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Abstract

The thesis will discuss the implementation of the NVIDIA Deep Learning Accelerator (NVDLA)

with FPGA.

The NVDLA is a special purpose accelerator of neural network architectures for deep learning

inference, developed by NVIDIA, and whose code has been released by the developers for free.

First of all, an overview about deep learning and convolutional neural networks will be given.

Then, different categories of accelerators will be introduced, providing examples of applica-

tions belonging to each of these categories, and analyzing their performances and applicability

in the automotive field (GPUs, manycore architectures, neuromorphic devices and specific

purpose accelerators will be considered).

After having considered similarities and differences among the different accelerators, the

NVDLA system will be described, highlighting its modularity and configurability. Each single

block will be explained and an overview will be given about how the system works. Then, the

FPGA chosen by Magneti Marelli for the purpose of this thesis will be introduced: the Zynq

Ultrascale+, provided by Xilinx. At this point the integration between the NVDLA and the

FPGA will be described.

In the second part of the thesis, the implementation of the NVDLA on the FPGA will be

analyzed step by step: first of all, an introduction to the tools used for the thesis will be done,

and then both hardware and software implementations will be described. An analysis will be

done about the resource utilization, identifying the percentage of resources of the FPGA used

by the smallest version of the NVDLA. With this architecture, a very detailed timing analysis

will also be performed, taking into account the critical path and the timing closure. Then,

the functioning of the system will be verified at different frequencies: the performances will

be evaluated, verifying the behavior of the NVDLA considering the different blocks separately

and then running a complete neural network architecture, the AlexNet. A comparison with

other architectures will be performed.

Finally, different versions of the NVDLA will be analyzed, obtained increasing the size of the

different engines, and observing the rise of the FPGA’s resource utilization. A complete anal-

ysis about the power consumption will be carried out to better understand the performances

and to compare the different versions.
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CHAPTER 1

Introduction

In the last period, most of the car makers are moving toward a new direction: the au-

tonomous vehicle. Going on with time, this is getting closer to reality: a lot of car makers

are already testing their own autonomous vehicles.

One of the most important aspects related to the autonomous driving technology is about

the sensor part, which is fundamental to recognize the different ”obstacles” that can be found

when the vehicle is moving. From this point of view, artificial intelligence and deep learning

are being applied to the automotive field in an increasing way.

The idea of ”simulating” the human brain, with both digital (in case of general and specific

purpose processors) and analog (in case of neuromorphic architectures) technologies is not a

really new idea. What is continuously growing is the type of technology that is used, and the

complexity of the algorithm associated to these neural networks. For this reason, a lot of

processor developers are moving toward this direction. Someone is trying to accelerate neural

networks by means of general purpose processors, but nowadays most of the companies are

working on new specific purpose architectures, that are only able to work on these networks.

In this context, the NVIDIA Deep Learning Accelerator (NVDLA) is one of the nov-

elties introduced by NVIDIA. It is an architecture built for inference, so it can reach very

good performances because it is a specific purpose accelerator, that can only perform these

kinds of operations. Moreover, the NVDLA is modular, that means that some blocks can

be inserted or eliminated, and configurable, so the different engines can be characterized by

different sizes, making the architecture adaptable for various scopes.

Another important point is to choose the system that better fits the architecture: the pur-

pose of this thesis is to verify how the FPGA (Field Programmable Gate Array) can work

in terms of performance and power consumption.

For this reason, the thesis will focus on the FPGA implementation of the NVDLA accelerator,

and on its performance analysis.
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Introduction 2

The RTL description of the accelerator, at least for some versions of the NVDLA, has been

released for free by NVIDIA, so the Verilog code is completely available.

Thanks to the availability of the code, a tool, provided by Xilinx, that is the vendor of the

Zynq Ultrascale+ FPGA that will be used for this thesis, can be used. The name of this

tool is Vivado. Its output generates a complete hardware description of the system that

can be used by another tool, Petalinux, that is responsible of the software implementation.

To observe the change in performance, different versions of the NVDLA will be considered,

working at different frequencies.



CHAPTER 2

State of art

After introducing definitions and characteristics about the neural networks, this chapter de-

scribes some of the architectures available on the market which are able to accelerate neural

networks. An overview of the different categories of accelerators will be given, providing ex-

amples of applications belonging to each of these categories and analyzing performances and

applicability in the automotive field.

2.1 Overview

Neural networks play a critical role in realizing the future of autonomous driving, in par-

ticular for object detection and classification. As the autonomous driving level increases,

there is the need for more complex Neural Networks, able to perform their operations with a

very high accuracy and precision, besides the fact that the algorithms must be very fast.

For this reason, using good architectures able to support these neural networks is fundamen-

tal, and providing a scouting of them can be useful in order to analyze all possible solutions

and to understand which one can be the best.

After a detailed scouting of all possible architectures which are able to satisfy these needs,

two big categories have been identified:

• General purpose architectures, which have not been designed specifically to run a neural

network, but they are characterized by a computational power that allows to support

a huge number of operations;

• Specific purpose architectures, which can only run a neural network.

Of course the second category has a bigger efficiency with respect to the first one, but the

type of operations it can execute is limited. Among these architectures, some subcategories

will be considered in the following sections in order to better explain their characteristics.

3
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• For the general purpose accelerators, two categories have been provided: manycore

architectures and GPUs;

• For the special purpose accelerators, a focus has been made on the neuromorphic ar-

chitectures and on the inference accelerators.

2.2 A glance at neural networks development

Neural networks are a branch of machine learning that is inspired to the way the brain

is working. The central computational unit is represented by the neurons, which are ”simu-

lated” with some computational units. Neurons are organized in layers, and the connections

between a layer and the following one simulate the synapses, that are the elements through

which the informations move from a neuron to another one.

A standard architecture can be composed by a number of input units, a number of output

units and, optionally, some hidden layers. In figure 2.1 it is possible to see the difference

between a single-layer (2.1a) and a multi-layer (2.1b) network: the second one contains the

hidden layers.

(a) (b)

Figure 2.1: NN Single and multi-layer architecture: the one on the right is called 3-4-2

network, due to the number of neurons per each layer

Neurons store the information, while synapses, which are the connections, are charac-

terized by weights. In figure 2.1, which represents a fully connected network, where

each input of the previous layer is connected to all the outputs of the following layer, the

information at the output is given by the weighted sum of the inputs:

y =
∑n−1

i=0 wixi

Moreover, in order to limit the value of the output of each neuron, an activation function

is applied:

s = φ(y + b)
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where b is a bias.

During the learning process, the desired output, which is already known in advance, is speci-

fied for a given input. The network, on its own side, calculates the output based on its current

weights. These weights, initially, are random. The difference between the desired and the

computed output represents the error of the network: thanks to this error, the weights are

changed properly of a quantity ∆w, which depends on the learning rate.

Of course, this technique can be applied to the single-layer network: multi-layers networks

have the hidden layers where the output is unknown. In this case, another rule is considered:

the Backpropagation. it is an algorithm characterized by different steps.

At the beginning, the error term is computed for all outputs, so at this step the computation

is the same of the one performed with the single layer networks; then, from the output layer

the error is propagated back to the previous layer and the weights between the two layers

are updated, finally, this passage is repeated for each layer until arriving to the inputs of the

neural networks

Of course, with this learning method, as the number of layers increases, the complexity of the

fully connected exploits at a certain point, so it is impossible to complete the computation.

In order to solve this problem, locally connected units have been introduced, increasing the

number of layer: in this case we can talk about Deep Learning.

2.2.1 Convolutional neural networks

Convolutional neural networks (CNN) are an application of deep learning, used in par-

ticular for image detection.

Images can be characterized by a very high dimension, so applying a fully connected neural

network can be very difficult from the computational point of view. The idea is to ”divide”

the image in different parts and extract local features, that are unified at the end of the

process.

CNNs can be characterized mainly by three types of layers: convolution, non-linear (activa-

tion) and pooling.

• The convolutional layer is characterized by nothing else that a matrix multiplication

between the the input image and a weight matrix called kernel. A kernel is a sort of

filter that ”activates” when it sees some specific type of feature at some spatial position

in the input. In general, there are different levels of kernels for each convolutional layer

[Figure 2.2].
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Figure 2.2: Convolutional layer operation

• The non-linear layer increases the non linearity if the architecture. Different functions

can be applied, the most important one is the ReLU [Figure 2.3], that has the following

equation:

(
y = 0 for x < 0

y = x for x ≥ 0

)

Figure 2.3: ReLU activation function

• The pooling layer is used to reduce the size of the image. The image is divided in

windows, and for each of them just one feature is chosen. In the case of the max

pooling [Figure 2.4] the maximum value of the features is chosen, while in the case

of the average pooling the average value is computed among all the features of the

window.
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Figure 2.4: Max pooling

In figure 2.5 it is possible to observe the architectures of one of the most important CNNs,

the AlexNet.

Figure 2.5: AlexNet architecture

The AlexNet architecture was developed by Alex Krizhevsky in 2012 when it won the

ImageNet Large Scale Visual Recognition Challenge. It has five convolutional layers and

three fully connected layers and an activation function is applied after each layer. The

network has 62.3 million parameters and the image size is 224x224.

2.3 Manycore architectures

A Manycore processor architecture is characterized by the presence of a different number of

processor cores (from tens up to thousands). They are different from multicore processors,

because these last type of processors are characterized by a higher level of parallelism, but

they pay in latency and in performance of a single thread.

Communication between the different cores of the processor is obviously the most important

issue when dealing with these kinds of architectures. The type of communication which is

used in this case is the Network on Chip [Figure 2.6]. This communication protocol is based

on some links that physically connect the nodes and actually implement communication,

the router which implements the communication protocol (by forwarding packets that are

received from some cores to the destination nodes) and Network Interface, which makes the

logic connections between the IP cores and the network [1].
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Figure 2.6: Network on chip structure

Manycore processors are general purpose architectures which can be used in a lot of

different fields, including automotive. In particular, the high level of parallelism that they

provide can give the possibility of accelerating a lot of processes in order to have higher

performances. In this context, training a neural network can be computationally intensive

and requires a lot of time in case of a limited number of resources. That is the reason why

Manycore processors could be used to accelerate neural networks.

2.3.1 Kalray architecture

A good example of manycore processor is represented by the Kalray MPPA-256 family. There

are actually three generations of MPPA-256 processors: Andey, Bostan and Coolidge (which

is scheduled for the 2018). The Bostan processor, which has been released at the end of

2015, is a 64-bit architecture built with a 28nm technology. It is characterized by sixteen

computer clusters plus other two input/output clusters. The I/O cluster are characterized by

two quad-cores CPU, which can access directly an external DDR memory. Each computer

cluster, instead, has 16 VLIW cores plus one system cores. The total number of cores is 288

[Figure 2.7]

Figure 2.7: Kalray MPPA-256 architecture [25]
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The working frequency of the processor is from 400MHz to 600MHz and it can execute

about 600 GFLOPS operations at the maximum frequency, with a power consumption up to

25W. About a single cluster, it is characterized by a memory bandwidth of 77GB/s.

Applications in deep learning and neural networks

MPPA architecture is well suited for Deep Learning. In particular, due to the big number of

cores, training can be performed and inference can be accelerated once the model has been

trained.

Moreover, there is a specific tool, called KaNN which is able to take and port any standard

deep-learning algorithm (like GoogLeNet, SqueezeNet and others) in Kalrays MPPA proces-

sor. Kalray KaNN tool interprets Berkeley Caffe files of trained networks and generates code.

The example of the Kalray can be considered in order to understand how the manycore pro-

cessor architectures can play a very important role in the acceleration of neural networks. As

it can be seen in Figure 2.8, a CNN layer can be spread among the different clusters, having

a huge decrease in latency

Figure 2.8: Distribution of CNN in the different cores of the Kalray MPPA2-Bostan processor

Applications in automotive

Deep learning and neural network possible utilization is one of the reasons why the MPPA

processor can find some applications in the automotive field, in particular for the development

of the autonomous vehicle. The MPPA processor supports ASIL B/C and fulfils the ISO

26262 standard.
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2.4 GPU

The Graphic Processing Unit (GPU) was initially born as a processor used to manage

the performance of video and graphics, present in computers but not only there. Nowadays,

GPU has reached a power in performances that is so high that is used also for much more

difficult computational tasks.

GPUs, as Manycores, are strongly parallel and they are general purpose architectures: the

difference is that in this case the cores are smaller but they are much more efficient with

respect to the ones present in the manycore architecture. With a manycore processor, each

core does its own thing: individual tasks can be run on all of them. In a GPU, instead,

there are hundreds or thousands of cores running hundreds or thousands of threads at once.

However, there is one important limitation: GPU architecture has to run the same code on

all the threads at once.

As said before, nowadays GPU can be used for High Performance Computing and also for

Artificial Intelligence, because it is able to perform very complex computations.

Due to the huge amount of cores, both training and inference can be performed using GPU.

