
POLITECNICO DI TORINO
Master degree course in Mechatronic Engineering

Master Degree Thesis

Risk-aware path planning and
replanning algorithm for UAVs

Supervisors
prof. Alessandro Rizzo
dott. Stefano Primatesta

Candidates
Luigi Mazzara

Anno accademico 2017-2018

This work is subject to the Creative Commons Licence

Abstract

During the last decades, the Unmanned Aerial Systems (UAS) are gaining mo-
mentum, and they are widely used in various types of operations bringing enormous
benefits. Nonetheless allowing such operations requires great awareness but even
rising worries, the people safety is in fact one of the main obstacles to be evaluated
before any operations could start because of their high population density on work-
ing environments. Therefore, the aim of the project conducts to the creation of a
structured low-altitude airspace able to achieve autonomous operations of low-cost
unmanned vehicles, while maintaining the safety for people on the ground.
In this context, a new research project at TIM Joint Open Lab in Politecnico di
Torino began to analyze the potentiality of cloud robotics, in order to build a com-
pletely new Traffic Manager able to handle the complexity of this environment,
integrate drones efficiently into air traffic and finally ensuring safety for people on
ground. So, after studying the state of the art of the involved technologies, we
propose and developed a Cloud-Based UTM, called CBUTM, to accomplish the
project’s goal.
Developing a such kind of manager involves several category of knowledge, so the
working group was divided into smaller ones, each one with different aspects to treat.
My thesis, especially, will look to the research of the best path planning algorithm
capable to be risk-awared and to execute suitable re-planning.

After deep examination of the state of the art, taking to account our precise condition
of risk-aware and dynamic map, two variations of the Rapidly-exploring Random
Trees (RRT* and RRTX) have been designated to generate a safe flight mission in
order to minimize our specific cost function. Going deeper, the proposed approach
dwells on two distinct stages.
At first, an off-line path planning is accomplished; it computes the optimal global
path in a static environment without time constraints depending only on the risk-
map, in which cells describe a specific location and have been associated with a
risk-cost. Afterwards, there is an online path planning, in which, considering a dy-
namic risk-map, the off-line path is fixed and fitted to the new map, always taking
to account to minimize the cost function. Ergo, a quick response constitutes a fun-
damental design parameter because the system needs to revise the pathway in very

iii

short time. The implementation is based on ROS (Robot Operating System), that
played a key role in this project. Simulation results are still exposing, demonstrat-
ing both the validity of our approach and some design limitations, especially in the
on-line part, while supporting further developments.

iv

Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Context Definition and Thesis Contributions 2
1.2 State of Art . 4

1.2.1 Deterministic Algorithms . 5
1.2.2 Probabilistic Algorithms . 9

1.3 Thesis Structure . 16

2 Basics and Requirements 17
2.1 ROS . 18
2.2 Cloud Robotics . 21
2.3 Risk . 22

2.3.1 Unmanned Mission’s risk . 22
2.4 CBUTM . 29

2.4.1 Overview . 29

3 Risk-Aware Path Planning 35
3.1 Off-line Planning . 36

3.1.1 Problem Formulation . 36
3.1.2 RRT* Algorithm . 37

3.2 On-line Planning . 43
3.2.1 Problem Formulation . 43
3.2.2 Dynamic RRT* Algorithm . 44
3.2.3 RRTX Algorithm . 47

4 Simulations and Results 55
4.1 Implementations . 55
4.2 Results . 58

4.2.1 Off-line Path Planning - RRT* vs RRTX 58

v

4.2.2 On-line Path Planning - RRT* vs RRTX 61
4.3 Simulation . 78

4.3.1 Environment Configuration 78
4.3.2 RRTX simulation . 82

5 Conclusions and Future Works 87

Bibliography 89

vi

List of Tables

1.1 Pros and cons of common Deterministic algorithms 8
1.2 Pros and cons of common Probabilistic algorithms 15
2.1 Sheltering Factor definition . 28
3.1 Data collection referred to the expansion of the RRT*’s graph 43
4.1 Summary of employed parameters . 57
4.2 Data collection referred to the RRT* procedures in case 1 64
4.3 Data collection referred to the RRTX procedures in case 1 65
4.4 Data collection referred to the RRT* procedures in case 2 69
4.5 Data collection referred to the RRTX procedures in case 2 71
4.6 Data collection referred to the RRT* procedures in case 3 74
4.7 Data collection referred to the RRTX procedures in case 3 77
4.8 Specifications of the aircraft . 83
4.9 Parameters setting of the simulation 83

vii

List of Figures

1.1 Graphical representation at top level of CBUTM’s working principle . 3
2.1 Node and topics architecture of a ROS environment 20
2.2 Risk-map construction and path planning flow-chart 24
2.3 P (fatality|exposure) evolution . 27
2.4 Graphical representation of CBUTM working principle 30
2.5 CBUTM operational flow chart . 34
3.1 Main architecture of the risk-aware path planning method 35
3.2 Comparison of the RRT and RRT* algorithms 38
3.3 Particular of the Graph behavior in RRT* 39
3.4 Example of the expansion of the RRT* graph 42
3.5 Particular of the Graph behavior in RRTX 48
4.1 Example of Grid Map . 55
4.2 Hierarchy of the high level components of OMPL 56
4.3 Comparison of the RRT* and the RRTX in static environment 59
4.4 Comparison of the RRT* and the RRTX in static environment 60
4.5 Maps used in the case 1 . 62
4.6 Off-line solution paths for RRT* in case 1 63
4.7 On-line solution paths for RRT* in case 1 63
4.8 Off-line and on-line solution path for RRTX in case 1 64
4.9 Updating time vs Evaluated states 66
4.10 Maps used in the case 2 . 67
4.11 Off-line solution paths for RRT* in case 2 68
4.12 On-line solution paths for RRT* in case 2 68
4.13 Detail of solution path in RRT* . 69
4.14 Off-line and on-line solution path for RRTX in case 2 70
4.15 Maps used in the case 3 . 72
4.16 Off-line solution path for RRT* in case 3 73
4.17 On-line solution path for RRT* in case 3 73
4.18 Detail on the updating time about RRT* procedure 75
4.19 Off-line and on-line solution path for RRTX in case 3 76
4.20 Overview of the Unmanned Capture the Flag architecture 78
4.21 Gazebo Application Programming Interface 79

viii

4.22 Initial conditions of the drone . 80
4.23 Different visualization of map used for simulation 82
4.24 Drone’s take-off . 84
4.25 Drone’s re-planning procedure and obstacle avoiding 85

ix

Acronyms

CBUTM Cloud-Based UAVs Traffic Management

CCS Cloud Control Station

MM Map Manager

MPC Model Predictive Control

NCS Networked Control System

NFA National Flight Authorities

OMPL Open Motion Planning Library

PP Path Planner

PTP Predictive Trajectory Planner

RHC Receding Horizon Control

ROS Robot Operating System

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

UCTF Unmanned Capture the Flag

UTM UAS Traffic Management

xi

Chapter 1

Introduction

During last two decades, the usage of Unmanned Aerial Vehicles (also known
as Drones) has reached continuous growth in different and unexpected applications.
Starting from military field and following the rapid technological progress recorded
during the 2000s, thanks to the enormous progress made on remote control, the
UAVs have begun to be used also in the civil field, as in surveillance, in aerofo-
togrammetry, in logistics, in data collection, in the control of power lines and oil
pipelines, in retrieving, to cite a few.

Definition 1.1. An Unmanned Aerial Vehicle (UAV) is a powered aerial vehicle
that does not carry a human operator, uses aerodynamic forces to provide vehicle
lift, can fly autonomously or be piloted remotely, can be expendable or recoverable,
and can carry a lethal or nonlethal payload[8].

This kind of innovation, indeed, is certainly not only flanked by technological evo-
lutions. National and international institutions are working on regulation of these
systems and their use but, at the same time, their attempts represent a brake on
development too.
Fittingly, risks for privacy and safety of people are just two of several issues raised
by the development of these kind of systems but the real problem is that the growth
of their usage has not been accompanied by a proper adaptation of laws and rules,
ending in a lack of coherent legislation and, thus, in imposition of many limitations.
Despite of some concessions, the common feeling tells about so many obstacles to
overcome in order to fly a drone, with the legislative apparatus being as usual too
slow in adapting to this new technology.

1

1 – Introduction

Nevertheless, without going far into the analysis of current administrative restric-
tions, various companies and universities are already involved to manage the condi-
tion of risk for safety of people in better way thanks to the growth and the consoli-
dation of internet technology, like the Internet of Things (IoT) and Cloud Robotics.

In particular, TIM, a telecommunication service provider company, has financed a
research project in the Joint Open Lab at Politecnico of Turin, aimed to the devel-
opment of a cloud-based traffic management system for the UAVs.
Taking advantage of the potential offered by cloud computing and next-generation
of mobile networks (5G), it is possible to provide an autonomous framework to
support commercial fully-autonomous UAS operations in a certain airspace. At
the same time, this possibility has double useful advantages: it offers a unified ap-
proach to risk management that these missions involve and, consequently, it can
guarantee a definite level of safety for people on the ground. A framework, able to
access unmanned missions and to be the tool to control them, certainly requires a
specified computing power, a big amount of available data and the ability, through
Cloud Computing and 5G facilities, to communicate with vehicles, as Beyond Visual
Line of Sight (BVLOS). Moreover, taking into account the huge range of their new
commercial applications, supplying the framework with a coherent metric for risk
assessment brings customers and companies to monitor and systematically settle, or
at least effect change on, the execution of these missions.

1.1 Context Definition and Thesis Contributions
As defined above, the safety of people on ground is the main goal of the

overall research project. A fully autonomous flight for UAS in a urban environment
system must guarantee the safety standards imposed by local flight authorities and
minimize, or at least manage, circumstances of crash.
For these reasons, the target of the task has been to design a Cloud-Based UAVs
Traffic Management (or CBUTM) framework system in order to handle collisions or
internal failures and deal with registration, identification and monitoring issues.

The overall design has been developed in ROS, the Robot Operating System, which
is the most popular open source robotics middleware (i.e. collection of software
frameworks for robot software development). It basically works through objects,
known as nodes, which provide services and exchange messages between each other
thanks to interactions called topics. Its structure allows each single node to run
specific tasks simultaneously and also separately from other nodes, if it’s needed,
for achieving a robust and efficient network.

2

1.1 – Context Definition and Thesis Contributions

Figure 1.1: Graphical representation at top level of CBUTM’s working principle

A general overview of the system is shown in 1.1, the main entities of the network
are:

• Cloud Control Station, CCS

• Map Manager, MM

• Path Planner, PP

• Predictive Trajectory Planner, PTP

All these entities, defined as ROS nodes, work as different team in the same environ-
ment. First of all, there is a well structured risk assessment, developed in the Map
Manager area, realized to generating a standardized metric to evaluate the risk for
UAVs’ missions. Thanks to this estimation, a maximum acceptable level of failures-
per-hour and relative thresholds are settled. Thus, the risk-map is generated, on
which path planning can be performed. Combined with the Predictive Trajectory
Planner, in the Path Planning area different algorithms are studied to find the best
fitting with relative context conditions. The creation of feasible waypoints-based
paths rested on informations taken from the risk-map is the aim of this area.
Finally, the CBUTM uses a distributed Cloud-based Control system based on a re-
ceding horizon technique, in order to figure out the control of drone’s network, it
enters in the final Cloud Control Station area. It’s the core of network, in which
flying drones informations are collected, tracked and made available to handle the

3

1 – Introduction

traffic between single nodes.

Just as CBUTM works through supports between its various parts, so, in reality,
the overall project has been divided into sub-groups, each one related to an above-
mentioned area, acting in parallel. The global design of the architecture has been
carried out by the whole team, aware that cooperation would have led us to improve
the development of the project, to get better calls and to reach overall knowledge
and not only about a single part.
Therefore, the whole work has been conducted by 4 colleagues within the JOL, in-
deed, several references to their papers have been inserted in my work [33],[48],[41]
and my own work is focused on the development and the integration of Path Plan-
ning Algorithms.

1.2 State of Art

Informally speaking, given a robot with a description of its dynamics, of the
environment, an initial state, and a set of goal states, the motion planning problem
aims to define a sequence of control inputs so to drive the robot from its initial state
to one of the goal states while obeying the rules of the environment. An algorithm to
address this problem is said to be complete if it terminates in finite time, returning a
valid solution if one exists, and failure otherwise. In order to generate this movement,
during the years, many algorithms, based on different theoretical notions, have been
explained.

In this section, we studied pros and cons of contemporary algorithms selecting the
best match for our case, to develop and fit it to our case in order to take into account
the risk for the population using a proper risk-map based on specific risk-costs. Risk
costs in the risk-map are defined considering both static and dynamic factors. As a
consequence, the risk-map is a dynamic map.

Planning process for UAS is very complex since there are more paradigms to consider
than for a tradition manned aircraft, like, for example, lost link routes, sensors plan,
the need to avoid the over flight of populated areas and so on.
Knowing this wide volume and analyzing respective advantages and drawbacks,
main relevance is given to the algorithm’s choice to find the best one that could
get a feasible and optimal solution for each particular case. Classification of path
planning algorithms can be made through these 2 principal categories:

Deterministic Algorithms It formally computes a mathematical function that
has a unique value for any input in the domain; consequently, the algorithm
is a process that produces this particular value as output. It is very simple to
implement and the space analyzed does not have a huge size to require a very

4

1.2 – State of Art

complex algorithm to calculate the path.

Probabilistic Algorithms On the contrary, it uses uniformly random bits as an
auxiliary input to guide its behavior, in the hope of achieving good perfor-
mance in the average case over all possible choices of random bits. Probabilistic
path planners provide solutions to problems involving vast, high-dimensional
configuration spaces that would be intractable using deterministic approaches
[47]. The downside of these methods is that they are only probabilistically
complete, i.e., the probability of finding a solution to the planning problem
when one exists tends to 1 as the execution time tends to infinity. This means
that, if no solution exists, the algorithm will run indefinitely.

1.2.1 Deterministic Algorithms

Dijkstra’s Algorithm The first algorithm was developed in 1959 by E. Dijkstra
[16], it is used for calculating the shortest path from one node to all other nodes
in non-negative weights graph and it’s considered a graph search algorithm
since, systematically, follows the edges of the graph to visit or discover its
vertices in order to find the goal node through a minimum cost path. The
basic idea is to divide all of the nodes in the weighted graph into two groups:
the first one includes the nodes with the shortest path determined, while the
second one includes nodes not already explored, then, the shortest path is not
determined. Gradually adding the nodes of the second group into first group
one by one, according to the order of the increasing length of path, until all
the vertices are added to the first group, algorithm is ended.

A* Algorithm Taking advantage of Dijkstra’s algorithm, in 1968, Hart et al. [23]
evolved the A* algorithm. As the previous algorithm, the cost of each node is
computed considering the motion cost of reaching its position, plus the heuris-
tic node, i.e. the estimated cost to reach the goal node. The new expanding
node is, then, chosen as the node with the minimum cost, reducing hence the
number of processed cells and finding an optimal path as long as the heuris-
tic is admissible. A drawback of A* is that, on a large map, thousands of
states might be stored, which can require a lot of memory and cause huge
computation time.

D* Algorithm Several modification of A* algorithm have been proposed during
this period, one of these is the Dynamic A*, or D* algorithm [49], developed
by Stentz in 1994. The algorithm behaves like A* expect that the arc costs
can change as the algorithm runs, indeed it’s a sensor-based algorithm that
changes its edge’s weights to form a temporal map, since it is able to work in
changing environments and to make re-planning in real time.
In contrast to A*, which follows the path from start to finish, D* begins by

5

1 – Introduction

searching backwards from the goal node. Each expanded node has a back-
pointer which refers to the next node leading to the target, and each node
knows the exact cost to the target. When the start node is the next node to
be expanded, the algorithm is done, and the path to the goal can be found
by simply following the back-pointers. Thanks to this feature, when a robot
observes new map information, such as an unknown obstacles, the algorithm
adds the information to its map and, if necessary, re-plans a new shortest path
from its current coordinates to the given goal coordinates.

Focussed D and D* Lite Algorithms Stentz, year later, released a modification
called Focussed D* algorithm [50]; here waves from a new obstacle propagates
only through the cells which are significant and important for the planned
path. This is achieved by penalization of heuristic values by the distance of
the cell from actual position of the robot. With this consideration, robot’s
sensors perceive new obstacles only in small distances, adding in this way
savings in computational performance and efficiency.
Another version of the previous D* is the D* Lite [38], it’s not based on the
original D* but implements the same behavior. Depending on cases, it’s good
as or better than the Focused D*, but in general it’s simpler to understand
and can be implemented in fewer lines of code.

Theta* Algorithm Coming back to extensions of the A* algorithm, Nash et al.
developed the Theta* algorithm [36].The extension resides in the test if the
neighborhood cells of actually tested cell have direct visibility to the previously
tested cell. If yes, the actually tested cell is ignored in fact, so in this way only
these cells are found which the robot has to pass and in which the robots
orientation changes.

Phi* and Incremental Phi* Algorithms Evolutions of the previous algorithm
can represented by the Phi* algorithm, that can be used only with metric
C-space and records also a local predecessor of each evaluated cell, and by
the Incremental Phi* algorithm, which is capable to find new path during
the new obstacle occurrence without the need of the re-planning on the whole
environment saving the computation time, unfortunately, only in cases of small
map [17]. Both Theta*, Phi* and Incremental Phi* don’t present, hence, for
their features, the limitation of diagonal movement of the robot, as for A*

or D*; on the contrary, they allow the turns in the path to have any angle,
increasing the efficiency of the path by doing so.

RA* Algorithm The last but not the least is an algorithm created by Guglieri
et al. [21], called RA* algorithm, which is able to minimize the probability
of occurring in catastrophic failures. It presents the classic A* cost function
increased by an additional term that depends on the density distribution of

6

1.2 – State of Art

the overflown area and takes into account a risk analysis evaluation computed
through normative frameworks.

