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Summary

Communication technologies such as WiFi or cellular networks are designed to be extremely
efficient. While this is the original purpose, having fault tolerance and reliable networks
seems to be the ultimate goal. One step towards reaching reliability in systems is anomaly
detection and identifying sources of failures.

Alarm log plays a crucial role in the network area since it has been mostly known as a
valuable source of information for anomaly detection and reporting network failures. An
alarm is a message produced by a network element, typically when a problem happens
unexpectedly. Given the major issues of syslog processing, failures in a telecommunication
network are reported to management centers in the form of alarms but unfortunately this
report is a limited view from the network element which seem to add unreliability.

Furthermore, one fault can result in a number of different alarms from several network
elements. The information contents of alarm messages are very diverse. Some alarms could
issue the problems in logical concepts, such as virtual paths, whereas others are concerned
with physical devices, e.g., power supplies or cable failures. Some alarms acknowledge a
distinct failure, such as the incoming signal is missing, whereas some only report a high
error rate without any sufficient information for the cause. All these different types of
messages should be handled in alarm correlation systems.

Manual analysis of such logs is time-consuming and costly because they involve an
extensive amount of data. On the other hand, the automatic detection of useful information
can be also quite challenging. As a result, finding suitable methods to process these logs
in a proper way is a well-established problem in the network analysis area.

In this perspective, it is possible to use approaches based on supervised classification
systems, provided that we have access to labeled data that allows training of the system.
However, the available data as will be discussed is not always sufficient and correctly
labeled to allow a supervised classification approach. To solve this problem, one can
alternatively utilize unsupervised approaches, in which data is used without labels, and
then it is an adequate baseline for exploration techniques. With unsupervised machine
learning techniques, we will mine data logs and thus provide meaningful information about
possible causes and cascade effect in a network failure. Since we are using such methods,
we will review the main steps of machine learning used in our thesis to build a predictive
model. Data Gathering, preparation, cleaning and manipulation are parts of these steps.
Then choosing an ML model is required which is then followed by evaluation and parameter
tuning.
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The available data is extracted from TIM Network Operations Center (NOC) which
includes the list of whole alarms during specific months for different provinces of Italy.
In the second chapter, we will discuss the characteristics of used data to recognize its
behavior. As we will see, network devices produce thousands of alarms daily but only
about ten percent was presented to the operator (They were reported on the same period
of months mentioned previously). Each alarm has some features that indicate the time
and geographical place in which the alarm was recorded together with extra information
about the cause, severity and etc. To reduce the computational complexity, we will only
focus on the most important features that are domain-driven by static rules.

Since the percentage of presented/reported alarms are small, it could imply what we will
find as a rule may not be generated by the reported alarms and therefore the interpretation
of such rules would rely too heavily on the network domain expert. Set of available data
can be fully described and illustrated by using probability distribution function of alarm
inter-arrival time of aggregations for features of interest such as province, region and etc.

Since most of our interesting features in the dataset are categorical, it is difficult to define
a measure of distance for clustering algorithms so we will choose association rule mining
on frequent items as an alternative approach. In order to use such methods, we will recall
preliminaries of market basket analysis problem, in which the main objective is to extract
actionable knowledge and co-occurrences from the vast features of transactional databases
in order to gain competitive advantage. Throughout the third chapter we will address the
required steps to produce frequent items, association rules and finding correlations.

The next two chapters will discuss unsupervised machine learning methodologies in
which separated network devices and device types is investigated. The first step is to look
for items that we are interested to study and then define the transactions for them. For
using any pattern mining algorithm, we are required to transform the data from its frame
format into transactions such that each row corresponds to a transaction whereas each
column indicates an item. Defining these matrices require experiments since each method
has different results and its own advantages. For choosing items we will focus on each
network device to extract specific correlations. We then identify which devices were raising
alarms at the same time bin more frequently. We will focus on Turin province to reduce
complexity and study two datasets reported in two different month of May and September
2017.

We will then apply frequent pattern mining methods on this matrix to extract frequent
items that are later used to find temporal and spatial co-occurrences. Some temporal corre-
lations among power plants and events are evident. Nevertheless, finding the direct spatial
correlation is harder to accomplish because we are not informed about the topological
connectivity among plants.

We outline the most significant mutual rules which hold true with a high probability
in two selected provinces located close to each other (Turin and Milan). We consider
the significance of a rule with its measures of interestingness such as lift, support, and
confidence. Visualization of these rules together with the knowledge from domain expert
is another measure of importance.
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We will show how observed frequent patterns help us to recognize possible future anoma-
lies as situations appeared in the past and avoid them from happening again. Our work is to
aid the experts in recalling and formulating correlation patterns in an efficient way. Given
obtained rules derived from an alarm database, domain expert is able to verify whether
the rules are useful or not. Some of the rules may reflect causal correlations and give new
insights into the behaviour of the network elements whereas others may be irrelevant.

While most of the thesis is devoted to rules obtained from suitably defined transaction
matrices, in the last chapter we broaden our scope of investigation to another changes that
could be done in order to optimize this definition. As we will observe, parameterization is
needed when searching for proper methods in order to find the required information from
the data. In our approach, we apply this with different thresholds and data selections. As a
result, the method reveals a set of selected informative rules. Then experts can learn quite
a lot from the data and find the answer to questions such as: "What are the distributions
of alarms types and their causes?", "What are the most common combinations of devices
that generated alarms?", "Is there any correlation among the alarms coming from different
sources?", and so on. By logic, this kind of information and knowledge about the network
could be even more valuable than the rules found in the data because such information
can relatively easily be interpreted.

we will conclude the feedback from TIM network maintenance team in Rome who
confirmed that rules similar to what we found were already presented in their system. So
our automatic rules are useful for their systems. Moreover, TIM will use the rules we
extracted as an input of machine learning algorithms to "detect patterns". These rules are
stored in the systems as a list of "situations" presented together with meta-data (location,
resolution and etc).
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Chapter 1

Introduction

Communication technologies such as WiFi or cellular networks are designed to be extremely
efficient. While this is the original purpose, having fault tolerance and reliable networks
seems to be the ultimate goal. One step towards reaching reliability in systems is anomaly
detection and identifying sources of failures. Various types of telecommunication networks
for mobile devices such as 2G/GSM, 3G/UMTS, and 4G/LTE have similar architectures
and their engineering is usually evolving into single-point failures which make them more
vulnerable by design. As depicted in Figure 1.1, the key components of the mentioned
technologies are Mobile Switching Center (MSC), Base Station Controller (BSC), Base
Transceiver Station (BTS).

These elements function hierarchically with MSC as their root. Therefore, failure of
MSC leads to the failure of the entire network. Moreover, a base station controller medi-
tates the communication between base transceiver station and the mobile switching center.
As a result, if BSC reports an error, its existing controlled BTSs will also report an error.
Figure 1.2 shows possible situations of failures in a cellular network and their effect on the
rest of network.

As we observed, It is important to accurately detect abnormalities in order to avoid
generating a high number of false positives in the network. It is also vital to avoid false
negatives that would contribute to a network malfunction.

System alarm log has an extremely important part to achieve this aim because it reports
network failures. Looking in a telecommunication alarm log, the goal is to find relationships
among alarms. These can then be used in the on-line analysis of the incoming alarm
stream, for instance to better explain the problems that cause alarms, suppress redundant
alarms, predict a set of critical situations and severe faults, and finally suggest actions
by learning from experiences of the past. Nevertheless, it is not an easy task to analyze
syslog manually, since it can be often time consuming and costly. For this reason, usage of
automatic techniques such as machine learning algorithms is fundamental.

In this perspective, it is possible to use approaches based on supervised classification
systems, provided that we have access to labeled data that allows training of the system.
However, the available data as will be discussed in 2.2 is not always sufficient and correctly
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1 – Introduction

Figure 1.1: A sample schematic of Cellular Network [1]

’labeled’ to allow a supervised classification approach. To solve this problem, one can
alternatively utilize unsupervised approaches, in which data is used without labels, and
then it is an adequate baseline for exploration techniques.

Our research will focus on unsupervised machine learning and analyzes the available
data to highlight characteristics, correlations, dependencies and any anomalies that reflect
a change in the system behaviour even in the absence of labeled data. We will use a method
to mine big datasets of alarms by using a matrix of transactions and items. Afterwards, we
show patterns produced by association rules among these items. The idea of using pattern
mining as a particular apparatus is due to using unsupervised approaches to find frequent
patterns which can eventually lead to synthesize a meta-alarm or to recognize frequent
critical situations.

Moreover, the data we have is in fact characterized by many categorical features, so it
is well suited to this approach, whereas use of clustering algorithms would be ineffective
due to the major issue of defining distances between features for the categorical note.

We undertake the study by introducing a well-documented developed modeling tech-
nique called market basket analysis (see 3.1) to find correlations in a data set (e.g.,
purchases in store receipts). For example one question in market basket analysis is:

• Given all the receipts, what are the groups of items that are bought together with a

2



1 – Introduction

(a) (b)

(c)

Figure 1.2: Possible failures of cellular network: (a) - MSC failure, (b) - BSC failure, (c) -
BTS failure

high probability?

Turning now to our case, the question is about defining the transactions(receipts) as the
group of alarms occurred together in the same time interval, and geographical area. Evi-
dently, here the question is:

• Given the transactions seen, what are the elements that appear together frequently?

In the following, we will explore the term syslog more widely and explain its processing
method. Next, we will have a look on previously related works.

3



1 – Introduction

1.1 A Brief Journey into Syslog Processing

1.1.1 What Is Syslog?

Syslogs are messages sent by networking devices such as routers, switches, wifi access points
and etc widely used to help monitor a network and issue its anomalies. Syslog messages
have different types which are mostly dependent on device kinds. Even so, by using time
stamp and actual log message and severity of the field, we can identify when, where and
to what degree that specific log was important to be stored.

1.1.2 Challenges of Syslog Processing

While syslogs offer various utilities tailored to our problem in the area of network mining,
its processing involves a lot of issues. They are often free-form with little structure1

and different formats which may not be human readable and high-level [7]. In general,
important logs based on the system failures are hidden in the majority of those that are
reporting the daily routine processes. This means, not every syslog is an indication of a
failure that could impact on the performance of the network.

The message relationship models are forced to be constantly updated to keep up with
network changes. This introduces a huge amount of data related to syslog which makes the
procedure of analyzing much more complex. To analyze log files separately and manually
link each related log afterwards is seldom practical and highly time-consuming.[10]

In the interest of simplicity, we talk about alarms in the next chapters of this thesis.
Nonetheless, the previous preliminaries should be understood to cover understanding of
further definitions and findings.

1.1.3 Alarms

Whenever, certain patterns of syslogs are observed, alarms will be raised. An alarm is a
message produced by a network element, typically when a problem happens unexpectedly.
Given the major issues of syslog processing, failures in a telecommunication network are
reported to management centers in the form of alarms but unfortunately this report is a
limited view from the network element which seem to add unreliability. Furthermore, one
fault can result in a number of different alarms from several network elements. Table 1.1
shows an example format of alarms with selected fields in our available data set. Each
row in the table has features such as NeID which shows ID of the network device that
has generated the alarm along with timestamps, type, severity and cause of that alarm.
Although each row in the data set contains over 100 fields/columns, in order to reduce
complexity of working with a large data set, we can only consider an alarm as a multiple
fields of the most important features selected by experiments and domain expert.

1Structured data is significantly known for being easily parseable
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1.2 – Research Questions and Challenges

1.1.4 What Do Alarms Report?

The time field reported in each alarm is recorded by the sender, typically at a granularity
of one second. Sender of an alarm can be identified at the level of a network element [15].
Description field reports the problem accompanied with information that is available to
the sender.

The information contents of alarm messages are very diverse. Some alarms could issue
the problems in logical concepts, such as virtual paths, whereas others are concerned with
physical devices, e.g., power supplies or cable failures. Some alarms acknowledge a distinct
failure, such as the incoming signal is missing, whereas some only report a high error rate
without any sufficient information for the cause. All these different types of messages
should be handled in alarm correlation systems.

1.1.5 Alarm Correlation Technique

Alarm correlation is a central technique for processing the flow of alarms arriving in a
management center into a smaller but more useful set of reports by looking at the active
alarms within a time window, and interpreting them as a group.