This can be done with the help of a software environment, called CUDA (Compute Unified

Device Architecture). CUDA is a parallel computing platform and programming model

invented by NVIDIA, that provides set of extensions to standard programming languages,

like C, that enables implementation of parallel algorithms.

On a GPU a kind of parallelization is deployed, called topological node parallelization.

This is done using CUDA: in this approach only one copy of the neural network is instantiated.

Each thread on the GPU behaves like a single neuron and executes independently. To speed

up the implementation, the training weights and input data are stored in a one dimensional

array aligned with the host. [2].

2.4.1 NVIDIA VOLTA

A good example that is useful to understand the structure and the application of the GPU for

the acceleration of neural network is the new architecture that has been released by NVIDIA.

The VOLTA GPU is incorporated in the TESLA V100 accelerator by NVIDIA [Figure

2.9], and it is the first GPU that has been specifically designed to provide a the possibility of

executing a huge number of operations in order to train a neural network in a very efficient

way, due to the presence of some Tensor cores which are able to solve matrix multiplications

in a very efficient way.
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Figure 2.9: TESLA V100 Module with the VOLTA GV100 GPU [26]

The VOLTA GPU is characterized by six GPU Processing Clusters, each of them

with seven Texture Processing Clusters. For each of this cluster, there are two streaming

multiprocessors.

As it is possible to see in Figure 2.10, each multiprocessor has 32 cores executing floating

point operations with 64 bits, and 64 cores executing floating point operations with 32 bits,

besides 64 INT32 cores. But the real innovation with respect to the previous GPUs, as said

before, is the presence of eight Tensor cores for each multiprocessor, so that the total number

of cores of the VOLTA GPU is almost 700.
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Figure 2.10: VOLTA GPU: streaming multiprocessor [26]

Applications in Neural Networks: Tensor Cores

The tensor cores are able to execute 64 Floating Point Multiply and Accumulate oper-

ations for each clock cycle, thus reaching a very high performance (about 125 TFLOPs in

these tensor cores). Each Tensor Core operates on a 4x4 matrix and performs the following

operation:

D = A×B + C

The multiplication is a FP16 operation (A and B are matrices containing FP16 values),
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while the accumulation can be a FP32 or a FP16 operation. The resulting matrix D has

FP32 values [Figure 2.11]. In practice, Tensor Cores are used to perform much larger 2D or

higher dimensional matrix operations.

Figure 2.11: Tensor core operations [26]

In Figure 2.12 it is possible to understand the number of outputs which are generated

with these cores, which are the results of a 4x4x4 matrix multiply.

Figure 2.12: Output generation from tensors [26]

The matrix multiplications are the bases for the development of each Convolutional neural

network, that is the reason why it was important to underline the possibility that VOLTA

has in order to accelerate these operations.

2.5 Neuromorphic architectures

Neuromorphic architectures are structures that are similar to biological brains: they

implement artificial neural networks in hardware.

Actually, these architectures are not so recent. The term neuromorphic was coined by Carver

Mead in 1990: he referred to VLSI systems with analog components able to mimic the

biological neurons of the human beings [3]. Nowadays the meaning is quite different, but the
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idea of the analog components is still present in the implementation.

The motivations for the developments of these architectures are a lot [5]:

• the need for low-power consumption devices;

• the aim to replicate biological networks;

• the possibility to create real time systems due to the high parallelism which can be

obtained by simulating a huge number (not the exact number, it would be impossible)

of the neurons that work together in the human brain;

• the speed of computation which follows the consideration already done for the previous

point;

• the possibility to eliminate the latency that the standard von Neumann architecture

can have. About this point, one of the problems of the von Neumann architecture is

determined by the fact that the memory and the computational part are separated,

and for this reason most of the time is spent in moving data from the memory to the

computational region and viceversa. With the neuromorphic architecture, since the

idea is to locate the memory really close to the computational part, this issue

could be overcome.

2.5.1 Neuron model

In a human brain, the informations can move from a neuron to another one by means of

axons, dendrites and synapses [Figure 2.13]. A neuron accumulates charge through a change

in voltage potential across the neurons cell membrane. The voltage potential may reach a

particular threshold, after which the neuron fires. In other words, at this point a signal

is sent from a neuron to another by means of a spike. The synapses are the connection

points between two neurons, and the axons are the lines through which the signal, storing

the information, flows.
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Figure 2.13: Communications between two neurons in a human brain [27]

The concept of accumulating potential and firing is at the base of the structure of the

neuron models, which can be more biologically plausible or biologically inspired. In

the first case, the model tries to replicate exactly the biological neuron, for what concerns

the structure, so it has neurons, axons, dendrites and synapses. In the second case, neurons

models try to model behavior of the neural organization rather than the structure [4].

Among the others, one of the most used in the neuromorphic architectures is the Integrate

and Fire model. It is an analog model which can be represented by the classical formula:

I(t) = Cm
dVm(t)

dt

When a current passes through a neuron, the membrane potential increases up to a certain

spiking threshold, after which the signal is sent to the closest neuron and the potential is

reset to a lower value. This is to show the analog behavior of the neuron model, and that

this analog behavior is at the basis of the neuromorphic architectures.

2.5.2 Structure of a general neuromorphic chip

A neuromorphic chip, in general, is characterized by a number of neurons Nc [Figure 2.14], a

number of inputs Nin [Figure 2.14], and number of synapses per neuron S (the total number

of synapses is Nin × S).

A decoder is the most important part of the chip, because it organizes and distributes the

informations to the different neurons. There are two types of decoders:

• xy-decoder, in which a single synapse is activated for each input spike, using a column

and a row enable line; in this case there is no need to switch off the synapses, because,

giving the address made of a row and a column number, the unused ones are simply

not accessed;
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• crossbar architecture, in which each input spike drives a complete synapse column;

in this case the architecture must be reconfigurable, and the synapses that have not to

be accessed must be switched off [4].

Figure 2.14: Chip of a neuromorphic architecture [4]

2.5.3 Communication in neuromorphic architectures

The communication in neuromorphic architectures must be dealt intra-chip and inter-chip.

For the second one, a method is used called Address Event Representation (AER) [5]:

each neuron has a unique address that is assigned to it, and when a spike must be sent to a

specific neuron, its address travels together with the information, that moves through all the

adiacent neurons until reaching the target one [Figure 2.15]. The intra-chip communication

in general is a simple point-to-point communication.

Figure 2.15: Address level representation: a decoder decodes the address sent by the spiking

network through an encoder and directs the signal to the right location [6]
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2.5.4 SpiNNaker architecture

SpiNNaker is a biologically inspired neuromorphic architecture which was developed by the

University of Manchester starting from 2005, even if the first prototype was released in 2009.

It was born with the aim of creating a massive parallel spiking neural network architecture

which was able to replicate up to a billion of neurons and a trillions of synapses working

together in real time. The innovation which was brought by SpiNNaker, which is at the

base of the neural networks, is the possibility of transferring a lot of data characterized by

a very small dimension (in general, packets are no longer than 72 bits), by means of the

Address Event Representation communication. This gives the possibility of operating in a

really parallel way.

Actually, a spiNNaker architecture could be interpreted as a sort of manycore processor,

because it is characterized by a lot of cores working in parallel. All this cores are general

purpose, so, for example, they are not characterized by the synaptic matrix that was described

in the previous section. In fact, it is not custom for neuromorphic, but the configuration

of each chip includes instructions and data memory in order to minimize access time for

frequently used data. SpiNNaker operates in an entirely event-driven fashion to optimize

performance and energy consumption. There is no conventional operating system running

on the cores. A core is normally in sleep mode (so with low-power consumption). When an

interrupt arrives, the core wakes up to perform its own task. At the end of the task, the core

returns to sleep. This leads to a low power consumption, that is up to 1W for a single node,

while a single board made of a set of nodes consumes more or less from 20W to 50W.

SpiNNaker node

The node is the basic structure of the SpiNNaker architecture.

It has 18 ARM968 processor cores each with 96 kB of local memory, 128 MB of shared

memory, a Network on Chip system [7] which performs the communication between the

different cores of a single node and with external peripheral [Figure 2.16]. Each node is able

to simulate about a thousand of neurons (with about a thousand of synapses for each neuron)

[8].

Concerning the cores, one of them has the special role of Monitor core and it performs

system management tasks, sixteen cores are used to support the application and one is spare.

Them, there is a router, called bespoke multicast router, from which the signal travels,

that is also able to replicate packets where necessary. This is done in order to implement the

multicast function, that consists in sending the same packets to different destinations.
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Figure 2.16: Structure of a SpiNNaker node [7]

SpiNNaker system

A SpiNNaker boards is characterized by 48 nodes [Figure 2.17], (so there are 864 ARM

processor in total) [7].

Figure 2.17: SpiNNaker board
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There are machines which are characterized by a lot of these boards connected together

(up to 1200). They have over a million of ARM processors and they can simulate up to a

billion of neurons.

Communication in the SpiNNaker architecture

The basics of the exchange of informations in the SpiNNaker architecture is characterized by

the Address Event Representation, with which, thanks to the router, packets are switched

from a node to another one. Anyway, inside the architecture, the connections between the

different cores inside the nodes and among the different nodes is implemented by means

of Network on Chip, which was already present in manycore processors. In particular, the

SpiNNaker has two types of NoCs:

• System Network on Chip, to handle intra processor communication (data are trans-

mitted through multiple parallel channels);

• Communication Network on Chip , to handle inter-processor communication. The

bespoke router, which is present also outside of the nodes, connects the neighboring

chips (usually in the North, Northeast, East, South, Southwest, and West directions)

to form a 2-D triangular toroidal mesh [Figure 2.18] [9].

Figure 2.18: SpiNNaker communication among the different nodes

Applications of SpiNNaker: image processing tests

A good application of the SpiNNaker system can be retrieved from [10]. The test was executed

on the SpiNNaker 103 Machine, that is a 48-nodes board with 864 ARM cores. Two

algorithms have been implemented in the context of parallel computing for image processing:

image smoothing and edge detection. Both of them can be performed using convolution.
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The processes are executed in parallel and independently from each node. Images used to

run the experiment go from VGA to UXGA resolution. The first important thing to notice

is the power consumption that increases quite proportionally with respect to the number of

resources which are used; in particular, in normal operation at 200MHz, after system boot and

without any program running, a SpiNNaker chip consumes only 250mW (the sleep mode that

has been described before). Increasing the clock frequency to 250MHz, power consumption

reaches about 300 mW. During an intense computation, if all cores are used, the total power

consumed by a node can reach 950mW.

About the performances, instead, it has been proved that the speed of computation increases

proportionally with the increase of the nodes which are used to perform the computations, up

to a certain point. In figure 2.19a it can be noticed that for the VGA image the performance

stops increasing after 30 nodes: this happens because an image with VGA resolution of 640 x

480 pixel, can only utilize 480 cores, which can be provided by 30 nodes. The same behavior

can be observed more or less in figure 2.19b.

(a) Edge detection performance (in fps) [10]

(b) Gaussian filtering performance (in ms) [10]



State of art 21

2.5.5 Truenorth architecture

Truenorth chip is another kind of neuromorphic architecture which is different from the

SpiNNaker, that is the reason why it is important to describe both, in order to have an idea

of the different possible implementations.

One of the most important characteristics of Truenorth is the low power consumption (about

65 mW): this is given by the fact that the computational part is completely asynchronous (the

communication, instead, is synchronous); moreover it has be designed to be highly scalable,

parallel and real-time. It is able to simulate about one million neurons, with 256 millions of

synapses [11]. This is obtained considering 4096 different nodes that are tiled in a matrix.

Truenorth node

A single Truenorth node is defined as neurosynaptic core. It has the classical structure of

a neuromorphic architecture, with a synaptic matrix [Figure 2.20].

Figure 2.20: Truenorth single node [28]

The exchange of the informations is determined by the following steps [11]:

• the core receives spikes from the network or from the external world, and it sends it to

one of the input buffers;

• when a signal arrives, the spike is read from the input buffer and sent to the axons;

• the signal is sent to the whole line; in this case the decoder is of type crossbar, so the

spike is delivered to the neuron only in the presence of a synapse that is switched on;

• the neuron that receives the spike updates its membrane potential (from the neuron, a

value called leak will be subtracted at the end of the integration);
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• when the membrane potential overcomes the threshold, a spike is generated and sent

to another core, and the potential comes back to the lowest level.

This behavior is really analog, and in order to demonstrate it, the formula with which the

membrane potential is updated is reported:

Vj(t) = Vj(t− 1) +
∑255

i=0Ai(t)× wi,jxs
Gj

j − λj

Ai is 1 of there is a spike, wi,j is the synaptic weight, sj is 1 if the synapse is activated and

λ is the leak.

Truenorth chip

A complete chip is characterized by an array of 64x64 neurosynaptic cores. They compose

the so called neuron block [Figure 2.21]

Figure 2.21: Truenorth chip [11]

Looking at figure 2.21, it is possible to observe all the other components of the Truenorth

chip.

