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Chapter 1

Introduction

The ever-growing need for faster, more flexible cloud applications demands for
increasingly complex networking architectures.

When a virtual infrastructure is set up, a virtual networking overlay must be
imposed over the physical network. This is especially true for those infrastructures
where several components are continuously deployed: the ability to connect them
without changing the physical configuration allows unprecedented scalability and
flexibility.

This is the realm of network function virtualization, which is used to build ar-
bitrary networking configurations on top of a physical network. Of course such
configurations must be complete and working, and therefore need to provide virtu-
alized versions of the most common networking devices, such as routers, firewalls
and NATs.

An emerging network function virtualization framework is Polycube, developed
as a research project at Politecnico di Torino. Polycube enables the creation and
deployment of arbitrary lightweight and fast network functions, which run in the
Linux kernel and can be used to build complex service chains. This technology is
based on the eBPF virtual machine.

eBPF is the evolution of the Berkeley Packet Filter (BPF), which is the engine
that powers tools such as Wireshark. With eBPF it is possible to inject code in the
Linux kernel at runtime, which is verified for safety and compiled before execution.
eBPF programs, which are called cubes in the context of Polycube, can intercept,
access, modify and redirect packets. eBPF allows cubes to communicate with each
other and share memory areas, called maps.

To prove how powerful and complex a cube can be, a proof-of-concept version of
iptables was implemented using the eBPF technology in Polycube, which is called
pcn-iptables: this piece of software consists of several sub modules, linked together
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1 – Introduction

to provide firewalling, packet filtering and connection tracking functionalities. An
adapter was also created that allows to configure pcn-iptables with the same syntax
as the original one.

The first part of this thesis project focuses on integrating the network address
translation function in pcn-iptables, to get closer to the actual iptables functionality.

Polycube also provides a set of services out of the box, such as routers, switches
and network address translators: the current version of the NAT cube, called pcn-
nat, has several limitations that do not make it ideal to use in practical applications.

The second part of this thesis consists of the definition and implementation of
a new version of pcn-nat, that could make it suitable for real-life deployment and
usage.
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Chapter 2

Background

2.1 Network Address Translation
Network Address Translation (NAT) - described in RFC 2663 [1] - is a method of
remapping an IP address space into another one by modifying the network address
information in the IP header of packets while they are in transit across a network
routing device.

The technique was originally used to connect private address spaces to the public
Internet. A useful side effect was that there was no need to reconfigure the IP
addresses on each host when a network was moved to a new location. Nowadays
it has become a popular and essential technique in conserving the global address
space in the face of the IPv4 address space exhaustion.

In the following, a description of the different ways we can implement NAT is
provided.

We will refer to inside addresses and outside addresses as the addresses to be
translated and those with which to translate, respectively.

2.1.1 Basic address translation - NAT

Basic NAT [2] provides a one-to-one mapping of an inside IP address to an outside
IP address. For each inside IP address, there is an outside address mapped to it.

This means that to perform Basic NAT all the outside addresses must be owned
and routable.

In Basic NAT only Layer 3 properties are changed, thus leaving Layer 4 port
numbers unchanged. This happens because there is no address mapping overload
since the association between inside and outside address is N:N, with N being at
least equal to one.

A simple scenario where Basic NAT is used is shown in Figure 2.1.
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2 – Background

Figure 2.1: Example of Basic NAT configuration

2.1.2 Address and port translation - NAPT

Network Address Port Translation [3] provides a many-to-one - theoretically many-
to-many - mapping of inside addresses on outside addresses.

Since the same outside address will be used to map more than one address or
possibly an entire network, other fields are needed to keep track of the association;
in this case, Layer 4 port numbers are used.

NAPT can be combined with Basic NAT to provide N:M address mapping,
using more than one outside address to multiplex the possible values, perhaps in
round-robin fashion to balance the usage of addresses and port numbers.

An example of NAPT is shown in Figure 2.2.

2.1.3 Bidirectional NAT

Neither Basic NAT nor NAPT allow inside hosts to be reachable from the outside,
although from an implementation point of view this is possible if a connection -
resulting in the creation of a mapping record - was started by the inside host itself.

This may be problematic for inside servers (web, email...) that must be reachable
from the Internet at all times.

Bi-directional NAT [4] provides a solution to such problem, allowing to map an
outside address - and port, e.g. port 80 - to a specific host in the inside network.
Figure 2.3 show a possible use case for Bidirectional NAT.
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2 – Background

Figure 2.2: Example of NATP configuration

Figure 2.3: Example of Bidirectional NAT configuration

2.2 Netfilter
Netfilter [5] [6] is a framework provided by the Linux kernel that allows the im-
plementation of networking operations such as packet filtering, network address
translation, routing and firewalling.
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2 – Background

This framework is based on the concept of hook, which is a point of interception
for a certain event. Developers can write callback functions and register them so
that they are called every time a hook is triggered to perform operations on the
packet that is traversing the hook.

Specifically, Netfilter provides five hooks: every packet that passes through the
networking system will trigger one or more of these hooks, allowing the callback
functions to interact with the traffic at specified points.

• NF_IP_PRE_ROUTING: triggered by an incoming packet as soon as it en-
ters the networking stack, before any routing decision has been taken; for
instance, the Linux networking stack does not know yet whether the packet
will be consumed locally (i.e., it is directed to one of the IP addresses of the
host) or will be forwarded to another host.

• NF_IP_LOCAL_IN: triggered by an incoming packet if the destination is the
local system.

• NF_IP_FORWARD: triggered by an incoming packet if the destination is
another host.

• NF_IP_LOCAL_OUT: triggered by a locally generated outbound packet as
soon as it enters the networking stack.

• NF_IP_POST_ROUTING: triggered by an outgoing or forwarded packet just
before transmission (before being delivered to the NIC driver).

Figure 2.4: Netfilter packet interception hooks
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2 – Background

2.3 Iptables
iptables [7] is a packet manipulation software included in Linux distributions: it
works by interacting with the packet filtering hooks in the Linux kernel provided
by Netfilter.

2.3.1 iptables architecture
Iptables provides a table-based system to define rules and actions to interact with
the traffic flow.

Tables

Rules are stored in tables. Each table contains the necessary rules to perform a
given operation: for instance, if a rule deals with network address translation, it
will be put in the nat table.

Chains

Within each table, rules are organized in chains. The built-in chains represent the
netfilter hooks they are associated with:

• PREROUTING: triggered by the NF_IP_PRE_ROUTING hook

• INPUT: triggered by the NF_IP_LOCAL_IN hook

• FORWARD: triggered by the NF_IP_FORWARD hook

• OUTPUT: triggered by the NF_IP_LOCAL_OUT hook

• POSTROUTING: triggered by the NF_IP_POST_ROUTING hook

Chains allow to control when a rule will be evaluated during the packet’s path in
the networking stack, and since each table can have multiple chains, the table’s
policy can be enforced at multiple steps of processing.

2.3.2 NAT in iptables
Network Address Translation in iptables [8] is managed by the NAT table. As
packets enter the network stack, rules in the NAT table will determine if and how
a packet has to be modified.
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2 – Background

Supported chains

The iptables implementation of NAT allows to specify NAT rules that can be en-
forced in three different chains:

• PREROUTING

• POSTROUTING

• OUTPUT

which corresponds to three precise positions in the Netfilter architecture.
Note that in order to provide a working bi-directional translation specular op-

erations have to be performed in the POSTROUTING/OUTPUT chains and the
PREROUTING chain, as the former will deal with outgoing packets, the latter
with incoming packets.

For example, a command to inject a translation rule to map an inside address to
an outside address must also implicitly provide a way to map the outside address
back to the inside address.

Iptables allows the configuration of four types of NAT, which are formally as-
sociated to different NAT actions that transform the packets that match a given
NAT rule.

An action is an operation specified by a rule. It can be performed on a packet
when it triggers the hook related to the chain the rule is associated to.

When the chain is hit, iptables performs a lookup in the NAT table to check if
any rule of that chain applies for the packet.

Figure 2.5 shows how iptables handles incoming and outgoing packets: please
note that only the filtering and natting operations are displayed, for the sake of
brevity.

Source NAT - SNAT

Source NAT (SNAT) allows to statically change the source address of a packet with
a specified one. It corresponds to the Basic NAT described in Section 2.1.1, applied
to the source IP address when packets exit toward a remote destination.

Some configuration examples for Source NAT in iptables are shown in Ap-
pendix A.1.

Masquerade

Masquerade allows to change the source address of a packet with the address of the
outbound interface.

The advantage over SNAT is that if the interface address is dynamically assigned
it is automatically inherited by all packets.
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2 – Background

(a) Incoming packets (b) Outgoing packets

Figure 2.5: Iptables activities for incoming and outgoing packets

A possible disadvantage is that masquerade retrieves the current IP address of
the interface each time a new packet has to be handled, resulting in a possibly
noticeable impact in performance. If the interface address is fixed, SNAT is a
better choice.

Some configuration examples for Masquerade in iptables are shown in Appendix A.2.

Destination NAT - DNAT

Destination NAT (DNAT) allows to statically change the destination IP address
of a packet that matches a NAT rule. It corresponds to the bi-directional NAT
presented in Section 2.1.3.

DNAT is mostly useful for servers running in the inside network that must be
reachable from the outer network. The destination address must be changed before
routing happens, therefore this is applied in the PREROUTING chain.

Some configuration examples for Destination NAT in iptables are shown in Ap-
pendix A.3.
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Redirect and change port

Redirect is a special case of DNAT where packets are redirected to a local TCP/UDP
port of the router behind the NAT. If the router is the recipient of the packet on a
certain port, with this action we can change the destination port with another one.

Some configuration examples for Redirect in iptables are shown in Appendix A.4.

2.4 eBPF

2.4.1 BPF
BPF is a virtual CPU embedded in the Linux kernel that can filter packets. Intro-
duced in the Linux kernel 2.1.75 in 1997, it was initially used as a packet filter by
the packet capture tool tcpdump. Being in the Linux kernel, BPF does not suffer
from syscall and context switching overheads: this means the filtering process can
start as soon as the packet reaches the interface, which is very important for DDOS
mitigation usages and for performance in general.

One of the reasons why BPF can work is the existence of a network tap that
takes incoming packets and copies them: this means one copy goes to the TCP/IP
stack, and a copy to the filter. The network TAP is a bifurcation with duplication.
All operating systems have the network TAP built in: the work described in this
thesis applies to Linux.

The general architecture of a packet filter, included BPF, is shown in Figure 2.6.

Some of the main features of BPF programs are:

• runtime bytecode injection: programs can be written, compiled and injected
in the kernel at any time, possibly changing the behaviour of existing BPF
programs according to new conditions

• safety: BPF programs injected in the Linux kernel are safe, which means that
a program cannot take control of the CPU or access unauthorized memory
areas. The BPF compiler uses a validator that checks, among other things

– the existence of (possibly) infinite loops
– invalid memory accesses
– program size
– number of instructions: since loops are unrolled, the number of instruc-
tions can dramatically increase if the number of iterations is high

• portability: BPF compiled bytecode is hardware independent and can be ex-
ecuted on any architecture
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2 – Background

Figure 2.6: Architecture of a packet filter

• efficiency: the BPF runtime consumes very few resources and it is very close
to kernel events. The JIT compiler optimizes the code immediately before
compiling.

2.4.2 eBPF
Initially proposed by Alexei Staravoitov in 2013, eBPF [9][10][11] is the next version
of BPF, which includes both modifications to the underlying virtual CPU (64-bit
registers, additional instructions) and to the possible usages of BPF in software
products. "Classic" BPF is not used anymore, and legacy applications are adapted
from the BPF bytecode to the eBPF.

An overview of the runtime achitecture of eBPF is reported in Figure 2.7.
Let us explain some of the relevant parts of the architecture and point out some

of the main improvements in eBPF.
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2 – Background

Figure 2.7: eBPF architecture

C-based programming

eBPF code can be written in (a restricted version of) C, which allows for eas-
ier program development and more powerful functionalities with respect to bare
assembly.

Maps

An eBPF program is triggered by a packet received by the virtual CPU. But how
do we store the packet in order to process it? BPF defines a volatile "packet
memory", which can only store the current packet: this means there is no way to
store information needed across subsequent packets.

eBPF defines the concept of state with a set of memory areas, which are called
maps [12]. Maps are data structures where the user can store arbitrary data with
a key-value approach: data can be inserted in a map by providing the value and a
key that will be used to reference it.