1.2 Research Questions and Challenges

As stated before, this research was conducted in order to effectively filter the redundant
alarms, identify the faults, and suggest corrective actions. We try to reduce the workload
of network managers by processing the large alarm data set. Building a correlation model,
however, suffers from the complexity and diversity of network elements and the large
variation in the patterns of alarm occurrences. In this thesis, we present methods for
semi-automatic discovery of patterns in data base.

1.3 Related Literature

One of the comparative works on pattern mining is argued in [23], [24], [25]. These studies
are based on the first knowledge discovery system ever built known as Telecommunication
Alarm Sequence Analyzer or TASA. This system is aimed at analyzing alarm set collected
from GSM networks by using data mining approaches. These analyzes are based on finding
alarm correlations and filtering the related ones and predicting a combination of forthcom-
ing malfunctions. TASA discovers patterns in form of associations and episode rules. This
application is one of the starting points in knowledge discovery and analyzing network log
data with frequent pattern mining. It finds a large rule collection and gives the user criteria
for including or excluding certain rules.

Despite the effectiveness of TASA, this software suffers from a downside in providing an
overwhelming amount of rules given from the alarms that occur often together in a time
period. These rules could point out to associations of items such A, B and C and present a

5



1 – Introduction

subset of every possible combination of these items which clearly creates large data sets of
rules. An additional problem is when episode rules are mined, alarms from simultaneous
but with separate cause of faults appear correlated to each other. This correlation is
statistically true because they do occur during the same time period. However, due to
network structure, the faults causing these alarms probably have nothing to do with each
other.

Furthermore, researches from [25], [26] and [27], that were studied earlier, deal with
episode and association rules in a form of small pieces of local correlations in the network.
These are semi-automatic approaches to acquire meaningful information from alarms in
order to collect the required knowledge for knowledge-based systems like alarm correlators.
Unfortunately, when there are too many pieces of uncleared relations, the big picture of
the network remains vague or corrupted.

literature in [3] and [6] drew our attention to sequential pattern mining to better discover
the failures and temporal correlations. However, we discovered later from the visualizations
of our data set that categories of itemsets do not follow a sequential pattern and is random.
For instance the cause of generated alarms from associated devices are not always in the
same order.

A review on the work of [5], reveals that Varandi investigated the issue of failure de-
tection by using a clustering technique. Primely, the proposed model constructs clusters
by grouping event logs on the basis of their message characters and afterwards detects
failures by tracking anomalous events which do not belong to any existing cluster. The
shortcomings of this method is clear because it is not applicable for categorical features
and defining a measure of distance for each cluster would not be easily possible.

Several studies for instance [15] have been performed on historical event log mining, pe-
riodic patterns/ similarities and their visualization. A recent review on this area including
those suggested by TIM have been dedicated to analysis of structured logs such as syslogs.
Literature from [8] and [9] deals with root cause analysis in a graph that models failures
in networks. Work in [7] focuses on analysis of syslogs with a much more structured data
format.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows:
Chapter 2 will list all the main features in the dataset. It will then discuss characteristics

of the used data and plot distribution functions to recognize its behaviour.
Chapter 3 will be devoted to basic definitions and preliminaries of market basket anal-

ysis, one of the main methods in practice, used by large retailers to uncover meaningful
associations among customers purchase data as well as pattern mining concepts and asso-
ciation rules. It later describes an overview of argued methodologies for finding a matrix of
transaction and itemsets which is well-defined for our problem. Throughout this chapter,
we will address the required steps to produce frequent items, association rules and finding
correlations.
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1.4 – Organization of the Thesis

Chapter 4 will study an unsupervised machine learning methodology in which sepa-
rated network devices will be investigated. This approach extracts the specific temporal
correlations among network devices.

Chapter 5 will study an unsupervised machine learning methodology in which the types
of each network device will be investigated. Unlike the previous chapter, this approach
extracts more general correlations among network devices by focusing on their types. It
also tries to investigate geographical correlations alongside temporal associations.

Chapter 6 will conclude the research and explains the further possible studies.
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Chapter 2

Characterization of Alarms

2.1 Source of Data

In this thesis, several data sets from TIM network operation center have been used for ver-
ifying the derivative rules and patterns. Datasets have been extracted from TIM Network
Operations Center (NOC) and Service Operations Center (SOC)(see Figure 2.1). NOC
controls the state of the telecommunications network and manages anomalous situations
that must be corrected to ensure accurate operations. SOC, similar to NOC, monitors the
operation of services offered by the company. Data collected is provided by TIM which
includes a list of alarms during months of May and September of 2017. Network devices
produce thousands of alarms daily but only about ten percent was presented to the oper-
ator (They were reported on the same period of months mentioned previously). Since the
percentage of presented/reported alarms are small, it could imply what we will find as a
rule may not be generated by the reported alarms and therefore the interpretation of such
rules would rely too heavily on the network domain expert.

2.2 Main Features

As mentioned earlier, each alarm has some features that indicate the time and geographical
place in which the alarm was recorded together with extra information about the cause,
severity and etc. To reduce the computational complexity, we are only focusing on the
most important features that are domain-driven by static rules. In the next part, we will
outline the definitions of these features. Here are the main features of alarms:

1. Central: Identifies the location of antenna center which has generated the alarm.

2. NeID: It identifies a 9-letter id of the network device which has sent the alarm and
specifies technology, equipment, province and plant id of the device. Technology is
shown by the first letter and it is according the table 2.1. The equipment could be a
base station controller, radio network controller, base transceiver station or etc.

9



2 – Characterization of Alarms

Figure 2.1: Operations Center Diagram

Different devices might belong to the same center, for instance, let us consider NeID
of two below devices:

• GBSCTO050
• GBSCTO052

These two devices are base station controllers which are using GSM technology and
both belong to the same center located in Turin province. Detailed characteristics of
the first device is reported in Table 2.2.

Technology (1st Letter)
G GSM
U UMTS
9 UMTS 900
1 LTE 1800
2 LTE 2600
8 LTE 800

Table 2.1: Possible abbreviations for technologies used in network ID

1st Letter 2nd–3rd –4th Letters 5th –6th Letters 7th –8th –9th Letters
G GSM BSC TO Torino 050

Table 2.2: Example: characteristics of the device GBSCTO050

3. Std ProbableCause No: Probable cause of the alarm which has three cases:

10



2.3 – General Statistics of the Collected Data

− The alarm is from Element Manager1.
− The alarm is result of an ABAM rule, which creates a parent alarm that has

alarms from the vendors as children. It is reliable but often announced as "in-
determinate". This occurs when Manager is equal to IMPACT and Agent is
CIC.

− Alarm is from SOC manager. In this case, the alarm is generated by rules on
network counters, not by machines(we do not consider it).

4. OriginalNeId:It is composed of network type and Element Manager id.

5. Last Occurrence: Last instant in ABAM encountered alarm occurred. The last
notification by the Element Manager is highlighted in the NeLastAlarm field.

6. First Occurrence: The first instant ABAM encountered this alarm. The first noti-
fication by the Element Manager is highlighted in the NeStartAlarm field.

7. Alarm Count: Number of alarms between NeStartAlarm and NeLastAlarm. There
is no information about timing distribution of alarms in that period. For simplicity,
we consider these simple alarms uniformly distributed over time in the following
analyses.

8. Original Severity: It is assigned directly by the Network Element during and it
never changes. There are four different types of severity including: Major, Minor,
Critical and Warning.

9. Summary: This field describes the problem generated by specific vendors. This
feature is an expanded explanation of probable cause, therefore their statistics are
similar.

10. Alarm Type: There are five different types of alarms: equipment, communication,
environmental, processing error and quality of service.

11. Duration ABAM: Minutes between the first instant in which the alarm occurred
in ABAM (FirstOccurrence) and the last instant (LastOccurrence).

12. Specific Problem: This field describes the cause of generated alarm in specific.

2.3 General Statistics of the Collected Data

In the first attempt, we try to identify the macroscopic characteristics of the data that
could be used as a feature. Since there are quite different types of vendors and systems
in the data set, the available data is very heterogeneous and granular. The temporal
granularity of the alarms, which are aggregated at the precision of minutes, creates a large
number of contemporary events. The progressive filtering of data by only focusing on

1OSS system from which the alarm is generated
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specific subsets(same region or geographical area) can significantly improve the analysis.
In the next sections, we will investigate the distribution of alarms by using plots such as
probability distribution functions and bar graphs.

2.3.1 Inter Arrival Time

Set of available data can be fully described and illustrated by using probability distribution
function of alarm inter-arrival time of aggregations for features of interest such as province,
region and etc. Figure 2.2 indicates probability distribution function of raised alarms in the
whole Italy based on their inter-arrival time in less than one hour, which are categorized
by province. Based on the plot, data set is very granular and heterogeneous and more than
60 percent of events reported in Milan and Bologna are "simultaneous". Even by analyzing
different regions, the heterogeneous behavior is observable as shown in Figure 2.3. The plot
represents, probability distribution function of raised alarms in the whole of Italy based
on their inter-arrival time in less than one hour, which are categorized by location.

Figure 2.2: Distribution of raised alarms based on the inter-arrival time grouped by
province

2.3.2 Features Value Distributions

It is also useful to display characteristics of data with the values. Plot 2.4 gives a general
view for frequencies of the raised alarms categorized by alarm types in the north of Italy
in May. Most of the alarms are basically from communications, quality of service. Figure
2.5 reports frequencies of the raised alarms categorized by original severity in the north of
Italy in May. Given the plot, the most common severity of alarms is major.
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Figure 2.3: Distribution of raised alarms based on the inter-arrival time grouped by location
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Figure 2.4: Bar Graph: Raised alarms categorized by alarm types in north of Italy in May

Figure 2.6 depicts frequencies of the raised alarms categorized by probable cause feature
in the north of Italy in May. The frequency is reported on a logarithmic scale and has a
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Figure 2.5: Bar Graph: Raised alarms categorized by original severity in north of Italy in
May

large variety of values. Indeterminate and unavailable are respectively the most popular
types of probable cause.

Table 2.3 shows 10 most probable causes reported in north of Italy in May. Table
2.4 adds the most popular specific reason for these probable causes along with recorded
frequencies.

Probable–Cause Frequency
Indeterminate 442328
Unavailable 114390

RemoteNodeTransmissionError 95650
aIS 91368

EquipmentMalfunction 57105
UnderlyingResourceUnavailable 29213

PerformanceDegraded 22490
CallEstablishmentError 17693

M3100–synchronizationSourceMismatch 5855
SoftwareError 4487

Table 2.3: Frequencies of probable cause for raised alarms in north of Italy in May

The dataset in September is for the most part similar to May. As a result, the dominant
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Figure 2.6: Bar Graph: Raised alarms categorized by probable cause in north of Italy
calculated in a logarithmic scale with base 10

Probable–Cause Specific Problem Frequency
indeterminate BTS with No Transactions 164627
unavailable Heartbeat Failure 26071

remoteNodeTransmissionError IMA Link Reception Unusable at Far End 95623
aIS PDH Alarm Indication Signal 91368

equipmentMalfunction DigitalCable–CableFailure 10179
underlyingResourceUnavailable Service Unavailable 29207

performanceDegraded Carrier–RxDiversityLost 22220
callEstablishmentError UtranCell –NbapMessageFailure 10945

M3100–synchronizationSourceMismatch Synch Reference Path HW Fault 4414

Table 2.4: Frequencies of most popular specific problems for most common probable causes
in north of Italy in May

factors in the distribution of alarm type and severity which were illustrated previously in
the bar graphs are held true as well in September. Table 2.5 shows 10 most probable causes
reported in the whole Italy in September. Table 2.6 adds the most popular specific reason
for these probable causes along with recorded frequencies.

