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Summary

This manuscript summarises two years of analyses, experiments and developments in the machine
learning field. During that period, authors have collaborated in devising novel ideas and applying
them to real world problems.

The main application setting is related to the analysis of patient derived xenografts (PDXs) of
metastatic colorectal cancer (mCRC). PDXs are obtained by propagating surgically derived tumor
specimens in immunocompromised mice. Through this procedure, cancer cells remain viable ex-
vivo and retain the typical characteristics of different tumors from different patients. Hence, they
can effectively recapitulate the intra- and inter-tumor heterogeneity that is found in real patients.
During the last decade, the Candiolo Cancer Institute (Italy, IRCC) has been assembling the
largest collection of PDXs from mCRC available worldwide in an academic environment. Such
resource has been widely characterized at the molecular level and has been annotated for response
to therapies, including cetuximab, an anti-EGFR antibody approved for clinical use. The mCRC
PDX samples analyzed in this manuscript were kindly provided by IRCC the in form of microarray
data, i.e. a large table containing the gene expression levels of tumor cells. Indeed, the medical
objectives of the analyzes described in this work concern, on the one hand, the extraction of gene
expression patterns useful for the instruction of therapies and further clinical experiments, and,
on the other hand, the creation of models capable to correctly classify unlabeled data according
to the cancer response to drugs.

From a statistical and machine learning point of view, the main difficulty in dealing with such
data is the so-called curse of dimensionality. Indeed, only few hundreds of PDXs (samples) were
provided against tens of thousands of gene expressions (features). Preliminary analyses performed
with state-of-the-art techniques perform poorly when dealing with this problem, reporting limited
effectiveness and opaque models. Thus, the machine learning objectives were to improve the
effectiveness of existing models and designing ad-hoc techniques to deal with high-dimensional
data.

Analyses have been performed through both supervised and unsupervised methods. In par-
ticular, two different and delimited directions of work were carried out according to the typology
of methods. This choice was made at the beginning of this work in order to also sub-divide
the medical objectives to pursue. Roughly speaking, in fact, the extraction of gene expression
patterns is commonly achieved through unsupervised techniques, while the creation of a classifier
model can be obtained only with supervised techniques. Nonetheless, meaningful insight into
gene behaviours were provided also through supervised learning. Authors equally contributed in
the development of all analyses presented by alternating on the two paths.

Chronologically, the research was carried out in two different stages: initially, the high dimen-
sional problem was addressed through the development of feature selection algorithms. Moreover,
during this phase, the dataset was analyzed with state-of-the-art techniques for data visualization,
like parallel coordinates diagrams, as well as feature extraction and manifold analysis, like CCA.
Results of these preliminary analyses were published in two different chapters as book chapter
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of the Springer series “Quantifying and Processing Biomedical and Behavioral Signals”: "Unsu-
pervised gene identification in colorectal cancer" and "Supervised gene identification in colorectal
cancer". In the second stage, the attention of this research, from the unsupervised point of view,
focused on the development of a biclustering framework capable of extracting useful gene corre-
lations. In order to do that, a completely novel neural clustering technique called GH-EXIN was
devised. Further details about the main features of this technique will be given in the following.
The results were presented in "Neural biclustering in gene expression analysis", in the proceedings
of the CSCI conference, Las Vegas 2017. This biclustering framework was successfully tested also
on an external dataset for face detection problem and the results were presented in "Assessing
discriminating capability of geometrical descriptors for 3d face recognition by using the GH-EXIN
neural network", in the proceedings of the 2018 WIRN conference in Vietri sul Mare. From the
supervised point of view, instead, different states of the art classifiers were compared in order
to create the best classifier model. Finally, the best performer was a shallow neural network,
with hyper-parameters tuned through an evolutionary algorithm. At the same time, another
feature selection algorithm based on shallow neural network weight analysis was developed and,
compared with ANOVA, performs a more effective selection for instructing a successive neural
network model. The works were proposed and accepted at the 2018 WIRN conference, in two
conference articles entitled "Evolutionary optimization of neural network hyperparameters" and
"Understanding cancer phenomenon at gene-expression level by using a shallow neural network
chain".

The main innovation proposed in this manuscript is represented by GHEXIN, a novel neural
based algorithm for hierarchical clustering. The proposed approach builds a divisive hierarchical
tree in an incremental and self-organized way. Indeed, it is a top-down technique which divides
data at deeper and deeper levels. It is data driven (self-organization), in the sense that the
final tree is automatically estimated from data. Also, it does not require a predefined number of
units and levels (incremental with pruning phase). With regard to state-of-the-art neural based
algorithms (as GHNG and DGSOT), GH-EXIN shows remarkable innovations:

• It performs a semi-isotropic quantization of the input space, by exploiting both isotropic
and anisotropic criteria. The isotropic criterion is based on the extent of the neuron neigh-
borhood, like in most neural based approaches. The anisotropic criterion (unique feature
of GH-EXIN) is topological, as it is modelled by the convex hull generated by the weight
vector of the winner neuron and the weight vectors of its topological neighbours (i.e. those
connected through edges).

• It exploits sophisticated data reallocation and outlier detection methods. Data reallocation
is the mechanism by which data associated to pruned nodes (orphan data) are possibly
reassigned to other neurons. In GH-EXIN all orphan data are labelled as potential outliers
at the end of each epoch. For each potential outlier, GH-EXIN looks for a new winner
among all leaf nodes. Only when the winner belongs to the same basic neural unit of the
pruned node and the potential outlier is outside its hypersphere, is datum definitely marked
as outlier and is not reassigned.

• It exploits a simultaneous vertical and horizontal growth in order to represent abstract
characteristics of the observed phenomenon. At the end of the training process of a basic
neural unit, the resulting graph is analyzed by searching for connected components. If more
than one connected component is detected, the algorithm tries to abstract a representation
from the observed phenomenon. Hence, each connected component, representing a cluster
of data, is associated with a novel abstract neuron. The reference vectors of abstract
neurons are placed in the centroids of the respective clusters. The tree structure is modified
by inserting abstract neurons between the leaf nodes and the father node, resulting in a
simultaneous vertical and horizontal growth.
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The comparison with aforementioned techniques shows how GH-EXIN is typically more effi-
cient, as it reaches similar performances in terms of peak-signal to noise ratio (PSNR) by using
fewer neurons. Moreover, qualitative evaluation of the resulting topology shows how GH-EXIN is
much more elegant in connecting neurons, providing superior manifold representations. Finally,
the restricted number of user-dependent parameters makes the tuning process of GH-EXIN very
easy. The GH-EXIN source code was fully developed by authors in MATLAB and is publicly
available on BitBucket1. The application of the biclustering framework integrated with GH-EXIN
on the biological dataset revealed some interesting gene correlation patterns. These results have
been submitted to the attention of IRCC doctors, who are currently analyzing them for possible
scientific implications.

The results above are promising and highlight the potential for future work. From the point of
view of the biological advances, the outcomes of both the unsupervised and the supervised path
are promising yet opaque: while the models can be used effectively, the results are difficult to
interpret from a human point of view. As for the unsupervised direction of work, the GH-EXIN
neural network resulted to be effective and easy to use as aforementioned; results provided by the
biclustering framework, instead, are rather difficult to interpret without a statistical knowledge,
since biclusters need several additional tools to be correctly evaluated. As for the supervised
direction, the major advances with respect to previous analyses are achieved by exploiting the
shallow neural network model. Indeed, the simplicity of such model makes it easier to handle and
interpret. On limiting the number of features used, however, the accuracy drops significantly.

Moreover, major limitations of our work directly derive from the analyzed data. On the one
hand, the analyzed data represent an estimate of the amount of times each gene is transcribed in a
tumor xenograft. However, gene replication does not always result in protein generation. Indeed,
this kind of data may not represent cell behaviour correctly. On the other hand, the restricted
amount of samples was the most serious issue, since machine learning reliability is directly related
to the amount of data provided.

Hence, within the biological domain, future developments will involve the use of up-to-date
data (e.g. representing proteins instead of gene expressions) and the integration with other
sources of data, such as image samples. Besides, from a machine learning point of view, models
easier to interpret may be developed in order to provide more reliable and human-understandable
outcomes. Future research in this field will consist in devising new algorithms overcoming the
intrinsic weaknesses of machine learning, above all understandability. To this purpose, novel
algorithms which integrate classic symbolic artificial intelligence with machine learning techniques
seem to be very promising.

1Gabriele Ciravegna and Pietro Barbiero. GH-EXIN (version 1.0.1). https://bitbucket.org/
machine_learning_research/ghexin/src/master/,2018
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Chapter 1

Biological Background

1.1 Colorectal Cancer
Before starting any analysis, a brief but fundamental study of the matter has been nec-
essary. As computer scientist and even more as data scientist, it is always important to
spend some time trying to deeply understand the characteristics of the problem you are
analyzing. Producing a deep statistical analysis without being able to understand the re-
sults is pointless most of the times. Nevertheless, in the case at hand, the problem is such
complex that a medical response is still necessary. The following, indeed, is only a rough
summary of main cancer features without claiming to be complete.

1.1.1 What Is Cancer?
Under the word cancer, a collection of related diseases is grouped. Common traits to these
diseases are the abnormal growth of the cells and their capacity of spreading to surrounding
tissues.

A list of different anomalies allows cancer cells to grow abnormally. Firstly, it is pos-
sible to notice that old and damaged cells don’t die, differently from normal cells. This
characteristic is caused by the capacity of tumor cells to ignore apoptosis signals. These
signals are normally sent by the system to get rid of unneeded cells. In cancer cells, instead,
cycle-regulating genes as RAS and p-53 result to be altered or often deactivated, causing
apoptosis pathways not to be followed. Further signals sent by the immune system are also
ignored, as those preventing cells from replicating when its DNA is altered. Furthermore,
the immune system generally stops sending nutrients to unneeded cells causing target cells
to starve. In cancer cells, however, gene responsible to autophagy are also inhibited and
cells do not get destroyed even though they are starving. Cancer cells are also able to influ-
ence surrounding micro-environment to avoid this phenomenon: blood vessels are created
nearby tumoral cells in order to feed them of oxygen and nutrients, necessary elements for
cell lives. These vessels are also used by the cells to throw away cellular waste products [1].
Secondly, but not least, new cells are formed even though they are not needed. These new
cells keep dividing by mitosis which allows cancer to grow more and more.

Cancer spreading to other tissues, instead, may occur at different levels. At first, it is
possible to notice that tumor has affected nearby tissues; afterwards, it may be possible
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to notice that tumoral cells are growing on distant organs. This phenomenon is called
metastasis which from the Greek literally means "transposition" of a disease: in this case,
the tumor. It is worth to notice that cells found inside a brain metastasis are colon tumoral
cells, not brain tumoral cells. Original cells, in fact, spread through blood or through
lymph system, attach to existing tissue of distant organs and start growing forming the
metastasis, as shown in figure 1.1. Among many reasons, this occurs because cancer cells
are less specialized than normal cells and, hence, they are less likely to be rejected by new
tissues.

Figure 1.1: Cancer spreading from its original site to distant organs

The capacity of spreading to surrounding tissues is the main difference between malig-
nant and benign tumors. Another characteristic typical of malignant tumor is the capability
of growing back after being extracted.

1.1.2 Why Does Cancer Arise?
Fundamentally, cancer is a genetic disease and its appearance is due to some gene behaviour
changes. These changes are generally either inherited from our descendants or caused by
environmental factor.

Going into further details, there are three main types of gene whose mutation is critical
for cancer growth.

1. Proto-oncogenes: involved in cell growth or inhibition of apoptosis, these genes may
turn into oncogenes after some genetic mutations and, therefore, promote cancer
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emergence.

2. DNA-repair genes: their scope is to repair damaged DNA after a mutation occurred,
caused either by an environmental factor or a metabolic activity.

3. Tumor-suppressors: their role is to protect cell from alterations either by repressing
genes that promote cell division when not needed or when DNA is damaged, or by
starting apoptosis if DNA damage could not be fixed. Furthermore, they prevent
tumor cells from dispersing (and creating metastasis) by blocking locomotion when
DNA is irreparably damaged.

As first noticed in the two-hit hypothesis [2], cancer is the result of many mutations to
cell’s DNA: in particular, it is the result of both the mutation of proto-oncogenes and the
deactivation of tumor-suppressor genes.

What is really important to notice here is that each cancer is a unique combination of
genetic changes. Because of this inter-patient heterogeneity, research in these years has
focused on personalized therapies to increase their efficiency [3]. Nevertheless, to achieve
this goal further studies are needed, in particular on bio-marker discovery, which is the
scope of this work. In fact, many gene functionalities and how different genes are co-
regulated under specific circumstances is still unknown []. For personalized therapies, in
particular, it is important to know a priori whether the patient will heal using a certain
drug or not, given the genetic expression of the cancer tissue.

1.1.3 CRC
Colorectal cancer (CRC) is a particular type of cancer that develops in the large-intestine.
It generally starts as an adenomatus polyp which may turn into an adenocarcinoma as
shown in figure 1.2.

Figure 1.2: Colorectal cancer evolution

Recently, computer-aided diagnosis researches obtained good results in the classifica-
tion of colorectal polyps through Convolutional Neural Network (CNN) system [4]. These
systems are used in order to determine whether analyzed cells belong to a healthy tissue,
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or to an adenoma (which may be a signal of potential successive cancer), or to an adeno-
carcinoma (which is already cancer). The results are commonly used to create an attention
map of possible cancer areas, which may drive doctors during a prognosis.

This type of cancer has as main causes the advanced age of the patients and lifestyle
factors: among others, diet (in particular excessive consumption of red meat and alcohol),
pollution, smoke, obesity and lack of physical activity play a key role.

Colorectal cancers are the third most common cancer globally as reported by the 2014
World Cancer Report [5]. There are about 1.4 million new cases and 694 thousand deaths
each year because of colorectal cancer. It is more likely to appear in man than in woman
and it is more present in the developed countries than backward countries.

