
1 | P a g e  
 

 

 

 POLITECNICO DI TORINO 
Department of Electronics and Telecommunication (DET) 

 

 

 

Master Degree Thesis 

  The Implementation and Verification of Hamming code 

 

Computer and Communication Networks Engineering 

 
 

 Candidate: Majid Kashkouli                                             

 Supervisors: Prof. Roberto Garello, Jeroen Boydens 

                                                 

              

October 2018 
             

 



2 | P a g e  
 

                                                                                                                                                                                               

Abstract: 

 
Nowadays, the communication systems like telecom communication and etc. already become 
inevitable in people's life. For providing effective and reliable communication, the error control 
method must be applied in each communication system. 
In the process of each communication system, the transmitted data might be corrupted and in this 
situation, the signals which is received in the receiver side are different than the initial signal or 
data which generated by the sender (transmitter) [1]. 
This master thesis project offered that how the error will be detected on the receiver side and also 
how does receiver correct this detected error by a method called hamming code. So in this report, 
there is illustrate with an example that how the receiver can find in which bit an error is occurred 
and how the detected error will be corrected?  

FEC (Forward Error Correction) can increase the ability to receive places to correct an error 
during a transmission, so the throughput of a data link operation will be improved in a noisy 
environment [2].  

To indicate how the error correction works, the additional information must append to the data 
bits in a form of parity bits, but with increasing the length of a frame, the transmission process 
will slow down.  

In hamming code method, a block parity mechanism is provided for FEC (forward error 
correction) which can be implemented, cheaply. In this method, two errors can be detected, while 
just one error can be corrected in each received codeword. In Hamming codes, a special principle 
is used called parity principle to correct just one error and find two errors, but the hamming code 
method is not able to do both error detection and correction at the same time. One can use 
hamming codes as an error detector to obtain both single and double bit errors or use them to 
correct single bit error. It will be done by applying more than one parity bits, and each of them 
will be computed on different and various combination of bits in the data. 

 

Keywords: Hamming code, Resilience, Fault tolerance. 

 

 

 

 

 



3 | P a g e  
 

 

Acknowledgements 
Performing my graduation project and writing this thesis has been a long journey. I would like to 
thank several people for their help and their support during this process. 

I would like to express my sincere thanks to my dear supervisor, Professor Roberto Garello at 
Politecnico di Torino for his continuous help, scientific guidance and valuable support throughout 
the project. Moreover, I also owe a great deal of appreciation to my entire family, especially my 
dear father and mother who always support me in my life, and most especially to my wonderful 
friend Mrs. Alieh Lotfinejad. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



4 | P a g e  
 

 

Contents 
 

List of figures ................................................................................................................................................ 6 

List of tables .................................................................................................................................................. 7 

List of symbols .............................................................................................................................................. 8 

1. Introduction ........................................................................................................................................... 9 

1.1. Problem Statement ........................................................................................................................ 9 

1.2. The General Idea ......................................................................................................................... 10 

2. Literature Review ................................................................................................................................ 11 

2.1. Historical Background related to Hamming Code ...................................................................... 11 

2.2. Types of Hamming Code ............................................................................................................ 12 

2.2.1. Standard Hamming Code ........................................................................................ 12 

2.2.2. Extended Hamming Code (EH) .............................................................................. 12 

2.2.3. Extended Hamming Product Codes ........................................................................ 13 

2.2.4. Extended Hamming code vs. Extended Hamming product code ........................... 17 

2.2.5. Codes with the property of BER and a group of transitive automorphism ............. 19 

3. Theoretical Description of Hamming Code ........................................................................................ 24 

3.1. Description of Hamming Code ................................................................................................... 24 

3.2. An Alternative Description of the Hamming Code ..................................................................... 26 

3.3. Theoretical Description for Encoding Part of Hamming Code ................................................... 27 

3.4.1. Construction of G and H Matrix .................................................................................. 31 

3.4.2. Types of Error .............................................................................................................. 32 

3.4.3. Error Detection and Error Correction .......................................................................... 34 

3.5. Example of Hamming Code ............................................................................................................. 35 

3.5.1. Hamming Encoding Example ...................................................................................... 35 

3.5.2. Hamming Decoding Example ..................................................................................... 38 

4. Alternatives for Hamming Code ......................................................................................................... 39 

4.1. BCH Code ................................................................................................................................... 39 

4.1.1. Advantages of BCH code ........................................................................................ 40 

4.1.2. Disadvantages of BCH codes.................................................................................. 40 

4.1.3. Encoding Instructions of BCH Code ...................................................................... 40 

4.1.4. Decoding Instructions of BCH Code ...................................................................... 40 



5 | P a g e  
 

4.1.5. Overview of BCH code design ............................................................................... 41 

4.2. Reed Solomon Code Definition .................................................................................................. 42 

4.2.1. Advantages of Reed Solomon Code ....................................................................... 44 

4.2.2. Disadvantage of Reed Solomon Code .................................................................... 44 

4.2.3. Example of Reed Solomon Code ............................................................................ 44 

5. Alternatives for error correction ......................................................................................................... 45 

5.1. N-modular redundancy and Triplication (N-modular redundancy with n=3) ............................. 45 

5.2. N version programming (NVP)........................................................................................................ 46 

6. Comparative Study (Between Hamming, BCH and RS Codes) ......................................................... 46 

7. Verification and Validation of Hamming code ................................................................................... 47 

7.1. Verification and Validation for Encoding part of Hamming Code ............................................. 47 

7.2. Verification and Validation for Implementation of Check Matrix ............................................. 48 

7.3. Verification and Validation for Decoding part of Hamming Code ............................................. 49 

8. Direction for Future ............................................................................................................................ 50 

9. Conclusion .......................................................................................................................................... 50 

References ................................................................................................................................................... 52 

 

 

 

 

 

 

 

 

 

 

 



6 | P a g e  
 

 

List of figures 
 
Figure 1. Data Transmission ........................................................................................................... 9 
Figure 2.  The main scheme of hamming code  ............................................................................ 11 
Figure 3.  Relation among data and parity bits in extended hamming product code  ................... 18 
Figure 4. Typical encoding procedure for a product code  ........................................................... 19 
Figure 5. BER and FER error floor  .............................................................................................. 21 
Figure 6. BER and FER by applying BCJR and Chase algorithms  ............................................. 22 
Figure 7. An additional description for the Hamming code  ........................................................ 26 
Figure 8. Graphical description of H (7, 4) with 4 data bits (k) and 3 parity bits (r)  ................... 27 
Figure 9. Merging of data and parity bits  .................................................................................... 28 
Figure 10. The Structure of Encoder and Decoder  ...................................................................... 29 
Figure 11. Single bit error ............................................................................................................. 33 
Figure 12. Multiple bit error ......................................................................................................... 33 
Figure 13. Burst error .................................................................................................................... 33 
Figure 14. Example of merging data bits and parity bits .............................................................. 36 
Figure 15. Overview of BCH code design  ................................................................................... 41 
Figure 16. The module of error injection  ..................................................................................... 42 
Figure 17. Typical system of Reed Solomon code  ...................................................................... 42 
Figure 18. Typical Reed Solomon codeword structure  ............................................................... 43 
Figure 19. N-Modular redundant structure  .................................................................................. 45 
Figure 20.  NVP structure (example N = 3)  ................................................................................. 46 
Figure 22. The encoding result of hamming code ........................................................................ 48 
Figure 23. The result of check matrix for Hamming (31, 26) ....................................................... 48 
Figure 24. The result of check matrix (H) and transposed of check matrix for Hamming (31, 26)
....................................................................................................................................................... 49 
 

 

 
 
 
 
 



7 | P a g e  
 

 

List of tables 
 
Table 1. Dominant and information multiplicity  ....................................................................................... 21 

Table 2.  A dimension of possible Hamming codes.................................................................................... 25 

Table 3. Parity bits position  ....................................................................................................................... 28 

Table 4. Calculation method of parity bits  ................................................................................................. 30 

Table 5. Result of XORing of two single bits ............................................................................................. 30 

Table 6. Bit composite word written into memory  .................................................................................... 31 

Table 7. Calculation of parity bits for hamming code example  ................................................................. 37 

Table 8. Shows the value of each bit in the final codeword ....................................................................... 37 

Table 9. The total series of bits of Hamming code for a dimension of H (7, 4) ......................................... 38 

Table 10. Comparative analysis among error correcting codes .................................................................. 47 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



8 | P a g e  
 

 

        List of symbols 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

Symbol Description 
n Number of total bits  

k Size of the data bits 
r Size of the parity bits 

k/n Rate 
n/k Overhead factor 

G Generator matrix 

H Check matrix 

P Parity matrix 
𝐏𝐓  Transposed of parity matrix  

𝐇𝐓 Transposed of check matrix 

GF Galois Fields technique 

S (Si) syndrome 
𝐗𝐢 System input 

𝐘𝐢 System output 
XOR Exclusive OR 
<< Shift the bit to the left  
>> Shift the bit to the right 
& Bitwise of AND  
^ Bitwise of exclusive  
| Bitwise of OR 

R(x) Received codeword 



9 | P a g e  
 

 
Chapter 1.  

1.  Introduction 
 

1.1. Problem Statement 
 

Coding theory is interested in providing a reliability and trustiness in each communication 
system over a noisy channel. In the more communication systems, the error correction 
codes are used to find and correct the possible bit changing [2], for example, in wireless 
phones and etc. 
 

In any environment, Environmental interference, physical fault noise, electromagnetic 
radiation and other kinds of noises and disturbances in the communication system affect 
communication direction to corrupted messages, an errors in the received codeword 
(message) or bit changing might be happened during a transmission of data [1] [2]. 

 
So, the data can be corrupted during a transmission and dispatching from the transmitter 
(sender) to the receiver, but during a data transmission, it might be affected by a noise, then 
the input data or generated codeword is not the same as received codeword or output data 
[1]. The error or bit changing which is happened in data bits can change the real value of 
the bit(s) from 0 to 1 or vice versa. 
 
In the following simple figure, a base structure of communication system is indicated. And 
this figure indicates that how the binary signal can be affected by a noise or other effects 
during a transmission on the noisy communication channel: 
 
                                                                     Noise 
                                           
                                             Binary signal         

 

 

 

 

 
    

                                              Figure 1. Data Transmission 

 

Transmitter Receiver 



10 | P a g e  
 

 

Generally, there are three types of errors that can be corrupted in data transmission from 
the sender to the recipient: 
 

 Single bit error: The error is called single bit error when bit changing or an error 
happens in one bit of the whole data sequence [3]. 
 

 Multiple bit errors: the occurred errors are called multiple bit errors, if there are a 
bit changing or an errors in two or more than two bits of the sequence of forwarded 
data [3]. 
 

 Burst errors: if an errors or bits changing are happened on the set of bits in the 
transmitted codeword, then the burst error is occurred. The burst error will be 
calculated from the first bit which is changed until the last changed bit [3]. 
 

                  These types of errors will be discussed in chapter three of this report in detail. 

 

1.2. The General Idea 
 

The main method is using redundancy (parity) to recover messages with an error during 
transmission over a noisy channel. 