• There is a router, which communicates with its own core and the four neighboring ones.

• A SRAM stores the spikes as binary values.

• A scheduler takes the data from the SRAM and puts them into a queue waiting for

them to be read by the single neurons in the neuron block.

• The controller, has the role of controlling all the neurosynaptic cores.
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The architecture could be tiled not only for the single chip, but also for different chips that

are connected together [Figure 2.22].

Figure 2.22: Connections between different chips [11]

Applications for Truenorth: object detection tests

An application for the Truenorth chip is presented in [12]. Retrieving images from the camera

with a 400-pixel-by-240-pixel aperture, the aim was to identify people, cars, animals etc. The

chip consumed 63 mW on a 30-frames-per-second video.

The chip worked in this way:

• the pixels need to be converted into spikes events to interface with the Truenorth;

• two channels are constituted: a high-resolution channel used to identify objects and a

low-resolution channel used to locate objects;

• neurons, which were already trained offline to recognize the objects, start to receive

spikes;

• bounding boxes are generated.
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Figure 2.23: Truenorth application [12]

2.6 Neural network accelerators for inference

Traditionally, algorithms based on neural networks could be run on general purpose architec-

tures, like GPUs or Manycore processors, but these architectures in general are characterized

by a high power consumption and an oversized resource utilization both for memory and

computation. In new applications, where neural networks algorithms have to be exploited,

like for example autonomous driving, there is the need for a specific architecture where the

low power consumption and the optimization of resources is fundamental.

Obviously, when talking about neural networks, training is the hardest computational part,

and in general it is executed on a GPU off-line, in order to have a model that is already

trained. Hardware accelerators, instead, can be used for inference, taking the pre-trained
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network from the cloud or from an off-chip memory connected to them.

In general, the structure of a specific purpose hardware accelerator is characterized by a

buffer memory, where the input images are stored, and another memory to store the weights,

then there is the computational part. Since the operations executed during a neural network

application are more or less the same, specific processing unit, able to execute convolution,

normalization, pooling and all the other layers characteristic of a neural network, are needed.

In particular, since the majority of operations in a CNN is represented by a matrix-matrix

multiplication, it is fundamental to deal with the massive nested loops in order to increase

the throughput [13].

2.6.1 Google TPU

Among the ASICs which are able to perform inference, one of the most important, and maybe

the first one to be introduced, is the TPU, which stands for Tensor Processing Unit, to

which Google started to work from 2013 and it was produced in 2015. It is an ASIC used for

deep neural networks, built with a 29 nm technology, that works at a frequency of 700 MHz

[14].

The main aim of this architecture is to have a performance per Watt that is 15, 30 times

smaller with respect to a generic GPU, so the power consumption is very low compared with

the general purpose architecture (among 30W).

TPU: general architecture

As it can be seen in Figure 2.24, the architecture of a TPU can be divided in three regions:

the control part (highlighted in red), the data and storage part (highlighted in blue) and the

computational part (highlighted in yellow).
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Figure 2.24: TPU architecture [14]

The computational resources include:

• A Matrix Multiplier Unit (MXU, that contains 65536 Multiply and Accumulators

(256x256). This is the core of the computational part, and the big number of MACs

gives the possibility to obtain a very high throughput.

• An Activation part, where there is the possibility of applying different activations

functions (ReLU, sigmoid etc.).

• An engine where there is the possibility to perform normalization and pooling.

For what concerns the data and storage resource, different units can be identified:

• Accumulators, that store the different products coming from the MXU. They are on

32 bits.

• Weight FIFO, where the weights are stored. It is on-chip and it reads from an off-chip

8 GB DRAM, called Weight Memory.

• Unified Buffer, that is an on-chip 24MB memory that stores the input of the MXU.
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One of the most important characteristics of the Google TPU is the usage of the 8-bit

integer representations, rather than 16-bit or even 32-bit floating point representation that is

used in other architectures. A good efficiency can be also obtained by considering a precision

that is not so high, that is why Google adopted this strategy. This is done because the the

neural networks must cope noise, and using an 8 bit representation allows to consider only

the most important features of an image, that are the ones needed in order to perform a

good classification. The 8 bit representation allows the architecture to perform much more

operations in parallel.

A high level of parallelism is also reached by considering another technique introduced with

the TPU: the systolic array. With this technique, matrix multipliers take an input from the

Unified buffer and reuse it many times in order to produce all outputs requiring that input.

In this case, each value is read only once, but it is used to perform different operations,

without storing it back to the buffer.

The parallelism and the low number of bits allow the TPU to have a high performance:

in terms of operations, the TPU is able to perform up to 92 TOPS per second.

In Figure 2.25 it is possible to see the performances of the TPU compared with other ar-

chitectures: the TPU has a long slanted line; this means that performance is limited by

memory bandwidth rather than by peak compute. Each NN (represented by stars) runs with

a different performance

Figure 2.25: TPU performances [14]

The basic idea of the TPU is to make a minimal and deterministic design: the control
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part of the complete architecture is just the 2% of the total silicon [Figure 2.26]

Figure 2.26: Floorplan of the TPU die [15]

Cloud TPU

The Cloud TPU is a second version of the TPU able to perform training and inference. It

has a higher performance than the first version of the TPU, because it is able to execute 180

teraflops. It can be programmed with TensorFlow.

2.6.2 EIE: Efficient Inference Interface

One of the most critical problem there is in neural networks is power consumption, that in

general is very high in order to guarantee high performances. Thinking to the GPU, the

performances are very high because it is possible to perform a huge number of operations in

parallel, but the problem is that the power consumption can reach 300W.

A new idea has been proposed by the Stanford University together with NVIDIA [16]: this

idea consists in performing a network compression via pruning and weight sharing that

could make possible to fit big networks (such as AlexNet and GoogleNet, that in general are

in general very huge) in an on-chip SRAM.

First of all, the representation of the weight matrix changes: for each column of a matrix W,

a vector v is stored containing the non-zero weights, then a second one is created encoding

the number of zeros between two non-zero elements in the weight matrix.

For example:

Wi = [3, 0, 0, 0, 4, 0, 0, 2]

can be encoded as:

v = [3, 4, 2] and z = [0, 3, 2]
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The accelerator is composed by different Processing Elements, operating in parallel.

Every processing element stores a partition of network in SRAM and performs the computa-

tions associated with that part taking advantage of dynamic input vector sparsity, obtained

with pruning. Weight sharing, instead, consists in the modification of the activation function:

bi = ReLU(
∑n−1

j=0 Wi,jaj)

The weight Wi,j is substituted with a shared table of 16 weights with an index. This technique

is called Deep Compression.

In order to parallelize the process, as said before, four processing elements are used. Their

usage is explained in the example of figure 2.27.

Figure 2.27: EIE representation example [16]

In this example, a vector ~a is multiplied by a weight matrix W in order to obtain a vector

~b. Each color represents one Processing Element to which the elements of the vectors and

of the weigth matrix are assigned. Let us consider the element a4. This element brings the

information related to the fact that it belongs to the fifth column: this information is sent

to all the Processing Elements that only perform the multiplication when there is a non-zero

element. For example, PE1 in the fifth column has all zeros, so no operation is performed

with a2. At the end, all the results are summed in a row accumulator in order to obtain the

corresponding b element.

In order to avoid to perform all the multiplications by 0, a Leading Non Zero detection node

is present before each PE.
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Performances and energy efficiency

From [16], it can be retrieved that the performance provided by the EIE architecture is

more than 10% higher than a GPU. This is obtained because the number of operations to

be performed are much lower (about 97% less). Also from the point of view of the energy

efficiency, the results are exponentially lower than the ones obtained with a GPU or in general

with a general purpose processor.

2.6.3 NVIDIA deep learning accelerator

The Deep Learning Accelerator proposed by NVIDIA (called NVDLA) is an architecture

that is able to perform inference acceleration. The architecture is completely open, in the

sense that the Verilog code describing all its components has been released for free by NVIDIA

[17].

The most important characteristics of the NVDLA are scalability and modularity. The

dimension of all its components can be modified and it is possible to exclude some of them

if not needed. The high flexibility of this architecture, the availability of the code and the

possibility to explore an accelerator for inference that is completely new, raised the possibility

to study it and to work with it in order to understand the performances of the NVDLA and

how it could be applied in the possible future in the autonomous driving field as an accelerator

of neural networks.

For this reason, NVDLA will be analyzed in the next chapters in more details.



CHAPTER 3

System integration

With this chapter the development part of the thesis begins. First of all, the neural network

accelerator which has been chosen to be prototyped is described: the NVIDIA Deep Learn-

ing Accelerator (NVDLA). The architecture and the possible applications will be taken into

account, also focusing on the possibility of creating a scalable and modular architecture that

the NVDLA can provide. Then, a focus will be done on the evaluation board on which the

NVDLA has been implemented.

3.1 NVDLA

The NVDLA (NVIDIA Deep Learning Accelerator) has been introduced by NVIDIA at the

end of 2017. It is an accelerator of neural network for inference, characterized by a high

modularity and scalability.

NVDLA is characterized by a hardware implementation that allows to compute the mathe-

matical operations for Deep Learning inference:

• convolution;

• activation;

• pooling;

• normalization.

31
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Moreover, NVDLA is an architecture that is completely open. NVIDIA released the code

with some informations about its usage and applications, leaving the users free to add im-

provements and modifications when required. That is the reason why NVDLA architecture

is continuously ”evolving” and some novelties are still being introduced.

3.1.1 NVDLA architecture

In order to exploit the modularity of this accelerator, it is useful to analyze its architecture,

that is characterized by different components operating separately one from the other [Figure

3.1].

Figure 3.1: NVDLA architecture

• The first component to be considered is the Convolution core, that is able to perform

high-performance convolutions. It works with two sets of data: the weights, that have

been already trained off-line, and some input data, that can be, for example, the

image to be classified. NVDLA supports different kinds of convolutions:

– Direct and image-input convolutions, that are standard convolutions (with small

changes in terms of layers used among them), which are optimized by means of

MACs operating in parallel;

– Winograd and batching convolutions, which are optimizations of the normal con-
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volutions obtained by sharing weights and reducing the number of operations.

The convolution engine is supported by a Convolution Buffer [Figure 3.1], which

stores the weights and the input feature data. It is a normal buffer with two write

ports (one for weight and the other for input data) and two read ports.

The complexity of the convolution engine (in terms of number of MACs and number of

bits) and the dimension of the convolution buffer can be modified.

• The second component is the Activation Core (Single Data Point Operations, SDP).

It is used to perform linear and non-linear activation functions. Linear functions are

mostly scaling functions, while for non-linear functions there are different supports to

ReLU, PReLU, Sigmoid and others.

• The third component is the Pooling Core, which is able to perform pooling. Different

kinds of pooling are supported, such as max, min, and average pooling.

• The fourth component is the Normalization Core (Cross-channel Data Processor,

CDP), which is able to apply a type of normalization function called Local Response

Normalization.

• The fifth component is the Data Reshape Core (also called RUBIK), that is able to

perform data format transformations, like splitting, slicing, merging, contraction etc.

• Finally, the last component is the Bridge DMA. It is a data copy engine to move data

between the system DRAM and the dedicated high-performance memory interface,

when present.

The NVDLA architecture can operate in two different modes:

• Independent mode: all blocks operate independently one with respect to the other,

and for each engine there is an access to the memory in order to take the necessary

data to perform all operations required;

• Fused mode: blocks are assembled as a pipeline; in this case the data are retrieved

from memory at the beginning in the first engine and they go back to memory only

after the last engine has completed its operations.
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3.1.2 NVDLA interfaces

The NVDLA can communicate with the external world by means of the following interfaces

[Figure 3.2]:

• a Data Backbone interface (DBB), that connects the NVDLA with the external

memory. This protocol is very similar to AXI (used by Xilinx with its FPGAs);

• a high-bandwidth interface communicating with an external SRAM. This interface

is optional;

• a Configuration Space Bus Interface (CSB) is a control bus through which a CPU

can reach the configuration registers of the NVDLA. CSB is a very simple interface

that can be converted to AMBA (supported by the FPGA);

• an Interrupt interface, that is a single bit that is asserted when a task is finished or

when an error occurs.

Figure 3.2: NVDLA interfaces

3.1.3 Large NVDLA vs. small NVDLA

The NVDLA scalability property is exploited by observing two opposite implementations

from the point of view of the resources: the large NVDLA implementation and the small

NVDLA implementation. The difference is expressed in terms of the engines that are used,

interfaces with the external system and dimensions of the cores.

Large NVDLA

The large NVDLA is the default version of the accelerator. It is characterized by two memory

interfaces: the Data Backbone interface communicates with an external DRAM, while another
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interface can be connected to a dedicated high-bandwidth SRAM. The second interface is

present in order to satisfy the request for a bigger neural network.

All the engines are present, and the dimension of the convolution buffer is 512MB. Complexity

of the different cores will be described in more details in the following chapters.