Floyd-Warshall Another deterministic algorithm of importance for path planning
is the Floyd-Warshall algorithm, developed in 1962 [19]. It’s a shortest path
of multi-source algorithm which can solve the shortest path between any two
points in weights graph which can be a negative weights graph. The core of
Floyd algorithm is to check whether there is a vertex, which makes the distance
from u to w and then to v, is shorter than the known path of vertices u and
v. If there exist the vertex, then it updates the distance of u and v with the
distance from u to w and then to v ; otherwise, the distance of u and v keep
its original value. Compared to Dijkstra’s algorithm it’s much easier to code
and all pairs of shortest paths are solved, but, on the other hand, it’s a little
bit harder to understand and its run time is higher than Dijkstra’s [24].

Artificial Potential Field Algorithm Several developments are made on another
deterministic algorithm called Artificial potential field (APF), firstly by Khalib
[29] and then by Rimon et al. [46]. It’s part of reactive algorithms, indeed the
concept of attraction and repulsion are employed to approach to the goal and
evade obstacles, respectively. More specifically, the method assigns a force field
value to each location in the environment, which is a combination of an attrac-
tive force that increases towards the goal, and a repulsive force that increases
towards the obstacles. Each obstacle is modeled with a built-in repulsive force
that prevents the robot from bumping into it. These algorithms are set up
to build a cognitive model for path finding from sensory information with-
out prior acquaintance with the environment [22]. It has the characteristic of
low computational complexity and consequently of a good speed of execution,
but, however, it’s not optimal (it’s not guaranteed that best solution is found)
nor complete (often it generates paths that get trapped on local minima of
the potential function). For these reasons there are many studies that try to
implement other methods to find out these problems.

7

1 – Introduction

Methods Advantages Disadvantages

A*
It ensures shortest paths, find-
ing an optimal path, thanks to
the heuristic information

Memory and computation
time increases exponentially
with the complexity of the
map

D*

It behaves like A*, but is able
to work in changing environ-
ments and to make re-planning
in real time

Reaction time to obstacle ap-
pearance increases exponen-
tially with the complexity of
the map

Theta*

Better path efficiency than A*,
since it doesn’t present the lim-
itation of diagonal movement
of the robot

Very slow computational speed
increased with the complexity
of the map

Incremental Phi*
Better path efficiency thanks
to the any-angle movement; it
can perform also a fast re-
planning of map’s portions

Very slow computational speed
increased with the complexity
of the map

Floyd
Much easier to code than Dijk-
stra’s and all pairs of shortest
paths are solved

A little bit harder to under-
stand and its run time is higher
than Dijkstra’s

APF
Low computational complex-
ity gives, consequently, a good
speed of execution

Its solution is not optimal nor
complete, so it often generates
paths that get trapped on local
minima of potential function

Table 1.1: Pros and cons of common Deterministic algorithms

8

1.2 – State of Art

1.2.2 Probabilistic Algorithms

Instead of using an explicit representation of the environment, probabilistic al-
gorithms rely on a collision checking module, providing information about feasibility
of candidate trajectories, and connect a set of points sampled from the obstacle-free
space in order to build a graph of feasible trajectories. Even though these algorithms
are often not complete, they provide probabilistic completeness, i.e., it guarantees
that the probability that the planner fails to return a solution, if one exists, decays
to zero as the number of samples approaches infinity.

PRM Algorithm One of the main and early algorithms of this category is the
Probabilistic Roadmap, also called PRM, created by Kavraki et al. [27] in
1996. In its basic version, it consists of a pre-processing phase, in which
a roadmap, which represents a rich set of collision-free trajectories, is con-
structed by attempting connections among n randomly-sampled points, and
then a query phase, in which shortest paths connecting initial and final condi-
tions through the roadmap are sought. The PRM algorithm has been reported
to perform well in high-dimensional state spaces. Even though multiple-query
methods are valuable in highly structured environments, most on-line plan-
ning problems do not require multiple queries, since, for instance, the robot
moves from one environment to another, or the environment is not known a
priori. Moreover, in some applications, computing a roadmap a priori may be
computationally challenging or even infeasible.

PRM* Algorithm In order to address the limitations of sampling-based path plan-
ning algorithms available in the literature, new algorithms are proposed and
proven to be probabilistically complete, asymptotically optimal, and com-
putationally efficient [26]. Of these, PRM*, a variant of PRM, is a batch
variable-radius PRM, applicable to multiple-query problems, in which the ra-
dius is scaled with the number of samples in a way that provably ensures both
asymptotic optimality and computational efficiency.

RRG Algorithm Rapidly-exploring random graphs, called also RRG, advanced
from the RRT algorithm explained later, is an incremental algorithm that
builds a connected roadmap, providing similar performance to PRM* in a
single-query setting, and in an anytime fashion; i.e., a first solution is provided
quickly, and monotonically improved if more computation time is available.
Furthermore, these last two algorithms along with RRT*, which will be shown
later, have been modified [25] in order to incorporate kinematic and dynamic
constraints to the solution, creating a more feasible one.

9

1 – Introduction

Bug and Modified Bug Algorithms Another important probabilistic algorithm
is the Bug algorithm, developed completely by Rajko et al. [45] in 2001. The
standard algorithm consists in generating a direct path from the start position
to the goal while surrounding the obstacles always around the same direction
and it is very useful when finding a secure path to the goal is more important
than arriving quickly. Unfortunately, this algorithm alone cannot yield opti-
mal shortest paths, thus it requires modifications.
One such modification, called Modified Bug algorithm [22], consists in gener-
ating a tangent to the obstacle from the starting position and then continue
with the normal bug algorithm. To select the side, which is most likely to be
the shortest one, the area to each side of the line that defines the direct path
from the starting position to the goal is computed. Although it is possible that
in some situations the smallest area does not imply the path is the shortest
one, computing the area is faster than calculating the perimeter. Despite of
some limitations, it shows a good speed of execution and turns out a suitable
method for dynamic path planning applications and should be a good choice
for many applications requiring fast path plan updates.

Ant Colony Optimization Algorithm In probabilistic algorithms, it can be con-
sidered also a part of the evolutionary algorithms, which use mechanisms in-
spired by biological evolution [54] and solve the optimization problem through
a certain fitness function that determines the quality of the solution. One of
this algorithms is called Ant colony optimization algorithm (ACO), developed
firstly by Maniezzo in 1992 [34], that searches for optimal path in the graph
based on behavior of ants seeking a path between their colony and source of
food. At first, the ants wander randomly, then, when an ant finds a source of
food, it walks back to the colony leaving "markers" (pheromones) that show
the path has food. When other ants come across the markers, they are likely
to follow the path with a certain probability. If they do, successively they pop-
ulate the path with their own markers as they bring the food back. As more
ants find the path, it gets stronger and because the ants drop pheromones
every time they bring food, shorter paths are more likely to be stronger, hence
optimizing the "solution”.
As advantages, it has positive feedback accounts for rapid discovery of good
solutions and can be used in dynamic applications. On the contrary, as draw-
backs, its theoretical analysis is difficult, time to converge is uncertain, even
if the convergence is guaranteed, and local minima have reached quite easily.

RRT Algorithm One of the most powerful, or even the most influential with its
extensions, is the Rapidly-exploring random trees (or RRT), developed by
LaValle [31] in 1998. It’s primarily aimed at single-query applications, its
trees are constructed incrementally from samples drawn randomly from the

10

1.2 – State of Art

search space and are inherently biased to grow towards large unsearched areas
of the problem.
In its basic form, as each sample is drawn, a connection is attempted between
it and the nearest state in the tree. If the connection is feasible, that is when
it obeys any constraints, the new state is added to the tree. Starting with
a graph that includes the initial state as its single vertex and no edges, the
iteration is stopped as soon as the tree contains a node in the goal region.
Several can be advantages of this approach, also compared to some of other
algorithms presented before. It’s relative simple and very easy to implement,
probabilistically complete under very general conditions, it always remains
connected, even though the number of edges is minimal and the entire path
planning can be constructed without requiring the ability to steer the system
between 2 prescribed states, which greatly broadens the applicability of RRTs.
As the PRM, it performs much better and is faster than some deterministic
algorithm, like A*, there is still an exponential growth, in the work load when
the planning problem become more complex [12].
This approach ensures that the planner does not get stuck in small local min-
ima (as Ant colony or APF), which in turn makes the global planning much
easier. Though, there is a downside: this procedure causes different and un-
fortunate computationally expensive solution. It means that the algorithm
presents long tail in computation time distribution, since it has to save the
entire tree, which increases with the time of execution, an unknown rate of
convergence and, finally, it doesn’t compute the optimal solution but only a
valid path from start to goal [32].

RRT* Algorithm During last two decades many extensions of the RRT algorithm
have been presented in order to reduce its drawbacks. As in the case of the
PRM algorithm, at first, a great deal of work has been done on the optimality
of the solution and a so called RRT* algorithm has been developed by Kara-
man et al. [25] in 2010.
RRT* inherits all the properties of RRT and works similar to RRT, but it in-
troduced two promising features called near neighbor search and rewiring tree
operations. Near neighbor operations finds the best parent node for the new
node before its insertion in tree. Rewiring operation rebuilds the tree within
this radius of area k to maintain the tree with minimal cost between tree con-
nections. As the number of iterations increase, RRT* improves its path cost
gradually due to its asymptotic quality, whereas RRT does not improves its
jaggy and suboptimal path [37].
However, these operations have an efficiency trade-off; it improved path qual-
ity, reaching minimum-cost path, and obtained asymptotic optimality at the
cost of execution time and slower path convergence rate of asymptotical opti-
mality, especially in large environments.

11

1 – Introduction

RRT# Algorithm After RRT*, working on better convergence rate, a new sampling-
based motion planning algorithm, called RRT# , has been proposed [11] in
2015. One of the main reasons of the slow convergence of asymptotically
optimal algorithms is the lack of a good exploration strategy. Although ev-
ery collected sample gives some information about the topology of the search
space, it may not necessarily contribute to improving the cost of the solution
of a given query. Since the exploration task is one of main computational bot-
tlenecks of sampling-based motion planners, it is preferable to select samples
that maximize the improvement of the quality of the solution of a given query.
One way to achieve this is to guide exploration to the region of the search
space that is relevant to the current query and to adjust the sampling strategy
to draw more samples from this relevant region.
RRT# computes successively tighter approximations of the relevant region of
the search space as the number of samples tend to infinity as a by-product
of the exploitation step. As shown in [10] the RRT# algorithm has a faster
convergence rate and provides solutions with smaller variance compared to the
RRT* algorithm. The RRT# algorithm also provides a good characterization
of the computed information during the search, by identifying the region of
the search space, which is highly likely to contain the optimal solution.

RRTX Algorithm Concluded a good resolution about the convergence rate, stud-
ies have moved to enhance solutions in dynamic environments, so the RRTX

have been created by Otte et al. [39] in 2015. The main differences between
RRTX and previous sampling-based motion planning algorithms is that RRTX

is a re-planning algorithm that is also asymptotically optimal. It enables
real-time kinodynamic navigation in environments with obstacles that unpre-
dictably appear, move and vanish. Whenever obstacle changes are detected,
rewiring operations cascade down the affected branches of the tree in order
to repair the graph and remodel the shortest-path tree. The expected run-
time is achieved, despite rewiring cascades, by using two new graph rewiring
strategies: 1) rewiring cascades are aborted once the graph becomes epsilon-
consistent, for a predefined epsilon > 0; 2) graph connectivity information is
maintained in local neighbor sets stored at each node, and the usual edge sym-
metry is allowed to be broken. These features significantly decrease reaction
time without hindering asymptotic convergence to the optimal solution. In-
deed, reaction time is the most important metric for a re-planner in dynamic
environments.
From a graph construction/maintenance point-of-view, the most closely related
work to our own is RRT# , which is the only other sampling based algorithm
that uses a rewiring cascade; RRT# uses such a cascade after the cost-to-goal
of an old node is decreased by the addition of a new node. However, RRT# can-
not handle unforeseen obstacle configuration changes; in particular, obstacle

12

1.2 – State of Art

appearances break the algorithm. In contrast, RRTX is designed specifically to
handle obstacle configuration changes – including those that both increase and
decrease the cost at old nodes. Furthermore, although RRTX is designed for
dynamic environments, it is also competitive in static environments where it is
asymptotically optimal and has an expected amortized per iteration runtime
similar to RRT and RRT* and faster than RRT#.

Last two evaluated algorithms are both extensions of the RRT* algorithm: the
Transition-based RRT* (or T-RRT*) algorithm and the Real-time RRT* (RT-RRT*)
algorithm.

T-RRT* Algorithm The first one, developed by Devaurs et al. [15] in 2016, con-
sists of integrating the transition test of T-RRT into RRT*. Thanks to the
filtering properties of this transition test, the exploration performed by T-RRT
favors low-cost regions of the space. In fact, T-RRT mostly creates new nodes
in these favorable areas. Nevertheless, a drawback of T-RRT is that it cannot
take a path-quality criterion into account when creating edges and, thus, in-
volves no mechanism to allow for an improvement of the quality of the current
solution path. As a consequence, it offers no optimality guarantee.
On the other hand, RRT* is not very efficient because it does not take the
configuration-cost function into account when sampling the cost space and
creating new nodes. Indeed, RRT* only takes a path-quality criterion into
account, when creating or removing edges. As a possible consequence, it has
been observed that RRT* may converge slowly toward the optimal solution-
path in high-dimensional cost-spaces.
Thanks to this mash up, T-RRT* is able to explore more low-cost regions
of the space, meanwhile maintaining the asymptotic optimality property of
RRT*. Results presented on several classes of problems show that it converges
faster than RRT* toward the optimal path, especially when the topology of
the search space is complex and/or when its dimensionality is high.

RT-RRT* Algorithm The second algorithm, advanced by Naderi et al. [35] in
2015, consists in an RRT* variation enable to work in dynamic environment
through an on-line rewiring. Actually, there are two modes of rewiring for
having shorter paths in large tree with a limited number of the nodes. The
first one, rewiring starting from the root, creates a growing circle centered at
the agent. In this process every node inside the circle is rewired, and this circle
most frequently rewires nodes around the agent and thus the tree root. The
second one, rewiring random parts of the tree, is done using both focused and
uniform sampling, but in patches instead of just one node. However, RT-RRT*

13

1 – Introduction

has its limitations; it requires a large memory capacity because the whole tree
is stored at all times and it only works in a bounded environment. The focused
sampling inside an ellipsoid works somewhat in an unrestricted environment
but the rewiring suffers if the distances are large. Thus, the challenges of
unbounded and large distance environments remain to be addressed.

After the analysis of the different algorithms presented in the above section, recalling
that our area of interest will consider the dynamic environment and the research of
a feasible solution, minimizing the cost function, RRT* and RRTX algorithms have
been chosen and adapted for our path planning problem in order to show which is
the best for replanning issues.

14

1.2 – State of Art

Methods Advantages Disadvantages

Ant colony

It has positive feedback accounts
for rapid discovery of good solu-
tions and can be used in dynamic
applications

Time to converge is uncertain,
even if the convergence is guar-
anteed, and local minima have
reached quite easily

Modified Bug

It shows a good speed of ex-
ecution and should be a good
choice for applications requiring
fast path plan updates

It has to force to increase the ra-
dius of the obstacles to avoid the
collisions

PRM
Even if it’s based on the Dijk-
stra’s algorithm, it performs well
in high- dimensional state spaces

It doesn’t provide optimal solu-
tions and if the number of iter-
ations is not high enough, a feasi-
ble path may not be found

RRT

It’s relative simple and very easy
to implement, probabilistically
complete under very general and
complex conditions

Long tail in computation time
distribution which increases with
the time of execution and an un-
known rate of convergence

RRT*

Thanks to its asymptotic quality,
as the number of iterations in-
crease, it improves cost and qual-
ity of the path

Execution time and slower path
convergence rate of asymptotical
optimality, especially in large en-
vironments.

RRTX
Able to handle obstacle configu-
ration changes, maintaining the
asymptotical optimality

Computational cost of the algo-
rithm could be very high with the
extension of the environment

Table 1.2: Pros and cons of common Probabilistic algorithms

15

1 – Introduction

1.3 Thesis Structure
First of all, in Chapter 2, an overview on the traffic management system will

be introduced through reference of ROS environment, cloud robotics and risk evalu-
ation to explain better the following overall architecture and the high-level operating
principle of CBUTM’s main components, showing the behavior of the whole system,
taking into account also the contribution given by my colleagues. Afterwards, in
next Chapter 3, the main purpose of this thesis will be exposed. In Section 3.1,
known as Offline Planning, basic principles of both algorithms will be illustrated,
focused mainly on the static approach, beeing this section related only to the com-
putation of the global optimal path from initial to target state. On the other hand,
in Section 3.2, known as Online Planning, it will be presented the dynamical update
of risk-cost and the concerning proper development of the algorithms in order to
adapt the off-line path to alterations in the dynamic risk-map. The Chapter 4 will
be precisely organized to verify the goodness of the proposed method by means of
simulations results and finally, in Chapter 5, comments on tests will be drawn with
a look to hopeful future works.