2.3.3 Temporal Evolution

In the following, statistical significance is analyzed by using temporal evolution for alarms
generated by devices in different areas. Particularly, we choose to focus on single provinces
with a remarkable geographical size such as Turin, which is characterized by different
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Probable–Cause Frequency
Indeterminate 870251
Link Failure 383132
Unavailable 272660

RemoteNodeTransmissionError 144259
aIS 125352

Out Of Service 92753
Equipment Malfunction 63469
Invalid Message Received 58601

UnderlyingResourceUnavailable 48387
Unspecified Reason 45183

Table 2.5: Frequencies of probable cause for raised alarms in whole of Italy in September

Probable–Cause Specific Problem Frequency
indeterminate BTS with No Transactions 271047
Link Failure SCTP Link Fault 361693
unavailable PLMN Service Unavailable 97856

remoteNodeTransmissionError IMA Link Reception Unusable at Far End 107094
aIS PDH Alarm Indication Signal 125352

Out Of Service UMTS Cell Unavailable 57104
equipmentMalfunction DigitalCable–CableFailure 10413

Invalid Message Received Inter-System Communication Failure 42769
underlyingResourceUnavailable Service Unavailable 48387

Unspecified Reason NE Is Disconnected 22487

Table 2.6: Frequencies of most popular specific problems for most common probable causes
in whole of Italy in September

operators. However, the large number of alarms still makes the system very verbose and
chatty. As shown in Figure 2.7, the plot represents a temporal evolution comparison of
raised and reported alarms generated by different centers(almost 700) located in Turin
province in May. On the x-axis, the start time of each alarm registered at ABAM is
reported. On the y-axis, there is a progressive identifier for central stations of the province,
assigned arbitrarily according to the appearance. This figure indicates the involved each
center by a unique identifier. Temporal correlations among the devices in the same center
are shown by vertical lines, whereas there are no spatial correlations observed. Moreover,
vertical lines are the sign of simultaneous events while horizontal lines stand for continuous
events over time. As can be seen, exceptional activity has been recorded on 2nd and 11th

of May.
Figure 2.8 represents temporal evolution of raised alarms generated by different cen-

ters(almost 550) located in Turin province in September.
As observed, in this month there are fewer devices involved and raised alarms are less

in comparison to May. Despite this fact, heterogeneity of data is still remarkable.
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Figure 2.7: Temporal evolution of raised and reported alarms for Turin province in May

Figure 2.8: Temporal evolution of raised alarms for Turin province in September

It is also useful to perform the analysis of data by different features such as severity
and alarm type. Figure 2.9 highlights the temporal evolution of events aggregated by the
severity of alarms for Turin province in May. It is obvious from the plot, that major is the
dominant factor in original severity.

Figure 2.10 highlights the temporal evolution of events aggregated by type of alarms for
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Turin province in May. As we can observe, there are no dominant factors for alarm types
in Turin province. This could be due to the major event which has occurred in 2nd of May
that results in the growth of communications alarm frequency. On the other hand, there
seem to be some specific center identifiers which are always generating equipment alarms
and increases heterogeneity.

Figure 2.9: Temporal evolution of events aggregated by severity of alarms for Turin province
in May
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Figure 2.10: Temporal evolution of events aggregated by type of alarms for Turin province
in May
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Chapter 3

Steps to Pattern Discovery

In the previous chapter, we outlined characteristics of the available data. We indicated the
most important features that were domain driven in the data set and showed an overview
of its heterogeneity. Additional studies to understand more completely the key features
are required and will be given in this chapter.

In the following, we will analyze the data by means of Market Basket Analysis[2], one
of the key techniques in practice used by large retailers to uncover meaningful associations
among customers purchase data. Within the framework of this criteria, we will then develop
different definitions for finding frequent items and afterward deploy association rules on
these items.

3.1 A Gentle Introduction on Market Basket Analysis

There has been numerous studies to investigate the challenging problem of market basket
analysis, in which the main objective is to extract actionable knowledge and co-occurrences
from the vast features of transactional databases in order to gain competitive advantage.
In the cutting edge paper [2], authors introduced a methodology for mining association
rules and then broaden their algorithm with the rule discovery in AI area. The particular
introduction for basket data type transactions cited here, served as essential data for our
studies.

To formulate the problem, assume a standard retail store sells a large set of products
P. We define each transaction as below:

Definition 3.1. [Transaction] A transaction p ⊆ P is the set of products an individual
customer buys in a single trip to the store. Transaction database T = p is the set of all
transactions the store has processed within a given time period(see [22] and [16]).

Example 3.1. Let us illustrate the concept by a basic sample of such data known as
market basket transactions which is depicted at table 3.1. In this data, each row shows
a transaction of items bought together by customers, identified by a unique ID.
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TID Items
1 Bread, Milk
2 Bread, Pizza, Beer, Eggs
3 Milk, Pizza, Beer, Cola
4 Bread, Milk, Beer, Eggs, Pizza
5 Bread, Milk, Pizza, Cola

Table 3.1: A sample of market basket transactions

Hidden associations in the large data set can be extracted by association analysis
to reveal interesting relationships among items. In our example, the following rule can be
discovered from table 3.1:

{Pizza} → {Beer}

This rule implies there is a strong relationship between pizza and beer and it is likely
the customers who buy pizza also buy beer.

Binary representation is one of the terminologies used when discovering associations.
We illustrate each market basket data in a binary format such as detailed matrix in table
3.2. Therefore, we indicate each transaction Ti as a sparse binary vector, or as a set of
discrete values showing identifiers of binary attributes that are instantiated to the value of
1. The binary value is equal to 1 if item is presented in the transaction and 0 if otherwise.
This representation is used since it is very simple to understand but it ignores some certain
details such as the frequency of items bought or their quantitative value(in above example
the value is the price of each item).

TID Bread Milk Beer Eggs Pizza Cola
1 1 1 0 0 0 0
2 1 0 1 1 1 0
3 0 1 1 0 1 1
4 1 1 1 1 1 0
5 1 1 0 0 1 1

Table 3.2: Binary representation of market basket data in example 3.1

In this section we introduce definition of an itemset and one of its important properties
known as support.

Definition 3.2. [Itemset] Let I = {i1, i2,...,id} be the set of all items in a market basket
data and T = {T1, T2,...,TN} be the set of all transactions. Each transaction ti contains a
subset of items chosen from I. In association analysis, a collection of zero or more items is
called an itemset. In case an itemset contains k items then it is termed as a k-itemset. By
this definition, a null itemset contains no elements. A transaction tj is said to contain an
itemset X if X is a subset of tj .
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3.2 – Frequent Pattern Mining

Definition 3.3. [Support] A support value is an important propert of an itemset which
indicates the fraction of transactions containing that particular itemset.
Observation 3.1. In the example 3.1, Milk, Pizza, Beer, Cola is 4-itemset. In addition,
the second transaction in table 3.1 contains itemset of {Pizza, Beer} but it does not contain
the itemset of {Pizza, Cola}. The support count for {Bread, Pizza, Beer} is equal to 2
because there are only two transactions that contain all three items together.

We use definition 3.1 to represent an important component of finding patters, the fre-
quent itemsets. As we will discuss in the following sections, the frequent itemsets are mined
from the market basket database. The computational cost for this process is often more
than the rule generation itself. For this reason, efficient algorithms, for producing frequent
itemsets, such as Fp-Growth3.4.2 and Apriori3.4.1 are applied.

3.2 Frequent Pattern Mining

Frequent pattern mining is generally described by market basket analysis, a typical data
mining task for which it is well-documented. As we observed in 3.1, market basket analysis
attempts to identify associations, or patterns, among the majority of items that have been
chosen by a particular shopper and placed in their market basket, be it real or virtual, and
assigns measures for comparison.

Mining frequent itemsets to extract common patters is one the backbones of research in
data mining[17] area. Pattern mining which is a generalization of market basket analysis,
sets the stage to work on unordered sets of simple objects (e.g., strings) and to find common
itemsets, across multiple transactions and producing subsets of items that occur together
more often in transactions on a database.

Please note that any attribute, or combination of attributes could be predicted in as-
sociation. As association does not require pre labeling and it is a form of unsupervised
learning which fits perfectly into our solution.

Now that we are familiar with the concept, let us state some essential definitions for a
given items in the transactional data base as following:
Definition 3.4. [Frequent Itemset] An itemset is frequent if its support is greater than
or equal to minimum support. Itemsets with a number of items smaller than minimum
length could be discarded.
Definition 3.5. [Closed Itemset] For a given support value, the itemset presenting the
highest number of items is known to be closed. The closed attribute implies that there is
no other itemset made by more items with the same support.
Definition 3.6. [Pattern] Frequent closed itemsets for simplicity are called patterns.

The problem of pattern mining can be represented as below(see [4]):
Proposition 3.1. Given a database D with transactions T1 ... TN , determine all patterns
P that are present in at least a fraction s of the transactions (The fraction s is referred to
as the minimum support).
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Looking for all itemsets is a #P-hard problem [18], but well-known algorithms can
efficiently compute patterns. One proposed method is to calculate association rules which
is tied together with frequent itemsets.

3.3 Association Rules

Association Rules are strongly linked to frequent patterns since they are count as “second-
stage” outputs derived from these patterns. In data mining area, association rules are
widely used to analyze retail basket or transaction data intended to identify frequent pat-
terns, associations, correlations and rules which are discovered in the data set based on
concepts obtained from measures of interestingness (see[20]).

In order to select interesting rules from the set of all possible rules, constraints on
various measures of significance and interest are used. The best-known constraints are
minimum thresholds on support and confidence. The full description of these measures
can be explained as below:

Let X be an itemset, X⇒ Y an association rule and T a set of transactions of a given
database.

Definition 3.7. [Support] is an indication of how frequently the itemset appears in the
dataset. Support of X with respect to T is defined as the proportion of transactions t in
the dataset which contains the itemset X.

supp(X) = |{t ∈ T ;X ⊆ t}|
|T |

(3.1)

Definition 3.8. [Confidence] is an indication of how often the rule has been found to
be true. The confidence value of a rule, X ⇒ Y , with respect to a set of transactions T,
is the proportion of the transactions that contains X which also contains Y. Confidence is
defined as:

conf(X⇒ Y) = supp(X ∪ Y )
supp(X) (3.2)

Observation 3.2. Note that supp(X ∪ Y) means support of union of the items in X and
Y. This is somewhat confusing since we normally think in terms of probabilities of events
and not sets of items. We can rewrite supp(X ∪Y) as the probability P (EX ∩EY ), where
EX and EY are the events that a transaction contains itemset X and Y, respectively. Thus
confidence can be interpreted as an estimate of the conditional probability P (EY |EX), the
probability of finding the RHS of the rule in transactions under the condition that these
transactions also contain the LHS.[12]

Definition 3.9. [Lift] Lift interprets the importance of a rule which can be defined as
below:

lift(X⇒ Y) = supp(X ∪ Y )
supp(X)× supp(Y ) (3.3)
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If s(body) is support of the rule body and s(head) is support of the rule head, we can
have an alternative definition for lift as below:

lift = confidence
expected confidence = confidence

s(body)×s(head)
s(body)

= confidence
s(head) (3.4)

It is assumed that there is no statistic relation between the rule body and the rule head
. This indicates that the occurrence of the rule body does not have an effect on probability
for the occurrence of the rule head and vice versa [34].

If a rule has a lift equal or close to 1, we can imply the rule body and the rule head
appear almost as often together as expected and that the occurrence of the rule body has
almost no effect on the occurrence of the rule head. When two events are independent of
each other, no rule can be drawn involving those two events.

If the lift is larger than 1, this lets us know the degree to which those two occurrences
are dependent on one another, and makes those rules potentially useful for predicting the
consequent in future data sets. The larger this degree of dependency gets, the more positive
effect the rule body has on the occurrence of the rule head.

The value of lift is that it considers both the confidence of the rule and the overall data
set.[13]

In addition to confidence, other measures of interestingness for rules have been proposed.
Some popular measures are: All-confidence, Collective strength, Conviction, Leverage and
Lift.

Consider the sets of items U and V. An association rule is then defined as below:

Definition 3.10. [Association Rules]
The rule X ⇒ Y is considered an association rule with a minimum support s and a

minimum confidence c, when the following two conditions hold true:
1. The set X ∪ Y is a frequent pattern.
2. The ratio of the support of X ∪ Y to that of U is at least c.

• The confidence of the rule is equal to the ratio of the support of X ∪Y to that of the
support of X.

Observation 3.3. A set of association rules R(T, s, c) is defined by a transaction database
T, a minimum support parameter s and a minimum confidence parameter c.

3.3.1 Research Questions and Challenges

Users are often interested in finding association rules involving only some specified cate-
gories rather than all. Hence, constraints on measures such as support and confidence can
be specified. This is in order to set the number of discovered rules to reasonable amount
[21] and eliminate the uninteresting rules. Support is an important measure, since a rule
which has a very low support may occur by chance rather than causality. The impact of
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confidence is noticeable as well. For a given rule X ⇒ Y , the higher the confidence, the
more probable it is for Y to be present in the same transactions with X.