1.2 Xenografts
Medical treatment of cancer is an extremely complex problem. Due to intra- and inter-
tumor heterogeneity, the same drug may have different levels of effectiveness on patients
with the same type of cancer. Therefore, personalized approaches are required to increase
the reliability of prognostic predictions and the efficacy of therapies. Recently, new powerful
tools have been developed for biomarker discovery and drug development in oncology, which
rely on a technology called Patient-Derived Xenografts (PDXs). A Xenograft, in general,
is a cell, tissue or organ that is transplanted from one species to another. PDXs, in this
particular case, are surgically-extracted tumor tissue specimens form patient affected by
colorectal cancer. These tissues are then transplanted into immunocompromised mice as
shown in fig 1.3.

Through this, cancer cells remain viable ex-vivo and retain the typical characteristics of
different tumors from different patients. Hence, they can effectively recapitulate the intra-
and inter-tumor heterogeneity that is found in real patients. Based on this idea, the PDX
technology has been employed to conduct large-scale analyses which, as in this work, try
to identify reliable correlations between genetic or functional traits and sensitivity to anti-
cancer drugs. In this context, metastatic colorectal cancers (mCRC) have been collected
for the last ten years and have generated the largest PDX biobank available worldwide in
an academic environment. This collection has been already characterized at the molecular
level and has been exploited to identify clinically relevant biomarkers for prediction of
therapeutic efficacy [6].

1.3 Gene Expression Analysis
Transcriptional data were obtained from mCRC PDXs through the Illumina microarray
technology [7]. The microarray technology is based on thousands of DNA microscopic
probes placed on a solid surface such as a piece of glass, plastic or a chip, forming an array.
These arrays allow to measure the gene expressions on a tissue sample.

The word gene expression refers to the quantity of Messenger RNA (mRNA) produced
at a certain moment in a certain cell. The RNA synthesis (transcription) is a transfer of
the information from the DNA where it is stored into mRNA which can be transported
and interpreted. Later, mRNA moves the information to the ribosomes to enable the
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Figure 1.3: Patient-Derived Xenografts

production of protein (translation). Protein will finally respond to cellular needs for which
transcription started.

In theory, genes contain the information to produce all kind of mRNA. Nonetheless, in
the biological samples, genes are transcribed into mRNA sequence in different quantities.
This occurs for some reasons:

• Cell typology, different type of cells (brain cell, epithelial cells, liver cells) express
different genes: among other factors this is what makes them different;

• Environmental factors such as the time of the day, whether the cell was proliferating
or not and the presence of signals sent from other cells: according to cell needs,
different gene are transcribed.

Gene expression analyzes often require measuring mRNA quantity in different condi-
tions. High mRNA levels of a sequence under specific condition may imply, indeed, a
cellular need for the protein coded by the sequence. This kind of need may suggest a
pathological condition when found on sick patients and not on healthy patients. As an
example, if cancer cells express higher mRNA levels associated to a specific receptor, it is
possible to infer that the receptor play a role in that type of cancer.
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The focus of this work is about predicting drug sensitivity in PDXs and human patients
affected by CRC. Hence, the different condition under which gene expression levels are
evaluated are the different responses to drugs. In particular, this research tries to find out
which genes discriminate whether a drug is capable to heal the patient or not. Further
details will be given from part II.
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Chapter 2

Machine Learning Background

In the last decade, Machine Learning proved to be the enabling technology for many
innovations in different fields. Nowadays, it is the most important trend in computer
science according to Gartner Hype Cycle [8]. Nonetheless, it is possible that the expectation
created among investors, who are putting billions of dollars in AI research, and among
customers will not be completely satisfied in the next future, as also machine learning has
some intrinsic limits.

2.1 History
The term artificial intelligence (AI) was coined by John McCarthy during a conference at
Dartmouth College in 1956. During his talk, he proposed to design an artificial machine
able to learn and reason like human beings. In the same years, Allen Newell and Herbert
Simon developed Logic Theorist, the first program able to apply basic reasoning function-
alities. However, until 70’s the advances in artificial intelligence were purely academic.
Indeed, the proposed approaches were unable to tackle real world problems, due to compu-
tational power and memory limits, and reasoning deficiencies [9]. The first turning point
in AI occurred when Feigenbaum introduced DENDRAL and MYCIN, the first expert
systems, based on symbolic approaches. These algorithms were able to incorporate human
knowledge and manipulate basic logic principles in order to provide reliable inferences in
specific domains. The reliability guaranteed by expert systems allowed the spread of such
algorithms for commercial use.

The second turning point happened in 1986, thanks to the work of Rumelhart, Hinton,
Williams and McClelland on the backpropagation algorithm. They showed how to apply
efficiently this algorithm for training multi-layer perceptron neural networks, overcoming
the deficiencies pointed out by Minsky [9]. With backpropagation the learning problem
was shifted as an optimization problem, where the model fits its parameters directly on
data, without being explicitly programmed. This change of perspective generated an AI
sub-field picturesquely called machine learning.

Nevertheless, until few years ago it was not feasible to effectively employ complex (or
deep in case of neural networks) models as they require large amount of both computa-
tional power and data to be optimized. Everything changed in 2012 when different works
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Figure 2.1: Artificial Intelligence progresses

achieved important results using Deep Neural Networks in challenges such ImageNet in
object recognition [10]. The technological progress provided scientists of ever more pow-
erful processors, while the advent of Big Data and IoT at the beginning of 2010’s started
producing the quantity of data required by models to be effective. It is possible to state
that the advances in the field of deep learning will be strictly correlated in the future to
the ones of IoT and Big Data; the information extraction process always starts from data.
As it will be possible to apply sensors on even more objects which in the past were not
accessible (e.g. human organs), new applications of machine learning will be discovered.

2.2 Achievements
Machine learning is nowadays already changing our daily life in many different fields:

• Preventive diagnosis: machine learning is achieving good results in healthcare, in
particular for heart diseases and cancer diagnosis. In some conditions, an early diag-
nosis can save a patient’s life. Statistics state that 17.9 million people die every year
because of a heart attack [11] and 9.6 million because of cancer [12]: together they
account for about half of the global deaths. A similar idea is also applied in preventive
maintenance for machines: it allows companies to save thousands of dollars, avoiding
replacing parts unless it is necessary.

• Autonomous car: in the very next years we will be relieved of the chore of driving,
resulting in a significant reduction of traffic collisions and enhanced mobility for the
elderly, children and disabled. Nowadays, around 1.3 million people die every year
in a car accident [13]: hypothetically, this number could be reduced to zero with
autonomous cars.
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• Security: face recognition algorithms are widely used in video surveillance to find
wanted criminals. Thousands of cameras have been deployed in our cities, it would
require hundreds of people to check them all. Furthermore, emotion recognition and
other algorithms are used to preempt crimes from taking place by analyzing people
unusual behaviours.

• Language translation: results provided by Google Translate are astonishing, in many
languages it performs almost as well as a human translator.

• Virtual assistants: many people nowadays are used to speak to their smartphones to
save appointment on the agenda or to check weather conditions. This has become
possible thanks to advances in speech recognition.

• Fraud detection: machine learning is used in this field for analyzing mails, detecting
fishing attempts and generally spam. Banks and other financial actors are also using
it for analyzing bank transactions, in order to detect illegitimate ones and money
laundering.

• Product recommendation: Amazon completely transformed online shopping by sug-
gesting people items they may be interested in. Google AdWords did the same with
personalized advertising: nowadays it is the only competitor for publishing commer-
cials online.

Most of these achievements have been feasible due to deep learning. Nowadays, it is the
most popular e probably powerful technique. Because of this reason, in the following it
will be analyzed in further details trying to highlight what are its limits. Anyway, much
of the below mentioned applies also for machine learning in general.

2.3 Deep Learning Limits and Weaknesses
Deep Learning advances in recent years have brought great excitement in AI world. Andrew
Ng, one of the pioneers of Deep Learning and founder of Google Brain, asserted: “If a
typical person can do a mental task with less than one second of thought, we can probably
automate it using AI either now or in the near future” [14]. Is it true? Is current artificial
intelligence (mainly based on deep learning) already able to carry out now or in the next
future whatever human mental task? Other researchers expressed a different opinion about
it: "Scaling up current deep learning techniques by stacking more layers and using more
training data can only superficially palliate some of these issues. It will not solve the
more fundamental problem that deep learning models are very limited in what they can
represent, and that most of the programs that one may wish to learn cannot be expressed
as a continuous geometric morphing of a data manifold” [15] As partial proof of it, an
important project as the full-service chatbot M developed by Facebook already failed to
achieve its initial goals because they were beyond deep learning current capacities and
eventually has been closed.
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2.3.1 Brief Deep Learning Theory
In order to better understand strengths and limits of deep learning, it is good to know how
it works. Basically, it is a statistical technique that performs a mapping between an input
space and an output space. Learning is performed in a supervised way with thousands of
labelled data supplied to the algorithm to build a robust model. Internally, neural networks
are made of nodes which exchange information. They are grouped into layers with an input
layer which represents the input space, an output layer with as many nodes as the elements
of the output space are and several hidden layers: the more the number of hidden layers
the deeper is the network. Nodes are linked to each other and a weight is associated to
each connection. These networks are generally told to represents neural cortex although
in a very simplistic way. Nodes can be thought as neurons and connections between nodes
may stand for the synapses.

Figure 2.2: Classic Neural Network Representation

2.3.2 Limits
The incredible strength of deep learning is that “In principle, given infinite data, deep
learning systems are powerful enough to represent any finite deterministic ‘mapping’ be-
tween any given set of inputs and a set of corresponding outputs” [16]. Nevertheless, this
statement also reveals some of its limits:

• Generalisation: we will never be able to provide ‘infinite data’ to the systems. This
implies deep neural networks will always be brittle, failing as fast as the context on
which the model was trained change a little. An example may be the DeepMind’s
Atari game work [17]: the system learns in 240 minutes of training to play Breakout.
Nonetheless, it has been proved [18] that the same previously trained system fails
on a transfer test where a minor number of variations are made in the game such
as inserting another wall in the middle. This implies that the system has not really
learnt to break the wall. It has only acquired a sequence of moves to be performed
to break that single wall in a very narrow context.
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• Abstraction: deep learning system are only able to perform this specific mapping
operation. They are built without any abstract representation of the world. They
have no idea of concept such as causality nor composition, that all human come to
the world with, neither they have the possibility to learn it, as it is impossible to
represent these concepts in terms of features.

• Understandability: deep learning is usually considered and treated as a black-box
because the way in which this ‘mapping’ is produced is so complicated that is not
explainable in form of rules. This introduces several limits to the use of this technique
in critical applications as Medicine where the reason for which a decision needs to
be taken is almost as important as the decision itself. Doctors cannot decide not to
prescribe a saving-life drug to a patient only because a deep learning system suggested
that it would not be effective on him, without really having the possibility to check
why.

Hence, it seems possible that even with all conceivable computational power and data, new
applications will be discovered, but deep learning effective capabilities may not grow any
further.
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Preliminary Data Analysis
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Chapter 1

The High Dimensional
Problem

The dataset stemming from the DNA microarrays is composed of the expression of 15396
genes in 203 Colorectal Cancer (CRC) murine tissues. For each tissue two additional
quantities are available.

1. A discrete variable describing the cancer response to drugs, whose values are chosen
as:

• +1 (regressive cancer);
• 0 (stable cancer);
• −1 (worsening cancer).

2. A continuous variable representing the cancer response to drugs after three weeks,
estimated as the difference in size of the tumor.

Data are preprocessed by the z-score technique in order to work on the same range. All
analyses in this part have been done by considering the genes as variables. This is a very
challenging problem because of analyzing very high dimensional data by means of a small
training set. The only possible way to overcome this difficulty is the dimensionality reduc-
tion, even if it is data-driven too. As a consequence, the Principal Component Analysis
(PCA in an under-determined framework) has been performed both for searching a first
rough estimation of the intrinsic dimensionality of data and, above all, to test the non-
linearity of the problem at hand. However, it results that at least 100 principal components
are needed in order to explain the 90% of the data variance as shown in fig 1.1. This num-
ber has the same order of magnitude of the training set size and is a consequence of the
high dimensionality and, probably, of the fact that the manifold is nonlinear. Other tools
are needed in order to check if the manifold is linear or not.

In the following chapters two different kind of manifold analysis are shown that approach
the high dimensional problem in two different ways. In chapter 2 the high dimensional prob-
lem is approached through an unsupervised feature selection which make use only of gene
expressions. In chapter 3, thanks to the discrete label assigned to each patient, the feature
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selection is performed in a supervised way. In both chapters, further analyses are then
conducted with different techniques according to the path: unsupervised or supervised.

Figure 1.1: Pareto diagram of PC’s explained variance
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Chapter 2

Unsupervised Manifold
Analysis

The unsupervised path makes use of a scoring algorithm of features based on their clustering
ability to bypass the high dimensionality issue. Traditional methods of dimensionality
reduction and projection are then used on subset features with high discriminant power in
order to better analyze the data manifold. This chapter has been extracted from a work
presented at the 2017 "Workshop Italiano sulle Reti Neurali" (WIRN2017) conference [19].