16

Chapter 2

Basics and Requirements

Performing "dull, dirty or dangerous" [53] missions without involving any kind
of risk for the pilot, as we said above, has been one of the great competitive ad-
vantages for increasing interest in UAVs in both the public and private sectors.
However, having a world, where robots (i.e. drones) and humans can cooperate
in a well structured system, implies a growing duty in the handling of these fully
autonomous devices during their flights and, consequently, a redefinition of traffic
management.
Known as Unmanned Aircraft System Traffic Management (UTM), the goal is to
create a system that can integrate drones safely and efficiently into air traffic that is
already flying in low-altitude airspace, especially in urban environment. That way,
any kind of drones’ missions (starting from package delivery or fun flights to sav-
ing live) won’t interfere with helicopters, nearby airports, and won’t produce higher
risks for people on ground.
The system will be a bit different than the Air Traffic Management control system
(ATM) used by the Federal Aviation Administration (FAA) for today’s commercial
airplanes. UTM will be based on digital sharing of each user’s planned flight details.
Each user will have the same situational awareness of airspace, unlike what happens
in today’s air traffic control. FAA, NASA and other federal partner agencies are
collaboratively conducting researches such that UTM development will ultimately
identify services, roles/responsibilities, information architecture, data exchange pro-
tocols, software functions, infrastructure, and performance requirements for enabling
the management of low-altitude uncontrolled UAS operations [9].
According to the International Civil Aviation (ICAO), an UTM framework will in-
clude many components, three of which are fundamental:

• Registration System to allow remote identification and tracking of each UAS

• Communications Systems

• Geofencing-like system

17

2 – Basics and Requirements

Therefore, before presenting how we build a completely new traffic manager (the
above-mentioned CBUTM), we will briefly review some features, like the working
environment, the cloud and the evaluation of risk cost that the framework requires
to be devised.

2.1 ROS

The recent diffusion of robotic applications, as well as allowing an increasingly
specific and customized use in numerous fields, has guaranteed a radical drop in
production and management of the hardware industry. However, a comparable
development of the software part has been required in order to support resources
needed to deal with complex and robust systems behavior. And that’s where ROS
environment comes in.

Robot Operating System (ROS) is an open-source, meta-operating sys-
tem for your robot. It provides the services you would expect from an
operating system, including hardware abstraction, low-level device con-
trol, implementation of commonly-used functionality, message-passing
between processes, and package management. It also provides tools and
libraries for obtaining, building, writing, and running code across multi-
ple computers. [5]

It’s similar in some respects to a "robot frameworks", but provides a distributed ar-
chitecture that involves the state of art algorithms, tools, libraries and conventions
implemented and updated by the community. ROS implements several different
styles of communication, including synchronous RPC-style communication over ser-
vices, asynchronous streaming of data over topics, and storage of data on a parameter
server. It easily lets several applications cooperate and interact both in the same
machine and in different ones, even far one from the other.
Taking to account that our project works in very dynamic environment, being a Non-
Real-Time operating system can be a limitation. The inability of assure the respect
of deadlines may imply waste of fundamental seconds. This consideration must be
taken into account during the development process, building light algorithms up,
not requiring heavy computational efforts to be performed, and continuously check
the connection integrity and data losses.
Collaboration and open-source license sharing represent the real improvement with
respect to competitors; these factors have encouraged the robotics software develop-
ment but even a mechanism in which each member can share its issues but, at the
same time, feels responsible to intervene and overcome the others’ obstacles through
simple contribute of knowledge’s exchange, acting as a sincere community without
valuing degrees or qualifications.

18

2.1 – ROS

Software in ROS is organized in packages. A package might contain ROS executa-
bles, a ROS-independent library, a dataset, configuration files, a third-party piece
of software, or anything else that logically constitutes a useful module. The goal
of these packages aims to provide this useful functionality in an easy-to-consume
manner so that software can be easily reused.
Let’s now explain how it works, its main elements and concepts: [5],[1]:

Master It’s the core of system, provides naming and registration services to the
rest of the nodes in the ROS system, tracking publishers and subscribers to
topics as well as services and lookup to the rest of the computation graph.
Without the Master, nodes would not be able to find each other, exchange
messages, or invoke services; indeed it enables individual ROS nodes to locate
one another within the network. Once these nodes have located each other
they communicate with each other peer-to-peer.

Nodes Nodes are processes that perform computations, independent executables
that act, literally, as nodes of a complex network, able to talk and interact with
other processes through topics, services or parameter server. Their isolated
feature reduces code complexity and, at the same time, gets system robuster
and more organized. Thanks to ROS client libraries, they can be coded both
in C++ and Python.

Topics Topics are buses used by nodes to transmit data in unidirectional way,
publishing data on it and subscribing to it for reading the message. They
have anonymous publish/subscribe semantics, which decouples the production
of information from its consumption, in fact, each topic can have multiple
publishers and subscribers.
Topics are deeply linked to the ROS type of the message they transmit. If a
node publishes a message of a specific type, other nodes can subscribe to it only
if they have the same message type. Actually the communication protocols
are based on TCP/IP and UDP.

Services Services are used to answer a very common requirement of distributed
systems, which is the request/reply interaction. Differently from the publish/-
subscribe model, a service deals with situations in which the communication
can not be unidirectional, one node requires a function provided by another
one, so the first one needs a reply from the second one.
It’s defined by a pair of messages: one for the request and one for the reply.
Practically, ROS node offers a service under a string name, a client calls the
service by sending the request message and waiting the reply, thus these calls
are blocking because a node cannot go on until a reply appears. Like topics,
services have an associated service type that is the package resource name of
the .srv file.

19

2 – Basics and Requirements

Parameters Parameters are another mechanism to catch information to nodes,
they represent a great tool of customizing, changing or adapting the behavior
of a ROS application. Their usage requires a central system, called Parameter
Server, which keeps track of a collection of values. Nodes use this server to
store and bring back parameters, at runtime, if they are interested in their
value. Through a certain parameter service, the value can be changed by the
developer or other nodes. They are not designed for high-performances, in
fact, this communication method is more suitable for information that will
not vary to much over time.

Actions In any large ROS based system, there are cases when someone would like
to send a request to a node to perform some task, and also receive a reply to
the request. This can currently be achieved via ROS services. In some cases,
however, if the service takes a long time to execute, the user might want the
ability to cancel the request during execution or get periodic feedback about
how the request is progressing. Actions, and especially the actionlib package,
provides tools to create servers that execute long-running goals that can be
preempted. It also provides a client interface in order to send requests to the
server.

Figure 2.1: Node and topics architecture of a ROS environment

The working principle of the Robot Operating System itself, its architecture is shown
in Figure 2.1, running independent nodes and talking thanks to topics and services,
seems to be suitable for explaining how the CBUTM system works. It can be seen,
in fact, as the cooperation of 4 main nodes, each one belongs to one of four main
subjects of the whole project and, consequently, to one of four colleagues within the
Joint Open Lab.

20

2.2 – Cloud Robotics

2.2 Cloud Robotics
James Kuffner, one of the most brilliant researcher in robotics, coined in the

2010 the term Cloud Robotics. According to him:[20]

The Cloud Robotics is a new paradigm in which robots and automatic
systems exchanges information and execute computations using a com-
mon on line network.

The existence of such a cloud, direct consequence of the progresses in IoT (Internet
Of Things) and machine learning, brings unlimited improvements, opening to thou-
sands of utilizations.
The main benefits of such a system are:[28]

Big Data Big Data represents a massive amount of data (both structured and non-
structured), a huge library of images, maps and data collected and managed
to extrapolate knowledge, that every robot connects to.
The concept is clearly linked to the cloud computing. Having such a big
amount of data allows to generate a real knowledge of the system one wants
to control or interact with. Indeed, system’s knowledge, ability to observe its
states and future prediction are fundamental factors to improve th efficiency
of a controller.

Cloud computing Cloud Computing is a high computational power that, used
through Internet, allows to design and to use complex (and demanding) algo-
rithms on multiple robots at the same time.
The idea is to exploit the cooperation of different machines to overcome the
computational power of single one. As result, the cloud produces the above-
mentioned high computational power while the robot can perform the physical
job.

Collective Robot Learning The most efficient way to collect and transfer such
an amount of data is putting together in separate sources, making them co-
operate and share in a well structured network. Knowledges are instantly and
indirectly moved from one element of the network to all others that are con-
nected to it; so that one can learn from the data coming from another and
vice versa.

At this point, it’s more palpable the choice of a cloud-based framework, as our pur-
pose, to realize our traffic management system and, more generally, to achieve fully
autonomous flights. Through machine learning and Iot, at one side, exchanging
data, informations and maps allows a faster evaluation of the risk in real time.
On the other hand, the study of many path planning and collision avoidance algo-
rithms has shown the need of a very high computational power, that only a cloud

21

2 – Basics and Requirements

framework can provide. Each UAV connected to the network must be able to trans-
mit/receive to/from the cloud, updating the common shared information if its sen-
sors perceive something different from what the cloud expected, contributing to
more accurate results both for risk analysis and path planning research.
For this reasons, the ideas and results that will be presented in the rest of this work
have been developed supposing to use a cloud network.

Please notice that we were forced to make some simplifying hypothesis about the
cloud in order to build our framework up. Nowadays, several limitations can show
up in this procedure but, mainly, they come from the limited power of on-board
computers and the wireless connectivity to the cloud. Although assumptions could
be strong, we will analyze the system with no latency or package loss during the
drones’ flight.
Future work will be precisely dedicated to assimilating new algorithms that can
manage and improve on-board UAVs controller performance.

2.3 Risk
After introducing the concept of safety for people on ground as the central

concern of our proposal, it’s proper time to find out how population security is
parameterized and included in our algorithms and calculation, that is by means of
the concept of risk.
Especially, my thesis has the precise aim to answer path planning and re-planning
problem being risk-aware, in fact, one of the path planning algorithm’s input, useful
to delineate all the space where algorithms search for solution path, is properly
the risk-map. As we said, it’s a location-based map and each cell is linked to
specific position and specific risk-cost value, where the latter is a scalar that describes
people’s risk when UAV flies over a given cell.
Therefore, only a brief overview will be described in this work without going into
broad details on the precise construction technique of the risk-map.

2.3.1 Unmanned Mission’s risk

First of all, looking only at vehicles as UAVs, the term risk is referred to the
time frequency in which the drone causes fatal injuries to people on the ground [14].
It is important to highlight that, as damages for people, we mean both physical and
social damages. A high frequency of accidents, although not lethal, can affect the
common perception of such operations and therefore potentially limit their use.

22

2.3 – Risk

Depending on accuracy’s grade, during last years, several ways to modeling the risk
have been introduced but they all are based on four main standard criteria [13]:

• Transparency

• Consistency

• Clarity

• Reasonability

The target of this section is to discover whenever a UAS is able to guarantee a
certain level of safety flying over a given geographical zone in a given time window.
The risk management, according to [13], thus has to follow these four steps to
enhance the safety level of the mission:

Mission Definition and Hazard Identification In this step the manager has
to produce a explanation of the mission and, as a effect, a definition of safety
bounds. The latter, since we are working on civil operations in an urban
environment, will be referred to safety levels imposed by the national flight
authority. Practically, this means that the Flight Agency has to select a max-
imum rate of victim per hour, which will be used by the Cloud-Based Traffic
Manager as upper-bound for every mission.
Moreover, every possible hazard that could happen during each mission have
to be identified.

Risk Assessment According to a specific metric, the system assigns to every haz-
ard a corresponding risk value.

Risk Reduction and Management Compare the imposed bounds with the ac-
tual safety level in order to verify matching with the requirements and com-
putation of countermeasures, if they are needed.

Risk Acceptance Once the risk satisfy the requirements, the mission is approved
and can starts.

About these steps, there is another description that we have to do regarding different
kind of hazards: due to internal failures and due to external causes. It is important
to notice that an hazard analysis of internal possible failure of vehicles is out the
aims of the whole project, also because there are already many tools to perform it.

23

2 – Basics and Requirements

Figure 2.2: Risk-map construction and path planning flow-chart

Accordingly, fundamental hazards, that may affect unmanned missions, can be cat-
egorized into [14]:

Drone Involuntary Mobility It’s referred to all the accidents that could happen
when the drone is not operating, i.e when the vehicle is on the ground and
still have to take off.
Applying correctly all the security protocols for the drone managing proves to
be better way to avoid fatal injuries in this case.

Mid-Air Collisions It examines accidents due to flight collision, and may concern
two or more UAS or fixed obstacles, such as buildings.
Generally the kind of analysis interests line flights and belongs to the "flight’s
victims" involved in the crash. Although, since we are treating with unmanned
vehicles, we can easily keep big airplanes crashing out from the examination,
so the analysis of mid-air collision will consider only the damage for people on
the ground due to debris or falling vehicles.

Early Flight Termination It concerns all the hazards due to a loss of control of
the UAS’s flight and the relative anticipation of its landing.

24

2.3 – Risk

It’s interesting to notice that the cloud could control this process through
imposing a desired landing zone or imposing a specific velocity in order to
reduce fatality odds.

Although there is not yet a commonly accepted definition of risk, we can define it
considering a widely held concept in the field of traditional avionics:

Definition 2.1. It is called risk fF of an Unmanned Aerial Mission the frequency
of fatalities, in term of victims per hour of flight, that a given drone, in a certain
area will produce.

At this point, ensuring a certain level of safety for a mission it’s nothing differ-
ent from ensuring the risk value always below the upper-bound of victims per hour
imposed by the local authorities. Then, it’s inherent that, referring to the last defi-
nition, risk is linked to the concept of time.
Currently, the best way to assess the value of risk is based on statistical considera-
tions [14]. In order to avoid misunderstanding, we want to remember that our target
does not concern a hazard analysis on the used components, but, assuming known
the ground impact frequency, we are focused on providing a device able to manage
this information for guaranteeing the safety of the missions.

Starting from this, it’s possible to increase the typical risk lower-bound, which is
10−7h−1 for classical manned aviations, to the maximum fatalities rate for a civil
operation in an urban context in the range of:

fF,Max ∈ [10−6, 10−5]victims/hour (2.1)

that means one victim at most each 106 hours of flight. Speaking of maximum, the
value of 10−6 victims/hour have been selected as the upper bound for the develop-
ment of the simulations in this thesis.
In order to reach an analytical expression of this fatalities’ frequency, we start from
analyzing the risk due to a generic uncontrolled landing of the UAV: fF,UFE.
It underlines the usage of the term "generic" because the event could be due to both
externals and internal failures or both mid-air collision and early flight termination.
According to [14], a proper analytical expression could be:

fF,UFE = Nexp × P (fatality|exposure)× fUFE (2.2)

Where:

fF,UFE = Fatalities’s frequency due to unexpected flight end - [people
h

]

Nexp = Number of people exposed to the accident - [people]

P (fatality|exposure) = Probability that a person involved in the UAS’s crash will
suffer fatal injuries

fUFE = Frequency of failures that cause an unexpected end of the flight - [1
h
]

25

2 – Basics and Requirements

About the Equation 2.2, P (fatality|exposure) takes into account the kinetic energy
of the drone, the geographical sheltering factor and the vulnerability of the human
body to obtain the probability that the collision between an unmanned vehicle
and a person is lethal. For what concerns Nexp, it can be evaluated as Nexp =
ρ × Aexp, where ρ is the population density and Aexp is the area involved in the
impact. Last words on fUFE, which is evaluated thanks to a statistical approach
and contains informations about the frequency of the UAS’s ground impact: in
practice, it introduces the time element inside the equation.
Such expression turns out to be a good compromise between a too detailed analysis
and a too abstractive one, it contains all the parameters of interest that can affect
an unmanned mission. Through the interpretation of these factors the resulting risk
analysis will be considered:

• Coherent with the statistical data actually available

• Not expensive from a computational point of view

• Easy to extend in case some new interesting parameters emerges

• Independent from the dimension of the considered area. The analysis can be
performed both with very small and big resolution

Coming back to the fatalities’s frequency expression, its proportional dependence on
the population density ρ shows why this system should know the number of people
in danger due to the UAS’s flight, and in general, should be a dynamic framework
capable to collect data and provide a real time risk evaluation.
The cloud system can connect to internet (thanks to the TIM network) and extract
updated data regarding population density of a certain geographical area of interest.
However, in this way, only living people are considered into the count, getting not
the real location of people during the day. By exploiting the potential of the cloud
system at our disposal, ρ can be expressed as a function of time.
Through internet, it could collect informations about possible presence of events and
estimate the influx of people looking at the historical series of the participations.
Such informations can then be combined with those obtained by monitoring the
number of users connected to a specific cell of the mobile communication network,
and that’s it.

In the Equation 2.2 the term P (fatality|exposure) represents the probability that a
person reports serious injuries after the impact with a falling vehicle. To value this
rate, models of vulnerability of the human body have been implemented, taking into
consideration age, physical conformation and posture taken at the time of impact,
or dependence of the speed vehicle.
Making such simplification, at the end, we can assume P (fatality|exposure) as

26

2.3 – Risk

a function of the kinetic energy of the falling vehicle and of the sheltering fac-
tor PS of the area in which the crash occurs, and Figure 2.3 shows just how
P (fatality|exposure) may vary with factors change.

0 500 1000 1500 2000 2500

E [J]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(f

|e
)

Ps=1

Ps=4

Ps=6

Ps=10

Ps=20

Figure 2.3: P (fatality|exposure) evolution respect to Kinetic Energy and Sheltering

About the sheltering factor, lack of a metric, that coherently describes it, doesn’t
represent a foolish complication. On the contrary, looking at Figure 2.3, it’s clear
that P (fatality|exposure) doesn’t depend proportionally on PS and this assumption
makes harder to assign a value to the latter factor.

Definition 2.2. The sheltering factor of a geographical area is its capability of
protecting people on ground, through artificial or natural structures, from the fall
of an Unmanned Aerial System.

After series of empirical tests, colleagues found that a credible upper-bound for
sheltering factor is PS = 10. By assigning a value greater than 10 to PS, 3.4MJ are

27

2 – Basics and Requirements

required to have a fatal event occurring at 50% probability. Although, due to the
small size of drones in urban environment, the maximum kinetic energy released on
impact it will be not greater than some KJ.
Going little deeper, PS is mainly reliant on a crucial factor, the sheltering coefficient
CS of a structure, that measures the amount of drones’ kinetic energy reduced by
structure itself, once drones hit it.