However, by setting a high value for measures of interestingness, we may lose some
correlations. Challenging questions that will be arisen are:

• How to efficiently generate rules from frequent itemsets?

• Are all the strong association rules discovered are interesting enough to present to
the user?

There are key issues that need to be addressed when using association analysis for market
basket data. Discovering patterns from a large transaction data set can be computationally
expensive. Moreover, some of the patterns may be potentially spurious since they might
be happening by chance. This is because association rules do not always suggest causality
among items but they specify strong co-occurrences.

Let us discuss these questions in the next sections.

Interestingness Measurements

The concepts of both interestingness and redundancy are somewhat subjective.
Despite the fact that interestingness of a rule depends heavily on the choice of user,

there exists a principle for making this decision. A rule (pattern) is interesting if:

• It is unexpected (surprising to the user); and/or

• Actionable (the user can do something with it)

Selecting the best rules demand a thorough research on all measures and a variety of
datasets. Another key factor in choosing wisely to consider the improvement expectancy
from the output. Will it be improved in terms of time/space complexity, number of oper-
ations taken or number of steps?

3.4 A Review on Frequent Pattern Mining Algorithms

3.4.1 Apriori

Apriori is one of the earliest frequent pattern mining algorithms for discovering association
rules. It is one of the most well-known algorithms for discovering frequent patterns which
is a level-wise, breadth-first algorithm that counts transactions. Apriori algorithm uses
prior knowledge of frequent itemset properties. Apriori uses an iterative approach known
as a level-wise search, in which n-itemsets are used to explore (n+1)- itemsets.
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To illustrate the idea, lattice structure is used to enumerate the list of all possible
itemsets. As you can observe in 3.1 the graph shows an itemset lattice for I={a, b, c,
d, e}. Generally, a data set that contains k items can potentially generate up to 2k − 1
frequent itemsets without the null set. Because k can be very large in many practical
applications, the search space of itemsets that is required to be explored is exponentially
large.

Candidate Itemsets Generation and Pruning

To generate candidate itemsets, the following are requirements for an effective candidate
generation procedure:

• It should avoid generating too many unnecessary candidates.

• It must ensure that the candidate set is complete.

• It should not generate the same candidate itemset more than once.

Figure 3.1: An itemset lattice

A method to discover frequent itemsets is to determine the support count for every
candidate itemset in the lattice structure. It means if the candidate is contained in a
transaction, its support count will be increased. This type of approach could be very costly
since it needs O(NMω) comparisons where N is the number of transactions, M = 2k − 1
is the number of candidate itemsets and ω is the maximum transaction width.

Reducing the number of candidate itemsets (M) is one way to reduce the computational
complexity of frequent itemset generation.

27



3 – Steps to Pattern Discovery

Proposition 3.2. Using the Apriori property introduced in the next section is an efficient
method to eliminate some of the candidate itemsets without counting their support values.

The use of support for pruning candidate itemsets follows the below property:

Definition 3.11. [Apriori Property] The property insists If an itemset is frequent, then
all of its non-empty subsets must also be frequent. Then if an itemset is infrequent, then
all of its supersets must also be infrequent.

For instance, consider the lattice in 3.2. Suppose {c, d, e} is a frequent itemsets, then
all of its subsets, namely, {c, d}, {c, e}, {d, e}, {c}, {d} and {e} should be also frequent.

The idea of exponential search based on support measure is known as support-based
pruning. This strategy is made possible because of a property named as anti-monotone
of support measure which suggests the support for an itemset should never exceed the
support for its subsets. A two-step process consists of join and prune actions are done
iteratively.

Definition 3.12. [Monotonicity Property] Let I be a set of items, and J = 2I be the
power set of I. A measure f is monotone if:

∀X, Y ∈ J : (X ⊆ Y )→ f(X) ≤ f(Y )

which means if X is subset of Y , then f(X) must not exceed f(Y ).

Figure 3.2
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Frequent Itemset Generation in the Apriori Algorithm

As preivously mentioned, Apriori is a breadth first exploration of a structured arrangement
of the itemsets. The pseudo code for frequent itemset generation part of Apriori algorithm
is indicated in Algorithm 3.1 .

This algorithm has two important characteristics. It is a level-wise algorithm. For
example it traverses the itemset lattice on level at a time. Moreover, it develops a generate
and test strategy for finding frequent items. At each iteration, new candidate itemsets are
generated from the frequent itemsets found in the previous iteration. The support for each
candidate is the counted and tested against the minsup threshold [14].

Algorithm 3.1 Frequent itemset generation of the Apriori algorithm
1: k = 1.
2: Fk = {i|i ∈ I ∧ σ({i}) ≥ N ×minsup}. . Find all frequent 1-itemsets
3: repeat
4: k = k + 1.
5: Ck = apriori-gen(Fk−1). . Generate candidate itemsets
6: for each transaction t ∈ T do
7: Ct = subset(Ck, t). . Identify all candidates that belong to t
8: for each candidate itemset c ∈ Ct do
9: σ(c) = σ(c) + 1 . Increment support count
10: end for
11: end for
12: Fk = {c|c ∈ Ck ∧ σ(c) ≥ N ×minsup}. . Extract frequent k-itemsets
13: until Fk = ∅
14: Result=

⋃
Fk.

K-Apriori

The most influential algorithm for efficient association rule discovery from market databases
is K-Apriori, which uses the previous mentioned Apriori property. This algorithm shows
good performance with sparse datasets hence it is considered. The K-Apriori algorithm
extracts a set of frequent itemsets from the data, and then pulls out the rules with the
highest information content for different groups of customers by dividing the customers in
different clusters.[22]

3.4.2 Frequent Pattern (FP) Growth

An effective alternative approach called Fp-growth encodes the dataset using a compact
data structure as FP-tree and extracts frequent itemset directly from this structure. In the
first pass, the algorithm counts occurrence of items (attribute-value pairs) in the dataset,
and stores them to ’header table’. In the second pass, it builds the FP-tree structure which
is a representation of the input data.
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FP-tree is constructed by reading the data set one transaction at a time and inserting
them onto a path in the tree. Items in each instance have to be sorted by descending order
of their frequency in the dataset, so that the tree can be processed quickly. Items in each
instance that do not meet minimum coverage threshold are discarded. If many instances
share most frequent items, FP-tree provides high compression close to tree root.

Recursive processing of this compressed version of main dataset grows large itemsets di-
rectly, instead of generating candidate items and testing them against the entire database.
Growth starts from the bottom of the header table (having longest branches), by finding
all instances matching given condition. New tree is created, with counts projected from
the original tree corresponding to the set of instances that are conditional on the attribute,
with each node getting sum of its children counts. Recursive growth ends when no individ-
ual items conditional on the attribute meet minimum support threshold, and processing
continues on the remaining header items of the original FP-tree.

Once the recursive process has completed, all large itemsets with minimum coverage
have been found, and association rule creation begins.[14]

Notes on FP-Tree

A FP-tree is a compressed representation of the input. It is constructed by reading the
dataset one transaction at a time and mapping each transaction onto a path in the FP-
tree. The more the paths overlap with one another, the greater the compression that can be
achieved. An FP-tree is typically smaller than the size of the uncompressed data, because
many transactions in market basket data often share a items in common. However, the
physical storage requirement for the FPtree is higher than the original data, because it
requires additional space to store pointers between nodes and counters for each item.

3.5 Tools

In this project, we use several tools to analyze data and visualize the results.

3.5.1 Python

Python [30] is an excellent interpreted high-level programming tool for data analysis and
general-purpose programming since it is user friendly and pragmatic. Moreover, it is com-
plemented by practical third part packages that were designed to deal with large amounts
of data. We put our knowledge of Python data containers into the project since containers
set the model for more powerful data objects of NumPy. NumPy package extends Python
with a fast and efficient numerical array object.
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3.5.2 R

R [31] is a free software environment for statistical computing and graphics. It compiles
and runs on a wide variety of UNIX platforms, Windows and MacOS. The R language
is widely used among statisticians and data miners for developing statistical software and
data analysis. It is an interpreted language in which users typically access it through a
command-line interpreter. The capabilities of R are extended through user-created pack-
ages developed primarily in R, which allow specialized statistical techniques, graphical
devices, import/export capabilities, reporting tools and etc.

3.5.3 Rapidminer

Through this thesis we use RapidMiner Studio 8.2 [32], an open core model, for generating
frequent items and association rules. Rapidminer is a data science software platform that
provides an integrated environment for data preparation, machine learning, deep learning
and etc. It is used for business and commercial applications as well as for research, ed-
ucation, training, and application development plus it supports all steps of the machine
learning process including data preparation, results visualization, model validation and
optimization. In this software, data mining processes/routines are viewed as sequential
operators. RapidMiner functionality can be extended with additional plugins which are
made available via RapidMiner Marketplace such as Weka Extension.

3.5.4 Weka

Weka1 is an open source software and a collection of machine learning algorithms for
data mining tasks. Weka contains tools for data pre-processing, classification, regression,
clustering, association rules, and visualization. It is also well-suited for developing new
machine learning schemes.

The extension of Weka in RapidMiner[33] combines two of the most widely used open
source data mining solutions. By installing it, we can extend RapidMiner to everything
that is possible with Weka while keeping the full analysis, preprocessing, and visualization
power of RapidMiner. All modeling methods and attribute evaluations from the Weka
machine learning library are then available within RapidMiner. we will get access to
additional modeling schemes, rule learners and other materials.

Primely, for producing association rules, we use an operator from Weka extension. One
downside factor is ordering the rules which is not very convenient by using this operator.

1Waikato Environment for Knowledge Analysis
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3.6 Pattern Discovery

Given these preliminaries for finding patterns, let us now turn to our original problem and
the methodology used in our research. Since the goal is to find frequent patterns, we are
going to follow the exact previous steps to achieve this goal. Since our problem is based on
the market basket analysis, the first step is to look for items that we are interested to study
and then define the transactions for them. Defining these matrices requires experiments
since each method has different results and its own advantages. In this chapter, we briefly
introduce each method because after this is done, we will proceed with the next steps to
select and visualize rules obtained from each method. we will explain in detail each of their
individual results in the next chapters.

3.6.1 First Step: Matrix of Transactions and Itemsets

For using any rule mining algorithm, we are required to transform the data from its frame
format into transactions such that each row corresponds to a transaction whereas each
column indicates an item.

In this part, we present the matrix definitions that lead us to interesting findings. At
the first approach, we only consider temporal correlation and search for any geographical
correlations after obtaining the rules.

Two possible approaches for choosing the transaction definition for time window exists:

• Fixed non-overlapping windows

• Partially overlapping sliding windows

Initially, we take fixed non overlapping windows of 2 hours. The rational behind this
assumption is based on the granularity of alarms. As we observed in section 2.3.1, more
than 50% of alarms happen simultaneously. This value is of course arbitrary and as we
see through the chapter, changing it has an impact on the level of specificity of the rules.
However, by this value, windows will not include alarms

When choosing an item since features are categorical, we should look at the most im-
portant ones. For our case, the major features are Original Severity, Alarm Type, Probable
Cause that are selected by domain expert based on their importance.

Each transaction contains the set of items observed in an interval of 2 hours. So, after
selecting the features, we should count all events reported in each interval as numerical
"features" for each item. For effective processing, matrix is then mapped into binary data(0
if not present, 1 if> 0). As a result, for a specific transaction i, if an item j is observed then
the matrix position (i,j) converts to 1. If the item j is not seen in the transaction i then the
matrix position (i,j) will be remained 0. Since the goal is to find the frequent items which
occur together so transactions with more number of items will provide useful information
about the network behaviour. Furthermore, because presence of an item in a transaction
is more considerable rather than its absence, an item is a asymmetric binary value.
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In order to find the most frequent items, we apply FP-Growth Operator in Rapidminer.
The FP-growth algorithm is an efficient algorithm for calculating all frequently-occurring
itemsets in a transaction database, using a novel data structure known as FP-tree, divide
and conquer method in nature. For choosing a frequent pattern mining algorithm, we
opted Fp-growth due to its efficiency when working with our data set. FPGrowth utilizes a
depth-first search instead of a breadth first search and uses a pattern-growth approach (this
means that unlike Apriori, it only considers patterns actually existing in the database).
Whereas, Apriori utilize a level-wise approach where it will generate patterns containing
1 items, then 2, 3 and etc. Moreover, it will repeatedly scan the database to count the
support of each pattern. As the dimensionality of the database increases with numbers of
items, Apriori needs more search space and consecutively the I/O cost will increase. As a
result, due to compact structure of Fp-tree and candidate generation, Fp-growth requires
less memory and execution time (see [28] and [29]).