Finally, the LARGE NVDLA can be considered as a headed implementation [Figure 3.3],

because it can be supported by a microcontroller which plays the role of executing all the

tasks that are related to the high-interrupt-frequency tasks.

Small NVDLA

In the small NVDLA architecture the dimensions of the cores are different, and also some

engines are not implemented, like the Rubik engine. Also the Bridge DMA engine is not

present, and this is determined by the fact that the second memory interface is absent.

Moreover, in this case we can talk about headless implementation [Figure 3.3], because a

single processor deals the management of the complete NVDLA hardware.

Figure 3.3: Small NVDLA architecture (on the left) and large NVDLA architecture (on the

right)

The table 3.1 describes the biggest differences between the two architectures, with an

example describing the sizes of the convolution core in the two implementations.
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FEATURES LARGE NVDLA SMALL NVDLA

Rubik engine X ×
Bridge DMA X ×

Convolution core size 32× 64 8× 8

Secondary memory IF X ×

Table 3.1

3.1.4 Software design

NVDLA is provided with a software support, that is useful to connect the user with the HW

part. In particular, the software related to the NVDLA can be divided in two parts, the

compilation tools and the runtime environment. The compilation tools are character-

ized by a parser and a compiler, which start from a Caffe pre-compiled model and generate

a network of hardware layers supported by the NVDLA, called loadable [Figure 3.4].

The runtime environment instead takes the loadable and run it directly on the NVDLA

environment [Figure 3.4]. It can be divided in two different sections:

• the USER MODE DRIVER (UMD) provides interfaces to load the loadable pro-

duced by the compilation tools and submit it to the lowest level, that is the KMD;

• the KERNEL MODE DRIVER (KMD) is characterized by a firmware part and

by a set of drivers and firmware that program the NVDLA registers to configure the

different engines.

Figure 3.4: Dataflow of the system software

The software design will be explained in more details when talking about the software

implementation.



System integration 37

3.2 FPGA and Evaluation Board

FPGA is an optimal solution for prototyping: this is the reason why it is target platform

that has been chosen to implement the NVDLA. The FPGA that Magneti Marelli has chosen

after a scouting about all platforms with this characteristics, is the Zynq Ultrascale +

MPSoC (Multiprocessor System on Chip), by Xilinx.

The Zynq Ultrascale+ family can be characterized by different SoCs, that can change in

terms of power and number of resources. The SoC associated to the board chosen as target

for the thesis is the ZU9EG, belonging to the EG family (quad-core devices).

The Ultrascale family devices are characterized by two different processing systems:

• a Dual/Quad-Core ARM Cortex-A53 Based Application Processing Unit (APU);

• a Dual-core ARM Cortex-R5 Based Real-Time Processing Unit (RPU).

In order just to have an idea of the dimensions of the SoC, a focus can be done on the

Programmable Logic: there are almost 600 thousands system logic cells, more that 274 thou-

sands CLB LUTs, more that 2500 DSPs and 32Mb of Block RAM. Figure 3.5 shows the most

important characteristics of the FPGA.

The FPGA is mounted on a board, the ZCU102 [Figure 3.6]. This board has some periph-

erals that can be useful for the communication between the FPGA and the external world

(Ethernet, JTAG, UART, SD reader, USB). Moreover it has a 4GB DDR4 attached to the

PS by means of a DDR4 controller.
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Figure 3.5: Block diagram of the Zynq Ultrascale+ MPSoC FPGA

Figure 3.6: ZCU102 board

In this thesis, the FPGA will be programmed by means of the SD reader. The SD card

will be provided with an image file containing the Linux OS, that runs on the Cortex A-53

processor, and the executable program together with all data needed to perfom the operations.
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3.3 Communication between the NVDLA and the FPGA

As already said, NVDLA uses two standard AXI bus interfaces that are used to communi-

cate with memory. In particular, the DBB interface can be connected directly to the DDR4

of the ZCU102 board without passing through the processor [Figure 3.7]. AXI is an interface

that is a part of the AMBA, a family of micro-controller buses owned by ARM. AXI4, that

is the new version of the AXI interface, can be of three different tpyes:

• AXI4, for high-performance memory-mapped communication;

• AXI4-Lite, for low-throughput memory-mapped communication;

• AXI4-Stream, for high-speed streaming data.

AXI4 can support high throughput bursts of up to 256 data transfer cycles with just a

single address phase, that is the reason why it is the kind of interface chosen to create the

communication between the Zynq and the NVDLA.

The connections are simplified by the fact that the names of all the pins belonging to the

DBB port are the same of the ones supported by the Zynq Ultrascale+.

Figure 3.7: Communication between the FPGA and the NVDLA

As it can be noticed in Figure 3.7, also the CSB control interface can communicate with

the FPGA by means of the AXI interface: it only needs some bridges that change the

protocol. In this case, however, the data coming from this interface have to pass through the

processing system part, because they are needed by the processor.





CHAPTER 4

Hardware implementation

This chapter describes the hardware implementation of the system it has been introduced in

the previous chapter, constituted by the NVDLA and the FPGA. A glance will be given at

the tools that have been used to complete this part and then the complete implementation flow

will be provided, together with some intermediate results about this part

4.1 Hardware development tools

When performing the development on FPGA, it is possible to start from a high level program-

ming language (C++) that is converted into a hardware description language, like VHDL or

Verilog, but it is also possible to begin directly from the Verilog (or VHDL) code. From the

description language, a custom block is generated. This is connected to the Zynq FPGA,

together with all the components needed to complete the design, then there are synthesis and

implementation, with place and route.

Xilinx has developed a set of softwares that are able to perform all these processes. These

softwares are all present in an environment called Vivado Design Suite. The tool that

will be used mostly for the purpose of this thesis is Vivado Simulator, that generates an

IP (Intellectual property), which corresponds to the block that has the functionalities de-

scribed by the Verilog (or VHDL) files given as input to the tool. After that, the software

is able to perform synthesis, implementation (place, route and optimization) and generate

the bitstream: this is a binary file containing the complete description of the project, and

41
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it can be exported. The second tool that will be used is Xilinx SDK: this tools provides

a compilation environment for user applications, but in this thesis it will be used mainly to

generate the HDF (Hardware Description) file from the bitstream that has been exported

from Vivado Simulator.

4.2 Environment setup

NVDLA provides the Verilog code that is implementing the FULL (Large) version of the

NVDLA, that is the default configuration [17]. However, using a Linux environment, there

is the possibility of generating a code implementing the SMALL version of the NVDLA, due

to the environment setup that NVIDIA provides. The code is generated with a Makefile able

to retrieve informations about the characteristics of each core. The specifications for the

NVDLA small are the following:

• About the organization of the weights and the input images, all elements are 8 bits

wide;

• About the convolutional block, the MAC atomic size of input channel number and the

MAC atomic size of the output kernel number is 8 (that corresponds, respectively, to

the ”atomic size C” and the ”atomic size K”) resulting in a number on MACs that

is 64 (K × C). The convolution buffer has a depth of 128 KB. Winograd and batch

convolutions are not implemented;

• About the other engines, Rubik is disabled, as well as the BDMA;

• The second memory interface is not present.

Details about the NVDLA small specifications are present in the .spec file reported in the

appendix (A.1). These specifications can be modified and the code will be generated according

to them, that is the reason why the NVDLA is really reconfigurable and it is characterized

by a very high modularity. The first make command is used to generate a tree.make file

that is containing all the informations about the NVDLA specifications. Then by performing

a simple tmake:

1 $ ./ tools/bin/tmake -build vmod

the complete Verilog code, the libraries and all other files required to synthesize the design

are automatically generated.
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The only problem that has been encountered at this step is about the generation of the

SRAMS: they are not generated automatically together with the code (the ones which are

generated are related to the FULL architecture, so they are too big), but they are pre-

generated, so they are already available in the github project.

4.3 Project setup with Vivado

Once the RTL description of the NVDLA is ready, the Verilog code can be imported in Vivado.

The goal is to create the IP, that is the block representing the whole architecture. The RTL

generated during the environment setup is actually characterized by two components:

• the NVDLA block;

• an ”APB to CSB” bridge.

4.3.1 NVDLA block

It is the RTL containing the description of all the functionalities of the NVDLA. Looking at

the top entity, that is reported in the appendix (A.2), it is possible to see a big number of

inputs and outputs, that can be grouped in the following ports/interfaces:

• the core clock (dla core clk), the csb configuration clock (dla csb clk) and a clock used

to disable all non-inferred clock gates global clk ovr on;

• a port used to disable clock gating when needed (tmc2slcg disable clock gating, not used

in this project);

• a main functional reset (dla reset rstn, it is active low) and a reset eventually used

during ATPG testing (direct reset);

• a set of ports constituting the AXI interface for the memory connection;

• a set of ports constituting the CSB interface for the control part;

• a single bit interrupt port;

• a set of ports constituting a power control interface (not used in this project);

• a test mode port to enable the test mode (not used in this project).

The complete RTL description, together with the libraries and the RAMs corresponding to

the small architecture, is imported in Vivado and it is synthesized, just to see if there are errors

in the implementation of the Verilog code. At this point, by means of the command ”Create

and Package IP”, available in Vivado, the IP, that is the functional block containing all
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the functionalities of the RTL, is generated. During the generation of the IP, all the ports

related to the AXI interface are grouped for simplicity in a unique interface. The IP is visible

in Figure 4.1.

Figure 4.1: NVDLA IP: it can be noticed that the ports related to the DBB interfaces are

grouped in a unique interface called nvdla core2dbb AXI

4.3.2 APB to CSB bridge

The control interface (CSB) provided by the NVDLA is very simple and intentionally low-

performance, so that it can be adapted to any kind of processor to which it is connected.

However, among the files produced after the environment setup, it is possible to find an RTL

description of an element which is able to convert the CSB interface into APB (Advanced

Peripheral Bus), that is a family of AMBA bus owned by ARM.

The approach followed in order to create the IP with this functionality is the same of the one

used to create the IP of the NVDLA. This time the Verilog code is much simpler (actually it
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is a single file, reported in the appendix (A.3)). After packaging it, the IP looks like the one

in figure 4.2.

Figure 4.2: APB to CSB IP: apb ports are grouped in a unique APB interface, called APB S

(where S stands for slave, since it will be a slave port in the top design)

4.4 Creation of the wrapper

After generating these two IPs, and before connecting them to the Zynq, a wrapper, con-

taining the two IPs has to be generated. This approach has been followed because of two

reasons: the first one is because it is always better two build a hierarchical architecture, so

that, when the single IP is required, it can be taken from the design already built and without

considering a lot of different RTL descriptions; the second reason is that there is the need to

expose some ports and interfaces in the final implementation, that will communicate directly

with the FPGA. These interfaces are:

• the clocks;

• the resets;

• the interrupt;

• the memory and control interfaces.

The other ports are hidden inside this design, so they are not visible from the external world.

In order to do this, a new project is created in Vivado, with a block diagram representing

the two IP connected in the way showed in Figure 4.3.
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Figure 4.3: Block diagram representing the wrapper obtained connecting the NVDLA and

the CSB2APB components

From this picture it can be noticed that all the interfaces and ports to be exposed are

characterized by an external port connection. For what concerns the power enable ports,

instead, they are connected to a constant block of zeros, because these interfaces are not used

in this project, as well as the test mode port.

Finally, the connections between the two IPs are very simple because the ports to be connected

between each other have the same name.

The following steps are performed to complete the design of the wrapper:

• Validate the design, in order to avoid errors in the connections of the ports in the block

diagram;

• Generate the output products, that corresponds to the generation of the different IPs,

in an OUT OF CONTEXT mode (meaning that the synthesis of the single IPs is

performed here, leaving the synthesis of the complete block diagram for the following

steps);

• Generate a Verilog wrapper containing an RTL description of the two blocks;

• Synthesize the design, considering the whole wrapper.

Synthesis has been performed just to verify that there is no error in the assignment of the

resources.

After that, a new IP containing the wrapper, starting from the RTL description, is generated.
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From Figure 4.4 it is possible to observe the ports and the interfaces that will communicate

with the FPGA:

• the dla core clk, the dla csb clk and the pclk ports are the clocks of the wrapper, and

the direct reset and prstn are its resets;

• the dla intr port represents the interrupt bit;

• APB S is the control interface;

• nvdla core2dbb AXI is the data interface.

Figure 4.4: NVDLA wrapper IP

4.5 Top design generation

The wrapper IP now has to be connected with the FPGA. The connections are not all direct,

and different blocks have been studied and introduced in the design in order to create a

correct connection with the Programmable Logic and with Processing System part.

4.5.1 AXI Smart connect

First of all, the Data Backbone Interface has to be connected to the Zynq in Direct Mode

Access (DMA), in order to accelerate the transfer of data. In fact, with this approach

the data move from the DDR4 memory of the ZCU102 board directly to the NVDLA (and

viceversa) without passing through the processor. The port of the FPGA through which the

DMA can be implemented is the High Performance (HP) slave port. This is part of the

Programmable Logic of the FPGA, and it supports the AXI protocol.