CS Structure’s Tipology

0 Free Area
0.25 Shallow and Slightly Leafy Trees
0.5 Tall and Leafy Trees
0.75 Residential Buildings
1 Reinforced Concrete Buildings

Table 2.1: Sheltering Factor definition

Practically, CS = 1 means a building that completely stops the UAV’s fall, while
CS = 0 will be used for the completely open areas. Once CS is known, the sheltering
factor value can be calculated as:

PS = CS ×
AC
Atot
× 10 (2.3)

Where:

CS = Sheltering Coefficient

AC = Covered Area of the zone - [m2]

Atot =Total Area of the zone - [m2]

The multiplicative factor 10 is used to scale PS, as to make it compatible with
previous evaluation of sheltering factor through empirical tests. Moreover, the term
CS × AC

Atot
evaluates the probability that the drone falls in a covered area times the

capacity of the zone itself to reduce its energy.
So, in the continuation of the work, we will be hired PS ∈ [0; 10].

28

2.4 – CBUTM

2.4 CBUTM

2.4.1 Overview

The proposed Cloud-Based UAVs Traffic Management system, namely CBUTM,
is an air traffic management solution exploiting the advantages offered by the Cloud
Robotic paradigm. Its final aim is the creation of an organized networked system
for managing a well structured low-altitude city airspace, which allows drones op-
erations also in urban environments while preserving a certain level of safety for
humans on ground.
The final idea is to provide a unique platform where users, costumers and authorities
can meet and cooperate, and where rules, procedures, rights and duties can be clear
and well defined.

Basing on what shown in the previous sections, in this one we show the general
architecture of CBUTM and the strategies we adopted in order to accomplish our
objectives. One key characteristic of CBUTM is that it works on a standardized
risk assessment, and so is able to operate assuring the same safety level for each
possible mission in the city. The authorities have, at the same time, a unified access
to monitor and to intervene on all those parameters that condition the missions’ re-
quirements and so the characteristics these missions will have. Metric conservation,
despite changing parameters, allows different instances of CBUTM, each one under
the control of the respective authorities and, at the same time, a common language
(the metric itself) among them. In this way, for example, different cities could use
different requirements basing on the characteristics of the local environment, while
continuing be inside the parameters’ range imposed by the national authorities.
On the other side, a unified portal to access to unmanned missions and to the rel-
ative services is offered to the citizenry as well as to private company that would
receive huge benefits operating in this field.

As we said, whole structure has been then built up in the ROS environment, manag-
ing data streams and connections within the different elements of the network, and
setting up some procedures for keeping it organized and operative, able to adapt to
actual traffic conditions tracking and managing the active vehicles.
As can be seen from Figure 2.4, our Cloud-based UAVs Traffic Management system
can be thought as the cooperation of 4 main entities (so, 4 principal ROS nodes),
with specific roles and functionalities, each one main subject of the work of 3 other
colleagues within the Joint Open Lab, but in the whole result of the cooperation of
each one.

29

2 – Basics and Requirements

Figure 2.4: Graphical representation of CBUTM working principle

30

2.4 – CBUTM

They can be enumerated as:

Map Manager, MM It’s aimed at the creation and management of cost layers
and risk-map, applying the rules of a standardized risk assessment.

Cloud Control Station, CCS It means to be the equivalent of a Ground Control
Station: core of the system, is aimed at catching and collecting informations of
all the agents acting within the network, putting in contact different elements
and managing data streams.

Path Planner, PP Receiving initial and goal position, it applies a specific path
planning algorithm for computing optimal paths on the risk-map generated by
the Map Manager.

Predictive Trajectory Planner, PTP A group of similar nodes, images of phys-
ical drones flying in the city airspace, aimed at being their in-cloud networked
controllers directly linked to the vehicles.

These four entities work in the cloud, interacting with drones flying either in real
world or in a Gazebo simulated environment.

Computing optimal paths, minimizing the cost function based on risk cost and
dynamic map, remains the critical phase of this thesis but, before entering in details
of how path planning algorithms run and how choosing them to accomplish the
system’s architecture, we have a look to the flow-chart, in Figure 2.5, in order to
briefly understand how CBUTM operates. The steps involved in a standard mission
process are shown, from the moment of its definition to the goal.
Steps can be summarized as follows [33],[41],[48]:

1. Registration: Supposing a user wants to fly his drone in a city’s airspace in
which CBUTM is working, he should first ask for its drone’s cloud image to
be created. It means that, for each UAV within the network, a specific ROS
node is created within the cloud with a coherent level of priority, according to
its needs.
First step the newly created node will do is calling the registration service,
provided by a specific node, the Cloud Control Station. During this process,
vehicle’s informations (parameters, goals and requirements to fulfill) are col-
lected within specific database structures and, then, analyzed while forwarded
to the National Flight Authorities (NFA) in order to verify the compliance
between mission’s requirements and safety standards. Aim of this service is
to set up the structure needed for the drone to be monitored and safely flown
within the controlled airspace.
Remember that this node runs considering different system architecture we
could have used in the cloud, so it’s directly linked to the real drone by means
of the MAVROS/MAVLink bridge we will spoke about in Chapter 4.

31

2 – Basics and Requirements

2. Environmental Modeling: This phase is not triggered by the mission’s
request but instead happens at a constant rate till the CBUTM stays on-line:
it must have, at any time, an update and coherent geographical map of the
urban environment where the flights are performed.
Although not available for now, it is reasonable to suppose that in future
municipal offices will share their data on the city structure. Furthermore, this
information are going to be merged by the "Environmental Modeling" block
with the ones received in real time by the flying drones’ sensors: finally, the
result is the dynamic map of the city we were looking for. Differently from the
rest of the flow chart, this part of the system is independent from the drone
that has advanced the request, and remains the same for ever aircraft joining
CBUTM.
Once the map is available, and the registration process has began, we can
move to the next step.

3. Risk Assessment and Map Generation: Map Manager node provides a
special service called by the CCS during the registration service routine, which
is performed for every drone.
Firstly, through the Risk Assessment block, it applies risk modeling techniques
to build a point by point map of the risk, that associates at each area of
geographical map its corresponding risk value. Then, in the Map Generation
block, for each drone, its parameters and characteristics are contained in a
specific risk layer and the risk-map is nothing more than the weighted overlap
of these (either static or dynamic) layers.
The output risk-map will result function of geography, drone’s parameter and
mission standard objectives.

4. Mission Planner: Taking as input the risk-map, the Mission Planner has
a dual final aim: on one side, it must find the best (lowest cost) path for
the drone to follow, on the other hand it must evaluate if this trajectory is
compliant with the standard imposed by authorities. This two different souls,
called "Path Planner" and "Path Validator", cooperate in this block, since the
output of the first is the input of the latter.

(a) Path Planner: Once the drone has been properly inserted in the net-
work, it can proceed asking for its mission. The starting and goal position
are then transferred to the Path Planner node, which will use the specific
drone risk-map for computing an optimal path, looking for the trade-off
between safety and efficiency, with the former being, of course, privileged.

(b) Path Validator: A redundant safety check has been then introduced,
aimed to validate the computed path according to the safety requirements
imposed by the local NFA. The results of this check can be 2: either the

32

2.4 – CBUTM

path is accepted as it is, or it is rejected because of unacceptable hazard
level. In this case, in turn, the path validator can, if possible, modify
some parameters of the risk-map to force the path planner in finding a
better solution or it’s forced to abort the mission as a whole.

5. Trajectory Following and Collision Avoidance (TFCA): Once the com-
puted path for a mission has been accepted (either at the first attempt or after
a re-computation), the drone obtains its authorization to fly, and the mission
can start.
This block is implemented as Predictive Trajectory Planner (PTP) node; it’s
a system executed alongside every mission and it’s responsible to continuously
translate a path (the output of the mission planner) into a proper trajectory
(a path plus a time law). The generated trajectory has to be equivalent to
the received path as long as this doesn’t imply that the distance from other
vehicles, that clearly depend on time, goes below a safety threshold. In that
case, TFCA performs the collision avoidance procedure, producing a trajectory
different as much as necessary.

6. Navigation Management (NM): It’s the unique system to be on-board
and it translates high-level instructions into low-level ones, interacting directly
with electromechanical actuators and with other devices on-board, like sensors.
TFCA works in parallel with NM, to which it sends instruction and from which
it receives a feedback on the actual state.

33

2 – Basics and Requirements

Figure 2.5: CBUTM operational flow chart

34

Chapter 3

Risk-Aware Path Planning

In this section, the proposed risk-aware path planning method is described.
The proposed approach uses a two-phases path planning strategy [42]:

1. Off-line Path Planning: Starting from static informations, a optimal global
path minimizing the risk to the population on ground.

2. On-line Path Planning: Starting from the off-line path, the on-line path
planner adapts the path in order to comply with dynamic environment changes,
still maintaining the optimal solution.

The architecture of the proposed approach is illustrated in Figure 3.1.

Figure 3.1: The main architecture of the risk-aware path planning method.

35

3 – Risk-Aware Path Planning

The off-line path planning aims to solve an optimal path planning problem. Given
a risk-map, a starting and a final position, the off-line path planning looks for an
optimal global path avoiding obstacles and no-flight areas, minimizing the risk-cost
defined by the risk-map. As its name suggests, the off-line path planning is not
time constrained, it has a non-real time behavior because no responses must be
guaranteed within any time frame. On the contrary, it’s made on purpose to take
time, that it needs, because its computation is fundamental for collecting data and
reaching the optimal solution. So, it’s executed before the mission starts and UAV
takes off.
On the other hand, the on-line path planning checks and repairs routine and, conse-
quently, graph in order to fit the old path in real-time, according to changes in the
dynamic risk-map. Differently from the previous step, we have a real-time behavior
and a strong time dependence. In fact, this path planning is implemented when
the UAV executes the mission, i.e. when drone flies, so the reaction to dynamical
changing conditions must be immediate in order to avoid critical or fatal situations.
After the execution of the path planning procedure, the path is uploaded to the
UAV Control System [52], that follows the resulting path.

3.1 Off-line Planning

3.1.1 Problem Formulation

Let C ⊆ R2 be a continuous search space of a path planning problem, it can
be discretized into a discrete space X, on which the risk-map will be constructed
considering a certain risk-map resolution. Each state x ∈ X is a discrete location
in the discrete search space, but with a slight abuse of notation, from now on, x
behaves as a state of search space, location of risk-map M , or as a node of a search
grid graph.
The obstacle region Xobs ⊆ X, set of locations, or forbidden states, in which flight
is outlawed. Thus, re-calling concepts of Section 2.3, regions like obstacles, no-flight
or high risk zones have an correspondent cost equal to 1. As a consequence, the set
Xfree = X \Xobs contains the remaining navigable locations, in which the initial
and final states are located, it means xstart, xgoal ∈ Xfree, and in particular the final
condition is an element of the goal region Xgoal, an open subset of Xfree.

36

3.1 – Off-line Planning

Let Σ be the set of all paths, where a single path σ is a sequence of connected states
x in the search space X.

Definition 3.1. (Path) A function σ : [0, 1]→ R2 of bounded variation is called a
[26]:

• Path, if it is continuous;

• Collision-free path, if it is a path and σ(s) ∈ Xfree,∀s ∈ [0, 1];

• Feasible path, if it is a collision-free path and σ(0) = xinit and σ(1) ∈ Xgoal;

The total variation of a path is essentially its length, i.e., the Euclidean distance
traversed by the path in R2. The feasibility problem of path planning is to find a
feasible path, if one exists, and report failure otherwise:

Problem 3.1.1 (Feasible path planning). Given a path planning problem defined
by a triplet (Xfree, xstart, Xgoal), find a feasible path σ : [0, 1] → Xfree such that
σ(0) = xstart and σ(1) = xgoal ∈ Xgoal if one exists. If no such path exists, report
failure.

The path planning algorithm searches for an optimal and feasible path σ∗ from xstart

to xgoal in Xfree that minimizes a given cost function:

Problem 3.1.2 (Optimal path planning). Given a path planning problem defined
by a triplet (Xfree, xstart, Xgoal) and a cost function c : Σ → R > 0, find a feasible
path σ∗, if one exists, such that:

c(σ∗) = arg min
σ∈

∑ c
(
σ(s)

)
(3.1)

If no such path exists, report failure.

3.1.2 RRT* Algorithm

Coming from the RRT algorithm, RRT* reveals, concerning general aspects, a
similar behavior: the tree is built extracting random samples from the state space,
introducing also a bias to explore in the direction of unsearched areas. Every time
a sample is drawn, a connection between it and the nearest state of the tree is at-
tempted and, if this link satisfies feasible constraints, the sample becomes part of
the tree.
Then, as we have read in the Subsection 1.2.2, two factors, Near neighbor search and
Rewiring tree operations, allow to achieve minimal cost between tree connections
and, consequently, an optimal solution.

37

3 – Risk-Aware Path Planning

Maintaining a tree structure rather than a graph is not only economical in terms of
memory requirements, but may also be advantageous in some applications, due to,
for instance, relatively easy extensions to motion planning problems with differential
constraints, or to cope with modeling errors. The RRT* algorithm is obtained
by modifying RRT in such a way that, through the best parent node searching,
formation of cycles is avoided by removing “redundant” edges, i.e., edges that are
not part of a shortest path from the root of the tree to a vertex. Since the RRT
and RRT* graphs are directed trees with the same root and vertex set, this edges’
repression amounts to a “rewiring” of the RRT tree, ensuring that vertices are reached
through a minimum-cost path [26].
Thanks to this, RRT* improves asymptotically the quality of its path as the number
of samples increases, differently from RRT. In Figure 3.2 the differences between the
two approaches are shown: it seems evident that the tree built with RRT* is more
ordered than the first one, thanks to the operation described before. Obviously, this
features have also a computational trade-off, that can however be overcome with an
high computational power cloud framework, as the one we have.

Figure 3.2: A comparison of the RRT (shown in (a)) and RRT* (shown in (b))
algorithms on a simulation example with obstacles [26].

Although, algorithms presented in Figure 3.2 are both implemented to deal only
with obstacles, so here is the main step forward of this work, the risk-awareness.
In our approach the failure rate of the UAV is already discussed, from the theoretical
point of view, in the Section 2.3. Practically, instead, being risk-aware means that

38

3.1 – Off-line Planning

we have to look for the minimum risk function defined by the risk values in the
risk-map while we rewire our graph. Hence, the motion cost of the risk-aware RRT*

is defined in the Eq. 3.2, 3.3 :

Costm(ni) = Costm(ni−1) +

∫ ni

ni−1

r(n)dt (3.2)

Costm(ni) = Costm(ni−1) +
r(ni−1) + r(ni)

2
∆t(ni−1, ni) (3.3)

where cm(ni−1) is the motion cost of the parent node ni−1 , r(n) is the risk function
defined by the risk values in the risk-map. Practically, because of the discrete
search space (the risk-map), the integral is computed with an approximative and
incremental method, the Eq. 3.3, where ∆t(ni−1, ni) is the flight time expressed in
hour needed to cover two adjacent nodes ni−1 and ni [43].

Before discussing the algorithm, looking also at the Figure 3.3, it’s necessary to
introduce a few explanations:

Figure 3.3: Particular of the Graph behavior in RRT*

• Given a graph G = (V,E), depending on the Vertex set V and on the Edge
set E, let Parent be a function that maps a vertex v ∈ V to the unique vertex
u ∈ V such that (u, v) ∈ E;

• For simplicity, we assume an addiction cost function, so that:

Cost(v) = Cost
(
Parent(v)

)
+ c
(
Parent(v), v

)
(3.4)

where the first term of the addition is the risk-cost of its parent’s state while
the second one is the cost of the straight-line path that goes from the parent’s
state to the actual state itself;

• Given a graph G = (V,E), P is the Parent set, C is the Children set and,
to avoid notation mistakes, from now on, we’ll talk about states instead of
node/vertex, so the state variable x takes the place of the vertex variable v;

39

3 – Risk-Aware Path Planning

• Given a sampled state, in order to perform rewiring, its neighbors search can
be done in 2 different ways and the planner range is a variable that affects both
approaches. Through the first one, r − disc calculation, which we use in this
work, only neighbors in a certain radius can be examined. Instead, through
the second one, k− nearest calculation, we choose the number of neighbors k
that we need.

The pseudo-code of the RRT* algorithm is described in Algorithm 1. The inputs are
xstart and xgoal nodes, a grid map M defined taking into account the risk-map and
the graph set G = (V,E), which has only xstart at initial condition, and the output
is the graph set G filled by nodes and their cost information. Thanks to G, using
the getPath routine, we obtain σ, the vector of adjacent nodes that describes the
path between xstart and xgoal, as shown here, in Eq.3.5:

σ = getPath(xgoal, xstart, G) (3.5)

First, the node xstart is added to the vertex set V while the edge set E is empty (line
2) as initialization. Then, it executes the main iterative procedure (line 3 to 28) that
continues for a certain number of states n that we define as initial condition of the
computation. At each iteration cycle, there are several consecutive operations. The
algorithm performs, first, a random sampling (line 4), in which found state is already
valid in the map M , and then the nearest state to the random one is searched from
the graph G(line 5). If the xnearest is further than planner range value from the xrand,
then the xnearest is saturated to a distance equal to the planner range and become
xnew (line 6-7). On the contrary, if the distance is within the planner range, xrand

becomes xnew (line 9) . A condition cycle is done (lines 11 to 27) checking if motion
between xnearest and xnew is allowed. In positive response, the algorithm searches
for a neighbors set Xnear of xnew through the above-mentioned r − disc radius (line
12), adds the xnew to the vertex set V (line 13) and sets xnearest as xnew’s parent
(line 14). From now on, there are only two checks. During the first one (lines 16 to
19) the algorithm finds out if exists a neighbor xnear that could be a better parent
for xnew than xnearest and, when it happens, RRT* considers path through xnear as
associated with minimum cost (line 17), then adds the edge from xnear to xnew to the
edge set E (line 20). During the second one (lines 22 to 26) the algorithm verifies,
now, if xnew could be a better parent for its neighbors and, when it happens, RRT*

deletes the old edge (with the old parent) from the edge set E and adds the edge
from xnear to xnew to the edge set E (line 24). This last iterative check (lines 22
to 26) represents the rewiring factor and, so, the real advantage with respect to RRT.
The iterative procedure continues until selected number of sampled states has reached,
regardless of solution path achievement, also because RRT* provides only a filled
graph set G, it will be the getPath sub-routine that should get the best path with
the minimum cost in the graph set G.
Note that expressions like that in line 14 or 17 are the same meaning of the Eq.3.2.