An important feature of maps is that they can be shared between eBPF programs
and between eBPF and user-space programs. This is so important for all those
applications that need to perform operations that exceed the complexity allowed
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by the eBPF bytecode, because it allows to split complex processing in fast eBPF
datapaths and slow user space control paths keeping the state information shared
and synced. Another important advantage of using maps is that their content is
preserved across program executions.

Figure 2.8: eBPF maps

Maps are not technically buffers. If they were, there would be a certain number
of issues, such as concurrent access. This means maps are never accessed directly:
we read and write maps with predefined system calls. An important side effect of
using maps is that the state of the program is decoupled from the code. Instruc-
tions are in the program, the data used by such instructions are in the maps.

Here are reported some of the map types available in the Linux kernel and used
in the implementation of this thesis project [13].

• array: data is stored sequentially and can be accessed with a numeric index
from 0 to size - 1. This map type is ideal when the key corresponds to the
position of the value in the array.

• hash: data is stored in a hash table. This map type is very efficient when it
comes to direct lookups: a hash of the provided key is computed and used as
an index to access the corresponding value.

18
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• LRU hash: sharing its internals with the hash type, it provides the ability to
have a hash-table which is smaller than the total elements that will be added to
it, because when it runs out of space it purges elements which haven’t recently
been used. This map type is useful to keep track of caching entries, which will
eventually expire forcing their own refresh.

• LPM trie: data is stored as an ordered search tree. As the name suggests,
this map type allows to perform lookups based on the Longest Prefix Match
algorithm. This is extremely handy when we want to manage the granularity
of a rule match field, granting that the most fitting rule is applied to a packet
when other matching rules are also present.

Hooks

eBPF programs can react to generic kernel events, not only packet reception: they
can react to any syscall that exposes a hook.

Considering a network packet, recalling how the netfilter hooks work, with eBPF
we can listen to any of the predefined hooks to trigger programs only at certain
steps during packet processing. Netfilter is a set of linked modules but it has no
filtering concept: attaching to a hook means receiving all the packets. eBPF can
attach to hooks and filter packets.

Speaking of hooks, the following Figure 2.9 shows the difference in number and
position of the networking hooks in Netfilter and eBPF.

Figure 2.9: Networking hooks in eBPF and Netfilter

eBPF hooks are colored in red: the one on the left is called the TC Ingress hook
and intercepts all the packets that reach the network adapter from the outside,
while the one on the right - the TC Egress hook - deals with the outgoing packets
immediately before sending them to the network adapter.

It is clear that Netfilter can provide a much more fine-grained control over a flow
of packets, whereas the intermediate hooks must be emulated in eBPF. As we will
see in the following Chapter, this will be a relevant issue we will have to face.
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Service chains

BPF did not quite have the concept of multiple cooperating programs: each parallel
program receives a copy of the packet and process it.

eBPF can link multiple programs to build service chains. Service chains can be
created exploiting direct virtual links between two eBPF programs or tail calls.

Tail calls can be imagined as function calls: the eBPF programs are separated,
but the first one triggers the execution of the second by calling it. This allows
developers to overcome the program size limitation in the JIT compiler: starting
from one big program, we can split it in multiple modules, perhaps functionally
distinct. As we will see in the following chapters, tail calls are widely used in
pcn-iptables.

Figure 2.10: Sample eBPF service chain

Helpers

Coding in C is fun, libraries are better. Helpers are sets of functions precom-
piled and ready to be used inside the Linux kernel. eBPF programs can call such
functions, which are outside the virtual CPU (e.g. function to get the current
timestamp).

Helpers delegate complex tasks to the operating system, overcoming the com-
plexity restrictions in the eBPF validator and allowing developers to exploit ad-
vanced OS functionalities.

One drawback of helpers is that they must be available in the Linux kernel,
which means that the kernel must be recompiled every time a new helper is added,
which is not very fast considering the Linux kernel release schedule.
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2.5 Polycube
Polycube [14] is a framework that enables the creation and deployment of arbitrary
lightweight and fast network functions, running in the vanilla Linux kernel. Poly-
cube services - called cubes - can be rearranged in complex service chains. The
second part of this thesis project consists in the implementation of a new version
of the service that provides network address translation in a service chain.

Polycube exploits some existing components such as the BCC compiler collection
to dynamically create and inject the code in the kernel, and the eBPF virtual
machine to execute it.

Its main features are:

• support generic network services through the definition of a fast and slow path
- in kernel and in user space respectively - hence overcoming the limitations
of the eBPF in terms of supporting arbitrary processing

• offers a service-agnostic configuration and control interface that allows to in-
teract with all running network services through the same interface and tools,
namely both REST and CLI

• enables the creation of arbitrary service chains, hence simplifying the creation
of complex services through the composition of many elementary components

2.5.1 Polycube architecture
The Polycube architecture is depicted in Figure 2.11 and it includes four main
components:

• polycubed: a service-agnostic daemon to control the polycube service

• a set of Polycube cubes: services which actually implement the network func-
tions

• polycubectl: the CLI that allows to interact with polycube and all the available
services

• libpolycube: a library that keeps some common code to be reused across mul-
tiple network functions

polycubed

polycubed is a service-agnostic daemon that allows to control the entire Polycube
service, such as starting, configuring and stopping all the available network func-
tions. This module acts mainly as a proxy: it receives a request from its REST
interface, forwards it to the proper service instance, and returns back the answer
to the user.
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Figure 2.11: Polycube architecture

Polycube services

Polycube implements a flexible architecture that supports multiple services, not
known a-priori. Polycube services are similar to plug-ins that can be installed and
launched at run-time. Obviously, each service has to implement a specific interface
to be recognized and controlled by polycubed.

Each service implementation includes the datapath, namely the eBPF code to be
injected in the kernel, the control/management plane, which defines the primitives
that allow to configure the service behaviour, and the slow path, which handles
packets that cannot be fully processed in the kernel. While the former code runs
in the Linux kernel, the latter components are executed in user-space.

polycubectl

This module implements the CLI that allows to control the entire system, such as
deploying new instances of a service and configure the existing ones.

This module cannot know which services it will have to control: its internal
architecture is able to interact with any service through well-defined interfaces that
have to be implemented in each service. Since creating a compatible interface from
scratch is definitely not trivial, a code generation tool is provided, that generates
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all the necessary boilerplate code starting from a YANG data model describing the
service itself.

libpolycube

This library contains some common code that can be reused across multiple network
functions: it facilitates the creation of links between services, provides common
primitives such as a logging system, allows to access eBPF maps.

2.5.2 pcn-iptables

The pcn-iptables service is intended to emulate iptables by using the same semantic
but a very different backend, based on eBPF programs and more efficients algo-
rithms and runtime optimizations instead of Netfilter.

pcn-iptables was developed to show not only that eBPF programs can be ar-
bitrarily complex if properly chained, but also that an alternative to iptables is
possible: in fact, iptables has been vastly adopted for more than 20 years, which
makes system administrator unwilling to trust other technologies.

Among the main functionalities currently implemented in pcn-iptables are for-
warding, filtering and connection tracking.

The architecture of pcn-iptables is illustrated in Figure 2.12 and Figure 2.13.

Figure 2.12: Ingress architecture in pcn-iptables

A first module, the Parser, reads the packet headers from the raw packet and
stores them into eBPF maps for easier handling.
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Figure 2.13: Egress architecture in pcn-iptables

Forwarding

As we thoroughly discussed, iptables rules are organized in chains triggered by
specific Netfilter hooks. We also discussed about how the Netfilter hooks differ
from the eBPF hooks both in position and number.

To preserve the forwarding functionality, pcn-iptables must emulate what ipta-
bles can do natively, which is to support the INPUT, OUTPUT and FORWARD
chains. These chains need a routing decision to be taken in order to be consistently
multiplexed, therefore pcn-iptables mimics a routing decision as follows:

• the FORWARD chain is used on the ingress hook if the destination IP does
not belong to the receiving interface

• the INPUT chain is used on the ingress hook if the destination IP does not
match FORWARD

• the OUTPUT chain is used on the egress hook if the source IP did not match
the FORWARD chain

This heuristic routing decision is taken by the ChainLogic module and applied
by the ChainForwarder module.

Filtering

Being iptables a firewalling tool, filtering is most certainly a key feature to be
implemented.

The algorithm is conceptually simple, and we will omit the implementation
details for sake of brevity: a first sub module, called Parser, extracts the raw
packet headers and stores them in eBPF maps to make them shared across all sub
modules without the need to read the raw packet every time.
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The subsequent sub modules - IPLookup, PortLookup, ... - check individual
packet properties, such as IP addresses, Layer 4 port numbers and protocols and
TCP flags and update a bit vector which is then used to find a matching rule for
the packet, if any.

Connection tracking

Connection tracking in pcn-iptables is based on a finite state machine that defines
a set of possible statuses for a connection, such as NEW, ESTABLISHED, INVALID.

This state machine is maintained across program iterations because it is stored
in a eBPF map, which is called connections and which will refer to as connection
tracking table as well.

The connection tracking table is a direction-independent data structure that
holds one entry for each active connection. The key of the map consists of the
packet headers, while the value stores connection information, such as the ttl and
of course the state.

A connection is based on an exchange of packets, which means the state machine
in an entry can be correctly updated only if the entry is used for packets in both
directions, hence the property of direction-independence. When a packet comes,
the connection tracking table is first searched with the current packet headers -
forward direction - otherwise with the headers reversed - reverse direction. The
algorithm that manages the state machine performs different operations and checks,
depending on the actual direction of the packet, to verify that the connection
is evolving correctly - i.e. that the three-way TCP handshake steps are being
performed in order.

Connection tracking is handled by two modules: ConntrackTableUpdate and
ConntrackLabel.

Integrating network address translation in pcn-iptables will require several mod-
ifications to these last two modules.

2.5.3 pcn-nat
The pcn-nat service is intended to provide network address translation as part of
a Polycube service chain. It implements a transparent NAT, which means that the
service itself is never the target of a packet.

This implies that for a working configuration, the NAT service must be preceded
by a router in the service chain, which handles ARP requests and replies, ICMP
packet generation and packet routing of course. What this service does is to simply
forward a packet from the receiving port to the other, changing the packet headers
if needed.

The most basic service chain that must be set up to make NAT work is reported
in the following picture.
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Figure 2.14: Simple Polycube service chain with NAT

Chains

Recall that iptables is based on the netfilter framework, which provides five hooks
for packet interception.

Polycube, on the other hand, is based on the eBPF framework, which only
provides two hooks: as soon as they get to the network interface (similar to the
netfilter NF_IP_PRE_ROUTING hook), and immediately before they leave it
(similar to the netfilter NF_IP_POST_ROUTING hook). These two hooks are
called ingress hook and egress hook respectively.

Natting in Polycube can therefore rely on two chains only instead of the three
chains available in iptables: PREROUTING and POSTROUTING. These chains
are enough to implement NAT as a building block for complex Polycube service
chains: rules specify how to translate source addresses in the egress hook and
destination addresses in the ingress hook. This is based on the assumption that the
NAT instance exists in a chain of services, therefore exposing only two interfaces
and one bidirectional path for packets.

Supported NAT types

The current implementation of pcn-nat provides a limited subset of the functions
available in iptables and listed in Section 2.3.1.

• Source NAT: although command-wise available, pure SNAT is not imple-
mented yet, because of two main reasons.
First, the external address is bound to be the one of the public network in-
terface of the NAT instance: this is a direct consequence of having only two
interfaces, one of which exposed to the public network.
Second, it is mandatory to specify an external port number. Iptables, on the
other hand, sticks to the semantics of static source natting, which is used to
set a one-to-one mapping, thus making only the outside address a mandatory
parameter.
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Another important difference is the lack of support for address pools and
ranges: all NAT commands allow for only a single address to be specified each
time, making bulk configuration somehow cumbersome.

• Masquerade: available, it is the default behaviour of NAT instances if no rule
is explicitly set. The NAT instance configuration requires the user to specify
an IP address for the public interface, and all packets will have their source
IP address changed with that one.

• Destination NAT: not available. This means pcn-nat is currently unsuitable
for any environment where a host has to be reachable in the inside network.

• Redirect: not available

Rule match fields

pcn-nat rules are called map entries. Map entries can only match packets based on
the following fields:

• Source IP address

• Source port number

• Layer-4 protocol (ICMP, TCP, UDP)

All the matching fields are mandatory. The configuration of a map entry requires
the user to provide a new source IP address and a new source port number, which
will be used to modify the packet headers.
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Chapter 3

NAT support in pcn-iptables

The first part of this thesis project is the extension of pcn-iptables to include
support for network address translation.