Even if the DBB interface and the HP slave port both support AXI, DBB has some ports
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less with respect to the HP slave port, so a block in the middle has to be put in order to

adapt the non corresponding ports: the AXI Smart Connect [19].

It is an IP provided by Xilinx that connects one (or more) AXI memory-mapped master

devices (in this case the DBB interface) to one (or more) memory-mapped slave devices (HP

slave port). AXI SmartConnect is used to automatically configure and adapt master and

slave port with minimal user intervention [19].

4.5.2 APB AXI bridge

The APB interface is not directly supported by the Zynq FPGA, that is the reason why

another bridge is needed. Xilinx provides an AXI-APB bridge that translates AXI4-Lite

(slave) into APB (master) [20]. This bridge, eventually, is configurable, so the number of bits

for each port can be changed as well as the number of APB interfaces that can be connected

to it.

4.5.3 AXI interconnect

The AXI4-Lite interface of the APB-AXI bridge has to be connected to the APU processor,

because it represents the control part. In order to do this connection, an AXI interconnect

is needed. It is actually very similar to the AXI Smart Connect defined before, with the

difference that the AXI interconnect can be used to move from the AXI-4 to AXI4-Lite and

viceversa. The AXI interconnect allows the connection between the NVDLA and the Zynq

by means of the High Performance Master Port in Full Power Domain (HPM FDP).

This is part of the Programmable Logic of the FPGA and it supports the AXI protocol.

4.5.4 Zynq Ultrascale+ IP

The structure of the Zynq IP is represented in figure 4.5: this IP is highly configurable in

order to control the peripherals, to change the clock and to work with the Processing System

part and with the Programmable Logic. In figure 4.5 the two connections made with the

NVDLA are underlined: it can be noticed that the HPM port is in direct communication

with the APU processor (blue path), as the HP port is connected directly to the DDR4 con-

troller (red path), as already explained before.

Vivado simulator helps in creating the connections, in particular for what concerns clocks, re-

sets and interfaces with the same name. However some connections have to be done manually.

After building the complete block design, it appears like the one in figure 4.6



Hardware implementation 49

Figure 4.5: Zynq Ultrascale+ block diagram
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Figure 4.6: Block diagram of the top design
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Before performing synthesis and implementation, another thing has to be done: in order

to implement the NVDLA on FPGA, there is the need to set the Verilog define FPGA equal

to 1. If this variable is not set, the RTL during synthesis will implement some Black Box

structures that the implementation process will be not able to solve. Vivado allows to set

this variable in a very simple way.

After setting this define, the steps to follow are the same performed for the wrapper:

• Generate the output products (again, with the Out Of Context option);

• Create an RTL description of the complete block diagram;

• Synthesis and implementation, on which a focus will be done in the next sections.

4.6 Synthesis

The synthesis, in this case, is fundamental in order to perform a first timing and resource

analysis.

Different syntheses have been performed, considering different clocks and different synthesis

options, in order to understand what is the maximum frequency at which the NVDLA can

work on the ZCU102 board.

4.6.1 Resource analysis

Anyway, the first thing to look at is the resource report generated after the synthesis, which

shows the quantity of resources that the NVDLA occupies. Of course, the allocation of the

resources can change if different syntheses are performed, in particular considering different

frequencies. However, the percentage of used resources is more ore less the same, so there is

no need to report all the resource reports obtained with different frequencies. A glance at

the allocation of the resources is showed in table 4.1.

RESOURCE UTILIZATION AVAILABLE Utilization %

LUT 80959 274080 29,54

LUTRAM 689 144000 0,48

FF 94802 548160 17,29

BRAM 100,50 912 11,02

DSP 32 2520 1,27

BUFG 1 404 0,25

Table 4.1
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Figure 4.7: Resource utilization in percentage of the NVDLA small

4.6.2 Timing analysis

Timing analysis is fundamental in order to understand the maximum frequency at which the

NVDLA can work on the Zynq Ultrascale+. Difference frequencies have been considered,

starting from a very relaxed time and decreasing the period until the point at which the slack

becomes negative and the timing is not closed.

The first synthesis has been generated with a frequency of 10 MHz (that corresponds to

a period of 100 ns). This frequency is very relaxed, the slack is positive and the timing

constraints are met. Table 4.2 shows all details about timing analysis.

Frequency Worst pulse width slack Worst negative slack Total negative slack

10 MHz 48,498 ns 43,449 ns 0,000ns

Table 4.2

Slack is the difference between the expected arrival of a signal and the actual arrival of a

signal. A signal should reach its destination before its expected arrival. In case of a flip flop,

the signal should arrive before the next-rise edge of the clock. If the signal arrives after its

expected arrival, the slack is negative and the design fails.

In this case, the worst pulse width slack is the difference between the rising edge (50

ns) and the critical path, that is assumed to be 1,502 ns. In this case, the time of the

critical path is quite small, so this does not create problems if the frequency is increased. A

bigger problem is represented by the worst negative slack, that is the slack on the setup time.

This decreases dramatically when increasing the frequency. When this value is negative, the

system is not supposed to work anymore. In order to understand the reason of this change,

it is useful to introduce the concept of speed grade. Originally, speed grades for FPGAs
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represented the time through a look up table; now they give an idea of the ”speed” of the

FPGA. Speed grade can affect the setup and hold time, and then the worst negative slack.

The ZCU102 board has a speed grade of -2. If the speed grade increases (decreases in absolute

value) the FPGA is faster. So it happens that two FPGAs with a different speed grade can

run the same design with different maximum frequency.

Then, the frequency has been increased to 20 MHz (50 ns). With this frequency the critical

path is the same, but the worst negative slack decreases: anyway, it is still positive and very

high, and the timing constraints are met, as it is possible to observe in table 4.3.

Frequency Worst pulse width slack Worst negative slack Total negative slack

20 MHz 23,498 ns 16,487 ns 0,000ns

Table 4.3

Other tentatives were made increasing the frequency to 50 MHz (25ns) and 75 MHz. The

Worst negative slack becomes smaller and smaller, up to the point at which it is very close to

0. This suggests that increasing the frequency the slack becomes negative, and this actually

happens at the frequency of 100 MHz. Table 4.6 shows a summary of the timing analysis

with the different frequencies, up to 100 MHz.

Frequency Worst pulse width slack Worst negative slack Total negative slack

50 MHz 23,498 ns 3,371 ns 0,000ns

75 MHz 8,498 ns 0,561 ns 0,000ns

100 MHz 3,498 ns -0,404 ns -3,704 ns

Table 4.4

Looking at the timing analysis it can be observed that the maximum frequency at which

the NVDLA can work on the Zynq Ultrascale+ FPGA is 75MHz.

4.7 Power analysis

A little glance at the power consumption is due to be considered. Power consumption in-

creases, as expected, when the frequency increases, even if the variation is not so high. Of

course, two different sources of power have to be considered: the static and the dynamic

power. The last one is an indication of the power consumption that is present only when

the device is working fully. The table 4.5 shows a summary of the power consumptions at

different frequencies.
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Frequency Total Power Static Power Dynamic power

10 MHz 3,975 W 0,726 W (18%) 3,248 W (82%)

20 MHz 4,037 W 0,727 W (18%) 3,310 W (82%)

50 MHz 4,221 W 0,728 W (17%) 3,493 W (83%)

75 MHz 4,38 W 0,729 W (83%) 3,651 W (17%)

Table 4.5

Figure 4.8: Power consumption of the NVDLA at different frequencies

A complete discussion about power consumption will be carried on in the results’ chapter

4.8 Implementation

The implementation is the step which follows the synthesis. At this point, place and route is

performed, trying to assign the different elements of the NVDLA to the resources provided

to the NVDLA. Eventually, some timing optimizations are performed during this step.

4.9 Generation of the bitstream and of the hdf file

After having completed the implementation, the following step consists in the generation of

the bitstream. It consists in a file containing the programming informations for the FPGA,

and it represents the overall design with all its functionalities. The bitstream has to be

loaded into the FPGA, but this is not a direct process: in order to proceed to the software

implementation, another file has to be generated, the hardware platform specification
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format (HDF) file. It is a sort of package containing different files, including the bitstream.

In order to generate this file another tool is needed: SDK, that is a software of the Vivado

Development Tools environment. The bitstream is exported from Vivado simulator and SDK

can be opened directly from there: once a new project is created, the HDF file is generated

automatically.

The HDF file is all what it is needed to move to the software implementation.

4.10 From ”small” to ”large” architecture

From the previous sections it can be noticed that the NVDLA occupies just the 29% of the

total LUTs that the Zynq Ultrascale+ has. This is suggesting that it could be possible to

increase the dimensions of the accelerator, increasing for example the number of MACs and

introducing some functionalities that are not present in the SMALL architecture.

However, a synthesis has been performed also considering the FULL architecture. The result

that has been obtained exploits that the difference between the FULL architecture and the

SMALL architecture is huge, because the former requires a number of LUTs which is 10 times

higher with respect to the number of LUTs available in the FPGA. A good trade-off should

be to consider an architecture which is between these two extrema.

There is the possibility of generating a bigger version of the NVDLA by increasing the

number of resources and the size of the convolutional buffer.

The first architecture is generated with a bigger convolutional core size. In particular:

• the ”atomic size K” is the same of the initial version, so it is equal to 8;

• the ”atomic size C” is increasing from 8 to 32;

• the convolutional core size is increasing from 64 to 256 (K x C);

• the convolutional buffer is the same of the initial version, and it is 128 kB wide

(32x32x128);

• the architecture is still ”small”, so there is not the presence of the secondary memory

interface, and the Rubik engine and the BDMA are still disabled.

In this way, the number of resources to be used by the FPGA is increasing, and the details

about the resource utilization is specified in table 4.6:
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RESOURCE UTILIZATION AVAILABLE Utilization %

LUT 105177 274080 38,37

LUTRAM 961 144000 0,67

FF 117844 548160 21,50

BRAM 159 912 17,43

DSP 32 2520 1,27

BUFG 1 404 0,25

Table 4.6

Figure 4.9: Resource utilization in percentage of the NVDLA small 256

The most important value refers to the LUT percentage utilization, that is now of the

38%. This number is quite bigger than the one of the small architecture, but it suggests that

the architecture can still be increased to fit the FPGA.

For this reason, another tentative has been made with a new architecture provided by

NVIDIA. This architecture shows the following characteristics:

• the ”atomic size K” is increasing from 8 to 16;

• the ”atomic size C” remains equal to 32;

• the convolutional core size is increasing from 256 to 512 (K x C);

• the convolutional buffer size is increasing to 512 kB (32x32x512);

• the secondary memory interface is still absent, as well as the Rubik engine and the

BDMA.
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The details about the resource utilization of this architecture are shown in table 4.3:

RESOURCE UTILIZATION AVAILABLE Utilization %

LUT 164898 274080 60,16

LUTRAM 934 144000 0,65

FF 163686 548160 29,86

BRAM 193,50 912 21,22

DSP 65 2520 2,59

BUFG 1 404 0,25

Table 4.7

Figure 4.10: Resource utilization in percentage of the NVDLA ”large” 512

The LUT percentage utilization is now bigger that the 60%. There could be the possibility

of increasing the size of the convolutional buffer. Unfortunately, from the github folder it is

possible to retrieve only these two architectures before considering the full one, that, as said

in the previous section, is too big to fit the FPGA.





CHAPTER 5

Software implementation

This chapter describes the software implementation of the system. An introduction will be

done on the software used for this part of the project and then the implementation flow,

consisting in the generation of the device drivers and the development of the modules to be

added to the Linux kernel will be described. Finally, the runtime application used to test the

correct behavior of the NVDLA will be explained

5.1 NVDLA software development

In the previous chapter a brief introduction was given to the software part of the NVDLA.

In this section, this will be treated in more details. As already said, the NVDLA has a full

software ecosystem including support from compiling network to inference. [Figure 5.1]

Figure 5.1: NVDLA software environment [22]

59
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The loadable file, generated from the compiler, is used in the User Mode Driver, a runtime

environment that loads this loadable and submits inference jobs to the Kernel Mode Driver.

The KMD main entry point receives an inference job in memory, selects it among the multiple

available jobs for execution, and submits the job to the scheduler. This core engine scheduler

is responsible for handling interrupts, allowing to organize the complete flow of the data along

the different functional blocks. This is useful because in this way the different engines can

be used in different ways and in different moments of the execution, allowing to generate full

custom layers and networks [22].

In order to reduce the latency, NVDLA introduces the concept of ping-pong mechanism

for register programming. Each NVDLA engine has two groups of registers: group 0 and

group 1. The first group on which the engine is working is the group 0; while the subunit

is executing, the CPU can program the group 1 in background, setting the enable bit of this

group when it is done. When the execution of the processing of the hardware layer terminates

on the first group, the ”enable” bit of this group is cleared, and the CPU switches to the

second group, that becomes active and can process the following hardware layer. Then, the

process repeats, with the CPU that prepares the group 0 in background to process another

layer, and so on. This mechanism allows switching between active layer without wasting

cycles for configuration purposes [22].