As a simple example, an error can happen in human language in both verbal and written 
communication. For instance, if during a reading of this sentence: “this sentence is 

miscake”, there is an error and wrong word in this sentence and the error should be found 
that in this sentence in which word the mistake is occurred and then it must be corrected, 
so two important things must be achieved here: error detection and error correction, and 
the principles that must be used to achieve these goals are first in English language the 
string “miscake” is not accepted word, so in this point, it is obvious that the error is 
occurred, Secondly, the word “miscake” is closest to the real and correct word “mistake” 

in English, so it is the closest and the best word which can be used instead of the wrong 
word [4]. 

So, it shows how redundancy can be useful in the example of human language, but the goal 
of this project is how the computers can use some of the same principles to achieve error 
detection and error correction in the digital communication? 

 

 

 



11 | P a g e  
 

 

To get the best idea of correction by using a redundancy in digital communication, first of 
all, it is necessary to model the main scheme contains two main parts called encoding and 
decoding like the following figure and in the next parts all of these parts will be explained 
in detail and implemented in C++ language.  

 

                                                     Noise               

                                               
 

Figure 2.  The main scheme of hamming code [2] 

 

According to this figure [2] [3], first of all, the code will be generated by a source, and then 
to do encoding part, the parity (redundancy) bits will be added by the encoder to the data 
bits which sent from a source. After that, the generated codeword which is a combination 
of data bits and parity bits will be transmitted to the receiver side, and during transmission, 
the error or bit changing might be happened in the communication channel over produced 
codeword. At the end, the corrupted error must be detected and corrected by decoder on 
the receiver side. 

 

Chapter 2. 

2. Literature Review  
 

2.1. Historical Background related to Hamming Code 
 

One of the proper subset of information theory is called coding theory, but the concept of 
these theories are completely different [2]. 

The main subject is began from a seminar paper which presented by Claude Shannon in the 
mid of 20th century. And in that paper, he demonstrated that good code exist, but his 
assertions were probabilistic. Then after Shannon’s theorem, Dr Hamming [1] [3] and 
Marcel Golay [5] presented their first error correction codes which called Hamming and 
Golay codes [2]. 

 

 

Source Encoder Channel 
Received 
message Decoder Receiver 



12 | P a g e  
 

 

In 1947, Dr Hamming introduced and invented the first method and generation of error 
correction code called hamming code [1] [6]. Hamming code is capable to correct one error 
in a block of the received message contains binary symbols [7]. After that, Dr Hamming has 
published a paper [1] in the Bell technical journal with a subject of error detection and error 
correction code. 

In 1960, other methods for error detection and error correction codes were introduced and 
invented by another inventor, for example, BCH code was invented by Bose, Chaudhuri and 
Hocquenghem who are a combination of the surname of the initial inventors' of BCH code 
[7]. 

Another error detection and error correction code which presented in 1960 was Reed 
Solomon (RS) code that invented by two inventors called Irving Reed and Gustave Solomon 
and this method was developed by more powerful computers and more efficient algorithm 
for decoding part [8]. 

 

2.2. Types of Hamming Code 
 

There are three more significant types of hamming codes which called 1. Standard 
hamming code, 2. Extended hamming code [9], 3. Extended hamming product code, but in 
this research, the standard hamming code is used and implemented. 
 

2.2.1.  Standard Hamming Code  
 

The standard method of hamming code is depended on a minimum hamming distance, 
it means to design the standard hamming code, minimum hamming distance which is 
three among any two codewords is needed, for instance, a standard hamming code 
with a dimension of H (7, 4) which four data bits are encoded into 7 bits by appending 
3 redundancy bits [10]. In the next chapter, this kind of hamming code will be 
explained in detail. 

 

2.2.2.  Extended Hamming Code (EH) 
 
In this type of hamming code (EH), the minimum distance will be increased to have 
one more than the standard form of hamming code, so the minimum distance is equal 
to four among every two codewords. The main frame and structure of the Hamming 
code is the same for both binary and extended Hamming code. 
 
 
 



13 | P a g e  
 

 
In fact, in the extended Hamming code there is an extra bit which is added to the 
redundant (parity) bit that allows the decoder to recognize between single and double 
bit errors. Afterwards, on the receiver side, the decoder can detect and correct an error 
with one bit changing and also a double bit errors can be detected (not corrected) at 
the same time, and if there is no attempting by a decoder to correct this single bit error, 
then it also can detect maximum three errors [10].  
 
In the last example above, the extended hamming code defined as H (8, 4) and here 
there are 4 parity bits which are calculated by a subscription among 8 total bits and 4 
data bits. 
 

2.2.3.  Extended Hamming Product Codes 
 

Extended Hamming product codes is a code which is built based on the extended 
Hamming code (EH). This kind of code is consist of the new algorithms and outcomes. 
The more important issue which is so significant for both researchers and designers is 
low error rate for the evaluation of efficiency for channel coding scheme. Also, there 
are two remarkable values called BER (bit error rate) and FER (frame error rate) which 
some fresh digital radio links are designed for them, because nowadays, using wireless 
multimedia applications are going to be extended and low-error-rates are so important 
issue for these applications [11]. 
 
There are two more important schemes for coding which has a special performance 
and proficiency that is very close to Shannon limit, and they are called turbo codes 
[11], And low-density parity check codes [12]. So the product codes can be more 
competitive, therewith, this kind of codes can be used for the implementation of the 
fast parallel decoder.  
 
One of the most substantial and prosperous works and paper to accede the Shannon 
limit was published in 1993 by three researchers called Berrou, Glavieux and 
Thitimajshima, at the same time [14]. They also introduced and stated turbo codes, 
which also known as PCCC (PCCC is an abbreviation of parallel concatenated 
convolutional codes).   
 
The turbo codes is a special technique and method of the coding theory which used to 
prepare a reliable and reputable communication over a noisy or messy communication 
channel. The turbo codes are a special class of FEC (forward error correction) codes, 
and they are used in 3G or 4G mobile communications, for instance, in LTE. The turbo 
codes gain their considerable efficiency and performance with relatively low 
complication algorithms for encoding and decoding parts. The turbo codes can attain 
BER or bit-error-rate levels which should be around 10−5 at the code rate which is 
completely close to the specifically related capacity with advisable complexity and 



14 | P a g e  
 

convolution for decoding. And the most important key that made it to the successful 
algorithm was using decoding algorithm which is called soft-in soft-out [14] [15]. In 
the last years, other similar codes such as SCCCS, low-density parity check codes and 
also the block product codes are introduced and studied, but the product codes are 
using a high level of rating and degree in parallelization, for instance, PCCC [15]. 
 
In this method (turbo codes), the main goal is preparing a perfect and complete set of 
techniques and analytical methods to have the performance related to the low-error-
rate for the extended Hamming product codes. For doing analytical approximation 
three important parameters are required which must be evaluated for the extended 
Hamming (EH) product codes, these parameters are called the code performance at 
low-error-rates, the exact knowledge of the code minimum distance and its 
multiplicities, respectively [16]. 
 

2.2.3.1. Binary linear code 
 

Linear codes are determined by the special alphabets called Σ which are finite 

fields.  All over, it will be denoted by 𝐹𝑞  which means the finite fields with q 
elements (q is a primer power and 𝐹𝑞 is {0, 1, . . . , q − 1}) [16]. 

If a required field is Σ and C ⊂ Σ 𝑛 is a subset of  Σ 𝑛, then C will be called a linear 
code. And because C is a subset, so there are several basis c (like: c1, c2, . . . , 𝑐𝑘 
which k is a dimension of the subset), and each generated codeword can be 
declared as the linear combination of these basis vectors and these vectors can be 
written In the dominant of proper matrix as the columns of a n×k matrix and this 
proper matrix is called G matrix (generator matrix) [16]. 

According to the binary linear code which is written in the form of C (n, k), also 
there are some values which are described in the following: 

There are k data bits or information frame and r parity bits, also, n is the total 
number of bits of a codeword where n = (k + r). A particular symbol 𝑊𝐻(. ) is the 
Hamming weight of a vector [16]. 

u = (𝑢1, 𝑢2, … , 𝑢𝑘)  

c = (𝑐1, 𝑐2, … , 𝑐𝑛) 

c = (u | P) where the first k bits are a data bits which is generated by u and P is a 
specific vector which is contained r parity bits and these parity bits will be placed 
after the first k data bits [16]. 

 

 



15 | P a g e  
 

 

A. Weight Enumerating Functions (WEF) 
 
Weight enumerating function (WEF) admits the superlative description and 
complete information for a weight structure. The turbo codes consist of weight 
enumerating function of the component codes, for instance, the traditional 
trellis search [13]. There are three distinguished WEF for a code [16], the 
weight enumerating function is like the following formula: 
 

𝑊𝐶(𝑦)  = ∑ 𝑦𝑤𝐻(𝐶) = ∑ 𝐴𝑖𝑦
𝑖𝑛

𝑖=0𝑐∈C  
 

Where 𝐴𝑖 is the number of codewords in which the weight is 𝑊𝐻(𝑐) = i. And 
another significant formula will be I𝑊𝐶(𝑦)  which is called the information 
weight of an enumerating function and it will be written like the downward 
formula with some changed parameters in comparison to above formula [16]: 
 

I𝑊𝐶(𝑦)  = ∑ 𝑊𝐻(𝑢)𝑦𝑤𝐻(𝐶) = ∑ 𝑊𝑖𝑦
𝑖𝑛

𝑖=0𝑐∈C  
 

In this formula 𝑊𝑖 is a data (information) multiplicity and it used instead of 
𝐴𝑖 because it’s the summation of the Hamming weights of 𝐴𝑖 and u is a 
specific data frame which the codeword with a weight of 𝑊𝐻(𝑐) = i will be 
generated by it [16]. 
 
The third significant function is IOWEF (or the input output weight 
enumerating function) which is written like the underneath formula: 

 
IO𝑊𝐶(𝑥, 𝑦, 𝑋, 𝑌) = ∑ 𝑥

𝑘−𝑊𝐻(𝑢)
𝑦𝑊𝐻(𝑢)

𝑋𝑟−𝑊𝐻(𝑃)𝑌𝑊𝐻(𝑃)
𝑐∈C   

 
In this formula the number of codewords c = (u | P) which 𝑊𝐻(𝑢) is equal to 
w and 𝑊𝐻(𝑃) is equal to p, so if we replace w and p instead of 𝑊𝐻(𝑢) and 
𝑊𝐻(𝑃) in above formula, respectively [16], then the result will be like the 
following formula called IO𝑊𝐶(𝑥, 𝑦, 𝑋, 𝑌): 

 
IO𝑊𝐶(𝑥, 𝑦, 𝑋, 𝑌) = ∑ ∑ 𝐴(𝑤𝑝)

𝑟
𝑝=0

𝑘
𝑤=0 𝑥𝑘−𝑤𝑦𝑤𝑋𝑟−𝑝𝑌𝑝 

 
So, the minimum non zero 𝐴𝑖  = ∑ 𝐴(𝑤𝑝)𝑤 + 𝑝 = 𝑖  and 𝑤𝑖 = w. ∑ 𝐴(𝑤𝑝)𝑤 + 𝑝 = 𝑖  
 
 
 
 
 



16 | P a g e  
 

 
B. BER and FER Performance for Maximum Likelihood 

Decoding: 
 
In this part, the main foundation related to the evaluation of analytical code 
performance is at the SNR like, low error rates. According to the binary 
linear codes C (n, k) which can be transmitted by a binary averse 
constellation, for example, a 2-PAM, Gray labeled 4-PSK and etc. upon the 
increasable White Gaussian Noise channel. So it will be so clear that BER 
and FER performance for maximum likelihood decoding which are 
corresponded to the specific ratio among the energy of data bits and the 
spectral density. 

