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Summary

An embedded system security can be violated at different levels of abstraction: the vulnerability
is not only present from software point of view, but also the hardware can be attacked.

This thesis is focused on an hardware attack at logic/microelectronic level called Differential Power
Analysis (DPA), included in the larger categories of the Power Analysis (PA) and Side-Channel Anal-
ysis, catalogued like a passive and non-invasive attack, since it includes the observation of the normal
behaviour of the device without any physical alteration. As a consequence, this kind of attack could
be extremely dangerous and it doesn’t leave any trace.

A DPA attack is essentially based on the principle that the power consumption is correlated to
the activity of the device during data encryption, so also to the used encryption key. Thus, using
statistical analysis on a sufficiently large number of power traces, it is possible to detect the correct
hypothesis for the key.

Due to the improvement of FPGAs in terms of capacity and performance and the significant in-
crement of the value of handled data, it is essential to do an analysis of the level of vulnerability of
the device. For this reason, the MachXO2-7000 FPGA included, together with a STM32F4 CPU and
a SLJ52G SECURITY CONTROLLER-SMART CARD, inside the BGA chip SEcubeTM, appositely
designed for security goals, is the chosen target for this thesis.

The FPGA was programmed with a VHDL code of AES-256/AES-128 (both in ECB and CBC
Block Cipher Modes), among the most used encryption algorithms for symmetric key cryptography.
The verification of the correct behaviour and the simulations related to the used area and power
consumption were reported.

Later, all the possible power supply accesses of the given board were searched and power traces were
acquired from a LeCroy waveRunner 6030 Digital Oscilloscope, making comparisons between them.
For the acquisitions also a Tektronix TM502A Current Probe and an handmade USB-USB/BNC Con-
nector were used.

Exploiting Jlsca DPA Tool, different versions of DPA were applied on the collected data, then
the results were elaborated. To underline the most relevant results, a simple MATLAB code that
compared every key hypothesis with the used one was written, calculating the difference function and
the number of hit bits and plotting all the results and some bar diagrams to compare in particular
the four different versions of the encryption (AES-256 CBC, AES-256 ECB, AES-128 CBC, AES-128
ECB) with all the different instrumentation used, the variations obtained changing the working fre-
quency and the number of samples considered.

The main problem identified in the application of the DPA attack was the presence of decoupling
capacitors in correspondence to the FPGA power supply accesses. Indeed, they are considered like a
"natural" countermeasure against this kind of attack.

Finally these results were compared with the ones reported in literature, some conclusions were
deducted and possible future works and improvements were proposed.
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CHAPTER 1

Introduction

1.1 General Overview and Objectives

The main target of this thesis was getting an analysis of the level of vulnerability of the FPGA con-
tained inside SEcubeTM board against a DPA attack.
First of all, due to the complexity and the variety of topics included by the thesis, a deep research
related to the theoretical part and the state of the art, both for the DPA attack and the cryptography
algorithms, was necessary to get the right coordinates for moving inside the theme.
Subsequently there was the familiarization with new tools, programming languages, SEcubeTM board
and laboratory instrumentation.
In particular, Lattice Diamond and Active-HDL Lattice Edition were used for writing VHDL code,
simulating its behaviour, the used area, the timing and the power consumption. For the creation of
the files used for programming the FPGA, Lattice Diamond Run Manager and Lattice Diamond Pro-
grammer were exploited. Then, the final file was used by Diamond Deployment Tool for the generation
of a vector of bitstreams, exploited for the C code in System Workbench for STM32 environment.
The power traces acquisition was executed automatically by LeCroy waveRunner 6030 digital oscillo-
scope, exploiting a previously defined trigger signal that indicated the encryption interval. A careful
examination of SEcubeTM schematics was necessary to individuate the possible power supply accesses
and some tips were used to improve the quality of the measurements. The traces were acquired in
different conditions, using different power supply accesses, four different versions of the encryption
(AES-256 CBC, AES-256 ECB, AES-128 CBC, AES-128 ECB), different instrumentation (in addition
to the classic voltage probe, the Tektronix TM502A current probe and an handmade USB-USB/BNC
connector), three different working frequencies (66.50 MHz, 38.00 MHz and 2.08 MHz) and finally
varying also the number of samples.
Exploiting Jlsca DPA Tool, written in Julia programming language (specifically designed for high-
performance numerical analysis), different versions of DPA were applied on the collected data, then
the results were elaborated. MATLAB was used for the plots and the data comparisons.
Finally, the conclusions concerning the obtained results were elaborated starting from the graph
specifically plotted for the different comparisons and the analysed literature.

1
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1.2 Thesis Overview

The thesis was organized in seven chapters:

Chapter One - Introduction:
General overview of topics, tools and instrumentation related to the thesis and of its main goals,
followed by a brief summary of all the chapters.

Chapter Two - Differential Power Analysis (DPA) Key Concepts:
Summary of the main topics related to DPA, including a brief overview of the possible attacks at
the different levels of abstraction, focusing on the Power Analysis (PA), the differences between
Simple Power Analysis (SPA) and Differential Power Analysis (DPA), reporting the advantages
and the disadvantages and the necessary conditions for the success of the DPA attack.
It follows a detailed description of all the stages of the attack, that are: the choice of the instru-
mentation and of the settings (including precautions for improving the quality of the traces),
the acquisition of the measurements, the processing of the obtained traces (alignment and deci-
mation), the selection function generation, the averaging and the evaluation.
Since the thesis concerned the Advanced Encryption Standard (AES) executed on a FPGA, the
related technical insights were described.
Finally, overviews concerning the statistical methods, the possible variants of DPA and the
applicable countermeasures were reported and in conclusion it was added the state of the art,
containing the overview and summaries of some of the most interesting articles present in liter-
ature concerning the Differential Power Analysis (DPA).

Chapter Three - Cryptography Overview:
A brief description of cryptography main targets was reported, together with an explanation
of the used notation. It follows the classification of the kinds of encryption algorithms and the
description of their characteristics. The possible modalities of security, the properties of a good
encryption and the main types of attack were described.
Afterwards, a section was dedicated to the Private-Key Algorithms, divided in Stream Ciphers
(synchronous, self-synchronizing) and Block Ciphers (in particular, DES, 3DES, AES, Blowfish
and Twofish) and another section was dedicated to Public-Key Algorithms, with a focus on
Diffie-Hellman Key Exchange and RSA.
The main strategies for the management of plaintexts longer than 128 bits were described with
a focus on the peculiarities, the advantage and the disadvantages, in particular: Electronic
Codebook (ECB), Cipher Block Chaining (CBC), Propagating Cipher Block Chaining (PCBC),
Cipher Feedback (CFB), Output Feedback (OFB), Counter (CTR).
In conclusion, as also done for DPA, overview and summaries of some of the most interesting
articles concerning encryption algorithms were described.

Chapter Four - AES VHDL Code and Board Programming:
A brief overview of SEcubeTM board and in particular the schematics used for writing the .lpf
file were reported. After, all the passages and the details related to VHDL code for AES-256
(firstly in ECB mode, then also in CBC mode), reporting the block scheme of the FSM, the
results of the testbenches, the verifications, the design summary, the timing report, some RTL
views and the comparisons between the two proposed architectures. Finally some modifications
were added, in order to allow the acquisitions in laboratory and the DPA application, together
with the comparisons related to the changes in the architecture.
All the passages related to the exportation of the VHDL code from Lattice Diamond to System
Workbench for STM32 environment, using Diamond Deployment Tool and the preparation of
the C code were described in detail.
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Chapter Five - Measurements in Laboratory:
Some figures acquired from the digital oscilloscope related to the verification of the correct
behaviour of the board through some testing signals previously defined were inserted, followed
by pictures and plots related to the different tried situations. In particular, the traces were
acquired in the following cases: running frequency of 66.50 MHz and handmade USB-USB/BNC
connector, running frequency of 38.00 MHz and current probe, running frequency of 2.08 MHz
and current probe, handmade USB-USB/BNC connector, J3000 power supply, J3001 power
supply, J4001 power supply and J4002 power supply.
Subsequently, some consideration (taking into account also the results form Lattice Diamond
Power Calculator Tool) and a comparison with traces from a microcontroller STM32F401 were
done, referring also to SEcubeTM package and power supplies characteristics.
It follows a description of all the necessary changes in the VHDL code for passing from AES-256
to AES-128 and comparisons with the previous cases. Then, plots and comparisons of the traces
with the previous ones.

Chapter Six - DPA Attack and Results:
The steps for the application of different variations of DPA attack using Jlsca Tool were pre-
cisely described, including the pre-elaboration of the traces, subdivided in sets and averaged,
and the generation of the plaintext/ciphertext files. The obtained results were included in some
tables and plotted on different graphs in MATLAB in order to underline the principal variations
in the analysed cases: in particular, every key hypothesis was compared with the used one, then
the difference function and the number of hit bits were calculated. Some bar diagrams were
used specifically for making comparisons related to the four different versions of the encryption
(AES-256 CBC, AES-256 ECB, AES-128 CBC, AES-128 ECB) with all the different instrumen-
tation used, the variations obtained changing the working frequency and the number of samples
considered.

Chapter Seven - Conclusions:
Here all the considerations drawn from the comparisons of the results and the literature analysed
in the first chapters were described. To sum up, the main problems identified in the application
of the DPA attack were the presence of decoupling capacitors in correspondence to the FPGA
power supply accesses, considered like a "natural" countermeasure against this kind of attack,
the presence of more then one module concurrently running on the FPGA and the inaccessibility
given by the BGA package.
The proposed future works and improvements were the reduction of noise, the increment of
the power consumption due to the encryption, the utilization of more advanced tools for the
compensation of decoupling capacitors effect and the application of other kinds of attacks like
Electromagnetic Analysis (EMA), Temperature Side-Channel Attacks or Differential Fault Anal-
ysis (DFA).



CHAPTER 2

Differential Power Analysis (DPA)
Key Concepts

2.1 Introduction and motivations

As defined in [12], "a cryptographic device uses a secret key to process input information and/or pro-
duce output information and protocol designs typically assume that input and output messages are
available to attackers, but that other information about the keys is not available".
Since integrated circuits are composed by individual transistors acting as voltage-controlled switches,
when a charge is applied to the gates or remove a charge from the gates of other transistors, in-
terconnect wires and other circuit loads, the current flows across the transistor substrate. Due to
this, the motion of electric charges consumes power and produces electromagnetic radiation, that are
both externally detectable. Therefore, individual transistors produce externally observable electrical
behaviour [3].
In this way, since microprocessor logic units exhibit regular transistor switching patterns, it is possible
to easily identify macro-characteristics simply monitoring the power consumption of the device [3].
In the following picture, you can observe a general overview of the main attacks and countermeasures
at the different levels of the system:

Figure 2.1: Embedded System Security Design Pyramid [1]

4
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Figure 2.2: Traditional Cryptographic As-
sumptions [2]

Figure 2.3: Actual information available [2]

As exposed in [13], cryptanalysis attacks can be distinguished in four categories:

? active: the malicious user acts directly on the device trying to alter its behaviour (e.g., injecting
faults)

? passive: the attacker does nothing other than to observe the normal behaviour of the device

? invasive: the attack alters physically the device, for example exposing access to its internal
components and connections

? non-invasive: the attack don’t require physical alteration of the device because they exploit
external information, i.e., physical quantities

Referring to the definitions above, side-channel analysis is a passive and non-invasive type of attack.

Power Analysis (PA) attacks target is to determine the sensitive information of the cryptographic
devices from measured power consumption, like: a part of the secret key, the Hamming weight of the
secret key or some information identifying the part or the whole secret key [4].

As reference, you can define the power analysis as processing and evaluation of information, while
the subsequently application of obtained information to abuse the cryptographic device is called attack
[4].
Power analysis (PA) measures the power consumption of the cryptographic device depending on its
activity and was introduced in 1998 by Paul Kocher, Joshua Jaffe and Benjamin Jun and it can be
essentially decomposed in the following steps [2]:

1. identification of a relationship between secret key information and the instantaneous power
consumption

2. determination of the required inputs to the system, the output values to be measured, and when
to capture them

3. extraction of the state by measuring and recording the items identified earlier including the
power consumption (the collection of measurements also known as traces can be made in a
non-invasive manner while a system performs a cryptographic operation)

4. by processing the extracted information, evaluation of the relationship between the measured
items
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There are two basic methods of Power Analysis (PA):

• Simple Power Analysis (SPA):
This method use primarily visual inspection to identify relevant power fluctuations. It has the
advantages of the more or less direct determination of the secret key from the measured power
traces and of being computationally cheap and simple and feasible in a relatively short time.
However, unfortunately it is quite challenging in practice and it requires a detailed knowledge
about the implementation of the cryptographic algorithm. Moreover, in most cases, it is neces-
sary to use statistical methods to extract useful signals and it is feasible only in the case that
the secret key have a significant impact on the power consumption [2].

• Differential Power Analysis (DPA):
DPA attacks use statistical analysis and error correction techniques to extract the information
related to the key.Indeed, while the effects of a single transistor switching is normally impossible
to identify from direct observations of a device’s power consumption, you can use statistical
operations in order to make the DPA able to reliably identify extraordinarily small differences
in power measure [12].
With respect SPA, the main advantage is that in most cases you don’t need a detailed knowledge
about the device and encryption algorithm, but just the kind of the algorithm and a simple power
simulation model. Indeed, the DPA observes how the power consumption at fixed time moments
depends on the processed data and the quality of the traces is relatively not important, since
statistical methods are used. Anyway, there are also important disadvantages, that are: you
need to acquire a large number of traces for the statistical analysis, you have to consider the
extreme importance of the mathematical approach and power consumption models so you have
to carefully take care of them in detail and finally the DPA will obviously need more time to be
done, always due to the usage of the statistical methods and the necessity of a larger number of
traces [2].

Nowadays DPA is the most widely used and best known method for the power analysis, since in
general is more powerful and more difficult to prevent [2].
Anyway, you can observe that attacks that involve multiple parts of a security system are difficult to
predict and model. If cipher designers, software developers, and hardware engineers do not understand
or review each other’s work, security assumptions for any level of a system’s design will probably be
incomplete and/or unrealistic. In order to avoid this problem, security faults often involve unantici-
pated interactions between components designed by different people [14].
Indeed, performing a Differential Power Analysis (DPA) attack requires knowledge in several fields,
in particular: statistics, cryptography and programming (for the attack itself), electronic instrumen-
tation and related tools (for the automatic measurement system) and electronic in general (for the
improvement of results) [15].
In general, you have also to consider that, as underlined in [16], a successful DPA attack is subject
to two conditions: existence of an intermediate variable in the implementation that is correlated with
the power consumption and the exclusively dependence of the intermediate variable on the plaintext
(or ciphertext) and small part of the key. If you want to protect devices against DPA, you can get rid
of the second condition by data randomization or masking. However, also in this case, higher-order
DPA attacks (HO-DPA) are already been introduced and they could also overcome the so-called 1st
order masking [16].
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2.2 Stages of DPA attack

2.2.1 Device instrumentation

Figure 2.4: Block Diagram of a DPA laboratory setup [3]

This preliminary stage involves the develop of the means to communicate with the device to invoke
cryptographic operations and the record of the device responses [6]. The measurement apparatus is
basically composed by a digital oscilloscope, the PC and the target device. Depending on the device
and the access available, you can use a resistor (otherwise you can generally use the internal resistance)
or a current probe connected in series with power supply and ground. In order to get a good quality
measurements, you have to take it close to the cryptographic component. In alternative you can use a
larger number of lower-quality traces. For triggering, in general you connect the measurement system
to the device’s I/O lines [6].

2.2.2 Measurement

At this stage, the data are collected: in practice, the power traces are recorded while the target device
performs cryptographic operations and as a result, each captured trace is stored on a PC with the
associated cryptographic data (plaintext or ciphertext). This is often the most time-consuming step
of DPA [6].
In case of necessity, trace quality and capture efficiency may be improved by adding analog filters,
adjusting bandwidth or sampling rates and exploring SPA signal characteristics to remove irrelevant
regions [6].
On large ASICs/ SoCs with multiple power and ground connections, inputs that power the circuitry
implementing cryptographic computations provides better data. Similarly, at the board level, removal
of decoupling capacitors or use of an external bench-grade power supply can reduce noise [6].
In some cases, signal quality is affected by a device operating parameters, such as voltage, temper-
ature and clock rate/waveform. In addition, you have also to consider some phenomena, that can
be extremely useful for an efficient collection of the data; for example: a) lowering the input volt-
age may stress voltage regulators and increase leakage; b) a bench-grade clock can reduce timing
jitter, especially when synchronized to the sampling clock of the measurement apparatus; c) using a
sine-wave clock may reduce high-frequency noise in measurements; d) commands that perform more
cryptographic operations are often preferred, since increasing the number of cryptographic operations
per trace usually speeds up the data collection stage; e) while many DPA attacks work with random
or arbitrary input messages (such as typical ciphertext), chosen input messages can sometimes reveal
additional leakage or simplify the analysis; f) depending on the algorithm being analyzed and the
attack strategy, it may be most efficient to use a sequence of adaptively-chosen input sets, where each
set of inputs depend on the results of a DPA analysis done on the prior set; g) in some instances, when
inputs are not fully controllable by an attacker, fault or glitching attacks may be used to influence
the cryptographic operations being performed [6].
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Finally, data collection is performed with a high-speed analog-to-digital conversion system (digital
storage oscilloscopes), that can be selected starting from these conditions: 1) reasonably deep mem-
ory (for capturing longer traces); 2) trigger flexibility (to help start trace capturing at the appropriate
time); 3) rapid trigger re-arming time and fast transfer rates (to speed up the data collection phase)
[6].

Signal fidelity and calibration are less important, since the types of distortions introduced by
cheaper laboratory equipment generally do not interfere with the leakage signals exploited by DPA,
while it might appear that sampling resolution would matter significantly when dealing with very
small correlations, the primary concern for DPA is the signal-to-noise ratio, and sampling errors are
usually significantly smaller than other noise sources [6].
Here there is a list of some possible precautions: a) analog pre-processing of the raw signal prior
to A/D conversion; b) simple bandwidth limiting (a feature in many oscilloscopes), that can help to
remove unwanted high-frequency artifacts; c) minimization of the amount of extraneous data collected
(examination of any SPA signals to help narrow down when the cryptographic process occurs); d)
implementation of a preliminary DPA test using the known input and output bits as selection functions
(it can highlight the precise location where the cryptographic operation is performed); e) DPA tests
using selection functions based on the expected intermediate values within the cryptographic operation
(more general technique for characterizing the leakage), but this “known-key” analysis is only possible
if the attacker can obtain a device with a known key [6]; f) using active differential probe, you
can get a good signal to noise ratio, allowing the decrement of the number of power measurements
during encryptions; g) in order to get galvanic insulation, you can use a USB-UART cable for serial
communication for preventing of grounding loops; h) in the case you implement in FPGAs, high
sampling frequency and internal memory of the oscilloscope are strictly necessary [3].
Additionally, you can use also these noise reduction techniques [17]:

• RC filter:
Thank to this, you can get great results if the noise frequency is known, since fcutoff =

1

2πRC
in a cheap way, with a low sensitivity to other components, but the voltage drop over the series
resistor can cause stability problems of the digital circuit

• LC filter:
This filter is much better suited for filtering a wider noise spectrum (no voltage drop over its

components), with fcutoff =
1

2π
√
LC

, it has an high efficiency and it works bests in case of

an external power supply, but the disadvantage is the sensitivity to other components (high
inductivity)

In short, in order to optimize the measurement you should execute these preliminary steps [15]:

1. Performing simple operations on the device and play around with the various possibilities for
the measurement setup with the aim of optimizing the measurement setup of the board.