5.2 Petalinux tool

As already said in the part dedicated to the hardware implementation, the hardware descrip-

tion of the NVDLA has to be loaded on an SD card in order to be injected in the FPGA.

However, the HDF file generated by SDK is not the only one needed to load correctly the

hardware design on the FPGA. Other files are needed, like the Image file containing all the

Board Support Package of the Zynq Ultrascale+ and a Linux OS on which the board

has to run. In order to generate these image files, Xilinx provide a very useful automatic

tool: Petalinux. Petalinux is a Xilinx development tool that contains everything necessary

to build, develop, test and deploy Embedded Linux systems. It consists on pre-built binary

images, a fully customizable Linux kernel for the Xilinx device that is used, and a Software

Development Kit that automatically configures, compiles and deploys the system that has to

be loaded on the FPGA.

5.3 Petalinux flow

The version that has been used for the purpose of the thesis is Petalinux 2017.4. This version

contains all the source files of the Linux Kernel 4.9, that has been adapted for the Xilinx
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architectures, since it contains some modules related to the Xilinx boards.

The first thing to do is to create the new project and load the HDF file generated by Xilinx

SDK, containing all the implementation informations about the system composed by the

NVDLA and the Zynq Ultrascale+. Two instructions have to be executed:

1 $ petalinux -create --type project --template zynqMP --name

NVDLA_zynq

This first instruction is useful to create a new project, give to it a proper name and assign

the corresponding BSP: the template option, for the purpose of the thesis, has been put to

zynqMP, that corresponds to the Zynq Ultrascale+ BSP.

Then the second instruction can be executed:

$ petalinux -config --get -hw -description =/path/system.hdf

This instruction is executed in the folder of the new project that has just been created, and

it is useful to import the hardware configuration. In this way PetaLinux software platform

is ready to build a Linux system, customized to the hardware platform.

At this point the project can be modified, working on the Linux kernel and on the different

modules that eventually have to be added to the design. This has to be done before performing

the build.

The petalinux-config option can be also used to choose the Linux kernel to be configured.

There is the possibility to use an internal kernel or an external kernel.

In this project the internal kernel has been chosen: the source code can be modified, and this

is useful for debugging purposes.

Petalinux gives the possibility to reconfigure the kernel and to compile it. The first thing can

be done by considering the instruction:

1 $ petalinux -config -c kernel

With this instruction a new window appears in which different options can be modified,

starting from the name of the kernel. To compile the kernel, instead, the instruction:

1 $ petalinux -build -c kernel
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can be executed.

Once the kernel has been defined, the proper modules needed to set the device driver related

to the NVDLA can be created.

A device driver, in general, is the lowest level software which runs on a processor, since it is

directly connected to the hardware implementation of the pheripheral. In this context, the

kernel can be seen as an application based on different device drivers, and each device drivers

is working on a part of the processor. Some device drivers are necessary to the kernel, others

can be added. The ARM architecture defines a way to describe a system hardware: the

device tree. A device tree is a tree data structure with nodes that describe the devices in

a system [21]. The device tree provides informations about the cpu, the memory region, the

clock frequencies used and all the peripherals. When importing the hdf from SDK, a section

dedicated to the programmable logic is also defined. In particular, the NVDLA wrapper is

defined in this way:

1 FPI_wrapper_NVDLA_0: FPI_wrapper_NVDLA@a0000000 {

compatible = "xlnx ,FPI -NVDLA -wrapper -1.0";

3 interrupt -parent = <&gic >;

interrupts = <0 89 4>;

5 reg = <0x0 0xa0000000 0x0 0x10000 >;

}

The interrupt region is referring to the interrupt of the NVDLA, defined in the wrapper.

The reg section, instead, defines the start address (to be considered as 0xa0000000) and

the register size (0x10000), that is 64Kb. This region has been defined during the Vivado

implementation. Finally, the compatible region is used as reference to the source code for the

module insertion. This name must be the same of the one defined in the source code, so it has

to be changed. In order to do this, petalinux provides a file called system-user.dtsi, where

the elements of the device tree can be changed. For what concerns the compatible region,

this has to be added:

&FPI_wrapper_NVDLA{

2 compatible = "nvidia ,nvdla_2";

}

5.4 KMD

A device driver can be added to the Linux kernel is by inserting a module.

A module is a code section that is called by the kernel to communicate with the peripheral

related to it. The module has an interface, constituted by a series of callbacks functions that
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are called when needed.

A module must be compiled with the linux kernel, generating an object element .ko and

loaded in the kernel with the command insmod.

In the case of the NVDLA, the module to be loaded in the linux kernel is nothing else that

the KERNEL MODE DRIVER.

Figure 5.2: The highlighted part of the picture corresponds to the KMD section [22]

The ”main” of the KMD is represented by a file called call callbacks.c, that contains the

probe method. This function is used to perform the device initialization, by initializing

hardware, allocating resources, and registering the device driver. The file also contains some

callback functions. Hardware is registered by relating it to the corresponding physical system

defined in the device driver. The function ”of match” allows to relate the probe function to

the compatible section of the device tree.

Another important method called by the KMD is the drm probe, referring to the Direct

Rendering Manager. It is a Linux kernel subsystem that allows multiple programs to use

video hardware resources together. The DRM is the only system which can communicate with

the GPU, since all elements that want to use it have to ask ”permission” to the DRM, that is

a sort of arbiter which tries to deal with all possible conflicts. The Direct Rendering Manager

is particularly important for the purpose of this thesis because it deals the part of the memory.

NVIDIA provides a precompiled version of the KMD module, but unfortunately it cannot be

used for different reasons.
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First of all, the version of the Linux kernel with which the module is compiled is not the

same of the one used in Petalinux, so when this module is inserted in the linux kernel there

is a problem of compatibility (the pre-built module is compiled with the version 4.13.3 of

the kernel, while the internal kernel that has been used for Petalinux is the 4.9). This

brings to a series of problems also in the source code, that could change between a version

of the kernel and the another one. An example that can be provided is about the function

drm gem object put unlocked, that has been introduced in the 4.13 version of the Linux ker-

nel. This function must be substituted with drm gem object unreference unlocked, that has

the same functionality and it is present in the 4.9 version.

Another change to be performed on the KMD is about the region of memory to be reserved

for the DRM. The method with this functionality is dma declare coherent memory and it is

implemented in the following way:

1 dma=dma_declare_coherent_memory(drm ->dev ,0x40000000 ,0x40000000 ,

0x40000000 , DMA_MEMORY_EXCLUSIVE|DMA_MEMORY_MAP );

if (dma) {

3 err = -ENOMEM;

goto unref;

5 }

The first two addresses of the function represent respectively the physical and the virtual

address to be assigned, the third address parameter represents the size of the memory. If the

settings are left as default, an error occurs, because the physical address dedicated to the DDR

memory of the FPGA, defined during the Vivado implementation, goes from 0x00000000

to 0x80000000 (2 GB). To solve this problem the physical address must be changed to

0x40000000 and the size left as default (in order to reserve 1GB of space, that is enough

to store everything for the NVDLA small). For what concerns the virtual memory, it has

to be reserved from the system RAM. The way in which the memory can be reserved is by

modifying the device tree, as it has been done for the compatible section. The way in which

a memory region can be reserved is:
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1 reserved -memory {

#address -cells = <2>;

3 #size -cells = <2>;

ranges;

5

reserved: buffer@0 {

7 no-map;

reg = <0x0 0x40000000 0x0 0x40000000 >;

9 };

};

In this way, the function can be written as:

dma=dma_declare_coherent_memory(drm ->dev ,0x40000000 ,0x40000000 ,

0x40000000 , DMA_MEMORY_EXCLUSIVE|DMA_MEMORY_MAP );

2 if (dma) {

err = -ENOMEM;

4 goto unref;

}

After having performed all these changes, the module is ready to be compiled. Again,

also in this case, Petalinux is very helpful, because it gives the possibility of compiling any

custom module to be added to the kernel. The command with which the module can be

created is:

1 $ petalinux -create -t modules -name nvdla

A new folder is created in the Petalinux project and the source files of the modules can

be inserted there. Then, in order to compile the module with the linux kernel inserted in

Petalinux, another command has to be executed:

1 $ petalinux -build -c rootfs

Now that the module is ready, the device tree has been modified properly and the kernel has
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been chosen, the complete project can be built. The command to be executed is simply:

1 $ petalinux -build

This command compiles the kernel, generates the system image, and builds the module

opendla.ko. The ZCU102 board requires another format of the system image, called uImage.

In order to the generate it, the following command can be executed:

1 $ petalinux -package --image -c kernel --format uImage

Finally, the BOOT file can be generated. It is a sort of container storing all informations

about the bitstream, the board support package and the system image. It can be generated

with the following command:

1 $ petalinux -package --boot --fsbl /path/images/linux/zynqmp.fsbl

--fpga /path/images/linux/system.bit --pmufw

3 /path/images/linux/pmufw.elf --u-boot

Now, everything is ready to be loaded on the FPGA. On the SD card, the BOOT, the uImage

file and the module are stored, together with the compiled module opendla.ko . The FPGA

can communicate with a PC by means of a terminal with a UART connection. The linux OS

is immediately loaded when the FPGA is switched on. The first thing to do is to insert the

module. The command is the following:

1 $ insmod opendla.ko

This command generates the following output:

1 $ opendla: loading out -of -tree module taints kernel.

$ reset engine done

3 $ [drm] Initialized nvdla 0.0.0 20171017 for

a0000000.FPI_wrapper_NVDLA on minor 1

5 $ Module inserted correctly (dma= 0)

This is showing that the device has been registered correctly. At this point, the application
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can be finally run.

5.5 UMD

The USER MODE DRIVER provides an Application Programming Interface (API) for pro-

cessing loadable images, submitting inference jobs to KMD. This layer loads the network into

memory in a defined set of data structures, and passes it to the KMD. In Linux, the function

which passes data from the user mode driver to the kernel mode driver is the ioctl(). User

Mode Driver also implements some low level functions.

Figure 5.3: The highlighted part of the picture corresponds to the UMD section [22]

The UMD is characterized by two parts:

• The first part is about the runtime interface: at this point the weights, that are present

in the pre-compiled loadable file, are stored into memory, that is allocated dynamically.

The same thing happens to the input image, that is organized as an input vector before

being saved.

• In the second part the job is submitted to the KMD: this is the point where the inference

is really performed; the type of operation to be executed depends on the information

stored in the loadable file.

The functions to access the NVDLA, allocate memory and organize the input image are

implemented in the UMD as a portability layer: for these functionalities UMD has to
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communicate with KMD and the communication interface is OS dependent.

The USER MODE DRIVER has to be compiled. This can be done by performing cross-

compilation because the UMD has to be compiled for ARM. As the NVDLA website suggests,

the UMD can be compiled in the following way:

1 $ export TOOLCHAIN_PREFIX=aarch64 -linux -gnu

This instruction is used to select the cross-compiler.

1 $ export TOP=/path/output

This instruction is used to select the output folder on which the bin file will be generated.

1 $ make

With this instruction the compilation is performed.

After the compilation, a runtime file will be generated. At this point, the runtime file,

together with a runtime library that is also generated during the compilation, is loaded on

the SD card.

Once the FPGA is ready, the runtime test can be run in this way:

1 $ ./ runtime --loadable regression/flatbuf

NVIDIA provides some pre-compiled loadable files for the NVDLA small. They allow

to test all the engines separately (CONVOLUTION, NORMALIZATION, POOLING and

ACTIVATION). Moreover there is one loadable file that implements the AlexNet architecture,

that is a complete Neural Network thanks to which the real performances of the NVDLA can

be evaluated. When a layer is executed, this message appears:

1 [...]

$[ 5461.882359] Handle cdma weight done event , processor

3 Convolution group 1

$[ 5461.883182] Handle op complete event , processor Convolution
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5 group 1

$[ 5461.883953] Enter:dla_op_completion processor Convolution

7 group1

$[ 5461.884713] Completed Convolution operation index 28 ROI 0

9 $[ 5461.885417] 4 HWLs done , totally 30 layers

[...]

The first four rows indicate that in this a Convolutional operation is being executed, so

the Convolutional engine is invoked. Also the number of the group on which the hardware

layer is processed is indicated: this number is alternating between 0 and 1 due to the ping-

pong mechanism. The last row indicates the number of the hardware layers executed, and

the total number of the hardware layers for the architecture stored in the loadable (in this

case the architecture is the AlexNet).

When all the hardware layers are computed and the process is finished, the following message

is shown:

$ Shutdown signal received

2 $ Work done!

$ Test passed

This indicates that the test has been executed correctly.