The bit error rate or BER is the number of bits containing an errors in each 
time, so the ratio of bit error will be calculated by the number of bits containing 
an error over the total number of bits which are transferred over a 
communication channel during the time interval (the result can be expressed 
as a percentage). 

The frame error rate (FER) is a ratio of errors for a received data bits, it can be 
used for evaluating a quality of the signal connection. If the result of FER is 
so high, it means there are lots of errors among the whole received bits, and in 
this situation, the connection can be rejected and dropped [16]. 

FER < = ∑ 1

2
𝐴𝑖

𝑛
𝑖=𝑑𝑚𝑖𝑛

𝑒𝑟𝑓𝑐 (√𝑖
𝑘

𝑛

𝐸𝑏

𝑁0
) 

BER < = ∑ 1

2

𝑤𝑖

𝑘

𝑛
𝑖=𝑑𝑚𝑖𝑛

𝑒𝑟𝑓𝑐 (√𝑖
𝑘

𝑛

𝐸𝑏

𝑁0
) 

Where 𝐸𝑏 is the energy of each data (information) bit and 𝑁0 is the noise of 
spectral density and the ratio between them (𝐸𝑏

𝑁0
) is significant and related to 

the BER and FER performance for maximum likelihood decoding. 

When the SNR is very high, then the error rate will be very low and actually 
the code performance will be concurred with the union band truncated for 
contribution of 𝑑𝑚𝑖𝑛, so the following formula can be written according to the 
mentioned condition and the above formulas for very high SNR and 𝐹𝐸𝑅𝐸𝐹  
and 𝐵𝐸𝑅𝐸𝐹 are called the code error floor [16]: 

FER≈ 𝐹𝐸𝑅𝐸𝐹 ≜ 1
2
𝐴𝑚𝑖𝑛𝑒𝑟𝑓𝑐 (√𝑑𝑚𝑖𝑛

𝑘

𝑛

𝐸𝑏

𝑁0
) 

BER ≈ 𝐵𝐸𝑅𝐸𝐹  ≜ 1
2

𝑤𝑚𝑖𝑛

𝑘
𝑒𝑟𝑓𝑐 (√𝑑𝑚𝑖𝑛

𝑘

𝑛

𝐸𝑏

𝑁0
) 



17 | P a g e  
 

 

C. BER properties: 
 
There are some main problems which are related to the computation of 
multiplicity, so the new theoretical results are indicated in the below for 
solving these problems. A value of 𝑑𝑚𝑖𝑛 (minimum distance) and its 
multiplicity or 𝐴𝑚𝑖𝑛 are explicit and clear for many codes, but the value of 
𝑤𝑚𝑖𝑛 is very difficult to compute. 
 
So, pursuant to the above formula correspond to 𝐵𝐸𝑅𝐸𝐹, we will have: wmin

k
≈

 Amin.
dmin

n
  then the mentioned error floor is connected by BEREF ≈

 FEREF.
dmin

n
 (in fact, it’s a relation between BEREFand FEREF error floor). 

BEREF ≈  FEREF.
dmin

n
 will be satisfied by some codes with equality, so in this 

situation, they satisfy and process 𝐵𝐸𝑅 property, and if all of the multiplicities 
which called 𝐴𝑖 and the data multiplicities which called 𝑤𝑖 can be connected 
by this property: wi = Ai. i.

k

n
 , but both multiplicity and the properties 

correspond to BER are still unsolved and open problem, in the next parts some 
solution called extended hamming code and extended hamming product code 
will be explained for these properties [16]. 
 

2.2.4. Extended Hamming code vs. Extended Hamming product code 
 

 
In the extended Hamming code EHr(n, k), the minimum distance will be increased to 
have one more than the standard form of the Hamming code, so the minimum distance 
is equal to four among every two codewords. The main frame and structure of the 
Hamming code is the same for both binary and extended Hamming code. In fact, in 
the extended Hamming code there is an extra bit which is added to the redundant 
(parity) bit that allows the decoder to recognize between single and double bit errors. 
So as mentioned above by adding an additional parity bit to the Hamming code, 
 EHr(n, k) will be characterized by n = 2𝑟, k = 2𝑟 − 𝑟 − 1 and r is a parity bit which 
must be an integer numbers greater than two. Also, the form of multiplicity for 
extended Hamming code can be found by the following lemma [16]: 

A2i =
(n
2i) + (−1)i × (n−1) × (

n
2
i
)

n
 ,  i =2, 3, … 

 
 
 
 



18 | P a g e  
 

 
 

For introducing an extended hamming product codes, first of all, if C1is a block code 
like (𝑛1, 𝑘1) and 𝐶2  is a block code with a form of (𝑛2, 𝑘2), then a proper product 
code which is equal to the multiplication between first and second block 
codeCP(𝑛𝑃, 𝑘𝑃) =  (C1 × 𝐶2), so the result will be equal to: (𝑛1 𝑛2, 𝑘1𝑘2) code [15].           

 

Figure 3.  Relation among data and parity bits in extended hamming product code [15]            

 

The systematic encoder for the product code CP(𝑛𝑃, 𝑘𝑃) =  ( C1  ×  C2)  = 
EH𝑟1

(𝑛1, 𝑘1)  × EH𝑟2
(𝑛2, 𝑘2) will be obtained by three important cases: 

1) First of all the proper matrix contains data bits must be written, to create this 
matrix, first the data symbols 𝑘1𝑘2 will be arranged into 𝑘2  ×  𝑘1 array. 

2) At the second step, 𝑘1 rows will be encoded by using code C2 and then (𝑛2 − 𝑘2) 
parity bits can be added to each row of this matrix. 

3) Finally, all 𝑛2  columns must be encoded by using code C1 which can add 
(𝑛1 − 𝑘1) parity bits to the end of each column in this matrix. 

Then it’s so clear that the minimum distance of the product code CP(𝑛𝑃, 𝑘𝑃) =  (C1 × 
C2)  =  EH𝑟1

(𝑛1, 𝑘1)  ×  EH𝑟2
(𝑛2, 𝑘2) is dPmin = d1min  ×  d2min  and the values of 

its multiplicity 𝐴𝑚𝑖𝑛
𝑃  and 𝑊𝑚𝑖𝑛

𝑃  are the product of C1 and C2, so the minimum distance 
of product code is equal to 16 (𝐴𝑚𝑖𝑛

𝑃 = 𝐴16
𝑃 = 𝐴4

1 × 𝐴4
2). Also, each column of a 

matrix is a codeword of C1. But if both C1 and C2 are the linear codes, then all rows 
in this matrix are codewords of C2. So according to these definitions, systematic 
encoders for C1 and C2 are assumed. And according to this property. 

As a proper conclusion for a product code which is a construction of placing the data 
bits into the matrix, the rows and columns of this matrix will be encoded separately 
by using the linear block codes, this kind of encoder for the product code is drawn in 
the underneath figure which shows a typical encoding procedure for a product code 
when a block code is used for encoding rows and columns of a matrix [15]: 

 

 



19 | P a g e  
 

 

 

 

                                           Encode rows 

 

                                                Encode columns 

  
  
 
 
 
 

 

 

 

Figure 4. Typical encoding procedure for a product code [15]            

 
 
 

2.2.5.   Codes with the property of BER and a group of transitive 
automorphism 

 

In this part, the goal is evaluation and proofing that when a code has a transitive 
automorphism group, then the specific multiplicities and the property of BER will 
be a part of this code. After that, another issue must be proved which is the issue 
that the extended Hamming product codes and the paronymous and derived form 
statement for their data multiplicity [16]. 

A group of transitive automorphism is a group with a special property that any two 
specified non-identity elements of the group, there is an automorphism of this 
group which is sending the first to the second. According to the binary code C (n, 
k) which is described completely in the last part, a permutation of the coordinates 
is a symmetry of C, if it maps one codeword in another codeword [16]. 

 

 

Data bits 
    Data bits       Row parity                                                                             

                              bits 

 

  Data bits             Row parity                               

                                   bits 

 

Column parity    Row column   

         bits               parity bits 



20 | P a g e  
 

 

Theorem A: A binary codes has C (n, k) will satisfy the multiplicity property(𝑤𝑖), 
if it has a transitive automorphism group, so:  𝑤𝑖 = 

𝑖 𝐴𝑖𝑘

𝑛
. 

There are codewords which called 𝐴𝑖where I is a weight of the codewords. First 
of all, they should be put in a special matrix called M which the number of rows 
and columns of matrix M are called 𝐴𝑖  and n, respectively. Also, the first k 
columns of this matrix are contained the number of ones because C is defined as a 
systematic [16] [17]. 

If i and j are two different coordinates (i≠j and 1 <= i <= n) and then the 

permutation p is a member of Aut (C) which can map i into j where Aut (C) is 
transitive, and the main responsibility of permutation p is mapping any row and 
column of a matrix into another row and column. 

Transitive automorphism group also exist in the extended Hamming code, so 
after that they will contain the multiplicity and BER property, so the data 
multiplicity for EH𝑟(𝑛, 𝑘) or an extended hamming code is: 

 w2i =
2𝑖𝑘[(n

2i) + (−1)i × (n−1) × (
n
2
i
)]

n2  where i = 2, 3 , … 

Theorem B: if there are 2 binary codes C1 and C2, then it must be proved that the 
transitive automorphism group will be like Aut (C1 × C2) [38] [39]. 

According to CP(𝑛𝑃, 𝑘𝑃) =  (C1 × C2) = EH𝑟1
(𝑛1, 𝑘1)  × EH𝑟2

(𝑛2, 𝑘2) = (𝑛1 𝑛2, 
𝑘1𝑘2), any codeword will be contained some coordinates (xi, yi) related to its 
position in this matrix [16][17]. 

Then for simplicity, if 1 <= i <= 𝑛𝑃, then i ≜ (xi, yi) and j ≜ (xj, yj) and for each 
of them, there are two permutation symmetry p1 of C1 which will map xi in xj and 
permutation p2 of C2 that map yi into yj, then the first permutation symmetry will 
be applied to the rows of specified matrix and second permutation symmetry will 
be applied to the columns of this matrix, so for each couple of coordinates, the 
proper permutation symmetry will be built to map coordinate i into coordinate j 
and after that, it’s possible to create transitive automorphism group [16] [17]. 

So, the dominant multiplicity for CP(𝑛𝑃, 𝑘𝑃) =  EH𝑟1
(𝑛1, 𝑘1)  ×  EH𝑟2

(𝑛2, 𝑘2) is 

𝑊𝑚𝑖𝑛
𝑃 =

𝑘1(𝑛1−1)(𝑛1−2)𝑘1(𝑛2−1)(𝑛2−2)

36
. In the following table all dominant 

and information multiplicity of square extended Hamming product codes are 
shown and by looking this table, it’s obvious that product codes are contained a 
large minimum distance by using r which is in the range among 3 to 9 and also 
they have very large multiplicities [16]. 