3.1 Proposal
In this Section a possible solution is proposed. The goal of this architecture is
to support NAT without using additional eBPF maps, extending the connection
tracking table accordingly.

3.1.1 Design
In this part we present the design of the proposed solution, trying to avoid men-
tioning the implementation.

Extending the Connection Tracking table

In order to use the connection tracking table to store natting information the fol-
lowing entry fields were added:

• Translation type, to understand whether to change the source or destination
header fields

• New IP address, to replace in the packet IP header

• New port number, to replace in the packet L4 header

The details about the data structures and the algorithms used with the new con-
nection tracking table can be found in the next section.
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Available hooks

Let us recall that eBPF provides two hooks for packet interception, whereas Net-
filter provides five of them. Figure 2.9 provides a quick overview of the relative
position of these hooks, and a good starting point for the discussion of the design
of the proposed solution.

Prerouting

The PREROUTING chain must be hit before any routing decision has been made,
and before any further packet processing. Therefore, in this proposal the Prerouting
NAT works immediately after the Parser module, but before the ChainLogic.
With respect to the other pcn-iptables modules, an incoming packet will be already
destination-natted, therefore all the filtering operations occur on natted packets.
This means that pcn-iptables filtering rules must take into account the existence of
NAT, and the user must configure his rules accordingly.

Figure 3.1: Ingress NAT in pcn-iptables

Postrouting

On the other hand, the POSTROUTING chain must be the last step in the packet
processing, immediately before being sent to the network card. Therefore Postrout-
ing NAT works immediately after the ConntrackTableUpdate module. With re-
spect to the other pcn-iptables modules, an outgoing packet will still have its orig-
inal headers.

This asymmetry between Prerouting and Postrouting NAT, and the fact that the
pcn-iptables modules deal with natted incoming packets and non-natted outgoing
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Figure 3.2: Egress NAT in pcn-iptables

packets has a huge impact on the final implementation, as we will see in the following
section.

Flowchart

When a packet reaches the NAT module, the natting process follows 3 steps:

• Connection tracking table lookup using the current packet headers:

– if an entry exists and it includes natting information we proceed with the
third step

– if an entry exists but it does not provide natting information, the packet
is left unchanged and forwarded

– if no entry is found, we proceed with the next step

• Rule tables lookup: search the rule tables to find a matching rule for the packet.
If no rule matches, the packet is left untouched and forwarded, otherwise we
proceed with the third step.

• Packet manipulation: modify the packet headers and update the connection
tracking table - either add a new entry or insert natting data in an existing
one.

The previous can be summarized with the following picture.

3.1.2 Rule matching
The iptables approach to NAT is similar to its filtering behavior, based on a match-
action pattern. Each time a hook is hit, iptables looks for the first matching rule,
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Figure 3.3: NAT modularization

then applies the correspondent NAT action. This allows to specify rather complex
rules for the matching part (e.g. ip src, ip dst, port src, port dst, interface, protocol,
tcp flags, ...).

The main challenge in finding the first matching NAT rule is to support the
moltitude of fields iptables provides - as you can see in the examples reported in
Appendix A - while keeping things simple and efficient.

Two approaches are possible when it comes to rule searching:

• hybrid search

• linear search

Hybrid search works well with a fixed number of fields. With this approach a
direct access key value table can be used, where the key contains the fields and the
value the corresponding action. One disadvantage is that all the key fields must be
specified in the rule, which is not flexible.

Linear search allows rules to specify an arbitrary number of fields, but it is
slower when it comes to rule matching unless the number of rules is fairly small.

In this proposal the linear search approach is used to get as close as possible to
the iptables flexibility.
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Since linear search does not limit the number of fields to be checked but only
the number of rules, in this proposal the following packet parameters are supported
as rule matching fields:

• Source IP address

• Destination IP address

• Source port

• Destination port

• Layer 4 protocol

• Input interface

• Output interface

With respect to iptables, TCP flags are not supported.

3.1.3 Actions
Recall from Section 2.3.2 that iptables supports four actions: source NAT, desti-
nation NAT, masquerade and redirect.

In this proposal redirect is not supported. Other actions are supported with the
following limitations:

• no support for the OUTPUT chain

• no support for IP address ranges

A set of samples of configuration for pcn-iptables are reported in Appendix B.

3.2 Implementation
The following Section reports in more detail how the proposed design was imple-
mented.

3.2.1 Data structures and eBPF maps
In order to provide support for the necessary natting operations, new data struc-
tures and eBPF maps were added to the existing pcn-iptables implementation.
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Nat decision

The data structure struct nat_decision is used to store all the natting informa-
tion that is needed to properly modify the packet and operate on the connection
tracking table to update it correctly.
struct nat_decision {

uint8_t entryPresent ;
uint8_t updateEntry ;
uint8_t match;
uint32_t newIp;
uint16_t newPort ;

};

Let us briefly describe what each field means:

• entryPresent: used as boolean to indicate whether the connection tracking
table already contains an entry for the current packet

• updateEntry: used as a boolean to indicate whether an existing entry in the
connection tracking table has to be updated

• match: indicates the type of NAT that must be performed on the packet (SRC
for source natting, DST for destination natting, NO_NAT to leave the packet as
it is)

• newIp: the natted IP address (source IP or destination IP depending on match)

• newPort: the natted port number (source port or destination port depending
on match)

The NAT decision is stored in a eBPF map of type array, which is named
natDecision. The map contains only one entry.

NAT rules

NAT rules are represented in the datapath with the following data structures:
enum nat_type {

SNAT ,
DNAT ,
MASQUERADE

};
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struct nat_v {
uint32_t bitmask ;
uint32_t srcIp;
uint32_t dstIp;
uint16_t srcPort ;
uint16_t dstPort ;
uint8_t l4proto ;
uint16_t inIface ;
uint16_t outIface ;
enum nat_type type;
uint32_t newIp;
uint16_t newPort ;

};

The enum nat_type simply describes the type of NAT rule. struct nat_v has one
field for each packet field supported in the Proposal, fields to store the data to be
used to perform NAT, and a bitmask, the meaning of which will be explored in
Section 3.2.4 during the analysis of the rule matching algorithm.

The NAT rules are stored in two separate but equal eBPF maps - one to perform
lookup on incoming packets and one for the outgoing - of type hash, which are
named natrulesINGRESS and natrulesEGRESS respectively.

3.2.2 Extending the Connection Tracking table
As mentioned in the Proposal in Section 3.1.1, three new natting fields were sup-
posed to be added to the connection tracking table: to solve some unexpected
issues - described in the examples in Section 3.2.5 - two additional fields had to be
introduced, resulting in the following updated struct ct_v data structure:
struct ct_v {

uint64_t ttl;
uint8_t state;
uint32_t sequence ;
uint8_t trans_type ;
uint32_t newIp;
uint16_t newPort ;
uint8_t reverse_is_forward_because_added_by_nat ;
uint8_t trans_scope_only_dnat

};

translation_type can have four values:

• NO_NAT: the entry corresponds to a session that does not require natting

• SRC: the entry corresponds to a session that needs to undergo source natting
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• DST: the entry corresponds to a session that needs to undergo destination
natting

• UNDEF_NAT: the entry corresponds to a session for which we do not know yet
whether NAT is needed or not

reverse_is_forward_because_added_by_nat and trans_scope_only_dnat are
used to deal with connection tracking, and their purpose will be explained in detail
in the discussion about the integration with the connection tracking algorithm in
Section 3.2.5.

In addition to the new table fields, the state field was given an additional value,
which is called UNDEF_CONNTRACK: if an entry has this state, it means that it is being
used by the NAT module, but not yet used by the connection tracking algorithm.

3.2.3 Using multiple eBPF programs
In Section 2.4.2 we discussed some of the limitations of eBPF programs. Among
them the maximum number of assembly instructions of the compiled bytecode.

Describing the natting process flowchart in Figure 3.3, we also noticed that
there are three main self-contained parts in the algorithm: connection tracking
table lookup, rule lookup and packet manipulation.

This is why the implementation of the natting module involves three different
sub-modules, which are described in the following.

Nat

The first module in the natting process is called Nat, and its corresponding datapath
is called Nat_dp. The responsibilities of this module are the following:

• Reset the natDecision map: since this is the first step for any packet and the
content of eBPF maps is preserved across executions, it is important to reset
it to avoid inconsistencies. All fields in the data structure are set to zero.

• Perform a lookup in the connection tracking table with the current packet
headers

– if no entry is found, the natDecision map is left untouched and the second
sub-module is called using the eBPF tail call mechanism

– if an entry exists but its trans_type is UNDEF_NAT, the decision updateEntry
and entryPresent fields are set to one to indicate that the entry does not
contain any valid natting information yet, and the second sub-module is
invoked

35



3 – NAT support in pcn-iptables

– if an entry with valid natting data is found, the natDecision map is
updated accordingly and the third sub-module is invoked, which will act
based on the data contained in the updated decision

Please note that no rule lookup is performed in sub-module Nat, nor any modifica-
tion to the packet.

NatLookup

The second module in the natting process is called NatLookup, and its correspond-
ing datapath is called NatLookup_dp.

This sub-module implements the rule matching algorithm described in Sec-
tion 3.1.2. Please note that no operation is performed on the packet nor on the
connection tracking table.

However, since this module is invoked if and only if a rule lookup is necessary, it
is its responsibility to update the natDecision map with the natting information
collected with the lookup.

Whatever the result of the lookup may be - source, destination or no NAT -
the third sub-module is invoked to either update the packet, update the connection
tracking table, or both.

NatAction

The third and last module in the natting process is called NatAction, and its
corresponding datapath is called NatAction_dp.

This sub-module uses the data available in the natDecision map to modify the
packet headers. If necessary, the connection tracking table is updated according to
the integrated CT algorithm described in Section 3.2.5.

The packet is then sent to the output interface if the natting process was trig-
gered in the POSTROUTING chain, or to the CHAINLOGIC module if it was triggered
in the PREROUTING chain, as described in the Proposal in Section 3.1.1.

Duplication of each sub-module

Each module in pcn-iptables exists twice in the processing flow: once for the egress
direction and once for the ingress. This happens for the natting sub-modules as
well: each sub-module is injected twice, therefore six eBPF programs are deployed
in total. The ingress and egress instances are made different using conditional
compiling and string replacing. For the sake of brevity, let us call NatIngress and
NatEgress the whole natting module in the two directions.

When a packet arrives to a host with pcn-iptables running, the packet enters
an interface, therefore triggering the NatIngress set of modules. If the recipient
of the packet is not the host itself, the packet is bound to exit from an interface,
therefore triggering the NatEgress set of modules.
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This means that the packet is processed twice, and this will be a key point of
discussion in the integration with the connection tracking algorithm.

3.2.4 Rule matching algorithm
As discussed in the Proposal in Section 3.1.2, a linear search approach has been
used to scan the rule tables to find a matching rule for a packet.

Recall from Section 3.2.1 that struct nat_v includes a bitmask field. This field,
although being an integer number, is considered as a bit array for the purpose of
the matching algorithm: each of the seven available matching fields is assigned one
bit, which is set to one if the rule specifies the field and to zero otherwise.

The rule matching algorithm is implemented in the NatLookup sub-module. The
algorithm is simple in theory, but it is complicated in practice by the limitations of
eBPF programs, first of all the necessity to unroll loops. Although this operation is
automatically performed by the JIT compiler in the Linux kernel, there is a caveat:
the compiler and the verifier do not handle loop unrolling if there are less than two
iterations. Furthermore, they need to know exactly how many iterations have to
be performed, which means the loop variable must be a hard-coded constant.

To overcome this issue, conditional compiling instructions and string replacing
have been used. Polycube handles datapaths as if they were strings of text: this is
very handy because it allows programmers to replace portions of code with actual
values immediately before injecting the code in the kernel for compilation. In
the datapath string a _RULES placeholder was used, which is replaced with the
number of rules every time a rule is added or removed; the NatLookup sub-module’s
datapath is then re-injected. Once _RULES is replaced, three cases could happen
during compilation:

• _RULES = 0: there is no need for any lookup at all. The only possible outcome
is for the decision’s match field to be NO_NAT

• _RULES = 1: there is no need to loop. Wrapping the for loop shell in condi-
tional compiling instructions, it is not considered during compilation. How-
ever, the actual matching algorithm in the loop body is preserved, and it is
applied on the only existing rule

• _RULES > 1: the loop must be unrolled. The shell of the for loop is compiled
with the algorithm as the loop body

For sake of clarity it is hereby reported the conditional compiling structure.