2. Reducing as much as possible the noise on the power supply, because it damages the precision
of measurements seriously, considering the observations written above.

3. Choosing the right value for resistor (optional) between global supply and the supply pin of
the controller across which we measured the current profile, considering that bigger resistance
would mean higher voltage swing across the resistor, so the measure will be easier and precise,
while smaller resistance avoids reducing the actual supply voltage of the controller, leading to
the desired effect of higher voltage swing.
Indeed, you should avoid reducing the supply voltage, since power consumption itself also de-
pends heavily on the amount of it. Moreover another effects for the reduction of supply voltage
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is created by the presence of clamp diodes in input protection circuits of CMOS pads: they
turn on when voltage on the input pad is higher than the circuit’s supply voltage and, as a
consequence, introducing the resistance makes these diodes conductive when the input value is
high and voltage drop on the resistance is big, so the internal circuit is supplied by input current
from the input pads, which is not measured.

4. Managing the overshoot on the resistance (given by clock transitions), connecting a small fast
capacitor in parallel to the resistance. The best way to find out the optimal value of this
capacitor is to try different devices and decide after some measurements if the desired effect has
happened. It’s recommended to use an active differential probe with high input resistance and
very low input capacitance.

2.2.3 Signal processing

This stage involves processing traces in software in order to remove alignment errors, isolate features
of interest, highlight signals and reduce noise.
In general, you need only a simple temporal alignment or you can omit this step. However, an
additional digital signal processing, applied after traces collection in digital form, can significantly
improve the efficiency of the rest of the DPA process and improve its outcome [6].
Trace alignment is the simplest signal processing technique and it consist in identifying a reference
time location in each trace. To align a trace Ti against a reference trace T0, a simple correlation test
is employed to find the time shift d that minimizes the differences or the square of them between T0[j]

and Ti[j + d] [6].
However, you could need more complex alignment methods in some specific cases like the clock drifts
across traces, that are mainly: a) shuffling of the operations order, b) inserting of random no-ops or
clock skips and c) using of desynchronized clocks [6].
As an alternative, you could also perform the alignment in the frequency domain, exploiting a Fourier
analysis on the relevant regions of each trace.
To sum up, although correct alignment is not strictly necessary for the DPA success, a good alignment
could be very useful and could allow the reduction of the number of traces required to extract a key
[6].
The two main used approaches are :

• Static Alignment: it finds a reference sample in measured power consumption traces and
matches the same references by shifting the traces [18].

• Elastic Alignment: it uses linear re-sampling of the traces and is more efficient than static
alignment, but it requires also more computational power [18].

Additionally another extremely useful technique in the case of management of high number of
traces is the decimation: indeed, generally using a high decimation factor speeds up the computation
algorithm even when using more traces [3].
In real scenario of DPA application, it could happen that the trigger signal cannot be used. In this
case, the misalignment of traces measured can be caused by: a) different start time of the measurement
(it can be triggered only by sending input data); b) jitter of the oscillator which provides clock for
the cryptographic device; c) various execution time of processor instructions which depend on input
data; d) intentional DPA countermeasure like inserting random delay while executing cryptographic
algorithm [18].



Master Degree Thesis - Chapter 2 10

Figure 2.5: Power Traces Alignement
[3]

Figure 2.6: Power Traces Decimation
[3]

2.2.4 Prediction and selection function generation

As explained in [6], this stage manages different hypotheses about a portion of the key in order to
define selection functions for analysis.
At this stage you still can apply another digital filtering for the reduction of noise and focusing on
the parts of the spectrum where the leakage signal is present :

• Trace compression: it can be performed by adding together successive measurements; in
this way you can reduce high-frequency noise and amplify signal resolution while reducing the
amount of data that requires processing in subsequent steps, this because if unwanted repetitive
effects are present, these can be detected and subtracted from the traces [6].

• Trace repetition: it is the collection of traces while an identical operation is repeated; making
this operation you can reduce extraneous and measurement noise from traces averaging these
together [6].

Furthermore, in [6], they observe also that DPA testing is a highly data intensive task, especially
when you have a very large number of traces each containing a large number of measurement points,
but much of the information present is not useful. Once the device is characterized, traces can be
greatly compressed by discarding all points except the few that matter.
At this stage, in the case of implementation of one variant of DPA, traces have also to be prepared
for analysis.
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Figure 2.7: DPA General Diagram [4]

DPA attacks exploit leaked information doing a prediction about some aspect of the computation
that varies in a key-dependant manner, but real leaks can be complicated [6]. For example, in some
devices, transitions from 0 to 1 leak differently than transitions from 1 to 0 or they can have word-
oriented leaks which may be correlated to flag bits such as sign, zero, overflow, or carry. Furthermore,
Hamming weight and Hamming distance models treat bits independently, but the amplitude of leaks
varies significantly for different bits (multi-bit effects) and in the case of FPGAs, it can be used
significantly less power than average when a byte being written into the round register has the value
0 and even less power when a byte written into the round register is the same value as the overwritten
byte [6].
Starting from the knowledge of these effects, you can formulate different types of selection functions
(for PA and PB notation reference, see the figure 2.9):

• Rising transition:
The set PA contains the input transitions of the target gate from 0 to 1 and the set PB contains
all the other input transitions. This function models in an accurate way a CMOS circuit (power
consumption is measured by means of a small resistor) [5].

• Hamming distance:
The set PA contains the input transitions that make the target gate to commute from 0 to 1
and from 1 to 0, while the set PB contains all the other input transitions. This function models
in an accurate way a CMOS circuit (measurement of electromagnetic field) [5].

• Hamming weight:
The set PA contains the input transitions that make the target gate to commute from 0 to 1
and from 1 to 1 and the set PB contains all the other input transitions. This function is used
when it’s not possible to calculate the transition on the target gate, but only the final value [5].

The secret constant targeted by a DPA attack can be a recognizable portion of a round key or a
constant that is a function of multiple secret constants. For this reason, it is necessary an iteration of
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the attack for a number of rounds sufficient to recover enough secret materials for all keys.
Here there is a list of some main cases:

• Known Key Analysis: usage of specific leakages to guess a large number of bits of the key or
sensitive parameter [6].

• Practical Attack Against the Leak: if an attacker can select the cipher input, the analysis
complexity can often be reduced [6].

• Chosen Message Analysis: it can be used for public key algorithms and it consists in guessing
only part of the key and predict intermediates using this value, so the best prediction will provide
the closest approximate of the key, even if it is still deviate from the actual intermediate state;
this approach can be applied iteratively, to successively obtain better approximations until the
key is known [6].

Selection functions are normally 0/1 valued, but a selection function can also have a non-binary
output (that will be used as a weight in the final averaging step, where the weights can be zero,
positive or negative), especially when leakage characteristics of a device are well known. In general,
non-binary selection functions and multi-bit selection functions can improve the efficiency of
attacks [6].
As soon as you have defined your selection function, you can compute its outputs for each trace.

Figure 2.8: Power Consumption
in a CMOS Circuit [5]

Figure 2.9: Power Consumption After Pattern Partitioning
[5]

2.2.5 Averaging

Now you can compute the averages of the input trace subsets defined by the selection function outputs.
Normally this stage is the computational bottleneck; indeed, you generally compute: 1) the averages
of various subsets of the traces; 2) the average of all traces; 3) the variance at each point across all
traces [6].
The performances for the averaging step are determined by processing power and storage throughput.
In terms of number of traces (N), length of traces (L), and number of selection functions (M), the
naive complexity of this task is O(N ·M · L) and the memory use is O(M · L) [6].
The principal optimizations that can be used to simplify the problem are synthesized below:

1. If you assume to have to compare the average of the subset where a selection function is 1 (A1 )
to the one of the subset where the selection function is 0 (A0 ) and that the average of all traces
(Aall ) is known, then A0 can be calculated from A1 and Aall all using the number of selection
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functions and the total number of traces.
In particular, this approach is very convenient in the case you have to calculate many selection
functions over the same set of traces, because you have only to calculate once for all Aall and
the A1,m subsets and you get A0 ≈ Aall −A1.
This results in just a factor of two improvements, so the complexity is still O(N ·M · L), but
you get the important advantage of halving CPU and memory use [6].

2. If you have a cache with size of 28−1 that works with 8 traces at a time, computing the sums of
255 possible combinations of these traces, then these traces can be added into the m-th averaging
task using one addition out of the cache instead of up to 8 additions of the individual traces.
A cache of size c requires O(c · L) memory and takes O(2c · L) operations to set up, so the

performance improvement is in the order of O
(
N

c
·M · L+ 2c

)
.

In general, if there is a statistical bottleneck in the selection function outputs and only B unique
sequences of selection functions are generated over our L traces and you assume B << L, then us-

ing an “input bins” cache withB entries you can improve performance toO
(
L+

B

c
·M ·N + 2c

)
[6].

3. Since bottlenecks can also be introduced by repeating each message multiple times, any de-
crease in the trace size produces a proportional improvement in averaging time, so you can use
compression methods in order to greatly reduce the number of points [6].

Although DPA tests normally compare the difference of averages, this test is not effective in all
cases, especially in the presence of countermeasures, so it could be necessary a preprocessing step
before averaging.
The task is also parallelizable, since data can be distributed over many drives to eliminate I/O bot-
tlenecks and computation can be distributed over multiple threads or machines [6].

2.2.6 Evaluation

In this step you have to analyse DPA test results to determine the most likely candidate key guesses
[6].
This process could be done visually, but in general it is better using automated tools for logistic
reasons.
Regions with high noise can show spurious spikes in a differential trace, so you have to divide each
point in the differential trace by the standard deviation of all traces at that point, in order to correct
these spurious spikes effects and to assess the statistical significance of the results [6].
Doing this, the obtained result will be a normalized trace giving the polarity and significance of the
difference (measured in standard deviations) at each point in time [6].
In reality, the classic “difference of averages” is just one way that two distributions of measurements
can differ, while a more general statistical test can compare at the distribution of measurements at
each point in the subsets of traces, and calculates the significance of differences observed between
them. For such analysis, the “averaging” stage actually computes the distributions of measurements
rather than compressing the distributions down into their averages [6].
For certain types of DPA attacks, the evaluation process is more complex, since there is the presence
of harmonics of the correct key, that are defined as multiple guesses besides the correct key which
have significant correlation to the target leak and thus may show spikes in the differential trace [6].
Indeed, the assumption that when the guessed byte is incorrect the output from the prediction is
uncorrelated is an approximation: smaller positive or negative correlations exist, but they are ignored
in a basic DPA analysis, although they can provide additional information for identifying the correct
key guess [6].
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Harmonics are a function of the target algorithm and the selection function strategy employed, so it is
possible to: 1) analyze the selection function process; 2) determine the pattern of harmonics it would
generate (the main problem is that the pattern of harmonics varies); 3) match this pattern against
the amplitudes of the observed harmonics [6].
For each bit, the fundamental signal corresponds to the correct key guess and you can use alternate
multi-bit evaluation strategies, that are sensitive to harmonic peaks [6].

In the case of iterative application (for example AES-256 and triple-DES, where multiple round
subkeys or multiple encryption keys must be found), new information about the key enables the
generation of new selection functions, so obviously the DPA evaluation stage is not the final one. The
iteration process usually restarts back at the selection function generation stage, but for adaptive
chosen message attacks, the evaluation result guides the next sets of inputs for the data collection
stage [6].

2.3 Using DPA to attack AES

As observed by the author of [6], "computational intermediates, such as the outputs of the AES S-box,
have a small statistical influence on power consumption measurements, but these small correlations
can be used to reveal the secret key".

Figure 2.10: AES S-box
lookup during first round
[6]

To have an overview of what will be explained with additional
details in "Chapter Three - Cryptography Overview", here are
reported the steps of the first round of AES encryption [6]:

1. Initialization: The initial 16-byte state of the cipher, or-
ganized as a 4x4 byte matrix, is initialized to the 16 bytes
of the plaintext.

2. AddRoundKey: The 16-byte secret key is exclusiveORed
with the 16 bytes of the plaintext state.

3. SubBytes: Each byte of the state is replaced by another
using the S-box, which is an invertible lookup table.

4. ShiftRows: Bytes in each row of the state are shuffled.

5. MixColumns: Each column of bytes of the state is mixed
using a linear operation.

The DPA attack will target the output of AddRoundKey and SubBytes in AES.
Here is reported the notation for AES:

- Ii denote the 16-byte intermediate state of the cipher just after the SubBytes step in round 1

- Ii,n denote the n-th byte of this state (n ∈ [0, ..., 15])

- K is the first round key

- Kn is n-th byte of the first round key

- Xi,n denote the n-th byte of plaintext Xi used for the i-th trace

- S is the AES substitution table defined in the AES standard
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Ii,n only depends on one byte Xi,n of the input and one byte Kn of the key:

Ii,n = S[Xi,n ⊕Kn] (2.1)

In this equation: Xi,n is a known variable (one byte of plaintext), Kn is a secret constant and Ii,n is
an unknown variable which depends on a 1-byte secret constant and other known quantities.
AES can be broken easily if there is an efficient test that reveals whether a given candidate for Kn is
correct [6].
In particular, Kn is an 8-bit value, so at most 256 queries of this test would be required to confirm
the correct Kn.
The 16 Kn bytes that make up the entire AES-128 key could be found by simply solving for each byte
separately.
DPA provides a practical way to test if a candidate value of Kn is correct: the candidate Kn is
substituted in the equation to derive the value of Ii,n for each Xi,n

A selection function can be based on the calculated Ii,n; for example you could use bit 0 (the LSB) of
Ii,n as selection function output. Each trace is assigned to one of two subsets, depending on whether
the selection function result is 0 or 1 for the candidate Kn and the plaintext being encrypted when
the trace was captured [6].
The difference of the subsets averages is then examined: if the candidate Kn is correct, the value
of the S-box output bit predicted by the selection function has even a tiny correlation to the power
traces and the DPA test will show spikes; if the candidate Kn wrong: the predicted values of Ii,n will
be (largely) unrelated to any data being processed by the target device, and the DPA test will not be
(or will be much less) statistically significant [6].
When you repeat the analysis for all the 16 bytes of the state to recover the entire 128-bit AES secret
key, you can reuse the same traces; moreover it is not necessary to collect separate data, since each
test is checking for different correlations in the data set.
Notation for DPA:

- T is the set of traces that are collected

- Ti denote the i-th trace

- Ti[j] denote power measurement or sample at the j-th time offset within the trace Ti

- C is the set of known inputs or outputs for the traces

- Ci corresponding to the i-th trace

- D(Ci,Kn) denote a binary valued selection function with input Ci and guess Kn of a part of a
key

Each point j in the differential trace ∆D for the guess Kn is computed as follows:

∆D[j] =

∑m
i=1D(Ci,Kn)Ti[j]∑m

i=1D(Ci,Kn)
−
∑m

i=1(1−D(Ci,Kn))Ti[j]∑m
i=1(1−D(Ci,Kn))

(2.2)

For a typical DPA analysis, the guess for Kn that produces the largest spikes in the differential
trace is considered to be the most likely candidate for the correct value.
The attack can be adjusted easily for other cipher modes and target devices [6].

2.4 Observations

The final three steps (prediction, averaging, and evaluation) are often iterated.
For example, with AES-256, the first round key is typically found before the attack can begin on the
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second round key.
In other cases, additional steps may also be repeated, e.g., if adaptively chosen input messages are
being used. Indeed, attackers and product evaluators are motivated to obtain keys as quickly and
easily as possible and if basic DPA is not immediately successful, there are many ways to adapt the
attack to compensate for countermeasures or to reduce data collection or processing time.
Improvements in the initial data collection can reduce the time to recover keys by improving signal
quality [6].

2.5 DPA application on FPGAs

FPGAs are powerful tools to design products that require hardware performance without having the
costs and delays of ASICs; furthermore, FPGAs are also more flexible and they can be updated in the
field [19].
Reconfigurable computing systems, such as FPGAs, are a very promising platform for designing high-
performance cryptographic because they are characterized by high throughput rates and inherent
design flexibility. As a consequence of the growing popularity of FPGAs as a cryptographic process-
ing element, research is focusing into their susceptibility to power analysis attacks [20].
As illustrated in [21], FPGA security is complicated by the environment in which the FPGA is ex-
pected to perform, since the design of FPGA security features assumes no physical barrier and no
communication network. This environmental assumption is one of the main differences between FPGA
security and internet security, where servers may physically reside in a trusted environment and can
verify identity through name servers.
To sum up, since there is physical access to the device, it can mounted any electrical, physical or side
channel attack. As a consequence, the target is the negation of this to the adversary: in other words,
the containing system have to ensure the security of the FPGA by controlling all the accesses [21].
Although military systems may employ physical security, the cost is impractical in commercial sys-
tems, where it is balanced against the value of the information being protected; in other words, FPGA
security is designed to make the cost of breaking the security greater than the adversary’s expected
economic gain: this decision is ultimately in the hands of the application developer, not the FPGA
manufacturer [21].
Today we find FPGAs deployed in a security hostile environment, protecting data of great commercial
value, so the value of the IP of the application designs has grown, motivating significant investment
in built-in security functions and the value of the data handled by the FPGA has also increased sig-
nificantly, including such information as personal-data databases. [21]
During power-up, an SRAM-based FPGA reads its configuration from an external non-volatile mem-
ory: this includes all functional design as well as the I/O configuration for the pins and the exact
placement and routing of all used components, so copying a configuration to use it for multiple FPGAs
makes all devices behave in exactly the same way. The whole design of an FPGA application is encoded
within the configuration file, that as a role similar to the one of the software for microcontrollers. This
nature implies that, as advantage, you are provided of a means to update the configuration file of an
FPGA to adapt its behaviour to new requirements or to fix early design flaws, but, as disadvantage,
copying of a design and thus stealing of IP (Intellectual Property) is simplified [19].
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Here there is a simple synthesis of the principal threats for FPGAs, that are described in [21]:

Cloning:
An adversary copies the FPGA programming, then uses it in an identical device, selling it as his
own. It may apply to an entire design or may apply to a subset of the design and the adversary
does not require detailed knowledge of the design [21].

Overbuilding:
The adversary, such as a contract manufacturer, builds additional systems, inserting the le-
gitimate bitstream into those systems and selling them without the designer’s approval and it
doesn’t require detailed knowledge of the design [21].

Reverse Engineering:
Someone may reverse engineer the bitstream to recover the circuit design that it implements.
The main targets are: understanding and duplicating the functionality of the application, using
it as part of an attack on other aspects of the system and tampering with the application to
insert malware. However, there are relevant application problems, like the not-standardized
bitstream, so that every new FPGA device requires a new bitstream reverse engineering effort.
A more insidious problem is dealing with the size of the application. To sum up, although
reverse engineering may divulge the netlist of the application, transforming a multimillion gate
netlist into an understandable design that can be modified is problematic. The complexity of
the application increases its value, making theft attractive, but the consequent size makes theft
difficult [21].

Tampering:
There’s a modify of an application, that can be employed to: a) add logic that leaks information
from an application (in this case, tampering must control the application to set values in the
bitstream, so reverse engineering may also be required); b) disable parts of the application, po-
tentially defeating other security measures (in this case, merely scrambling parts of the bitstream
may be sufficient) [21].

Spoofing:
The adversary replaces the FPGA bitstream with his own: this may or may not include compo-
nents derived from cloning or reverse engineering. The disadvantage is that a spoofed application
may compromise the system in which it operates [21].