 



21 | P a g e  
 

 

CP (𝑛𝑃 , 𝑘𝑃) 
RP =  

𝑘𝑃

𝑛𝑃
 𝑑𝑚𝑖𝑛

𝑃  𝐴𝑚𝑖𝑛
𝑃  𝑊𝑚𝑖𝑛

𝑃  

(𝐸𝐻3)
2= (8, 4)2 (64, 16) 0.250 16 196 784 

(𝐸𝐻4)
2= (16, 11)2 (256, 121) 0.473 16 19600 148225 

(𝐸𝐻5)
2=(32, 26)2 (1024, 676) 0.660 16 1537600 16240900 

… … … … … … 
(𝐸𝐻9)

2=(512, 502)2 (262144, 252004) 0.961 16 30910041702400 475430551096900 
 

Table 1. Dominant and information multiplicity [16] 

 

2.2.6. Error floors of extended Hamming product codes 
Conforming to table 1, it’s explicit that a large minimum distance which is equal 
to 16 is achieved by product code. Also, the multiplicities will be so large for 
high code rates and this situation does not match with the behavior of turbo 
codes that always offer a low rate of multiplicities and also minimum distance, in 
the following figure the BER and FER error floors are drawn, separately for 
SEHPC (or the square extended hamming product code) [16] [17]. 

  
 

Figure 5. BER and FER error floor [16] 

On the other hand, the analytically computed error floors are shown below for a code 
performance at low error rate. To reach this goal the special optimal algorithm called 
BCJR (Bahl, Cocke, Jelinek and Raviv) is required for minimizing the probability of 
bit error, but there is one drawback in this algorithm which can prohibit high rate 
execution is related to its complexity [17]. 
 
 
 



22 | P a g e  
 

 
The main goal of the BCJR algorithm is minimizing the BER or bit error rate by 
calculating APP (a posteriori probability) of a special bits among the bits of the 
codeword (in fact, minimizing BER will be done by maximizing APP and exactly for 
this reason BCJR decoder is called MAP which is abbreviation of Maximum Posteriori 
Probability decoder) [17]. In the underneath figure the proper performance of BER and 
FER related to the extended Hamming code is drawn for (EH5)

2=(32, 26)2  as an 
example by applying both BCJR and chase algorithms [15] [16]. 
 

 

          Figure 6. BER and FER by applying BCJR and Chase algorithms [16] 

In this figure, the drawn curves are obtained with 15 iterations and to progress 
iterative decoding of this kind of hamming code a fixed coefficient (multiplier) 
weighting outer data is applied during these iterations. 

 

2.2.7. Algorithm for Computing an error floor for shortest extended 
Hamming product codes 
 
In this case, two more significant operations are considered which are called 
shortening or puncturing. If C is a linear binary code with a length of n. then a 
shortened code is a special collection of whole codewords of C that are equivalent 
to zero at the constant coordinate with the coordinate which is eliminated. So the 
codewords in C which are with one at that coordinate must be eliminated from C. 
Thus the coordinates which are non-zero for whole codewords must be deleted 
from C. Matching to binary linear code C (n, k) and an integer number (s) which 
is less than the number of data bits (k), then 𝐶𝑆 (𝑛𝑆, 𝑘𝑆) is a shortened code where 
𝑘𝑆 = 𝑘 − 𝑠 and 𝑛𝑆 = 𝑛 − 𝑠, also encoding and decoding for the shortened code is 
so easy by using C (n, k) circuits, so it is a sub-code of binary linear code, exactly, 
for this reason, the original minimum distance will be kept by this kind of code 
[16] [17] [18].  
 



23 | P a g e  
 

 
The main drawback of shortened extended Hamming codes is that by using this 
code, a transitive automorphism group and the multiplicity property never reach 
and hold. Then the algorithm called extended McWilliams theorem [18] to dual 
code IOWEF will be introduced and stated for computing the data multiplicity for 
them. 
In fact, C (n, k) is a code with a generator matrix and 𝐶⊥ (n, n-k) is a dual of C 
with a proper check matrix, then the extended weight of 𝐶⊥ will be appointed  and 
determined by the extended weight of C and vice versa by using the following 
formula [16]: 
 
 IOWC⊥(x, y, X, Y) = 

1

|𝐶|
IOWC(x + y, x − y, X + Y, X − Y) where |𝐶| is the number 

of codewords, so the underneath algorithm will be used for computing the 
multiplicity of a shortening code. So, consider SC: 𝐶⊥(n, n-k), first of all, the 
IOWC⊥ which is an abbreviation of input or output weight of enumerating function 
must be specified and calculated. Then for computing the IOWSC  the extended 
MacWilliams identity should be used, and at the end, compute the coefficients of 
SC which are 𝐴𝑖 and 𝑊𝑖 [16] [18]. 
 

2.2.8. Error floor of punctured code  
 
The most significant famous way for incrementing the rate of convolutional codes 
is called puncturing. Its process will be done by a particular pattern of puncturing 
to mother code C (n, k) which is the original code and the pattern of eliminating 
symbols is known as a puncturing pattern [19]. So consider a mother code, a 
puncturing code 𝐶′(𝑛′, 𝑘) will be reached by applying a special puncturing pattern 
to each codeword and it’s able to remove d bits which is equal to 𝑛 − 𝑛′ [16] [19]. 
It is very useful for applications that are reconfigurable which are required for  
Reiterated changes of code rates, so for this reason, it can enhance the amount of 
code rate without changing the length of a data-rate. And the minimum distance 
or dmin can be decreased by puncturing, and according to the following lemma, 
this important issue will be proved [16]. 
 
Lemma: According to C (n, k) which its minimum distance is equal to 16 and the 
puncturing code 𝐶′(𝑛′, 𝑘) with d = n - 𝑛′  bits, for example for d=1, 2, 3, the 
minimum distance for punctured code will be equal to 16 – d [16]. 
An EH code is a dual of Reed-Muller code which has a transitive automorphism 
group and for each triplex of coordinates, then the weight will be equal to -4 
codewords. If d ≤ 3, then there are d bits with a clear weight -16 codewords, but if  
d > 3, then the minimum distance will be computing according to the puncturing 
pattern. The new notion of uniform puncturing in needed for analyzing a 
performance of a code [16]. 
 



24 | P a g e  
 

 
 
As it is told puncturing method is a special process to eliminate certain parity bits 
in whole bits of the codeword relevant to the matrix called puncturing matrix [20]. 
And by using a puncturing method, the code rate will be incremented, but without 
growing the complexity of code-rate [20]. But by using the uniform puncturing, 
the average multiplicity and also the curves of the average analytical error floor 
will be calculated, analytically [16].  
In the following, the specific analytical formula is provided, and the multiplicity 
of a puncturing code 𝐶′(𝑛′, 𝑘) will be calculated by this formula: 

A′(wp′) =
1

(r
d
)

∑ A(wp) (
p

p′
) (

r − p

t − p′
)

p′+d

p=p′

 

Where 0 ≤ w ≤ k, 0 ≤ p′ ≤ t and parity bit r = n – k and other transmitted bits to the 
punctured code t = r – d and A′(wp′) is the average IO multiplicity of punctured 
code upon all available pattern of puncturing which is(r

d
) [16]. 

 

The average multiplicity or A′i =
1

(r
d)

 ∑ ∑ A(wp) (p
p′
) (r−p

t−p′
)𝑝′+𝑑

𝑝=𝑝′𝑤+𝑝′=𝑖  and the 

average information multiplicity or w′i =
1

(r
d)

 ∑ 𝑤.∑ A(wp) (p
p′
) (r−p

t−p′
)𝑝′+𝑑

𝑝=𝑝′𝑤+𝑝′=𝑖 . 

 

Chapter 3.  

3. Theoretical Description of Hamming Code 
 

3.1. Description of Hamming Code 
 

A hamming code is a simple method of error detection and error correction which is used 
frequently [22]. A hamming code always check the error for all the bits which exist in the 
codeword (in fact, it checks all bits of a codeword from the first bit to the last available bit) 
[22]. And exactly for this reason the hamming code is called linear code for error detection 
and error correction that can detect maximum two synchronic bit errors and it is capable to 
correct only single bit error ( can correct just one bit error) [3].  

This method works by appending a special bits called parity or redundancy bits. Several piece 
of these extra bits is installed and inserted among the data bits at the desired positions, but 
the number of these extra bits is depend on the number of data bits [22].  



25 | P a g e  
 

 

The hamming code initially introduced code that enclosed [1], for example, to construct the 
Hamming (7, 4) that the total bits are equal to seven, which four bits are data bits into seven 
bits by adding three parity bits. And the number of each bit must start from one, like 1, 2, 3, 
4, 5, 6, 7 and to write them in binary: 001, 010, 011, 100, 101, 110, 111. 

 
The parity bits are calculated at the proper positions that are calculated by powers of two: 1, 
2, 4 and etc. And the data bits must be located at another remained positions which in this 
example are: 3, 5, 6, 7. 

Each data bit is contained in the calculation of two or more parity bits. In particular, parity 
bit one (r1) is calculated from those bits that their positions has the least considerable or 
important set of bits which are: 1, 3, 5 and 7 (or in binary 001, 011, 101 and 111).  

Parity bit two or r2 (at index two, or 10 in binary) is calculated from the bits that their index 
has the second least important set of bits which are: 2, 3, 6, 7 (or 010, 011, 110, 111 in 
binary).  

Parity bit three or r3 (which must be located at position four or 100 in binary) is calculated 
from the bits where  their positions has the third least considerable set of bits which are: 4, 
5, 6 and 7 (or 100, 101, 110, 111). 

The code sends message bits padded with specific parity or redundancy bits in the form of  
is the block size or a whole number of bits and k is the number of data bits in the generated 
codeword [1]. All the procedure which is required for adding parity bits to the data bits to 
encode and create a proper codeword will be explained in next parts of this report. 

 

In the following table, all the possible Hamming codes are indicated: 

 

 
 
 

                                 
 

Parity 
bits 

Total bits Data bits Name  Rate  Overhead 
factor 

3 7 4 H (7, 4) 4/7 = 0.571 7/4=1.75 
4 15 11 H (15, 11) 11/15 = 0.733 15/11=1.36 
5 31 26 H (31, 26) 26/31 = 0.839 31/26=1.19 
6 63 57 H (63, 57) 57/63 = 0.905 63/57=1.10 
7 127 120 H (127, 120) 120/127=0.945 127/120=1.05 
8 255 247 H (255, 247) 247/255=0.969 255/247=1.03 

     ….. 
r n = 2𝑟 − 1 k = 2r − r − 1 H (n, k) = 

H (2𝑟 − 1, 2𝑟 − 𝑟 − 1  ) 
k/n n/k 

Table 2.  A dimension of possible Hamming codes 



26 | P a g e  
 

According to table 1, if there are r parity bits, it can cover bits from 1 up to 2𝑟 − 1 which 
called total bits (or n), and also the number of parity bits should be more than one (r > 1).  
For each dimension of hamming code, there is a rate which is equal to a division of the number 
of data bits and number of total bits (rate =  

𝑘

𝑛
 ) and always its result will be less than 1, 

another important factor is called overhead factor which is calculated by a division among 
total bits or n and data bits or k (overhead factor =  

𝑛

𝑘
 ), and its result is always more than one 

[2] [3]. 
 

 

3.2. An Alternative Description of the Hamming Code 
 

In the following figure which indicated another description of the Hamming code. There are 
three nested circles in this figure and they are related to the three parity equation defining 
the Hamming code, also there are seven areas among these available circles in this figure 
that are related to the seven bits in a final codeword [2]. The number of the circle can be 
extended for each dimension of hamming code.  
 
When the single bit error happens, during a transmission process, this error will be fixed by 
flipping this bit (single bit) in the proper area, related to the position where the error 
happens. 
 