2.1 Unsupervised Feature Selection
Initially, tissues have been grouped considering all the available genes (features) with the
Unweighted Pair Group Method with Arithmetic Mean (UPGMA), an agglomerative hier-
archical clustering approach [20]. This bottom-up approach finds and merges the nearest
pair of clusters r and s according to their mutual average distance:

d(r, s) = 1
nrns

nr∑
i=1

ns∑
j=1

d(xri, xsj) (2.1)

The average distance algorithm has been chosen because it is robust against noise and
outliers. Among different metrics, the Minkowski distance of order p = 1 has been found
to have the highest cophenetic correlation coefficient (here 0.8392), therefore it is used in
the following analyzes [21]. However, this approach has not provided satisfactory results;
indeed, it was not able to find meaningful groups. For this reason, tissues have been
processed using a different procedure based on the Ward’s minimum variance method [22].
This algorithm finds and merges the pair of clusters that leads to minimum increase in the
total within-cluster variance after merging. The within-cluster variance increment due to
the merging of r and s is proportional to the distances of the resulting cluster objects from
the resulting cluster centroid:

d(r, s) =
√

2nrns
(nr + ns)

||xr − xs||2 (2.2)
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Differently from the first approach, the clustering algorithm is applied using one feature
at a time, determining a one-dimensional clustering which yields the individual ability of
discrimination of genes. This property is evaluated using the Calinski-Harabasz index (also
called Variance Ratio Criterion, VRC, [23]):

V RCk = SSB(N − k)
SSW (k − 1) (2.3)

where N is the number of samples, k is the number of clusters, SSB is the between
cluster variance and SSW is the within cluster variance. Well defined clusters tend to
have a high VRC. Therefore, genes are ranked according to this index. By defining a
threshold in advance, several genes can be extracted. In other words, genes are selected
according to their ability to discriminate tissues: this is estimated by checking the best
possible separation (with regard to several choices of the number of clusters by means of
the parameter K ∈ [2,6]) in terms of quality of the groupings by using an index (see Fig.
2.1).

Figure 2.1: Cluster quality evaluation. The red line is the threshold.

2.2 Parallel Coordinate Plot
Parallel coordinates are a powerful way of visualizing high-dimensional data. This kind
of data visualization was invented during the 19th century and sharpened by Wegman in
1990 [24].

A point in n-dimensional space is represented as a polyline with vertices on equally
spaced parallel axes each of one representing a feature; the position of the vertex on the
i-th axis corresponds to the i-th coordinate of the point. This plot is used in order to
understand deeply the gene capacity of discrimination, by visualizing the distribution of the
murine tissues (colored polylines) along all the dimensions (genes) represented as parallel
vertical axes. In this figure blue lines represent worsening cancers, red lines stable cancers

28



2 – Unsupervised Manifold Analysis

Figure 2.2: Parallel coordinate plot.

and yellow lines regressive cancers, respectively. The intersections of the polylines with
the vertical axes show there are some genes highly discriminating the three colors, which
means that some mice have particular expression levels for some genes. Also, the colored
grouping of polylines show coherency, which means there is discrimination for tissues.
Hence, these genes can be used as markers of CRC subtypes. This tool has been used as
a visualization tool for the validation of the previous gene selection, based on the cluster
quality evaluation. This technique has confirmed the selection of 22 genes (see Fig. 2.2).
This allows the study of the data manifold representing the tissues in a lower dimensional
space, just alleviating the problem of the curse of dimensionality.

2.3 Sub-Manifold Analysis
The reduced submatrix is composed of 203 rows, i.e. the tissue values (samples) and 22
columns, i.e. the selected genes (features). In order to check the intrinsic dimensionality
and the linearity of the data manifold, the Principal Component Analysis (PCA, [25]) has
been performed. The plot of the variance explained by the principal components shows
an intrinsic dimensionality of about 5 (see Fig. 2.3), corresponding to 90% of variance
explained. This result suggests that tissues belonging to the 22-dimensional space lay on
a 5-dimensional hyperplane. The remaining 10% can be justified by either noise or small
departure from linearity, that is nonlinearity only on a large scale, but not locally. In order
to confirm this hypothesis, the Curvilinear Component Analysis (CCA, [26]) has been used.
CCA is a neural technique for dimensionality reduction which projects points by preserving
as many distances as possible in the input space. However, CCA is here used not for the
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exploitation of the projection, but for the information that can be derived from its dy-dx
diagram (see Fig. 2.4). This plot represents distances between pairs of points in the input
space (the dx value) and in the reduced (latent) space (the dy value) as a pair (dy, dx). If a
distance is preserved in the projection, the corresponding pair is on the bisector (indicated
in the figure). If the pair is under the bisector, it represents the projection as an unfolding
of the input data manifold.

Figure 2.3: Variance explained by principal components.

Figure 2.4: CCA dy-dx diagram.

If the manifold is linear, all points tend to lie on or around (because of noise) of the
bisector. Clusters of points on the bisector, but far from the origin, represent large inter-
cluster distances, and, hence, reveal the presence of clusters. Fig. 2.4 shows this plot for a
five-dimensional latent space (this choice is suggested by the previous PCA). The smaller
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grouping near the origin represents the intra-cluster distances and suggests the idea of
one or several hyperplanes as data manifold. This is confirmed by the other groupings at
larger distances. They represent the inter-distances and suggest the presence of at least
four distinct clusters. The fact that, above all, the groupings of farthest distances have the
biggest departure from the bisector, yields the idea of a curvature at large scale. Resuming,
the data manifold in the space of the selected genes is composed of several well distinct
nearly-flat submanifolds. This confirms the validity of our approach, in the sense that the
extracted features discriminate well with regard to tissues.

Biplots [27] are now used in order to understand the reciprocal behavior (in statistical
terms) between all tissues and the selected genes. They are a generalization of scatter
plots. A biplot allows information on both samples and variables of a data matrix to be
displayed graphically. Samples are displayed as points while variables are displayed as
vectors. Fig. 2.5 shows the biplot over the first three principal components. With regard
to tissues (red points), there are only few data along the first and the second principal
component. Instead, the third component has a good discriminant capacity over tissues.
With regard to genes (blue vectors), most of them are strongly related to the first or the
second principal component. However, five genes (in the figure, represented as 8, 10, 13,
20 and 21) stay along the third axis, thus explaining the variance of tissues along this
direction. The biplot shows that a combination of these genes has a bimodal behavior
along the third principal component. Fig. 2.6 shows a parallel coordinate plot of these five
genes. This graph points out relationships between these genes and their bimodal behavior.
Blue lines represent worsening cancers, red lines stable cancers and yellow lines regressive
cancers, respectively. The most interesting gene is shown in the first vertical axis because
it marks a coherent bundle of segments which represents a set of worsening cancers.

Figure 2.5: Biplot over the first three principal components.
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2.4 Biological Feedback
The previous analysis shows that the selected genes, whose biological names are CRMP1,
CSAG1, EIF1AY, PRAC1 and RPS4Y1 have a high discriminant power. From a biological
point of view, some of these genes are strongly related with cancer. In particular:

• CRMP1 is supposed to be related to inhibition of metastasis [28];

• CSAG1 is supposed to be related to squamous cell carcinoma [28];

• PRAC1 is supposed to be related to human prostate and colorectal cancer [28].

Figure 2.6: Parallel plot over the resulting gene selection.
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Chapter 3

Supervised Manifold Analysis

As anticipated at the beginning of this part, in this chapter a supervised manifold analysis
is performed. In addition, a simple model is built through a classic Multi Layer Perceptron
(MLP): it correctly classifies unlabeled data according to the patient response to drug.
Most of content exposed in this chapter was presented at the WIRN2017 conference [29].

3.1 Supervised Feature selection
As in the previous case, a manual feature selection based only on the parallel plot analysis
is unfeasible due to the huge amount of features (15396) and to the difficulty to ascertain
the colored bundle groupings. In order to circumvent this problem, a new algorithm for
supervised feature selection, based on the Davies-Bouldin [30] clustering index, has been
devised. Each gene has been evaluated in its capability of discriminating tissues with
different response to drugs which is indeed the skill in grouping well-separated clusters,
with high level of cohesion. Specifically, tissues have been divided, for each gene, into
unidimensional clusters, exploiting only the associated label. Then, the resulting cluster
quality is estimated. The Davies-Bouldin index is suitable for the case of study, because
it considers both inter-cluster distances and intra-cluster distances, estimated according to
the Euclidean distance. A quality threshold has been empirically selected in such a way
that only the best genes are chosen. Hence, 19 genes have been retained as shown in fig
3.1. This way of selecting feature is unconventional because it does not calculate directly
the correlation between genes and the response to drugs, but it still selects the genes that
will be more useful and reliable for a classification model based on those genes only.

3.2 Sub-Manifold Analysis
A subspace composed of the genes selected by the feature selection has been extracted
from the original dataset, creating a matrix composed by 203 tissues and only 19 genes. In
order to have a better insight of the data extracted, a PCA analysis has been performed
for this reduced database as in the previous section. The inspection of the PCA explained
variance suggests the intrinsic dimensionality of the manifold to be 11. This could imply
data stay on a 11-dimensional hyperplane. A further insight of the manifold has been
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Figure 3.1: Cluster quality evaluation. The red line is the threshold.

obtained through a CCA. Here CCA performs a projection from a 19-dimensional to a 11-
dimensional space. As shown by the dy-dx diagram (see fig. 3.2), most pairs stay around
the bisector, just confirming the hypothesis of 19-dimensional hyperplane.

Figure 3.2: dy-dx diagram.
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3.3 Lasso regression

Lasso regression [31] generally targets to improve the prediction accuracy and interpretabil-
ity of the regression model by selecting only a subset of the available variables to use in
the final model rather than using all of them. Lasso is able to achieve it by forcing the
sum of the absolute value of the regression coefficients to be less than a fixed value, which
forces certain coefficients to be set to zero, effectively choosing a simpler model that does
not include those coefficients. It requires a regularization parameter λ which controls the
trade-off between regression and constraint on the coefficients. Greater values of λ corre-
spond to a lower number of variables inserted in the model. In the case of study, Lasso
regression has been useful to confirm the intrinsic dimensionality of the reduced matrix
previously established and, more importantly, to identify the 11 genes. This step has been
possible because it is based on the linearity assumption of the reduced database, deduced
from the previous manifold analysis. The response variable used previously cannot be ex-
ploited here, because it is discrete. Instead, the other variable associated to the tissues can
be used (the tumor difference in size after 3 weeks). Fig. 3.3 shows gene coefficients that
decrease until zero as λ increases. The value of λ suggested by Lasso (the dotted line in
figure) is given by 0.05, because it is the one that guarantees the least Mean Square Error
(MSE) as shown by Fig 3.4. It is important to notice that the number of nonzero LASSO
coefficients still present at λ = 0.05, is 11. This result confirms the previous assumption
about the fact that the reduced manifold is a 11-dimensional hyperplane.

Figure 3.3: Lasso coefficients as a function of λ.
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Figure 3.4: MSE of Lasso regression as a function of λ.

3.4 Biological Feedback
The 11 genes selected are the most meaningful for predicting the increment or decrement
of the cancer volume size after three weeks. Their names are the following: LOC645233,
FSCN1, ACSS2, SMAD9, MED1, TMEM118, LOC728505, SF3B4, LOC651316, SER-
PHIN1, GPR126. Some of these genes are already well known in the medical literature as
correlated with cancer:

• FSCN1 is supposed to be related to cell motility [28];

• ACSS2 is supposed to be related to cancer cell survival [28];

• MED1 is supposed to be related to gene transcription [28]).

Correlation with cancer of the remaining genes has not been proved yet. Their presence in
this work, however, suggests that they should be involved, at least in this particular context
of the CRC response to drugs. In fact, it is important to observe that a gene expression
may not be relevant for the presence of a tumor, but it may remain important for the
survival of tumoral cells. Specifically, average expressions in patients of genes LOC645233
and ACSS2 seems to be in contrast with literature. Nevertheless, results regarding those
genes have been published, since they are not an artifact of the analysis but they concern
raw data. This analysis proposes a novel approach whose results may be considered as
suggestions for further biological research.

3.5 Classification
At last, the expression of the selected 11 genes is used in order to train a classification model.
Several models have been tested: the one that shows the best accuracy on the test set is
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the Support Vector Machine (SVM, [32]) with an accuracy of 78%. The model is tested
through the hold-out validation with 25% of data randomly put in the test set. A further
attempt to improve the accuracy of the model has been done through the use of a Multilayer
Perceptron (MLP, [32]). It is composed of 11 inputs, 20 hyperbolic tangent hidden neurons
and 1 output whose activation function is the logistic sigmoid. It is equipped with the
cross-entropy error function and the backpropagation learning algorithm is used in order
to evaluate the error derivatives for the BFGS training. For the purpose of this analysis two
target classes have been selected: the first (1) corresponding to tissues with a regressive
or stable response and the second (0) for tissues where the disease has worsened. The
robustness of the model is corroborated by both validation and test sets. The accuracy is
shown in the Test Confusion Matrix (fig. 3.5) and is given by 80%. This result is not only
important in itself, but can be considered as a figure of merit for the selected 11 genes:
how accurate 11 genes over 15396 are in modeling the progression of the tumor.

Figure 3.5: Confusion Matrices for the MLP classifier.
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Part III

Advanced Data Analysis
Through Neural Techniques
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Chapter 1

Unsupervised Neural
Techniques

1.1 Introduction
Following the unsupervised path previously introduced in chapter 2 of part II, further and
deeper analysis have been conducted using several neural techniques. A further analysis
in this direction has been required as class discovery is a key aspect in analyzing gene-
expression data as reported in [33]

As already explained the high dimensional problem prevents a direct application of
clustering algorithms in the feature space. Nonetheless, this is a common problem in gene
expression analysis and in general while clustering high-dimensional data. As suggested
in [34], this obstacle may be overcome through the use of Biclustering. This technique
has been the key of the work: several advanced neural networks techniques performing
clustering have been indeed tested in a biclustering framework. Eventually, a novel neu-
ral network, Growing-Hierarchical EXIN (GH-EXIN), devised ad hoc for the problem at
hand has been successfully employed. GH-EXIN is based on a novel unsupervised neural
approach called G-EXIN (Growing-EXIN [35]).

In section 1.2, the biclustering technique is explained; in the following one, section 1.3,
two state-of-the-art techniques, used also in the context of biclustering, are reported; in
chapter 2.1 the novel neural network, GH-EXIN, is introduced; a comparison between this
technique and the previous ones is presented in section 2.2; results of the neural framework
applied on the current dataset is reported in section 2.3; at last, an application of the
neural framework on an external problem of face recognition is reported in section 2.4.