Denial of Service, Destruction of the FPGA and Substitution:
Since it is assumed that the FPGA is in the hands of an adversary, denial of service and malicious
destruction of the FPGA device are somewhat irrelevant: rather than mount a clever attack on
the design to prevent the system from operating, an adversary could simply smash the FPGA
with a hammer. If a system requires an FPGA containing a unique key, an adversary may choose
to circumvent security measures by replacing the FPGA in a system with another identically
manufactured device from the FPGA vendor without the key or with his own key: in many
cases, this substitution is simpler than attempting to break the FPGA device security. Since
these physical attacks are so simple, FPGAs typically do not defend against these types of
threats [21].

Referring to [19], in order to counter reverse-engineering threats, it is possible to implement an
encryption mechanism called bitstream encryption: instead of saving a plain bitstream file within the
configuration ROM feeding an FPGA, the designer stores an encrypted configuration. The used key
is chosen by the designing engineer and is programmed into the FPGA and the part of the FGPA
memory storing this secret key is battery powered so that the key will immediately be erased on power
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loss of the battery support: this feature is designed to hinder invasive attacks to recover or reverse
engineer a device configuration. With the known encryption key inside the FPGA and the encrypted
bitstream stored within a ROM, the FPGAs can be securely configured, because only encrypted data
pass the channel between ROM and FPGA. The FPGA has to contain a dedicated hardware to decrypt
the bitstream, that isn’t accessible for other purposes [19] .

2.6 Power Simulation Models

As exposed in [4], an important process is the mapping of hypothetical intrinsic values to hypothetical
values of power consumption during the prediction step of DPA attack.
For this purpose, easy power simulations models are used, considering that the attacker does not have
any detailed knowledge about the device under attack. A schematic description of the main ones is
following [4]:

• Hamming Weight Model (HW):
It’s the basic power simulation model and it is usually used when the attacker does not have
any information about the netlist of the device and about the processing data. The attacker
expects that the power consumption is directly proportional to the number of non-zero bits in
the processed data. An hardware model is not suitable for simulation of the CMOS circuits but
the experimental results from practice show that Hamming weight of currently processed data
is dependent on power consumption of CMOS circuits and it can be used.

• Hamming Distance Model (HD):
The attacker expects that the power consumption is directly proportional to the the number
of changed data values in the processed data and he can map the data which are transmitted
via data bus to the value of power consumption without the knowledge of the device netlist.
The power consumption, which is caused by a change of the data bus value from v0 to v1 is
proportional to HD(v0, v1) = HW (v0 ⊕ v1).

2.7 Statistical Methods

Here is described a list of the main statistical methods illustrated in [4]:

• Correlation Coefficient:
It’s one of the best known methods to determine the linear relationship between two random
variables.
The correlation coefficient is defined by the covariance as follows:

ρ(X,Y ) =
Cov(X,Y )√
σ2(X) · σ2(Y )

(2.3)

It’s a dimensionless quantity and it can only take values in the range: −1 ≤ ρ ≤ +1.

– if ρ = −1, there is a indirect dependence (change in one group is accompanied by an
opposite change in the second group)

– if ρ = 0, there isn’t a detectable statistic dependence between values of the two groups

– if ρ = +1, there is a direct dependence or a perfect correlation between the values of two
groups
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Also ρ is typically unknown and must be estimated with an estimator r defined by the following
equation:

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2 ·
∑n

i=1(yi − y)2
(2.4)

In DPA attacks, the correlation coefficient is used to determine the linear dependence between
the columns hi and tj were i = 1, ...,K and j = 1, ..., T (fig.2.7). The result is a matrix R

containing correlation coefficients and each value ri,j based on elements of D from columns hi
and tj , so we can write:

r =

∑D
d=1(hd,i − hi)(td,j − tj)√∑D

d=1(hd,i − hi)2 ·
∑D

d=1(td,j − tj)2
(2.5)

• Difference of Means:
The basis is a comparison of two measured groups by calculating the difference of the mean
values of these groups.
The attacker creates a binary matrixH which divides the measured power traces into two groups.
Sequence of zeros and ones in each column H is a function of the input data d and estimates
key value ki. In order to determine if estimate key ki is correct, attacker can divide the matrix
T into two sets of lines (two sets of power consumption by hi).
The first data file contains the lines T , where index corresponds to the position of zeros in the
vector hi.
The second data file contains the remaining rows of T .
Subsequently, the attacker calculates the mean of the rows. Vector m′0i denotes the average of
the rows in the first file and m′1i denotes the mean of the second file.
Estimation key ki is correct, if there is a marked difference between the m′0i and m′1i. This
difference indicates the relationship between hck and some of the columns T .
As in the previous case, this difference indicates the point at time, where the intrinsic values
corresponding to hck are processed.
In other moments, the differences between mean vectors are zero. The result of the attack is
the matrix R, where each row corresponds to the difference between vectors m′0i and m′1i one
estimate key value. Equations to calculate R according to the difference of means method are
given:

m′1i,j =
1

n1i
·

n∑
l=1

hl,i · tl,j (2.6)

m′0i,j =
1

n0i
·

n∑
l=1

(1− hl,i) · tl,j (2.7)

n1,i =

n∑
l=1

hl,i (2.8)

n0,i =

n∑
l=1

(1− hl,i) (2.9)

R = M1 −M0 (2.10)

where n is the number of rows of the matrix H; in other words, this parameter represents the
number of measured power consumption [4].

• Distance of Means:
This method is based on the distance of mean values and improves previous method considering
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the standard deviation.
It uses a commonly known hypothesis test to compare the equality of the mean values of two
different distribution.
The attack divides the matrix T into two sets of rows for each key hypothesis as well as explained
before.
Compared with the previous method, the difference is that the mean values are compared by
test of distance mean.
Elements of the matrix R are calculated according to the following equation:

ri,j =
m1i,j −m0i,j

si,j
(2.11)

where si,j is the standard deviation of the distribution of the two groups [4].

2.8 Variants of DPA

In addition to SPA and DPA, there are variants of the basic attack that are better suited to exploit
information leakage in some settings [6]:

Correlation Power Analysis (CPA):
It involves evaluating the degree of correlation between variations within the set of measurements
and a model of device leakage that depends on the value of one or more intermediates in the
cryptographic calculation. If the number of traces available is limited, CPA can help make the
maximum use of the data. It is most effective in white-box analysis where the device leakage
model is known and it can also be used for black-box evaluations if there is some correlation
between the actual leakages of the device and the leakage model used for CPA [6].
The possible results are: 1) if CPA does not find leakage, it is ambiguous whether this indicates
low leakage in the device or a large gap between actual leakage and the model; 2) if CPA is
successful at recovering the key, additional leakage modes may also be present [6].
The common examples are always: Hamming weight (power consumption directly proportional
to the number of non-zero bits in the processed data) of a multi-bit value in a register or on
a bus and Hamming distance (power consumption directly proportional to the the number of
changed data values in the processed data) between a value and the value it overwrites [6].
Generally, Hamming weight or Hamming distance models can be reasonable approximation for
leaks from software running on some 8-bit microcontrollers, but for larger ASICs and CPUs,
these methods are less effective at modelling the leakage found so countermeasures developed
solely on the basis of these simplistic models are generally insufficient to prevent DPA attacks
[6].

Probability Distribution Analysis or Zero-Offset Second-Order DPA Attack (ZO2-
DPA):
Given any differing probability distribution, it is possible to define a trace preprocessing opera-
tion that will make DPA work; alternatively, the DPA analysis can be performed by comparing
probability distributions instead of averages [6] .

High-Order DPA:
It combines multiple samples from a trace and it targets a known or hypothesized relationship
between parameters contributing to a side channel; the “order” of a high-order attack is the
number of parameters involved in the target relationship [6].
It can help to analyse relationships such as: a) similarity/difference, since the calculations at
different points in a power trace (or in a pair of traces) may involve a common data parameter;
b) masked shares of a secret (traditional second-order DPA), since, in a masked implementation,
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a sensitive intermediate may be manipulated as two parts, each part by itself is random, but the
exclusive-or of the parts would give the intermediate (individual measurements are correlated
to the parts, but uncorrelated to the variable); c) unknown input, since, measurements at a first
location in a set of power traces can be used to estimate the value of otherwise unknown inputs
and outputs to cryptographic functions, then these estimates can be used to prepare probabilistic
predictions for plaintext/ciphertext portions needed for a standard DPA attack which is then
evaluated at a second location in the set of power traces [6] .

Template Attacks:
Following the explanation in [6], they seek to maximize the use of a small number of traces from a
target device: the analyst constructs a model of the target device (in contrast to CPA, template
attacks build a model from actual power measurements or simulations). This model is typically
represented by a set of statistical parameters for the expected power traces corresponding to
various states that the device may enter. Once these templates have been created, they can be
used to determine the most likely state of a target device from a small number of actual traces.
In order to construct the model (set of template), you can use: a) the actual device that is the
target of the attack; b) a device from the same family as the target; c) simulations of the target
device. Although template attacks may require a large amount of initial effort, they can achieve
theoretically an optimal use of the signal in the target traces [6].

Reverse Engineering Unknown S-Boxes and Algorithms:
In cases where the custom cipher is based on a well-known design, but with different set of con-
stants such as S-boxes, DPA can be used to first reverse engineer the values of these customized
constants and then attack the cipher [6].
A general approach is to iteratively evaluate a broad range of selection functions, yielding corre-
lations that are stronger or later in time may correspond to the device’s intermediates deeper in
the algorithm. The better selection functions are kept and their outputs are used as candidate
inputs for subsequent iterations of the analysis [6].

Machine Learning:
In [22], the authors demonstrate that, given a proper tuning, even in an unrestricted scenario,
using a sufficient number of profiling traces, ML techniques are able to be more efficient than
template attacks. A measure called the Data Confusion Factor provides a measure of suc-
cessfulness for machine learning techniques and can offer additional level of confidence in the
performance of ML techniques. Moreover, this measure fills the gap since it clearly quantifies
the difficulty of the problem with regards to the level of noise and the number of classes. It
has two contributing parts: the first part penalizes the data sets that have classes with a larger
number of instances than the average class in the set as these are more difficult for the classifiers
to handle, while the second part deals with instances that are wrongly classified [22].

Other Side-Channels Attacks:
SPA and DPA techniques applied to EM measurements are termed Simple Electromagnetic At-
tacks (SEMA) and Differential Electromagnetic Attacks (DEMA); such attacks can be highly
effective, particularly if power measurements are unavailable. Data from other sources could
potentially be used in DPA-style analysis; the areas for further research are: photon emissions
from semiconductors and temperature measurements [4].
To extract keys from obfuscated cipher implementations, digital data dumped from repeated
cryptographic operations can be used in lieu of power traces. Cache timing and other micro-
architectural attacks also use similar statistical techniques, but make somewhat different assump-
tions about the type of access available to an attacker in order to break software implementations
of cryptography [4].
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2.9 Preventing DPA

Techniques for preventing DPA and related attacks fall roughly into three categories, as you can read
in [14]:

1. Reduction of Signal Sizes:
You can use strategies, such as: using constant execution path code, choosing operations that
leak less information in their power consumption, balancing Hamming Weights, balancing state
transitions and physically shielding the device.
Unfortunately such signal size reduction generally cannot reduce the signal size to zero, as an
attacker with an infinite number of samples will still be able to perform DPA on the (heavily-
degraded) signal. In practice, aggressive shielding can make attacks infeasible but adds signifi-
cantly to a device cost and size [14].

2. Introduction of Noise into Power Consumption Measurements:
Like signal size reductions, adding noise increases the number of samples required for an attack,
possibly to an infeasibly-large number. In addition, execution timing and order can be random-
ized. Designers and reviewers must approach temporal obfuscation with great caution, however,
as many techniques can be used to bypass or compensate for these effects and for safety, it should
be possible to disable temporal obfuscation methods during review and certification testing [14].

3. Design of Cryptosystems with Realistic Assumptions about the Underlying Hard-
ware:
Non-linear key update procedures can be employed to ensure that power traces cannot be cor-
related between transactions; similarly, aggressive use of exponent and modulus modification
processes in public key schemes can be used to prevent attackers from accumulating data across
large numbers of operations.
Using a leak-tolerant design methodology, a cryptosystem designer must define leakage rates
and functions that can survive from cryptography. Leakage functions can be analysed as oracles
providing information about computational processes and data, where the leakage rate is the
upper bound on the amount of information provided by the leakage function. Implementers can
then use leak reduction and leak masking techniques as needed to meet the specified parameters.
Finally, reviewers must verify that the design assumptions are appropriate and correspond to
the physical characteristics of the completed device [14].

To sum up, as exposed in [23], the principals countermeasures will be: 1) masking, that uses a random
value called "mask" which is mixed (XOR, additions, multiplications, etc.) with the sensitive data;
2) shuffling, that plays on randomizing the order of operations of the cipher; 3) hiding, that makes
the leakage uniform and independent of the data processed. At the same time, the countermeasures
drawbacks could be in terms of time, cost or both.

2.10 State of the Art

In "Analysis and Improvements of the DPA Contest v4 Implementation" [23], the authors imple-
mented on an AES-256 protected with a low-entropy masking scheme (RMS), mostly written in C
language, running on an ATMEL AVR-163 microcontroller. They proposed several attacks and an
improved implementation, demonstrating that it is possible to resist the non-profiled attacks at an
overhead of 27% in code size, 50% in memory and 1.5% in computation time.

In the paper "On the Portability of Side-Channel Attacks - An Analysis of the Xilinx Virtex 4,
Virtex 5, and Spartan 6 Bitstream Encryption Mechanism" [19], they made, as described in the title,
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a side-channel analysis of the bitstream encryption mechanism provided by Xilinx FPGAs - Virtex 4,
Virtex 5, and Spartan 6 families. The results they got provide an overview of a practical real world
analysis and can help in the implementation of side-channel countermeasures. They used sophisticated
attacks on off-the-shelf FPGAs that go far beyond schoolbook attacks on 8-bit AES S-boxes and they
were able to extract the key with the measurements of a single power-up. They used a bandpass filter
on measured traces and improved the analysis method by removing all phase shifts from the measured
traces using an additional FFT preprocessing step. They observed also that the attack on Virtex 5
and later Spartan 6 FPGAs required more power traces to be successful, which is mostly due to a
worse signal-to-noise ratio due to a newer process technology.

Manfred Aigner and Elisabeth Oswald in their "Power Analysis Tutorial" [15] illustrated the at-
tack on a 8052 compatible ATMEL 89S8252 microprocessor implementation (application of DPA on
asymmetric cryptosystems), using a C++ model that can be useful also to verify some countermea-
sures against DPA attacks. They declared that following the hints they illustrated you can make a
DPA attack on a software DES implementation with less than 200 measurements.

In "Revisiting Higher-Order DPA Attacks: Multivariate Mutual Information Analysis" [16], they
made a Multivariate Mutual Information Analysis (MMIA) on 1st and 2nd order masked software
implementations of a DES like mini-cipher, that is a novel and different approach to HO attacks, that
allows to directly evaluate joint statistics without pre-processing more efficient and less affected by
noise. However, MMIA’s measurement cost grows sub-exponentially with the attack order, so the secu-
rity provided by the masking countermeasure needs to be reconsidered as 3rd and higher order attacks.

Machine learning techniques compared with Template Attacks applied on AES with low cost mask-
ing protection (Weka suite v3.8) are illustrated in "Side-Channel Analysis and Machine Learning: A
Practical Perspective" [22]. They introduced also a new measure called the Data Confusion Factor,
that can be used to assess how well machine learning techniques will perform on a certain dataset.
The profiled side-channel attacks illustrated are: 1) Template attacks (TAs), the most of the time
based on Gaussian noise assumption (most used and powerful from an information theoretic point of
view); 2) stochastic attack (SA), with a linear regression in the profiling phase.
They used practical scenarios with three levels of noise and two multi-class scenarios and they demon-
strated that even in unrestricted (but still practical) scenarios machine learning techniques can be
more successful than template attacks. The implementation has been done with datasets that repre-
sent the de-facto standard in the side-channel community and 20000 measurements have been taken.
They considered the following cases: a) uniformly distributed classes; b) binomial distributed Ham-
ming Weight classes.

C.L. Pitu and R.Câmpeanu in their paper [17] used a Power Analysis Toolkit (dedicated soft-
ware framework) with noise reduction techniques and digital pre-filtering mechanisms on Arduino
Uno board equipped with an ATmega328 microcontroller using AES library (Atmel). They presented
acquisition method has the target of decreasing the effort of the post-processing algorithms in order
to speed up the attack and reduce the needed computing resources. Moreover the presented technique
doesn’t require dedicated board or special components and all the used tools are open source or free-
ware. All the presented software mechanisms were implemented in Python that is easy to use, with
medium performance and portability.

The paper "An Integrated Validation Environment for Differential Power Analysis" [5] is related
to a new flexible integrated simulation-based environment that allows validating a digital circuit. It
allows to set most of the parameters and features (e.g., power consumption models, observation mech-
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anisms, and statistical analysis) in such a way that different forms of DPA can be experimented. In
all the cases the overall execution time is affordable and compatible with an iterative design flow, in
spite of the large number of samples and of the target precision. The solution implements most of the
parameters and features of DPA and can be used in a general way, for any design and countermeasure;
in particular, it deals with: a) real measures or simulated data; b) three different power consumption
models; c) any number of target bits; d) different combinations of the results of each target bit; e)
reports on packets statics; f) graphical output.
Since the simulation is performed at transistor level, the power consumption waveforms are very ac-
curate and in agreement with the physics.

"FPGA Security: Motivations, Features and Applications" [21] describes FPGA security primi-
tives from multiple FPGA vendors and gives examples of those primitives used in some applications.

Matteo Bollo and Paolo Maistri in "Composite Fields against Side Channel Analysis for the Ad-
vanced Encryption Standard" [24] present AES and RAS design fully implemented on composite fields
robustness against Differential Power Analysis (Xilinx Spartan 3 XC3S1000). In particular, Advanced
Encryption Standard targeted at resource constrained applications, countermeasure developed against
side channel analysis and its robustness also from a testability point of view, i.e., how it affects the
amount of detectable/undetectable fault of the design, and how it could be used itself to perform a
Built-In Self-Test (BIST). Then also the robustness of the countermeasure against side channel anal-
ysis has been verified through simulation. Both architectures (the reference and the composite field
implementations) have been synthesized in AMS c35 Corelib technology, and several simulations at
the transistor level have been run in order to collect the power consumption traces. Due to excessive
time required for such simulations and to the fact the simulations are not bothered by noise existing
in real life, the attack was limited to a specific byte, thus only 256 traces per design. Moreover, they
observed that area overhead wasn’t negligible.

In "Differential Power Analysis Attack on ARM based AES Implementation without Explicit
Synchronization" [18], the authors implemented a Differential Power Analysis (DPA) attack on mi-
crocontroller STM32F103 (STM32 family) with 32-bit ARM Cortex-M3 core (AES with 128-bit key).
In this case, elastic alignment methods are used for the trace synchronization and Dynamic Time
Warping (DTW) and its fast algorithm Fast-DTW are deployed in order to match similar patterns in
reference and misaligned power consumption traces.

DPA applied to Xilinx Virtex-II Pro FPGA running a Data Encryption Standard (DES) core is
described by Song Sun, Zijun Yan and Joseph Zambreno in "Experiments in Attacking FPGA-Based
Embedded Systems using Differential Power Analysis" [25]; in particular, they used an automated data
acquisition and analysis design for an FPGA-based implementation of the Data Encryption Standard
(DES).