 
 

 
 
 
 
 
 
                                                                X6    X1     X5 
 
 

 

Figure 7. An additional description for the Hamming code [2] 

 
For example: For H (7, 4) which encodes four data bits by appending three parity or 
redundancy bits to generate a proper codeword which is a combination of both parity and data 
bits. 
 
 
 
 

 

X7 

    

X2   X4   X3 
        



27 | P a g e  
 

 
 
 
 
 
 
 

                                                           r2      k3    r3   
 

 

Figure 8. Graphical description of H (7, 4) with 4 data bits (k) and 3 parity bits (r) [2] 

 
 

In the upper figure which describe [7, 4] Hamming code, graphically, each parity bits can 
cover just its adjacent bit positions which can be common with other parity bits in this figure: 
 
For instance, parity bit 1 (r1) covers data bits: k1, k2, k4. 
And parity bit 2 (r2) covers data bits: k1, k3, k4. 
And parity bit 3 (r3) covers data bits: k2, k3, k4. 
 

 

3.3. Theoretical Description for Encoding Part of Hamming Code 
 

 

Hamming code is a specific linear code which can correct just one error by adding r parity 
bits to k data bits that generated by the source to have a codeword with a length of n which 
is equal to k + r. And the data bits or k is equal to 2𝑟 − 𝑟 − 1 to generate a codeword with 
a length of 2𝑟 − 1 [1] [6] [7]. 

       General algorithm for the encoding part of hamming code is described in the following: 

1. r parity or redundancy bits are combined to k data bits to creating a proper codeword 
which is contains r + k bits.  
So the bit position sequence is from the position number 1 to r + k.  
 
In fact, for decoding part on the receiver side which is contained detection and 
correction step for an occurred error, extra bits is needed to send some extra bits with 
data bits which called parity (redundant) bits and these parity bits are added by the 
sender (by encoding) and they always removed by the receiver on the receiver side (by 
decoding) [23]. 
 
 
 

r1 

    

k1    k4     k2 
        



28 | P a g e  
 

 
 
But how to merge the data bits and parity bits into a codeword? 
The parity bit positions are always numbered in powers of two, reserved and prepared 
for the parity bits and another bit positions are related to the data bits [23]. 
 
The first parity bit is located in the bit position: 20 = 1.  
The second parity bit is located in a bit position: 21 = 2. 
The third parity bit is located in a bit position: 22= 2 and so on. 
 
In the following simple table, the position of each parity bits (r) presented in a grey 
colored cells and they are reserved for the parity purpose. 
 
 

Bit position 1 2 3 4 5 6 7 … 

Parity bits r1 r2  r3    … 

                                                      Table 3. Parity bits position [22] 

 
After that, the data bits (k) are copied to the other free and remaining positions where 
they are not reserved before. And the data bits will be appended in the same order as 
they are appeared in the main data bits which generated by source. 

 

 

 

 

 

Figure 9. Merging of data and parity bits [22] 

 

So, the transmitter adds parity bits through a process that creates a relationship between 
parity bits and specified data bits. 

Then the receiver will check the two set of bits to detect and correct the errors which 
will explain in the decoding part [23], but the following figure can present the main 
idea of coding that is used in the hamming code. 
 
 
 
 

k1 k2 k3 k4 … 

r1 r2 k1 r3 k2 k3 k4 … 



29 | P a g e  
 

 
 

                                  Encoder                                                                            Decoder 
 
 
 
 
 
 

 
                                                Unreliable transmission  
 
 
       Transmitter (Sender)                                                                 Receiver 

Figure 10. The Structure of Encoder and Decoder [23] 

 

2. The value of parity bits are calculated by XOR operation of some combination of data 
bits [24]. 

A combinational of data bits are indicated in the downward table which all parity bits and 
data bits and their position that should be calculated according to the rules of encoding part 
of the hamming code. 

For example, for calculating the value of parity bit number one which called r1, the XOR 
calculation must begin from r1, then check one bit, and skip one bit until the last bit which 
exists in the sequence of bits in the codeword. 

 

 

 

 

 

 

 

 

 

 

 

                                                                  

 

 

 

 

 

 

 

Message (k bits) 

Generator 

Message + parity = 
codeword (n bits) 

Received 
codeword (n bits) 

Checker 

Message  



30 | P a g e  
 

   

 

 

 

 

 

 

 

 

 

 

 

 

    

 

Table 4. Calculation method of parity bits [24] 

The result of XOR operation is zero if both two bits are the same, otherwise, if two bits are 
different then the result will be one (according to the following table). 

 

X Y X ⊕ Y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

                                           Table 5. Result of XORing of two single bits 

 

The XOR operation in table 4 indicates the odd function. If the number of 1’s among the 
variables X and Y are odd number, then the result of XORing among these two single bits 
are equal to one, otherwise if the number of 1’s are even numbers, then the result will be 

zero. 

 

Bit position 1 2 3 4 5 6 7 … 

Bit type r1 r2 k1 r3 k2 k3 k4 … 

r1 *  *  *  *  

For the first parity bit (r1): Begin from r1, then check 1 bit, skip 1 bit,… 

(This process will be continued until the last available bit). 
r1=XOR of bits 3, 5, 7, ... (r1=k1⊕k2⊕k4⊕…) 

r2  * *   * * … 

For the second parity bit (r2): Begin from r2, then check 2 bits, skip 2 bits,… 

(This process will be continued until the last available bit). 
r2=XOR of bits 3, 6, 7, … (r2=k1⊕k3⊕k4⊕…) 

r3    * * * * … 

For the third parity bit (r3): Begin from r3, then check 4 bits, skip 4 bits,… 

(This process will be continued until the last available bit). 
For r3, 4bits must be checked, because r3 is located on 4th bit of codeword. 

r3=XOR of bits 5, 6, 7, … (r3=k2⊕k3⊕k4⊕…) 



31 | P a g e  
 

 

3.4. Theoretical description for decoding part of Hamming Code 

 
In block coding, the message is divided into blocks and each block in contains a data bits. 
According to encoding part of hamming code in the last part, r parity bits will be added to 
each block and their data bits, so the total length of each block (n) is equal to the summation 
of data bits (k) and parity bits (r) and the resulting n bits block is called codeword. 

For instance: The 4 bits data word with the three parity bits as a seven bits combined word 
containing binary numbers which they should be written in the specific memory. (For 
replacing the three parity bits in their proper positions, the seven bits mixed word written 
into memory must be catch) [3] [24]. 

After all definitions of encoding part and calculating a proper codeword, In the decoding 
part, two important steps are desired called error detection and error correction. 

 

        

 

Table 6. Bit composite word written into memory [6] 

 

             3.4.1. Construction of G and H Matrix  
 

1. The first required matrix for decoding part of the hamming code is a generator matrix 
(G) that the standard form for this matrix is G=(IK|P) where IK is identity matrix of k × 
k and P is a parity matrix of k × r. 
Parity matrix (P) is a matrix extracted from the last three columns of the generator matrix 
and it will be calculated according to the bits in each row of generator matrix, contains 
data bits [23]. 
In each rows of this matrix the codewords are the linear combinations of the rows of this 
generator matrix, in fact, it means each row of this matrix which is a combination of data 
bits and parity bits is the codeword, so the three last binary numbers of each row are the 
parity bits which are calculated according to the data bits which are in the first four bits 
in each row. 

For instance:  G = (IK|P) = [

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

] where P = [

1 1 0
1 0 1
0 1 1
1 1 1

] 

Bit position 1 2 3 4 5 6 7 … 
Bits r1 r2 k1 r3 k2 k3 k4 … 



32 | P a g e  
 

2. The second required matrix for decoding part of hamming code is check matrix (H). 
This matrix describes the linear relevance that must be satisfied by the components in 
each codeword [25]. It can be used to decide whether a particular vector is a codeword 
and is also used in decoding algorithms, also check matrix is given by H=(−PT|In−k) 
where PT is the transposed matrix of the parity matrix with exchanging rows and column 
of this matrix [25]. 

The following two matrices are the available types of check matrix for [7, 4] Hamming 
codes: 

First type of check matrix: H = (−PT|In−k) = [
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

] and the parity 

matrix or PT=  [
1 1 0 1
1 0 1 1
0 1 1 1

]      

This kind of check matrix which is presented above is the standard form of check matrix 
(H), And It has among its columns each non-zero triple from exactly once [26]. 

 
 

But in this project another kind of check matrix is used like the next matrix: 
 

Second type of check matrix:  H = [
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

] and this matrix is a binary 

lookup table in vertical order which the column contains all zero numbers is eliminated. 
 

Among these two check matrixes which showed above, the first matrix is the check 
matrix for a code which is contained a standard form of generator matrix (G). And the 
second matrix checks a code is not contained a generator matrix (G) which is exist in the 
standard form [26]. 

 
 

     3.4.2. Types of Error 
      

There are three kinds of errors which may occur during a transmission of codeword or 
data from the sender to the receiver. 

 
        3.4.2.1. Single bit Error 
 

Single bit error means that there is an error occurred just in one bit over transmitted 
codeword during a transmission from the sender to the receiver [3], so the binary bit 
may change from 1 to 0 or from 0 to 1 as shown in figure 7 as an example: 

 



33 | P a g e  
 

 
 

                               Sent 
 
                                                                  Single bit change (1 is changed to zero) 
   
                    Received 
 

Figure 11. Single bit error 

 

        3.4.2.2. Multiple bit Errors 
           

This kind of error is occurred, when there are more than one error in the bits of 
transmitted codeword during a transmission, so, the codeword is received with more 
than one bits error [3] [7]. 

 
 

                               Sent 
 
                                                                  Multiple bit error 
   
                    Received 
 

Figure 12. Multiple bit error 

 

       3.4.2.3. Burst Error 
 

Burst error means there is an error occurred in two or more sequential bits of transmitted 
codeword during a transmission from the sender to the receiver. 
The burst error will be calculated from the first bit which is changed until the last 
changed bit [2] [7].  

 
 
                               Sent 
 
                                                                    Burst error 
   
                    Received 
 

                                                       Length of burst error 
Figure 13. Burst error 

 

1 0 1 1 0 1 0 

1 0 1 1 0 0 0 

1 0 1 1 0 1 0 

1 0 1 1 1 0 0 

1 0 1 1 0 1 0 

1 0 0 1 1 0 0 



34 | P a g e  
 

 

3.4.3. Error Detection and Error Correction 
 

As described in the last part, in any communication system, first of all, the data (message) 
in the sender side must be generated and then the generated data bits must be encoded in 
the block of binary bits containing a value of zero and one which called codeword which 
the procedure and the rules for creating a proper codeword were discussed before, after 
that a codeword which is a binary vector, should be forwarded and transmitted to the 
receiver side and the generated message must pass from a communication channel 
between transmitter (sender) and the receiver and during a transmission on the channel, 
an error or bit changing may happens [7]. 
 
If a codeword which generated on the transmitter side and the received codeword on the 
receiver side are both the same, then the received codeword is accepted and there is no 
error, otherwise, the detected error must be corrected [25], for this reason in any 
communication system with a variety, the error correction codes are used for detecting 
and correcting a probable errors in a transmitted codeword [1] [25]. But how to detect and 
correct in decoding part? 
 