CHAPTER 6

Results and observations

This last chapter shows in detail the results obtained with the runtime test executed on the

FPGA. The performances at difference frequencies will be shown, observing first the execution

times of the different engines working separately, and then the ones of the AlexNet. Then, a

comparison with other architectures will be done in order to understand the potentialities of

the NVDLA. Finally, some observations will be done on the different versions of the NVDLA,

moving from the small to the large architecture

6.1 Summary of the hardware implementation results

Before entering in details about the performances reached by the NVDLA at different frequen-

cies, it is important to realize a summary of the hardware characteristics of each architecture,

in order to understand the differences between them [Table 6.1]. This analysis has been al-

ready done in the chapter 4, when talking about the hardware implementation, but the table

represented here puts all the results together, in order to have a good reference.

UTILIZATION % TIMING POWER

Frequency LUT DSP BRAM WNS WPWS Static Dynamic

10 MHz 29,54 1,27 11,02 43,449 ns 48,498 ns 0,726 W 3,248 W

20 MHz 29,54 1,27 11,02 16,487 ns 23,498 ns 0,727 W 3,310 W

50 MHz 29,54 1,27 11,02 3,371 ns 23,498 ns 0,728 W 3,493 W

75 MHz 29,54 1,27 11,02 0,561 ns 8,498 ns 0,729 W 3,651 W

Table 6.1

71
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6.2 Performances analysis

The runtime code and the way to compile it have been described in the previous chapter

about software implementation. Different tests have to be performed, first of all considering

the different engines separately, then working on a complete neural network architecture, the

AlexNet.

6.2.1 Convolution engine

Before talking about the convolution engine performance, it is important to highlight a very

important aspect about the pre-compiled loadable file related to the convolution. It actually

processes two layers: the first one implements the convolution, while the second one imple-

ments a normalization function, invoking the normalization engine. This is due to the fact

that the convolution operation does not send data back to memory when the layer has been

processed, so there is a need of another layer able to do the storage of the output data. For

this reason, from now on, when talking about the time of execution of a convolution, this will

be actually referred to the time of execution of a convolution plus the time of execution of a

normalization layer.

Assumed this, the table 6.2 shows all the details about the performances of the convolution

engine with the NVDLA working at different frequencies. The execution time refers to the

time required to perform a job, and it has been computed with some timestamps obtained

using the chrono C library. The value referred to the FPS (Frames per second) is derived

from the following formula:

FPS = 1000
Execution time(ms)

This is a very simplified computation, that does not take into account other elements like the

time to process data, anyway this could be a good reference.

Frequency Time of execution Frames per second (FPS)

10 MHz 4.382854 ms 22.8162

20 MHz 2.27813 ms 43.8957

50 MHz 1.021350 ms 97.9096

75MHz 0.740587 ms 135.028

Table 6.2: Table describing the performance of the convolution engine in terms of time of

execution and frames per second
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Figure 6.1: Variation of the execution time of a convolution at different frequencies

Figure 6.2: Variation of the frames per second processed for a convolution at different fre-

quencies

Figures 6.1 and 6.2 represent, respectively, the performances of the Convolution engine in

terms of execution time and frames per second. It is important to notice that the performances

change linearly with respect to frequency; the FPS increase in a linear way when the frequency

increases.



Results and observations 74

6.2.2 Activation engine

The same results have been obtained processing the hardware layer of the activation function.

Table 6.3 shows them in details.

Frequency Time of execution Frames per second (FPS)

10 MHz 1.132321 ms 883,1

20 MHz 0,709038 ms 1410,4

50 MHz 0,381395 ms 2622

75MHz 0,312873 ms 3196,2

Table 6.3: Table describing the performance of the activation engine in terms of time of

execution and frames per second

Figures 6.3 and 6.4 represent, respectively, the performances of the Activation engine in

terms of execution time and frames per second. Also here, as for convolution, the perfor-

mances change almost linearly with respect to the frequency.

Figure 6.3: Variation of the execution time of an activation function at different frequencies
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Figure 6.4: Variation of the frames per second processed for an activation function at different

frequencies

6.2.3 Normalization engine

The results concerning the performance of the normalization engine are shown in table 6.4,

while Figures 6.5 and 6.6 indicate that the variation of the FPS is still linear with respect to

frequency.

Frequency Time of execution Frames per second (FPS)

10 MHz 0,500145 ms 1999,4

20 MHz 0,371304 ms 2693,2

50 MHz 0,230493 ms 4338,5

75MHz 0,164331 ms 6085,3

Table 6.4: Table describing the performance of the normalization engine in terms of time of

execution and frames per second



Results and observations 76

Figure 6.5: Variation of the execution time of a normalization function at different frequencies

Figure 6.6: Variation of the frames per second processed for a normalization function at

different frequencies

6.2.4 Pooling engine

Finally, the pooling engine is analyzed. From the table 6.5 and the following figures 6.7 and

6.8, the same behavior of the other engines can be noticed.
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Frequency Time of execution Frames per second (FPS)

10 MHz 0,507205 ms 1971,6

20 MHz 0,376684 ms 2654,7

50 MHz 0,231863 ms 4312,9

75MHz 0,167892 ms 5956,2

Table 6.5: Table describing the performance of the pooling engine in terms of time of execution

and frames per second

Figure 6.7: Variation of the execution time of a pooling operation at different frequencies
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Figure 6.8: Variation of the frames per second processed for a pooling operation at different

frequencies

6.2.5 Alexnet performance

The most important test has been performed taking into account a complete neural network

architecture, the AlexNet (2012). This architecture processes all the layers described before,

and in particular it is defined as a thirty layer architecture.

Before showing the details about the performance for the different frequencies, it is important

to do two observations:

• the pre-compiled loadable file is impossible to read: it contains the description of the

architecture but also the input image, that is not possible to see; this means that the

AlexNet can receive at the input only the image given by the compiler, so it is not

possible to change the image;

• the output file that is generated is a binary file, so it is not possible to observe the final

classification; however, the output file has been compared with the one given by the

NVDLA developers, and it is the same, so the result is assumed to be correct.

Given these observations, the performances of the AlexNet architecture, in terms of execution

time and FPS, can be evaluated: the approach is the same used for the computation of the

performances of the single engines. Table 6.6 shows in details these performances.
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Frequency Time of execution Frames per second (FPS)

10 MHz 2438,84 ms 0,41

20 MHz 1220,28 ms 0,8195

50 MHz 490,41 ms 2,0391

75MHz 329,17 ms 3,038

Table 6.6: Table describing the performance of the AlexNet neural network in terms of time

of execution and frames per second

Figures 6.9 and 6.10 describe the behavior of the AlexNet NN with respect to frequency.

It can be noticed that the behavior, as expected, is linear.

Figure 6.9: Variation of the execution time of the AlexNet NN at different frequencies
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Figure 6.10: Variation of the frames per second processed for the Alexnet NN at different

frequencies

Comparison of the AlexNet NN performance between the NVDLA and other

architectures

The structural limits of the Zynq Ultrascale+ FPGA do not give the possibility of imple-

menting the NVDLA working at a high frequency. Moreover, the version that has been

implemented is the ”small” one, characterized by a low number of MACs (64) and a low

computational power. This results in performances that are not comparable with the ones of

other architectures, like the GPU, that works at frequencies that are much higher, and with

a much higher number of resources.

However, the linear behavior of the graph in figure 6.10 is a good reason to think that, grow-

ing in frequency, the performances of the NVDLA will be quite good. A projection can be

obtained by generating the line that best fits for the available data, and then the results can

be observed considering the value of that line at a point that corresponds to the frequency

to be analyzed. This does not give the exact result, but at least it suggests an idea of the

behavior of the NVDLA at higher frequencies, for what concerns the ”small” architecture.

Using Matlab and the function fit, a line is generated. The line is represented in figure 6.11

and it has the following equation:

y = 0.0404x+ 0.009441
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Figure 6.11: Line fitting for the points representing the performance in terms of FPS of the

NVDLA, when the AlexNet is processed

From Figure 6.11 it can be noticed that the fitted line actually passes through the four points,

so this line is very close to the real line. Now it is possible to find the performance in terms

of FPS at higher frequencies.

The comparison was done taking into account the paper [23], where a performance analysis

on inference has been done on some NVIDIA architecture and an Intel i7 core. The AlexNet

is run on these architectures, and the reference frequency is 690 MHz. Before performing

the comparison, the value of the AlexNet performance of the NVDLA has to be evaluated at

690 MHz. Considering the fitted line that has been computed previously, it comes out that

at 690 MHz the AlexNet is processed at 28 FPS. Table 6.7 summarizes all details about the

performance analysis on the difference architectures.

Architecture Performance (FPS, @690 MHz)

NVIDIA Tegra X1 47

Xeon E52698 v3 67

Intel Core i7 6700K (FP32) 62

NVIDIA NVDLA small 28

Table 6.7: Table describing the performance of different architectures when the AlexNet NN

is processed

The performances of the NVDLA are still lower, but it is important to consider that the
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architecture is very small, with a very low number of MACs and it occupies only the 29% of

the resources of an FPGA that is not the most powerful one. For this reason, these results are

quite acceptable. Increasing the number of MACs, this number is expected to increase in a

way that is nearly linear with respect to the dimensions of the convolutional block. Moreover,

the full architecture has some engines (like the Rubik), that are able to modify the size and

the dimensions of the input image, making the computation faster.

Another parameter that can be used to compare the different architectures is power con-

sumption. In the chapter about the hardware implementation, a power analysis has been

done, considering the different power consumptions at different frequencies. The variation of

the power consumption with respect to frequency is shown in Figure 6.12: it can be noticed

that this variation is very small, as it is expected for an FPGA.

Figure 6.12: Variation of the power consumption of the NVDLA at different frequencies

Considering the power consumption, it is possible to evaluate another parameter that

in general is taken as reference when analyzing the neural networks. Again, this can be

evaluated only for low frequencies, but the reasoning is the same done for the performance

curve. The table 6.8 shows the values of the power efficiency (FPS/W).
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Frequency Power efficiency

10 MHz 0,1032 FPS/W

20 MHz 0,2030 FPS/W

50 MHz 0,4831 FPS/W

75 MHz 0,6936 FPS/W

Table 6.8: Table describing the power efficiency reached by the NVDLA at different frequen-

cies

The line fitting for the points indicated in table 6.8, computed in Matlab, is represented

in figure 6.13 and has the following equation:

y = 0.009091x+ 0.01845

Figure 6.13: Line fitting for the points indicating the power efficiency reached by the NVDLA

at different frequencies

Projecting this line at 690 MHz, the power efficiency that is obtained is 6,3 FPS/W. The

table 6.9 shows the comparison between the power efficiency of the different architectures

already analyzed before.
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Architecture Power efficiency (@690 MHz)

NVIDIA Tegra X1 8,6 FPS/W

Xeon E52698 v3 0,7 FPS/W

Intel Core i7 6700K (FP32) 1,3 FPS/W

NVIDIA NVDLA small 6,3 FPS/W

Table 6.9: Table describing the comparison about the power efficiency between the different

architectures

The power efficiency of the NVDLA is much bigger than the one Xeon and the one of the

i7 core, and almost equal to the Tegra X1 GPU. From the point of view of the power efficiency

the results are satisfactory: moreover, it is always important to notice that the utilization of

the FPGA is still very small; increasing the dimensions of the NVDLA the power efficiency

could still increase, as it will be shown in the following section.

Observation about tests on different Neural Networks

The AlexNet neural network, as well as the individual engines, can be tested on the NVDLA

”small” because NVIDIA provides some pre-compiled loadable files. In order to test other

architectures, the compiler, that generates the loadable file starting from the Caffe model, is

needed, as explained in the previous chapters. Unfortunately, the compiler that NVIDIA has

released up to now can only generate loadable files for the FULL architecture of the NVDLA.

A configurable compiler is still missing, and that is the reason why other neural networks can

not be tested at the moment. Due to the absence of the compiler, moreover, is not possible

to generate loadable files that contain only the architecture of the neural network (recall that

the pre-compiled loadable also includes the input image to be analyzed): this does not allow

the user to choose its own input image to be tested.

Anyway, the results obtained with the AlexNet are quite acceptable, because they show the

performance that the NVDLA ”small” can have on the FPGA.

6.3 From ”small” to ”large” architecture: result analysis

In chapter 4, the last section was dedicated to the study of architectures that are bigger with

respect to the ”NVDLA small”. In particular, two architectures have been taken as reference:

the ”NVDLA 256” and the ”NVDLA 512”, that increase the number of resource of the FPGA

that are used. Table 6.10 summarizes the most important results for the resource utilization,
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comparing the different versions of the NVDLA.

NVDLA version LUT (%) BRAM (%) DSP (%)

NVDLA ”small” 80959 (29,54%) 100.50 (11,02 %) 1 (0,25 %)

NVDLA ”256” 105177 (38,37%) 159 (17,43%) 1 (0,25 %)

NVDLA ”512” 164898 (60,16 %) 193,50 (21,22 %) 65 (2,59 %)

Table 6.10: Table describing the utilization percentage of the resource with different versions

of the NVDLA

Unfortunately, without the configurable compiler, it is not possible to test these bigger

architectures. Another reason for which tests are not possible is that the NVDLA ”256” and

the NVDLA ”512” have not been tested by the developers of the NVDLA and they are not

stable (a lot of compilation error where found when synthesizing these architectures).