In "Side-channel analysis of SEcubeTM platform" [13], the authors implemented a DPA attack of
AES-128 on SEcubeTM and on ST Microelectronics Nucleo board equipped with the same micropro-
cessor. The encryption process consisted into cypher the block of data with the specified key and
repeat it for 256 times, varying the plaintext altering the last byte for every possible configuration,
from 0x00 to 0xFF for every cycle (this in order to control and force the changes into the plaintext for
generating on purpose data-correlation among the sets of measurements). The measurements acquired
with the oscilloscope were amount to 2.713 traces for Nucleo Board and to 15.872 for SEcubeTM. The
encryption sessions were 16 for the Nucleo board and 62 for SEcubeTM and each power consumption
trace contained 10.000 samples. In order to get a relaxing time for data acquisition, the attack was
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limited to a specific byte, thus only 256 traces in every encryption session. They changed the following
parameters: 1) Number of samples of each trace of 25%, 30%, 50% and 100% with respect to the full
number of samples; 2) Selection Function based on Hamming weight (hweight), Hamming distance
(hdistance) and Rising .
They observed that attacking only the Sbox of the AES, the results are slightly better, but, in most
cases, just half of last byte of the key is correct and considering the whole AES, the number of wrong
bits increases. Both the used platforms provide almost the same level of security. Authors assumed
that the obtained results might lead to improvements when DPA is combined with a brute-force attack.

In "Introduction to Differential Power Analysis" [6], Paul Kocher, Joshua Jaffe, Benjamin Jun and
Pankaj Rohatgi implemented an AES-128 encryption using the AES-128 smart card traces (SASEBO
platform).

The authors of "General Scheme of Differential Power Analysis" [4] used a DPA applied with
PICDEM 2+, programming device MPLABIC2D and cryptographic module PIC 16F84A: the AES
algorithm was implemented into the cryptographic module and the attack was focused only on the
performed non-linear transformation SubBytes and concretely on the first byte of the secret key.

Michal Varchola and Milos Drutarovsky described in [3] a DPA in order to obtain a 128-bit key
which was stored in the internal Flash memory of a ADuC 834 microcontroller based on a standard
8051 core. One important result was that, using an higher decimation factor, the computation algo-
rithm is speeded up even using more traces.

"A Practical Differential Power Analysis Attack against an FPGA Implementation of AES Cryp-
tosystem" [26] paper contains the description of a DPA attack on SRAM-based Xilinx Spartan-II, with
the plaintexts generated from a 128-bit LFSR on the FPGA. The experiment executed confirmed that
power analysis has to be considered as a serious threat for FPGA security, since they were able to
discover the key in almost two hours.

Lukáš Mazur and Martin Novotný illustrated in their paper "Differential Power Analysis on FPGA
board: Boundaries of Success" [27] a DPA attack on FPGA board (Spartan 3E Starter Board) with
the implementation of AES cipher. They focused on the last round and used Hamming distance as
a power model, as attacking first round and/or using Hamming weight does not lead to success in
case of FPGA implementation. They demonstrated that the success rate of the DPA attack against
FPGA board running AES encryption strongly depends on the measurement setup: a) while using
differential probe disables the attack, using differential amplifier enables it; b) removing decoupling
capacitors plays major role in success rate of the DPA attack: surprisingly, their presence does not
disable the attack, however, as expected, their removal enables the attack significantly; c) replacing
standard switched-mode power supply with accumulators and linear stabilizers simplifies the attack,
but its effect is not that significant: even the circuit powered from (noisy) switched-mode power supply
can be successfully attacked, however, noiseless power supply (accumulator) simplifies the attack in
terms of number of traces necessary for successful attack on the FPGA implementation.

In "Differential Power Analysis Countermeasures for the Configuration of SRAM FPGAs" [28],
William Luis, G. Richard Newell and Kenneth Alexander proposed a SmartFusion2 flash based FPGA
with a secure boot loader, giving data on the effectiveness of the underlying solution using a statistical
characterization of side channel leakage using Test Vector Leakage Assessment (TVLA) methodology
proposed by Cryptography Research. TVLA provides an objective result as to the vulnerability of
unprotected cryptographic implementations contrasted to the effectiveness of the solution presented,
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since a SmartFusion2 FPGA, layered with a solution integrating DPA-mitigated cryptographic IP,
yields a strong and effective solution for addressing DPA vulnerable endpoints.

Jun Wu, Yiyu Shi and Minsu Choi described in their paper "FPGA-based Measurement and Eval-
uation of Power Analysis Attack Resistant Asynchronous S-Box" [29] a low-power side channel attack
(SCA) on a FPGA board (SASEBO-GII), demonstrating that their asynchronous S-Box is resistant
to DPA attacks and has a lower power consumption than the synchronous one.

The authors of "A DPA Resistant FPGA Implementation of AES Cryptosystem with Very Low
Hardware Overhead" [30] presented a novel approach for the implementation of AES with a greater
strength against DPA with minimal additional area overhead (algorithmic countermeasure based on
mathematical properties of Rijndael algorithm), verifying it on a Xilinx Spartan-II FPGA.

In "DPA Resistant AES on FPGA using Partial DDL" [31], they illustrated an improvement in
terms of area for the Dynamic Differential Logic (DDL), a countermeasure against DPA used for
FPGAs, called Partial DDL (since DDL is applied only to a part of the cryptographic hardware im-
plementation). The demonstration has been done in a lightweight architecture of AES in the Partial
Separated Dynamic Differential Logic (Partial SDDL) for FPGAs.

"Correlation Power Analysis Attack of AES on FPGA Using Customized Communication Proto-
col" [32] contains the description of a correlation power analysis attack carried out on AES encryption
algorithm implemented on a Xilinx FPGA on SASEBO (Side-Channel Attack Standard Evaluation
Board) using a customized communication interface protocol and optimizing the number of traces.

An interesting point of view is exposed in "Experiments in Attacking FPGA-Based Embedded
Systems using Differential Power Analysis" [25], where the authors detailed their experience in per-
forming a DPA attack on a commercial FPGA development board (Virtex-II Pro), presenting an
automated data acquisition and analysis design for an FPGA-based implementation of DES. The pre-
sented platform gives a systematic view on how to successfully perform the DPA attack in a practical
sense. Getting to the point, the efficiency of analysis is critical to DPA if the attacker wants to break
the FPGA cryptographic system, since: 1) most modern cryptographic algorithms are based on the
fact that they can be broken in theory, but not in practice (ex: billions of years to break a 256-bit AES
system in a brute-force search); 2) the key of cryptosystem like AES or DES is usually changed after
a variable period of time; 3) DPA attacks are not as powerful as expected when facing the commercial
FPGA platform due to the decoupling capacitors, that results being a natural countermeasure; 4)
presence of more than one electrical device on an FPGA board, since the other on-board components
may overwhelm the power consumed by the reconfigurable logic.



CHAPTER 3

Cryptography
Overview

3.1 Introduction to Cryptography

As written in [33], "If I take a letter, lock it in a safe, hid the safe somewhere in Karachi, then tell
you to read the letter, that’s not security. That is obscurity. On the other hand if I take a letter
and lock it in a safe, and then give you the safe along with the design specifications of the safe and a
hundred identical safes with their combinations so that you and the world’s best safecrackers can study
the locking mechanism - and you still cannot open the safe and read the letter - that’s security."
For many years, govermment and military had the exclusive for the cryptography, while nowadays is
diffused in all the environments.
In addition to Security (defined above), cryptography targets are also:

Confidentiality: protection of the data from all the receivers

Authentication: possibility for the receiver of a message to ascertain its origin

Integrity: possibility for the receiver of a message to verify that it has not been modified

Non-Repudiation: avoiding that a sender falsifies deny later that he sent a message

As reported in [34], cryptography provide solutions to two major problems of data security: 1)
privacy problem, preventing an opponent from extracting information from a communication chan-
nel; 2) authentication problem, preventing an opponent from injecting false data into the channel
or altering messages so that their meaning is changed.
Here are reported some notations:

· cryptographic algorithm/cipher : mathematical function used for encryption and decryption

· restricted algorithm: algorithm based on keeping the way that algorithm works a secret

· cryptography : art and science of keeping messages secure

· cryptanalysis: art and science of breaking ciphertext without the knowledge of key

· cryptanalyst : practitioner of cryptanalysis

· cryptology : branch of mathematics encompassing both cryptography and cryptanalysis

27
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· plaintext : information intended to be sent

· ciphertext : result of encrypting the plaintext using a predetermined key, that is sent over an
insecure channel

· cryptosystem: five-tuple (P , C, K, E, D), defined as follows:

P : finite set of possible plaintexts

C: finite set of possible ciphertexts

K (keyspace/entropy): finite set of possible keys (with a n-bits key, the size is 2n)

E: encryption rule for the key (eK)

D: decryption rule for the key (dK)

Notice that each eK : P → C and dK : C → P are functions such that dk(ek(x)) = x for every
plaintext x defined in P [33]

From the paper "Introduction to Cryptanalysis: Attacking Stream Ciphers" [35], the strength of a
cryptographic algorithm (or computational complexity of the cipher) is expressed in the total amount
of computations an adversary needs to perform to recover the secret key and for a perfectly secure
cipher, the computational complexity is the same as the key space. However, with clever optimizations
it is often possible to find the secret key by doing far fewer computations than the actual entropy
would require and these are defined as the actual attack complexity of a cipher.

As defined in "Introduction to Cryptography" [33] by M. I. Aziz and S. Akbar, there are two types
of key-based algorithms:

? Symmetric/Private-Key/Conventional Algorithms:
In this case, encryption key can be calculated from the decryption key and vice versa and in
most cases they are equal.
Encryption and decryption can be denoted as: ek(x) = y and dk(y) = x They can be divided
into categories:

• Stream Ciphers:
They manage a single bit at a time of the plaintext.
As summarized in [36], the advantages are the speed of transformation, since algorithms
are linear in time and constant in space and the low error propagation, since an error in
encrypting one symbol will not affect subsequent symbols. In the meanwhile, the disad-
vantages are that all information of a plaintext symbol is contained in a single ciphertext
symbol and the susceptibility to insertions/modifications, because an active interceptor
who breaks the algorithm might insert spurious text that looks authentic.

• Block Ciphers:
They operate on the plaintext in groups of bits, called blocks.
As summarized in [36], the great advantages are the high diffusion, since information from
one plaintext symbol is diffused into several ciphertext symbols and the immunity to tam-
pering, since it is difficult to insert symbols without detection. The prices to pay are
the slowness of encryption, because an entire block must be accumulated before encryp-
tion/decryption can begin and the error propagation, because an error in one symbol may
corrupt the entire block.

? Asymmetric/Public-Key Algorithms:
The key used for encryption is different from the one used for decryption and they cannot be
calculate one from the other in a reasonable time. The encryption key can be made public [33].
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Figure 3.1: Private Key Cryptographic Sys-
tem [7]

Figure 3.2: Public Key Cryptographic System
[7]

One of the best-known algorithms today is the Advanced Encryption Standard (AES). It has been
declared in 2011 the new federal government standard by the National Institute of Standards and
Technology (NIST) and it is a symmetric key algorithm. However, AES is currently only known to
be truly vulnerable to side-channel attacks, which are directed at weaknesses in the implementation
of an algorithm rather than the algorithm itself [37].

There are two fundamentally different ways in which cryptographic systems may be secure (defined
in the paper "Privacy and Authentication: an Introduction to Cryptography" [34]):

• Unconditionally:
When the amount of information available to the cryptanalyst is actually insufficient to deter-
mine the enciphering and deciphering transformations, independently from the provided com-
puting power.

• Computationally:
When the intercepted material contains sufficient information to allow an unique solution to
the cryptanalytic problem, but there is no guarantee that this solution can be found by a
cryptanalyst with limited computational resources.

While you can demonstrate the security of an unconditionally secure systems, you can’t can do
the same with the computational infeasibility of any cryptanalytic problem. However the adopted
strategy is the one of computationally security and the only unconditionally secure system in common
use is the One-Time Tape (OTT), in which the plaintext is combined with a totally random key
of the same length: usually the plaintext is represented as an n-bit binary string which is xored with
a totally random key of the same length, that, as suggested by the name, will never be reused. Even
if the cryptanalyst could try deciphering under all possible keys, he would merely see all 2n possible
plaintexts, including not only the correct one, but also all other meaningful plaintexts of the same
length: since intercepting the cryptogram does not allow the cryptanalyst to rule out any plaintext
messages, he learns absolutely nothing except the length of the message [34].

As exposed in [33], a good cipher should has the following properties:

• Semantic Security:
This means that: 1) there is no possibility of recovering encryption key using encryption scheme;
2) you can’t recover the plaintext/ciphertext from the ciphertext/plaintext (x from ek(x)); 3)
the encryption of a string looks like a random garbage; 4) encryption schemes not only hide
plaintext but also don’t leak any partial information about it.

• Indistinguishably:
The encryption of x is indistinguishable from encryption of an equal length string of nonsense.
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Here a list of the main types of attacks (based on [33]) is reported:

Ciphertext-Only Attack: The cryptanalyst has the ciphertext of several messages, all of
which have been encrypted using the same encryption algorithm and he has to cryptanalyst’s
job is to recover the plaintext of as many messages as possible, or better yet to deduce the key
(or keys) used to encrypt the message.

Known-Plaintext Attack: The cryptanalyst has access not only to ciphertext of several
messages, but also to the plaintext of those messages and he can deduce the key (or keys) used
to encrypt the message or an algorithm to decrypt any new messages encrypted with the same
key (or keys).

Chosen-Plaintext Attack: The cryptanalyst not only has access to the ciphertext and asso-
ciated plaintext for several messages, but also chooses the plaintext that gets encrypted. This is
more powerful than known-plaintext attack, because the cryptanalyst can chose specific plain-
text blocks to encrypt end he can deduce the key (or keys) used to encrypt the message or an
algorithm to decrypt any new messages encrypted with the same key (or keys).

Adaptive-Chosen-Plaintext Attack: This is a special case of chosen-plaintext attack. Not
only can the cryptanalyst choose the plaintext that is encrypted, but he can also modify his
choice based on the results of previous encryption.

Chosen-Ciphertext Attack: The cryptanalyst can choose different ciphertexts to be de-
crypted and has access to the decrypted plaintext. It can be primarily applicable to public-key
algorithm.

Chosen-Key Attack: The cryptanalyst has some knowledge about the relationship between
different keys.

Rubber-Hose Cryptanalysis: The cryptanalyst threatens, blackmails, or tortures someone
until they give him the key.

To sum up: "Security of the algorithms depends on how hard they are to break. If the cost required
to break an algorithm is greater than the value of the encrypted data, then you are probably safe.
If the time required to break an algorithm is longer than the time the encrypted data must remain
secret, then you are probably safe. If the amount of data encrypted with a single key is less than the
amount of data necessary to break the algorithm, then you are probably safe" [33].

You can also define a classification for the breaking of the algorithm:

Total Break: a cryptanalyst finds the key, K, such that dK(y) = x.

Global Deduction: a cryptanalyst finds an alternate algorithm, A, equivalent to dK(y), with-
out knowing K.

Instance/Local Deduction: a cryptanalyst finds the plaintext of an intercepted ciphertext.

Information Deduction: a cryptanalyst gains some information about the key or plaintext.



Master Degree Thesis - Chapter 3 31

In conclusion, it can be deduced the cryptography is a complex science and in order to get good
results is fundamental having a productive cooperation between expertise from different environments,
as summarized in the following figure 3.3:

Figure 3.3: Scheme of Skills for Cryptography [8]

3.2 Private-Key Algorithms

3.2.1 Stream Ciphers

They produce a large chunk of secret, random looking data and combines it with the plaintext to
produce ciphertext: without the exact same data chunk, the plaintext cannot be uncovered from the
ciphertext. The keystream is defined as the random data representing a stream of bits which is derived
from the secret key. In order to have a propagation to a successor state after each encryption step,
a stream cipher contains some persistent memory (internal cipher state), which is initialized by the
secret key [35].
The target for the output has to be comparable to the one of a Pseudo Random Number Generator
(PRNG): the keystream varies, depending on the initialized secret key and the moment of encryption
with respect to the propagation of the internal state and should consist of a unique bit string that
contains uniformly distributed random bits. In general, encryption of plaintext and decryption of
ciphertext are both performed by the exclusive-or (XOR) operation, that has the useful mathematical
property of the possibility of inversion (this is why it can be used both for encryption and decryption)
[35].
There are two types of stream ciphers:

• Synchronous:
The encryption bits are computed independently from the plaintext. This could be very useful
in situations when a communication channel is more prone to error (the speed of data-traffic is
more important than the completeness and integrity of the data).

• Self-synchronizing:
They compute the successor of its internal state with a function over the previous state and the
ciphertext, so the internal state diverts from its original propagation path when a transmission
error occurs.
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The most widely used and best studied are the synchronous stream ciphers.
An important objective of a stream cipher is to avoid a direct relation between the input (secret key)
and output (keystream) of the cipher: because the entropy of a synchronous stream cipher is limited
to the size of the internal state, the produced keystream will eventually repeat itself, even if it is very
insecure [35].
Keystream can be seen as an unique set of bits which must be as long as the plaintext, but contin-
uing distribution of fresh keystream for long data sequences is undesirable and, with an increase in
electronic transmissions, the need for alternative solutions grew and several stream cipher encryption
techniques were introduced. For instance, they introduced physical rotor machines which operated
mostly mechanically (like the well-known Enigma) and later the non-linear binary sequence stream
cipher (after the computation of a new keystream bit, the successor function updates the internal
state by a linear function to preserve as much entropy to the cipher and then the output component
applies a non-linear filter function to compute the next keystream bit).
Moreover, in most cryptosystems it is important to link multiple encrypted messages in one crypto-
graphic session (chaining of encryption), but stream ciphers inherently provide this feature since their
ciphertext is produced incrementally [35].

3.2.1.0.1 RC4
Rivest Cipher 4, is the most widely used of all stream ciphers, particularly in software. It’s also

known as ARCFOUR or ARC4. RC4 has been used in various protocols like WEP and WPA (both
security protocols for wireless networks) as well as in TLS. Recent studies have revealed vulnerabilities
in RC4, prompting Mozilla and Microsoft to recommend that it be disabled where possible. In fact,
RFC 7465 prohibits the use of RC4 in all versions of TLS. These recent findings will surely allow other
stream ciphers (e.g. SALSA, SOSEMANUK, PANAMA, and many others, which already exist but
never gained the same popularity as RC4) to emerge and possibly take its place.

3.2.2 Block Ciphers

Despite their advantages in flexibility and speed, stream ciphers are currently scarcely used, since
typical stream cipher attacks aim to separate the plaintext from the encryption bits. For example,
an attack can exploit a general and unavoidable weakness in traditional stream ciphers where the
keystream is generated independently from the plaintext: small alterations (bitflips) to the ciphertext
might be sufficient to perform the attack without actually recovering the secret key.
The security that is provided by the underlying building blocks of stream ciphers are well-studied,
since the security implications of these separate components may not hold when they are combined
and used together in one cryptographic algorithm.
The usual sizes of each block are 64 bits, 128 bits, and 256 bits [35].

3.2.2.0.1 DES
DES is a non-linear method of encrypting 8-byte blocks of data which was adopted by the National

Institute of Standards and Technology as the algorithm to be used for protection of computer data.
It has a complexity of 256 for searching of the key.
DES is an iterated cryptosystem, in particular the same procedure is repeated 16 times (rounds) in a
row in order to get greater confusion [9].
The DES key is 56 bits plus 8 checkbits (completely dependent on the 56 bits). Each round of the
function, uses a 48 bit subkey, derived from the key, but different for each round. The input to each
round in DES is an 8 byte quantity, initially the plaintext block to be encrypted [9].
As you can see in fig. 3.4, in any given round r, first the right 32 bits of the block are encrypted. The
first 32 bits of output of round r of DES (left half), is just the right half of the input to round r. The
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right half of the output is the result of the encryption process mentioned above, xored with the left
half of the input to round r [9].