1.2 Biclustering
Biclustering was introduced in the 60’s, but has been properly defined only by Cheng and
Church in 2000 and is also known as two-way clustering or manifold (subspace) clustering,
[36]. As previously introduced, this technique has been chosen as it allows to perform
grouping on a reduced dataset, overcoming the high dimensional problem. Nonetheless,
this is not its only quality.
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Basically, clustering can be applied to either the rows or the columns of the data matrix,
separately. Biclustering, instead, performs clustering in both dimensions simultaneously.
In this work it is achieved by alternating both row and column clustering on projected
data derived from the previous steps. Compared to clustering, biclustering has several
advantages since it groups items based on a subset of the features so that it does not
only perform grouping but also discovers the context (subspace) in which the groups are
found. Furthermore, the projection of the biclusters into the features or the samples space
allows to analyze the results as grouping of samples or features, respectively. In this work,
biclusters are projected into the sample space in order to discover in which conditions - i.e.
for which individuals - different genes coregulate.

In fact, common requirements in analyzing gene data are the grouping of genes accord-
ing to their expression under multiple conditions (tissues) and the grouping of conditions
based on the expression of a number of genes. These can be achieved by using clustering
techniques. However, many activation patterns are common to a group of genes only under
specific experimental conditions. Indeed, subsets of genes are coregulated and coexpressed
only under certain experimental conditions, but behave almost independently under other
conditions. Finding these local expression patterns is the goal of biclustering [34] and
is the key for class discovery which in this specific case means uncover unknown genetic
pathways.

Biclustering searches for biclusters with constant values, with constant values on rows
or columns and with coherent values, respectively. It can be proved that the rank of the
corresponding submatrices is less than or equal to three in the noiseless case. Hence, the
numerical rank can be used as a figure of merit of the quality of the bicluster. The Hcc

index, introduced by Cheng and Church [36], is used to control the quality of the bicluster
as it also takes into account the noise in data. It is expressed as:

Hcc =
∑Nr
i

∑Nc
j r2

ij

NrNc
(1.1)

where Nc represents the total number of columns of the matrix, Nr represents the total
number of rows and ri,j is the residue, which is calculated as:

rij = aij −
∑C
k aik
C

−
∑R
h ahj
R

+
∑R
i

∑C

j
aik

C

R
(1.2)

The terms ai,j are the elements of the matrix (rows and columns represent faces and
descriptors). C and R are the number of columns and of rows of the bicluster at hand,
respectively. The second term is the average value of the ith row, the third term is the
average value of the jth column, while the last one is the average value of the whole
bicluster. This index decreases as the values in the bicluster tend to be constant, differing
for a constant on the rows or a constant on the columns. It goes to zero for the trivial
1x1 bicluster. This fact implies additional controls on the biclusters in order to avoid this
drawback.
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Figure 1.1: Neural Biclustering Framework

1.2.1 Neural Framework

In order to detect biclusters in the gene expression matrix, gene and tissue clustering are
alternated. The preferable type of clustering in this case is a hierarchical divisive clus-
tering: it easily allows to select the desired cluster resolution level at each iteration, by
simply stopping the network when a certain height in the hierarchy has been reached.
This is fundamental in biclustering because it allows to alternate the clustering in the two
spaces several times until the best biclusters are found. As shown in fig 1.1, indeed, a first
a hierarchical clustering is achieved on genes in the tissue space, because it is the lowest
dimensional space (in order to avoid the curse of dimensionality, which cannot be avoided
if working on the gene space). Then another hierarchical clustering is performed on the
tissues in the space of the genes associated to the best leaves produced in the first step
(reduced gene space, as an orthogonal projection from the original space). The best leaves
of the second step reduce the tissue space for the genes selected after the first step. This
corresponds to another orthogonal projection. Resuming, each cluster (leave) decreases the
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dimensionality of the problem for the subsequent clustering, whose leaves yield a further di-
mensionality reduction. Considering that clustering implies a feature selection, this can be
viewed as an orthogonal projection of the vectors. Indeed, selecting only some components
results in setting the other components to zero. Considering that the basis is canonical,
it corresponds to an orthogonal projection into the reduced subspace (cluster). These two
steps, which pseudocode is illustrated in Alg. 1, are repeated (alternated projections) until
bicluster candidates are identified.

The growth of the tree is controlled by the index Hcc, by simply modifying the stop
criteria of the chosen algorithm. However, as seen before, the index tends to zero as the
cardinality of the leaves decreases. In order to avoid trivial biclusters, before each clustering
step, a check on the minimum number of data in the leaf (Cmin) is performed both in the
tissue space and in the gene space (additional check). The choice of the quality index
depends on the goal of the analysis. Other indices can be added (e.g. an index about the
shape of the cluster) or replace Hcc. However, this choice remains basically heuristic and
is an open problem.

Algorithm 1 Biclustering Pseudocode
1: biclustering:
2: Clustering on genes
3: for all leaves do
4: if leaf.cardinality ≤ Cmin1 then
5: skip leaf
6: else
7: Clustering on the tissues of the leaf (projection)
8: for all leaves do
9: if projectedLeaf.cardinality ≤ Cmin2 then

10: skip leaf
11: else
12: save projected leaf
13: goto biclustering
14: end if
15: end for
16: end if
17: end for
18: return

Resuming, the parameters needed by the biclustering algorithm are the minimum car-
dinalities of leaves for both dimensions i.e. both in the number of genes grouped and in
the number of tissues. These parameters, together with the bicluster quality index (Hcc),
control the search and require a deep analysis, which, however is out of the scope of the
work.
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1.3 Clustering State-of-the-art
1.3.1 GHNG
The Growing Hierarchical Neural Gas (GHNG, [37]) is a hierarchical self-organizing neural
model, which learns a tree of Growing Neural Gas (GNGs) where each subgraph (i.e.
each GNG) is the child of a processing unit (a.k.a. neuron) of the upper level. At each
hierarchical level a GNG network is created by using the Voronoi set of the father neuron.
Initially, a GNG network is composed of two neurons joined by a connection. At first, each
one is initialized to a random sample from the Voronoi set of the father unit. When a new
sample xt is presented to the GNG network, the algorithm finds the nearest neuron wq
and the second nearest one ws to the sample, and it increments the age of all the edges
departing from wq. The error variable associated to the winner eq is incremented with the
squared Euclidean distance between the winner itself wq and the new sample xt:

eq(t+ 1) = eq(t) + ||wq(t)− xt||2 (1.3)
Then, all the direct topological neighbors of wq (i.e. neurons joined to wq with an edge)

are updated with step size εn, and wq itself is updated with step size εb:

wi(t+ 1) = (1− ε)wi(t) + εxt (1.4)
If the winner wq and the second winner ws are connected with an edge, the age of this

edge is set to zero; otherwise, if they are not joined, an edge is created linking the two
neurons. Finally, all the edges older than age amax are removed, as well as all the isolated
neurons (if any). At this point, if the current time step t is a multiple of a user-dependent
parameter λ, then a backup copy of the GNG network is saved. Then the algorithm selects
the neuron having the largest error wr and, among its neighbors, the one having the largest
error wz. A new neuron wk is then created halfway between wr and wz, decreasing the
quantization error of the GNG graph. Otherwise, if the time step t satisfies the relationship:

mod (t, 2λ) =
⌊

3
2λ
⌋

(1.5)

a check is done in order to evaluate if the growth process has resulted in an improvement
of the quantization error. Given the mean quantization of the last backup copy MSEold
and of the current GNG network MSEnew, the backup graph is restored if:

MQEold −MQEnew
MQEold

< τ (1.6)

where τ ∈ [0,1] is a user-dependent parameter. If the above relationship is satisfied,
then the graph enters the convergence phase. Thus, for high values of τ the quantization
error improvement must be significant in order to continue the growth phase. Finally, the
error variables are decreased by multiplying them by a user-dependent constant d. If the
maximum number of time steps is reached the algorithm stops. Otherwise another sample
is presented to the GNG graph. When the learning process ends, then the Voronoi set of
each neuron is used to train another GNG network recursively (see Fig. 1.2). The vertical
growth in a branch of the hierarchy stops when the deepest GNG enters the convergence
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phase having only two neurons. This leaf node is pruned because it is too small to represent
any relevant distribution.

Train modified 
GNG

𝑙𝑒𝑣𝑒𝑙 >
𝑀𝐴𝑋_𝐿𝐸𝑉𝐸𝐿?

No

Yes
Return

|𝐻| == 2

No

Yes

For each unit 𝐻𝑖

Call recursively the 
algorithm with the 

Voronoi set of leaf 𝐻𝑖

Figure 1.2: GHNG flowchart.

1.3.2 DGSOT
The Dinamically Growing Self-Organizing Tree (DGSOT) [38] is a self-organizing neural
network. Similarly to all clustering algorithms presented in this work, it builds a hierar-
chical divisive tree.

It is an enhanced version of the Self Organizing Tree Algorithm (SOTA) [39]: basically,
DGSOT adds to each vertical growth performed in SOTA also a horizontal growth which
allows to better determine cluster partitioning at each level. SOTA, in fact, builds a binary
tree: each cluster, if partitioned, is only split into two parts, but this is a very limiting
approximation.

The type of tree built by DGSOT is slightly different from the one built by GHNG: in
the latter, each node in the tree seems to represent the training of an associated neural
network (GNG), which is composed of many neurons. In this case, instead, each node
effectively represents a neuron. In the following, hence, the terms "neuron" and "node" will
be used alternatively, as, at least in this context, they are interchangeable.

The tree initialization consists in the assignments of all data to the root node and in
its positioning as the centroid of the dataset.

Then, while there exists at least a leaf whose heterogeneity is higher than a threshold
TR, a vertical growth is performed on this leaf. The heterogeneity of a node is defined as
the average distance of the data to the neuron reference vector. Two descendent nodes of
the current node are created and their reference vectors are initialized with father node’s
reference vector.
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Figure 1.3: DGSOT flowchart

A learning process, in general, is the presentation of all data (epoch) for a few times to
neurons for them to learn. The learning, basically, consists in the assignment of data to
winner neurons and in the following reference vector adaptation. In this particular case,
data previously assigned to the father node, are presented through the K-level up Distribu-
tion (KLD) mechanism. It selects potential winner neurons among all the leaves belonging
to the sub-tree starting from the K-ancestor node, the ancestor node K-level above father
node, where K is a parameter of the network. This mechanism allows improperly clustered
data in early hierarchical levels to be re-evaluated during later at lower layers. The winner,
as commonly done, is chosen as the nearest node. Weight adaptation, instead, occurs not
only for the winner but also for its neighbours, in a winner-take-most strategy. Neighbor-
hood is defined as the union siblings and father node. For both winner node and neighbor
nodes, reference vectors are updated according to the following function:

∆wi = φ(t) · (x− wi) (1.7)

where wi is the reference vector of the winner node, x is the datum and φ(t) is defined as:

φ(t) = α · η(t) (1.8)

where α is a user-dependent parameter which differs according to node taken into consid-
eration, and, in general, is close to 1 for the winner, smaller for the siblings and close to 0
for the father node; η(t), at last, is a function of the time t which represent the number of
times a neuron is selected as winner node: a good choice may be η(t) = 1/t

The learning process is repeated until the relative heterogeneity of all child nodes com-
pared to the previous epoch is less than a user-dependent parameter TE .

After the learning process a horizontal growth is performed. This kind of growth consists
in the addition of a node to the current group of child nodes. It is always followed by a
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further learning process in which the current group of nodes finds the correct quantization
associated to the current number of neurons. These two steps are repeated until the current
number of neurons is found. After the learning process, in fact, a cluster validation test is
performed in order to check the quantization error of the current neural network. In order
to do that, DGSOT calculates the Cluster Separation (CS) as:

CS = Emin
Emax

(1.9)

Where Emax is the maximum distance between two of the current neurons, while Emin is the
minimum distance. In case CS is above a given threshold Tc, user-dependent parameter,
the process is repeated - i.e. a horizontal growth is performed again followed by a learning
process. Otherwise, the last child is deleted and previous configuration is restored through
another learning process.
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Chapter 2

GH-EXIN

2.1 A Novel Neural Technique: GH-EXIN
2.1.1 Self-Organizing and Data Driven Approaches
The proposed approach builds a divisive hierarchical tree in an incremental and self-
organized way, as shown in fig. 2.1. Indeed, it is a top-down technique which divides
data at deeper and deeper levels. It is data driven (self-organization), in the sense that
the final tree is automatically estimated. Also, it does not require a predefined number of
units and levels (incremental with pruning phase). The resulting tree is neither binary nor
balanced, because of its dependence on data. Both the GH-EXIN, GHNG and DGSOT
algorithms follow these criteria.

2.1.2 Basic Neural Units
The basic neural unit is intended as the neural network chosen for the clustering of the
input data. They are composed of units called neurons, which are represented by weight
(a.k.a. reference) vectors. As an abuse of language, the terms neuron and weight vector are
used with the same meaning. They do not have any fixed topology (the induced topology
is generated in the linking phase). All these methods use a basic neural network for the
processing of each leaf. GH-EXIN is based on the stationary variant of G-EXIN, say sG-
EXIN. GHNG uses a variant of GNG, while DGSOT, deriving from SOTA, exploits as
basic neural network an enhanced version of SOM.

Neuron Creation

Online Learning The basic neural units are incremental, i.e. they have a variable
number of neurons (driven by data). It is, in general, achieved by the mechanism of neuron
creation and pruning. With regard to the former, a neuron is added (a new weight vector
is created) if the existing neurons are not able to sufficiently describe the incoming data.
Several choices can be found in the literature for this novelty detection. Both GHNG and
DGSOT handle neuron creation by considering the batches of the whole set of samples, at
the end of an epoch (DGSOT) or each λ (user-dependent parameter) iterations (GHNG).
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Figure 2.1: GH-EXIN tree neural structure: the number associated to each node in the
tree represents its Voronoi cardinality

On the contrary, GH-EXIN, by deriving from a clustering algorithm designed for non-
stationary data, decides datum by datum whether to create a neuron or not (novelty test).
Additionally, in order to take this decision, GH-EXIN automatically takes into account
also previously presented data by considering network topology. This is a more efficient
approach, as GH-EXIN, by taking decisions during the epoch, may converge in fewer epochs
than GHNG and DGSOT.