37



3 – NAT support in pcn-iptables

#if _RULES == 0
goto NOT_MATCHED ;

#elif _RULES == 1
int key = 0;
nat_value = natrules_DIRECTION .lookup (& key );
if ( nat_value == NULL ){

// No rule with this ID
goto NOT_MATCHED ;

}
#elif _RULES > 1

#pragma unroll
for (int i = 0; i < _RULES; i++) {

int key = i;
nat_value = natrules_DIRECTION .lookup (& key );
if ( nat_value == NULL ){

// No rule with this ID
goto NOT_MATCHED ;

}
#endif

// Matching algorithm ...

NOT_MATCHED :;
#if _RULES > 1
} // Close the for loop
#endif
decision ->match = NO_NAT;

The loop being unrolled poses another issue if we consider another limitation
of eBPF programs, which is the maximum number of instructions. The matching
algorithm, although simple, requires a certain number of instructions, which results
in the maximum number of possible rules being limited. Our tests showed that the
eBPF validator accepts the program until 20 rules are inserted, which is suitable
for small home applications, but is just not enough for any enterprise or backbone
infrastructure.

Please do not mistake the number of rules with the number of sessions in the
session table: the fact that only few rules are deployable does not limit the number
of connections that can use them.
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Let us finally present the matching algorithm with a small snippet:
#if _MATCH_SRC_IP

/* Src IP Match */
if ( GET_BIT (nat_value ->bitmask , 0)) {

if (pkt ->srcIp != nat_value ->srcIp)
goto NOT_MATCHED ;

}
#endif

Simple as anticipated: for each rule and for each available matching field, the
corresponding bit in the bitmask is evaluated: if the bit has value one, the rule
has to be applied on the field, and if there is a mismatch the rule is considered not
applicable as a whole. If the bit is zero, the corresponding field is not evaluated at
all and the algorithm proceeds to the next field.

To mitigate the disadvantage of unrolling the loop a small optimization was
made, which is visible in the conditional compiling instructions in the previous
snippet. When a rule is added or updated not only is the _RULES substring replaced,
but also substrings that allow or prevent certain fields to be checked. To do this,
before injection the rules are evaluated in the control plane: if at least one rule
specifies a field, then that field’s compilation is enabled, otherwise it is not, allowing
for a smaller loop body and possibly more rules.

Although advantageous from a code-size point of view, this behaviour introduces
a dependency between the complexity of the rules and their maximum number. Let
us consider the case where lots of rules where added that specified one field only:
the verifier accepts the injected code because the loop body is very small. Now
one more rule is inserted which specifies all the matching fields: the newly injected
code has all the matching fields enabled for all loop iterations, resulting in a much
larger number of instructions, which could possibly fail to be verified.

Finally, if no rule matched the packet, the decision’s match field is set to NO_NAT.
On the other hand, as soon as one rule matches the packet, the decision is updated
with the corresponding transformation data. In both cases, the NatAction sub-
module is invoked.

Please notice that the first rule that matches is applied, even if there are other
rules matching on more fields than the selected one. This mimics the iptables
behaviour, where rule priority is enforced by explicitly setting a position for the
rule in the rule table and not with a most-matching approach. Setting a rule’s
position is possible with the pcn-iptables api, therefore this approach was kept.

As we will see, this policy is opposite with respect to the one used in pcn-nat.

3.2.5 Integration with the CT algorithm
The connection tracking mechanism implemented in pcn-iptables is quite complex:
one of the biggest challenges of this thesis project was to find a way to extend it
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in an efficient way, without breaking its internals or altering the way it treated
packets. A fundamental requirement was that if no NAT rule was ever specified,
the program should behave as if the NAT implementation never happened.

We will start our discussion of the integration with the connection tracking
algorithm with two examples.

Connection tracking algorithm with masquerade

Let us suppose we have a masquerade rule deployed, that changes the source IP
addresses of all packets exiting from interface eth0 to 2.2.2.2.

Such a rule can be specified with the following syntax in the Polycube CLI:
pcn-iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Now let us suppose that a packet with the following headers wants to leave the
inside network and is processed by pcn-iptables, and that such packet belongs to a
new connection - that is, no former entry exists in the connection tracking table.

PKT 1
srcIp dstIp srcPort dstPort

10.0.0.1 8.8.8.8 1234 80

The protocol is TCP, so there is a packet exchange to perform the handshake,
which makes sure that packet are sent in both directions.

Recall from Section 3.2.2 the fields of an entry in the connection tracking table,
and keep in mind that masquerade happens in the POSTROUTING chain, as the last
step of the pcn-iptables processing.

Also recall from Section 3.2.3 that when a packet hits pcn-iptables it is processed
by each module twice - the ingress and egress version.

When the packet arrives at the host it triggers the ingress instances of the
natting sub-modules. Since the ingress NAT processing is done before connection
tracking, the connection tracking table has no matching entry for the current packet,
therefore the ingress instance of NatLookup is called. Since there is no prerouting
rule - only the masquerade one, which is processed in postrouting - the sub-module
invokes the ingress version of NatAction setting the decision match field to NO_NAT,
which proceeds by adding an entry in the connection tracking table using as key
the headers of the current packet and and setting the value’s fields as following:

• trans_type: NO_NAT, to indicate that no natting operation must be performed
on the packet. This is not true, but we will see how such situation is handled
in a moment

• trans_scope_only_dnat is set to one, to indicate that this rule is meaningful
only for the ingress direction and should be ignored by the egress
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• state is set to UNDEF_CONNTRACK because connection tracking processing has
not occurred yet

The ingress natting module forwards the packet to the next program to perform
connection tracking, but a keen observer may have noticed that we violated the
initial assumption of the connection tracking working fine both with NAT and
without: in this case without natting no entry in the connection tracking table
would exist when the tracking process begins. Unfortunately a seamless integration
was not possible, therefore the connection tracking algorithm had to be modified.

The approach was the following: consider any entry whose state field is set to
UNDEF_CONNTRACK as a non-existing entry. The connection tracking module, tricked
into thinking that no entry exists for the current packet, will try to insert one to
store the connection tracking information.

However, being the key the same of the existing entry, the operation simply
replaces the value’s fields, included the state, which will be something else than
UNDEF_CONNTRACK - in case of a TCP connection, state = SYN_SENT.

To sum up, at this point the connection tracking table includes one entry for
this connection, whose structure is reported in the table below.

Entry 1
srcIp dstIp srcPort dstPort protoKey 10.0.0.1 8.8.8.8 1234 80 TCP

ttl state seq trans
type newIp newPort reverse is

forward
trans only

dnatValue ? SYN_SENT ? NO_NAT 0 0 false true

The packet proceeds its path entering the egress processing, which begins with
the connection tracking and ends with natting.

The current packet’s source IP address does not match any of the host’s inter-
faces, therefore the OUTPUT chain is not hit, and the packet is directly passed to the
POSTROUTING chain without further connection tracking processing.

Now the egress instances of the natting sub-modules are hit.
The Nat sub-module finds an entry in the connection tracking table for the

current packet, with trans_type = NO_NAT. This would make us believe that no
natting operation is performed, which would be wrong, but we are forgetting that
trans_scope_only_dnat = 1. When these two conditions are true, the entry is
treated as if the state was UNDEF_NAT, and the decision is set to force the NatAction
to update the connection tracking entry with the proper NAT data.

Since UNDEF_NAT was used, the NatLookup is invoked, which finds the masquer-
ade entry and updates the decision before passing the packet to the NatAction.
This sub-module takes care of modifying the packet headers, and to deal with the
connection tracking table.
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Recall from Section 2.5.2 that the connection tracking table was designed to
be direction-independent, which means one entry should be enough for packets
belonging to a session independently of whether they are exiting or entering the
inside network.

However, because of the asymmetry pointed out in Section 3.1.1, the packet
headers will be different in the two directions when the NAT processes them: they
are the original packet in the outgoing direction, and the natted packet in the
incoming direction. Being the key of the session table the packet header itself, it is
clear that now two entries are needed for each session, one with the original packet
headers and one with the natted ones: we will refer to such two entries as forward
entry and reverse entry respectively.

Now we have all the elements to proceed with our example: NatAction updates
the existing entry to include natting information for the outgoing packets, and
inserts a new entry for incoming packets.

The forward entry is the entry added by the ingress natting process, as shown
before. The key of the forward entry does not change, and neither do the ttl,
state and sequence value fields. The other fields are modified as follows:

• trans_type: SRC, to indicate that the source headers must be modified

• newIp: the IP address of the interface eth0, following the masquerade seman-
tics

• newPort: a port number chosen according to a certain policy

• trans_scope_only_dnat is set to zero, to indicate that the entry is now fully
qualified to provide natting information for outgoing packets

• reverse_is_forward_because_added_by_nat is set to zero because
NatAction only updated the entry

The resulting forward entry is the following:

Forward Entry
srcIp dstIp srcPort dstPort protoKey 10.0.0.1 8.8.8.8 1234 80 TCP

ttl state seq trans
type newIp newPort reverse is

forward
trans only

dnatValue ? SYN_SENT ? SRC 2.2.2.2 1025 false false

The reverse entry has to match incoming packets. Since the packet headers are
natted before being sent out, the other party will respond to the natted IP address
and port. When such a response hits pcn-iptables, it must match the reverse entry.

Therefore the key of the entry is the following:
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• srcIp: the destination IP of the current packet, which will be the source of
the response packet

• dstIp: the natted source IP address, which will be the one the other party
responds to

• srcPort: the destination port number of the current packet

• dstPort: the natted source port number, which will be the one the other party
responds to

• l4proto: the same as the current packet

The value’s field will be the following:

• ttl: a numerical value

• state: UNDEF_CONNTRACK, to indicate that when the packet will come there
will be no tracking information yet, because prerouting happens before con-
nection tracking

• sequence: the current sequence number plus one

• trans_type: DST, to indicate that the destination headers must be modified

• newIp: the current packet’s original source IP address, which is the actual
recipient of the incoming packet

• newPort: the current packet’s original source port number

• trans_scope_only_dnat is set to zero

• reverse_is_forward_because_added_by_nat is set to zero

The resulting reverse entry is the following:

Reverse Entry
srcIp dstIp srcPort dstPort protoKey 8.8.8.8 2.2.2.2 80 1025 TCP

ttl state seq trans
type newIp newPort reverse is

forward
trans only

dnatValue ? UNDEF_CT ? DST 10.0.0.1 1234 false false

At this point the TCP SYN packet has been sent, and the SYN ACK comes back.
When it does, it first triggers the ingress natting and tracking modules, then the
egress, just like the previous packet, with the difference that now the necessary
entries are already present in the connection tracking table.
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The ingress Nat sub-module finds the reverse entry added before, which already
provides valid natting information: NatLookup is skipped and NatAction is invoked.
The packet is modified and sent to the tracking logic, and no further operation is
performed on the connection tracking table.

Since the packet headers have changed, the connection tracking will ignore the
reverse entry we added before, and will instead use the forward entry, which will
match when searched with the packet headers reversed: this happens because al-
though there are two entries for each connection, as far as connection tracking is
concerned the table is still direction independent.

The state field in the forward entry is set to SYN_RECV in case of TCP, waiting
for the final ACK to mark the connection as ESTABLISHED.

The two entries for the connection are now the following:

Forward Entry
srcIp dstIp srcPort dstPort protoKey 10.0.0.1 8.8.8.8 1234 80 TCP

ttl state seq trans
type newIp newPort reverse is

forward
trans only

dnatValue ? SYN_RECV ? SRC 2.2.2.2 1025 false false

Reverse Entry
srcIp dstIp srcPort dstPort protoKey 8.8.8.8 2.2.2.2 80 1025 TCP

ttl state seq trans
type newIp newPort reverse is

forward
trans only

dnatValue ? UNDEF_CT ? DST 10.0.0.1 1234 false false

The ACK packet, sent by 10.0.0.1, will match the forward entry: therefore
the connection tracking will work as expected and will mark the connection as
ESTABLISHED.