For a decoding part of a hamming code, there are two significant matrices called generator 
matrix (G) and check matrix (H) that are presented in the following respectively: 
 

          G =[

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

], H = [
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

],  HT =  

[
 
 
 
 
 
 
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1]

 
 
 
 
 
 

 

In this project for decoding a received codeword (C), just check matrix (H) and its 
transposed matrix (HT) is used and they will be enough for syndrome calculation. So, 
when the codeword with an error received by the receiver, first the received codeword 
must multiply by a transposed of check matrix to do error detection which this 
multiplication is called syndrome. If the syndrome result is equal to the zero vector (the 
vector with all zero elements), there is no error, but if there is an element(s) with a value 
equal to one, there is error occurred in received codeword [13] [25]. 



35 | P a g e  
 

Syndrome (S) = [𝐶] . [HT] = 0  where HT =  

[
 
 
 
 
 
 
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1]

 
 
 
 
 
 

 and the codeword (C) is given by 

the standard matrix product  C = m * G =  𝑚 ∗  (IK|P) = [𝑐1,  𝑐2, … . , ck  ,
ck+1  , … , cn] which G is generator matrix that is equal to k * n. And m is message part 
with k bits and p is parity matrix with n - k bits and 𝑐1, …, 𝑐𝑘   is message part and 
ck+1  , … , cn is parity part. 

For error correction, first must look at the syndrome result, and then the result must be 
compared to the columns of check matrix. Then the error will be corrected and fixed, just 
by changing a value of bit where the error occurred in corresponding bit in the received 
codeword [24]. 

 

 

Hamming code has a capacity to detect maximum two errors, but just can correct one error 
in each received message that means the Hamming code cannot correct burst errors if 
more than one error occurs during transmission of data and this issue is a disadvantage of 
hamming code, also another disadvantage of hamming code is that parity bits are also send 
to the receiver side by appending to data bits therefore more bandwidth is needed to send 
the generated data [24] [25]. 

 
 

3.5. Example of Hamming Code 
 

As an example for Hamming code, the encoding and decoding procedure of H (7, 4) will be 
evaluated in the following parts. 

 

      3.5.1. Hamming Encoding Example 
 

An Encoding of Hamming (7, 4) will be done by encoding procedure of the Hamming code 
that is a composition of logical functions which can convert an incoming binary message 
that here is equal to 4 binary digits to the proper codeword before transferring to the 
receiver side [27]. 

There are two kinds of bits for the hamming code encoding:  



36 | P a g e  
 

a) Data bits that are generated and transmitted from the transmitter (sender) to the 
receiver, for example: 1 0 0 1. 

 
b) Parity bits (redundant bits) which is extra bit stream or extra binary digits that are 

generated in special way and combined with data bits (the combination of data bits and 
parity bits is called codeword) and then the codeword must be transferred to the 
receiver. 

To calculate the number of parity bits the following method must be used: 

2𝑟 > = k + r + 1 where (r = parity bit which is more than 1, k = data bit) [28]. 

 If r = 2 then: (22 > = 4 + 2 + 1) = (4 > = 7) that is not correct, so certainly this value 
is refused. Then the value of r must be increased. 
 

 If r = 3 then: (23 > = 4 + 3 + 1) = (8 > = 8) that is full hamming code and it is 
correct, so it accepted. 

 

Total number of bits (n) = Number of data bits (k) + number of parity bits (r) = 4 + 3 = 
7. 

c)  After specifying the number of parity bits, then the position of each parity is calculated 
by 2𝑛 like the following where (n = 0, 1, 2, 3, …, n) [28]. 

 

 

 

 

In the next figure, the combination of data bits and parity bits which explained in the 
last chapter is shown in the frame of this example for H (7, 4) that the sequence of data 
bits is 1 0 0 1. 

 

                          

 

 

 

Figure 14. Example of merging data bits and parity bits 

 

r1=20=1 (parity bit 1 or r1 must put in position 1). 

r2=21=2 (parity bit 2 or r2 must put in position 2). 

r3=22=4 (parity bit 3 or r3 must put in position 4). 

Generated data bits 1 0 0 1 

Codeword  r1 
 

r2 1 r3 0 0 1 



37 | P a g e  
 

 

Afterwards, the value of each parity bit will be calculated by XOR operation which 
explained in the section 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Calculation of parity bits for hamming code example [24] 

 

Matching to above table, the final codeword is:  
                                             

Bit Position 1 2 3 4 5 6 7 
Bit name r1 r2 k1 r3 k2 k3 k4 

Value of each bit 0 0 1 1 0 0 1 
 

Table 8. Shows the value of each bit in the final codeword 

 

The total series of bits of Hamming code for a dimension of H (7, 4) is shown in the 
following table, in truth, correspondent to the lookup table which contain all 
combination of data bits, when there are four generated data bits, in the lookup table 
there are fifteen different cases and states which are contained different combinational 
of binary numbers (as a underneath table in the column of data bits), then the proper 
parity bits will be located at the proper place among data bits and the whole bits are 
displayed in the column called codeword: 

 

 1 2 3 4 5 6 7 

r1 r2 k1=1 r3 k2=0 k3=0 k4=1 

r1 *  *  *  * 

For calculating a value of r1: begin from r1, then check 1 bit, skip 
1bit, etc. , so:   (r1 = 1 ⊕ 0 ⊕ 1 = 2 (even) = 0) 

r2  * *   * * 

For calculating a value of r2: begin from r2, then check 2 bits, skip 
2 bits, etc. , so: (r2 = 1 ⊕ 0 ⊕ 1 = 2 (even)  = 0) 

r3    * * * * 

For calculating a value of r3: begin from r3, then check 4 bits, skip 
4 bits, etc. , so: (r3 = 0 ⊕ 0 ⊕ 1 = 1 (odd) = 1) 



38 | P a g e  
 

 

 

 

                      

                         

       

  

 

 

 

 

 

 

 

Table 9. The total series of bits of Hamming code for a dimension of H (7, 4) 

 

     3.5.2. Hamming Decoding Example 
 

The specific reserved process to encode a data or message which can recover the main 
and original generated data which is generated by a source on the sender side.  

Specific calculation or operation which exists at the receiver side and the first one is 
calculating check matrix (H) and transposed of check matrix (HT ) and then error 
detection by using syndrome (S): 

H = [
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

]   ,    𝐻𝑇 =  

[
 
 
 
 
 
 
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1]

 
 
 
 
 
 

 then for instance: if an error (bit 

changing) happened on the third bit of the codeword: C = [0 0 0 1 0 0 1]. 

 

 

Bit 
# 

Data bits Parity bits Codeword (data bits + parity bits) 
k1 k2 k3 k4 r1 r2 r3 r1 r2 k1 r3 k2 k3 k4 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 
2 0 0 1 0 0 1 1 0 1 0 1 0 1 0 
3 0 0 1 1 1 0 0 1 0 0 0 0 1 1 
4 0 1 0 0 1 0 1 1 0 0 1 1 0 0 
5 0 1 0 1 0 1 0 0 1 0 0 1 0 1 
6 0 1 1 0 1 1 0 1 1 0 0 1 1 0 
7 0 1 1 1 0 0 1 0 0 0 1 1 1 1 
8 1 0 0 0 1 1 0 1 1 1 0 0 0 0 
9 1 0 0 1 0 0 1 0 0 1 1 0 0 1 
10 1 0 1 0 1 0 1 1 0 1 1 0 1 0 
11 1 0 1 1 0 1 0 0 1 1 0 0 1 1 
12 1 1 0 0 0 1 1 0 1 1 1 1 0 0 
13 1 1 0 1 1 0 0 1 0 1 0 1 0 1 
14 1 1 1 0 0 0 0 0 0 1 0 1 1 0 
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 



39 | P a g e  
 

 

Then syndrome (S) = [𝐶] . [HT] = [0 0 0 1 0 0 1]  .  

[
 
 
 
 
 
 
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1]

 
 
 
 
 
 

 = [2 1 1] = [0 1 1] and this 

vector is non-zero vector, so it means during a transmission from  sender to the receiver 
an error or bit changing is occurred, and then all the rows of matrix HTshould be checked 
to find [0 1 1] among the rows of HT. In this example [0 1 1] is exist on the third row 
of HT, after that for correcting an error the third position of matrix C = [0 0 0 1 0 0 1] 
must change to: C = [0 0 1 1 0 0 1]. 

 

Chapter 4. 

4. Alternatives for Hamming Code 
 

4.1. BCH Code 
 

A BCH code is used to correct a multiple random errors, and this code is a multi-level cyclic 
digital error correcting code, so BCH code is powerful multiple error correction code with 
a mathematical properties. And the main advantage of BCH code is flexibility for block 
length and code rate [29] [30]. 

For positive pair of integer’s r > = 3 and t, (n, k) BCH code is contained the parameters like: 

Total bits (n) is:  n = 2𝑟 − 1 

Number of parity or redundancy bits: n – k < = r * t 

Minimum distance (which is called dmin) : dmin > = 2t + 1 

Capability of correcting an error for the BCH code: t errors 

And t < (2𝑟 − 1) / 2 which is random error detected and corrected which also called t error 
correcting BCH code [29]. 

 

 

 

 



40 | P a g e  
 

 

4.1.1. Advantages of BCH code 
 

 BCH code has a strong capability for correcting an errors which is ability to find 
(detect) and correct an errors at the same time, and this is the main and most 
significant and substantial property of BCH codes [30] [31].  
 

 Construction of BCH is applied without very high provisions for a computer. 
 

 Also, a process of coding is simpler than other methods and finding an efficient 
method for decoding part of BCH is simple [32]. 
 

 The considerable features for the BCH codes is that the accurate and exact control 
exist over the number of error bits by this code, specially, it is possible to implement 
a BCH code (in binary) which the multiple bit errors can be corrected by this code 
[32]. 

 

4.1.2. Disadvantages of BCH codes 
 
 In BCH code, when the code length increases, then the process of decoding part will 

be more complex [31]. 

4.1.3. Encoding Instructions of BCH Code 
 

 In (15, 7) BCH encoder, for instance, if the message or the codeword contains seven 
bits [𝑚0, 𝑚1, … , 𝑚6] are used and applied in parallel to have a serial shift register 
[21]. 
 

 Parity bits are computed and then send to these serial parallel shift register by using 
these message bits and then these parity bits are appended to the original message 
bits to have encoded data contains 15 bits [29] [33]. 

 

4.1.4. Decoding Instructions of BCH Code 
 
 First of all, a syndrome (Si) where (i = 1, 2, 3, …, 2t) will be calculated from the 

received codeword r(x). 
 
 
 



41 | P a g e  
 

 
 At the second step of BCH decoding, the error location polynomial S(x) will be 

determined. 
 And at the end, a root of S(x) will be found, and then the occurred error will be fixed 

and corrected [33]. 

 

4.1.5. Overview of BCH code design 
 

The figure below represents the proper overview of BCH code design which contains 
an example, and its good pattern for implementing this code [31]. 

 

      7 bits                          15 bits                          15 bits                         7 bits 

 

 

 

 

 

 

 

      Figure 15. Overview of BCH code design [32] 

 

In above figure the number of generated data bits are equal to seven bits, the reason of 
choosing seven bits is an indication of ASCII characters will be easier. Then these 
seven bits will be encoded by BCH encoder to create a proper codeword which is 
contained fifteen bits [32]. 

Thereupon, the generated codeword will be transmitted to the channel, and the channel 
might be affected by a module which is called error introduction module that creates 
and inject an errors to one or more bits of a codeword, randomly. Then, a codeword 
with one or more errors is reached to the BCH decoder [32]. 