However, given the matrix, caution must be exercised since it is not yet in the suitable
input format for FP-Growth algorithm. As we can see from figure 3.3, it is necessary to
convert the market basket data type into binary values, since the algorithm works only
with this type of values. For this reason, the Numerical to Binominal operator is applied
to change these numerical attributes to binominal ones.

Observation 3.4. The restricted use of binary type entails a loss of information. It limits
the event counter in a window to the simple presence of a device alarm in the considered
interval. This apparent lack of information can be justified by a posteriori study of rules.

Figure 3.3: A scheme for creation of association rules

As previously mentioned, for finding frequent items, we focus on two approaches. First
we consider temporal correlation of specific devices then we proceed the study with a more
generic definition by considering each device type.

• Seprated Devices: we will consider temporal correlations among specific devices.

• Seprated Device Types: we will consider a more generic definition and find tem-
poral correlation among different types of devices. The study is then proceeded to
also investigate spatial correlations.
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3.6.2 Second Step:Rule Generation

Now we have our transaction dataset, and it shows the matrix of items being observed
together. We do not actually see how often they are seen together, and we do not have
the rules either. But we are going to calculate it in the next following part. The output of
FP-Growth operator is frequent items which are the suitable input for creating association
rules. We have to set the parameters such as measures of interests for the rules. These are
set arbitrary and it is dependent on the choice of the user.

The output of Create Association Rules Operator gives a summary of rules and the
information on total items mined, and the minimum parameters we set earlier. We select
the rules by order of lift and length of items.

3.6.3 Third Step: Visualization

After obtaining the rules, we should visualize them based on measures of interestingness.
Having done this, we can then easily choose interesting rules and visualize them over time.
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Chapter 4

Analysis of Separated Devices

4.1 Overview of the Methodology with Separate De-
vices

To find correlation among different devices, a simplified approach of transactions is defined
to consider only the network device IDs and extract specific relations. Given this definition,
an example of the obtained matrix is shown at table 4.1. The table indicates a sample
transaction considered in a certain arbitrary time bin where device 0 is raising at least 4
alarms whereas device 1400 is raising no alarms.

Device0 Device1 ... Device1405 Device1406
4 92 ... 0 205

Table 4.1: Matrix of transactions and itemsets: considering each network device ID

We are eager to see which devices were raising alarms at the same time bin more
frequently. We will focus on Turin province to reduce complexity and study two datasets
reported in two different month of May and September. First, let us consider the data set
for the all the raised alarms in Turin province in month of May 2017. A brief statistics of
this dataset is as below:

• Alarms raised: 38563

• Centers involved: 700

• Devices involved: 1400

• Time bin: 2 hours

Number of transactions is calculated for time bins of 2 hours through this month with 31
days which leads to:

Number of Transactions = 31× 24
2 = 372
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This means the input matrix has 1400 distinct items(devices) which are the columns
and 372 transactions/baskets which are the rows.

We proceed with the similar approach to obtain interesting rules (if any) in September
2017. Based on the temporal evolution of raised alarms in September as we observed in
2.8, the previous chapter, there are less devices that generate alarms in this month since
there was no "global failure" event involving most of the network and devices.

• Alarms raised: 25109

• Centers involved: 560

• Devices involved: 930

• Time bin: 2 hours

As previous the number of transactions is calculated for time bins of 2 hours through
this month with 30 days which leads to:

Number of Transactions = 30× 24
2 = 360

Now we have our transaction dataset, and it shows the matrix of items being observed
together. We do not actually see how often they are seen together, and we do not have the
rules either. But we are going to calculate it in the next following part.

The obtained matrix can be used in order to extract the frequent item sets by Fp-growth
Algorithm. An example of Fp-tree in our studied case is shown at 4.2. This table shows
the most frequent item in the data set is GBSCTO033 with the support equal to 86.1%.

Support item 1 item 2 item 3
0.861 GBSCTO033 ... ...
0.861 GBSCTO034 ... ...
0.755 GBSCTO033 GBSCTO034 ...
0.666 UBTSTO109 ... ...
0.579 GBSCTO032 GBSCTO033 GBSCTO034
0.503 GBSCTO033 UBTSTO109 ...

Table 4.2: A sample of FP-tree obtained by RapidMiner

4.2 Rule Generation

The output of FP-Growth operator is frequent items which are the suitable input for
creating association rules. We have to set the parameters such as measures of interests for
the rules. These are set arbitrary and depends on the user’s choice.

The below thresholds are set for the datasets of May and September respectively. These
values are lower for September, simply, since if we set the threshold too high, we would
only obtain few rules due to having less devices generating the alarms in compared to May.
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• Dataset: Turin, May

• Minimum confidence: 0.95

• Lower bound for minimum support: 0.085

• Other parameters are set to the default of Rapidminer

.

• Dataset: Turin, September

• Minimum confidence: 0.3

• Lower bound for minimum support: 0.03

• Other parameters are set to the default of Rapidminer

The output of Create Association Rules Operator gives a summary of rules and the
information on total items mined, and the minimum parameters we set earlier. The number
of rules obtained for May is 6995 whereas this is 1999 for September. These are obviously
large numbers so it is not reasonable to go through them without visualizing the results
based on measures of interestingness.

4.3 Rule Selection and Visualization

For visualizing the rules, we use R to plot all of them with the our previously set threshold.
We select the rules by order of lift and length of items. Figure 4.1 shows rules in May based
on their support and lift with the shading of confidence. As we can observe most of the
rules have a support close to the minimum threshold 8.5% and 10%. Furthermore, these
are mainly the rules with highest lift and confidence. This actually highlights the inverse
correlation of support and lift described by formula 3.4 meaning rules that are held true
in fewer time bins are presumably more reliable and vice versa.

Figure 4.2 shows two-key plot of rules in May considering the same definition for matrix.
Rules are ordered by support and confidence and the colors show number of items (devices)
involved in the rule. It is noticeable from the figure that common rules have less devices
in compared to rare ones. Rules with less support such as 10% are very interesting since
they show a possible correlation among large number of devices equal to 10.

Using the same approach, we can plot all of the rules obtained in September with our
previously set threshold. Figure 4.3 shows these rules based on their support and lift with
the shading of confidence. As we can observe the majority of rules have support between
the minimum 3% and 20%. However, the rules with highest lift equal to 24 have a support
close to 3% which is as previously mentioned the result of an inverse relation between
support and lift.
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4 – Analysis of Separated Devices

Figure 4.1: Scatter plot of rules in May considering separate devices ordered by support
and lift with confidence shading

Figure 4.2 shows two-key plot of rules in September considering the same definition for
matrix. Rules with order of 4,5 and 6 usually have a support less than 5% which makes
them rarely observed in the dataset.

Now that we have an overview of rules in May and September, we will respectively
select two examples from each dataset that are considered interesting due to their fairly
high lift, long sequence and inevitably less support.

4.3.1 First Example

This rule as observed below, is involving 10 different devices over Turin province on May.
The rule is interesting because as shown in map 4.5 devices are located in close centers
with respect to each other and we can even see some devices are in the same center.
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Figure 4.2: Two-key plot of rules in May considering separate devices by support and
confidence ordered by number of items in the rule

Antecedent UBTSTO27F
UBTSTO08E
UBTSTO384

Consequent UBTSTO0B7
UBTSTO14A
8BTSTO384
1BTSTO0B7
8BTSTO0B6
1BTSTO156
1BTSTO00D

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Confidence Lift Leverage Conviction
0.97 11.15 0.08 15.07

The antecedent holds true for 33 time bins whereas this number for consequent is 32
times and this leads to a confidence of 97%.

39



4 – Analysis of Separated Devices

Figure 4.3: Scatter plot of rules in September considering separate devices ordered by
support and lift with confidence shading

After exploiting the raw data for additional information, we find out that some devices
are in the same centers, or in a very closed region. This may be an indication of a factor
for correlation. All of the devices involved are BTS working either with UMTS/LTE
technology. Almost every error raised had a probable cause of indeterminate with type of
quality service alarm. A single problem “sync reference PDV problem” too often reported
in the raw data. Most of the alarms have been reported to the network operations center
which seem to make the rule already interesting on TIM previous findings.

Visualization

Despite the fact that there are measures for interpreting a rule as an interesting one, we
need more infomation such as distribution of alarms over time.

Figure 4.6 shows the distribution of alarms which are generated by each device of
interest. This is reported for every transaction so we do not see alarms to appear more
than once in this graph. It is clear from the bar graph that almost all devices raise a similar
number of alarms.

As shown in 4.7 and 4.8, figures report the scatter plot of alarms categorized by two of
most important features, alarm types and probable cause. We apply an arbitrary value of
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Figure 4.4: Two-key plot of rules in September considering separate devices by support
and confidence ordered by number of items in the rule

jitter on the y-axis to better observe the distribution of alarms. For this means, we assign
each alarm type a unique numerical value (same is done for probable cause field) because
jitter can not be applied on categorical features. Label zero in figure 4.7 shows quality of
service alarm type and label one stands for communications alarm. Label zero in 4.8 shows
indeterminate while label seven is unavailable. This correlation is obsevred in 32 time bins
and temporal correlation is indeed present.

Although correlation is observed based on the scatter plots (see4.7, 4.8), we can validate
its level of strength by zooming in the time bins of 2 hours(intervals of 20 minutes). Figure
4.9 indicates a significant correlation of interested devices but no particular synchronization
is visible.

Observation 4.1. This rule highlights that the results so far have been promising. Even
though, this definition for the transactional matrix does not provide any general overview
of device types and instead focuses on each device itself.

4.3.2 Second Example

We select another rule that has a high lift and support to investigate. The geographical
coordinates of devices involved in this rule is shown by map 4.10.
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Figure 4.5: Geographical location of devices involved in the first case

Antecedent URNCTO030
8BTSTO26E

Consequent UBTSTO26E

As we can observe in the below table, information on the interestingness of a the rule
is reported as an output.

Confidence Lift Leverage Conviction
1 8.98 0.07 25.77

The antecedent and consequent hold true for 29 time bins and this leads to a confidence
of 100%. Given the geographical coordinates of devices, this rule suggests that there is a
correlation between two centers that are almost 22 kilometers apart.

42



4.3 – Rule Selection and Visualization

1B
TS

TO
00

D

1B
TS

TO
0B

7

1B
TS

TO
15

6

8B
TS

TO
0B

6

8B
TS

TO
38

4

UB
TS

TO
08

E

UB
TS

TO
0B

7

UB
TS

TO
14

A

UB
TS

TO
27

F

UB
TS

TO
38

4

NeId

0

10

20

30

40

50

60

70

80

90
co

un
t o

f a
la

rm
s

1B
TS

TO
00

D

1B
TS

TO
0B

7

1B
TS

TO
15

6

8B
TS

TO
0B

6

8B
TS

TO
38

4

UB
TS

TO
08

E

UB
TS

TO
0B

7

UB
TS

TO
14

A

UB
TS

TO
27

F

UB
TS

TO
38

4

NeId

0

10

20

30

40

50

60

70

80

90
co

un
t o

f a
la

rm
s

Figure 4.6: Bar Graph: Distribution of alarms generated by each device of interest in the
first case
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Figure 4.7: Scatter plot: Alarms categorized by alarm types over time in the first case

Visualization

By visualizing the rule, we can validate to some extent whether the correlation is by chance
or not. Figure 4.11 shows the distribution of alarms which are generated by each device of
interest. As previous, this is reported for every transaction. One device is seem to generate
the majority of alarms and is more chatty. This can be an issue if alarms are scattered
over time.
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Figure 4.8: Scatter plot: Alarms categorized by probable cause over time in the first case
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Figure 4.9: Zoomed Scatter plot: Alarms categorized by alarm type over time in the first
case in 6th of May

Observation 4.2. There seems to be correlation between one of the devices,UBTSTO26E
(located in Almese Est) and URNCTO030(located in Lancia), even if they are far away
from each other(about 22km).