Connection tracking algorithm with destination nat

Let us now suppose we have a destination NAT rule deployed, that changes the
destination IP addresses and port numbers of all packets directed to 2.2.2.2, port
80 to those of an internal host, say 10.0.0.1 port 8080

Such a rule can be specified with the following syntax in the Polycube CLI:

pcn-iptables -t nat -A PREROUTING
-d 2.2.2.2 --dport 80
-j DNAT --to-dest 10.0.0.1:8080
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Now let us suppose that a TCP SYN packet with the following headers arrives,
trying to establish a new connection:

PKT 1
srcIp dstIp srcPort dstPort
3.3.3.3 2.2.2.2 1234 80

Similarly to the previous case, the packet first triggers the ingress natting mod-
ules, and the connection tracking table has no information whatsoever about the
current packet.

The ingress NatLookup is invoked, which finds the matching prerouting rule for
the packet, updates the decision and invokes NatAction.

As usual NatAction has to modify the packet and deal with the connection
tracking table. With respect to the previous case, the forward and reverse entries
are added together.

The key of the forward entry corresponds to the current packet headers, before
natting is applied: in this case the forward key will match subsequent packets of
the connection - with masquerade this happens to the reverse entry. The value of
the forward entry is set as following:

• sequence and ttl are properly set

• trans_type, newIp and newPort are set to DST, 10.0.0.1 and 8080

• state is set to UNDEF_CONNTRACK

Forward Entry
srcIp dstIp srcPort dstPort protoKey 3.3.3.3 2.2.2.2 1234 80 TCP

ttl state seq trans
type newIp newPort reverse is

forward
trans only

dnatValue ? UNDEF_CT ? DST 10.0.0.1 8080 false false

The reverse entry is the one that matches outgoing packets in the connection,
which is initiated from the outside. Therefore the key must match the packet before
natting is performed. The value of the reverse entry is set as following:

• sequence and ttl are properly set

• trans_type, newIp and newPort are set to SRC, 2.2.2.2 and 80

• state is set to UNDEF_CONNTRACK
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• reverse_is_forward_because_added_by_nat is set to one: this is the first
and only case where this field is set to one, and we will see in a moment why
this happens here

Reverse Entry
srcIp dstIp srcPort dstPort protoKey 10.0.0.1 3.3.3.3 8080 1234 TCP

ttl state seq trans
type newIp newPort reverse is

forward
trans only

dnatValue ? UNDEF_CT ? SRC 2.2.2.2 80 true false

After NatAction finishes, the ingress connection tracking begins: the first itera-
tion finds the matching entry - the reverse entry - with state = UNDEF_CONNTRACK,
which is considered as missing entry and is updated in the ConntrackTableUpdate
module as discussed in the previous example. Also, after NAT the packet looks like
this:

PKT 1
srcIp dstIp srcPort dstPort
3.3.3.3 10.0.0.1 1234 8080

Once again this process is direction independent, and since the packet headers
have been natted it will refer to the reverse entry after finding it with the headers
switched. The algorithm would thus consider the matching entry as a reverse - from
a tracking point of view - entry, which would break the state machine on which the
connection tracking itself is based.

This is why the reverse_is_forward_because_added_by_nat field was set to
one: we are explicitly informing the algorithm that the current entry is actually a
forward one, even if it was found after a lookup with the packet headers switched.
The connection tracking ends by updating the state field of the reverse entry value
to SYN_SENT.

At this point two entries exist in the connection tracking table for the current
packet, which are shown in the following tables.

Forward Entry
srcIp dstIp srcPort dstPort protoKey 3.3.3.3 2.2.2.2 1234 80 TCP

ttl state seq trans
type newIp newPort reverse is

forward
trans only

dnatValue ? UNDEF_CT ? DST 10.0.0.1 8080 false false
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Reverse Entry
srcIp dstIp srcPort dstPort protoKey 10.0.0.1 3.3.3.3 8080 1234 TCP

ttl state seq trans
type newIp newPort reverse is

forward
trans only

dnatValue ? SYN_SENT ? SRC 2.2.2.2 80 true false

Now the very same packet hits the egress connection tracking, which does not
perform any operation - just like before, the OUTPUT chain is not hit - and passes
the packet to the egress natting modules. The natted packet headers do not match
any entry in the table because natting is not direction-independent and it requires
a direct match. NatLookup is invoked, but no rule is present, therefore NatAction
is invoked.

The decision is NO_NAT and there is no entry, so the most intuitive operation
would be to add a new entry: but look at the current packet headers and compare
them to the key and value of the reverse entry. If we added a NO_NAT entry,
that would be exactly the reverse entry with switched headers, which is forbidden
because it would break the direction-independent behaviour of the algorithm: a
packet would match the entry as a forward one, when the correct behaviour would
be to match the reverse entry as a reverse one.

Therefore, the connection tracking table is not updated in this step.
Now the response packet comes back from the inside host, with the following

headers:

PKT 2
srcIp dstIp srcPort dstPort

10.0.0.1 3.3.3.3 8080 1234

The ingress NAT is hit, and the connection tracking table provides a matching
entry with natting data, but the suggested transformation is SRC, which cannot
happen in prerouting, and therefore the rule is ignored as if it was NO_NAT.

The connection tracking algorithm proceeds and finds a direct entry for the
current packet, but the reverse_is_forward_because_added_by_nat field is 1,
so the entry is treated as a reverse from the algorithm point of view. This makes
sure that the state machine keeps working as expected. The entries are updated as
following:

Now the egress connection tracking is hit, but as usual the Nat sub-module
is immediately invoked. The lookup in the table is successful as it retrieves the
reverse entry, which has source natting information and is therefore accepted as a
valid natting entry for the postrouting. The packet is modified and sent.

When the next packet comes in, it will match the forward entry, which provides
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Forward Entry
srcIp dstIp srcPort dstPort protoKey 3.3.3.3 2.2.2.2 1234 80 TCP

ttl state seq trans
type newIp newPort reverse is

forward
trans only

dnatValue ? UNDEF_CT ? DST 10.0.0.1 8080 false false

Reverse Entry
srcIp dstIp srcPort dstPort protoKey 10.0.0.1 3.3.3.3 8080 1234 TCP

ttl state seq trans
type newIp newPort reverse is

forward
trans only

dnatValue ? SYN_RECV ? SRC 2.2.2.2 80 true false

destination natting information which is considered valid for the ingress. Just
like before the ingress connection tracking will consider the reverse entry as a
forward one for the current packet, and will update the state from SYN_RECV to
ESTABLISHED, because the TCP handshake is complete.

3.3 Open issues

3.3.1 Complexity of the integrated algorithm
Integrating NAT in the connection tracking algorithm has been way more difficult
than what we initially planned.

A clear signal of this is the fact that instead of the three additional table fields we
thought would suffice, two additional had to be added just to deal with problematic
situations we just did not foresee.

During the analysis of the two examples in the previous Section we already
pointed out some critical points that had to be addressed during development to
make sure that NAT worked, and solutions to them were found which greatly
complicated the final code, sometimes making it unreadable unless very thorough
comments were added: we used the trans_scope_only_dnat field to make sure
that the egress would ignore incomplete rules added by the ingress and we were
forced to add the reverse_is_forward_because_added_by_nat field to keep the
connection tracking working and we had to pay attention not to add a reverse entry
in some cases, not to break the state machine.

The root cause of this is actually quite simple: the connection tracking table is
direction independent, whereas NAT is not.

When dealing with eBPF programs the single most expensive operation is a map
lookup: the worst case scenario in pcn-iptables with NAT implies five lookups in
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the connection tracking table only, ignoring those for the packet headers and for
the NAT decision. This causes a massive decrease in performance, as we will report
in Chapter 5.

Consider a different architecture where NAT is completely independent from
connection tracking: we would still need two sets of rules for the outgoing and
incoming packets, but we could exploit the separation of ingress and ingress to
setup two different natting maps, one for the incoming packets and one for the
outgoing.

This solution, which leans toward the one proposed in the following chapter for
pcn-nat, would indeed bring some advantages, both to complexity and performance:

• trans_scope_only_dnat would be useless, because the egress NAT would not
consider the ingress natting entries

• reverse_is_forward_because_added_by_nat would also be useless, because
the connection tracking table would be left untouched from the whole integra-
tion

A very interesting thing about this architecture is the fact that the connection
tracking algorithm would not change with respect to the pcn-iptables without NAT,
because either ingress NAT happens before, or egress NAT happens afterwards. All
the natting operations would be managed by the natting modules with their own
data structures.

Speaking of performance, if we ignore the connection tracking table and the
linear rule matching algorithm, only two map lookups would be needed, one for the
ingress and one for the egress, and most importantly there would be no worst case,
because the same process would apply to all packets.

3.3.2 Port selection policy
Whenever a masquerade rule or a source NAT rule - with no port explicitly set -
has to be enforced, a new source port number has to be selected in order to prop-
erly modify the packet and to provide the bidirectional mapping in the connection
tracking table.

The algorithm currently implemented to address this necessity is very simple: all
the numbers between 1025 and 65535 are used in round robin. The first connection
will be assigned port 1025, the second one 1026 and so on.

This process is handled by the following piece of code.
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static inline __be16 get_free_port () {
u32 i = 0;
u16 * new_port_p = first_free_port .lookup (&i);
if (! new_port_p )

return 0;
rcu_read_lock ();
if (* new_port_p < 1024 || * new_port_p == 65535)

* new_port_p = 1024;
* new_port_p = * new_port_p + 1;
rcu_read_unlock ();
return bpf_htons (* new_port_p );

}

BPF_TABLE (" array", u32 , u16 , first_free_port , 1);

The next port number is stored in a eBPF map of type array, with only one
unsigned short integer number which it is read and updated whenever a new port
number is needed.

This approach has the only advantage of being conceptually simple, but it does
suffer from some serious issues:

• all port numbers are used, ignoring that other services running on the host
may already being using them on their own

• when a port number is selected, Linux is not informed that that port is no
more available for other running services

• when the round robin algorithm starts back from 1025, there may be overlap-
ping natting information for more than one connection

While the last one is strictly related to the implementation and may actually
be solved by adding some complexity to the algorithm, the first and the second
are more related to how eBPF and Linux communicate, and to which tools are
available to the developers to make this communication effective.

A theoretical solution to the first problem is simple and naive: either obtain a
list of the used ports and skip them, or a list of free ports and choose from them.

Although very basic in purpose, this solution is not viable.
If we assumed this operation to be performed in the control plane, immediately

before injecting the eBPF code in the kernel, we would need to use some sort of
Linux function that returns either the free or the busy ports: unfortunately, there
is no such function available yet.

If we assumed to delegate this to the data path, we would need dedicated eBPF
helpers, which simply do not exist.
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The same problems are also valid for the second problem: a port number could
be reserved with a socket bind operation from the control plane, but this would
require the data path to rely on the control plane for every new translation it has
to perform, which would considerably reduce performance.

A possible workaround that may actually solve both problems is to reserve a
range of port numbers from the very beginning, possibly passing this range as a
parameter during the service instantiation: the control plane would have to reserve
all the ports at once, and a proper eBPF map would either store the first and last
port available, or all of them.

Speaking of eBPF maps, a particularly efficient data structure to store available
port numbers would be a FIFO queue that contains all the available port numbers:
as soon as a new number is needed a pop operation is performed, whereas a push
operation would be needed to make unused port numbers available again. This
FIFO map is not available in the Linux kernel yet, but it is currently in the works
in the Polycube workgroup and may be used in the next updates.
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Chapter 4

A new API for pcn-nat

The second part of this thesis project is the definition and implementation of a new
API for the pcn-nat cube, which is the service that provides natting features in a
Polycube service chain.

With respect to pcn-iptables, pcn-nat does not aim to emulate or provide com-
patibility with iptables, since it is designed to be part of a more complex service
chain. This gave us a vast freedom of choice when it came to decide how to design
and implement the service.

4.1 Proposal
In this Section a proposal is presented: a new API was necessary to improve its
functionality and flexibility, and to overcome the limitations of the previous imple-
mentation, which we discussed in Section 2.5.3.

4.1.1 iptables-like versus custom
When the discussion about reworking pcn-nat first started, the first decision we
had to deal with was what type of API we wanted for it. Two alternatives were
possible: an API very similar to the one implemented in pcn-iptables, or a totally
new one.

iptables-like API

As discussed in the previous chapter, the iptables API for NAT is quite complex:
it provides the maximum possible flexibility by allowing any field to be optional, it
allows to enter very specific rules and to specify the chain where such rules had to
be enforced.

The drawback, however, was that such a freedom took a toll on performance,
especially when it comes to the rule matching algorithm, which as discussed is
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implemented with a linear search and has all the eBPF-related problems we already
discussed.