Semi-Isotropic Quantization The decision regarding neuron creation is generally based
on the quantization error of the network. Several approaches can be found in literature for
the definition of the quantization. They are mainly isotropic, in the sense that each neuron
represents locally the input space by means of a hypersphere centered at its weight vector.
The corresponding radius is named neuron threshold. An exhaustive description can be
found in [40] Both GHNG and DGSOT keep adding neurons as far as the quantization error
(a.k.a. cluster separation in [38]) does not fall below a user-dependent threshold 1.9, 1.3.
However, GHNG computes the quantization error from data, by considering the average
distance between the reference vectors and their Voronoi sets, while DGSOT from net-
work topology, by considering the rate between the minimum and the maximum distance
among neurons. Similarly to DGSOT, GH-EXIN takes into account the network topology.
However, differently from DGSOT, it considers both the extent (isotropic criterion) and
the shape (anisotropic criterion) of the neuron neighborhood (determined by the linking
phase). The isotropic criterion is based on the average of the Euclidean distances between
the winner neuron (wγ) and its N neighbors (wi):

Tγ = 1
N

N∑
i=1
||wγ − wi||2 (2.1)
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w1

w4

V1 = w1 – xj

V1 • a > 0

V4 = w4 – xj

V4 • a > 0

xj

w5

(a) If all the dot products between vi (vectors from the new datum xj to the neuron wi) and a
(vector addition of vi) have equal sign, then the new datum xj is outside the convex hull of the
winner (w1).

w2

w3

w1

w4

V1 = w1 – xi

V1 • a < 0

V2 = w2 – xi

V2 • a > 0

xj

w5

(b) If the dot products between vi (vectors from the new datum xj to the neuron wi) and a
(vector addition of vi) have not equal sign, then the new datum xj is inside the convex hull of
the winner (w1).

Figure 2.2: A new point xj ∈ R2 is presented to the sG-EXIN neural network composed
of four connected neurons.

In case the new datum is farther than Tr from the winner, a new neuron is created on
the datum. However, this isotropic approach does not take into account the true shape
of the neighborhood. For instance, given a data and the corresponding winner, consider
the hyperplane in the input space passing through the winner weight vector and normal
to the vector joining the data and the neuron. Assume that all winner neighbors are
placed in the same half-space (which obviously does not contain the data). If an isotropic
threshold is used, also a portion of the input space in the other half-plane is considered
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for explaining the input. This inconsistency becomes worse if there are very far neighbors.
At this aim, the novelty detection also requires an additional anisotropic check, explained
in the following subsection. This approach represents one of the major novelties, as both
GHNG and DGSOT make use of isotropic thresholds.

Figure 2.3: The semi-isotropic quantization exploits both thresholds (isotropic criterion)
and convex-hull (anisotropic criterion) providing a hybrid quantization. When a new datum
(small red dot) is presented, the winner (big red dot) and its neighbors (blue dots) move
towards it. The blue unconnected neuron (lonely neuron) below does not move as it is not
part of the winner neighborhood.

Convex-Hull sG-EXIN creates a new neuron only if winner neuron γ is not able to
correctly represent the new datum xj . If this is the case, xj is considered novel w.r.t. to
neuron γ. This novelty test is satisfied when: the distance d between γ and xj is greater
than the local threshold Tγ and, contemporary, xj is outside the region which represents
the neighborhood of γ. This portion of space, say NGγ (neighborhood of γ), is modelled
by the convex hull (bounded convex polytope) of the weight vector of neuron γ and the
weights of its topological neighbors (i.e. those connected through edges). This idea is
shown in Fig. 2.2 in two-dimensional space. Here, the green segments represent the links
from neuron w1. The w1 convex hull is represented by a grey shaded area; only the green
neurons belong to it. As an example, the green dotted segment connects a w1 topological
neuron (w4) and one of its neighbors (w5); hence, this neuron is not a w1 topological neuron
and, so, it does not belong to NG1, but only to NG4.

However, if data lie in aD-dimensional space, the convex-hull technique can be exploited
only in case γ has D + 1 neighbors. In fact, with less than D + 1 neighbors, the region
represented by the convex-hull has measure zero, hence no data can lie within it. In such a
case, the novelty test is based only on the isotropic criterion. In order to check whether a
datum lie within the convex-hull a simple test is performed. First, the sum of the difference
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vectors δi between xj and NGγ neurons is computed:

Ψ =
∑

δi (2.2)

If all the scalar products between δi and Ψ have the same sign (null products are ignored),
then xj is outside the polytope (see Fig. 2.2). Otherwise, xj is inside the polytope.

Lonely Neuron A neuron with no edges is named lonely neuron (Fig. 2.3). Since
DGSOT does not make use of edges, all its neurons are lonely. On the contrary, both
GHNG and GH-EXIN exploit the concept of lonely neurons to determine nodes to be
pruned. In both algorithms, a neuron may become lonely in case all its edges are pruned.
However, in GHNG neurons already have connections when created. In GH-EXIN, instead,
new neurons born lonely. Connections may or may not be generated only during next
iterations.

Soft-Competitive Learning

The weight computation (training) is based on the Soft Competitive Learning (SCL) [41]
(Fig. 2.3) paradigm, which requires a winner-take-most strategy. The closest neuron to
the new datum is named (first) winner. The set of potential winners differs according
to the clustering algorithm. In both GHNG and GH-EXIN, all neurons belonging to the
same basic neural unit are competitive in the learning phase, which means that, for each
presentation of data from a training set, all weight vectors are ranked according to their
distance (in general Euclidean). In DGSOT all neurons belonging to the sub-tree below
the K-ancestor of the current node are considered. At each iteration, both the winner
and its neighbors change their weights but in different ways. The winner wγ and its direct
topological neighbors wi are moved towards xj by fractions αγ(t) and αi(t) (learning rates),
respectively, of the vector connecting the weight vectors to the datum:

∆w = α(t) · (w − xj)→ w = w + ∆w (2.3)
Where α(t) = α0 · 1/t, and α0 is a user dependent parameter, higher for the winner and
smaller for the neighbours, and t is number of times a neuron wins (conscience) The differ-
ences among the three algorithms consists on the neighborhood determination. DGSOT
considers all neurons belonging to the same basic neural unit as neighbors, plus the father
neuron. On the contrary, the neighborhood of both GHNG and GH-EXIN is composed of
all neurons connected through an edge.

Edge Creation and Network Topology

An edge is a connection placed between two neurons. Edges are exploited in order the
determine the topology (neighbors) of a network, this is achieved by the Competitive
Hebbian Learning (CHL) rule [41]. CHL is used for creating the neuron connections: each
time a neuron wins, an edge is created, linking it to the second nearest neuron, if it does not
exist yet (Fig. 2.4). If there was an edge, its age is set to zero. As previously introduced,
DGSOT does not exploit edges, while GHNG and GH-EXIN do. Besides, both algorithms
use the same aging procedure. They increment the age of all links emanating from the
winner by one. However, in case a link age is greater than the agemax scalar parameter, it
is eliminated (pruned).
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Figure 2.4: When a new datum (small red dot) is presented, the winner (big red dot) and
the second winner (big yellow dot) are joined through an edge (blue dotted line), if the
edge did not exist before.

Pruning

Pruning is the process through which nodes can be removed if redundant. DGSOT does
not exploit any pruning technique, in the sense that the redundancy is only checked each
time a neuron is added, but old neurons cannot be removed. Vice versa, GHNG and GH-
EXIN remove all lonely neurons. GH-EXIN checks for lonely neurons at the end of each
epoch, while GHNG checks at each iteration. Besides, GHNG may prune an entire set of
neurons if GNG enters convergence phase. In this case, all the neurons created before last
convergence check are pruned.

2.1.3 Tree Building
Hierarchical divisive clustering algorithms build a tree starting from a root node. Through
vertical and horizontal growths successive splits are determined. For each father neuron a
neural network is trained on its corresponding Voronoi set, i.e. the set of data represented
by the father neuron. Sons are the neurons of the associated basic neural unit and determine
a subdivision of the father Voronoi set. For each leaf the procedure is repeated.

Root Leaf

The root of the tree is the node of the hierarchy. Both DGSOT and GH-EXIN associate
the whole data set to a fictitious neuron (a.k.a. root node). The first basic neural unit is
then trained on the Voronoi set of this fictitious unit, i.e. on the whole data set. All nodes
created by the first basic neural unit are sons of the root node. Conversely, GHNG does

54



2 – GH-EXIN

Figure 2.5: The leaf node, represented by the red dot inside the light blue region, has not
met the stop criteria. Therefore, a new hierarchical level is generated. In the child level,
the content of the Voronoi set of the father node will be further analyzed.

not have any fictitious father, all nodes created at the first layer are orphans. It could be
argued that GHNG builds a forest other than a single tree structure.

Vertical Growth

Vertical growth is the process in which a deeper layer is added to a leaf node of the hierarchy
(Fig. 2.5). In all considered algorithms, it always implies the creation of a seed, i.e. a pair
of neurons which represents the starting structure of a new basic neural unit. This kind
of growth is exploited as long as a higher resolution is needed. In order to understand
whether a vertical growth is necessary, all considered algorithms check if the quantization
error of the basic neural unit is below a user-defined threshold. DGSOT checks data
heterogeneity as the average distance of the data to the neuron reference vector. GHNG,
instead, checks whether the number of levels in the hierarchy exceeds a user-dependent
parameter MAX_LEV EL or the last basic neural unit inside a branch has not created
any additional neuron to the initial seed. Finally, GH-EXIN contemporary checks both
data heterogeneity through the Hcc index and data cardinality, i.e. the size of the leaf
Voronoi set.

Data Reallocation

Data reallocation is the mechanism by which data associated to pruned nodes (orphan
data) are possibly reassigned to other neurons. This mechanism is a novelty introduced
in GH-EXIN (see Fig. 2.5 for a visual interpretation). In fact, DGSOT, by not pruning
nodes, does not need to reassign orphan data. GHNG does not reallocate orphan data,
despite lonely neurons are removed. In GH-EXIN, instead, all orphan data are labelled as
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outlier

(a) The orphan datum cannot be explained by the green leaf node, as the hypersphere of the
closest neuron does not reach it.

no Voronoi change

(b) The new datum is inside the convex-hull (or inside a hypersphere) of the current network
component. Therefore, it will be assigned to the Voronoi set of the closest yellow neuron.

Voronoi change

(c) The new datum (previously belonging to the blue leaf node) is now closer to the black network.
Therefore, it will be assigned to the Voronoi set of the closest neuron, i.e. the black one on top-
left).

Figure 2.6: In the above figures different colors represent different leaf nodes. Small dots
represent data while big dots represent neurons. The shaded areas correspond to regions
explained by the neural network. Big red circles mark lonely neurons, while small red
circles represent data belonging to them. As lonely neurons are pruned, GH-EXIN tries to
reallocate these data or to mark them as outliers.

potential outliers, at the end of each epoch. For each potential outlier, GH-EXIN looks
for a new winner among all leaf nodes. Nonetheless, in case the winner belongs to the
same basic neural unit of the pruned node and datum is outside its hypersphere, datum is
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definitely marked as outlier and is not reassigned.

Figure 2.7: The Voronoi regions of each neuron are represented with dotted red lines. The
learning process in the father node has generated five neurons, which normally results in
five leaf nodes. However, the network topology (through the analysis of the connected
components) suggests that data are separated in two distinct clusters. Therefore, in order
to take into account this finding, two abstract neurons are placed in the centroid of each
cluster, and the corresponding nodes are inserted in the middle of the hierarchy.

Topology Abstraction Check

Another remarkable novelty introduced by GH-EXIN consists in a simultaneous vertical
and horizontal growth (Fig. 2.7). In fact, at the end of the training process,

Horizontal Growth

Horizontal growth refers to the addition of further neurons by the basic neural unit to
the initial seed. This characteristic allows to build more complex hierarchical structures
other than binary. This process is performed by all algorithms through the respective
neuron creation mechanism previously described. the resulting graph of the basic neural
unit is analyzed by searching for connected components. If more than one connected
component is detected, the algorithm tries to extract an abstract representation of data.
Hence, each connected component, representing a cluster of data, is associated with a novel
abstract neuron. The reference vectors of abstract neurons are placed in the centroids of the
respective clusters. The tree structure is modified by inserting abstract neurons between
the leaf nodes and the father node, resulting in a simultaneous vertical and horizontal
growth.
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2.1.4 The GH-EXIN Algorithm

Recalling fig. 2.1, for each father node, a neural network is trained on its corresponding
Voronoi set (set of data represented by the father neuron). The Voronoi cardinality is
shown in fig. 2.1 next to each vertex. The sons are the neurons of the associated neural
network and determine a subdivision of the father Voronoi set. For each leaf, the procedure
is repeated until either the Hcc index of the leaf has fallen below Hccmax (user-dependent
parameter) or the cardinality of the leaf is less the mincard. The initial structure of the
neural network is a seed, i.e. a pair of neurons, which are linked by an edge, whose age is
set to zero.

For each epoch the basic iteration starts at the presentation of a new data, say xi. All
neurons are ranked according to the Euclidean distances between xi and their weights.
The neuron with the shortest distance is the winner w1. In case the datum result to be
novel - i.e. both outside of the convex polytope and of the hypersphere of radius Tr of the
winner (novelty test) - a new neuron nnew is created (left branch of fig. 2.8). The initial
weight vectors and neuron thresholds Tr are given by heuristics: nnew is place on xi and
its threshold is set equal to w1 threshold. No edge is created at this time: nnew is labelled
as lonely neuron. This label will be removed the first time an edge will be placed between
nnew and another neuron.