Let us look at the scatter plot in Figure 4.12 which is reporting the alarms categorized
by alarm types. As we can observe devices are raising a large number of alarms which
make the task of locating the time correlations, much more challenging. It seems from the
figure that most of events are happening at the same time plus the same bin. Label 0, 1
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Figure 4.10: Geographical location of devices involved in the second case
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Figure 4.11: Bar Graph: Distribution of alarms generated by each device of interest in the
second case

and 2 stand for communications, quality of service and equipment alarms respectively.
Figure shown in 4.13 could be a useful representation since it reported the types of

probable cause of each alarm involved in this case. Label 0, 4, 7, 9 and 10 stand for inde-
terminate, synchronization source mismatch, unavailable, call establishment error and loss
of signal probable causes, respectively. As we can see, the majority of alarms generated
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by device URNCTO030 is due to loss of signal. Part of alarms generated by device UBT-
STO26E are indeterminate. This is an issue cause at this point, we do not have any more
information about this probable cause.
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Figure 4.12: Scatter plot: Alarms categorized by alarm types over time in the second case
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Figure 4.13: Scatter plot: Alarms categorized by probable cause over time in the second
case

This correlation can be validated by zooming on an optional day such as 25 of May and
looking for time bins of 2 hours as Figure 4.14 suggests. There are a lot of alarms generated
in each time bin by the device URNCTO030; although the figure confirms a correlation
between this device and the another, UBTSTO26E. Types of alarms are mainly from the
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two most famous types, communication alarms and quality of service. This plot helps us
to conveniently observe the correlation and identify the distribution of alarms generated
by each device in the slots.
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Figure 4.14: Zoomed Scatter plot: Alarms categorized by alarm type over time in the
second case in 25th of May

Observation 4.3. As a conclusion, we observed from the scatter plots that, there seems
to be correlation between one of the devices in Almese Est and the one is Lancia, even
though they are not close in distance and almost 22km apart. Searching the specific cause
of alarms through the other fields of data set, we find out that:

• UBTSTO26E is raising a lot of errors of UtranCell–Service Unavailable.

• 8BTSTO26E is raising a lot of errors known as HeartBit–Failure.

• URNCTO30 is raising a lot of NodeSync–Phase Difference measurement failed

A possible scenario for this case could be a failure of LTE network in Almese (device
8BTSTO26E) in which it creates a lot of issues on UMTS network (UBTSTO26E) and
conseqeutly, it is reflecting on RNC and the device URNCTO30 located in Lancia or vice-
versa.

4.3.3 Third Example

We select an interesting rule from September dataset that has almost the highest lift among
rules with a reasonable support to investigate.
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Antecedent 2BTSTO187
1BTSTO247

Consequent 1BTSTO398
2BTSTO3B1
1BTSTO002

As we can observe in the below table, information on the interestingness of a the rule
is reported as an output.

Confidence Lift Leverage Conviction
1 24.5 0.04 12.47

The antecedent and consequent hold true for 13 time bins and this leads to a confidence
of 100% and support equal to 3.6%. This means 13 times out of 13, these permutation of
devices were reporting alarms together in the same time bins. The geographical coordinates
of devices of interest is reported in figure 4.15.

Figure 4.15: Geographical location of devices involved in the third case

Visualization

By visualizing the rule, we can validate to some extent whether the correlation is by chance
or not. Figure 4.16 shows the distribution of alarms which are generated by each device of
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interest. The devices seem to raise an almost equal number of alarms.
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Figure 4.16: Bar Graph: Distribution of alarms generated by each device of interest in the
third case

The scatter plot in figure 4.17 is reporting the raised alarms through September gener-
ated by devices of interest at the same time bins and categorized by types of alarms. Label
0 and 1 stand for communication and quality of service alarms respectively.

The vertical lines show co-occurrent alarms which could be a reason of strong correlation
among devices and the large value of lift in this rule in comparison to the other ones.
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Series: ID_Alarm Color (NeId): 1BTSTO002 1BTSTO247 1BTSTO398 2BTSTO187
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Figure 4.17: Scatter plot: Alarms categorized by alarm types over time in the third case

Figure shown in 4.18 represents the types of probable causes of each alarm involved
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in the rule. Label 0,9 and 10 stand for indeterminate, unavailable and loss of signal
respectively. As shown in the figure, majority of alarms have the a probable cause of
unavailable.
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Figure 4.18: Scatter plot: Alarms categorized by probable cause over time in the third case

The correlation is validated by zooming on an optional day in 8th of September and
looking for time bins of 2 hours as figure 4.19 suggests.
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Figure 4.19: Zoomed Scatter plot: Alarms categorized by alarm type over time in the third
case in 8th of September
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4.3.4 Fourth Example

In this case we choose to focus on a rule which does not have a very long sequence but still
stands out because of its high lift and confidence. Here, we want to show whether all the
rules including good measures are reliable or not.

Antecedent UBTSTO218
1BTSTO392

Consequent UBTSTO392

As we can observe in the below table, information on the interestingness of a the rule
is reported as an output.

Confidence Lift Leverage Conviction
0.92 14.29 0.03 5.62

The antecedent and consequent hold true for 13 time bins and this leads to a confidence
of 100% and support equal to 3.6%. This means 13 times out of 13, these permutation of
devices were reporting alarms together in the same time bins. The geographical coordinates
of devices of interest is reported in figure 4.20.

Figure 4.20: Geographical location of devices involved in the fourth case

Visualization

By visualizing the rule, we can validate to some extent whether the correlation is by chance
or not. Figure 4.21 shows the distribution of alarms which are generated by each device of
interest. Total number of alarms raised by these devices show that this correlation might
be not correct since most of the alarms are from a device located in one center. Let us see
if they are correlated over time by looking at the scatter plots of alarms.
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Figure 4.21: Bar Graph: Distribution of alarms generated by each device of interest in the
fourth case

The scatter plot in figure 4.22 is reporting the raised alarms through September gener-
ated by devices of interest at the same time bins and categorized by types of alarms. Label
0,1 and 2 stand for equipment malfaunction, processing error and communication alarm
types.
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Figure 4.22: Scatter plot: Alarms categorized by alarm types over time in the fourth case

Figure shown in 4.23 represents the types of probable causes of each alarm involved
in the rule. Label 1, 3, 4, 5, 6, 7, 8 and 23 stand for equipment malfunction, under-
lying resource unavailable, aIS, loss of frame, remote node transmission error, local node
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transmission error, synchronization mismatch, power problem probable causes respectively.
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Figure 4.23: Scatter plot: Alarms categorized by probable cause over time in the fourth
case

The correlation is validated by zooming on an optional day in 8th of September and
looking for time bins of 2 hours as figure 4.24 suggests. Having said that, this rules is not
reporting an unexpected interesting correlation among devices since one device is always
generating alarms and the other two happen to raise alarms at the same time slots together
with the first device.
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Figure 4.24: Zoomed Scatter plot: Alarms categorized by alarm type over time in the
fourth case in 7th of September
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Observation 4.4. With a comparison between both set of the rule sets we realize there are
some new rules in September that did not appear in May. Moreover, we see no correlation
in September among the devices of interest appeared in May (first and second case).
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Chapter 5

Analysis of Separated Device
Types

This chapter focuses on a more generic approach to find correlations among devices. Here,
instead of focusing on each device itself, we view each device by its type. This allows us
to drive methodologies with a general view of devices. Type of each device is identified by
the first four letters of network device ID field. Table 5.1 describes possible combinations
for device types.

Type Technology and Device
GBSC GSM, BSC
UBTS UMTS, BTS
GBTS GSM, BTS
9BTS UMTS900, BTS
1BTS LTE1800, BTS
8BTS LTE800, BTS
URNC UMTS, RNC
2BTS LTE2600, BTS

Table 5.1: Possible combinations of device types

5.1 Overview of the Methodology with Probable Cause
and Alarm Type for each Device Type

As a first pass over considering types of devices, we choose to also add features such as
types of alarm and probable cause for each type to the matrix definition. By doing this,
we will find more specific correlations among devices since the methodology contains more
details. As we recall in the table , the first four letters of device network ID shows the
type.
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By considering a province, we assigned a unique identifier to each probable cause. Given
these definitions, an example of the obtained matrix is shown at table 5.2. This indicates
a sample transaction considered in a certain arbitrary time bin where number of alarms
raised by device type GBSC which have a probable cause of type 0 are equal to 12 and
number of alarms raised by device type GBSC which have an alarm type of type 0 are
equal to 196.

GBSC_PC0 ... GBSC_PC26 ... GBSC_Alarmtype0 ... GBSC_Alarmtype4 UBTS_PC0 ...
12 ... 3 ... 196 ... 38 6 ...

Table 5.2: Matrix of transactions and itemsets: considering each network device ID

5.1.1 Advantages and Disadvantages of methodology

Focusing on each device in the data, enabled us to exploit more specific co-occurrences
which eventually allows us to take patterns obtained in a specific province and look for
those exact recurring patterns in other provinces. However, there are number of potential
weak points in the method that need to be considered. After obtaining the rules by this
definition, we consider below example:

Antecedent UBTS_unavailable
1BTS_communicationsAlarm
UBTS_callEstablishmentError
8BTS_communicationsAlarm
URNC_communicationsAlarm

Consequent 1BTS_unavailable
URNC_lossOfSignal

We can observe a sort of inflation from the rules (e.g. the selected rule) which shows
correlation due to one probable cause results in one alarm type or similar. This happens
because in our matrix we have two ones for each alarm type and probable cause of the same
device type. Second, based on 2.4 the distribution of alarms are not in the same range.
Communications and quality of service alarms are the most popular so they are presented
in most of the obtained rules with a high probability. Therefore, since alarm type has only
few types, it would not be a suitable feature to be considered into the matrix because it
does not really provide us with extra information.

5.2 Overview of the Methodology with Probable Cause
for each Device Type

This approach only assumes probable cause feature for device types. To build the matrix
of transactions and item sets, we assigned a unique identifier to each probable cause in
different provinces. Applying the same procedure as before, an example of the obtained
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matrix is shown at table 5.3.

GBSC_PC0 ... GBSC_PC26 ... UBTS_PC0 ... UBTS_PC26 ...
12 ... 3 ... 196 ... 38 ...

Table 5.3: Matrix of transactions and itemsets: considering each network device ID

By this definition, we will find out which device types were raising alarms at the same
time bin more frequently. In this section, we will focus on Turin province to reduce com-
plexity and study two datasets reported in two different month of May and September.

5.2.1 Rule Generation

The below thresholds are set for the datasets of May with two different time bins and also
a time bin of 2 hours in September respectively. Other parameters are set to the default
of Rapidminer.

• Dataset: Turin, May

• Minimum confidence: 0.7

• Lower bound for minimum support: 0.05

• Time bin: 2 hours

• Dataset: Turin, May

• Minimum confidence: 0.7

• Lower bound for minimum support: 0.05

• Time bin: 1 hours

.

• Dataset: Turin, September

• Minimum confidence: 0.9

• Lower bound for minimum support: 0.08

• Time bin: 2 hours

The output of Create Association Rules Operator gives a summary of rules and the
information on total items mined, and the minimum parameters we set earlier. The number
of rules obtained for May is 1910 in time bin of 2 hours whereas this is 160 in time bin
of 1 hour (as time bin interval gets shorter, the rules become more specific). The total
obtained rules for September is 827.
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5.2.2 Rule selection and visualization

As before we select the most interesting rules to investigate. we will respectively choose
examples from each dataset of May and September that are considered interesting due to
their fairly high lift, long sequence and inevitably less support.

First Example

This rule suggest there is an association between device types of URNC and UBTS in time
interval of two hours in May.

Antecedent URNC_lossOfSignal
UBTS_aIS

Consequent UBTS_remoteNodeTransmissionError

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Confidence Lift Leverage Conviction
0.98 2.03 0.05 10.38

The antecedent holds true for 40 time bins whereas this number for consequent is 39
times and this leads to a confidence of 98%. Temporal correlation is observable in figure
5.1 and 5.2. As observed in figure 5.1 the arbitrary unique ID of network devices with type
UBTS (from 0-16) is separated from URNC (from 17-21).
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Figure 5.1: Scatter Plot: Device ID sorted by DeviceTypes vs First Occurrence
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Figure 5.2: Zoomed Scatter Plot: Device ID sorted by DeviceTypes vs First Occurrence
in 29th of May

Second Example

This rule suggest there is an association between device types of URNC and UBTS and
1BTS in time interval of two hours in May.