Custom API

Because of all this, designing and implementing a brand new API seemed like a
good idea, and it did even more when we considered how this pcn-nat cube is meant
to be used in a service chain: it is not designed to be the only piece of software
running as pcn-iptables was, but as the boundary element before the outer network,
the element in charge of providing that set of features that are needed in order to
allow a functional networking between an inside and an outside network.

As you can imagine, this is the API we decided to implement, and that we will
discuss in the rest of this section.

4.1.2 Design
What we wanted to achieve was a clear, simple and efficient design, that could
provide a user-friendly command line interface to setup the service.

The first step we made in this direction was a key change with respect to the
iptables behaviour, which is that we defined different type of NAT rules for the
different actions we wanted to perform: the action is not a parameter anymore, it
is defined by the rule itself.

A second dramatically important decision we decided to make was to define
individual sets of configurable fields for each type of rule, and to make the fields
in these sets mandatory. This may seem a very strict constraint on usability, but
as we will see everything was worked out in order to keep a flexible interface and a
very efficient implementation.

Four types of rules were introduced:

• Source natting rules

• Masquerade rules

• Destination natting rules

• Port forwarding rules

Source natting rules

With these rules the user can configure what we called the Basic NAT in Sec-
tion 2.1.1.

The only two fields available for these rules are:
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• internal-net: the internal network address that we want to translate. It can
be either a single IP address - 10.0.0.1/32 - or a network range - 10.0.0.0/24.
CIDR notation must be used.

• external-ip: the outside IP we want to use to translate the internal ones. It
has to be a single IP address

Now think about what the user can and cannot do with this API with respect
to the iptables API: of course the only matching field is the packet’s source IP, and
we totally cut off any other parameter. But also think about what source natting
is about: it was introduced to perform a many-to-one mapping of inside address on
outside address, and this is still possible.

Masquerade

Masquerade is a per-se type of rule: while in theory it would be possible to apply
masquerade only to a subset of packets defined by a set of matching parameters,
this rarely happens in practical applications, and also the NAT cube does not have
more than one output interface on which two different masquerade rules can be
enforced.

This is why we decided to consider masquerade not like a rule, but like an
option that can be enabled and disabled: when masquerade is enabled, all the
packets that do not match a source NAT rule are automatically intercepted and
their source headers are replaced with the IP address of the outside interface and
with a new port number. When masquerade is disabled, any packet that would not
match any source NAT rule would exit the network unchanged.

Think of this masquerade as a default policy that can be either added as a whole
or removed, and not configured.

Destination natting rules

With these rules it is possible to map an outside IP to an inside IP for incoming
packets, for all destination port numbers. We decided to provide this possibility to
mimic what happens on many home gateways when a DMZ is enabled: all traffic
directed to the public IP is redirected to a specific host in the inside network.

The only two fields available for this type of rule are:

• external-ip: the external address we want to map

• internal-ip: the internal address to which we want to redirect the traffic

Port forwarding rules

Port forwarding rules implement the Bidirectional NAT discussed in Section 2.1.3.
With these rules it is possible to associate an internal host to a certain outside IP
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and port numbers, for example to have a running web server in the inside network
accessible from the outside.

The available fields for these rules are:
• external-ip: the external IP to associate to the host

• external-port: the external Layer 4 port to associate to the host

• internal-ip: the actual IP address of the host

• internal-port: the actual port number of the running service in the host

• proto: the Layer 4 protocol. This field is optional, and this is the only case
when optional parameters are provided by this API. In general a service run-
ning on a certain port works either with TCP or UDP, therefore it is up to the
user to decide whether to explicitly set a protocol. The protocol can be TCP,
UDP, ALL - not setting the protocol defaults to ALL.

4.1.3 Debug view
It is easy to forget about debugging when everything works fine, but when it does
not it is important to have an intuitive way to find out what is going wrong.

Therefore, during the design of this new API, we had to introduce a feature to
allow users to keep track of how and why packets are being translated in a certain
way. We called this feature the natting table.

The natting table is similar in meaning to the connection tracking table in pcn-
iptables: it provides an overview of the ongoing natting transformations and can
be read - not written - by the end user. Each row of the natting table contains the
following fields:

• internal-src: the inside source address of a packet

• internal-dst: the inside destination address of a packet

• internal-sport: the inside source Layer 4 port of a packet

• internal-dport: the inside destination Layer 4 port of a packet

• proto: the protocol of the packet (ICMP, TCP, UDP)

• originating-rule: the type of rule that was applied to the packet (SNAT,
Masquerade, DNAT, Port forwarding)

• external-ip: the external IP address of the packet

• external-port: the external Layer 4 port number of the packet
As we will see in the implementation section, the natting table the user can

view is one of the two natting tables used by the datapath to perform natting
transformations. Two birds with one stone.
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4.1.4 Rule matching
The new rule matching algorithm is the greatest improvement we could achieve
with respect to the linear search algorithm implemented in pcn-iptables.

It is also the main reason why the decision of introducing four type of rules with
individual sets of fields was made.

This leap forward was made possible by the existence of LPM maps in eBPF.
As mentioned in Section 2.4.2, with LPM maps it is possible to obtain - with one
simple lookup with a well-formed key - the most matching entry in a table.

It is not easy to abstract the explanation of this algorithm from the implemen-
tation details which will be shown later. In general, the four types of rules have
been grouped to obtain all the rules applied to outgoing packets (source NAT and
masquerade) and incoming packets (destination NAT and port forwarding): let us
call them the outgoing rules and incoming rules.

Outgoing rules

Source NAT rules specify an internal net and an external IP address. Masquerade
is implemented as a default policy to match all the packets that do not match any
source NAT rule.

Abstracting from the LPM map per-se, and thinking about the longest prefix
match algorithm in general, we can immediately come up with a solution to merge
such rules to apply LPM to both of them at the same time: consider masquerade
as a rule that can be added or removed from a rule table.

In order to be the last match for a packet, this rule should have an internal
net of 0.0.0.0/0, which is very similar to what happens with the default route in
router devices.

Incoming packets

The process is less straightforward when it comes to destination NAT and port
forwarding rules, for two main reasons:

• they have a different amount of configurable fields

• the protocol is optional for port forwarding rules

Also, it is important that more precise rules are matched before more general
ones: for example, if a destination NAT and a port forwarding rule are configured
with the same IP addresses, the port forwarding must have a higher priority, because
it also matches a port number. LPM maps are not capable of considering priorities
by themselves, but it is possible to enforce this policy if we build the map key
accordingly: all the incoming rules must have an IP address configured, some have
a port number and some of them a protocol.
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If the key is built so that the IP address is before the port number, and the
protocol is the last element, we can let the map perform a LPM lookup by setting
all the missing values to zero.

Let us clear this analysis with an example: we have two incoming rules and a
packet:

PKT
srcIp dstIp srcPort dstPort
3.3.3.3 2.2.2.2 1234 80

Incoming Rules
Rule external-ip external-port proto internal-ip internal-port
DNAT 2.2.2.2 - - 10.0.0.1 -

Port Forwarding 2.2.2.2 80 - 10.0.0.1 8080

When the incoming rules are searched with the LPM algorithm the second one
will match, even if the first one would have been a valid match too, because the
second is more specific.

4.2 Implementation
In this Section the key aspects of the implementation of the previously discussed
design are analyzed. Some command line examples of the new API can be found
in Appendix C.

4.2.1 Data structures and eBPF maps
To implement the discussed design in an efficient way, new data structures and
eBPF maps have been introduced to deal with packets in the datapath: they can
be grouped into two main sections, which are those for the natting table and those
for the rules.

The datapath relies on four maps in total:

• outgoing rules map

• incoming rules map

• egress natting table

• ingress natting table

The control plane does not define any additional data structure, since it reads
and updates the maps in the data path.
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4.2.2 Rules
As we anticipated discussing the design, rules are stored in LPM maps, which
guarantee a longest prefix match with one lookup, therefore avoiding a linear search
or more complicated approaches.

LPM maps need a well-formed key, where the first field is an integer that indi-
cates the length in bits of the data that must be considered when matching, and the
other fields are the actual matching data. There are no constraints on the value,
which can contain as many fields as we want.

Without further ado, let us introduce the data structure used for the outgoing
rules:

struct sm_k {
u32 internal_netmask_len ;
__be32 internal_ip ;

};
struct sm_v {

__be32 external_ip ;
uint8_t entry_type ;

};

BPF_F_TABLE (" lpm_trie ", struct sm_k , struct sm_v ,
sm_rules , 1024 , BPF_F_NO_PREALLOC );

The sm_ prefix stands for source NAT and masquerade.
struct sm_k defines the key of the LPM map: the internal_ip is the actual

match field, whereas the internal_netmask_len records how many bits of the
internal_ip must be checked when trying to match a packet.

When rules are injected in the sm_rules map, the internal-net parameter is
parsed to obtain a network address and a network mask, which are the fields in
the key of the map. The entry_type field is set to either SNAT or MASQUERADE,
depending on the type of rule we are injecting.

struct sm_v defines the value returned by a successful lookup: of course there
is the external_ip to use for packet translation, but there is a entry_type field as
well, which will be used to correctly set the originating-rule in the natting table.

Now let us analyze the data structures used to represent incoming rules:

struct dp_k {
u32 mask;
__be32 external_ip ;
__be16 external_port ;
uint8_t proto;

};

58



4 – A new API for pcn-nat

struct dp_v {
__be32 internal_ip ;
__be16 internal_port ;
uint8_t entry_type ;

};
BPF_F_TABLE (" lpm_trie ", struct dp_k , struct dp_v ,

dp_rules , 1024 , BPF_F_NO_PREALLOC );

The dp_ prefix stands for destination NAT and port forwarding.
struct dp_k defines the key of the LPM map. With respect to struct sm_k,

there are three matching fields and mask, which plays the same role as internal_netmask_len.
When an incoming rule is injected in the dp_rules map, one of this scenarios

happen, depending on the type of the rule:

• destination nat

– mask is set to 32 to indicate that the rule is supposed to match only the
first 32 bits of the key - which is, the external_ip

– external_ip is set to the external-ip provided by the rule
– external_port is set to zero
– proto is set to zero
– internal_ip is set to the internal-ip provided by the rule
– internal_port is set to zero
– entry_type is set to DNAT

• port forwarding

– mask is set to 48 to indicate that the rule is supposed to match only the
first 48 bits of the key - which is, the external_ip and the external_port

– external_ip is set to the external-ip provided by the rule
– external_port is set to the external-port provided by the rule
– proto is set to zero
– internal_ip is set to the internal-ip provided by the rule
– internal_port is set to the internal-port provided by the rule
– entry_type is set to PORTFORWARDING

• port forwarding with protocol

– mask is set to 56 to indicate that the rule is supposed to match 56 bits of
the key - which is the whole key, protocol included

– external_ip is set to the external-ip provided by the rule
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– external_port is set to the external-port provided by the rule
– proto is set to the proto provided by the rule
– internal_ip is set to the internal-ip provided by the rule
– internal_port is set to the internal-port provided by the rule
– entry_type is set to PORTFORWARDING

struct dp_v defines the value returned by a successful lookup: as in struct
sm_v there are fields to translate packets - internal_ip and internal_port - and
the field used in the natting table - entry_type.

4.2.3 Natting table
The natting table is used as a cache for already natted packets.
struct st_k {

uint32_t src_ip;
uint32_t dst_ip;
uint16_t src_port ;
uint16_t dst_port ;
uint8_t proto;

};
struct st_v {

uint32_t new_ip;
uint16_t new_port ;
uint8_t originating_rule_type ;

};
BPF_TABLE (" lru_hash ", struct st_k , struct st_v ,

egress_session_table , NAT_MAP_DIM );
BPF_TABLE (" lru_hash ", struct st_k , struct st_v ,

ingress_session_table , NAT_MAP_DIM );

Being defined as hash maps, lookups are faster that those in the rule maps,
because there is no LPM algorithm to perform.

struct st_k defines the direct access key, and it includes all the relevant packet
headers. struct st_v contains the natting information - new_ip and new_port -
and originating_rule_type, which records the type of rule that matched the
packet the entry is associated with.

Two natting tables are defined: one for the incoming packets and one for the
outgoing - ingress_session_table and egress_session_table. This decision
was driven by two main reasons:

• from a performance point of view, it is better to have two maps with respect
to one with a double size
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• only egress_session_table is displayed to the user in the debug view
About the second point, let us explain how the natting table entries are in-

serted: when a packet matches a rule, two entries are created, one for each natting
table. This approach is similar to the forward and reverse entries in the connection
tracking algorithm integration.