Figure 3.4: Scheme of a single round in DES [9]

Concerning the encryption function (fig.3.5), the right half of the data is first expanded from 32
bits to 48 bits using the “expansion permutation” that duplicates 16 particular bits of the 32 bits and
then permutes the resulting 48 bit data using a fixed permutation algorithm. Then the permuted 48
bits are xored with the 48 bit subkey for the current round and divided into 8 groups of 6 consecutive
bits each. Each 6 bit quantity is sent through an “S-box” (a sort of look-up table that turns a 6 bit
quantity into a 4 bit quantity). There are 8 different look-up tables that correspond to the 8 different
S-boxes in the encryption function. Finally the concatenated 32 bit output from the S-boxes is again
permuted [9].

Figure 3.5: Scheme of Encryption Function in DES [9]
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3.2.2.0.2 3DES
In practice, it is DES applied three times, applying different keys.

As a consequence, it is stronger than DES, but also much slower, so it never became the successor of
DES.

3.2.2.0.3 AES
In 1998 the National Institute of Standards and Technology (NIST) announced a competition for

a new block cipher to replace Data Encryption Standard (DES), due to the problem of the short key
length. The AES candidates were evaluated according to three main criteria: security, cost (compu-
tational efficiency) and algorithm and implementation characteristics (flexibility and simplicity) [10].
In 2001 NIST announced their choice: the Rijndael algorithm. In 2002 AES became effective as a fed-
eral government standard and in 2003 U.S. government announced that AES could be used to protect
classified information, and it soon became the default encryption algorithm for protecting classified
information as well as the first publicly accessible and open cipher approved by the National Security
Agency (NSA) for top-secret information [10].

AES is implemented as an iterated block cipher which has a block length of 128 bits and its design
principle is the Substitution Permutation Network (SPN) which is a combination of both substitution
and permutation (also known as confusion and diffusion).
There are three permissible key lengths:

· 128 bits, using 10 rounds (AES128)

· 192 bits, using 12 rounds (AES192)

· 256 bits, using 14 rounds (AES256)

Defining χ as the plaintext and Num as the number of rounds and γ as the ciphertext (State), the
high-level description is the following:

1. Initialization of the State and AddRoundKey operation.

2. For Num-1 rounds, execution of the following operations:

· SubBytes (substitution)
· ShiftRows (permutation)

· MixColumns

· AddRoundKey

3. Execution of:

· SubBytes
· ShiftRows
· AddRoundKey

The plaintext consists of 16 bytes and can be denoted χ = χ0, ..., χ15 and represented in a 4x4
matrix:

[10]
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3.2.2.0.3.1 AddRoundKey
This operation simply consist in combining each byte of the state with a block of the round key

using bitwise XOR (bitwise addition modulo 2) [10].

3.2.2.0.3.2 SubBytes
Each byte ai,j in the State Matrix is replaced by SubByte(ai,j), using an 8-bit substitution box

called the Rijndael S-box.
This operation provides the non-linearity in the cipher. Since if a block cipher is linear with respect to
some field, then, given a few known plaintext-ciphertext pairs, it is possible to recover the key using
a simple Gaussian elimination, the nonlinearity of S-boxes is very important.
In contrast to DES S-boxes, the AES Sbox can be defined algebraically with operations in a finite
field GF (28), which is also known to have good non-linearity properties. S-box is constructed by
combining the inverse function with an invertible affine transformation, to avoid attacks based on
simple algebraic properties [10].
Indeed, Rijndael S-box takes 8 bits as an input, converts it to an element of a particular finite field
F28 = Z2[x]/(x8 + x4 + x3 + x + 1). Multiplication in a finite field is done modulo the irreducible
polynomial used to define the finite field, so two elements of this field are multiplied and divided by
(x8 + x4 + x3 + x+ 1).
If the input byte is ai,j = a7a6a5a4a3a2a1a0, it can be described as polynomial: a7x7 + a6x

6 + a5x
5 +

a4x
4 + a3x

3 + a2x
2 + a1x+ a0.

Then you have to find the multiplicative inverse element (in this finite field all non-zero elements have
multiplicative inverse elements) and then again convert polynomial back to binary.
Finally you have to apply a specific affine transformation [10].
This passages are summarized by the following algorithm:

Figure 3.6: Scheme of SubBytes Algorithm [10]

3.2.2.0.3.3 ShiftRows
This step is basically a transposition of the elements of the State Matrix. It cyclically shifts the

bytes in each row by a certain offset:

1. first row: unchanged

2. second row: each byte is shifted one to the left

3. third row: each byte is shifted two to the left

4. fourth row: each byte is shifted three to the left

In this way, each column in output will be composed by the bytes from each column of the input,
since input block is written column-wise [10].
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3.2.2.0.3.4 MixColumns
The four bytes of each column of the state are combined using an invertible linear transformation:

it takes four bytes as input and outputs four bytes, where each input byte affects all four output bytes.
To sum up, ShiftRows and MixColumns provide diffusion in the cipher [10].
MixColumns step can be viewed as a multiplication by the particularMDS Matrix (Maximum Distance
Separable) in the finite field defined. In MDS Matrix:

· 01 is 00000001 in binary (1 as a polynomial)

· 02 is 00000010 in binary (x as a polynomial)

· 03 is 00000011 in binary (x+ 1 as a polynomial)

This step can be seen also as a multiplication of a(x) = a3x
3 + a2x

2 + a1x + a0 by the fixed
polynomial c(x) = 03x3 + 01x2 + 01x + 01, taking the result modulo x4 + 1 (with ai denoting the
elements of a column) [10].

3.2.2.0.4 Blowfish and Twofish
Blowfish has a block size of 64 bits and supports a variable-length key that can range from 32 to

448 bits.
One thing that makes blowfish so appealing is that it is unpatented and royalty-free.
Twofish is a 128-bit block cipher that supports key sizes up to 256 bits long.

3.3 Public-Key Algorithms

In this case, every client and server has a unique public key: anyone can encrypt a message using this
key, but only the owner of the key can decrypt the message again. So there is one special server (SS)
(that knows the public key of everyone) and every other client and server knows SS public key and,
when it creates or changes its public key, asks the SS for a certificate, that is a plaintext certificate
“decrypted” with the SS secret key (so anyone can encrypt the certificate using the SS public key to
read the plaintext version, and know that only the SS could have generated that message) [9].
If two machines want to communicate without knowing their public keys, they have to send each
other a plaintext with their certificates, that they can encrypt using SS public key. At this point, they
knows their public keys and that they are genuine, so they can carry on a private conversation.
From this mechanism, you can deduce that the critical point is the protection of SS public key [9].

Indeed, the difficulty of distributing keys has been one of the major limitations on the use of con-
ventional cryptographic technology: in order for the sender and receiver to make use of a physically
secure channel for key distribution, they must be prepared to wait while the keys are sent, or have
made prior preparation for cryptographic communication, so the cost of distributing many keys could
be prohibitive [34].

As explained by P. K. Mohapatra in [38], theoretically a public-key system can be constructed by
a special case of the one-way function (f(x) is easy to compute for any input x, while f−1(y) is hard
to compute) known as a trapdoor one-way function: in this last case, f(x) = y (y known) becomes
easy to solve if additional information (the trapdoor) is available.
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3.3.1 Diffie-Hellman Key Exchange

The protocol is based on the difficulty of determining discrete log in group Z∗p .
Assuming that p and g are publicly known, it follows this algorithm:

1. Alice chooses a at random, 0 ≤ a < p− 1

2. Bob chooses b at random, 0 ≤ b < p− 1

3. Alice computes u = ga mod p and sends to Bob.

4. Bob computes v = gb mod p and sends to Alice.

5. Alice computes K = (gb)a mod p upon receipt of message from Bob.

6. Bob computes K = (ga)b mod p upon receipt of message from Alice.

7. Alice and Bob compute the same value gab mod p and they can use it as the secret key for the
next communication.

An eavesdropper, Eve, tapping onto the transaction gets the values of ga mod p and gb mod p, but
not gab mod p: if Eve could determine a from ga mod p or b from gb mod p, then she could compute
K = gab mod p, but both these are instances of the discrete log problem [38].

3.3.2 RSA

The system is based on the hardness of the integer factorization problem in group Zn. First of all,
you have to set the RSA in order to generate public/private key pair:

1. Bob generates two large primes, p and q.

2. Bob computes n = pq (that will be used as the modulus) and phi(n) = (p− 1)(q − 1)

3. Bob chooses a random e (0 < e < phi(n)) (used as the public exponent) such that e is relatively
prime to phi(n).

4. Bob computes d (private exponent) as the inverse of e/mod/phi(n).

5. Bob publishes (n, e) as his public key and keeps (n, d) as his private key. The primes p and q
must be kept secret or destroyed.

e should be relatively prime to phi(n), otherwise, there will be no modular inverse and you cannot
find any private exponent d.

At this point, assuming that Alice knows Bob’s public key (n, e), but doesn’t know Bob’s private
key (n, d), you can apply RSA algorithm to encrypt and decrypt data:

1. Alice encrypts message m by computing c = me/mod/n

2. Alice sends c to Bob.

3. Upon receipt, Bob decrypts c by computing cd/mod/n and gets back m

You can note that the encryption and decryption are inverse operations and the security of this scheme
is based on the hope that the encryption function c = me is one-way, since it’d be necessary for an
opponent Eve to know the value of d in order to compute m = cd/mod/n (equivalent to factoring n
to get p and q) [38].
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3.4 Block Cipher Modes of Operation

In the case the plaintext you have to encrypt is longer than 128 bits, you ca adopt different strategies
in order to manage it using more times the default size.

3.5 Electronic Codebook (ECB)

Figure 3.7: Electronic Codebook (ECB) Encryption Scheme

Figure 3.8: Electronic Codebook (ECB) Decryption Scheme

This is the simplest method because you have only to divide the plaintext and encrypt independently
each part, but it is not so efficient (no high confidentiality).

3.6 Cipher Block Chaining (CBC)

Figure 3.9: Cipher Block Chaining (CBC) Encryption Scheme
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Figure 3.10: Cipher Block Chaining (CBC) Decryption Scheme

This is the most used modality and you have to do a XOR operation between the plaintext and the
previous ciphertext (or an Initilization Vector (IV) in the case of the first block) before the encryption
block.
The corresponding mathematical implementation is:

Ci = EK(Pi ⊕ Ci−1)

C0 = IV

As consequence, for the decryption:

Pi = DK(Ci ⊕ Ci−1)

C0 = IV

The main disadvantages of this mode are that it cannot be parallelized since is sequential and you
need a length of the message corresponding to a multiple of the cipher block size.
An interesting difference between encryption and decryption is that in the first case an error in the
plaintext or in IV has consequences on all the following blocks, while in the second case the error
won’t be propagated.

3.7 Propagating Cipher Block Chaining (PCBC)

Figure 3.11: Propagating Cipher Block Chaining (PCBC) Encryption Scheme
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Figure 3.12: Propagating Cipher Block Chaining (PCBC) Decryption Scheme

Each subdivision of the plaintext has to be XORed with the previous plaintext and ciphertext (or for
the first block only with the IV), that corresponds (for encryption) to:

Ci = EK(Pi ⊕ Pi−1 ⊕ Ci−1)

P0 ⊕ C0 = IV

While for decryption:
Pi = DK(Ci)⊕ Pi−1 ⊕ Ci−1

P0 ⊕ C0 = IV

3.8 Cipher Feedback (CFB)

Figure 3.13: Cipher Feedback (CFB) Encryption Scheme

Figure 3.14: Cipher Feedback (CFB) Decryption Scheme
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In this case you create a self-synchronizing stream cipher (if you loose part of the ciphertext due
to a transmission error, you’ll miss only part of the original message and you’ll be able to continue
correctly the decryption), using the three formulas below:

Ci = EK(Ci−1)⊕ Pi

Pi = EK(Ci−1)⊕ Ci

C0 = IV

This method has some points in common with CBC, like that the propagation of the errors in the
plaintext, you can have parallelization in decryption, but not in encryption and finally the propagation
of the errors during decryption is stopped.

3.9 Output Feedback (OFB)

Figure 3.15: Output Feedback (OFB) EncryptionScheme

Figure 3.16: Output Feedback (OFB) Decryption Scheme

Also in this case you get a synchronous stream cipher, but now implementing:

Cj = Pj ⊕Oj

Pj = Cj ⊕Oj

Oj = EK(Ij)

Ij = Oj−1
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3.10 Counter (CTR)

Figure 3.17: Counter (CTR) Encryption Scheme

Figure 3.18: Counter (CTR) Decryption Scheme

Finally, you could also exploit a counter (with module high enough), encrypting its successive values
getting a stream cipher.

3.11 State of the Art

In "Arithmetic Cryptography" [39] the authors studied the possibility of solving cryptographic prob-
lems in a way that is independent from the underlying algebraic domain (fully black-box arithmetic
model over a finite field F). They proved several positive and negative results in this model for various
cryptographic tasks: on the positive side, under coding-related intractability assumptions, compu-
tational primitives like commitment schemes, public-key encryption, oblivious transfer, and general
secure two-party computation can be implemented in this model; on the negative side, garbled circuits,
additively homomorphic encryption, and secure computation with low online complexity cannot be
achieved in this model. The results reveal a qualitative difference between the standard Boolean model
and the arithmetic model, and explain, in retrospect, some of the limitations of previous constructions.

The authors of "Lattice-based Cryptography" [40], showed that Lattice Based PKCS (Public
Key Cryptosystems) are a promising field to introduce an immune cipher system against quantum
cryptanalysis and they focused in particular on recent advancement in lattice-based public key cryp-
tostystems and key exchange mechanisms based on the learning with errors (LWE) problem and its
ring variant Ring-LWE. They obtained the following results: a) Lattice-based cryptography remained
very impractical until the introduction of Regev’s LWE cryptosystem, that significantly reduced the
key sizes, from matrices to vectors; b) the passive security is guaranteed from the LWE assumption:
the public key and ciphertext are indistinguishable from uniformly random distributions; c) the active
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security can be achieved either using the Fujisaki-Okamoto transformation as in Peikert’s KEM, or
using trapdoor functions as in the GGH cryptosystem; d) the generation encryption and decryption
times in modern lattice-based cryptosystems are almost faster than in classical PKCs; e) large cipher-
text expansion factor of around 30, compared to classical PKCs where the ciphertext has the exact
same size of plaintext.

In "Chaos-Based Cryptography: A Brief Overview" [41], they discussed the integration of the
chaos theory in the cryptography.

In "Cryptanalysis Techniques: An Example Using Kerberos" [9], Jennifer Kay provided a guide to
techniques for analysing a cryptosystem, using Kerberos authentication system, that uses a trusted
key server to keep track of the private keys of clients and servers, as well as to generate session keys
for client-server interaction.

Chris Peikert in his paper [42] presented the construction of public-key cryptosystems that are
secure assuming the worst-case hardness of approximating the minimum distance on n-dimensional
lattices to within small poly(n) factors. The main technical innovation is a reduction from variants of
the shortest vector problem to corresponding versions of the "learning with errors" (LWE) problem.
Finally, he presented also the construction of a natural chosen ciphertext-secure cryptosystem having
a much simpler description and tighter underlying worst-case approximation factor than prior schemes.

In the paper "An FPGA Design of AES Encryption Circuit with 128-bit Keys" [43], they use a
Pipelined Partial Rolling (PPR) architecture for the AES algorithm on a Altera Stratix EP1S20F780C5
FPGA, reducing the amount of memory up to 75% while increasing memory efficiency to 9.6%.

In "Accelerating Private-Key Cryptography via Multithreading on Symmetric Multiprocessors"[44]
is demonstrated, using Wisconsin Wind Tunnel II, that exploiting Interleaving Chiper Block Chain-
ing (ICBC), proposed by the cryptography community to deliver high performance while maintaining
high level of security, you can exploit the full processing power, achieving an encryption rate of 92
Mbytes/s on a 16-processor SMP at 1 GHz, reaching a factor of improvement of almost 10.

In "ECvisual: A Visualization Tool for Elliptic Curve Based Ciphers" [45], they presented a tool
for the visualization of elliptic curves over the real field and over a finite field of prime order, compu-
tation of arithmetic operations, encryption and decryption, and conversion of plaintext to a point on
an elliptic curve.

In "RSAvisual: A Visualization Tool for the RSA Cipher" [46], they presented as well a tool that
permits the user to visualize the steps of the RSA cipher, do encryption and decryption, learn simple
factorization algorithms, and perform some elementary attacks.

In "AESvisual: A Visualization Tool for the AES Cipher" [47], is presented a software allowing
the user to visualize all the major steps of AES encryption and decryption.

The authors of "CoARX: A Coprocessor for ARX-based Cryptographic Algorithms" [48] described
a novel crypto-coprocessor, named CoARX, supporting multiple cryptographic algorithms based on
Addition, Rotation and exclusive-or operations is proposed. CoARX supports diverse ARX-based
cryptographic primitives and compared to dedicated hardware implementations and general-purpose
microprocessors, it offers excellent performance-flexibility trade-off including adaptability to resist
generic cryptanalysis.
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In "A High-Performance and Scalable Hardware Architecture for Isogeny-Based Cryptography"
[49] is presented a high-performance and scalable architecture for isogeny-based cryptosystems, using
the architecture in a fast, constant-time FPGA implementation of the quantum-resistant supersingular
isogeny Diffie-Hellman (SIDH) key exchange protocol. They used a Virtex-7 FPGA, showing that their
architecture is scalable by implementing at 83, 124, 168, and 252-bit quantum security levels. Moreover
it is the first SIDH implementation at close to the 256-bit quantum security level to appear in literature
and their implementation completes the SIDH protocol 2 times faster than performance-optimized
software implementations and 1.34 times faster than the previous best FPGA implementation, both
running a similar set of formulas. For a constant-time implementation of 124-bit quantum security
SIDH on a Virtex-7 FPGA, they generated ephemeral public keys in 8.0 and 8.6 ms and generated
the shared secret key in 7.1 and 7.9 ms for Alice and Bob, respectively. Finally, they showed that
this architecture could also be used to efficiently generate undeniable and digital signatures based on
supersingular isogenies.