Antecedent 1BTS_equipmentMalfunction
URNC_lossOfSignal
1BTS_indeterminate

Consequent UBTS_unavailable

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Confidence Lift Leverage Conviction
1 2.06 0.03 10.79

The antecedent holds true for 21 time bins whereas this number for consequent is 21
times and this leads to a confidence of 100%. Temporal correlation is observable in figure
5.3 and 5.4.

Third Example

As mentioned before, the matrix implementation is considered on time bins of 2 hours.
Now let us see the rules obtained when time bin is changed to 1 hour. (740 time slots in
total). Number of rules are decreased significantly to 160 rules in compared to previous
assumption(2 hours) with the same parameters set for FP-growth operator.
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Figure 5.3: Scatter Plot: Device ID sorted by DeviceTypes vs First Occurrence
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Figure 5.4: Zoomed Scatter Plot: Device ID sorted by DeviceTypes vs First Occurrence
in 30th of May

This rule focuses on association in the same device type with different probable causes
time interval of one hour in May.

Antecedent UBTS_M3100_synchronizationSourceMismatch
UBTS_aIS

Consequent UBTS_remoteNodeTransmissionError
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As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Confidence Lift Leverage Conviction
0.98 2.92 0.05 17.91

The antecedent holds true for 54 time bins whereas this number for consequent is 53
times and this leads to a confidence of 98%. Temporal correlation is observable in figure
5.5 and 5.6.
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Figure 5.5: Scatter Plot: Device ID vs First Occurrence

Fourth Example

This rule focuses on association between UBTS and 9BTS device types in September.

Antecedent UBTS_aIS
UBTS_lossOfFrame
9BTS_equipmentMalfunction

Consequent UBTS_remoteNodeTransmissionError

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Confidence Lift Leverage Conviction
1 2.32 0.02 11.18

The antecedent holds true for 32 time bins whereas this number for consequent is 32
times and this leads to a confidence of 100%. Temporal correlation is observable in figure
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Figure 5.6: Zoomed Scatter Plot: Device ID vs First Occurrence in 29th of May

5.7 and 5.8.
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Figure 5.7: Scatter Plot: Device ID sorted by DeviceTypes vs First Occurrence

5.3 Overview of the Methodology with Geographical
Space Division

In the next approach, we tried to generalize the definition of matrix by concentrating on
spatial correlation among device types as well as the temporal one.
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Figure 5.8: Zoomed Scatter Plot: Device ID sorted by DeviceTypes vs First Occurrence
in 19th of September

In the interest of spatial correlation, we should first divide the province into separate
zones which can be done by different clustering algorithms. However, one possible question
is how to define the boundaries? We used DB-scan and K-means algorithms to cluster
a specific province such as Turin and then experimented both algorithms with different
parameters. We first considered DB-scan since it does not require number of clusters
beforehand. Let us see the results which DB-scan suggests in figure 5.9.

The biggest cluster contains 35959 points out of 38062 even though there are 30 clusters
found. So, unfortunately, this algorithm does not help much in adding space limitations.
Figure 5.10, instead, shows us the network devices in Turin province clustered by k-means
algorithm. This algorithm requires the number of clusters before performing. By choosing
k=20, the algorithm creates boundaries where there is no need. We tried other values for
this parameter and eventually as shown in figure 5.11 k=5 seems to be a good fit.

We then applied k-means for Milan province, too. Clustering is again done by some
experiments on the k value and eventually we realized k=7 as figure 5.12 shows, is a good
choice.

We have also choose to consider a column called "specific problem" to our transactional
data. This is because the most two frequent types of probable cause features based on 2.3
are "indeterminate" and "unavailable". Specific problem is a more detailed field of probable
cause. For example, there are a lot of specific problem types for "indeterminate" probable
cause. Therefore, we should insert a threshold as shown in the tables 5.4 and 5.5 : (>5000)
for indeterminate and (>2000) for unavailable.
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Figure 5.9: Turin province clustered by DB-scan algorithm
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Figure 5.10: Turin province clustered by k-means algorithm with k=20

5.3.1 Rule Generation

The below thresholds are set for the datasets of May and a time bin of 2 hours. Other
parameters are set to the default of Rapidminer.

• Dataset: Turin, May

• Minimum confidence: 0.7

• Lower bound for minimum support: 0.01
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5.3 – Overview of the Methodology with Geographical Space Division

Series: Latitude Color (cluster): cluster_0 cluster_1 cluster_2 cluster_3
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Figure 5.11: Turin province clustered by k-means algorithm with k=5
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Figure 5.12: Milan province clustered by k-means algorithm with k=7

• Number of clusters: 5

The output of Create Association Rules Operator gives a summary of rules and the
information on total items mined, and the minimum parameters we set earlier.
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Probable–Cause Frequency
BTS with no transactions 164627
Cell operation degraded 74399

UtranCell_ServiceUnavailable 27820
Cell logical channel availability supervision 15880

BCCH missing 15384
Cell faulty 8946

Data output, Ap transmission fault 7927
Wcdma cell out of use 6760
Synchronization lost 6055

CH congestion in cell above defined threshold 5992
Pcm failure 5543

Fault rate monitoring 5376

Table 5.4: Total Types and frequencies of "indeterminate" based on specific_problem field

Probable–Cause Frequency
Heartbeat Failure 26071

NTP Server Reachability Fault 24830
Contact to Default Router 1 Lost 24355
Contact to Default Router 0 Lost 22569

PLMN Service Unavailable 12274
Remote IP Address Unreachable 2893

Table 5.5: Total Types and frequencies of "unavailable" based on specific_problem field

5.3.2 Rule selection and visualization

As before we select the most interesting rules to investigate. we will respectively choose
examples from the dataset that are considered interesting due to their fairly high lift, long
sequence and inevitably less support.
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5.3 – Overview of the Methodology with Geographical Space Division

First Example in Turin

Antecedent UBTS_equipmentMalfunction
GBSC_indeterminate(Data output,
Ap transmission fault)
UBTS_indeterminate(UtranCell_ServiceUnavailable)
8BTS_unavailable(Heartbeat Fail-
ure)

Consequent GBTS_indeterminate(Cell logical
channel availability supervision)
UBTS_unavailable(Heartbeat Fail-
ure)
URNC_lossOfSignal

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Confidence Lift Leverage Conviction
0.8 35.03 0.01 4.07

The antecedent holds true for 25 time bins whereas this number for consequent is 20
times and this leads to a confidence of 80%.

In this example all the devices are located in the same cluster (center of Turin). Ge-
ographical visualization of these devices is shown in figure 5.15. Temporal correlation is
observable in figure 5.13 and 5.14.
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Figure 5.13: Scatter Plot: DeviceTypes vs First Occurrence in the First Example in Turin
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Figure 5.14: Zoomed Scatter Plot: DeviceTypes vs First Occurrence in 24th of May in the
First Example in Turin

Figure 5.15: Geographical Visualization of Network Devices Involved in the First Example
in Turin

Second Example in Turin

Antecedent UBTS_unavailable(Heartbeat Fail-
ure)
UBTS_unavailable(NTP Server
Reachability Fault)
8BTS_unavailable(PLMN Service
Unavailable)
8BTS_unavailable(Heartbeat Fail-
ure)

Consequent UBTS_indeterminate(UtranCell_ServiceUnavailable)
8BTS_unavailable(Heartbeat Fail-
ure)
8BTS_unavailable(NTP Server
Reachability Fault)
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5.3 – Overview of the Methodology with Geographical Space Division

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Confidence Lift Leverage Conviction
0.95 73.18 0.01 10.86

The antecedent holds true for 22 time bins whereas this number for consequent is 21
times and this leads to a confidence of 95%.

In this example devices are located in the different clusters. Geographical visualization
of these devices is shown in figure 5.18. In this case, 101 network devices are located in the
five different clusters which is assumed for Turin province and are involved in this example.
Temporal correlation is observable in figure 5.16 and 5.17.
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Figure 5.16: Scatter Plot: DeviceTypes vs First Occurrence in the Second Example in
Turin

Third Example in Turin

Antecedent UBTS_equipmentMalfunction
UBTS_indeterminate(UtranCell_ServiceUnavailable)
1BTS_unavailable(Heartbeat Fail-
ure)

Consequent GBSC_indeterminate(Data output,
Ap transmission fault)
UBTS_unavailable(Heartbeat Fail-
ure)
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Series: ID_DeviceType Color (ProbableCause): indeterminate(UtranCell_ServiceUnavailable)
unavailable(Heartbeat Failure) unavailable(NTP Server Reachability Fault)
unavailable(PLMN Service Unavailable)
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Figure 5.17: Zoomed Scatter Plot: DeviceTypes vs First Occurrence in 23rd of May in the
Second Example in Turin

Figure 5.18: Geographical Visualization of Network Devices Involved in the Second Exam-
ple in Turin

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Confidence Lift Leverage Conviction
0.82 13.96 0.03 4.78

The antecedent holds true for 61 time bins whereas this number for consequent is 50
times and this leads to a confidence of 95%.
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In this example all the devices are located in same clusters. Geographical visualization
of these devices is shown in figure 5.21. Temporal correlation is observable in figure 5.19
and 5.20.

Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(DATA OUTPUT, AP TRANSMISSION FAULT) indeterminate(UtranCell_ServiceUnavailable)
unavailable(Heartbeat Failure)

7-May 14-May 21-May 28-May
First Occurrence

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ID
_D

ev
ice

Ty
pe

Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(DATA OUTPUT, AP TRANSMISSION FAULT) indeterminate(UtranCell_ServiceUnavailable)
unavailable(Heartbeat Failure)

7-May 14-May 21-May 28-May
First Occurrence

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ID
_D

ev
ice

Ty
pe

Figure 5.19: Scatter Plot: DeviceTypes vs First Occurrence in the Third Example in Turin
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Figure 5.20: Zoomed Scatter Plot: DeviceTypes vs First Occurrence in 25th of May in the
Third Example in Turin
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Figure 5.21: Geographical Visualization of Network Devices Involved in the Third Example
in Turin

5.3.3 Rule Generation

Now that we have seen the association rules in Turin, it is useful to also search another
province close to Turin. We choose Milan for this reason and the goal here is to investigate
those exact same examples in Milan to see whether they are hold true in Milan. The below
thresholds are set for the datasets of May and a time bin of 2 hours. Other parameters are
set to the default of Rapidminer.

• Dataset: Milan, May

• Minimum confidence: 0.7

• Lower bound for minimum support: 0.01

• Number of clusters: 7

The results show that previous cases found in Turin are actually sub-patterns in Milan.
However, the support for some of these rules are lower than min-support set (lower than
1%).

5.3.4 Rule visualization

The following are showing the three examples we have studied in Milan Province.

First Example in Milan

We found 11 time bins where these 7 items are held (with support=0.004 , confidence=40%)
in Milan. However, we should remind the reader that it would not be identified as a "rule"
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5.3 – Overview of the Methodology with Geographical Space Division

in the Milan data set since the support would be lower than 0.01 which is the minimum
threshold for support.

In this case, only devices located in cluster 1 and 2 (center of Milan) are involved.
Geographical visualization of these devices is shown in figure 5.24. Temporal correlation
is observable in figure 5.22 and 5.23.
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Figure 5.22: Scatter Plot: DeviceTypes vs First Occurrence in the First Example in Milan
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Figure 5.23: Zoomed Scatter Plot: DeviceTypes vs First Occurrence in 23rd of May in the
First Example in Milan
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Figure 5.24: Geographical Visualization of Network Devices Involved in the First Example
in Milan

Second Example in Milan

This rule suggests 6 bins in which the rule is held true (support=0.002 , confidence=0.5) for
Milan. In this case, four clusters are involved. Geographical visualization of these devices
is shown in figure 5.27. Temporal correlation is observable in figure 5.25 and 5.26.
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Figure 5.25: Scatter Plot: DeviceTypes vs First Occurrence in the Second Example in
Milan
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Figure 5.26: Zoomed Scatter Plot: DeviceTypes vs First Occurrence in 11th of May in the
Second Example in Milan

Figure 5.27: Geographical Visualization of Network Devices Involved in the Second Exam-
ple in Milan

Third Example in Milan

This rule has been found 34 bins. The for this rule is support higher than 1% and moreover
the confidence is equal to 0.58. If we set the value for minimum confidence lower, both of
these mentioned values will be higher than the minimum support and confidence. Therefore
this example would be found a rule also in Milan.