Figure 2.8: GH-EXIN flowchart
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Otherwise, in case datum is not novel, first winner w1 and second winner w2 are linked
by an edge according to CHL rule, if it does not exist yet. If there was already an edge,
its age is set to zero. Anyhow, the age of all other links emanating from the winner is
incremented by one; if a link age is greater than the agemax scalar parameter, it is elim-
inated (pruning). Reference vectors of w1 and its direct neighbors are updated according
to the aforementioned equation 2.3. Thresholds of the winner and of its neighbors are
recomputed as their position has been modified. This process is repeated for all data. At
the end of each epoch, if a neuron remains unconnected (no neighbors), it is pruned, but
the associated data are analyzed and possibly reassigned.

Each leaf neural network is controlled by Hccperc because GH-EXIN is searching for
biclusters (it is estimated by using the data of each Voronoi set). In particular, the training
epochs are stopped when the estimated value of this parameter falls below a percentage of
the value for the father leaf.

This technique builds a vertical growth of the tree. The horizontal growth is generated
by the neurons of each network. However, a simultaneous vertical and horizontal growth is
possible. At the end of a training, the graphs created by the neuron edges are checked. If
connected subgraphs are detected a further both vertical (a layer is added) and horizontal
(as many neurons are inserted as the number of subgraphs found) growth is performed.

GH-EXIN has been developed in MATLAB. The code is freely available at [42].

2.1.5 User-Dependent Parameters
Resuming, the GH-EXIN neural network requires some user dependent parameters:

• the two learning rates constants, αγ0 and αi0, used to update reference vectors of the
winner and its neighbours;

• the scalar agemax used for edge pruning: it has to be lowered if more edges (and
neurons) have to be pruned, indirectly controlling the leaf cardinality;

• the biclustering quality indices, i.e. Hccperc the percentage of Hcc, used to determine
when to stop training epochs, and its maximum value Hccmax, which indicates when
a compact bicluster has been found ;

• the minimum cardinality of leaves, used to avoid single point clusters, meaningless in
the context of bclustering.

2.2 Benchmark Comparison
In this section synthesis experiments are shown and discussed. These experiments concern
the comparison among GH-EXIN and other two hierarchical and self-organizing neural net-
works. The first one is Growing Hierarchical Neural Gas (GHNG) which is the hierarchical
version of Growing Neural Gas. The second one is Dynamically Growing Self-Organizing
Tree (DGSOT) which derives from SOTA. These three neural networks are tested on five
datasets having different characteristics. The data of the first four datasets are randomly
drawn from:
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• A planar X-shape manifold

• A three-dimensional bimodal distribution a.k.a. twin-peaks

• A planar square-shape manifold having a beta distribution

• A planar spiral-shape distribution

The fifth dataset consists on the RGB triplet colors of a baboon image. This dataset
selection has been done so that the networks can be evaluated in addressing different
tasks. In particular, the X-shape dataset is a simple starting point to evaluate manifold
learning; indeed, it is a two-dimensional manifold in a two-dimensional space. It is easy
to learn and evaluate visually. The twin-peaks and the baboon datasets are slightly more
complex both to learn and to evaluate (at least visually). The twin-peaks is an artificial
example of a regular function, while the baboon dataset is closer to a real application of
color quantization. The last two experiments are even harder. The square dataset tests
the networks in a non-uniform distribution setting while the spiral one tests the ability in
learning a one-dimensional manifold in a space having a higher dimensionality. In all the
following experiments the neural networks’ setup is chosen so that both the structure and
the number of neurons of each layer are approximately the same for all the networks.

Figure 2.9 shows the first two hierarchical layers of the three neural networks on the
X-shape distribution. At a glance, the three algorithms have learnt approximately well the
manifold. To be fussy, GH-EXIN appears to be more elegant and efficient in the second
layer, while DGSOT seems a little bit under stress.
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(a) GH-EXIN first layer (b) GH-EXIN second layer

(c) GHNG first layer (d) GHNG second layer

(e) DGSOT first layer (f) DGSOT second layer

Figure 2.9: First (left) and second (right) layers of GH-EXIN, GHNG and DGSOT on
the X-shape distribution.
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(a) GH-EXIN first layer (b) GH-EXIN second layer

(c) GHNG first layer (d) GHNG second layer

(e) DGSOT first layer (f) DGSOT second layer

Figure 2.10: First (left) and second (right) layers of GH-EXIN, GHNG and DGSOT on
the twin-peaks dataset.
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(a) GH-EXIN first layer (b) GH-EXIN second layer

(c) GHNG first layer (d) GHNG second layer

(e) DGSOT first layer (f) DGSOT second layer

Figure 2.11: First (left) and second (right) layers of GH-EXIN, GHNG and DGSOT on
the baboon dataset.
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(a) Original baboon image (b) GH-EXIN

(c) GHNG (d) DGSOT

Figure 2.12: Difference between the original baboon image and the

Figure 2.10 shows the first two hierarchical layers of the three neural networks on the
twin-peaks dataset. Here it is more difficult to evaluate the self-organizing abilities of the
networks visually. Anyway, all the three networks learn the basic structure of the manifold
in the first layer: the minima, the maxima and the saddle point. However, the edge
distribution of GH-EXIN is more symmetric (as it should be) than the GHNG distribution
which links only one of the two maxima to the minima. The DGSOT neural networks does
not have edges by design, so it cannot show if the manifold is connected or not.

Figure 2.11 shows the first two hierarchical layers of the three neural networks on
the baboon dataset. In this case the network evaluation is even harder because of the
huge amount of data and their distribution. However, even in this case, the number of
GHNG edges is greater than the number of GH-EXIN ones. Since the figures are not easy
interpretable, it is worth showing the difference between the original baboon image and
the quantized image. The darker the difference-image the better the color quantization.
Figure 2.12 exhibits the difference-image by using the three neural networks. They seem
to have similar performance, but DGSOT and GHNG use a few more neurons with respect
to GH-EXIN.
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(a) GH-EXIN first layer (b) GH-EXIN second layer

(c) GHNG first layer (d) GHNG second layer

(e) DGSOT first layer (f) DGSOT second layer

Figure 2.13: First (left) and second (right) layers of GH-EXIN, GHNG and DGSOT on
the square distribution.
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(a) GH-EXIN first layer (b) GH-EXIN second layer

(c) GHNG first layer (d) GHNG second layer

(e) DGSOT first layer (f) DGSOT second layer

Figure 2.14: First (left) and second (right) layers of GH-EXIN, GHNG and DGSOT on
the spiral distribution.

Figure 2.13 shows the first two hierarchical layers of the three neural networks on the
square dataset. Here all the networks behave almost the same. However, in the second
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(a) PSNR

(b) Number of neurons

Figure 2.15: Number of neurons and PSNR of each neural network on each dataset.

layer the DGSOT neurons are much more attracted by the borders than in the other two
algorithms. Overall, in different ways, all the three networks perform well on this task.

Figure 2.14 shows the first two hierarchical layers of the three neural networks on the
spiral dataset. Only for this task, if the number of neighbors of the winner neuron is greater
than or equal to the space dimension, then GH-EXIN does not use the average threshold
check but it uses only the convex hull check (refer to section X for further details). By
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using this change, GH-EXIN creates more neurons in the first layer following the manifold
more accurately. Remarkably, unlike GHNG, GH-EXIN does not creates edges between
different arms of the spiral. On the other hand, DGSOT really has trouble in generating
more neurons in the first layers, failing in a satisfying manifold understanding. Only at
the third level this network seems to improve the quality of its organization.

Since neural network comparison is not trivial, a quantitative evaluation method is
needed. For this purpose, the peak-signal to noise ratio (PSNR) index is used as in Palomo
et al. GHNG paper. The PSNR index is defined as follows:

PSNR = 10 log10

(
MAX2

l

MSE

)
(2.4)

where MAX2
l is the squared Euclidean norm of the vector which joins the two most

distant points in the input distribution support. The mean squared error (MSE) is given
by:

MSE = 1
M

M∑
i=1
||wi − x̂i||2 (2.5)

where M is the number of the input samples, xi is the i-th input sample and wi is the
winning neuron corresponding to xi. Fig. 2.15(a) shows the PSNR index of the three
neural networks on the five input distributions.

Fig. 2.15(b), instead, shows the number of neurons on the leaf nodes generated by each
network on the five input distributions. Observing the two images, it is possible to make
some quantitative comparisons. Firstly, from a general point of view, the number of leaf
nodes and the PSNR is approximately the same for all the three networks. However, there
are some exceptions. The first one is the number of neurons of the DGSOT network for
the spiral distribution. In this experiment DGSOT needs a significant extra number of
neurons (and one more layer! It needs three layers instead of two like GHNG and GH-
EXIN) to reach the same performance of GH-EXIN and GHNG in terms of PSNR. The
second relevant exception concerns the color quantization task. In this setting GH-EXIN
has less leaf neurons than GHNG and DGSOT but it has by far the best PSNR performance.
Unfortunately, the PSNR is a good way to have a quantitative evaluation for the neuron
positions, but it does not tell anything about the quality of the connections. Observing
the above network images, especially the two-dimensional ones, it seems that GH-EXIN is
much more elegant in connecting neurons, providing a better manifold representation.
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2.3 Gene Analysis
2.3.1 Neural Biclustering with GH-EXIN
In the previous sections, we presented the GH-EXIN neural network and we compare its
pros and cons with state-of-the-art hierarchical neural techniques. In this section we exploit
GH-EXIN in order to analyze CRC microarray data. The previously introduced high-
dimensional issue in handling microarray data may be bypassed by unsupervised techniques
thanks to biclustering. Indeed, by considering genes as samples and cellular tissues as
features, the dimensionality of the input space is dramatically reduced. Successively, each
batch of genes is further analyzed by clustering cellular tissues in a lower dimensional
space. We will refer to neural biclustering as the successive exploitation of GH-EXIN in
biclustering microarray data. Each time GH-EXIN is exploited, a tree is built, either in
the gene or in the tissue space, for the gene clustering in the higher-level leaves. The
validity of the leaves is tested and possibly GH-EXIN is called again in the corresponding
projected space of each leaf. This procedure is recursively repeated until the cardinality
of the tissues or the cardinality of the genes of a leaf is under the minimum threshold.
At this point the leaf is saved and the algorithm continues by processing the other leaves.
The order in which leaves are processed depend on their ranking, based on their Hcc value.
Low values of Hcc associated to an acceptable cardinality do not imply a final bicluster
has been detected, above all for the presence of high noise in data. An additional analysis
is required, which depends on several considerations.

Figure 2.16: Parallel coordinates of a cluster of gene
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Figure 2.17: Parallel coordinates of a bicluster.

Here, the final leaves are studied from two different points of view: parallel coordinates
and singular value decomposition (SVD), for the analysis of the numerical rank of the
submatrices associated to the biclusters.

2.3.2 Validating Techniques
Fig. 2.16 shows this kind of plot by visualizing genes as samples (colored polylines) and
murine tissues as features (parallel vertical axes) on a leaf of GH-EXIN in the gene space,
whose characteristics are shown in the top line of the figure. Blue polylines represent all
genes available in the dataset, while red polylines stand for genes collected in the 19th gene
cluster. The red grouping of polylines show coherency, which confirms the quality of gene
clustering. A similar validation analysis is used after the GH-EXIN clustering in the tissue
space which is run after projecting the Voronoi set of the 19th gene leaf (cluster).

Figs. 2.17 and 2.18 show two parallel coordinate plots in which vertical axes (here
visualized as the corresponding abscissas in the coordinate axis) represent the 41 genes be-
longing to cluster 19, while polylines stand for murine tissues. In particular, blue polylines
represent all the tissues and red ones the tissues grouped in the bicluster. The differ-
ence between the two images consists in a different setup of a parameter of the algorithm,
Cmin2, which regulates the maximum number of tissues accepted in a bicluster. In the
first case a higher value of the parameter is set, in order to find a bigger bicluster. However,
both pictures show an excellent bicluster coherency revealing the goodness of GH-EXIN as
a tool for biclustering. The biclusters shown in both figures are coherent additive values
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Figure 2.18: Parallel coordinates of a smaller bicluster.

biclusters in which the values vary both according to the rows (the axes in this case) and
according to the columns (the polylines). This can be inferred from the pictures, because
a difference is present between two gene expressions on different polylines but along the
same axes, but this difference remains stable along the polyline. The same is also valid
between two gene expressions on different axes of the same polylines.

This visualization tool can be considered as a first validation of the quality of the
leaves. A second validation can be performed by analyzing the singular values of the
resulting bicluster matrices. According to the theory, in case of noiseless data, biclusters
with constant values and with constant values on rows or columns have rank one, while
biclusters with coherent values have rank three. The difficulty raises in case of noise,
because there are no more zero singular values. Indeed, the size of the last values increases
with the level of noise. It then becomes a problem in numerical rank estimation. The SVD
of the matrix of the bicluster in fig. 2.17 has the first two singular values (42.5 and 4.5)
well separated from the other ones (the third one is equal to 1.5), considering also that
the matrix has been scaled in the preprocessing stage). This result represents the sum of
two biclusters of rank one, certainly, considering the associated parallel plot, two constant
row biclusters. Indeed, fig. 2.17 shows two clusters (coherent polylines, whose thickness
depends on noise level). Hence, it can be deduced that a further clustering (and projection)
is needed in order to have a single bicluster. Instead, the SVD of the matrix of the bicluster
in fig. 2.18 (see fig. 2.19) has only the first singular value (32.5) well separated from the
remaining ones (the second one is equal to 1.1). As also confirmed in fig. 2.18, it represents
a constant row bicluster. This result does not require a further analysis.
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Figure 2.19: Singular values for leaf 14.

Leaf node Cardinality Hcctissue class genes tissues
1 54 8 0.027
1 58 6 0.059
2 8 8 0.027
2 8 6 0.029
2 71 5 0.031
2 5 5 0.039
3 7 8 0.025
3 7 13 0.025
3 19 6 0.026
3 19 5 0.026
3 41 13 0.028
3 19 8 0.029

Table 2.1: Best leaves in terms of biclustering quality (Hcc index).