40

3.1 – Off-line Planning

Algorithm 1 RRT* algorithm
1: procedure RRTstar(xstart, xgoal,M,G)
2: V ← 〈xstart〉;E ← ∅;
3: for i = 1, .., n do
4: xrand ← SampleFree;
5: xnearest ← Nearest(G, xrand);
6: if dist(xnearest, xrand) > range then
7: xnew ← Saturate(xrand, xnearest);
8: else
9: xnew ← xrand;

10: end if
11: if CheckMotion(xnearest, xnew) then
12: Xnear ← Near(G, xnew, r);
13: V ← V ∪ 〈xnew〉;
14: xmin ← xnearest; cmin ← Cost(xnearest) + c(xnearest, xnew);
15: for all xnear ∈ Xnear do
16: if CheckMotion(xnear, xnew) ∧ Cost(xnear) + c(xnear, xnew) < cmin

then
17: xmin ← xnear; cmin ← Cost(xnear) + c(xnear, xnew);
18: end if
19: end for
20: E ← E ∪ (xmin, xnew);
21: for all xnear ∈ Xnear do
22: if CheckMotion(xnew, xnear) ∧ Cost(xnew) + c(xnew, xnear) <

Cost(xnear) then
23: xparent ← Parent(xnear);
24: E ←

(
E \ (xparent, xnear)

)
∪ (xnew, xnear);

25: end if
26: end for
27: end if
28: end for
29: return G = (V,E);
30: end procedure

41

3 – Risk-Aware Path Planning

An example of how the algorithm works and, practically, what kind of expansion it
performs can be shown in Figure 3.4, in which we consider 6 steps, 1.2 seconds as
solve time (so 0.2 seconds for each step) and a value of planner range equal to 30
meters.

(a) (b) (c)

(d) (e) (f)

Figure 3.4: Example of the expansion of the RRT* graph

Corresponding data are available in the Table 3.1, in which there are number of
steps, number of nodes added to the graph at each step, number of total added
nodes after each step and relative solution cost. About the computation of the last
variable, it will be explained in Section 4.1

42

3.2 – On-line Planning

Step Added nodes for step Total added node Solution cost

1 3899 3899 1,424·10−8

2 2336 6235 1,339·10−8

3 1971 8206 1,306·10−8

4 1686 9892 1,288·10−8

5 1623 11515 1,257·10−8

6 1362 12877 1,234·10−8

Table 3.1: Data collection referred to the expansion of the RRT* graph in Figure
3.4

3.2 On-line Planning

3.2.1 Problem Formulation

As we said, the main goal of the on-line path planning is to correct the off-line
path planning in order to satisfy the dynamic risk-map requirements and its change.
Therefore, considerations made in Subsection 3.1.1 are still working and we have to
add only the check and repair approach.
This procedure takes into account updates for both path and map involved by
changes in the risk-map and exploits environment changes and time-dependence
for settings to be performed.

Considering changes happen at each discrete-time step k, every treated variable,
once map starts to modify risk-costs of its locations, comes time-dependent. There-
fore, it become appropriate speaking of differential variable and, in particular, we
can focus on the search space M(k) that changes at each discrete-time step k.
Being the principal input of our procedures, at every time step, we can define a
differential search space Mdiff(k) as in Eq.3.6:

Mdiff(k) = M(k)−M(k − 1) (3.6)

At every time step k, the check routine verifies if x(k) ∈ Mdiff(k)∀x(k) ∈ σ, i.e.,
it checks which states of the path are involved in changes in the risk-map. Thus,
the repair routine adjusts the path with a fast algorithm, in order to deal with the
dynamic risk-map [42].
At time tk the location of the robot is xbot(tk), where xbot : [t0, tcurr] → X is the
traversed path of the robot from the starting time t0 to the current time tcur, and is
undefined for tk > tcur .
A static environment has an obstacle set that changes deterministically with time
and xbot, this means that in a generic deterministic environment ∆Xobs = f(tk, xbot)
and f is known a priori. In contrast, a dynamic environment has an unpredictably

43

3 – Risk-Aware Path Planning

changing obstacle set and, even though an obstacle may have the same math ex-
pression of the previous case, f is a “black-box” that cannot be known a priori. The
assumption of incomplete prior knowledge of ∆Xobs guarantees myopia and is the
defining characteristic of replanning algorithms, in general. While nothing prevents
us from estimating ∆Xobs based on prior data and/or on-line observations, we can-
not guarantee that any such estimate will be correct [39].

Problem 3.2.1 (Shortest-Path Replanning). Given a path planning problem
defined by a quadruplet (X,Xobs, xgoal, xbot(0) = xstart) and an unknown function
∆Xobs = f(tk, xbot), find a feasible and optimal path π∗(xbot, xgoal) and, until xbot(tk) =
xgoal, simultaneously update xbot(tk) along π∗(xbot, xgoal) while recalculating π∗(xbot, xgoal)
whenever ∆Xobs /= ∅ where:

π∗(xbot, xgoal) = argmin
π(xbot,xgoal)∈Xfree

dπ(xbot, xgoal) (3.7)

where π∗(xbot, xgoal) is an optimal movement trajectory, a curve defined by a con-
tinuous mapping π : [0,1] → X such that 0 → xbot and 1 → xgoal. A trajectory
is valid if both π(xbot, xgoal) ∩ Xobs = ∅ and it is possible for the robot to follow
π(xbot, xgoal) given its kinodynamic and other constraints dπ(xbot, xgoal) is the length
of π(xbot, xgoal).

In this work, being this section fundamental for thesis’ work, two algorithms will be
introduced, the Online RRT* and the Online RRTX, in order to figure out which
one has better behavior in different cases analyzed in Section 4.

3.2.2 Dynamic RRT* Algorithm

Considerations made in the previous section are the starting point to analyze
the on-line behavior of the RRT* algorithm. We’re still taking into account improve-
ment factors, that makes RRT* a good chance to get optimal solution, and same
interpretation of the risk-cost function and of the way to minimize it.
In addition to some changes about variables in stake, that we’ll treat in the pseudo-
code, the main extension of the off-line algorithm regards updating cost of the graph
set G. In fact, for simplicity, the dynamical behavior of the risk-map is represented
by the presence of a new map, that we call Mnew. So the algorithm has to generate
an updated graph, called Gupd, through a specific routine in order to comply with
the environment change and, consequently, with the different risk-cost of each lo-
cation in the search space. An open set list O is applied to reach our purpose and
we’ll see, in a while, that the updating will performed by the updateCost function.

44

3.2 – On-line Planning

The pseudo-code of the Dynamic RRT* algorithm is described in Algorithm 2, then
the updateCost routine is presented in Algorithm 3 to comprehend better the up-
dating part.
About the main Algorithm 2 the inputs are slightly different from the off-line case,
xstart and xgoal are still the original one, but we have to take in consideration a new
map,Mnew, and the old graph set, called Gold, achieved by the off-line path planning
and filled of nodes and corresponding risk-cost information, that are referred to the
old search space risk-map.
The output is a solution path σ reconstructed by exploring the graph set from xgoal

to xstart. It’s crucial to note that this graph set has to be referred to the new map, so
we called it Gnew to overcome notation issues. Moreover, different from the previous
case, here the computation of the solution path is made inside the algorithm and
not with an extern routine.
The code is composed by really few lines: an update is performed (line 2) to bring
risk-cost of the Gold up to date, such that we can execute the same procedure of
the off-line RRT* (line 3) basing on the updated graph set Gupd. Finally, from this
operation, taking back the new graph set Gnew, the getPath function gets the best
solution path with the minimum risk-cost (line 4) and the procedure ends.

Certainly more interesting will be the updateCost routine in Algorithm 3. As in-
puts, there are only the new search space risk-map Mnew and the old graph set Gold

referred to the old map. xstart and xgoal are not inserted as input because they are
still present in the old graph set. The output, as we said previously, is the updated
graph set Gupd.
First, the start state is added to the bottom of the open set list O (line 2) and
then the algorithm implements an iterative procedure (lines 4 to 14) that lasts until
the open set list O will be empty. In the loop the algorithm performs the update
of states, here’s how: pop operation allows to take the first element x of the open
list (line 4), then it starts a search into the graph set Gold for the latter element’s
children (line 5), that we later put in the children set Xchild. Taking this children,
another loop is executed (lines 7 to 12), in which if the motion between x and each
xchild is allowed (line 7), there will be the risk-cost update of the xchild (line 8) and
then an addition of this child, xchild, to the open set list O (line 9). On the contrary,
if motion is not permitted the xchild will be erased from the old graph set Gold (line
11). The resulting updated graph set will concern only states with allowed and
weighted motion, so that new obstacles, new no-flight zones or, simply, new high
risk-cost zones can be detected and avoided.
Searching for parent is not needed, as in the off-line case, because the above explo-
ration is overriding, thus each parent will be, consequently, already verified.

45

3 – Risk-Aware Path Planning

Algorithm 2 Online RRT* algorithm
1: procedure onlineRRTstar(xstart, xgoal,Mnew, Gold)
2: Gupd = updateCost(Gold,Mnew);
3: Gnew = RRTstar(xstart, xgoal,Mnew, Gupd);
4: σ = getPath(xgoal, xstart, Gnew);
5: return σ;
6: end procedure

Algorithm 3 updateCost routine
1: procedure updateCost(Gold,Mnew)
2: O ← xstart;
3: repeat
4: x← pop(0);
5: Xchild ← Child(Gold, x);
6: for all xchild ∈ Xchild do
7: if CheckMotion(x, xchild) then
8: Cost(xchild)← Cost(x) + c(x, xchild);
9: O ← O ∪ 〈xchild〉;

10: else
11: Gold ←

(
Gold \ (xchild)

)
;

12: end if
13: end for
14: until O ← ∅;
15: Gupd ← Gold;
16: return Gupd;
17: end procedure

46

3.2 – On-line Planning

3.2.3 RRTX Algorithm

Although they come from the same family, RRTX has an attitude completely
different from RRTs "cousins", it was born to deal with unpredictable environments.
Recalling to the Section 1.2.2, it has been presented as the first sampling-based re-
planning algorithm that is both asymptotically optimal and designed for situation
in which a priori off-line computation is unavailable [40]. In particular, RRTX com-
putes an initial path, then continually refines it toward the optimal solution during
navigation, while also repairing it on-the-fly whenever changes to the obstacle set
are detected.
One of the main significant divergences with the respect to the other RRT’s descen-
dants regards the pruning of the branches. In RRT* procedure, if obstacles appear
or change their position, the algorithm cuts off an edge that are no more valid and
loose the information about all the branch because it’s completely erased from the
graph set. In fact RRT* can recognize risk-costs variations, through the update
function, but needs to recall the solver in order to rebuild the tree up. On the
contrary, RRTX uses the same graph/tree even when obstacles change and it’s able
to quickly remodel and repair it, thanks to rewiring operations cascade, instead of
pruning disconnected branches away. Both graph and sub-tree (that is the condition
of tree no more entire but waiting for complete rewiring) exist in the robot’s state
space and the tree is rooted at the goal state, allowing it to remain valid despite of
robot’s state changes during navigation.
Rewiring cascade are performed taking the advantage of a complex maintainance
of graph connectivity information, so sometimes the computation could be heavy.
Luckily, this drawback is managed by a proper strategy through the concept of ε-
consistency. Rewiring operation cascades , in fact, are aborted as soon as the graph
becomes ε-consistent for a certain value of ε > 0. It means that the cost-to-goal
stored at each node is within ε of its look-ahead cost-to-goal, where the latter is
the minimum sum of distance-to-neighbor plus neighbor’s cost-to-goal. Moreover,
this concept is supported by the maintenance of graph set information but in local
neighbor sets stored at each node. Being local, the expansion of the neighbor set is
smaller, so combining these two aspects the computation won’t be too hard and the
optimal solution is still computed.

Please notice that both Off-line and On-line RRTX will be intentionally presented in
this section. Although some literatures say something slightly different, the off-line
part of this algorithm is not constantly competitive to the off-line part of RRT*.
Therefore, for this reason and because RRTX has been mainly exhibited as a replan-
ning algorithm, we decide to put all together in on-line section, at first the Off-line
part with its subroutine and then the On-line one.
Comparisons and comments will be treated in the Chapter 4.

47

3 – Risk-Aware Path Planning

Before discussing the algorithm, looking also at the Figure 3.5, it’s necessary to
introduce some explanations that are not presented in the RRTX:

Figure 3.5: Particular of the Graph behavior in RRTX

• Given a graph G = (V,E), depending on the Vertex set V and on the Edge
set E, the robot starts at xstart and goes to xgoal. The shortest path sub-tree
of G is T = (VT, ET), where T is rooted to xgoal;

• About the ε-consistency, g(x) is the (ε-consistent) cost-to-goal of reaching
xgoal from x through T , while lmc(x) is the look-ahead estimate of cost-to-
goal. Note that the algorithm stores both g(x) and lmc(x) at each node, and
updates lmc(x), as it’s shown in Eq. 3.8, when appropriate conditions have
been met, while x is (ε-consistent) is expressed in Eq.3.9;

lmc(x)← minxnear∈N+(x) · dπ(x, xnear) + lmc(xnear) (3.8)

g(x) + lmc(x) < ε; (3.9)

where then σ∗X(x, xgoal) is the optimal path from x to xgoal through X and the
length of σ∗X(x, xgoal) is g∗(x);

• Q is the priority queue that is used to determine the order in which nodes
become ε-consistent during the rewiring cascades. The key that is used for
Q is the ordered pair (min(g(x), lmc(x)), g(x)) nodes with smaller keys are
popped from Q before nodes with larger keys;

• Finally, just some substitutions are made in order to maintain notation quite
similar to the RRT* cases:

1. g(x)→ Costold(x);

48

3.2 – On-line Planning

2. lmc(x)→ Cost(x)

3. dπ(x, y)→ c(x, y)

The pseudo-code of the RRTX algorithm is described in Algorithm 4, while its
major sub-routines are expressed in Algorithms 5, 6, 7. Starting from the main
code, its inputs, as well, are xstart and xgoal nodes, a search space M defined taking
into account the risk-map and a graph set G, while the output is always G filled
by nodes and their cost information. As the RRT* case, Thanks to G, using the
getPath routine, we obtain σ, the vector of adjacent nodes that describes the path
between xstart and xgoal, as shown here, in Eq.3.10:

σ = getPath(xgoal, xstart, G) (3.10)

After the initialization (lines 2-3), the algorithm executes the main iterative proce-
dure (line 5 to 27) that continues for a certain number of states n that we define
as initial condition of the computation. At each iteration cycle, there are several
consecutive operations.
The algorithm performs, first, a random sampling (line 5), in which found state is
already valid in the map M , and then a first check is accomplished (line 6 to 9) in
order to verify that these random node are invalid. In this case, the random node
is added to the invalid list I (line 7) and through the continue command it skips
directly to the next cycle of the iteration. The nearest state to the random one
is searched from the graph G(line 10). If the xnearest is further than planner range
value from the xrand , then the xnearest is saturated to a distance equal to the planner
range and become xnew (lines 11-12). On the contrary, if the distance is within the
planner range, xrand becomes xnew (line 14) . A condition cycle is done (lines 16 to
26) checking if the actual xnew is a valid state or belongs to an obstacle. In positive
response, the algorithm finds the best parent for x from the neighbor set N (line 17)
and, then, it finds neighbors within a certain radius value and adds the visited state
x as neighbor of these found neighbors (line 18); while in negative reaction xnew is
added in a invalid list I and its cost is set to infinite (lines 24-25), since the state is
in the obstacle region Xobs. We’ll see in the On-line RRTX the usage of the invalid
list I.
Coming back to the positive iteration of the loop there is, finally, a last condition
cycle (lines 20-21), in which better neighbor is rewired to x that becomes its parent
(line 20) and then the algorithm calls a function to manage the propagation of cost-
to-goal information, maintaining the ε-consistency (line 21). Finally, the iterative
procedure continues until selected number of sampled states has reached, regardless
of solution path achievement, also because RRTX provides only a filled graph set G,
it will be the getPath sub-routine that should get the best path with the minimum
cost in the graph set G.

49

3 – Risk-Aware Path Planning

Successively, a brief explanation of the sub-routines algorithms is introduced:

• findParent(x, V) (Alg. 5) finds the best parent for x from the neighbor set
Xnear (created in line 2), thanks to the iteration cycle, in which check motion
verifies available motion and updates risk-costs of selected neighbors.

• rewireNeighbors(x) (Alg. 6) rewires x’s neighbors xnear to use x as their par-
ent, if doing so results in a better cost-to-goal at xnear (lines 3-6). This rewiring
is similar to RRT*’s rewiring, except that here we verify that ε-inconsistent
neighbors are in the priority queue (lines 7-8) in order to set off a rewiring
cascade during the next call to reduceInconsistency(). The cullNeighbors
function updates x’s neighbors to allow only edges that are shorter than r with
the exceptions that we don’t remove edges that are part of the sub-tree set T .