 

 

 

BCH 
Encoder Channel 

BCH 
Decoder 

Error 

Introduction 

Module 



42 | P a g e  
 

 

In the decoding module, the syndrome formula will be calculated to find and 
distinguish the position where an error bits are located there. At the end, the detected 
errors will be corrected by flipping the error bits and at the output of the decoder, the 
main data bits which were generated at the first step will be retrieved [32]. 

 

In the underneath figure the structure of error introduction module is drawn and 
displayed. 

 

                                       Input codeword                           the output codeword  

                                                                                            (Contains an errors) 

                                                                                               

Figure 16. The module of error injection [32] 

 

4.2. Reed Solomon Code Definition 
 

Reed Solomon (RS) codes are another kind of error correction codes which are block-based 
code and the applications of RS codes are so wide and large range in digital communications 
and storage. And they are used to correct errors in some systems including Wireless or 
mobile communications, Satellite communications and etc. [8] [34]. 

RS code is non binary linear code and they are used for burst error correcting. A typical 
system of RS code is shown in the following figure: 

 

           Data source  Data sink 

 

                                                                                                                                                                       

  Noise / errors    

Figure 17. Typical system of Reed Solomon code [34] 

 

 

Reed 
Solomon 
encoder 

Reed 
Solomon 
decoder 

Communicati

on channel or 

storage 

device 

Error 
Introduction 

Module 



43 | P a g e  
 

 

So, the RS codes are written according to the following formula [35]: 

RS (n, k) = (2𝑟 − 1, 2𝑟 − 1 − 2𝑡) 

Where k is the length of symbol, n is the length of block which n = (2𝑟 − 1), There are n-
k parity symbols of s bits each. Also, up to t symbol errors can be corrected by A decoder 
of RS code where t = 𝑛−𝑘

2
  that contain errors in a code word, so 2t parity bits are needed to 

correct t errors (t is the number of true symbols) : 2t = n-k [34] [35]. 

As well as, the minimum distance for RS code is: dmin = n − k + 1 . 

For encoding and decoding parts of Reed Solomon code, applying  a special mathematics 
called finite fields or Galois Fields (GF) are needed [4] [35]. There is a particular feature 
for a finite field which the specific arithmetic operations like: addition (+), subscription (-), 
multiplication (*) and division (/) on the finite elements will have an outcome in the field. 
Therefore, for this reason, the encoder and decoder part of RS code need to perform these 
operations, and a particular software or hardware functions are required for implementing 
these arithmetic operations. 

The following figure shows a typical structure of RS codeword: 

 

 

                                                                 k                                                               2t 

                                                                                       n 

      Figure 18. Typical Reed Solomon codeword structure [34] 

 

RS code is a subset of a BCH codes and linear block codes that are contained s bit symbols 
specified as RS (n, k) which n is the total number of surrounded symbols (the length of the 
codeword) and k is the number of data. It means that the encoder catches k data symbols 
of s bits and then it appends the symbols correspond to the parity bits for 
generating n symbols which called codeword [36].  

All the procedure and instructions for the encoding step of Reed Solomon code and BCH 
code are the same and there is no difference among them [31].  

 

 

DATA          PARITY 



44 | P a g e  
 

 

The only difference between RS code and BCH code is that in RS code there are several 
kinds of ways and methods for decoding part, like, iterative and Euclid algorithms [33]. 

4.2.1. Advantages of Reed Solomon Code 
 

A Reed Solomon code has a special features and characteristics and because of these 
special positive points, RS code will be so popular and unique. 

 In the Reed Solomon, code an efficient and powerful algorithm is used which is called 
Berlekamp Massey algorithm that is a bounded distance decoding algorithm [33].  

 Also, there is a significant ability for RS code to correct both random error and burst 
error [34]. 

 A Reed Solomon code has a very high and superior coding rate, and this property is 
suitable for using in several applications, for instance, transmission, storage and etc. 
Thus because of the high coding rate of Reed Solomon code, RS code can be more 
effective and more powerful than hamming code for a data transmission in the 
communication systems channels [33] [34]. 

Coding rate = 𝑘
𝑛
 

4.2.2.Disadvantage of Reed Solomon Code 

 The implementation of RS code is more complex than binary BCH code [33]. 

4.2.3. Example of Reed Solomon Code 

The most popular example for Reed Solomon code is RS (255, 233). In this example 
each generated codeword is contained 255 bytes of codeword that from these 255 
bytes, 233 bytes are as a data symbols and 32 bytes are redundancy (parity) symbols.  

In this example: RS (n, k) = (2𝑟 + 2𝑟 − 1, 2𝑟 − 1 − 2𝑡) = RS (255, 233) which total 
bits of a prepared codeword or n = 255, data bits or k = 223, 2t = 32 then t = 32

2
 =16 

and s = 8 is a number of bits which are as a symbol. And according to RS code, in this 
example the decoder is able to correct all 16 symbol errors in the received codeword, 
because in this dimension of RS code 16 bytes of errors can be detected in the received 
codeword. 

 

 



45 | P a g e  
 

 

Chapter 5.  

5. Alternatives for error correction 
 
5.1. N-modular redundancy and Triplication (N-modular redundancy 

with n=3) 
 
To build fault tolerant system, there is a popular technique which called TMR (triple 
modular redundancy). In this technique there are three module units, and the output of 
these three units must be comprised by a voter [37]. 
 
The fault-tolerant structure which used is given in the following Figure. The result of a 
vote of the outputs of redundant components C1, C2 ... Cn for each input is system output 
where n = 3, 5, 7, … . 
 

 

 

                    𝑋𝑖  (System input)                                                                                  𝑌 𝑖 (System output) 

 

                                                                       … 

 

 

Figure 19. N-Modular redundant structure [27] 

 

The original idea of TMR is naive and simple, a triple modular redundant or TMR R (3, 
0) is a typical and usual N modular redundant example which exist three modules, 
without any spares.  So these three modules are used with the serial voter [38] [39]. 
Also, for TMR in the last figure, there are three parallel modules (components) after the 
three parallel components a voter (serial voter) exist. And these three parallel systems 
indicate a process and the result will be processed by a system called voting system to 
generate and produce a single output. In this system, if one of these three systems fails 
or drop, then the error will be corrected and masked by other two systems which exist 
correctly [37] [39]. 

 

C1 (digital 
circuit 1) 

C2 (digital 
circuit 2) 

Cn (digital 
circuit n) 

Majority 

Voter 



46 | P a g e  
 

 

    5.2. N version programming (NVP) 
N-version (or multi-version) programming is a proposed method which can provide 
fault tolerance in software [28]. And NVP is a software analogy of N-modular 
redundancy which used in fault-tolerant that defined the last part and can tolerate both 
software and hardware faults [40]. 

For NVP there are some evidence which the concept of all of them are the same and 
they use a different algorithm in their systems, but the result must be the same. 

In the structure of NVP, there are N implementation like N-versions of an application 
which developed separately and executed in parallel (specification of a number of 
versions are necessary to ensure acceptable levels of software reliability) and each 
version is a complete implementation of a specification and then all of their outputs 
will compared by decider ( or voter) [39] [40]. 

 

                                                                              Decider 

            

         Input                                                                                                            Output  

 

 

Figure 20.  NVP structure (example N = 3) [39] 

 

Chapter 6.  

6. Comparative Study (Between Hamming, BCH and RS Codes) 
 

Hamming code can only correct a single bit errors, In fact, hamming code has a capability to 
detect up to two errors (or maximum three parallel and adjacent errors), but can correct just 
one error in each message, and this inefficiency of hamming code that cannot handle to 
correct multiple bit errors can be compensated by Reed Solomon code which can correct 
more than one error and can be used on many of the current controllers, and BCH code is 
powerful error correcting code which can correct multiple bit errors and is going to become 
more popular, because their efficiency improved over RS code. Thus both hamming and RS 
codes are kinds and under the category of the BCH code. 

 

Version 1 

Version 2 

Version 3 

Voter 



47 | P a g e  
 

 

The following table displays the comparative analysis among these error correcting codes: 

 

 

 

 

 

 

 

 

 

Table 10. Comparative analysis among error correcting codes 

 
 
Chapter 7. 

7. Verification and Validation of Hamming code 
 

The code of the proposed implementation has been written in C++ programming language 
and tested and simulated using visual studio software (version 2017). The result of the 
Hamming code implementation, for instance, Hamming (31, 26) is given as the following 
figures and for another dimension of hamming code, the same codes are replaced and just 
some values are changed, like the number of data bits, the number of rows in the check matrix 
and some other values and the result of all dimensions are working well. 
 
 

7.1. Verification and Validation for Encoding part of Hamming Code 
 
In the following screenshot of encoding part result, first a generated random binary 
numbers for H(31, 26) is printed out, so the input information (data) bit has a width of 26 
bits ( 26 random binary numbers), and after that, the next steps are calculated according 
to this generated sequence of binary numbers, like calculation of the number of 
redundancy bits, the calculated parity bits and their proper positions, a calculation of total 
number of bits in the generated codeword which is consist of generated binary data bits 

No. Name of error 
correction code 

Capabilities of error detection 
and error correction 

 
1. 

 
Hamming code 

Double error detection and 
single error correction 

 
2. 

 
BCH code 

 
Multiple error correction 

 
3. 

Reed-Solomon 
code 

Correct multiple random 
errors 



48 | P a g e  
 

and calculation of parity bits. And at the end, the final codeword which is ready to transmit 
to the receiver side will be printed out in the local windows debugger, correctly. 
 
Also, the bits of final codeword is arranged and ordered from the left side to the right side. 
 
 

 
Figure 21. The encoding result of hamming code 

 

7.2. Verification and Validation for Implementation of Check Matrix 
 
Conforming with all definitions and the steps of implementation for the check matrix, the 
subsequent result which presents a required check matrix in the receiver side for decoding 
is printed out, in fact, the check matrix (H) is a binary lookup table which always using in 
hardware engineering and the logical circuit, but it is designed and implemented in 
vertical, and also the first column of this matrix which contains all zero elements is 
removed to reach a desired check matrix. 

 

 
Figure 22. The result of check matrix for Hamming (31, 26) 



49 | P a g e  
 

 

Refer to a section 7.2.2.3, in the following screen capture, the desired output is printed out 
for implementation of both check matrix (H) and transposed of check matrix (HT ) which 
is explained in the section of implementation of check matrix. 

 

 

 

  Figure 23. The result of check matrix (H) and transposed of check matrix for Hamming (31, 26) 

 

7.3. Verification and Validation for Decoding part of Hamming Code  
 

The verification and validation of this part is totally depended on applying the 
framework and error injection part, but all the codes which are written and appended to 
the decoding part are tested and compiled in another file of visual studio by inserting 



50 | P a g e  
 

some extra variables and printing some output for checking the working reliability of 
this part of code, and all functions are worked, correctly. 

In this part, an error will be injected on the desired position in the transmitted codeword 
and then the syndrome will be calculated to find a position where an error is occurred, 
then the error will be corrected with flipping the position of this error. And at the end of 
the code, an initial generated data bits which were generated by a source in the sender 
side will be printed out in the output of decoding part. 

 

Chapter 8. 