However, a good analysis can be done about the power consumption, in order to have an idea

about the variation of power depending on the number of resources of the FPGA used.

It is very useful to notice that, even with a quite high increasing of the occupation of resources

of the FPGA, the power consumption remains more or less the same. This concept can be

retrieved from table 6.11.
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NVDLA version Frequency Total power

NVDLA ”small”
10 MHz 3,975 W

20 MHz 4,037 W

50 MHz 4,221 W

75 MHz 4,38 W

NVDLA ”256”
10 MHz 3.987

20 MHz 4,062

50 MHz 4.285

75 MHz 4,471

NVDLA ”512”
10 MHz 4.096

20 MHz 4,204

50 MHz 4,387

75 MHz 4,624

Table 6.11: Table showing the power consumption of the different versions of the NVDLA at

different frequencies

Increasing the dimensions of the NVDLA means increasing the number of MACs and

the size of the convolutional buffer (just to recall, moving from the NVDLA ”small” to the

NVDLA ”512”, the number of MACs increases from 64 to 512). This suggests that the

performances tend to increase, because the operations can be executed in parallel among the

different convolutional elements: even if the performances can not be retrieved, it seems quite

logical to think that, doubling the number of MACs, the execution time of the convolution

operation halves, because the operations are distributed among a number of elements that is

the double with respect to the initial one.

Considering this hypothesis, the Power efficiency could still increase to a value which is much

bigger than any other architecture used for the comparison.
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Conclusions and future works

The main aim of the thesis was to verify the performances and the behavior of the NVDLA,

implemented on FPGA. In order to obtain these results, different commercial tools, as the

Vivado Tool Suite and Petalinux, were learnt and used in order to take advantages of all their

potentialities.

The performances have been evaluated at different frequencies, observing the decreasing

of the execution time when the frequency increased.

Unfortunately, the FPGA was quite small, so there wasn’t the possibility to work with the

FULL architecture of the NVDLA, that is the biggest architecture containing the maximum

number of MACs, the maximum size of the convolutional buffer, some optimizations for

the different engines (as explained in the previous chapters) and the secondary memory

interface. However, the performances that have been obtained with the NVDLA small were

quite satisfactory, considering just the 30% of the resource utilization of the FPGA. Moreover,

the frequencies at which the NVDLA small has been tested were quite low with respect to the

frequencies at which in general these accelerators work. The reason of this, again, is in the

FPGA and its speed grade, as explained previously: a sort of projection has been done, in

order to compare the performances of the NVDLA with other architectures. Of course, these

are not exact results, but at least they give an idea of the behavior of the Deep Learning

Accelerator by NVIDIA.

• The performances of the NVDLA at 75 Mhz, that is the highest frequency at which the

accelerator works correctly on the Zynq Ultrascale+ FPGA is about 3 fps.

• The performances of the NVDLA at 690 MHz, obtained drawing the line that fits for the

points obtained from the experimental data is 28 FPS. These performances are lower

with respect to the ones obtained with the GPUs, for example, but the dimensions of

the accelerator and the lower power consumption with respect to the other systems

have to be taken into account.

87
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In order to highlight the configurability property of the NVDLA, that is one of the most

important advantages of this architecture, different versions of the accelerator have been

implemented: of course, the resource utilization of the NVDLA increased, as well as perfor-

mances.

The absence of the compiler, underlined in the result chapter, was a quite important issue

in the development of this thesis. The performances could be evaluated only for a neural

network, the AlexNet, and unfortunately there wasn’t the possibility to test the NVDLA for

other neural networks, like the GoogleNet. In this context, it is important to underline the

future works that are possible to make with this architecture. First of all, once the compiler

will be released by NVIDIA, different neural networks could be applied to the system, in order

to understand their performances. Moreover, a custom image could be considered as input,

as in this moment this is not possible because the pre-compiled loadable file that NVIDIA

provides already contains an input image that is not possible to change. Finally, since the

compiler is assumed to be configurable, it could be possible to verify the performances of

other versions of the NVDLA different from the NVDLA small.

However, the 28 fps obtained with an architecture with a so small number of MACs (64)

and with a so small FPGA accuracy is very satisfactory, and demonstrates that the NVIDIA

Deep Learning Accelerator opens to a lot of possibilities. This is confirmed by the fact that

NVIDIA has released its new version of the Jetson platform, the Jetson Xavier, that has

two NVDLAs incorporated [24]. It is assumed to become the heart of the new ”intelligent

machines”, so it is perfectly suitable for automotive applications.

So, to conclude, this thesis demonstrated the configurability and the scalability properties of

the NVDLA. It has been shown that the structure can be adapted to every kind of application,

and this is a novelty for these kinds of accelerators. In this context, the FPGA is perfect for

this kind of application: the implementation on FPGA guarantees low power consumption.

This can be useful to run networks with high power efficiency, making the FPGA a good

platform to perform development and prototyping of new architectures that later will be

integrated on SoC.

The NVDLA is completely custom: this is an extreme adaptation of the HW with respect to

the neural network to be run. Most of the vendors of these accelerators are going through

this direction.
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APPENDIX A

Appendix

A.1 nv small.spec

1 #d e f i n e FEATURE DATA TYPE INT8

#d e f i n e WEIGHT DATA TYPE INT8

3 #d e f i n e WEIGHT COMPRESSION DISABLE

#d e f i n e WINOGRAD DISABLE

5 #d e f i n e BATCH DISABLE

#d e f i n e SECONDARY MEMIF DISABLE

7 #d e f i n e SDP LUT DISABLE

#d e f i n e SDP BS ENABLE

9 #d e f i n e SDP BN ENABLE

#d e f i n e SDP EW DISABLE

11 #d e f i n e BDMA DISABLE

#d e f i n e RUBIK DISABLE

13 #d e f i n e RUBIK CONTRACT DISABLE

#d e f i n e RUBIK RESHAPE DISABLE

15 #d e f i n e PDP ENABLE

#d e f i n e CDP ENABLE

17 #d e f i n e RETIMING DISABLE

#d e f i n e MAC ATOMIC C SIZE 8

19 #d e f i n e MAC ATOMIC K SIZE 8

#d e f i n e MEMORY ATOMIC SIZE 8

21 #d e f i n e MAX BATCH SIZE x

#d e f i n e CBUF BANK NUMBER 32

23 #d e f i n e CBUF BANK WIDTH 8
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#d e f i n e CBUF BANK DEPTH 512

25 #d e f i n e SDP BS THROUGHPUT 1

#d e f i n e SDP BN THROUGHPUT 1

27 #d e f i n e SDP EW THROUGHPUT x

#d e f i n e PDP THROUGHPUT 1

29 #d e f i n e CDP THROUGHPUT 1

#d e f i n e PRIMARY MEMIF LATENCY 50

31 #d e f i n e SECONDARY MEMIF LATENCY x

#d e f i n e PRIMARY MEMIF MAX BURST LENGTH 1

33 #d e f i n e PRIMARY MEMIF WIDTH 64

#d e f i n e SECONDARY MEMIF MAX BURST LENGTH x

35 #d e f i n e SECONDARY MEMIF WIDTH 512

#d e f i n e MEM ADDRESS WIDTH 32

37 #d e f i n e NUM DMA READ CLIENTS 7

#d e f i n e NUM DMA WRITE CLIENTS 3

39

41

#inc lude ” p r o j e c t s . spec ”

A.2 Declaration of the ports in the top entity of the NVDLA

module NV nvdla (

2 d l a c o r e c l k // |< i

, d l a c s b c l k // |< i

4 , g l o b a l c l k o v r o n // |< i

, t m c 2 s l c g d i s a b l e c l o c k g a t i n g // |< i

6 , d l a r e s e t r s t n // |< i

, d i r e c t r e s e t // |< i

8 , test mode // |< i

, c sb2nvd l a va l i d // |< i

10 , csb2nvdla ready // |> o

, csb2nvdla addr // |< i

12 , csb2nvdla wdat // |< i

, c sb2nvd la wr i t e // |< i

14 , csb2nvdla nposted // |< i
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, nvd l a2c sb va l i d // |> o

16 , nvdla2csb data // |> o

, nvdla2csb wr complete // |> o

18 , nvdla core2dbb aw awval id // |> o

, nvdla core2dbb aw awready // |< i

20 , nvdla core2dbb aw awid // |> o

, nvdla core2dbb aw awlen // |> o

22 , nvdla core2dbb aw awaddr // |> o

, nvdla core2dbb w wval id // |> o

24 , nvdla core2dbb w wready // |< i

, nvdla core2dbb w wdata // |> o

26 , nvdla core2dbb w wstrb // |> o

, nvdla core2dbb w wlast // |> o

28 , nvd la co re2dbb b bva l id // |< i

, nvdla core2dbb b bready // |> o

30 , nvd la core2dbb b bid // |< i

, n v d l a c o r e 2 d b b a r a r v a l i d // |> o

32 , nvd la core2dbb ar ar r eady // |< i

, nvd l a co r e2dbb ar a r id // |> o

34 , nvd l a co r e2dbb ar a r l en // |> o

, nvd la core2dbb ar araddr // |> o

36 , n v d l a c o r e 2 d b b r r v a l i d // |< i

, nvd la co re2dbb r r r eady // |> o

38 , n v d l a c o r e 2 d b b r r i d // |< i

, n v d l a c o r e 2 d b b r r l a s t // |< i

40 , nvd la co r e2dbb r rdata // |< i

, d l a i n t r // |> o

42 , nvdla pwrbus ram c pd // |< i

, nvdla pwrbus ram ma pd // |< i ∗

44 , nvdla pwrbus ram mb pd // |< i ∗

, nvdla pwrbus ram p pd // |< i

46 , nvdla pwrbus ram o pd // |< i

, nvdla pwrbus ram a pd // |< i

48 ) ;
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A.3 NVDLA apb to csb converter

module NV NVDLA apb2csb (

2 pc lk

, prstn

4 , csb2nvdla ready

, nvdla2csb data

6 , nvd l a2c sb va l i d

, paddr

8 , penable

, p s e l

10 , pwdata

, pwr i te

12 , csb2nvdla addr

, csb2nvdla nposted

14 , c sb2nvd l a va l i d

, csb2nvdla wdat

16 , c sb2nvd la wr i t e

, prdata

18 , pready

) ;

20 input pc lk ;

input prstn ;

22 //apb i n t e r f a c e

input p s e l ;

24 input penable ;

input pwri te ;

26 input [ 3 1 : 0 ] paddr ;

input [ 3 1 : 0 ] pwdata ;

28 output [ 3 1 : 0 ] prdata ;

output pready ;

30 // csb i n t e r f a c e

output c sb2nvd l a va l i d ;

32 input csb2nvdla ready ;

output [ 1 5 : 0 ] csb2nvdla addr ;

34 output [ 3 1 : 0 ] csb2nvdla wdat ;

output c sb2nvd la wr i t e ;



Appendix 97

36 output csb2nvdla nposted ;

input nvd l a2c sb va l i d ;

38 input [ 3 1 : 0 ] nvdla2csb data ;

// input nvdla2csb wr complete ;

40 reg rd t r a n s l ow ;

wire r d t r a n s v l d ;

42 wire wr t ran s v ld ;

a s s i g n wr t ran s v ld = p s e l & penable & pwrite ;

44 a s s i g n r d t r a n s v l d = p s e l & penable & ˜ pwrite ;

always @( posedge pc lk or negedge prstn ) begin

46 i f ( ! prstn ) begin

r d t r a n s l ow <= 1 ' b0 ;

48 end e l s e begin

i f ( nvd l a2c sb va l i d & r d t ra n s l ow )

50 r d t r a n s l ow <= 1 ' b0 ;

e l s e i f ( c sb2nvdla ready & r d t r a n s v l d )

52 r d t r a n s l ow <= 1 ' b1 ;

end

54 end

a s s i g n c sb2nvd l a va l i d = wr t ran s v ld | r d t r a n s v l d &

56 ˜ r d t r a n s l ow ;

a s s i g n csb2nvdla addr = paddr [ 1 7 : 2 ] ;

58 a s s i g n csb2nvdla wdat = pwdata [ 3 1 : 0 ] ;

a s s i g n c sb2nvd la wr i t e = pwrite ;

60 a s s i g n csb2nvdla nposted = 1 ' b0 ;

a s s i g n prdata = nvdla2csb data [ 3 1 : 0 ] ;

62 a s s i g n pready = ˜( wr t ran s v ld & ˜ csb2nvdla ready | r d t r a n s v l d &

˜ nvd la2c sb va l i d ) ;

64 endmodule // NV NVDLA apb2csb


		Politecnico di Torino
	2018-10-09T06:30:03+0000
	Politecnico di Torino
	Maurizio Martina
	S