• reduceInconsistency() (Alg.7) manages the rewiring cascade that propa-
gates cost-to-goal information and maintains ε- consistency in G (at least up
to the level-set of Cost(·) containing xbot). An iteration loop is initialized
until the Q list is empty (lines 3 to 7). The cascade only continues through
x’s neighbors if x is ε-inconsistent (lines 3-5). The first element of the Q list
is picked up (line 3), its parent’s cost is updated (line 4) and then its better
neighbors are rewired to it, as their parent, if ε-inconsistency is verified. This
is one reason why RRTX is faster than RRT#. Finally x’s cost becomes the
best cost-to-goal, acting always locally 0-consistent (line 6).

50

3.2 – On-line Planning

Algorithm 4 RRTX algorithm
1: procedure RRTx(xstart, xgoal,M,G)
2: V ← 〈xgoal〉;
3: xbot ← xstart;
4: for i = 1, .., n do
5: xrand ← Sample;
6: if then(!Check(xrand))
7: I ← xrand;
8: continue
9: end if

10: xnearest ← Nearest(G, xrand);
11: if dist(xnearest, xrand) > range then
12: xnew ← Saturate(xrand, xnearest);
13: else
14: xnew ← xrand

15: end if
16: if Check(xnew) then
17: findParent(xnew, V);
18: getNeighbors(xnew);
19: if xnew ∈ V then
20: rewireNeighbors(xnew);
21: reduceInconsistency();
22: end if
23: else
24: I ← 〈xnew〉;
25: Cost(xnew)← infiniteCost
26: end if
27: end for
28: return G = (V,E);
29: end procedure

Algorithm 5 findParent routine
1: procedure findParent((x, V))
2: Xnear ← Near(G, x, r);
3: for all xnear ∈ Xnear do
4: if CheckMotion(xnear, x) ∧ Cost(xnear) + c(xnear, x) < cmin then
5: xmin ← xnear; cmin ← Cost(xnear) + c(xnear, x);
6: end if
7: end for
8: end procedure

51

3 – Risk-Aware Path Planning

Algorithm 6 rewireNeighbors routine
1: procedure rewireNeighbors(x)
2: if Costold(x)− Cost(x) > ε then
3: cullNeighbors(x, r);
4: for all xnear ∈ Xnear do
5: if Cost(xnear) > c(xnear, x) + Cost(x) then
6: Cost(xnear)← c(xnear, x) + Cost(x);
7: x← Parent(xnear);
8: if Costold(xnear)− Cost(xnear) > ε then
9: verrifyQueue(xnear);

10: end if
11: end if
12: end for
13: end if
14: end procedure

Algorithm 7 reduceInconsistency routine
1: procedure reduceInconsistency(())
2: while size(Q) > 0 do
3: x← pop(Q);
4: updateParent(x);
5: rewireNeighbors(x);
6: Costold(x)← Cost(x);
7: end while
8: end procedure

52

3.2 – On-line Planning

About the On-line version of the RRTX, all the considerations made for the off-line
part are still held except for the invalid list I employment. It has made during the
off-line procedure and consists of states that, according the old map, have been in
the obstacle region Xobs, but with the new map they have to be contemplated to
certify they are still invalid or not. As in the on-line part of the RRT* the algorithm
has to manage environment changes, so a new search space risk-map Mnew taking
into account the old graph set Gold that must be updated.
As we’ll see, the crucial and innovative factor that represents the real benefit in the
robotics avantgarde development is the absence of a solver in the on-line procedure.
The updating technique with its complex rewiring operations cascade is able, by
itself, to manage dynamic obstacle still remaining the solution to be optimal.

The pseudo-code is presented in Algorithm 8. The inputs are slightly different from
the off-line case, xstart and xgoal are still the original one, but we have to take in
consideration a new map, Mnew , and the old graph set, called Gold , achieved by the
off-line path planning and filled of nodes and corresponding risk-cost information,
that are referred to the old search space risk-map.
The output is a solution path σ reconstructed by exploring the graph set from xgoal

to xstart and performing rewire cascade operations. It’s crucial to note that this
graph set has to be referred to the new map, so we called it Gnew to overcome
notation issues. Moreover, different from the off-line case, here the computation of
the solution path is made inside the algorithm and not with an extern routine.

As for the Dynamic RRT* algorithm, the first step aims to perform an update (line
2) to bring risk-cost of the Gold up to date, such that we can execute an iteration
procedure (lines 4 to 11) for all the elements belong to the invalid list I. The idea
is to check if they are still unvalid even for the Mnew and, if not, a condition cycle is
run (lines 5 to 10). Here, the controlled state is, first, erased from the invalid list I
(line 5), then its neighbors let found and it’s added to their neighbor set list (line 6).
Finally, best parent and best children are searched (line 7 and 8) and the controlled
state is added to the node set V (line 9). After that, a new iteration procedure
is processed, involves all states contained in the node set V (lines 12 to 15) and
aims practically in updating risk-costs of parent and children of each analyzed state.
This step is fundamental to implement the rewiring operations cascade. Finally,
from this operation, taking back the new graph set Gnew, at this point already filled
of updated informations, the getPath function gets the best solution path with the
minimum risk-cost (line 16) and the procedure ends.

53

3 – Risk-Aware Path Planning

Algorithm 8 Online RRTX algorithm
1: procedure OnlineRRTx(xstart, xgoal,Mnew, Gold)
2: Gupd = updateCost(Gold,Mnew);
3: for all xi ∈ I do
4: if Check(xi) then
5: I \ 〈xi〉;
6: getNeighbors(xi);
7: findParent(xi);
8: findChildren(xi);
9: V ← V ∪ (xi);

10: end if
11: end for
12: for all x ∈ V do
13: updateParent(x);
14: updateChildren(x);
15: end for
16: σ = getPath(xgoal, xstart, Gnew);
17: return σ;
18: end procedure

54

Chapter 4

Simulations and Results

4.1 Implementations

In order to correctly explain the simulation environment, we get focused on
the code and on how we have implemented it in the workstation. Every results
presented in this work has been obtained using only open source materials and soft-
ware, starting from ROS itself. On one side, at least in first developments, poor
background with different frameworks, we used, has caused many difficulties and
slowdowns, but on the other hand, after a while, we have realized how to handle
these tools and to move deeply inside problems to fix and that, probably, makes the
system more robust and broader.

First of all, framework and tools have to be introduced. The proposed approach is
implemented in C++ as an executable process in ROS (Robot Operating System),
the above-mentioned framework presented in Quigley et al. (2009) [44]. The risk-
map is generated using the Grid Map library proposed in Fankhauser and Hutter
(2016) [18]. Grid Map is a C++ library compatibles with ROS, that is able to gen-
erate two-dimensional grid maps with multiple data layers 4.1.

Figure 4.1: Example of Grid Map

55

4 – Simulations and Results

Moreover, in order to visualize the grid map, the grid_map_visualization package
provides a simple tool to convert ROS grid map message in RViz and all the images,
that we’ll see in Section 4.2 are obtained thanks to specific RViz plugins. RViz (or
ROS visualization) is a 3D visualizer for displaying sensor data and state informa-
tion from ROS. In our case, it has been used to print the risk-map on screen but,
above all, to visualize graphs and paths, that are main concepts to be analyzed in
this thesis.
Another fundamental used tool is the Open Motion Planning Library (OMPL) in
Şucan et al. (2012) [51], it’s an open source library, compatible with ROS, spe-
cialized in sampling-based motion planning and it consists of many state-of-the-art
algorithms.

Figure 4.2: The hierarchy of the high level components of OMPL.

The library is designed in a way that it allows the user to easily solve a variety
of complex motion planning problems with minimal input. OMPL facilitates the
addition of new motion planning algorithms, and it can be conveniently interfaced
with other software components.

56

4.1 – Implementations

Explained the tools we have worked with, now on, we focus on practical charac-
teristics and parameters that describe code, its operating principle and what we’ll
see in results after this introduction. During the development of the project, some
assumptions and simplifications have been done, so that we are able to write and
simulate the code even on modest powered laptop. First of all we only considered
quad-copter type aircraft, in particular Iris+ model by 3DRobotics, flying at a cruise
speed of 10 m/s. The vehicles are then supposed to have no sensors on-board, rely-
ing completely on informations shared within the cloud.
All simulations of the results part are not based and controlled, as often happens,
on the computational time but on the number of the states that algorithms have
to reach and evaluate. In our specific case, it’s set on 10000 states for almost all
the tests. The considered motions are performed in a 2D space, so that every drone
can just refer to the planar risk-map relative to its flight altitude, which has been
set to 30 meters. Speaking of the risk-map, the resolution referred to each pixel
is 5x5 meters and the planner range is set to 30 meters. This latter parameter,
actually, quite depends on the map’s size but, above all, on the obstacles’ density.
Big amount of obstacles and high value of the planner range entails modest filling
of the map by the graph set but, certainly, a very quick solution response. Vice
versa, with low values for both, a very high number of states would be reached and,
consequently, an increase of the computational time but, at the same time, a better
approach to the optimal solution. Therefore, choosing the planner range, actually,
means reaching a trade-off between advantages and drawbacks and, in this case, we
have selected the above value.

In order to clarify the situation, a summary about parameters is presented in Table
4.1

Parameter Value

Planner Range 30 [m]
Epsilon ε 0.1

Flight Altitude 30 [m]
Resolution of risk-map 5x5 [m/pixel]

Cruise speed 10 [m/s]
Number of explored states 10000

Table 4.1: Summary of parameters employed in the Section 4.2

These parameters are given to the node through its own launcher, that is obtained
after an application has been completed by the user, where everything is checked
according to the criteria imposed by the NFA.
Last but not least, two considerations about the treatment of the data collected in
several simulations. First, it’s indispensable to notice that we have been worked

57

4 – Simulations and Results

with probabilistic algorithms, so it’s unthinkable to hope that 2 tests with perfectly
same parameters come out same results. Therefore, all resulting variable have been
computed as the average of, at least, 5 identical tests. Secondly, the solution cost is
precisely the motion cost of the solution and comes out from the Eq. 4.1:

Motion_cost =

goal−1∑
i=start

risk(xi) + risk(xi+1)

2
· tf(xi, xi+1) =

=

goal−1∑
i=start

risk(xi) + risk(xi+1)

2
· d(xi, xi+1)

v · 3600

(4.1)

Motion_cost =
1

hour
·meter

meter
second

· second
hour

(4.2)

where:

• risk(xi) is the calculated risk for each node - [1
hour

];

• tf(xi, xi+1) is the time of flight from one node to the consecutive one - [second];

• v is the cruise speed - [meter
second

];

• d(xi, xi+1) is the distance between two consecutive nodes in the path, i.e. it’s
the path length, in this work we consider the Euclidean distance - [meter];

Therefore, adding each contribute we reach the goal and the final solution cost. The
Eq. 4.2 shows that, placing 3600 in the denominator to scale hour to second, the
equation is correct about the unit of measurement and the solution cost is rightly
dimensionless. During the results part, we won’t report the calculation of this
variable but only the final result, for this reason it seems important to us to specify
how it comes out and why it has a very low value.

4.2 Results

4.2.1 Off-line Path Planning - RRT* vs RRTX

About the off-line approach, main interest could be referred to the expansion of
the graph and, as a consequence, to the number of explored states related to a certain
time and to the achievement of an optimal value of the solution cost. Therefore, in
order to recapitulate these features, Figures 4.3 and 4.4 are introduced.
Both tests are based on a sequence of very small solver call in order to better ap-
preciate the trends of the considered variable. In particular, in Figure 4.3, not big
differences are deduced about the behavior of the solution function, in fact, in both

58

4.2 – Results

(a)

(b)

Figure 4.3: Comparison of the RRT* and the RRTX algorithms about the behavior
in off-line environment of total nodes and solution function with respect to the time.

cases, the final value is around 1.13 · 10−8 and their evolution is included in the
5% variation around this final value already after the fourth step. About evaluated
nodes imbalances are minimal. RRT*, during the simulation, slightly reduces the
number of added nodes at each step and total explored nodes are around 15200
nodes. While with RRTX, during the simulation, number of added nodes at each
step is various and total explored nodes are around 17300 nodes.
From Figure 4.4, besides, it notices the number of added nodes to the graph at each
step. It can be deduced that RRT* has an asymptotic decreasing behavior, as we
could see also in Figure 4.3, because of its property of adding much less nodes once
it’s around the optimal solution region. RRTX, for its part, after a very high value
at first step, it has an irregular behavior in nodes inclusion. This attitude appears
because, being the algorithm’s search focused on the expansion of the neighbor set

59

4 – Simulations and Results

(and not only on the parent/children set as RRT*), more neighbors a single evaluated
node has, more nodes, finally, the algorithm finds out. Ergo, being the algorithm
probabilistic, the presence of a lot of neighbor is random and, consequently, the
behavior of the above function is random.
The most important factor that could be deducted in both the figures is that, con-
trary to most papers in literature, RRTX presents a computational time clearly
higher that RRT* one. In fact, in order to reach the same solution cost and, approx-
imately, the same number of total evaluated nodes, the former needs 7.5 seconds
while the latter only 1.5, it means 5 times higher. This result proves that, in static
environment, at least in our conditions, RRTX can reach an optimal solution but
can not compete with RRT* about the computational time.

(a)

(b)

Figure 4.4: Comparison of the RRT* and the RRTX algorithms about the behavior
in off-line environment of the number of explored nodes at each step.

60

4.2 – Results

4.2.2 On-line Path Planning - RRT* vs RRTX

In this subsection we analyze 3 different cases to compare the 2 algorithms
behavior in dynamic environments. At first, we start with a map that presents only
risk-costs changes, then risk-costs changes and obstacle addition, finally risk-costs
changes and obstacle removal. For each case, this structure will be used:

1. A paragraph in which RRT* resulting operations will be introduced, starting
from the off-line behavior for both the maps and then moving on to on-line
procedure in order to prove that it’s functional and useful;

2. A paragraph in which RRTX resulting operations will be introduced but, con-
trary to the previous item, since this algorithm doesn’t involve a second solver,
it doesn’t sense to compute the off-line path for the second map. Therefore,
the on-line procedure results will be directly shown removing off-line ones;

3. Finally, a paragraph about comments and comparison between behaviors just
analyzed in that case;

For all cases, the risk is illustrated in greyscale, in which more the grey is darker more
the risk, in that specific area, is higher and likely avoidable. Black areas represent
obstacles and no flight zone.

61

4 – Simulations and Results

Case 1: Only risk-costs changes

As we said, this case is referred only to risk-costs changes so obstacles still
remain at the same position. The maps linked to this test are in Figure 4.5:

(a) (b)

Figure 4.5: Maps used in the case 1. (a) is the first map and (b) is the second one
on which re-planning is performed.

RRT* Starting from Figures 4.6, 4.7 and Table 4.2 several considerations can be
made: first of all, the on-line algorithm can easily compete with the off-line one
because it reaches the same solution cost (so, even the same optimality). Actually,
it shows that could be better because the solution cost has been reached faster (0.649
s) than what we see in the off-line case (0.738 s).

Moreover, the expansion of the graph is rightly wider (as we see in Figure 4.7(b))
because, in the on-line case, starting from a graph already quite informed, the
second solver is more productive and, in fact, it uses new 4102 explored states to
get identical optimality of the off-line case.
Finally, re-planning time is equivalent to 0.787 s, in which 0.65 s comes from the
second solver and 0.137 s comes from the risk-costs updating part. Since the total
re-planning time is almost equal to the second solver time and the graph is widely
more informed, the test can be evaluated as satisfying.

62

4.2 – Results

(a) (b)

Figure 4.6: In (a) and (b) solution paths for each map is independently computed
with the first solver.

(a) (b)

Figure 4.7: The proper on-line procedure is explained in (a), with the first solver,
and in (b), update and re-planning with the second solver is computed.

63

4 – Simulations and Results

Explored Nodes Computational Time [s] Solution cost

Off-line 1st Solver 10000 0.741 1.233·10−8

Off-line 2st Solver 10000 0.738 0.841·10−8

On-line 1st Solver 10000 0.731 1.245·10−8

On-line 2st Solver 14102 0.649 0.84·10−8

Table 4.2: Data collection referred to the RRT* procedures shown in Figures 4.6
and 4.7

RRTX Starting from Figure 4.8 and Table 4.3 several considerations can be made:
first of all, as we said in Section 4.2.2, it would be useless to operate with solving
also the second map since the algorithm doesn’t present a second solver. So we
simply register data of our test and compare them to the on-line RRTX ones, but
we leave comments and comparisons to next paragraph.

(a) (b)

Figure 4.8: Solution path with the proper on-line procedure is illustrated in (a),
thanks to the solver, and (b), thanks to update and re-planning procedure.

The expansion of the graph is wide but even spread on all over the map (as we see in
Figure 4.8(b)), while re-planning time is equivalent to 0.482 s, that is a good response
of the system since algorithm doesn’t search for new nodes and, nonetheless, reaches
the optimal solution of the RRT* approach. Finally the re-planning time, this time,
is all linked to the updating part, because there is no second solver.

64

4.2 – Results

Explored Nodes Computational Time [s] Solution cost

On-line Solver 10000 4.863 1.255·10−8

On-line Re-planning 10000 0.482 0.844·10−8

Table 4.3: Data collection referred to the RRTX procedures shown in Figure 4.8

Comments and Comparison Graphically speaking, looking at Figures 4.7(b)
and 4.8(b), we notice that, even though RRTX presents lower number of explored
states, it has a more homogenized graph’s spread than RRT* actually has. The
latter, in fact, has a graph that is weighted to the goal location, i.e. the graph
is oriented to the goal and areas quite far away from the goal region, or that are
not passing through in order to reach the goal, are much less populated than in
the RRTX case. Actually, also RRTX has oriented to the goal but not as RRT*

because the former has an unlike attitude. Having been made ad hoc for dynamic
environment and having a complex rewiring operations due to graph connectivity
information of neighbors, the RRTX algorithm prefers having information around
all the valid search space because, in case of unpredictable obstacles appearance, an
homogeneous graph set is more convenient since RRTX doesn’t use a second solver.
About the re-planning time, it typically depends on solver time and updating part,
so another crucial inference regards exactly the re-planning time: about the updat-
ing time, RRT* (0.137 s) is faster than RRTX (0.482 s). However, we are interested
on the re-planning time (not to its components) and, in RRT*, it means adding sec-
ond solver time to updating time and, so, re-planning time becomes higher (0.787
= 0.65 + 0.137) than in RRTX.
Therefore, taking into account only dynamic environment, RRTX shows that its re-
planning is faster than the other one and, above all, that the algorithm reach the
same optimal solution.