8. Direction for Future 
 
In the hamming code method which is a simpler system of error detection and error correction 
code that uses a special bits called parity or redundancy bits to correct an error or bit changing 
[28] [44], the main and considerable drawback of hamming code which can be improved in 
the next research in the future work is extending the capability of error correction from the 
single bit error correction in hamming code to the larger number of error correction by using 
another codes or methods, like BCH, Reed Solomon (RS) and some other designed codes, 
there are several kind of systems for correcting an error(s) in a data bits which are more 
efficient than hamming code, because the hamming code is limited to correct just one bit error 
or bit changing and multiple errors and burst error are not supported by this error correction 
code, and this inefficiency of hamming code can be improved and compensated by these 
alternative methods. 
 

 
Chapter 9. 

9. Conclusion  
 

In this thesis project, the structure of hamming code and the evaluation of its construction are 
tested and examined successfully and the implementation of hamming code is done in the 
software environment of Visual Studio 2017 and C++ language. 

From the content of this report, it is clearly indicated that how to detect an error and bit 
changing in the received sequence of bits (codeword) by checking the value of parity or 
redundancy bits. If the bits of a codeword in the sender side are not the same and matched 
with the value of a received sequence of bits in the receiver side, it shows the received 
codeword has an error and if the values are matched means the received codeword or signal 
has no error.  



51 | P a g e  
 

 

After detecting an error, the bit containing an error will find by adding the sequence numbers 
of parity bits which calculation of the value and the position of each parity bits has specific 
procedure which is explained before in encoding part of this report, and on the receiver side, 
to detect an error, the more significant point is check matrix (H) and transposed of check 
matrix (HT  ) which is used in the syndrome calculation for multiplying with received 
codeword, the result shows the sequence number contains an error and incorrect bit. After 
finding the sequence number of the incorrect bit, the detected error must be corrected by 
changing the value of a wrong bit. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 



52 | P a g e  
 

 

References 
 

[1]      HAMMING, R. W. “Error Detecting and Error Correcting Codes.” Bell System 

Tech. Jour., 29 (1950): 147-160. 
 
[2]   Aydin Nuh, "An Introduction to Coding Theory via Hamming Codes: A 
Computational Science Model" (2007). 
 

[3]       Hamming, Richard Wesley (1950). "Error detecting and error correcting codes". Bell 
System Technical Journal. 29 (2): 147–160. 

 
[4]   Isaac Woungang, Sudip Misra, Subhas Chandra Misra, “Selected Topics in 

Information and coding theory” Shetter, W. Z. 2000. This essay is redundant.  
 

            [5]     Golay, M. J. E. 1949, “Notes on digital coding”, Proc. IRE. 37: 637 

 

[6]        A. Ahmadpour, A. Ahadpour Sha, M. Ziabari, “A novel formulation of Hamming 
Code”, IEEE Trans. Inf. Theory, 26 June 2009. 
 

[7]      William Rurik, Arya Mazumdar, “Hamming codes as error-reducing codes”,IEEE 
Trans. Information Theory Workshop (ITW), 27 October 2016.  
 
[8]       Gregory, Mitchell, “Investigation of Hamming, Reed-Solomon, and Turbo Forward 
Error Correcting Codes.” ARL-TR-4901, July 2009. 
 
[9]       Jonathan I. Hall, “Notes on coding theory”, 9 September 2010. 
 

[10]       Sreelatha P, P Pradeep Kumar, S V Mohankumar, “A Lab VIEW Based Extended 

(10, 5) Binary Hamming Code Generator for Telecommanding Applications”, 

International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, 
Volume-4, Issue-2, May 2014. 

 

https://en.wikipedia.org/wiki/Bell_System_Technical_Journal
https://en.wikipedia.org/wiki/Bell_System_Technical_Journal
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.A.%20Ahmadpour.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.A.%20Ahadpour%20Sha.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.%20Ziabari.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.William%20Rurik.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Arya%20Mazumdar.QT.&newsearch=true
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7592513


53 | P a g e  
 

[11]     Yaqi Wang, Jun Lin, Zhongfeng Wang “A New Soft-input Hard-output decoding 
algorithm for Turbo Product Codes,” IEEE Trans. Inf. Theory, pp. 192-197, 06 August 
2002. 
 

[12]     R. Gallager, “low-density parity-check code”, IRE Transactions on Information 
Theory, Volume: 8, Issue: 1, January 1962. 

 

[13]      Xiaoling Huang, N. Phamdo, Li Ping, “Recursive method for generating weight 

enumerating functions of trellis codes”, IEEE Trans. Inf. Theory, pp. 773-774, Vol. 37 No. 
12, 7th June 2001.  

 

[14]      C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo-Codes,” Proc. ICC’93, Geneva, Switzerland, May 

1993, pp. 1064-1070. 

 

[15]           Orhan Gazi, Ali Özgür Yılmaz, “Turbo Product Codes Based on Convolutional 

Codes”, ETRI Journal, Volume 28, Number 4, August 2006. 

 

[16]      Franco Chiaraluce, Roberto Garello, “Extended Hamming Product Codes 

Analytical Performance Evaluation for Low Error Rate Applications”, IEEE 

TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 6, 
NOVEMBER 2004. 

 

[17]          L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes 

for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, pp. 284–287, 
Mar. 1974. 

 

[18]        F. J. MacWilliams and N. J. A. Sloane, “Theory of Error-Correcting Codes”, 

Vol. I, North-Holland, 1977. 

 

[19]          Habong CHUNG, Hwanseok JANG, Jinwoo SEONG, “Sufficient Conditions 

for an (n, 1) Mother Code and Its Puncturing Pattern to generate a Given Convolutional 
Code”, IEEE Trans. Inform. Theory, 14-18 Sept. 2015 

 

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yaqi%20Wang.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jun%20Lin.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhongfeng%20Wang.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20Gallager.QT.&newsearch=true
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4547527
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4547527
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=22786
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Xiaoling%20Huang.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.N.%20Phamdo.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Li%20Ping.QT.&newsearch=true


54 | P a g e  
 

[20]           Ravindra M. Deshmukh and 2 S.A. Ladhake, “Analysis of Various Puncturing 

Patterns and Code Rates: Turbo Code”, International Journal of Electronic Engineering 

Research ISSN 0975- 6450 Volume 1 Number 2 (2009) pp. 79–88. 

 

[22]       Wirda Fitriani, Andysah Putera, Utama Siahaan, “Single-Bit Parity Detection and 
Correction using Hamming Code 7-Bit Model”, International Journal of Computer 

Applications (0975 – 8887), Volume 154 – No.2, November 2016. 

 

[23]    Behrouz A Forouzan, “Data communication and networking”, 4th edition Tata 

McGraw-Hill Publication 

 

[24]      A. K. Singh. “Error detection and correction by hamming code.” In Proc. Information 

Computing and Communication (ICGTSPICC) 2016 Int. Conf. Global Trends in Signal 
Processing, pages 35-37, December 2016. 
 
 

[25]     T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check 
codes”, IEEE Trans. Inform. Theory, vol. 47, pp. 638–656, Feb. 2000. 
 

[26]        Stefan Scholl, Norbert When, “Efficient architectures for parity check matrix 
generation” Signal Processing and Information Technology (ISSPIT) 2016 IEEE 
International Symposium on, pp. 280-285, 2016. 
 

[27]      Barry, Paton, (March 1998 Edition). Fundamentals of Digital Electronics (pp. 2 - 
3). Dalhousie University. 

 
[28]       Debalina Roy Choudhury, Krishanu Podder, “Design of Hamming Code Encoding 

and Decoding Circuit Using Transmission Gate Logic”, IRJET, volume: 02, Issue: 07, Oct. 

2015. 
 
 

[29]   D. Augot, P. Charpin, and N. Sendrier, “Studying the locator polynomials of minimum 
weight code words of BCH codes”, IEEE Trans. Inf. Theory, vol. 38, no. 3, pp. 960–973, 
May 1992. 
 
 

[30]       W T Penzhorn, “A Fast Algorithm for the Decoding of Binary BCH Codes”, Dept. 
of Electr. & Electron. Eng., Pretoria Univ., South Africa,  Aug. 1993 
      

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Stefan%20Scholl.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Norbert%20When.QT.&newsearch=true


55 | P a g e  
 

 

[31]       Zhang Xinyu, “A basic research on Forward Error Correction”, IEEE Trans. Inf. 
Theory, pp. 462-465, 08 September 2011. 
 

[32]       Eshtaartha Basu1, Dhanush.P2, Kishor S3, Geethashree A4, “ERROR CONTROL 

CODING USING BOSE-CHAUDHURIHOCQUENGHEM (BCH) CODES”, 

International journal of electronics and communication engineering and technology 
(IJECET), Volume 5, Issue 8, pp. 86-96, August (2014), 

 

[33]      D. Augot, P. Charpin, and N. Sendrier, “Studying the locator polynomials of 

minimum weight code words of BCH codes,” IEEE Trans. Inf. Theory, vol. 38, no. 3, pp. 
960–973, May 1992. 

 

[34]         Sanjana P. Choudhari and Megha B. Chakole, “Reed Solomon Code for WiMAX 

Network”, IEEE Transaction on information theory, April 6-8, 2017. 

 

[35]       J. Chen and P. Owsley, “A burst error correcting algorithm for Reed Solomon 
codes,”, vol. 38, IEEE Transaction on information theory, Nov.1992, pp. 1807-1812. 

 

[36]       C. Shannon, “A mathematical theory of communication,” Bell System Technical 

Journal, vol. 27, pp. 2, 1948. 

 

[37]       Masashi Hamamatsu, Tatsuhiro Tsuchiya, Tohru Kikuno, “On the Reliability of 

Cascaded TMR Systems”, IEEE Transaction on information theory, pp. 184-190, 28 
January 2011. 

 

[38]    Umar Afzaal, Jeong A Lee, “A Self-Checking TMR Voter for Increased Reliability 
Consensus Voting in FPGAs”, IEEE Transaction on information theory, 09 April 2018.  
 

[39]     Banki H., Babamir S., Farokh A., Morovati M., "Enhancing Efficiency of 
Software Fault Tolerance Techniques Satellite Motion System", Journal of 
Information Systems and Telecommunication, Vol. 2, September 2014.   

 

 

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhang%20Xinyu.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Umar%20Afzaal.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jeong%20A%20Lee.QT.&newsearch=true


56 | P a g e  
 

 

[40]    Liming Chen; Avizienis, A. “N-Version Programming: A Fault-Tolerance 
Approach to Reliability of Software Operation, Fault-Tolerant Computing.”, 1995, ' 

Highlights from Twenty-Five Years'., Twenty-Fifth International Symposium on, Vol., 
Iss., 27-30 Jun 1995.  

 

[41]      Karla Steinbrugge Chauveau, “Working with C++”, IEEE Trans. Inf. Theory, pp. 
192-197, 06 August 2002. 
 

[42]      Leendert Ammeraal, “C++ for Programmers”, John Wiley & Sons Ltd., England, 
1991. 

 

[43]      Naba Barkakati, "Object-Oriented Programming in C++", SAMs, Carmel, IN, 1992. 

 

[44]       Z. Ramadhan and A. P. U. Siahaan, "Stop-and-Wait ARQ Technique for Repairing 
Frame and Acknowledgment Transmission," International Journal of Engineering Trends 
and Technology, vol. 38, no. 7, pp. 384-387, 2016 


		Politecnico di Torino
	2018-10-17T09:45:25+0000
	Politecnico di Torino
	Roberto Garello
	S