2.3.3 Experimental Findings
In order to better analyze genetic expressions common for different patients, the dataset
has been divided into three parts (classes). This division follows the murine tissues response
to anti-cancer drugs. At the end, three datasets have been derived, one for the mice which
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started recovering after three weeks of treatments, a second one for the mice which had
a stable situation and at last one also for the case in which drugs had no effect and the
cancer kept growing. This type of division has been maintained also in the summary Table
2.1, where it has been reported the information about the cardinality of the biclusters,
both in the tissue and in the gene space and the value of the Hcc index. In the table
there are only the best biclusters for each class, ranked according to the class and the Hcc
index. As last step, as a biological feedback, the scientific relevance of the selected genes
has been taken in account. Among all the biclusters found, the one that grouped the most
interesting genes in the cancer field has been the one that also had the lowest Hcc index
value. Indeed, the 7 genes present in the bicluster are the following:

• "CSAG1", "CSAG3", "CSAG3A", which belong to the same CSAG family. These
genes are well known in literature as associated with chondrosarcomas, but they are
also present in normal tissues. Furthermore, CSAG3 and CSAG3A are gene coding
the "Chondrosarcoma-associated gene 2/3 protein" which is a "drug-resistance related
protein, its expression is associated with the chemotherapy resistant and neoplastic
phenotype. May also be linked to the malignant phenotype" [43].

• "MAGEA2", "MAGEA3", "MAGEA12", "MAGEA6", which belong to the same MAGEA
family. These genes are melanoma antigens which “Reduce p53/TP53 transactivation
function” and also "Represses p73/TP73 activity" [44]. Both p53 and p73 are tumor
suppressor proteins which regulate cell cycle and induct apoptosis.

The relevant issue is that these gene families are not only important by themselves, but
this analysis suggests that, at least in the observed condition, they may also coregulate
each other. It is also important to notice that this bicluster phenomenon has been observed
within the tissues belonging to the third class, the one where tissues unable to respond to
drugs are present.
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2.4 An Application to Face Recognition
In order to further test the capabilities of analysis of both the neural biclustering framework
and of the GH-EXIN algorithm, they have been also applied on a completely different
context: the 3D Face Recognition. Differently from what previously done, biclustering has
not been used to understand which face descriptors correlate. Instead, biclusters have been
searched, here, to prove the discriminative capabilities of face descriptors. The analysis
described in the following have been exposed at the 2018 WIRN conference [45]

Introduction to the 3D Face Recognition

3D face recognition has been deeply investigated in the last decades due to the large number
of applications in both security and safety domains, even in real-time scenarios. The third
dimension improves accuracy and avoids problems like lighting and make-up variations.
In addition, it allows the adoption of geometrical features to study and describe the facial
surface.

The dataset at hand is also composed by 7 novel geometrical descriptors which rely
on shape and curvedness index and the coefficients of the first fundamental forms. These
descriptors have been presented in [46]. The face model is a "mean face" evaluated with a
100 neutral training faces from the Bosphorus database [47]. Formulas and facial mappings
of the novel descriptors are shown in Table 1.

In addition to these novel features, other descriptors, presented in [48], have been used
including Euclidean and geodesic distances between landmarks, the nose volume, and the
shape index [49]. Overall, a set of 11 feature types was generated. All geometrical descrip-
tors, i.e. those reported in Table 1 and the shape index, are adopted in this work in the
form of histograms.

descriptor formula facial map

Eden2 = E

1 + Z2
x + Z2

y

Gden2 = G

1 + Z2
x + Z2

y

Sfond1 = − 2
π

arctan E + F +G

E +G− F
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arctanF

arctanG

logC

Spers = S[Z + (Z − ZFM)]

Table 2.2: Formulas of new descriptors and respective point-by-point mappings on a
Bosphorus facial depth map. Zx and Zy are derivatives with respect of x and y, respec-
tively, of the facial surface Z. Complete formulas of E, F, G are given in [46]; C is the
curvedness index theorized by Koenderink and vanDoorn [49].

Database Creation and Goals

The global set of features for each face is given by 171 features: 12-bins histograms of 6
novel geometrical descriptor (72 features); 7-bins histograms of the shape index and the
personal shape index (14); Euclidean distances between landmarks (62); geodesic distances
(22); nose volume (1). The faces in this dataset belong to 62 subjects of the Bosphorus
database [47], chosen in such a way to create a different dataset, composed of 7 facial
expressions each (Ekman’s basic emotions [50]), meaning 434 faces overall.

The methodology proposed in this work investigates the capabilities of features to dis-
criminate between different individuals, so that the inter-person variability (between sub-
jects) is maximized and intra-person variability (between different expressions of the same
subjects) is minimized. Selecting discriminating features for subject identification and
recognition is desirable and has been recently addressed in the 3D context [51]. Specific
methodologies have been developed to improve stability, interpretability, and predictabil-
ity [52], but the advances in the 3D domain are still underway.

Data Analysis

This study proposes a novel feature selection technique. It is based on an original self-
organizing neural network, the Growing Hierarchical EXIN algorithm (GH-EXIN, [53]),
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which builds a hierarchical tree in a divisive way, by adapting its architecture to data. This
clustering technique is integrated in a biclustering framework in which face and descriptor
(feature) clusterings are alternated and controlled by the quality of the bicluster. In our
case, biclustering allows to get meaningful insights of what are the most interesting features
by analyzing the subspaces composed of the clustered faces.

Figure 2.20: Purity and efficiency histograms after the first GH-EXIN

Analysis of the Database

In this work, biclustering is used for estimating the descriptor subspaces in which clusters of
faces (mostly same person) are detected. These subspaces are meaningful for 3D detection.
It can be argued that their intersection is the core for a correct classification. Here, this
intersection is related to the number of times (frequency) a feature is found in each bicluster.
At this aim, a two-step approach is proposed.

Firstly, a hierarchical clustering of the samples (faces) is performed by using GH-EXIN.
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Figure 2.21: GH-EXIN trees of the second step of the biclustering (descriptor clustering)

Then, some leaves are selected according to the criteria of efficiency and purity. They are
useful indexes in clustering analysis and give an estimate about the classification accuracy
of the algorithm. They both compute the number of elements in a cluster belonging to
the same class. While purity compares it with the cardinality of the cluster, efficiency
compares it with the cardinality of the class in the whole dataset. A common issue using
purity and efficiency separately is that they may select clusters composed of too few or too
many elements, respectively. The use of both indexes at the same time avoids a further
check on the cardinality of the clusters. This approach allows the selection of those clusters
whose Voronoi set contains faces belonging mostly to the same person. As shown in fig.
2.20, only leaves whose efficiency and purity indexes are above 0.5 (red line) are chosen.

The Voronoi sets of the neurons of the best leaves have been found by using all the
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descriptors of the faces. In order to find the most meaningful features, the role of samples
and descriptors is reversed and, for each leaf, a hierarchical tree is created by GH-EXIN.
Fig. 2.21 shows two of these neural structures.

The goal of the second step is the clustering of descriptors for each selected leaf (mostly
one person, proportional to its purity). The resulting biclusters identify the best subspace
for the faces of the leaf. Indeed, they are identified by lower values of HCC index (an upper
threshold of 0.1 is adopted).

The descriptors shown in fig. 2.22 are those that are found at least 6 times in the 12
selected leaves (the best ones of the first clustering). These descriptors have, therefore, the
highest discriminative power for their capability in assigning similar values to faces of the
same person, which implies to distinguish persons.

Among all descriptors, this study revealed the discriminative capability of LogC. Its
bins have been selected until 11 times over 12. As shown in table 2.2, the corresponding
figure clearly reveals the intrinsic capability of the descriptor to display the most important
trait of a person. As previously said in the introduction, this descriptor has been recently
introduced in [46] and further research in the future will be done in order to analyze
its importance. Bins of AtanF and AtanG are also selected many times. AtanF is a
descriptor capable to highlight all the critical points of the face, like the nasion, and to
take into account face asymmetries. AtanG, instead, is used to show the curvedness of the
face. In table 2.2, the blue, yellow and red color represent the negative curvedness, the
flat surface and the positive curvedness, respectively. The remaining selected geometrical
descriptors are only a few Euclidean distances. Nevertheless, they are among the most
important in literature, like the distance between the pronasal landmark and the inner
eyebrow landmark.
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Figure 2.22: Histograms of most discriminative descriptors
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Conclusion

This part of the work faces the problem of the discriminative power of the 3D face descrip-
tors in an original way. Indeed, instead of taking into account the classification results, a
neural network is created for solving a biclustering problem, by exploiting the purity and
efficiency results for the choice of the meaningful leaves. In this sense, it can be stated
that the power of the descriptors is integrated in the neural architecture. The consequent
approach of selecting the most frequent features in the biclusters results in the assessment
of the importance of the novel curvedness descriptors and only of a very few Euclidean
distances, in accordance with the analysis in [48], where the low intrinsic dimensionality
of the corresponding manifold is determined.

Feature works in this field will deal with the analysis of the manifold of the novel
descriptor features, and their impact in a new 3D face neural classifier.
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Chapter 3

Supervised Neural Techniques

3.1 Introduction
In the following chapters, the supervised path is enriched with advanced and deeper an-
alyzes. In the first chapter a powerful combination of evolutionary algorithm and neural
techniques are exploited in order to enhance class prediction models in the context of cancer
prognosis. Although powerful and accurate when tested on unseen samples, the neuroe-
volved model is opaque i.e. it is difficult to understand and interpret from a human point
of view. This issue motivates section 3.3, where a very simple neural-based model has been
used to investigate the underlying phenomenon more transparently. The analysis of both
sections were presented in two different works at the 2018 WIRN conference [54] [55].

3.2 Neuroevolution
Evolutionary Algorithms (EA) are powerful metaheuristic procedures able to explore ef-
ficiently the search space of complex (NP-hard or NP-complete) problems finding good
approximate solutions. The hyper-parameter optimization of a neural network is a com-
plex problem because there are no polynomial-time algorithms able to solve it. In the
following, we exploit EA in order to find satisfying approximate solutions to address this
problem.
One of the most widely spread EA is the Genetic Algorithm (GA) [56] [57]. GAs are
metaheuristics inspired by natural selection processes. Broadly speaking, GAs involve the
evolution of a population of candidate solutions towards better ones. A predefined fitness
function evaluates the individual goodness.

3.2.1 Mathematical Model of the Shallow Neural Network
The neural network architecture we used in the following experiments is known as Adaline
[58] [59]. It has 20023 inputs corresponding to the input features (genes) and one output
neuron equipped with a linear output function. The network does not have hidden layers.
During forward propagation, the network computes the dot product between the weight
vector w and the ith sample x(i) plus the bias b. This corresponds to a weighted sum of
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the inputs with bias correction (as in a linear regression model):

z(i) = wTx(i) + b (3.1)
ŷ(i) = f(z(i)) = z(i) (3.2)

where w is the weight vector, b the bias, f the activation function and ŷ(i) the network
output.

Figure 3.1: Shallow neural network architecture.

Objective Function

The squared error function evaluates the performance of the algorithm on an individual
sample:

L(ŷ(i), y(i)) = (y(i) − ŷ(i))2 (3.3)

where y(i) is 1 if the ith sample belongs to class 1 and 0 if it belongs to class 0. In
order to evaluate the global performance of the classifier, we use a cost function with L2
regularization of the weights. L2 regularization is a technique that applies to objective
functions in ill-posed optimization problems [60] [61]. In our case, the proposed neural
model is ill-posed, since the solution is not unique and it changes continuously according
to initial conditions and randomness in the cross-validation procedure. Appending a term
to the cost function that penalizes large weights leads to a reduction of the search space,
and the problem becomes less sensitive to initial conditions:

J(w, b) = 1
m

m∑
i=1
L(ŷ(i), y(i)) + λ

2m ||w||
2
w (3.4)

where λ is the regularization parameter and ||w||2w is the L2 norm of the weight vector. For
big values of λ the regularization is stronger, increasing the penalization related to weights.
As a result, the weights which are not useful for the purpose of minimizing the MSE (i.e.
the first part of the objective function) are shrunk towards zero. On the contrary, for low
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values of λ, the regularization effect is weaker1. In order to provide a quantitative measure
of the network performance, we transform the regression outcomes into class labels by
using a Heaviside step function:

ĉ(i) = d

dŷ
max{0, ŷ(i)} (3.5)

and we compute the accuracy as if it were a classification task.

Parameter Optimization

Since the cost function measures the errors in the current predictions, the problem of the
learning process is equivalent to the minimization of the cost function. Whereas the training
samples are fixed, the cost function depends only on the network’s parameters (weights
and bias). So, the cost function minimization is equivalent to the optimization of the
network parameters. For the following analyses, we use the Adaptive momentum estimation
optimizer (Adam). Adam is an algorithm for first-order gradient-based optimization of
stochastic objective functions, based on adaptive estimates of lower-order moments [62]. It
is a variant of the classical gradient descent algorithm, designed to combine the advantages
of two popular methods: AdaGrad and RMSProp. According to [62] Adam’s advantages
are that its step-sizes are approximately bounded by the learning rate, it does not require
a stationary objective, it works with sparse gradients, and it naturally performs a form of
step size annealing. In the context of feed-forward neural networks, the objective function
to be minimized is the cost function Jt(θ), where t denotes the tth epoch and θ is a label
for w and b. The authors identify with gt the gradient, i.e. the vector of partial derivatives
of Jt, w.r.t w and b evaluated at epoch t (3.6). This estimate is then used to update
two exponential moving averages of the gradient (mt, (3.7)) and the squared gradient (vt,
(3.8)). The two hyper-parameters β1, β2 ∈ [0, 1) control the exponential decay rates of
these moving averages. High values for β1, β2 reduce the time-window size of the moving
averages, resulting in low inertial effects and greater oscillations. On the contrary, low
values of β1, β2 increase the time-window size, providing a stronger smoothing effect. The
first moving average mt is an estimate of the 1st order moment (the mean) of the gradient.
The second one instead is an estimate of the 2nd order moment (the uncentered variance)
of the gradient. Since these moving averages are initialized as vectors of zeros, the moment
estimates are biased towards zero during the initial time-steps (especially when the decay
rates are small, i.e. the βs are close to 1). This issue can be alleviated by the bias
correction shown in (3.9) and (3.10). The ratio of the two moving averages corresponds
to a standardization of the first order moment of the gradient. The network parameters
are finally updated by using the classical formula of gradient descent in (3.11). The term
ε (typically 10−8) ensures that the denominator is always non-zero, avoiding numerical

1The described shallow neural network model is equivalent to a linear regression model with an L2
regularization of the parameters also known as Ridge Regression [61].
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issues.

gt = ∇θJt(θt−1) (3.6)
mt = β1 ·mt−1 + (1− β1) · gt (3.7)
vt = β2 ·mt−1 + (1− β2) · gt � gt (3.8)

m̂t = mt

1− βt1
(3.9)

v̂t = vt
1− βt2

(3.10)

θ = θ − α m̂t√
v̂t + ε

(3.11)

The initial conditions are: m0 = 0, v0 = 0 and t = 0. Typical values for βs are β1 ≈ 0.9 and
β2 = 0.999. Overall, Adam is a very efficient algorithm, requiring very few computations
and memory space, which is crucial in our case, given the size of the data set.