• Matching rule from sm_rules

– Entry for egress_session_table, must match outgoing packets
∗ key: the inside packet headers are used, before applying nat
∗ value: natted source IP and port, rule_type either SNAT or MASQUERADE

– Entry for ingress_session_table, must match packets coming back
∗ key: src_ip and src_port are set to the original destination IP and
port, dst_ip and dst_port are set to the natted source IP and port,
proto is the same

∗ value: new_ip and new_port are set to the original source IP and port,
rule_type either SNAT or MASQUERADE

• Matching rule from dp_rules

– Entry for egress_session_table, must match packets going back
∗ key: dst_ip and dst_port are set to the original source IP and port,

src_ip and src_port are set to the natted destination IP and port,
proto is the same

∗ value: new_ip and new_port are set to the original destination IP and
port, rule_type either DNAT or PORTFORWARDING

– Entry for ingress_session_table, must match incoming packets
∗ key: the outside packet headers are used, before applying nat
∗ value: natted destination IP and port, rule_type either DNAT or

PORTFORWARDING

4.2.4 Packet processing
Packet processing is performed in four main steps:

• parsing

• natting table lookup

• rule table lookup

• translation
Figure 4.1 reports the logical sequence of operations performed on any packet

that enters pcn-nat.
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Figure 4.1: Packet processing in pcn-nat

Parsing

During this step the raw packet is analyzed and the headers are extracted for easier
handling in the subsequent steps.

The source and destination IP addresses and the Layer 4 protocol are read from
the IP header, and the port numbers are read from the Layer 4 header, be it TCP
or UDP. In case of ICMP, the source and destination ports are set to the ICMP ID.
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Natting table lookup

The packet headers gathered in the previous step are used to build the key with
which a lookup in the natting table is performed.

If the packet is coming from the outside the ingress_session_table is used,
otherwise the egress_session_table.

This is a direct access lookup, which can either succeed or fail: if it succeeds,
natting information is extracted by the returned value and the next step is skipped.

Rule table lookup

Since there is no entry in the natting tables for this packet yet, a rule lookup must
be performed.

If the packet is coming from the inside, the sm_rules table is used. The actual
lookup is performed with a key with internal_ip set to the source IP address of the
packet, and internal_netmask_len set to 32, to indicate that we want to match
the whole IP address. If there is no entry that completely matches the IP address,
the LPM algorithm will look for entries with a shorter internal_netmask_len. If
no entry matches, the lookup fails, otherwise the value corresponding to the selected
entry is returned.

If the packet is coming from the outside, the dp_rules table is used. The lookup
is performed with a key with mask set to 56, because we want to obtain the rule
that matches all the key parameters, if any. external_ip and external_port are
set to the destination IP address and port number of the packet, and proto is set
to the protocol of the packet. Since we perform the lookup with mask = 56 and
keys in the map can have mask set to 32, 48 or 56, we can be sure that priority is
maintained based on the specificity of the rule, and that even if no 56-bit mask is
matched, we match other fallback entries, if any.

If no rule was found that matches the current packet, the next step is skipped and
packet is forwarded to the opposite interface as-is, otherwise natting information is
extracted from the lookup value.

Natting table update and translation

This step is executed only if either a natting table entry or a rule table entry
matched the current packet.

If there is no natting table entry yet, the two natting entries are injected in the
natting tables as previously described.

In any case, the natting information we gathered in the previous steps is used
to modify the packet headers - both IP and Layer 4 or ICMP. The packet is then
forwarded to the opposite interface.
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4.2.5 eBPF-related notes
On a eBPF level, there are several differences in pcn-nat with respect to the NAT
implementation of pcn-iptables.

Number of injectable rules

As we already discussed, the linear-search rule matching algorithm implemented
in pcn-iptables has been replaced by a faster and easier direct-access lookup in an
LPM map. This choice not only brings a performance improvement, but also avoids
one limitation of eBPF, which is loop unrolling.

Without loop unrolling, the number of possible rules is virtually unlimited,
bounded solely by the maximum size of maps in the Linux kernel.

One eBPF datapath

Moving to a direct lookup also made possible to write the entire NAT functionality
in one datapath, instead of using three different submodules, which means that
no tail call is needed, and this is another improvement in performance, because
as much as efficient tail calls may be, they still add some overhead to the packet
processing.

No datapath reloading

This new implementation of pcn-nat never requires the datapath to be reloaded
and injected in the kernel. In pcn-iptables this happened every time a new rule
was inserted, because the _RULES constant had to be updated in order to provide
a functional loop unrolling.

In pcn-nat, rules are simply injected to the datapath maps from the control
plane, without altering the code of the program in any way.

4.3 Open issues
With respect to pcn-iptables, where most of the issues derived from using the
connection tracking table instead of having different data structure, this implemen-
tation of pcn-nat, considered the design that we wanted to achieve, has only one
problem left, which is the same as in pcn-iptables: the port selection policy.

The analysis of the problem is not reported here since it can be found in Sec-
tion 3.3.2.
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Results

Both pcn-iptables and pcn-nat are designed to be very efficient, at least on paper.
Performance tests have been executed to measure how much better these solutions
are with respect to iptables and netfilter in general.

For each service three types of tests have been run: throughput tests, latency
tests and stress tests. Each test has been executed comparing two different packet
processing techniques: TC and XDP.

Introduction to XDP

XDP - eXpress Data Path - is a programmable, high performance packet processor
in the Linux networking data path [16] [17].

It provides an additional hook to be used with eBPF programs to intercept
packets in the driver space of the network adapter, before they are manipulated by
the Linux kernel.

The main advantage of this early processing is that it avoids the overhead and
the memory consumption added by the kernel to create the socket buffer - namely
the skb data structure - which wraps the packet for standard Linux processing in
TC mode.

XDP runs in the lowest layer in the packet processing stack, as soon as the NIC
driver realizes a packet has arrived: one of the main use cases is pre-stack processing
for filtering or DDOS mitigation.

It is important to mark the difference between XDP and kernel bypass: XDP
does not exclude the TCP/IP stack in the Linux kernel as it is designed to perform a
preliminary packet processing to achieve better performance. Kernel bypass ignores
the TCP/IP stack and performs all the packet processing on its own.

XDP typically provides a noticeable boost in performance in any use case, in-
cluded the tests we are about to present. An important thing to notice is that
iptables cannot run on XDP, whereas eBPF programs can.

Although this may seem like a biased comparison, it was performed anyway to
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Figure 5.1: Overview of the XDP processing architecture

stress the fact that Polycube services offer this additional possibility while iptables
does not.

5.1 Test configuration
To perform the presented tests two different machines were used, which we will
refer with the following names:

• Server: the machine that runs Polycube. We will also refer to this machine as
the Device Under Testing (DUT)

• Client: the machine from which tests are executed, also called the Generator
(GEN)

Server machine

The server machine is a HP EliteDesk 800 G1 SFF.

• OS: Linux 16.04.5 LTS

• Kernel: 4.18

• CPU: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

• RAM: 16GB DIMM DDR3 Synchronous 1600 MHz
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• NICs: two Intel 10-Gigabit X540-AT2

• Storage: Samsung SSD 850, 256GB

Client machine

The client machine is also a HP EliteDesk 800 G1 SFF.

• OS: Linux 16.04.5 LTS

• Kernel: 4.15

• CPU: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

• RAM: 32GB DIMM DDR3 Synchronous 1600 MHz

• NICs: two Intel 10-Gigabit X540-AT2

• Storage: Seagate ST1000DM003-1SB1, 1TB

5.2 Throughput tests
Raw throughput tests were performed using the pktgen tool [18]. pktgen is a soft-
ware based traffic generator powered by the DPDK fast packet processing frame-
work.

This tool is capable of generating 10Gbit wire rate traffic with a minimum
frame size of 64 bytes and it can act simultaneously as transmitter and receiver,
therefore measuring how much traffic is correctly processed by the Device Under
Testing - DUT - and sent back to receiving interface.

It can generate sequences of packets iterating over ranges of source and des-
tination MAC addresses, IP addresses and Layer 4 port numbers, simulating an
arbitrary number of traffic flows.

The configuration for a test execution can be provided by LUA scripts, which
configure the packet rate, the size of the frame, the used addresses and interfaces,
and the duration of the test.

The final results of the tests were obtained following the guidelines in RFC 2544 -
Benchmarking Methodology for Network Interconnect Devices [19]: the throughput,
measured in processed mega packets per second (Mpps), is considered valid when
the percentage of lost packets is below 0.1%.

These tests are designed to measure performance in the worst case scenario:
the selected frame size is 64 bytes, which maximizes the number of individual
packets that must be processed by the DUT.

To test single-core and multi-core performance, pcn-iptables and pcn-nat were
tested using 1, 128, 256, 1024, 2048, 4096 and 8192 traffic flows - which has been
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possible by properly modifying the LUA configuration scripts: the 1-flow test mea-
sures the single-core performance, exploiting the kernel packet allocation algorithm
which assigns each packet to one CPU core according to a hash function computed
over the packet headers. The other packet flows test the multi-core performance
and the capability of the eBPF modules to handle different numbers of simultaneous
connections in their internal data structures.

To adhere to the guidelines of RFC 2544 the LUA script acts as following: it
starts sending 64-bytes packets to 100% of the line rate and measures the packet
loss. If this is greater than 0.1%, it halves the burst rate to 50% and repeats the
test. If the packet loss is greater than 0.1% it halves the rate to 25%, otherwise it
increases the rate to 75% and so on. The next rate is decided using a binary search
algorithm which guarantees convergence in a finite number of steps.

Each iteration sends packet bursts of 10 seconds from the GEN TX interface
and receives a percentage of them on the GEN RX interface.

The physical configuration is displayed in Figure 5.2.

Figure 5.2: Configuration for the throughput tests

All the physical interfaces are 10Gbit NICs as stated in the test configurarion
description in Section 5.1.

5.2.1 Testing pcn-iptables
pcn-iptables was tested to obtain an absolute value for the raw throughput and a
comparison with the netfilter iptables. The pcn-iptables service on the DUT was
configured to receive traffic from the DUT RX interface, process it and send it back
on the DUT TX interface. Only two rules were set in iptables and pcn-iptables: one
to enable packet forwarding and one to enable masquerade NAT on the outgoing
interface. These rules were added using the following commands:
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iptables -P FORWARD ACCEPT
iptables -t nat -A POSTROUTING -o DUT_TX -j MASQUERADE

Please note that these tests are not designed to measure the rule matching
algorithm performance but only how the services behave with different numbers of
connections. A logical view of the setup is reported in Figure 5.3.

Figure 5.3: Comparison between iptables and pcn-iptables: setup

The test results are shown in the following Figure 5.4.

Figure 5.4: Comparison between iptables and pcn-iptables: results
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pcn-iptables has worse performance with respect to iptables for any packet flow
number. To understand why it is important to recall the issues presented in Sec-
tion 3.3: the whole integrated connection tracking algorithm is complex and requires
several map lookups to perform a complete NAT translation. The NAT module
consists of three submodules linked by tail calls, which add an overhead, and the
possible advantage of an optimized linear search for the rule matching algorithm is
minimized by the fact that only one rule was set to perform these tests.

It is much likely that the design discussed in Section 3.1.1 is not the best solution
to achieve NAT in pcn-iptables, and this causes the results to be sub-optimal.

5.2.2 Testing pcn-nat
pcn-nat is involved in two sets of tests: one considers the NAT module alone, while
the other tries to mimic the minimum configuration necessary to achieve what
iptables can do using a chain of Polycube services composed by a router and a
NAT. iptables is always considered as a yardstick to compare our performance with
real data. In all the reported tests the only injected rule is a masquerade rule that
applies to all the traffic going out of the DUT TX interface. The command used
to inject such rule is the following:

polycubectl nat1 rule masquerade enable

Only pcn-nat

The configuration deployed to test pcn-nat is shown in Figure 5.5, and the results
are shown in Figure 5.6.

We start to notice some major improvement in performance: in this case the
whole DUT is dedicated to execute polycubed and one instance of pcn-nat, which
acts as a bridge between the two interfaces and translates whatever packet comes
from the DUT RX interface and sends it out of the DUT TX interface.

pcn-nat in TC mode can process twice as much traffic as iptables, and the
difference is just so much bigger if we look at what the NAT module can do when
runned in XDP mode, where we reach a peak performance of ten millions packets
per second.