CHAPTER 4

AES VHDL Code and Board Programming

4.1 SEcubeTM Overview

The SEcubeTM (Secure Environ-
ment cube) is a powerful chip
which integrates three key secu-
rity elements in a single package:

1. Low-power floating-point
ARM Cortex-M4 processor
(STM32F4 CPU)

2. Flexible and fast Field-
Programmable-Gate-Array
( MachXO2-7000 FPGA)

3. EAL5+ certified Security
Controller (SLJ52G SE-
CURITY CONTROLLER-
SMART CARD) [11]

Figure 4.1: SEcubeTM architectural overview [11]

Here you can observe the general scheme of the board:

Figure 4.2: Photography of the SEcubeTM

board [11]
Figure 4.3: General scheme of the SEcubeTM

board [11]

45
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In case of necessity, all the details about the board can be found in "SEcubeTM Development Kit
- Getting Started" guide [11], that includes also the datasheet of the board.
In particular, the configuration of the pins was checked (starting from the one available on the
SEcubeTM site https://www.secube.eu, in the folder SEcube_SDK → Development → SEcubeDevBoard)
exploiting the tool STM32CubeMX, that is refereed to the microcontroller STM32F429NIHx, and with
the help of the datasheet reported in [11].
For writing the .lpf file (requested by Lattice Diamond for the pin assignment), the reference was to
the SEcubeTM internal connections and to the schematic reported below (fig.4.4-4.5):

Figure 4.4: SEcubeTM Internal Connections [11]

Figure 4.5: SEcubeTM Detailed Schematic [11]

https://www.secube.eu
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4.2 Preparation of the AES-256 VHDL Code

4.2.1 ECB Mode

After some researches on the net and some synthesis attempts of the VHDL/Verilog codes available for
AES-256 encryption, trying also to exploit the EBR RAMmodules through IPexpress Tool provided by
Lattice Diamond, in order to avoid area overhead, a VHDL structure organized in order to minimize
the area paying some latency was chosen (available on the site https://opencores.org by Jerzy
Gbur), in particular:

• Time of building key expansion : 157 clock cycles (to consider only after reset or if you want to
change the key)

• Time of producing encoded data : 139 clock cycles (to consider every time you have a new
plaintext and it is the range of time in which you have to analyze the power for the DPA attack)

The port map of the main entity is the following:

Port Width Direction
DATA_I 8 IN
VALID_DATA_I 1 IN
KEY_I 8 IN
VALID_KEY_I 1 IN
CLOCK_I 1 IN
RESET_I 1 IN
CE_I 1 IN
KEY_READY_O 1 OUT
VALID_0 1 OUT
DATA_O 8 OUT

Table 4.1: AES Core Port Map

Here is reported the RTL view given by Lattice Diamond (fig.4.6):

Figure 4.6: aes_enc RTL by Lattice Diamond

https://opencores.org
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Starting from it, a VHDL code was written in order to define the environment in which it was
desired to make work the AES-256, so a new top entity aes_environment was created, including
aes_enc (the just described AES-256 code), lfsr and ENCRYPTION_MANAGER (fig. 4.7).

Figure 4.7: aes_environment RTL by Lattice Diamond

It was added a simple linear-feedback shift register (LFSR), that is a shift register whose input bit
is a linear function of its previous state, in order to generate pseudo-random inputs for aes_enc and
getting a large variety of inputs for maximizing the efficiency of my testbench (fig. 4.10).
It was decided to avoid using the classic LFSR configuration (also called many-to-one, fig.4.8), since
the Galois LFSR implementation (also called modular, internal XORs, or one-to-many LFSR, fig.4.9)
can generate the same output stream without having more than one level of combinational logic in
the feedback path, so the structure is smaller and faster.

Figure 4.8: Many-to-one 8-bit LFSR

Figure 4.9: One-to-many 8-bit LFSR

Figure 4.10: lfsr RTL by Lattice Diamond
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The structure of ENCRYPTION_MANAGER instead is a bit more complicated and its goal is the correct
management of the communication of the defined key to aes_enc and of sending (ciphertext) and
receiving (plaintext) data.
Essentially it is organized like an FSM, whose block scheme is reported below (fig. 4.11):

Figure 4.11: ENCRYPTION_MANAGER high level ASM

Here is reported a summary description of each state:

• RESET STATE: reset of the machine, setting all the signals like non-valid, putting zeros in all
the registers and initializing all the counters;

• RESTART STATE: communication to aes_enc that the machine is exited from reset state and
it has to prepare itself for the encryption;

• KEY STATE: the 256-bit-length key defined inside the block ENCRYPTION_MANAGER is commu-
nicated to aes_enc, that will be busy for 157 clock cycles in order to build the key expansion;

• PLAINTEXT STATE: communication of the entire plaintext in 16 clock cycles;

• TRIGGER STATE: it is the state where is the machine during the encryption time; this state
is extremely important for the thesis goal since during this we have to consider the power
consumption of the device that will be used for the application of the DPA attack;

• CIPHERTEXT STATE: communication of the entire ciphertext in 16 clock cycles.

The key is defined inside the ENCRYPTION_MANAGER since the target is the application of a DPA
attack so obviously we want to maintain the key fixed (in this case, it is X"000102030405060708090a0b0
c0d0e0f101112131415161718191a1b1c1d1e1f").
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The RTL view reported by Lattice Diamond is the following (fig.4.12):

Figure 4.12: ENCRYPTION_MANAGER RTL by Lattice Diamond, ECB mode

The correct behaviour of the system was tested with a series of significant (since the data are
provided by the LFSR so they are pseudo-random) testbenches:

Figure 4.13: Testbench Overview, ECB mode
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Figure 4.14: Testbench Focus on Reset and Communication of the Key, ECB mode

Figure 4.15: Testbench Focus on Communication of the Plaintext from LFSR, ECB mode

Figure 4.16: Testbench Focus on Communication of the first Ciphertext, ECB mode
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Figure 4.17: Testbench Focus on the second and the third Encryptions, ECB mode

Figure 4.18: Testbench Focus on the fourth and the fifth Encryptions, ECB mode

The verification of the correctness of the encryption was done exploiting the online tool CRIP-
TOMAThIC (fig.4.19).

Figure 4.19: CRYPTOMAThIC Online Tool Main Page
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Here are reported the values given by CRYPTOMAThIC for the cases considered in the images
reported before:

• First Encryption:

– Plaintext: X"8783818040201008040201C06030180C"
– Ciphertext: X"52E4E2408760C1361948B172F74DFC92"

• Second Encryption:

– Plaintext: X"D9AC562BD5AA55EA75FA7DFE7FFFBF9F"
– Ciphertext: X"9B2935CF64A8510403A35E3DDB8C3D34"

• Third Encryption:

– Plaintext: X"3C1E0FC7A39188442211C8643219CC66"
– Ciphertext: X"4CB78F95F0AA39EB60B3D4DA9D160585"

• Fourth Encryption:

– Plaintext: X"6030180C603C1A05028140A05C261F0"
– Ciphertext: X"4CB78F95F0AA39EB60B3D4DA9D160585"

• Fifth Encryption:

– Plaintext: X"7FFFBF9F8F8783818040201008040201"
– Ciphertext: X"FE691E31AC45510432A66343566A2EC3"

The results given by Lattice Diamond reports are reported below (fig.4.20-4.21):

Figure 4.20: Design Summary, ECB mode

Figure 4.21: Timing Report Summary, ECB mode
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Finally here is reported the technology view elaborated by Lattice Diamond (fig.4.22):

Figure 4.22: Technology View, ECB mode
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4.2.2 CBC Mode

Since in "Chapter Three - Cryptography Overview" it is reported that CBC mode is extremely more
efficient than ECB mode, the just described code was modified in order to get this configuration.
The same external appearance of the code was maintained, modifying only some details inside the
ENCRYPTION_MANAGER, that are:

• In RESET STATE, it is present, in ciphertext_complete, the chosen Initialization Vector (IV);

• During PLAINTEXT STATE, instead of passing to aes_enc simply the plaintext from lfsr, it
was passed xored with the corresponding part of ciphertext_complete.

Below are reported the main changes obtained (fig.4.23-4.26-4.27) and the verification of the cor-
rectness of the encryption (fig.4.24-4.25).

Figure 4.23: ENCRYPTION_MANAGER RTL by Lattice Diamond (CBC mode)
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Figure 4.24: Testbench Focus on the first and the second Encryptions, CBC mode

Figure 4.25: Testbench Focus on the third and the fourth Encryptions, CBC mode

• Initialization Vector (IV): X"A0A1B2B3C4C5D6D7E8E9F10F01234567"

• First Encryption:

– Plaintext: X"8783818040201008040201C06030180C"

– Ciphertext: X"C3A839476B993E6D5AF423E134BAFF7D"

• Second Encryption:

– Plaintext: X"D9AC562BD5AA55EA75FA7DFE7FFFBF9F"

– Ciphertext: X"6701082EF0CF4150A3D4C7B8E72204A3"

• Third Encryption:

– Plaintext: X"3C1E0FC7A39188442211C8643219CC66"

– Ciphertext: X"C6925D8C60C799D01DD24165F2EA24F5"
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• Fourth Encryption:

– Plaintext: X"6030180C603C1A05028140A05C261F0"
– Ciphertext: X"918FB4C9E21343CB5A2B08CDCD237586"

Figure 4.26: Design Summary, CBC mode

Figure 4.27: Timing Report Summary, CBC mode

Figure 4.28: Physical View, CBC mode
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4.2.3 Comparison between ECB and CBC Architectures

Figure 4.29: Area Comparison between ECB and CBC architectures

Figure 4.30: Frequency Comparison between ECB and CBC architectures
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4.2.4 Modified AES-256 VHDL Code (CBC Mode) for the Laboratory
Setting

After having obtained a valid code and having analysed his performances, it was modified in order to
be able to take the necessary measurements in laboratory for the future application of the DPA attack.
In particular, the lfsrmodule was substituted with another structure, that was called PLAINTEXT_GENERATOR,
in order to generate the adapt inputs for the future application of the DPA attack (fig.4.31).

Figure 4.31: PLAINTEXT_GENERATOR RTL by Lattice Diamond

This entity is a FSM with 17 states (one IDLE state plus one state for each communication of a piece
of plaintext), mainly driven by the signals key_ready (for indicating the end of the management of the
key and so that you can start with the communication of the code) and wait_finished (associated
to a counter of module 155, since you need 139 clock cycles for the encryption plus 16 clock cycles for
the communication of the ciphertext). The transmitted plaintext is always the same, except for the
last byte (0xBD0F0FFF3F2AF451B4C70000FF8732xx); indeed, in the corresponding state, it was
used a module-256 counter instead of a fixed piece of plaintext, to obtain all the values from 00 to FF
cyclically.

Figure 4.32: PLAINTEXT_GENERATOR high level ASM
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In the top entity aes_environment, it was just substituted lfsr entity with PLAINTEXT_GENERATOR,
connecting the opportune signals, then it was changed also the port map in order to be able to debug
the board from the external environment through an optical inspection of the LEDs directly connected
to the FPGA and through the measurement of the J4004 outputs with the digital oscilloscope (fig.
4.4-4.5). To sum up, the port map is:

Port Width Direction
clk 1 IN
rst 1 IN
led_out 8 OUT
testing_FPGA_IO 6 OUT

Table 4.2: aes_environment Port Map

For debugging, the following signals were used and connected to the outputs :
led_out(7) <= trigger_test;
led_out(6) <= cipher_from_AES_to_ENCRY_MAN(7);
led_out(5) <= cipher_from_AES_to_ENCRY_MAN(6);
led_out(4) <= clk;
led_out(3) <= restart_from_ENCRY_MAN_to_AES;
led_out(2) <= reset;
led_out(1) <= valid_output_from_AES_to_ENCRY_MAN; −− cipher_valid
led_out(0) <= valid_data_from_ENCRY_MAN_to_AES; −− plain_valid
testing_FPGA_IO(5) <= trigger_test;
testing_FPGA_IO(4) <= valid_output_from_AES_to_ENCRY_MAN; −− cipher_valid
testing_FPGA_IO(3) <= valid_data_from_ENCRY_MAN_to_AES; −− plain_valid
testing_FPGA_IO(2) <= clk;
testing_FPGA_IO(1) <= cipher_from_AES_to_ENCRY_MAN(7);
testing_FPGA_IO(0) <= reset;

Here some of the testbenches used for verifying the new version of the code are reported (fig.4.33-
4.34-4.35-4.36):

Figure 4.33: Testbench Focus on the First Transmission by PLAINTEXT_GENERATOR

Figure 4.34: Testbench Focus on the Second, Third and Fourth Sequential Transmissions by
PLAINTEXT_GENERATOR
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Figure 4.35: Testbench Focus on the Debug Signals referred to the Second Transmission by
PLAINTEXT_GENERATOR

Figure 4.36: Testbench Focus on the Last Transmission and on the Cycle Restart by
PLAINTEXT_GENERATOR

Some details of the reports are reported below:

Figure 4.37: Design Summary, CBC Mode with PLAINTEXT_GENERATOR
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Figure 4.38: Timing Report Summary, CBC Mode with PLAINTEXT_GENERATOR

4.2.5 Comparison between CBC with LFSR and CBC with PLAINTEXT_GENERATOR

Figure 4.39: Area Comparison between CBC Architectures with LFSR and with
PLAINTEXT_GENERATOR

Figure 4.40: Frequency Comparison between CBC Architectures with LFSR and with
PLAINTEXT_GENERATOR
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4.3 Exportation of the VHDL Code

At this point the VHDL code was ready for the exportation in the tool System Workbench for STM32,
through which you can program the FPGA module inside SEcubeTM.
First of all, the right configurations were checked and set . In particular, from Project → Device...,
it was selected the family MachXO2, the device LCMXO2-7000HE and the package type FPBGA484;
then, from Project → Property Pages, it was clicked on our implementation and it had been
checked that the Synthesis Tool was Lattice LSE.

As you can read from "MachXO2 sysCLOCK PLL - Design and Usage Guide", the FPGAs of
the family MachXO2 have an internal oscillator with an accuracy of ±5% and the available output
frequencies are shown in the following table (fig.4.41):

Figure 4.41: Available Frequencies for the Internal Oscillator, from "MachXO2 sysCLOCK PLL -
Design and Usage Guide"

The fragment of VHDL code is reported:



Master Degree Thesis - Chapter 4 64

Figure 4.42: Internal Oscillator VHDL Code

Starting from the schematics reported before (fig.4.4-4.5), in order to assign the desired pins to
the input/outputs of our architecture, it was created a .lpf file (Diamond Project Logical Preference
File, used for storing logical constraints for developing and implementing the design):

Figure 4.43: .lpf File

At this point, our implementation was re-run from the Run Manager of Lattice Diamond, then
from the panel on the left, it was clicked on the Process Tab and, from there, first the JEDEC File
(used for Flash FPGA programming) and then the Bitstream File (for the generation of a configura-
tion bitstream (bit images) file were run. They contained all of the design’s configuration information
that defines the internal logic and interconnections of the FPGA, as well as device-specific information
from other files).
After getting these fundamental files for the exportation, the Lattice Diamond Programmer tool was
opened: it was checked that all the information was consistent with the ones previously setted and it
was added the .jed file in the corresponding gap.
Subsequently, the "Cable Settings" was modified, selecting the cable "HW-USBN-2B (FTDI)" and
the port "FTUSB-0". In the section "Programming Speed Settings", it was chosen "Use default Clock
Divider", while in the section "I/O Settings", the option "Use default I/O settings".
Finally, the .xcf file (Configuration Chain File, used for programming devices in a JTAG daisy chain)
was saved.
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Afterwards, the .xcf file was converted to a vector of bitstreams. For doing this, the Diamond Deploy-
ment Tool application was opened and a new deployment was created, selecting "Embedded System"
as Function Type and "JTAG Slim VME Embedded" as Output File Type. In the next passage I
added the just saved .xcf file and then I selected both the options "Compress VME Data File" and
"Convert VME file to HEX(.c) for Prom-Based Embedded VME".
After using the command "Generate", the two files impl_name _algo.c and impl_name _data.c,
needed for the preparation of the C code in the System Workbench for STM32 environment, were
obtained.

4.4 Preparation of the C Code

Referring to the starting guide for the SEcubeTM board ([11]), after downloading Environment.zip
(inside the SDK package that you can find on the download page of the site https://www.secube.eu)
and extracting its content, Eclipse through System Workbench for STM32 environment was launched
and it was checked that all the settings were complaining with the ones specified in [11]. The Eclipse
workspace was switched to the folder ws contained in the just extracted folder, then the project was
run firstly in Debug Mode and then in Release Mode.
At this point, the DevKit (SEcubeTM board and ST-Link/v2 programmer) was carefully connected,
as described in the guide, then right-clicking on the main folder of the project, it was chosen Target
→ Program Chip and it was selected "Reset after programming. When the programming process
finished, getting the SEcubeTM board fully configured and the STM32 microprocessor ready to be
used to develop applications.

After testing the FPGA module inside the SEcubeTM board with the example available on the site
for blinking the LEDs directly connected, from File → Import... it was selected "Filesystem", then
it was clicked on "Next" and it was browsed the directory "SEcube_SDK\Libraries\Examples\TestFPGA\"
and all the contained files were selected. In the following passage it was set "SEcubeDevBoard\Application\src"
as "Destination Folder", then it was clicked on finished and the configuration of the builder was checked
from the project properties.

Finally, the file main.c was opened: here there were included the header file FPGA.h and there was
added a call to the function B5_FPGA_Programming(). After it was opened the file gpio.c and, inside
the function MX_GPIO_Init(), the lines of code reported in the guide for the configuration of the
GPIO pins (dedicated to the FPGA programming) were added. Then it was built the just modified
project and it was re-programmed the SEcubeTM board. After this, it was observed that the LEDs
were blinking and so the correct behaviour of the board was verified.

Later, the TEST_FPGA.h file was modified, substituting the content of const uint8_t fpga_alg[]
and const uint8_t fpga_data[] vector with the values that compose the vectors xdata const
unsigned char g_pucAlgoArray[129857] and xdata const unsigned char g_pucDataArray[202653]
(paying attention to maintain exactly the same format, so in particular you have to add a comma
after the last value before closing the brace) contained respectively in the files impl_name _algo.c
and impl_name _data.c, generated by Diamond Deployment Tool. It was saved the file then it was
modified also the file FPGA.c, changing the sizes of the vectors that become: uint32_t g_iAlgoSize
= 129857; and uint32_t g_iDataSize = 202653;.
At last, the project was re-built and the SEcubeTM board was programmed as described before.

During this phase, for some additional checks of the correct programming of the board, it was
exploited also the program "STM32 ST-LINK Utility" (fig.4.44). Indeed, through this tool, you can

https://www.secube.eu
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get useful information about the used microcontroller and in particular the data present inside the
flash memory in that moment; moreover you can reset it in the case you’d have some issues using
"System Workbench for STM32" and verify if everything it is like expected.

Figure 4.44: STM32 ST-LINK Utility



CHAPTER 5

Measurements in Laboratory

For taking the measurements it was used a digital oscilloscope LeCroy waveRunner 6030, with a 350
MHz bandwidth, that can reach a sample rate of 2.50 GS/s.

First of all, the correct behaviour of the board was verified exploiting all the testing signals that
were defined as described in the previous sections. Just for example, a photo where the channel 1
(yellow trace) is connected to the trigger signal, the channel 2 (pink trace) to the signal that indicates
the transmission of the plaintext and the channel 3 (blue trace) to the one related to the transmission
of the ciphertext, is reported below (fig.5.1).

Figure 5.1: Representation of Some Testing Signals on the Digital Oscilloscope

Different attempts were made in order to get relevant traces and in the following subsections it is
reported a summary of them.

For each of them it was used the trigger signal from the pin 11 of J4004 on a channel that it was
set as trigger source from the "Trigger Setup" option of the digital oscilloscope, with positive edge
and level 1.5 V.
For the "Horizontal Setup", it was changed the sample rate, depending on the chosen frequency
(500MS/s for 66.50MHz, 250MS/s for 38.00MHz and 25MS/s for 2.08MHz) for the internal oscillator
and on the setting of the divisions in order to get an adequate number of samples.
Since the used digital oscilloscope provides two Auto Save options ("Wrap", that overwrites the old
files and "Fill", that creates a new file for each trace), it was used the second one and it was selected
the format .dat.

67
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For the first traces the reset bottom was pressed in order to have a reference and to be sure of the
identity of the first trace, corresponding to the plaintext vector "0xBD0F0FFF3F2AF451B4C70000F
F873200", then the bottom was released for the following acquisitions.

5.1 Running Frequency 66.50 MHz and Custom Handmade
USB-USB/BNC Connector

First of all, the SEcubeTM board was programmed, uploading inside the FPGA module our AES-256
core with the internal oscillator set at the maximum frequency allowed (66.50 MHz).
Then, taking as reference the article [50] together with the custom handmade USB-USB/BNC con-
nector, kindly provided by the Laboratory Manager Gianfranco Albis, the instruments were connected
as shown in picture 5.2.