Finally, in Figure 4.9, a simulation regarding a focus on the updating time is pre-
sented. We have chosen to get a test selecting the number of maximum nodes to
add to the node set (in our case, 20000 nodes) and dividing the computation in 10
steps in order to achieve the updating time at each step. It could be noticed that
behaviors are both increasing and quite similar between each other but the main
difference is represented by the updating time value. Total amount of updating time
in RRTX, after 10 steps, is a little more than 4 times that one in RRT*.

This consideration proves that RRTX could get worse than RRT*, when we over-
come a certain number of evaluated nodes, because an increasing amount of nodes
to update means a long procedure of neighbors update and, consequently, a great
increasing of the updating time, and of the computational time. On the other hand,
RRT* feels less this above-mentioned dependence on the updating time because it’s

65

4 – Simulations and Results

(a)

(b)

Figure 4.9: Computation of the updating time with the respect to a certain amount
of evaluated states that increases at each step. (a) is referred to RRT* while (b) to
RRTX

still more attached to the value of the second solver and because its updating prin-
ciple is very easier than the RRTX one.
Concluding this first case, we can claim that RRTX works better when only risk-
costs changes happen, except for when a big amount of explored nodes is requested.
In that case, we have to evaluate pros and cons of both algorithms and then, accept
the trade-off.

66

4.2 – Results

Case 2: Risk-costs changes and obstacles addition

As we said, this case is referred to risk-costs changes but also to obstacles
addition, so, after the update part, it expects that some nodes will be removed from
the nodes set. The maps linked to this test are in Figure 4.10:

(a) (b)

Figure 4.10: Maps used in the case 2. (a) is the first map and (b) is the second one
on which re-planning is performed.

RRT* Starting from Figures 4.11 and 4.12 and Table 4.4 several considerations
can be made: first of all, the on-line algorithm can easily compete with the off-
line one because it reaches the same solution cost (so, even the same optimality).
Actually, it shows that could be better because the solution cost has been reached
faster (0.7 s) than what we see in the off-line case (0.81 s).

Moreover, the expansion of the graph is rightly wider thanks to same reasons of the
case 1 with the singularity that, as expected, contrary to the above case, obstacles
addition in second map causes elimination of nodes that have been localized in that
particular region. For this reasoning, the second solver starts with 8145 nodes,
instead of 10000, and adds new 5207 explored nodes to the node set to get identical
optimality of the off-line part.
About the re-planning time is equivalent to 0.804 s, in which 0.7 s comes from the
second solver and 0.104 s comes from the risk-costs updating part. Since the total
re-planning time is almost equal to the second solver time and the graph is widely
more informed, the test can be evaluated as satisfying.

67

4 – Simulations and Results

(a) (b)

Figure 4.11: In (a) and (b) solution paths for each map is independently computed
with the first solver.

(a) (b)

Figure 4.12: The proper on-line procedure is explained in (a), with the first solver,
and in (b), update and re-planning with the second solver is computed.

68

4.2 – Results

Furthermore, the obstacles addition influences also the re-planning time, in fact, as
we can notice, the updating time (0.104 s) is slightly lower than that one in the case
1 (0.137 s). Indeed, the cancellation of nodes from the new obstacle region reduces
the number of explored nodes to update, ergo the updating time and the re-planning
time.

Explored Nodes Computational Time [s] Solution cost

Off-line 1st Solver 10000 0.739 1.237·10−8

Off-line 2st Solver 10000 0.810 0.926·10−8

On-line 1st Solver 10000 0.738 1.231·10−8

On-line 2st Solver 13352 0.7 0.925·10−8

Table 4.4: Data collection referred to the RRT* procedures shown in Figures 4.11
and 4.12

Before going on the RRTX it could be particularly appealing showing a detail about
the solution cost in the first solve on the first map. From Figure 4.13, reminding
that we work with probabilistic algorithms, we can notice how much variable could
be the solution cost depending only on probability that a certain branch between
two close nodes could be created or not.

Figure 4.13: Detail of solution path in RRT*, in green the solution cost (that is the
average solution cost on 5 identical tests) is 1.237·10−8 while in pink that one is
1.215·10−8

69

4 – Simulations and Results

RRTX Starting from Figure 4.14 and Table 4.5 several considerations can be made:
first of all, as we said in Section 4.2.2, it would be useless to operate with solving
also the second map since the algorithm doesn’t present a second solver. So, as in
case 1, we simply register data of our test and compare them to the on-line RRTX

ones, but we leave comments and comparisons to next paragraph.

(a) (b)

Figure 4.14: Solution path with the proper on-line procedure is illustrated in (a),
thanks to the solver, and (b), thanks to update and re-planning procedure.

The expansion of the graph is wide but even spread on all over the map (as we see
in Figure 4.14(b)), while re-planning time is equivalent to 0.449 s, that is a good
response of the system since algorithm doesn’t search for new nodes and, nonetheless,
reaches the optimal solution of the RRT* approach.

As in the RRT* part of this case, thanks to the same reasons, the obstacle addition
influences both the final number of explored nodes (8327, that are also the number
of the evaluated nodes after the solver in the off-line part because RRTX, having
not second solver, can not add nodes to the node set) and the updating time (0.449)
slightly lower than that one in the case 1 (0.482).
Finally remember that the re-planning time, this time, is all linked to the updating
part, because there is no second solver.

70

4.2 – Results

Explored Nodes Computational Time [s] Solution cost

On-line Solver 10000 5.027 1.258·10−8

On-line Re-planning 8327 0.449 0.932·10−8

Table 4.5: Data collection referred to the RRTX procedures shown in Figure 4.14

Comments and Comparison Graphically speaking, looking at Figures 4.12(b)
and 4.14(b), for same reasons explained in case 1, we notice that, even though
RRTX presents lower number of explored states, it has a more homogenized graph’s
spread than RRT* has. Actually, the difference is rather evident in regions arranged
immediately behind, with the respect to the motion from start to goal, the added
obstacle. In these regions RRTX has better behavior than RRT*, that has a limited
diffusion of its graph just because it doesn’t care about neighbors but only about
parents and children.
Another crucial inference regards exactly the re-planning time: about the updating
time, RRT* (0.104 s) is faster than RRTX (0.449 s). However, we are interested on
the re-planning time (not to its components) and, in RRT*, it means adding second
solver time to updating time and, so, re-planning time almost doubles (0.804 = 0.7
+ 0.104) that one in RRTX.

Therefore, especially in this case, RRTX shows that its re-planning is faster than the
other one and, above all, that, considering the on-line part, the algorithm reaches
the optimal solution path earlier than RRT* could perform.

71

4 – Simulations and Results

Case 3: Risk-costs changes and obstacles removal

As we said, this case is referred to risk-costs changes but also to obstacles
removal, so, after the update part, it expects that some regions will become valid
and they will fill up thanks to the second solver (in RRT* case) or to the updating
procedure (in RRTX). The maps linked to this test are in Figure 4.15:

(a) (b)

Figure 4.15: Maps used in the case 3. (a) is the first map and (b) is the second one
on which re-planning is performed.

Please notice that considered maps are not simply get from the reversal of the case
2 maps. In the first map of this case a new obstacle have been included close to the
start node and on the supposed path that algorithms should compute, in order to
figure out how algorithms work with nodes that become valid after the off-line part.

RRT* Starting from Figures 4.16 and 4.17 and Table 4.6 several considerations
can be made: first of all, the on-line algorithm can easily compete with the off-
line one because it reaches the same solution cost (so, even the same optimality).
Actually, it shows that could be better because the solution cost has been reached
faster (0.7 s) than what we see in the off-line case (0.742 s).
Moreover, the expansion of the graph is rightly wider thanks to same reasons of the
case 1 with a singularity different from that one in case 2. The obstacles removal
in the second map, as expected, contrary to the previous case, causes an addition
of nodes that have been localized in that particular region. For this reasoning, the
second solver, starting with 10000 nodes, adds new 4486 explored nodes to the node

72

4.2 – Results

set, especially in the new valid region, to get identical optimality of the off-line case.

(a) (b)

Figure 4.16: In (a) and (b) solution paths for each map is independently computed
with the first solver.

(a) (b)

Figure 4.17: The proper on-line procedure is explained in (a), with the first solver,
and in (b), update and re-planning with the second solver is computed.

73

4 – Simulations and Results

About the re-planning time is equivalent to 0.857 s, in which 0.7 s comes from the
second solver and 0.157 s comes from the risk-costs updating part. Since the total
re-planning time is almost equal to the second solver time and the graph is widely
more informed, the test can be evaluated as satisfying. Furthermore, the obstacles
removal influences also the re-planning time, in fact, even if maps of cases 2 and 3
are not perfectly equal, the updating time (0.157 s) is quite higher than that one
in the case 2 (0.104 s). Indeed, in case 2, the cancellation of nodes has reduced the
number of explored nodes to update.

Explored Nodes Computational Time [s] Solution cost

Off-line 1st Solver 10000 0.760 0.913·10−8

Off-line 2st Solver 10000 0.742 1.248·10−8

On-line 1st Solver 10000 0.757 0.917·10−8

On-line 2st Solver 14486 0.7 1.252·10−8

Table 4.6: Data collection referred to the RRT* procedures shown in Figures 4.16
and 4.17

Before going on the RRTX it could be particularly appealing showing a detail about
the updating time. Supposing maps of the case 3 are inverted and used as map of
the case 2 and the on-line procedure gets performed. Our idea is to compare this
procedure and that one normally computed in case 2 in order to highlight the effect
of obstacles on the updating time for RRT*.
From Figure 4.18, we can detect that, graphically speaking, the obstacle appearance
causes, as expected, a pruning of all couple nodes/branches, created in off-line part,
that are in the new obstacle region but, as a consequence, also children of these
nodes are pruned and so on. The result is that a part of the tree gets erased and
thus there are much less nodes to update, as we said in the case 2. The real point
is that in Figure 4.18(d) the obstacle is very close to the start point, so a big part
of tree have been erased and the remaining branches, that we see in the figure, exist
only due to the second solver.
From a computational point of view, this conduct could seem a good thing because
the updating time of the Figures 4.18(c)-4.18(d) example is really low (0.058 s)
compared with that one come from the Figures 4.18(a)-4.18(b) example (0.104 s),
especially because in the Figures 4.18(c)-4.18(d) example the algorithm reaches the
optimal solution anyway. However this conduct reveals a very big deal. Even if the
updating time will be small, the pruning of pretty big part of the tree represents
a drawback for on-line procedure because, if an obstacle forces the path in that
specific region in which the tree has been completely erased, the algorithm needs a
good value of the second solver time to repopulate that area. And often, this is not

74

4.2 – Results

acceptable for real-time behavior. For this reason RRT* doesn’t represent always a
good approach for the on-line operations and it gets substituted by RRTX, as we
said in Section 3.2.

(a) (b)

(c) (d)

Figure 4.18: Detail of the updating time in RRT*, in (a) and (b) we have maps just
used in case 2 and in (c) and (d) we have the maps used in case 3 that, inverted,
now become available for the on-line RRT* procedure

75

4 – Simulations and Results

RRTX Starting from Figure 4.19 and Table 4.7 several considerations can be made:
first of all, as we said in Section 4.2.2, it would be useless to operate with solving
also the second map since the algorithm doesn’t present a second solver. So, as in
case 1 and 2, we simply register data of our test and compare them to the on-line
RRTX ones, but we leave comments and comparisons to next paragraph.

(a) (b)

Figure 4.19: Solution path with the proper on-line procedure is illustrated in (a),
thanks to the solver, and (b), thanks to update and re-planning procedure.

This is the unique case in which the algorithm through the rewiring operations (and
the invalid set I) is able to search for new nodes to explored in regions that become
valid. In fact, starting from the usual 10000 nodes after the off-line solver, it adds
930 new nodes to the node set and gets an optimal solution comparable with that
one computed with the RRT* with same maps. For this reason, the expansion of
the graph is wide and spread on all over the map (as we see in Figure 4.19(b)), here
the algorithm doesn’t have same problem analyzed in the final part of the previous
paragraph.
However, the obstacle removal has a drawback: the algorithm needs a considerable
value of computational time to reach the center of the new valid region, so, as we
can see in Figure 4.19(b) the solution path is not able to go perfectly through these
regions and it’s forced to get a trade-off between turning around them and com-
pletely crossing them. Most likely, the answer at this issue could depend on how
the algorithm uses the planner range. Actually, in reality as in this specific case,
this behavior is not a very big deal because obstacles are not ever too huge but
identification of this problem could be a good start for future works.

76

4.2 – Results

For reasons explained in previous lines, rightly, even the re-planning time is influ-
enced by the obstacle removal. Having to deal with searching of new nodes, in
addition to the usual job of costs updating, it has a value of 0.617 s to reach the
optimal solution of the RRT* approach. This value is higher than that one referred
to case 2 (0.449 s), but, since these conditions are very singular, anyway, it can be
evaluated as a sufficiently good response of system.

Explored Nodes Computational Time [s] Solution cost

On-line Solver 10000 5.565 0.944·10−8

On-line Re-planning 10930 0.617 1.245·10−8

Table 4.7: Data collection referred to the RRTX procedures shown in Figure 4.19

Comments and Comparison Considering this case as that one with the worst
condition for both the algorithm, looking at Figures 4.17(b) and 4.19(b), some com-
ments can be done. Graphically speaking, on one side, for same reasons explained in
case 1, we notice that, even though RRTX presents lower number of explored states,
it has a more homogenized graph’s spread than RRT* has. But, on the other side,
having not a real solver, for reasons just explained RRTX is not able to perfectly
cross the new valid region as RRT* does.
Another crucial inference regards exactly the re-planning time: about the updating
time, RRT* (0.157 s) is faster than RRTX (0.617 s). However, we are interested on
the re-planning time (not to its components) and, in RRT*, it means adding second
solver time to updating time and, so, re-planning time becomes higher (0.857 = 0.7
+ 0.157) than that one in RRTX to get the same optimal solution.

Essentially, on one side, RRTX shows that its re-planning is faster than the other
one to reach the optimal solution but has a problem to cross new valid regions when
they are pretty big. On the other hand RRT* has issues with branches pruning but
tries to solve them with the second solver. Therefore, especially in this case, the
difference is very thin and the choice become constrained by working conditions.

77

4 – Simulations and Results

4.3 Simulation

4.3.1 Environment Configuration

In this section, a complete simulation of a typical "Autonomous flying of UAV"
scenario will be provided: we will show how the processes described in previous chap-
ters really works, focusing mainly on the path planning.
Before starting the simulation, let’s have a quick presentation of the main tools we
used in it.
In order to perform simulation in which drones have actually flying in the real world,
Unmanned Capture The Flag (UCTF) [7] comes to the aid. It is actually nothing
more than a game developed in the ROS environment, in which swarms of drones
could be flown in an Unmanned Capture The Flag match, that can be played both in
the real world and in the simulator. Figure 4.20 shows all the components originally
involved and how they are connected with each other. It consists of a simulator
(Gazebo), an autopilot software (PX4 in figure) mounted on a real or simulated ve-
hicle, and a mission management interface (GCS), linked together for building up,
using a Software-In-The-Loop (SITL) environment.

Figure 4.20: Overview of the Unmanned Capture the Flag architecture

78

4.3 – Simulation

Simulation, testing and debugging have been performed in Gazebo [30], a robot
simulation software that will be presented more in detail in a while, running on
ROS (in Section 2.1) Kinetic distribution. Our needing was to have a simulation
environment, in which vehicles as much as some on-board sensors (like the GPS
transmitter) were simulated, and could send and receive messages and commands
through the MAVLink protocol.

Definition 4.1. A well-designed simulator makes it possible to rapidly test algo-
rithms, design robots, perform regression testing, and train AI system using realistic
scenarios. Gazebo offers the ability to accurately and efficiently simulate populations
of robots in complex indoor and outdoor environments [2].

Gazebo is an open source project supported by a great community, that makes it
one of the primary tools used by the ROS developers. A specific ROS package has
been then developed (Figure 4.21), allowing interaction between the simulation and
the ROS environment. It consists of a robust physics engine, high-quality graphics,
and convenient programmatic and graphical interface, offering the ability to accu-
rately and efficiently simulate robots in a complex scenario, with everything being
customizable according to the needing.

Figure 4.21: Gazebo Application Programming Interface

79

4 – Simulations and Results

(a)

(b)

Figure 4.22: In (a) we have the quadcopter located in its reference, thanks to Gazebo,
and in (b) its location in the real map, thanks to QGroundControl.

By means of proper world files is, in fact, possible to describe, all the elements mak-
ing up the scenario, while with model files, is possible to model any kind of robot.
This is done in a specific format, called Simulation Description File (SDF), even
though it is still possible to find robot model described in the Universal Robot De-
scription File (URDF). SDF is a complete description for everything from the world
level down to the robot level. It is described using XML, is scalable, self-descriptive

80

4.3 – Simulation

and makes it easy to add and modify elements.

On the other hand, Software-in-the-loop (SITL) allows to run the autopilot soft-
ware "ArduPilot" directly, without any special hardware. It takes advantage of the
fact that ArduPilot is a portable autopilot that can run on a very wide variety of
platforms. When running in SITL the sensor data comes from a flight dynamics
model in a flight simulator and the wide range of vehicle simulators built in allows
ArduPilot to be tested on a very wide variety of vehicle types [6].
A big advantage of ArduPilot on SITL is it gives you access to the full range of
development tools available to desktop C++ development, such as interactive de-
buggers, static analyzers and dynamic analysis tools. Moreover, SITL configuration
can be spawned in multiple instances, modeling, if it’s needed, different copters to
exist at once, allowing us to run simulated drones on a reasonably powered laptop.

