rfc-editor.org/rfc/rfc4301.txt
http://www.rfc-editor.org/rfc/rfc4301.txt
http://www.rfc-editor.org/rfc/rfc8446.txt
http://www.rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.1109/VNC.2017.8275646
https://en.wikipedia.org/w/index.php?title=AUTOSAR&oldid=856923595
https://en.wikipedia.org/w/index.php?title=AUTOSAR&oldid=856923595
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SOMEIPTransportProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SOMEIPTransportProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SOMEIPTransportProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-3/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-3/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-3/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
http://genivi.org/
https://genivi.github.io/capicxx-core-tools/
https://genivi.github.io/capicxx-core-tools/
https://github.com/GENIVI/vsomeip/wiki/vsomeip-in-10-minutes
https://github.com/GENIVI/vsomeip/wiki/vsomeip-in-10-minutes
https://en.wikipedia.org/w/index.php?title=Cryptographic_hash_function&oldid=860912721
https://en.wikipedia.org/w/index.php?title=Cryptographic_hash_function&oldid=860912721
http://www.ietf.org/rfc/rfc6347.txt
http://www.ietf.org/rfc/rfc6347.txt

	Introduction
	Goal of the thesis
	Structure of the work

	Background
	Vehicular networks
	In-vehicle networks
	The CAN bus
	Automotive Ethernet

	Car Hacking
	Jeep Cherokee Hacking

	Related works

	SOME/IP
	Communication paradigms
	Request/Response
	Publish/Subscribe

	Transport protocol bindings
	UDP
	TCP

	On wire format
	Service discovery
	vsomeip
	Example of applications
	Configuration files
	Architectural description
	Security functionalities

	Securing SOME/IP
	Security levels
	Nosec
	Authentication
	Confidentiality

	Cryptography overview
	Symmetric cryptography
	Asymmetric cryptography

	Security protocol
	Keys granularity
	Session establishment
	Message protection

	High-level architecture
	Security module
	Secure storage
	Execution manager

	Limitations

	PoC Implementation
	Cryptography
	Cryptography libraries
	Cryptography algorithms
	Benchmark methodology
	Results evaluation

	Functional modules
	Cryptography abstraction
	Session establishment
	Message protection

	Security configuration
	Digital certificates
	Configuration files

	Experimental Evaluation
	Automatic testing
	Performance measurements
	Benchmark methodology
	Results evaluation

	The demonstrator
	Dashboard
	Services
	Attacker
	Conclusions

	Conclusions and Future Work
	Bibliography