Figure 5.2: Connections using the Custom Handmade USB-USB/BNC Connector

For reference, also a photo (fig.5.3), with some power traces and the trigger signal, is reported.

Figure 5.3: Representation of Some Traces and of the Trigger Signal on the Digital Oscilloscope

Finally, some of the traces acquired are presented here, plotted with MATLAB (fig.5.4).
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Figure 5.4: Plots of Some Traces on MATLAB (Running Frequency 66.50 MHz and Custom Handmade
USB-USB/BNC Connector)

As shown in the last image (fig.5.4) the sets of measurements acquired with this configuration
didn’t result relevant since there is not a sensible variation with respect the execution of the code
(neither with/without the pressure of the reset bottom).

5.2 Running Frequency 38.00 MHz and Current Probe

Since it was provided a Current Probe Tektronix TM502A (50 MHz bandwidth), it was decided to
try to get another set of measurements decreasing the working frequency of the internal oscillator in
order to respect the bandwidth limit of the current probe. So the VHDL code related to the internal
oscillator was changed and it was chosen a lower frequency from the table (fig.4.41), then all the
passages for the exportation of the VHDL code and the preparation of the C code described in the
previous sections were followed again and the SEcubeTM board was re-programmed.
Then it was carefully prepared everything for using the current probe. The digital oscilloscope was
connected and set coherently and the probe was with the same division settings (taking as reference
the fig.5.5, the output was connected to one channel of the digital oscilloscope, while the input was
connected to the probe). It was constantly checked during the measurements if there was the necessity
of a degauss re-calibration (that could easily happens due to the electromagnetic interferences and
has to be done with the probe removed from the circuit).

Figure 5.5: Current Probe

Figure 5.6: USB Cable without
part of Covering

Moreover, it was used also a USB cable without a part of its covering (fig.5.7) in order to be able
to measure with the probe only the supply cable (indeed, an USB cable is generally consisting of four
cables: a black one for the ground, a green one for the negative data, a white one for the positive data
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and finally the red one for the +5V power supply).

Figure 5.7: Connections using the Current Probe

Below it is reported the plot of some of the acquired traces, but also in this case there were no
relevant variations neither with respect the traces taken with the reset active (fig.5.8).

Figure 5.8: Plots of Some Traces on MATLAB (Running Frequency 38.00 MHz and Current Probe)

5.3 Running Frequency 2.08 MHz and Current Probe

Subsequently, the VHDL code was modified again and some traces were obtained using the lower
frequency available (fig.4.41).

Figure 5.9: Plots of Some Traces on MATLAB (Running Frequency 2.08 MHz and Current Probe)
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5.4 Running Frequency 2.08 MHz and Custom Handmade USB-
USB/BNC Connector

Figure 5.10: Plots of Some Traces on MATLAB (Running Frequency 2.08 MHz and Custom Handmade
USB-USB/BNC Connector)

At this point, it began to make measurements from all the available sources of power supply in order
to verify if from one of them it would be possible getting some useful traces.
The reference schematics used for finding the possible accesses to the power supply are reported in
detail in "SEcubeTM Development Kit - Getting Started" guide [11].

5.5 Running Frequency 2.08 MHz and J3000 Power Supply
(1.2V)

Here it was used the J3000 access that allows to measure through a standard voltage probe a power
supply reference of 1.2 V, that is connected to the FPGA (fig.5.11-5.12).

Figure 5.11: Connection to J3000 Power Supply (1.2V)
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Figure 5.12: Plots of Some Traces on MATLAB (Running Frequency 2.08 MHz and Connection to
J3000 Power Supply (1.2V))

5.6 Running Frequency 2.08 MHz and J3001 Power Supply
(3.3V)

The figures 5.13 and 5.14 are related to the measurements related to J3001 access to the 3.3 V power
supply, the twin of the one just considered.

Figure 5.13: Connection to J3001 Power Supply (3.3V)

Figure 5.14: Plots of Some Traces on MATLAB (Running Frequency 2.08 MHz and Connection to
J3001 Power Supply (3.3V))
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5.7 Running Frequency 2.08 MHz, J3001 Power Supply (3.3V)
and Current Probe

In this case, it was considered the same power supply source, but acquiring the measurements with
two jumpers and the current probe, as shown in figure 5.15. Results shown in the MATLAB plot are
shown (fig. 5.16).

Figure 5.15: Connection to J3001 Power Supply (3.3V) using Current Probe

Figure 5.16: Plots of Some Traces on MATLAB (Running Frequency 2.08 MHz and Connection to
J3001 Power Supply (3.3V) using Current Probe)

5.8 Running Frequency 2.08 MHz and J4001 Power Supply
(3.3V)

Here the pin 1-2 of J4001 were exploited. They are generally used for programming the board through
the ST-Link/v2 programmer.

The reference figures (fig.5.17 and fig.5.18) are reported in the following page.
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Figure 5.17: Connection to J4001 Power Supply (3.3V)

Figure 5.18: Plots of Some Traces on MATLAB (Running Frequency 2.08 MHz and Connection to
J4001 Power Supply (3.3V))

5.9 Running Frequency 2.08 MHz and J4002 Power Supply
(3.3V)

In this case the pin 4 from J4002 was employed. Due to the difficult in getting a stable signal and the
limited accessibility of the pin, the traces are not reported, but also in this case there weren’t relevant
variations with and without the activation of the reset.

Figure 5.19: Connection to J4002 Power Supply (3.3V)
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Another possible tentative would be using an external supply for the board, but, since the
SEcubeTM board is designed with the focus of maximizing the security, it was impossible doing also
this attempt.

5.10 Considerations about the Results

For reference, these data (at 2.08 MHz with the current probe) were compared with the ones of
the colleague Giulia Giordano, that worked on a microcontroller STM32F401, so in very different
conditions with respect the FPGA inside SEcubeTM board: indeed, she charged a C code exploiting
a library for the AES cryptography in modality CBC, with a 256-bit-length key, using an external
power supply and the same current probe, at the frequency of 8 MHz.
In figure 5.20 are reported a trace acquired in reset condition and other successive two, both for the
STM32F401 and for SEcubeTM. It can be noticed that the current consumption of the SEcubeTM

is almost three times the STM32F401 one. Moreover, while the consumption of the STM32F401 is
incremented approximately from 5 mA to 30 mA when the encryption is active, the SEcubeTM current
consumption always remain around 110 mA and the contribute of noise is heavy (roughly a 100 mA
interval, so in relative terms around 91%).

Figure 5.20: Comparison of Traces from STM32F401 and from SEcubeTM

To sum up, considering this disastrous contribute of the noise, that neither allow to distinguish
when the code is active or not, without using averaging techniques, it will be almost impossible getting
some satisfactory results from the DPA tool.

In order to compare the obtained results with the simulated ones, an analysis of the expected
power consumption was executed, exploiting Lattice Diamond Power Calculator Tool for each of the
different working frequencies considered and the results are reported in the following table:
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66.50 MHz 38.00 MHz 2.08 MHz

Current by Power Supply
Static (A) 0.004655 0.004642 0.004631

Dynamic (A) 0.005752 0.003689 0.001089
Total (A) 0.010408 0.008332 0.005720

Power by Power Supply
Static (W) 0.005586 0.005571 0.005557

Dynamic (W) 0.006903 0.004427 0.001307
Total (W) 0.012489 0.009998 0.006864

Power by Block

Logic Block (W) 0.004881 0.004866 0.004853
Clocks (W) 0.000165 0.000165 0.000164
I/O (W) 0.000131 0.000130 0.000130
EFB (W) 0.000004 0.000004 0.000004

Block RAM (W) 0.000158 0.000158 0.000158
PLL (W) 0.000001 0.000001 0.000001

Peak Startup (A) 0.0680 0.0680 0.0680
Thermal Profile

with
Ambient Temperature 25◦C

Effective θJA 11.7◦C/W 11.7◦C/W 11.7◦C/W
Junction Temperature 25.15◦C 25.12◦C 25.08◦C
Maximum Safe Ambient 84.6◦C 84.63◦C 84.67◦C

Table 5.1: Summary Table of the Results from "Lattice Diamond Power Calculator Tool" for AES-256
at 66.50 MHz, 38.00 MHz and 2.08 MHz

Even if these results (table 5.1) are just the product of a simulation and they could be a very
different from the reality, with some important considerations, they can be extremely interesting and
clarifying.
It can be observed that surely the noise is an important component, but it is insufficient for com-
pletely justify the obtained results. Indeed, just for reporting an example, the total amount of current
absorbed by the power supply in the case of a 2.08 MHz working frequency is assumed 4.631 mA from
the Lattice Diamond Power Calculator Tool: even if this corresponds to around the 4.6% of the noise
spread and about the 4.2% of the total current absorption (coherent since the FPGA inside SEcubeTM

chip has really a marginal role in the global power consumption of the board, that incorporates lot of
other components and peripherals), it should be possible to observe from the reported plot (fig.5.20)
a small shift towards the bottom passing from the not-reset to the reset state, but it didn’t appear.
Moreover, you have to consider that the design specifications of the USB cables enclose a constant
voltage and variable current.
To sum up, this phenomena has a deeper reason that can be found in the presence of a series of
decoupling capacitors, that can be considered like a natural defence from DPA attack.
As a consequence, even with some more sophisticated instruments and advanced post-filtering and
averaging techniques, it would be extremely hard getting traces sufficiently correlated to the activity
of the FPGA.

Another consideration is that there is a decrement of the power consumption reducing the frequency
(table 5.1) and this could be consider a disadvantage. However, this decrement isn’t too drastic and
it is compensated by the theoretic improvement of the quality of the samples (since it is strongly
correlated to the clock rate and waveform) generally reported in literature and by the possibility of
getting a larger number of samples, given the available maximum sampling rate.
To have also a practical reference, in figure 5.21 is reported a comparison between traces at different
frequencies.
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Figure 5.21: Comparison of Traces from SEcubeTM with Custom Handmade USB-USB/BNC Con-
nector at Different Frequencies

5.11 General Considerations about the SEcubeTM Package and
Power Supplies

Another option, not feasible without damaging the board, would be desoldering the SEcubeTM BGA
package, give the power supply from an external source, the most stable and noiseless as possible, and
try to get some useful traces from the available power supply sources, shown in the figure 5.23 below
from the "SEcubeTM Development Kit - Getting Started" guide [11].
The relevant practical problems in doing an operation like this are another advantage from the security
point of view of the SEcubeTM board, in addition to all the others extremely important precautions
followed during its design, explained more in detail in [11].

Figure 5.22: SEcubeTM Package [11]
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Figure 5.23: SEcubeTM Package Scheme [11]

Anyway, also in the case a direct access to the BGA package would be possible in some way,
another potential problem in getting power traces strongly sensible to the running core could be the
presence of capacitors in front of the accesses to the power supply (fig.5.24) and the same problem
is also described in the article "Experiments in Attacking FPGA-Based Embedded Systems using
Differential Power Analysis" [20].

Figure 5.24: SEcubeTM Power Supply and Filtering [11]



Master Degree Thesis - Chapter 5 79

5.12 Comparison with AES-128

5.12.1 Modifies related to VHDL code

The tools available online for the application of DPA attacks are in general focused only on AES-128
or, in the uncommon case they consider also the AES-256, anyway they easier get better results with
AES-128.
For this reason and since the traces are not so satisfactory, it was decided to try also with an an
AES-128 implementation.
In order to get it, starting from the previous one (AES-256, CBC mode with PLAINTEXT_GENERATOR
and internal oscillator at 2.08 MHz), the following main modifies were done:

• Adaptation of the parameters related to the key and to the number of rounds for the AES-128
case in the entities: aes_enc, key_expansion and aes_environment

• In the FSM written inside the entity PLAINTEXT_GENERATOR, the previous counter of module
155 was substituted with another one of module 115, since the time for producing an encoded
data with the 128-key is 99 clock cycles and then you need 16 clock cycles for the transmission
of the ciphertext

• Concerning the entity ENCRYPTION_MANAGER, the length of the signal key were modified. Now it
will be obviously 128 and it was assigned to this the value X"000102030405060708090a0b0c0d0e0f";
moreover it was modified also the KEY STATE, since now it is necessary just having 16 clock
cycles for the communication of the key, instead of 32 and then for the management of the key
expansion you need only 133 clock cycles instead of 157

After changing the VHDL code, it was verified through a simulation using "Lattice Diamond -
Active HDL" that the encryption would be correct, exactly like it was done also for the previous
versions of the core (fig.5.25)

Figure 5.25: Testbench Focus of the first three Encryptions

For reference it was used again the CRYPTOMAThIC Online Tool (fig.4.19), getting the following
results:

• Initialization Vector (IV): X"A0A1B2B3C4C5D6D7E8E9F10F01234567"

• First Encryption:

– Plaintext: X"BD0F0FFF3F2AF451B4C70000FF873200"

– Ciphertext: X"2361D627DE6BB4B6C4CBE639AAA072D7"
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• Second Encryption:

– Plaintext: X"BD0F0FFF3F2AF451B4C70000FF873201"
– Ciphertext: X"6F55E6CFFC37035BF3686DD2963682F9"

• Third Encryption:

– Plaintext: X"BD0F0FFF3F2AF451B4C70000FF873202"
– Ciphertext: X"C67BF9428029731581B6FE92108C2F47"

The Design Summary from Lattice Diamond is exposed here (fig.5.26):

Figure 5.26: Design Summary, AES-128

Comparing the results above with the ones obtained with AES-256 core in the same conditions,
there aren’t relevant differences in terms of area and neither in terms of current and power consumption
(fig.5.27). Below I reported also the complete table with the values from Lattice Diamond Power
Calculator Tool:

AES-256(2.08MHz) AES-128(2.08MHz)

Current by Power Supply
Static (A) 0.004631 0.004625

Dynamic (A) 0.001089 0.001089
Total (A) 0.005720 0.005714

Power by Power Supply
Static (W) 0.005557 0.005550

Dynamic (W) 0.001307 0.001307
Total (W) 0.006864 0.006857

Power by Block

Logic Block (W) 0.004853 0.004846
Clocks (W) 0.000164 0.000164
I/O (W) 0.000130 0.000130
EFB (W) 0.000004 0.000004

Block RAM (W) 0.000158 0.000158
PLL (W) 0.000001 0.000001

Peak Startup (A) 0.0680 0.0680
Thermal Profile

with
Ambient Temperature 25◦C

Effective θJA 11.7◦C/W 11.7◦C/W
Junction Temperature 25.08◦C 25.08◦C
Maximum Safe Ambient 84.67◦C 84.67◦C

Table 5.2: Summary Table of the Results from "Lattice Diamond Power Calculator Tool" for AES-256
(2.08 MHz) and AES-128 (2.08 MHz)
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Finally, in order to summarize the situation, it was plotted with MATLAB a graph concerning the
current absorbed by the power supply in all the analysed cases (fig.5.27):

Figure 5.27: Current Consumption Comparison

5.12.2 Measurements in Laboratory

It was decided to try to get a conspicuous set of traces with the higher sampling possible (2.50 GS/s)
in order to maximize the possibilities of getting good results from the DPA attack, both with the
custom handmade USB-USB/BNC connector and the current probe (fig.5.28-5.29).

Figure 5.28: Plots of Some Traces on MATLAB (Running Frequency 2.08 MHz and Custom Handmade
USB-USB/BNC Connector)
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Figure 5.29: Plots of Some Traces on MATLAB (Running Frequency 2.08 MHz and Current Probe)

Apparently in both the cases there aren’t relevant improvements since there are still no variations
between reset and not-reset state.

A comparison with the AES-256 traces acquired in the same conditions is reported (fig.5.30), but
also from this figure you can notice that there is not a substantial improvement.

Figure 5.30: Comparison of Traces from AES-256 and from AES-128



CHAPTER 6

DPA Attack and Results

Even if apparently the conditions are not optimal, there is still the possibility that there could be
some positive results from the differential power analysis exploiting a large number of samples and
with a careful application of some tips.
It was decided to start taking 5120 traces, each of them composed by 1250022 samples in the condi-
tions of AES-128 core used, working frequency of 2.08 MHz, the maximum sample rate available (2.50
GS/s) and employment of the current probe and of the handmade USB-USB/BNC connector: in this
way, it was tried to maximize as much as possible the efficacy of the traces.
As a consequence 20 cycles of encryption had to be managed, resetting the system every 256 traces
(in order to do, in the next step, a correct average with equal plaintexts, since using CBC mode there
is a constant transformation of the effettive plaintext that will be analysed by the tool) and a total of
5120 · 125002 = 640010240 samples, that is around four times the number of samples they acquired in
the article "Side-channel analysis of SEcubeTM platform" (15872 · 10000 = 158720000) [50].
First of all, the traces were reorganized: they were thrown away, for each of the 20 set, the first
traces taken in reset mode (even if it cannot be noticed from the plots) and also the last ones that
overcame the 256-th. At this point, since the number of samples for each trace was extremely elevate
and it was problematic to manage files too heavy, all the remaining 5120 traces weren’t concatenated
together, but they were organized in 20 different folders, each one containing a complete cycle of
encryption (from the encryption of the plaintext 0xBD0F0FFF3F2AF451B4C70000FF873200 to the
one of 0xBD0F0FFF3F2AF451B4C70000FF8732FF ) and then the content of each folder was concate-
nated, exploiting the following command by Windows Command Prompt:

> copy *.dat merged_file.dat
Note that using this procedure, you’ll have to cancel at the end of merged_file.dat, the ending
string SUB in order to import it correctly.
Consequently, having obtained 20 sets of traces, composed by 32000512 samples and it was decided
to average them as described in "Chapter 2 - Differential Power Analysis (DPA) Key Concepts", in
order to improve the results of the analysis. For doing this, you can use a simple code in MATLAB
or in Python that simply adds all the sets in a vector an then divides the values accumulated in the
vector by the number of the sets and saves this in a new file.
In order to facilitate the averaging operations (due to the large amount of data), the 20 sets were
grouped in 4 parts, each composed by 5 sets, then the total average was done.
In the following image, the first 5 sets of traces and their average are plotted with MATLAB (fig.6.1-
6.2).
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Figure 6.1: First Five Set of Traces and Average (Current Probe)

Figure 6.2: First Five Set of Traces and Average (Custom Handmade USB-USB/BNC Connector)

At this point, in order to be able to use the DPA tool, two files containing all the 256 plaintexts
and the corresponding ciphertexts had to be generated. For doing this, a simple C program was used,
including the AES library with a for cycle managing all the plaintexts and the two files were saved in
.dat format.
Note that, working in the CBC mode (scheme in figure 3.9), the DPA tool doesn’t consider this
modality, but it operates just in ECB mode. To use it anyway, you can’t save directly the original
plaintext, but a dummy version of the plaintext xored with the ciphertext of the previous encryption
(or with the IV in the the case of the first plaintext).
Later it was prepared the setup for the chosen DPA tool, called Jlsca, from https://github.com/
Riscure/Jlsca.
Jlsca is a toolbox written in Julia, that is a programming language similar to Python, specifically
designed for high-performance numerical analysis and, in order to use it, it is necessary to do some
preliminary operations.
First of all, you have to download a stable release of Julia (I used Julia 1.0) from https://julialang.
org/downloads/. Then you can open the Julia Command-Line REPL (Read-Eval-Print-Loop) and
here you have to add IJulia (https://github.com/JuliaLang/IJulia.jl), that is a Julia-language
backend combined with the Jupyter Notebook interactive environment, together with others necessary
packages. To sum up, I reported here all the commands required:

> using Pkg
> Pkg.add("IJulia")
> Pkg.add("Conda")

https://github.com/Riscure/Jlsca
https://github.com/Riscure/Jlsca
https://julialang.org/downloads/
https://julialang.org/downloads/
https://github.com/JuliaLang/IJulia.jl
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> using Conda
> rm(Conda.ROOTENV, recursive=true)
> ENV["CONDA_JL_VERSION"]="2"
> using Pkg
> Pkg.build("IJulia")
> Pkg.clone("https://github.com/Riscure/Jlsca")
> Pkg.add("Plots")
> ]add PyCall
> add PyPlot

After this, every time you want to run the tool, you just have to open Jupyter Notebook using the
commands:

> using IJulia
> notebook()

For the execution of the DPA, you can start from the available examples on https://github.com/
ikizhvatov/jlsca-tutorials, in particular the ones referred to similar conditions, converting the
files from the format .dat to .npy just modifying the converter provided together with the examples
of the tutorial.
Before launching the tool, it was calculated on which samples to focus for analysing only the first
round of encryption. As you can see from fig.6.3, it takes 11 clock cycles, so the correlated samples
will be: ⌈

sample rate
working frequency

· first round clk cycles
⌉

=

⌈
2.50 GS/s
2.08 MHz

· 11

⌉
= 13222

Figure 6.3: Focus on First Round of AES-128

For the last round, a similar approach can be adopted, but using the figure 6.4:⌈
sample rate

working frequency
· last round clk cycles

⌉
=

⌈
2.50 GS/s
2.08 MHz

· 8
⌉

= 9616

Figure 6.4: Focus on Last Round of AES-128

In the following subsections some guidelines and results for the specific cases are exposed.