3.2.2 Individuals
As previously outlined, the objective of this work is the optimization of a neural network
model. In particular, the Adaline model presented in the previous section can be optimized
tuning its hyper-parameters. Since each set of hyper-parameters uniquely identifies a neural
network, then each neural network can be represented by its hyper-parameters. For this
reason, an ordered list of hyper-parameters is an efficient representation of an Adaline
model. Having assigned a value to each hyper-parameter from its domain, then the list is
called candidate solution or individual. The set of optimized hyper-parameters is composed
of:

• the learning rate α;

• the learning decay rate r;

• the number of epochs T ;

• the regularization parameter λ.

Figure 3.2: The graphical representation of an individual. It is represented as an ordered
list of “genetic material”. Each “gene” stands for a neural network hyper-parameter.

3.2.3 Generator
The generator is an EA method devoted to the initialization of new individuals. One of
the most common generators is a random generator. In this case each hyper-parameter is
sampled by a uniform distribution within a user defined range. The ranges chosen are:
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• α ∈ [10−1, 10−7]

• r ∈ [10−1, 10−7]

• T ∈ [10, 300]

• λ ∈ [10−1, 10−8]

The uniform distribution guarantees that the initial individuals are sufficiently different
from each other. This biodiversity will help the EA search since there is more genetic
material available for exchanges.

3.2.4 Evaluator
In order to optimize individuals generation by generation, the next population should be
better that the previous one. Therefore, after the generation process, each individual is
evaluated in order to estimate the goodness of its genetic material. To do this, an Adaline
is built for each candidate solution, i.e. it is set up by using the corresponding hyper-
parameters. The learning process is validated through a 10-fold cross validation. At the
end of the training process, the average validation accuracy is considered as an estimate of
the individual fitness.

3.2.5 Selector
After the evaluation process, the GA selects a random set of individuals from the population
and selects a subset of them through a fitness-based criterion. It ranks the randomly
selected individuals in ascending order according to their fitness and it picks out some of
the best ones. These small sets of individuals are then used to produce the next generation.

3.2.6 Variator
In order to modify and (hopefully) improve the current population, the selected solutions
should be slightly modified. At first, they go through a crossover (or recombination) process
in which pairs of individuals mix their genetic material to produce two new child solutions.

Figure 3.3: During the crossover process, two individuals mix their genetic material in
order to produce two child solutions.
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Secondly, the child solutions randomly mutate one of their components (hyperparame-
ters).

Figure 3.4: The figure shows the mutation process. The individual randomly mutates one
of its “genes”.

3.2.7 Replacer
After having generated new candidate solutions, the replacer method selects the best half
of old population individuals and the best half of offspring in order to select the candidate
solution of the next generation.

3.2.8 Terminator
For the purpose of this work, the entire process is repeated for a certain amount of gen-
erations exploring the hyper-parameter space and (hopefully) providing better and better
configurations.

Algorithm 2 Genetic Algorithm
1: Input: DNA microarray and cancer growth targets
2: Generate random individuals
3: for each generation do
4: for each individual do
5: Evaluate the individual through cross-validation
6: end for
7: Select next generation parents
8: Breed random parents
9: Mutate child individuals

10: Replace old individuals with the new generated ones
11: go to next generation
12: end for
13: Output: best individual

3.2.9 Comparison of the Results
The GA set up includes at least the choice of the population size, the maximum amount
of generations and the mutation rate. In this work the following choices are made:
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• population size: 100

• number of generations: 100

• mutation rate: 20%

In the end the GA provides the list of the candidate solutions of the last (and hopefully the
best) generation. The best individual is picked up and the corresponding neural network
is evaluated by using an unseen test set. The experiment is repeated 10 times in a 10-fold
cross-validation setting. The outcomes are then compared with state-of-the-arts algorithms
[63] in Fig. 3.5.

Figure 3.5: The figure shows the accuracy over a 10-fold cross-validation of several classi-
fiers. The baseline accuracy refers to the performance of the classifier for random generated
labels.

The proposed algorithm outperformed state-of-the-art techniques. However, linear
based techniques, such as Ridge, show great performances, very close to the evolutionary
approach. Nonetheless, although powerful and accurate, these algorithms are excessively
complex (they are composed of thousands of parameters), resulting in opaque models, dif-
ficult to analyze and interpret from a human point of view. This consideration lead us
towards a simpler and more transparent approach described in the following section.
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3.3 Transparent Neural Based Model for Feature Se-
lection

In this section, we propose a supervised feature selection process based on the recurrent
exploitation of the Adaline model described in the previous section. In order to assess the
goodness of the proposed approach, we perform a series of cross-validated training of the
Adaline model. In particular, at each iteration the neural network is trained 30 times,
each of which using a 10-fold cross validation with random folds. The neural network
hyperparameters are heuristically fixed to:

λ = 1
#samples (3.12)

α = 1
λ+ L+ 1 (3.13)

according to [64] [65], where L is the maximum sum of the squares over all samples. Since
the objective function to minimize contains the L2 norm of the weights (see equation 3.4),
weights who are not fundamental for the classification task are shrunk towards zero by the
optimizer [61]. Fig. 3.6 and 3.7 show respectively the histogram and the notched box plot
of the weights after the training process in the first iteration. It is important to notice
that most of the weights are set to zero or are very close to zero. This means that their
contribution to the weighted sum in equation (3.1) is almost negligible. Exploiting this
result, for each fold we take note of the input features (i.e. the genes) which correspond to
weights having an absolute value wj after a training process:

|wj | > 2σw (3.14)

where σw is the variance of the weight distribution (see fig. 3.7). At the end of the 30
iterations, we found that some input features are chosen more frequently than others.

Figure 3.6: An example of histogram of the neural network weights after the first training
iteration.
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Figure 3.7: An example of notched box plot of the neural network weights after the first
training iteration.

Biologically speaking, this result suggests that the information contained in the DNA-
microarray related to these genes may be relevant in understanding the cancer resistance to
drugs. In order to investigate more deeply the biological phenomenon, we repeat the same
experiments, modifying the database by keeping only the most frequently selected features,
i.e. those which are selected at least half of the times after the 300 training processes. So,
iteration by iteration we gradually reduce the number of input features used to train the
neural network. Fig. 3.8 shows for each iteration the number of features used to train
the neural network and the corresponding 10-fold cross validation accuracy. The blue bars
correspond to the feature selection technique described above, while the violet ones to the
ANOVA-F statistic method2. Notice that, initially, by using the original data set, the cross-
validation accuracy is around 0.7. Such result may have two main explanations. First, the
classes are not perfectly balanced, since 66% of samples belong to class 0. Secondly, the
high dimensionality of the data may generate a slight overfitting. However, by reducing
the input features using the method previously, the cross-validation accuracy raises above
0.9, decreasing progressively as the number of features are further diminished.

It is important to notice that the neural network used as classifier is linear, i.e. geomet-
rically speaking it delimits the input space with a hyperplane in order to classify data. This
means that the proposed approach provides better results if the underlying phenomenon
represented by the input data set is also linear. The results in fig. 3.8 show how the shal-
low neural network classifier delivers better results in the 737-dimensional space identified
by the proposed feature extraction technique, than in the original 20023-dimensional data
set. This may suggest that the underlying biological phenomenon at the DNA-microarray
level is more linear in the reduced space than in the original one. Practically speaking, a
linear problem is much easier to understand and tackle because the superposition principle

2The corresponding standard deviation is always in the order of few percentage decimals and it is not
directly displayed since it is not relevant for the purpose of the discussion. However, you can reproduce
the experiment by using our code if you need more precision.
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Figure 3.8: Histogram displaying the 10-fold cross validation accuracy at each iteration of
the experiment.

holds i.e. the net response caused by two or more stimuli is the sum of the responses that
would have been caused by each stimulus individually. Therefore, from a biological point
of view, these results may suggest that the above experiment generates sub-spaces of the
input features where the cancer resistance to treatments can be studied more easily. In
particular, in the 737-dimensional space the biological phenomenon is easier in the sense
that it is more linear than in the original space; while in the 90 or 20-dimensional spaces it
is easier because, while the classification accuracy decreases, the limited number of genes
involved can be more thoroughly analyzed by human experts.
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Chapter 1

Critical Analysis

In this work we presented a summary of the analyzes performed on the largest CRC
xenograft data set available in the academic world. On one hand, these analyzes are
relevant because the outcomes could be used to instruct further biological and clinical
research. On the other hand, the issues encountered in approaching high-dimensional data
has led to the development of novel techniques, which may be exploited in different fields
other than biology.

The major machine learning novelty is represented by the creation of GH-EXIN, a
new neural-based technique for hierarchical clustering. The comparison with DGOST and
GHNG techniques shows how GH-EXIN is typically more efficient, as it reaches similar
performances in terms of peak-signal to noise ratio (PSNR) by using fewer neurons. More-
over, qualitative evaluation of the resulting topology shows how GH-EXIN is much more
elegant in connecting neurons, providing superior manifold representations. Finally, the
restricted number of user-dependent parameters makes the tuning process of GH-EXIN
very easy.

The application of the biclustering framework integrated with GH-EXIN on the biolog-
ical dataset revealed some interesting gene correlation patterns. These results have been
submitted to the attention of IRCC doctors, who are currently analyzing them for possible
scientific implications.

Other minor novelties have been introduced within both the unsupervised path and the
supervised one. They always enhanced effectiveness levels compared to current state-of-art
techniques.

The results above are promising and highlight the potential for future work. From the
point of view of the biological advances, the outcomes of both the unsupervised and the
supervised path are promising yet opaque: while the models can be used effectively, the
results are difficult to interpret from a human point of view. As for the unsupervised
direction of work, the GH-EXIN neural network resulted to be effective and easy to use as
aforementioned; results provided by the biclustering framework, instead, are rather difficult
to interpret without a statistical knowledge, since biclusters need several additional tools to
be correctly evaluated. As for the supervised direction, the major advances with respect to
previous analyses are achieved by exploiting the shallow neural network model. Indeed, the
simplicity of such model makes it easier to handle and interpret. On limiting the number
of features used, however, the accuracy drops significantly.
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Moreover, major limitations of our work directly derive from the analyzed data. On
the one hand, the analyzed data represent an estimate of the amount of times each gene
is transcribed in a tumor xenograft. However, gene replication does not always result in
protein generation. Indeed, this kind of data may not represent cell behaviour correctly.
On the other hand, the restricted amount of samples was the most serious issue, since
machine learning reliability is directly related to the amount of data provided.

Hence, within the biological domain, future developments will involve the use of up-
to-date data (e.g. representing proteins instead of gene expressions) and the integration
with other sources of data, such as image samples. Besides, from a machine learning point
of view, models easier to interpret may be developed in order to provide more reliable
and human-understandable outcomes. Future research in this field will consist in devising
new algorithms overcoming the intrinsic weaknesses of machine learning, above all under-
standability. To this purpose, novel algorithms which integrate classic symbolic artificial
intelligence with machine learning techniques seem to be very promising. Further details
are given in the next chapter. Both authors will carry on these researches during the
doctorate.
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Chapter 2

Future Works: Towards
Artificial General Intelligence

Strictly concerning machine learning, future works will consist first of an analysis of current
state of art of Machine Learning (ML), in order to clearly understand whether it is possible
to enrich current techniques capabilities.

A second part of the future researches, instead, will consist in devising new AI algo-
rithms that may go towards an Artificial General Intelligence (AGI). This part will be
considered either in case machine learning issues result to be unsolvable, or not, as it
seems to be promising per se. A good starting point "may be to integrate deep learning,
which excels at perceptual classification, with symbolic systems, which excel at inference
and abstraction. One might think such a potential merger on analogy to the brain; per-
ceptual input systems, like primary sensory cortex, seem to do something like what deep
learning does, but there are other areas, like Broca’s area and prefrontal cortex, that seem
to operate at much higher level of abstraction" [16]

Interestingly, symbolic systems and Machine Learning in computer science somehow
correspond in philosophy to deductive and inductive reasoning respectively. In fact, de-
ductive reasoning is a process that tries to reach a certain conclusion by applying general
rules, narrowing the space of possible conclusions until only one is left. Classic logic and
expert systems are strongly based on these principles. Inductive reasoning, instead, is the
process in which starting from observations a possible conclusion is derived. The conclu-
sion anyway cannot be considered as undoubtedly truth. All the ML techniques are based
on these assumptions.

Summing up, a long-standing controversy exists in literature regarding the role of in-
duction and deduction in reasoning. Nevertheless, none would state that human reasoning
is based on only one of them and neither we should suppose it in AI: combining several
approaches is the only way to reach AGI.

At the same time, future researches will also study developmental psychology to un-
derstand how reasoning processes take place in human brain in order to get useful hints
about what are the best ways of replicating them. It is also possible that completely new
paradigm, with little in common with existing ones, can be derived from these observations
as happened with neural networks.
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