In this case, four clusters are involved. Geographical visualization of these devices is
shown in figure 5.30. Temporal correlation is observable in figure 5.28 and 5.29.
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Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
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unavailable(Heartbeat Failure)
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Figure 5.28: Scatter Plot: DeviceTypes vs First Occurrence in the Third Example in Milan
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Figure 5.29: Zoomed Scatter Plot: DeviceTypes vs First Occurrence in 23rd of May in the
Third Example in Milan

5.4 Mutual Rules

Previously, we showed the process of acquiring a suitable definition for the matrix of
transaction and itemsets. We observed that the genesis of this idea is based on the most
important features in our data set. Since in this way rules are more meaningful. Turning
now to focus on those mutual rules that are held among different provinces and months, can
make the results more remarkable. The concept is to start from rule set of one arbitrary
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5.4 – Mutual Rules

Figure 5.30: Geographical Visualization of Network Devices Involved in the Third Example
in Milan

province such as Turin which is obtained in an arbitrary month such as May and search
for all mutual rules within transaction sets of the other provinces in month of May and
September.

As mentioned before, in order to explore mutual rules more efficiently, we should order
them by measures of interestingness as lift, support, and confidence. Among 70 mutual
rules of these datasets we select two of more interesting ones based on Turin to investigate
and then continue to do the same for other data sets.

5.4.1 First Mutual Rule in Turin data set in May

We selected this rule based on Turin data set in May.

Antecedent UBTS_equipmentMalfunction
GBTS_indeterminate(Cell Logical
Channel Availability Supervision)
GBSC_indeterminate(Data Output
AP Transmission Fault)
UBTS_indeterminate(UtranCell_ServiceUnavailable)

Consequent UBTS_unavailable(Heartbeat Fail-
ure)

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Confidence Lift Support
0.9 7 3%
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Figure 5.31 and 5.32 details the temporal visualization of devices types for each device
involved in the mentioned rule during month of May in province of Turin. It confirms
a correlation between base transceiver station working on UMTS technology with those
working on GSM. However, it seems this correlation is kind of peculiar because it is due
to the failure of specific BSC devices that are same for month of May and September.
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Figure 5.31: Scatter Plot: DeviceTypes vs First Occurrence in the irst Mutual Rule in
Turin in May

Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(CELL LOGICAL CHANNEL AVAILABILITY SUPERVISION)
indeterminate(DATA OUTPUT, AP TRANSMISSION FAULT) indeterminate(UtranCell_ServiceUnavailable)
unavailable(Heartbeat Failure)
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Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(CELL LOGICAL CHANNEL AVAILABILITY SUPERVISION)
indeterminate(DATA OUTPUT, AP TRANSMISSION FAULT) indeterminate(UtranCell_ServiceUnavailable)
unavailable(Heartbeat Failure)
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Figure 5.32: Zoomed Scatter Plot: DeviceTypes vs First Occurrence in 25th of May in the
First Mutual Rule in Turin
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5.4.2 First Mutual Rule in Milan data set in May

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Confidence Lift Support
0.9 6 3%

Figure 5.33 and 5.34 details the temporal visualization of devices types for each device
involved in the mentioned rule during month of May in province of Milan.
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Figure 5.33: Scatter Plot: DeviceTypes vs First Occurrence in the First Mutual Rule in
Milan in May

5.4.3 First Mutual Rule in Turin data set in September

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Confidence Lift Support
0.9 13.9 1%

Figure 5.35 and 5.36 details the temporal visualization of devices types for each device
involved in the mentioned rule during month of September in province of Turin.

5.4.4 First Mutual Rule in Milan data set in September

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.
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Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(CELL LOGICAL CHANNEL AVAILABILITY SUPERVISION)
indeterminate(DATA OUTPUT, AP TRANSMISSION FAULT) indeterminate(UtranCell_ServiceUnavailable)
unavailable(Heartbeat Failure)
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Figure 5.34: Zoomed Scatter Plot: DeviceTypes vs First Occurrence in 23rd of May in the
First Mutual Rule in Milan

Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(CELL LOGICAL CHANNEL AVAILABILITY SUPERVISION)
indeterminate(DATA OUTPUT, AP TRANSMISSION FAULT) indeterminate(UtranCell_ServiceUnavailable)
unavailable(Heartbeat Failure)
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Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(CELL LOGICAL CHANNEL AVAILABILITY SUPERVISION)
indeterminate(DATA OUTPUT, AP TRANSMISSION FAULT) indeterminate(UtranCell_ServiceUnavailable)
unavailable(Heartbeat Failure)
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Figure 5.35: Scatter Plot: DeviceTypes vs First Occurrence in the irst Mutual Rule in
Turin in September

Confidence Lift Support
0.9 9.9 1%

Figure 5.37 and 5.38 details the temporal visualization of devices types for each device
involved in the mentioned rule during month of September in province of Milan.
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Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(CELL LOGICAL CHANNEL AVAILABILITY SUPERVISION)
indeterminate(DATA OUTPUT, AP TRANSMISSION FAULT) indeterminate(UtranCell_ServiceUnavailable)
unavailable(Heartbeat Failure)
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Figure 5.36: Zoomed Scatter Plot: DeviceTypes vs First Occurrence in 25th of May in the
First Mutual Rule in Turin

Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(CELL LOGICAL CHANNEL AVAILABILITY SUPERVISION)
indeterminate(DATA OUTPUT, AP TRANSMISSION FAULT) indeterminate(UtranCell_ServiceUnavailable)
unavailable(Heartbeat Failure)

4-Sep 11-Sep 18-Sep 25-Sep
First Occurrence

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

ID
_D

ev
ice

Ty
pe

Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(CELL LOGICAL CHANNEL AVAILABILITY SUPERVISION)
indeterminate(DATA OUTPUT, AP TRANSMISSION FAULT) indeterminate(UtranCell_ServiceUnavailable)
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Figure 5.37: Scatter Plot: DeviceTypes vs First Occurrence in the irst Mutual Rule in
Milan in September

5.4.5 Second Mutual Rule in Turin data set in May

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Figure 5.39 and 5.40 details the temporal visualization of devices types for each device
involved in the mentioned rule during month of May in province of Turin.
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Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(CELL LOGICAL CHANNEL AVAILABILITY SUPERVISION)
indeterminate(DATA OUTPUT, AP TRANSMISSION FAULT) indeterminate(UtranCell_ServiceUnavailable)
unavailable(Heartbeat Failure)
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Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
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indeterminate(DATA OUTPUT, AP TRANSMISSION FAULT) indeterminate(UtranCell_ServiceUnavailable)
unavailable(Heartbeat Failure)

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00
First Occurrence

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

ID
_D

ev
ice

Ty
pe

Figure 5.38: Zoomed Scatter Plot: DeviceTypes vs First Occurrence in 1st of September
in the First Mutual Rule

Confidence Lift Support
0.8 6 3%

5.4.6 Second Mutual Rule in Milan data set in May

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Confidence Lift Support
0.8 5.5 2%

Figure 5.41 and 5.42 details the temporal visualization of devices types for each device
involved in the mentioned rule during month of May in province of Milan.

5.4.7 Second Mutual Rule in Turin data set in September

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Confidence Lift Support
0.8 10 1%

Figure 5.43 and 5.44 details the temporal visualization of devices types for each device
involved in the mentioned rule during month of September in province of Turin.
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Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(UtranCell_ServiceUnavailable) unavailable(Heartbeat Failure)
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Figure 5.39: Scatter Plot: DeviceTypes vs First Occurrence in the Second Mutual Rule in
Turin in May

Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(UtranCell_ServiceUnavailable) unavailable(Heartbeat Failure)
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Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(UtranCell_ServiceUnavailable) unavailable(Heartbeat Failure)
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Figure 5.40: Zoomed Scatter Plot: DeviceTypes vs Second Occurrence in 25th of May in
the First Mutual Rule in Turin

5.4.8 Second Mutual Rule in Milan data set in September

As we can observe in the below table information on the interestingness of a the rule is
reported as an output.

Figure 5.45 and 5.46 details the temporal visualization of devices types for each device
involved in the mentioned rule during month of September in province of Milan.
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Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(UtranCell_ServiceUnavailable) unavailable(Heartbeat Failure)
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Figure 5.41: Scatter Plot: DeviceTypes vs First Occurrence in the Second Mutual Rule in
Milan in May

Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(UtranCell_ServiceUnavailable) unavailable(Heartbeat Failure)
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Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(UtranCell_ServiceUnavailable) unavailable(Heartbeat Failure)
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Figure 5.42: Zoomed Scatter Plot: DeviceTypes vs First Occurrence in 23rd of May in the
Second Mutual Rule in Milan

Confidence Lift Support
0.9 9.4 2%

As we have seen in the examples, lift is higher in September because there are less
devices involved in compared to May. We know that consecutively support is lower, too.
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Figure 5.43: Scatter Plot: DeviceTypes vs First Occurrence in the Second Mutual Rule in
Turin in September

Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(UtranCell_ServiceUnavailable) unavailable(Heartbeat Failure)
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Figure 5.44: Zoomed Scatter Plot: DeviceTypes vs First Occurrence in 25th of May in the
Second Mutual Rule in Turin
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Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
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Figure 5.45: Scatter Plot: DeviceTypes vs First Occurrence in the Second Mutual Rule in
Milan in September

Series: ID_DeviceType Color (ProbableCause): equipmentMalfunction
indeterminate(UtranCell_ServiceUnavailable) unavailable(Heartbeat Failure)
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Figure 5.46: Zoomed Scatter Plot: DeviceTypes vs First Occurrence in 1st of September
in the Second Mutual Rule in Milan
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

Throughout the thesis, we found out that an alternative way to gain more information out
of data is to apply data mining and knowledge discovery methods [15]. A discussion on
different methodologies representations based on market basket analysis concept has been
provided. First an experiment aimed at finding temporal correlations among each network
device has been performed. Next, a different experiment on types of each device has been
done. The comparison between the two methodologies has been discussed through the
previous chapters. To recap, the latter methodology extracts more general associations
because it is focused on types not the devices themselves.

Since we are using machine learning algorithms, let us go through the main steps of
machine learning used in our thesis to build a predictive model.

• Data Gathering: This step was done by TIM.

• Data Preparation: This step involves data cleaning and manipulation. De-duping,
removing old or unused fields, error correction and changing them into the right
format is part of these step. It also involves looking for any data imbalances that
could make data heavily biased.

• Choosing an ML model: We chose frequent pattern mining and then extracted asso-
ciation rules.

• Evaluation and Parameter Tuning: This steps identifies how well an algorithm per-
forms. By adding more data or changing the parameters, model gets more accurate.

With that in mind, before stating the conclusion, we remind the reader the key role of
domain expert knowledge in interpreting the results of discovered patterns. Our work is to
aid the experts in recalling and formulating correlation patterns in an efficient way. Given
obtained rules derived from an alarm database, domain expert is able to verify whether
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the rules are useful or not. Some of the rules may reflect causal correlations and give new
insights into the behaviour of the network elements whereas others may be irrelevant.

As we observed, parameterization is needed when searching for proper methods in order
to find the required information from the data. In our approach, we apply this with different
thresholds and data selections. As a result, the method reveals a set of selected informative
rules. Then experts can learn quite a lot from data and find the answer to questions such
as: "What are the distributions of alarms types and their causes?", "What are the most
common combinations of devices that generated alarms?", "Is there any correlation among
the alarms coming from different sources?", and so on. By logic, this kind of information
and knowledge about the network could be even more valuable than the rules found in the
data because such information can relatively easily be interpreted.

The feedback from the TIM network maintenance team in Rome confirmed that rules
similar to what we showed were already presented in their system. So our automatic rules
are useful for their systems. Moreover, TIM would like to use the rules we extracted as
an input of machine learning algorithms to "detect patterns". These rules are stored in
the systems as a list of "situations" (e.g., our rules), presented together with meta-data
(location, resolution and etc).

6.2 Future Work

Since experiments with real data are often very time consuming, different tests and adap-
tations of our methods have been left for the future. However, there are several interesting
research directions to be considered outside the scope of the thesis. First, in addition to
data sources we have used, it would be interesting to also investigate network devices from
other cities and provinces such as the south of Italy. Second, we would like to validate more
temporal-spatial patterns and investigate how to model them. Finally, the methodologies
proposed in our work to capture temporal-spatial correlations could be quite general hence
we would like to investigate other critical domains such as medical and crime applications.
In the arena of deeper analysis, our mechanism could aid to distinguish rules and patterns
that appear in some cases with the ones that rarely do.
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