Starting from the provided configurations, in our specific case, some modifications
have been applied in the JOL, in order to adapt it. Gazebo simulation environment
is set up with certain world and environment models. Drone has been inserted by
means of its URDF model, describing its physics and dynamics. This is what has
been done from UCTF developers, who used a 3DR Iris+ quadcopter as simulated
drone (as in Figure 4.22(a)). This vehicle is equipped with an autopilot software,
that, managing all the technical aspects of the flight, allows high-level interaction
with the drone. It could be chosen between PX4 or ArduCopter, two of the most
common autopilot software in commerce: we decided for the latter because of its
matching with the SITL. It uses the MAVLink communication protocol, that is used
for transmitting commands and informations between vehicle and the control sta-
tion.
Gazebo node, then, through its plugins, simulates the behaviour of Inertial Measure-
ments Unit (IMU) and GPS sensors, publishing messages about IMU, GPS position
and GPS velocity values on specific topics. While, Mavros node represents the
ROS/MAVLink bridge, managing the communication between ROS and simulated
environments, so the autopilot.
We then used, as interface, the QGroundControl [4] software, a powerful Ground
Control Station (GCS) which provides full flight control and mission planning for
any MAVLink-enabled PX4- and ArduPilot-powered UAVs (as in Figure 4.22(b)).
It has been set according to the Software-In-The-Loop configuration, following the
general guidelines, making it read from certain port, where the simulated drone is
communicating via MAVLink.
In order to demonstrate the efficiency and the validity of the risk-map and the path
planning, a portion of the city of Turin, Italy, will be used to perform the simulation.
The model of city, in Figure 4.23(a), is given by OpenStreetMap (OSM) [3], an open
source project that distributes geographical data of the world. Thanks to it, we have
informations about buildings (position, occupancy and height), so the 3D model can

81

4 – Simulations and Results

be extracted and the obstacle layer is defined. And finally, last software involved in
the simulation environment set-up is Rviz, that, working on ROS, provides utilities
for robotic projects’ development and debug phases, allowing to visualize them by
reading specific topics and even sending inputs. An example of what Rviz does is
in Figure 4.23(b).

(a) (b)

Figure 4.23: In (a) we have the model of the city map, thanks to OpenStreetMap,
and in (b) its corresponding map in Rviz environment.

4.3.2 RRTX simulation

After the environment configuration, we are finally able to perform the simu-
lation. According to our advise, the procedure can be divided in 2 different stages:
at first drone executes a certain mission and then, suddenly, it’s forced, because of
a no flight zone appearance, to compute and perform the re-planning procedure in
order to accomplish its initial target.
The computation of the optimal solution path is accomplished by the RRTX and
achieved from the goal to the start, as re-planning theory requests. All messages are
sent from the ArduCopter to the Mavros node and vice versa through MAVLink, in
order to control the drone’s flight.
Graphically speaking, the approach will aim to show in parallel what happens in

82

4.3 – Simulation

Rviz/ROS environment and what the QGroundControl shows in response to its
communication with the ArduCopter.
Before comments and discussions, a small overview on the specifications of the air-
craft and on the parameters settings is explained in Tables 4.8 and 4.9

Specific 3DR Iris+

Type Quadrotor
Mass [kg] 1.282
Radius [m] 0.35

Cruise speed [m/s] 10

Table 4.8: Specifications of the air-
craft

Parameter Value

Algorithm RRTX

Map Resolution [m×m] 5 × 5
Flight Altitude [m] 30
Explored Nodes 10000

Table 4.9: Parameters setting of the
simulation

Starting with the simulations, as we see in Figure 4.24(c) the drone takes off and
follows the same path, shown in Figures 4.24(a) and 4.24(b), that has been com-
puted in first step. Suddenly, a no-flight zone appears on the path 4.25(a), so the
optimal path is no-longer valid and the re-planning procedure is needed. As we see
in Figures 4.25(b) and 4.25(c), clearly the start has changed because drone moves
itself and so even the graph changes according to rewiring operations performed
by the algorithm. Quickly (and we can see how much quickly in subsection 4.2.2)
calculated a new optimal solution path, the autopilot chooses to follow the path
so it changes its direction 4.25(d) and, finally, validate our procedure avoiding the
obstacle 4.25(e) and reaching the goal.
In order to give some data, the computational time needed to reach 10000 states
and get the optimal solution path is equal to 2.411 s, while, the re-planning proce-
dure, that has been performed with 9677 states because of the obstacle addition, is
executed in 0.435 s.
Taking into account the huge size of the map, the last results is excellent and certi-
fies the effectiveness of the whole project.

83

4 – Simulations and Results

(a) (b)

(c) (d)

Figure 4.24: We have in (a) the optimal solution path joined with its graph in Rviz,
in (b) only the solution path in Rviz, in (c) IRIS+ executes the minimum risk path
with SITL simulator in QGroundControl, in (d) IRIS+ in the simulated environment
in Gazebo.

84

4.3 – Simulation

(a) (b) (c)

(d) (e)

Figure 4.25: We have in (a) the obstacle appearance and the no-longer valid opti-
mal path in Rviz, in (b) an (c) the computation of the re-planning optimal path
in Rviz and, finally, in (d) and (e) IRIS+ executes the minimum risk path with
SITL simulator in QGroundControl, following the instructions obtained by the path
planner.

85

86

Chapter 5

Conclusions and Future Works

Taking into account the fast and sudden growth of applications field for un-
manned aerial vehicles, the main purpose of the whole project has been focused to
build a new Traffic Manager able to handle the complexity of a dynamic urban envi-
ronment, ensuring safety for people on the ground, in order to support commercial
fully-autonomous UAS operations in certain airspace.
Starting from the identification of the concepts involved, we have gone on defining
problems raised and, then, on researching techniques and methodologies that can
be used to treat them, often getting what is available in the literature of the sector.
Main preoccupation has been the creation of a well defined structure and set of
procedures, so that future developments can be easily integrated within the present
architecture. The obtained results have shown the goodness of the proposed solu-
tions, validating the approach that, with further developments, can play a role in
the creation of a future UTM system.
Going deeply inside the project, my thesis has been integrated as part of the overall
project, conducted in the Joint Open Lab (JOL) with other 3 colleagues, to manage
the path planning problem interpreting data coming from the risk-map providing an
optimal global path fo dynamic environment, able to avoid obstacles and no-flight
areas, an to minimize the risk-cost defined by the risk-map.
The proposed method aspires to compare two probabilistic algorithms, RRT* and
RRTX, through both off-line and on-line analysis, in handling particular and differ-
ent scenarios, that have been shown in Section 4, to find out which one has best
behavior and why.

An essential part was the implementation of the mentioned algorithms, which led
us to a better comprehension of the ROS environment. Considering path planner as
an independent node improves managing data streams and connections within the
different elements of the workstation, however a crucial support have been gave by
the open motion planning library (OMPL). It provides an abstract representation
for all of the core concepts in motion planning, including the state space, control

87

5 – Conclusions and Future Works

space, state validity, sampling, goal representations and planners [51], so that very
complex and realistic simulations can be performed.
As we expected, after the initial learning phase in which we invested time to get hold
of the tool, the use of this platform allowed and accelerated the entire development.
Once the system was implemented, it was possible to test the design results through
simulations that have been reported in this thesis in Chapter 4. The simulations
conducted finally validated both the proposed algorithms upon the considered work-
ing environment. It has been demonstrated that RRT* provides better optimal
solutions, especially in off-line settings, but RRTX can work better in dynamic en-
vironment, when time requirements are very burdensome.
Since this is a thesis work, it wasn’t possible to cover everything and we really hope
someone next will finish it. In particular, some improvements can be done to the
specific code composition of the above-mentioned algorithms to take the advantage
of all potentialities offered by OMPL. Consideration of kinodynamic constraints of
the vehicle, presence of multiple UAVs and adaptation to a tridimensional environ-
ment could be other fundamental aspects to be stressed. In this sense, sensors on
board and communication link between drones and cloud have to be studied, imple-
menting also a filtering on data.
In any case, more frequent experimentation with real vehicles should be reached to
face all those aspects that reality itself involves.

88

Bibliography

[1] Erle robotics. ros concepts, https://erlerobotics.com/blog/ros-introduction.
[2] Gazebo contributors. http://gazebosim.org/.
[3] Openstreetmap contributors, 2017. planet dump retrieved from

https://planet.osm.org.
[4] Qgroundcontrol ground control station for px4 and ardupilot uavs.
[5] Ros contributions. ros wiki, http://wiki.ros.org.
[6] Sitl contributors, 2017. sitl guide retrieved from https://planet.osm.org.
[7] Uctf - unmanned capture the flag; https://github.com/osrf/uctf.
[8] Unmanned aerial vehicle. (n.d.) dictionary of military and associated terms on:

https://www.thefreedictionary.com/unmanned+aerial+vehicle.
[9] Unmanned aircraft system traffic management (utm)

https://www.faa.gov/uas/research/utm/.
[10] Oktay Arslan and Panagiotis Tsiotras. Use of relaxation methods in sampling-

based algorithms for optimal motion planning. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pages 2421–2428. IEEE,
2013.

[11] Oktay Arslan and Panagiotis Tsiotras. Dynamic programming guided explo-
ration for sampling-based motion planning algorithms. In Robotics and Au-
tomation (ICRA), 2015 IEEE International Conference on, pages 4819–4826.
IEEE, 2015.

[12] David Brandt. Comparison of a and rrt-connect motion planning techniques
for self-reconfiguration planning. In Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, pages 892–897. IEEE, 2006.

[13] Range Commanders Council. Standard 321-07 “common risk criteria standards
for national test ranges: Supplement”. USA Dept. of Defense, 2007.

[14] Konstantinos Dalamagkidis, Kimon P Valavanis, and Les A Piegl. On integrat-
ing unmanned aircraft systems into the national airspace system: issues, chal-
lenges, operational restrictions, certification, and recommendations, volume 54.
springer science & Business Media, 2011.

[15] Didier Devaurs, Thierry Siméon, and Juan Cortés. Optimal path planning in
complex cost spaces with sampling-based algorithms. IEEE Transactions on
Automation Science and Engineering, 13(2):415–424, 2016.

89

Bibliography

[16] Edsger W Dijkstra. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959.

[17] František Duchoň, Peter Hubinskỳ, Andrej Babinec, Tomáš Fico, and Dominik
Huňady. Real-time path planning for the robot in known environment. In
Robotics in Alpe-Adria-Danube Region (RAAD), 2014 23rd International Con-
ference on, pages 1–8. IEEE, 2014.

[18] Péter Fankhauser and Marco Hutter. A universal grid map library: Implemen-
tation and use case for rough terrain navigation. In Robot Operating System
(ROS), pages 99–120. Springer, 2016.

[19] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM,
5(6):345, 1962.

[20] Sara Giammusso. Cloud robotics in real time application.
[21] Giorgio Guglieri, Alessandro Lombardi, and Gianluca Ristorto. Operation ori-

ented path planning strategies for rpas. AMERICAN JOURNAL OF SCIENCE
AND TECHNOLOGY, 2(6):1–8, 2015.

[22] Felipe Haro and Miguel Torres. A comparison of path planning algorithms
for omni-directional robots in dynamic environments. In Robotics Symposium,
2006. LARS’06. IEEE 3rd Latin American, pages 18–25. IEEE, 2006.

[23] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[24] ZeFang He and Long Zhao. The comparison of four uav path planning al-
gorithms based on geometry search algorithm. In Intelligent Human-Machine
Systems and Cybernetics (IHMSC), 2017 9th International Conference on, vol-
ume 2, pages 33–36. IEEE, 2017.

[25] Sertac Karaman and Emilio Frazzoli. Optimal kinodynamic motion planning
using incremental sampling-based methods. In Decision and Control (CDC),
2010 49th IEEE Conference on, pages 7681–7687. IEEE, 2010.

[26] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research, 30(7):846–894,
2011.

[27] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE transactions on Robotics and Automation, 12(4):566–580, 1996.

[28] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg. A survey of research on
cloud robotics and automation. IEEE Transactions on Automation Science
and Engineering, 12(2):398–409, April 2015.

[29] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. The international journal of robotics research, 5(1):90–98, 1986.

[30] Nathan P Koenig and Andrew Howard. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In IROS, volume 4, pages 2149–2154.

90

Bibliography

Citeseer, 2004.
[31] Steven M LaValle. Rapidly-exploring random trees: A new tool for path plan-

ning. 1998.
[32] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.
[33] Andrea Lorenzini. Cloud-based uavs traffic management system: a risk-aware

map manager.
[34] ACMDV Maniezzo. Distributed optimization by ant colonies. In Toward a

practice of autonomous systems: proceedings of the First European Conference
on Artificial Life, page 134. Mit Press, 1992.

[35] Kourosh Naderi, Joose Rajamäki, and Perttu Hämäläinen. Rt-rrt*: a real-
time path planning algorithm based on rrt. In Proceedings of the 8th ACM
SIGGRAPH Conference on Motion in Games, pages 113–118. ACM, 2015.

[36] Alex Nash, Kenny Daniel, Sven Koenig, and Ariel Felner. Thetaˆ*: Any-angle
path planning on grids. In AAAI, pages 1177–1183, 2007.

[37] Iram Noreen, Amna Khan, and Zulfiqar Habib. A comparison of rrt, rrt*
and rrt*-smart path planning algorithms. International Journal of Computer
Science and Network Security (IJCSNS), 16(10):20, 2016.

[38] Masoud Nosrati, Ronak Karimi, and Hojat Allah Hasanvand. Investigation of
the*(star) search algorithms: Characteristics, methods and approaches. World
Applied Programming, 2(4):251–256, 2012.

[39] Michael Otte and Emilio Frazzoli. {\mathrm {RRTˆ{X}}}: Real-time motion
planning/replanning for environments with unpredictable obstacles. In Algo-
rithmic Foundations of Robotics XI, pages 461–478. Springer, 2015.

[40] Michael Otte and Emilio Frazzoli. Rrtx: Asymptotically optimal single-query
sampling-based motion planning with quick replanning. The International
Journal of Robotics Research, 35(7):797–822, 2016.

[41] Francesco Polia. Cloud-based uass traffic management: Trajectory tracking
and collision avoidance.

[42] Stefano Primatesta, Giorgio Guglieri, and Alessandro Rizzo. A risk-aware path
planning method for unmanned aerial vehicles. In 2018 International Confer-
ence on Unmanned Aircraft Systems (ICUAS), pages 905–913. IEEE, 2018.

[43] Stefano Primatesta, Luca Spanò Cuomo, Giorgio Guglieri, and Alessandro
Rizzo. An innovative algorithm to estimate risk optimum path for unmanned
aerial vehicles in urban environments. In 2018 International Conference on Air
Transport (INAIR). IEEE, 2018.

[44] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[45] Stjepan Rajko and Steven M LaValle. A pursuit-evasion bug algorithm. In
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International

91

Bibliography

Conference on, volume 2, pages 1954–1960. IEEE, 2001.
[46] Elon Rimon and Daniel E Koditschek. Exact robot navigation using artificial

potential functions. IEEE Transactions on robotics and automation, 8(5):501–
518, 1992.

[47] Stefano Scheggi and Sarthak Misra. An experimental comparison of path plan-
ning techniques applied to micro-sized magnetic agents. In Manipulation, Au-
tomation and Robotics at Small Scales (MARSS), International Conference on,
pages 1–6. IEEE, 2016.

[48] Enrico Stabile. Cloud-based uass traffic management: Registration, identifica-
tion and monitoring.

[49] Anthony Stentz. Optimal and efficient path planning for partially-known envi-
ronments. In Robotics and Automation, 1994. Proceedings., 1994 IEEE Inter-
national Conference on, pages 3310–3317. IEEE, 1994.

[50] Anthony Stentz et al. The focussed dˆ* algorithm for real-time replanning. In
IJCAI, volume 95, pages 1652–1659, 1995.

[51] Ioan A Sucan, Mark Moll, and Lydia E Kavraki. The open motion planning
library. IEEE Robotics & Automation Magazine, 19(4):72–82, 2012.

[52] PB Sujit, Srikanth Saripalli, and Joao Borges Sousa. Unmanned aerial vehicle
path following: A survey and analysis of algorithms for fixed-wing unmanned
aerial vehicless. IEEE Control Systems, 34(1):42–59, 2014.

[53] Brian P Tice. Unmanned aerial vehicles: The force multiplier of the 1990s.
Airpower Journal, 5(1):41–55, 1991.

[54] Liang Yang, Juntong Qi, Jizhong Xiao, and Xia Yong. A literature review of
uav 3d path planning. In Intelligent Control and Automation (WCICA), 2014
11th World Congress on, pages 2376–2381. IEEE, 2014.

92

	List of Tables
	List of Figures
	Introduction
	Context Definition and Thesis Contributions
	State of Art
	Deterministic Algorithms
	Probabilistic Algorithms

	Thesis Structure

	Basics and Requirements
	ROS
	Cloud Robotics
	Risk
	Unmanned Mission's risk

	CBUTM
	Overview

	Risk-Aware Path Planning
	Off-line Planning
	Problem Formulation
	RRT* Algorithm

	On-line Planning
	Problem Formulation
	Dynamic RRT* Algorithm
	RRTX Algorithm

	Simulations and Results
	Implementations
	Results
	Off-line Path Planning - RRT* vs RRTX
	On-line Path Planning - RRT* vs RRTX

	Simulation
	Environment Configuration
	RRTX simulation

	Conclusions and Future Works
	Bibliography

		Politecnico di Torino
	2018-10-18T09:29:00+0000
	Politecnico di Torino
	Alessandro Rizzo
	S