This result was largely expected: pcn-nat is a module that only performs natting,
it has no other task except for it, whereas iptables is bound to execute all its internal
steps even if the actual task is to perform a NAT translation. This proves once
again the advantage in using a modular, extensible architecture with respect to one
monolithic software.

pcn-nat and pcn-router

This configuration implements the minimum set of features that are required to
properly forward and apply NAT to a stream of packets, and it is intended to be
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Figure 5.5: pcn-nat throughput test: configuration

Figure 5.6: pcn-nat throughput test: results
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compared with iptables, which performs forwarding in addition to natting. Let us
say this is a more fair comparison with respect to the bare NAT module in the
previous section.

Packets sent by the GEN TX interface will reach the DUT RX interface, pass
through the router, then the NAT, which will finally change the packet headers to
perform masquerade and redirect the packet on the DUT TX interface.

The setup needed to perform these tests is reported in the following Figure 5.7.

Figure 5.7: nat and router throughput test: configuration

As we can see in the following Figure 5.8, performance is still on our side.

Figure 5.8: nat and router throughput test: results

The results are slightly worse with respect to the only NAT case, but this is
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a direct consequence of the fact that each packet has to pass through two eBPF
programs before going out of the DUT TX interface.

We can observe once again how much using XDP instead of TC impacts the
overall performance of the system: the fact that iptables and netfilter-based pro-
grams in general cannot access such technology is an important advantage of using
eBPF to write packet processing programs.

5.3 Stress tests
The stress test acts exactly like the throughput tests presented in Section 5.2 but
with one million different flows. Such a high number of flows can never be
tracked by the eBPF modules because their internal maps have a much lower
number of entries, therefore this test measures the drop in performance which
happens when the caching mechanisms - namely the connection tracking table for
pcn-iptables and the natting table for pcn-nat - are never used and the programs
must resort to a new rule lookup for any new flow.

The configurations used to perform these tests are the same reported in Fig-
ure 5.3, Figure 5.5, and Figure 5.7 for pcn-iptables, pcn-nat and pcn-nat plus
pcn-router respectively.

The compared results for the configurations are reported in Figure 5.9.

Figure 5.9: Stress test: result

In this test we can see a comeback for pcn-iptables, which outperforms iptables
by roughly a factor of 10: in fact, the overall throughput of iptables is 0.14Mpps,
whereas pcn-iptables manages to process 1.05Mpps. This value is just slightly
less to the one obtained in the throughput tests for 8192 flows - 1.17Mpps - which
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proves how the eBPF solution maintains a more steady behaviour when the number
of flows increases.

As far as the other Polycube modules are concerned, the results are aligned to
what we were expecting: pcn-nat performs better than the chain of pcn-nat and
pcn-router, and the XDP versions outperform the TC versions in both cases.

Comparing these results to those in Figure 5.6 we can also notice that pcn-nat in
XDP mode is barely affected by such a high number of flows, as it keeps processing
up to 9Mpps.

5.4 Latency tests
Latency tests were performed using the MoonGen tool [20]. MoonGen is very
similar to pktgen: they both rely on DPDK to generate up to 10Gbit wire rate traffic
and can be configured with LUA scripts, but MoonGen also provides hardware
timestamping capabilities on supported NICs, which allows to measure latency of
a packet transmission on a sub-microsecond scale.

With respect to the throughput tests in Section 5.2, latency tests have been
performed to measure the worst case scenario, that is single-core performance.

Being equivalent in nature although different in usage, the base configuration for
the latency tests is the same as the one for the throughput tests shown in Figure
5.2, as well as the standard test configurations.

One new configuration has been deployed to provide a yardstick with respect to
the latency of processing using a dummy eBPF program, Forward. This program
implements the minimum functionalities to perform packet forwarding and it is
only three lines long as reported in the following snippet.

static int handle_rx (struct CTXTYPE *ctx ,
struct pkt_metadata *md) {

uint8_t out_port = 0;
if (md -> in_port == 0) out_port = 1;
return pcn_pkt_redirect (ctx , md , out_port );

}

This program suffers from no memory lookup overhead or complex operations
and it is useful to compare the latency of a complex service with that of the most
basic one.

Since we wanted to measure the latency excluding other delays such as buffering
as much as possible, MoonGen was configured to send bursts of UDP packets at
100Mbps with respect to the theoretical 10Gbps allowed by the NICs.

A compared chart of the services configurations is reported in Figure 5.10.
Consider that with this test we are measuring how much a program execution

lasts, but we are dealing with nanoseconds, therefore some fluctuation is inevitable.
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In any case, this test is useful to demonstrate that the actual overhead added by
executing an eBPF solution instead of a Netfilter one is basically negligible.

Figure 5.10: Latency test: result
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Conclusion

The subject of this thesis has been challenging for a number of reasons.
An operation so trivial as network address translation may seem presents many

details and corner cases which were difficult to anticipate during the design of the
proposed solutions.

The work on pcn-iptables required our solution to be seamlessly integrated into
an already existing complex algorithm. This is the first conclusion we can draw: to
design an implementation based on the connection tracking table was probably not
the best choice. A viable solution would be to prefer an addition with respect to
an integration, which means implementing NAT as an individual step, relying on
its own data structures and algorithms, that can be enabled or disabled at will to
guarantee the best performance in any situation.

As we saw in the results, the efficiency of this design choice proves that another
way must be found: the average performance is lower than iptables, which is why
this implementation will probably never see the light of the day. However, from a
research point of view, the difficulties we had to face have been unvaluable.

In fact, the know-how and the experience gathered about network address trans-
lation during the development and testing stages of pcn-iptables proved fundamen-
tal when the discussion about pcn-nat first began: we knew what was working and
what was not, and we built a tailored, easy and fast API, designed with efficiency
in mind.

This is what made the outstanding results we previously showed possible: al-
though we trimmed some of the flexibility of iptables here and there, the resulting
service is powerful enough to serve most natting necessities, blazingly fast.

Besides the need to improve pcn-iptables, it is also key that a more effective
solution is found to manage Layer 4 port numbers. This is part of a more general
lack of integration between the Linux kernel and eBPF, which is bound to use
predefined helper functions. These helpers have to be built in the kernel itself,
which makes their addition and update slow and difficult.

Following this approach at least two new helpers should be created: the first to
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obtain a valid port number, and the second one to reserve it when it is being used
by the eBPF program.

In conclusion, the main goal this thesis achieved is to prove that network ad-
dress translation in eBPF is not only possible, but also efficient and effective. It
also proved that the Polycube framework, although in its early stages, is powerful
enough to replace netfilter in many common use cases, guaranteeing scalability,
performance and unparalleled ease of configuration.

The journey towards a new Linux networking has begun.
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NAT configuration with
iptables

A.1 Source-NAT
A SNAT rule in iptables requires the outside address to be explicitly set in the
command.

It is possible to specify address pools or ranges both for the inside and outside
addresses. For pools the CIDR notation is used. For ranges, the first and last
address of the range are specified.

iptables -t nat -A POSTROUTING
-o eth0 -s 192.168.0.1-192.168.1.5
-j SNAT --to-source 2.2.2.1-2.2.2.5

In case the number of inside addresses is greater than the number of outside
addresses, the source port number has to be changed as well, to allow for multi-
plexing.

For example, consider the case where we have 3 routable addresses and an inside
network with 3 IP subnets. We can specify a different outside address for each of
them.

iptables -t nat -A POSTROUTING
-s 10.0.2.0/24
-j SNAT --to-source 2.2.2.2

iptables -t nat -A POSTROUTING
-s 10.0.3.0/24
-j SNAT --to-source 2.2.2.3

iptables -t nat -A POSTROUTING
-s 10.0.4.0/24
-j SNAT --to-source 2.2.2.4
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Figure A.1: Three networks with 3 publicly routable addresses

A.2 Masquerade
The syntax and the matching rule format is the same as SNAT, so we can decide
to masquerade only a subset of addresses and specify static mappings for another
subset.

iptables -t nat -A POSTROUTING
-o eth0
-j MASQUERADE

A.3 Destination NAT
In the following example, all packets that reach interface eth0 match the rule, but
it is possible to specify IP addresses and other parameters as well [15].

iptables -t nat -A PREROUTING
-i eth0
-j DNAT --to-destination 10.0.0.1

Another example, to perform port forwarding.

iptables -t nat -A PREROUTING
-p tcp -d 10.10.20.99 --dport 80
-j DNAT --to-destination 10.10.14.2

A.4 Redirect
iptables -t nat -A PREROUTING
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-i eth0 -p tcp --dport 80
-j REDIRECT --to-ports 8080 --to-destination 10.0.0.1
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Sample pcn-iptables rules

B.1 Source NAT
Source NAT configuration in pcn-iptables allows to specify all the parameters that
appear in the following command.

iptables -t nat -A POSTROUTING
-o <interface>
-s <ip address> -d <ip address>
--sport <port number> --dport <port number>
-p <protocol>
-j SNAT --to-source <ip>

B.1.1 Output interface and source IP address
iptables -t nat -A POSTROUTING

-o <interface> -s <ip address>
-j SNAT --to-source <ip>

B.1.2 Output interface
This rule is equivalent to a masquerade rule with a static IP address.

iptables -t nat -A POSTROUTING
-o eth0
-j SNAT --to-source 130.192.1.1

B.1.3 One to one mapping
iptables -t nat -A POSTROUTING

-s 192.168.1.1
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-j SNAT --to-source 130.192.1.1

B.1.4 Source IP address with CIDR notation
iptables -t nat -A POSTROUTING

-o eth0 -s 192.168.1.0/24
-j SNAT --to-source 130.192.1.1

B.2 Destination NAT
Destination NAT configuration in pcn-iptables allows to specify all the parameters
that appear in the following command.

iptables -t nat -A PREROUTING
-i <interface>
-s <ip address> -d <ip address>
--sport <port number> --dport <port number>
-p <protocol>
-j DNAT --to-destination <ip>

B.2.1 Input interface and destination IP address
iptables -t nat -A POSTROUTING

-i <interface> -d <ip address>
-j DNAT --to-destination <ip>

B.2.2 One to one natting
iptables -t nat -A PREROUTING

-i eth0 -d 130.192.1.1
-j DNAT --to-destination 192.168.1.1

B.2.3 Protocol, destination IP address and destination port
iptables -t nat -A PREROUTING

-p tcp -d 130.192.1.1 --dport 80
-j DNAT --to-destination 192.168.1.1

B.2.4 Protocol, destination IP address and destination port
with port redirection

iptables -t nat -A PREROUTING
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-p tcp -d 130.192.1.1 --dport 80
-j DNAT --to-destination 192.168.1.1 --to-dport 8080

B.3 Masquerade
Masquerade configuration in pcn-iptables allows to specify all the parameters that
appear in the following command.

iptables -t nat -A POSTROUTING
-o <interface>
-s <ip address> -d <ip address>
--sport <port number> --dport <port number>
-p <protocol>
-j MASQUERADE

B.3.1 Output interface
iptables -t nat -A POSTROUTING

-o <interface>
-j MASQUERADE

B.3.2 Output interface and source IP address with CIDR
notation

iptables -t nat -A POSTROUTING
-o eth0 -s 192.168.1.0/24
-j MASQUERADE
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Appendix C

Sample pcn-nat rules

C.1 Source NAT
Source NAT configuration in pcn-nat allows to specify all the parameters that
appear in the following command.

polycubectl nat1 rule snat append
internal-net=10.0.0.0/24 external-ip=130.192.1.1

C.2 Destination NAT
Destination NAT configuration in pcn-nat allows to specify all the parameters that
appear in the following command.

polycubectl nat1 rule dnat append
external-ip=130.192.1.1 internal-ip=10.0.0.1

C.3 Masquerade
Masquerade in pcn-nat can be enabled and disabled with the following commands.

polycubect nat1 rule masquerade enable

C.4 Port Forwarding
Port forwarding configuration in pcn-nat allows to specify all the parameters that
appear in the following command.

polycubectl nat1 rule port-forwarding append
external-ip=130.192.1.1 external-port=80
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internal-ip=10.0.0.1 internal-port=8080
proto=tcp

C.5 Deleting rules
It is possible to delete all rules together, all the rules of the same type together, or
single rules.
To delete all rules:

polycubectl nat1 rule del

To delete all rules of a type (SNAT in the example):

polycubectl nat1 rule snat del

To delete a single rule (an SNAT rule in the example):

polycubectl nat1 rule snat del RULE_ID
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