6.0.1 Piece of SCAke

This example is based on a correlation power analysis attack (CPA) on an unprotected AES-128 that
they charged on a 8-bit AVR microcontroller.
The first step in the code is importing the libraries and converting the traces from the format .npy
to .trs. Then there is an exploration of traces phase, in which you open the converted file and plot

https://github.com/ikizhvatov/jlsca-tutorials
https://github.com/ikizhvatov/jlsca-tutorials
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some of the traces with the desired zoom. Here they are reported as reference the results related to
the case of AES-128 in ECB mode, both for the measurements acquired with the current probe and
the custom handmade USB-USB/BNC connector (fig.6.5-6.6).

Figure 6.5: First Round Focus (Current
Probe)

Figure 6.6: First Round Focus (Custom
Handmade USB-USB/BNC Connector)

In this case, they assumed there is no misalignment of the traces, so the alignment operations are
skipped and the CPA on first round with the Hamming weight leakage model is directly applied ad
with the acquired traces you get as proposed key the values:

• Current Probe: "0x000000000000000000000000000000b5"

• USB-USB/BNC Connector: "0x0000000000000000000000000000007c"

You can notice that since in this case the plaintext is directly given to the algorithm and there is
only a variation on the last byte, applying the algorithm on the first round, only the last byte of the
key is computed.
Finally, there is a part of code for the verification of the proposed key using a plaintext/ciphertext
pair from the trace set and in our case a negative result was obtained.

6.0.2 Still Not SCAry

The code is more or less the same of "Piece of SCAke", but there is the additional passage of the
alignment.

Figure 6.7: Before Alignment (Current
Probe)

Figure 6.8: Before Alignment (Custom
Handmade USB-USB/BNC Connector)
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Figure 6.9: After Alignment (Current
Probe)

Figure 6.10: After Alignment (Custom
Handmade USB-USB/BNC Connector)

Furthermore, despite of considering the first round, in this case they consider the last round of the
AES-128 and instead of the CPA (Correlated Power Analysis), they use a LRA (Linear Regression
Analysis).
The obtained keys are:

• Current Probe: "0x1311d24b88ed47ade3248faeaf591fba"

• USB-USB/BNC Connector: "0xb8e9af66c73280566e998f54ca0441b8"

6.0.3 SCAlate

Here they use again CPA, like in "Piece of SCAke", but adding the alignment passage. The code is
divided in two parts: in the first part, the conditional averaging (like the standard averaging with the
difference that not all trials from the trial list will contribute to the average) is applied, while, in the
second part, they exploit the incremental correlation technique (slower, but more effective).

Conditional Averaging:

• Current Probe: "0xb3f290978c5c8418034f8979bf7e2202"

• USB-USB/BNC Connector: "0x9f12f62e5f830bc91e14a35d40004a89"

Incremental Correlation:

• Current Probe: "0x75fd10a19b67342f328f76648b85cb82"

• USB-USB/BNC Connector: "0xaf3c9b25e37a136d0e729f9b228b6b90"
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6.1 Summary of DPA Results

The four analysis were repeated for all the following cases: AES-256 at 2.08 MHz, both with the USB-
USB/BNC connector and the current probe, in CBC and ECB block cipher modes, AES-128 in CBC
mode at 2.08 MHz with both the type of measurement (using 5 sets and 20 sets of measurements),
AES-128 in ECB mode at 66.50 MHz only with USB-USB/BNC connector, since this frequency is out
of the bandwidth of the current probe and finally AES-128 using both USB-USB/BNC connector and
current probe at 38.00 MHz and 2.08 MHz (using 5 sets and 20 sets of measurements).
In the following tables the obtained results for AES-128 are illustrated (tables6.1-6.2-6.3).

Key
Number

of Hit Bits
Percentage
of Hit Bits

AES-128
CBC

2.08 MHz
BNC

Piece of SCAke 0xc69f1e06887875db7ccc9cb8e131cfd6 60 46.87%
Still Not SCAry 0x4d9215dcb9c0d3eeeec27fb8a187bf88 53 41.41%
SCAlate - CA 0xc4603d51bf52bcc82c363c3a6f65b760 58 45.31%
SCAlate - IC 0x0ee76ecada4c631c632e6d549fb292b2 54 42.19%

AES-128
ECB

66.50 MHz
BNC

Piece of SCAke 0x24fa6771248b5e79fe21b1ce1ceaa1fd 61 47.66%
Still Not SCAry 0x485dfd024e6e157adf1219a29e2044b9 64 50.00%
SCAlate - CA 0x182fe5db9bae73bc6cfa2059621ed97c 56 43.75%
SCAlate - IC 0x4e5fe152a77a94dfec764c6b6b2978db 61 47.66%

AES-128
ECB

38.00 MHz
BNC

Piece of SCAke 0x0000000000000000000000000000001e 62 48.44%
Still Not SCAry 0x2109f525c13fddbe2956c5b25edb00d9 61 47.66%
SCAlate - CA 0x359c31d911f95aa14f21a26822bcce2b 68 53.12%
SCAlate - IC 0x92ffc91b7e71677e97f796cb57586950 55 42.97%

AES-128
ECB

2.08 MHz
BNC

Piece of SCAke 0x000000000000000000000000000000b9 59 46.09%
Still Not SCAry 0x5b3cc3006ed27075e416363d47356566 60 46.87%
SCAlate - CA 0x58af3c2a1a2204a552a058d565f6baba 63 49.22%
SCAlate - IC 0xfc14250075625f6d4fdb3a64a8647bf4 61 47.66%

Table 6.1: Summary Table of AES-128 Results (BNC, 5 sets)

Key
Number

of Hit Bits
Percentage
of Hit Bits

AES-128
CBC

2.08 MHz
Current Probe

Piece of SCAke 0x23a0cfb2c0a53a79b34bfdfceaa4501c 59 46.09%
Still Not SCAry 0x6047816bc90e5b59e50ff513b2de6d1f 65 50.78%
SCAlate - CA 0x6ecd59cd45d9c91a624a95ff67998bed 59 46.09%
SCAlate - IC 0x3123c0e225ee1ce91f2a6f71fa903912 63 49.22%

AES-128
ECB

38.00 MHz
Current Probe

Piece of SCAke 0x000000000000000000000000000000ec 59 46.09%
Still Not SCAry 0x400849a5969c7c0d1e8a5388fe1eee55 75 58.59%
SCAlate - CA 0xcc67252d0d16b2a5835d51a3378be462 67 52.34%
SCAlate - IC 0x13b81c1b6cfce85f93e658d87a296903 62 48.44%

AES-128
ECB

2.08 MHz
Current Probe

Piece of SCAke 0x000000000000000000000000000000b5 59 46.09%
Still Not SCAry 0x1311d24b88ed47ade3248faeaf591fba 75 58.59%
SCAlate - CA 0xb3f290978c5c8418034f8979bf7e2202 69 53.91%
SCAlate - IC 0x75fd10a19b67342f328f76648b85cb82 66 51.56%

Table 6.2: Summary Table of AES-128 Results (Current Probe, 5 sets)
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Key
Number

of Hit Bits
Percentage
of Hit Bits

AES-128
CBC

2.08 MHz
BNC

Piece of SCAke 0xc232517b4bc421247cef2dda9446e1a6 63 49.22%
Still Not SCAry 0xbe39613758a14f699a5ddc23c65240b8 64 50.00%
SCAlate - CA 0x38238a942aa587e4bdaf6effa425a8b0 70 54.69%
SCAlate - IC 0xceaabdeade185710aba04e62d52e1b6f 63 49.22%

AES-128
CBC

2.08 MHz
Current Probe

Piece of SCAke 0xe7f763c7b01144fd4da1f963e5544bda 64 50.00%
Still Not SCAry 0x0497a279c4b03308d9cd3107f8f61fe6 68 53.12%
SCAlate - CA 0xa4d69c8145c56402b42152ec78e8f846 69 53.91%
SCAlate - IC 0x64c3769aff5a31d8624c678dc278d2e8 53 41.41%

AES-128
ECB

2.08 MHz
BNC

Piece of SCAke 0x0000000000000000000000000000007c 59 46.09%
Still Not SCAry 0xb8e9af66c73280566e998f54ca0441b8 64 50.00%
SCAlate - CA 0x9f12f62e5f830bc91e14a35d40004a89 68 53.12%
SCAlate - IC 0xaf3c9b25e37a136d0e729f9b228b6b90 59 46.09%

AES-128
ECB

2.08 MHz
Current Probe

Piece of SCAke 0x000000000000000000000000000000f7 59 46.09%
Still Not SCAry 0x7f482f91849946da4fc5af075bc363b7 66 51.56%
SCAlate - CA 0xc081bac396ed75ef6162b64ff4ae4f5b 73 57.03%
SCAlate - IC 0x2ee501deb3a4145eda829d61c7a13dfe 62 48.44%

Table 6.3: Summary Table of AES-128 Results (Current Probe, 20 sets)

In the case of "Piece of SCAke" applied to AES in ECB mode, the tool calculates only the
last byte of the key and leaves all the others byte at zero. Since the used keys are the standard ones
("0x000102030405060708090a0b0c0d0e0f" for AES-128 and "0x000102030405060708090a0b0c0d0e0f10
1112131415161718191a1b1c1d1e1f" for AES-256) and the percentage of zeros in this particular case
is extremely hight, in order to make this result comparable with the other ones it was assumed that
the not computed bytes of the key had a percentage of success of the 50% and the number and the
percentage of hit bits were normalized on this assumption. For the same reason, in the comparisons
between AES-256 and AES-128, it wasn’t taken in consideration the number of hit bits, but only the
percentage with respect the total length of the key.
For better analysing the results, a MATLAB code was written, in which the keys were saved, converting
them in binary vectors exploiting the function hexToBinaryVector(hexNumber,numberOfBits,bitOrder).
In figure 6.11, the plot shows the better hypothesis of key obtained (AES-128, ECB mode, current
probe, 2.08 MHz using 5 sets of encryptions), compared with the true key.

Figure 6.11: Comparison of the Hypothesis of Key (AES-128, ECB mode, current probe, 2.08 MHz,
5 sets of encryptions) with respect the Reference Key
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Then, since the meaning of the results is not so easy to appreciate from this representation, it
was created a new vector for each key in which it was put the difference between the key guess and
the official key. An example (again using the key hypothesis that resulted nearer to the true one) is
illustrated in figure 6.12.

Figure 6.12: Difference Function for AES-128, ECB mode, current probe, 2.08 MHz, 5 sets of encryp-
tions, with respect the Reference Key

Finally, the sum function was used in order to get, for each hypothesis, the number of bit cor-
responding to the real key (number_of_zeros_in_difference_function = sum(difference_func-
tion(:)==0)) and, after the computation of the percentage with respect the length of the key, the
results were plotted using barh function (fig.6.13-6.14-6.15-6.18).

Figure 6.13: Comparisons between AES-256 and AES-128, both ECB and CBC Block Cipher Modes,
using the Current Probe, at 2.08 MHz (5 Sets of Encryptions)

From the plot in figure 6.13, you can notice that, as expected, there is a good increment of the
percentage of hit bits passing from AES-128 (CBC) to AES-128 (ECB); on the contrary, the data
related to AES-256 are not so compliant to the theory since there is a light decrement passing from
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AES-256 (CBC) to AES-256 (ECB), except for "SCAlate - CA". Finally, in general there is an higher
number of hit bits for the AES-128 with respect the AES-256, coherently with the expectations.

Figure 6.14: Comparisons between AES-256 and AES-128, both ECB and CBC Block Cipher Modes,
using the Custom Handmade USB-USB/BNC Connector, at 2.08 MHz (5 Sets of Encryptions)

With respect the previous figure (fig.6.13), in figure 6.14 there is a deterioration of all the results
and also an increment of the number of inconsistencies with respect the theory. This is justified by the
exploitation of the custom handmade USB-USB/BNC connector instead of the current probe, that
allows to get better acquisitions.

Figure 6.15: Comparisons of AES-128 in ECB Block Cipher Mode, using the Custom Handmade
USB-USB/BNC Connector, at different frequencies: 66.50 MHz, 38.00 MHz and 2.08 MHz (5 Sets of
Encryptions)
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In the figure above (fig.6.15), the results obtained with the custom handmade USB-USB/BNC
connector for AES-128 (ECB mode) are compared at three different working frequencies: 66.50 MHz,
38.00 MHz and 2.08 MHz. An improvement of the results is expected decrementing the working fre-
quencies, since, fixed the maximum sampling rate of the digital oscilloscope, you get an higher number
of samples and you have a clock without overshoot and with sharper edges, so obviously also a better
defined trigger signal (fig.6.16-6.17).
The results are not compliant due to the exploitation of the custom handmade USB-USB/BNC con-
nector, that generally provides lower quality results, and due to the proximity to the 50%, that makes
them not comparable since too sensible to the random noise, despite the averaging technique.

Figure 6.16: Focus on Trigger Signal at
66.50 MHz Working Frequency

Figure 6.17: Focus on Trigger Signal at
2.08 MHz Working Frequency

Figure 6.18: Comparisons of AES-128 in ECB Block Cipher Mode, using both the Custom Handmade
USB-USB/BNC Connector and the Current Probe and acquiring 5 or 20 Sets of Encryptions)

In this last picture (fig.6.18) there is a comparison between the obtained results using only 5 sets
of measurements and incrementing the number of sets up to 20. Some improvements are present, but
they aren’t so relevant and with some of the used DPA models the effect is the opposite and the higher
number of hit bits is obtained using the current probe and taking only 5 sets of measurements.
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Generally, the obtained results, in particular the ones related to AES-256 and the ones acquired
with the custom handmade USB-USB/BNC connector, are not totally compliant with what you’d
expected from the theory. This phenomena is caused by the limits of the DPA tool (in the case of
AES-256) and of the instrumentation (in the case of the custom handmade USB-USB/BNC connector).
Moreover you have to consider also all the other problems found during the measurements acquisition,
detailed in "Chapter Five - Measurements in Laboratory", besides that all the obtained results are
around 50%, that is the theoretical probability of guessing a bit of the key choosing it randomly.



CHAPTER 7

Conclusions

The low numbers of hit bits obtained from the Jlsca tool is compliant with the results reported in
[13], where is reported the description of a DPA attack of AES-128 on SEcubeTM and on ST Micro-
electronics Nucleo board equipped with the same microprocessor and the authors found just half of
last byte of the key attacking only the Sbox of the AES and they get even worse results considering
the whole AES.
In the SEcubeTM FPGA case, described in this thesis, these results have several motivations.
First of all, you have to consider that the available instrumentation wasn’t comparable with the one
generally used in literature. Indeed, they always exploit commercial tools and instruments, like for
example ChipWhispererr (https://newae.com/tools/chipwhisperer/) or the large variety of so-
lutions by Riscure(https://www.riscure.com) or SASEBO, the Side-channel Attack Standard Eval-
uation Board (http://www.toptdc.com/en/product/sasebo/), specifically designed for this kind of
goals and with the maximum level of optimization possible.
Another important element is the impossibility of the use of an external power supply, that could
be more sensible to the encryption (comparison in figure 5.20), in addition to the fact that also a
filter designed ad hoc could be introduced as described in "Chapter Two - Differential Power Analysis
(DPA) Key Concepts", but this problem is not resolvable due to the intrinsic nature of the SEcubeTM

board, designed in order to minimize the accessibility and maximize the security.
A possible improvement, without spending resources for getting better tools and the instrumentation,
could be trying to use a core that better fit the dimensions of the FPGA, because there could be the
possibility that there would be a sufficient increment of the power consumption with respect the noise,
to get, in combination with all the other mathematical tips and precautions, some improvements in
the results. A focus on this aspect is not present because it wasn’t an expected target and there
are some difficulties in finding a way to get an AES-256/AES-128 core without area overhead due to
the small dimensions of the FPGA. It couldn’t be so easy applying this type of shrewdness and the
improvements would be probably not so relevant, without considering that it wouldn’t be neither so
rational from a practical point of view, since generally an FPGA should be able to do also others
operations on the data in the meanwhile, but it’d be interesting to make a comparison and verify
these considerations.
Moreover, also reducing the noise, de-soldering the SEcubeTM BGA package from the board and using
an external power supply, there’ll always be the problem of the decoupling capacitors (fig.5.24), that
causes the insensibility of the power supply to the running code and frustrates all the others efforts and
this is the main problem that would be really hard to compensate without using more sophisticated
tools. This problem is also reported in the article [20], where the authors reported negative results in
the application of the DPA and they write that the FPGA board should be physically broken before
successfully applying DPA, making it no longer a passive attack and that the decoupling capacitor is
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a natural countermeasure difficult to overcome. Finally, they also observed that another limit is the
presence of more than one electrical device on a board and they may overwhelm the power consumed
by the reconfigurable logic, without considering that there would be more than one module concur-
rently running on the FPGA.
Another reference to this problem is in [27], where they showed that removing decoupling capacitors
plays the major role in success rate of a DPA attack. Furthermore, they reported also that replacing
standard switched-mode power supply with accumulators and linear stabilizers simplifies the attack,
but its effect is not that significant, since, even if the circuit is powered from a noisy power supply, it
can be successfully attacked incrementing the number of traces, while the presence of the decoupling
capacitors is extremely more problematic.

Anyway, a future proposal of work on the SEcubeTM board, besides the acquisition of the traces
exploiting a differential probe (not available in our case), could be analyse the possibility of application
of other types of side-channel attacks, but every option will have to be carefully evaluated in relation
to the connected costs and necessary instrumentation.
For example, there are new researches related to temperature side-channel attacks, or, moving towards
an higher level of abstraction, like the architectural one, there is the possibility of a Differential Fault
Analysis (DFA) attack realization: it contemplates the possibility of introducing unexpected environ-
ment conditions (high temperature, unsupported voltage or current, overclocking, strong electric or
magnetic fields, ionizing radiation and so on...) to produce faults and to deduce the internal state
of the device. Anyway, this kind of procedure could be too invasive and create some damages for
the device, without considering that, in lot of cases, countermeasures like fault tolerance and error
detection schemes are present.
Another possibility could be a timing attack, but this could be applied only for the microprocessor
inside SEcubeTM board and not for the FPGA, since for the last one the time necessary for the
execution of the cryptography is independent from the given inputs.
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