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Abstract
The topic of this thesis is the analysis of the car sharing service, in particular of the analysis
of the availability of this kind of service in terms of space (i.e, different areas of a city) and
time (i.e., different moment of time, days of the week, slots of time and so on). In order to
do so I exploited several regression algorithms, that gave as their outputs the prediction of
the number of cars available in a given area in a given moment of time. The analysis of the
prediction error of these algorithms allowed to determine which are the situations, from
both space and time point of view, in which the service is most used. Such analysis allowed
also to determine which are the techniques that give best performances when predicting
this kind of data. In particular three use cases are considered in this thesis:

• an italian city, for which I considered two different car sharing service providers;

• two USA cities, Seattle and Portland, for which I considered only one service provider.

The chapters of this thesis are structured as follows: chapters from 1 to 3 give an intro-
duction of the topic faced in this thesis and an overview of the tools and the software I
developed; chapters from 4 to 9 describe in details the analysis made considering the first
use case, giving informations about the dataset, the performance of the used algorithms
and the different granularities at which the analysis was made; chapters 10 and 11 describe
instead respectively use case 2 and 3; the final chapter makes a point of the conclusions
and results of all the analyses I made and shows which are some possible extensions and
future implementations that can start from my work.
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Chapter 1

Introduction

This chapter gives an overview of the thesis objective and what are the main topics of my
work. It also contains informations about the car sharing service and what are its main
issues and how they were resolved so far.

1.1 Thesis objectives and software development
The objective of this thesis is to develop a framework that is able to elaborate car sharing
data and to give an evaluation of the accuracy of a regression algorithm that is run using
such data as an input. All the regression algorithms I exploited were analyzed in terms
of the error of their predictions and then compared between them to determine which
regression technique is the best one to be used to resolve the problem of predicting the
availability of the car sharing service in different areas of a given city. In my case predicting
the availability of the service means predicting the number of cars that are made a disposal
of the service customers in a certain area, at a certain moment of time. To reach the thesis
objective it was necessary to use several tools and algorithms which are described in the
following chapters.

1.2 Main issues when facing car sharing
The main issue when facing car sharing is the redistribution of the vehicles, in order to
provide the highest number of available cars in areas where the highest demand is expected.
Some vehicles can be rent to reach peripheral areas of the city, where the demand of vehicles
is not significatively high. So it is necessary for this vehicles to be redistributed, in order
to avoid keeping cars parked for long times before being rent again. This operation has
an instrinsic cost for the service provider, that has to have available operators to do this
job. Two operators are usually needed, one that drives the car to a different area and one
that guides him (for example vocally). Characterizing the car sharing service is strictly
necessary to achieve the best distribution of available cars in a city . Researches so far
focused mainly on these features:

• characterization of car sharing users and usage patterns;
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1.3 – State of the art

• spatial analysis, identifying the distribution of demand among different areas;

• temporal analysis, identifying the distribution of demand among different days and
timeslots;

• external factors that can influence car sharing usage.

All these factors can be considered to achieve a better knowledge of where and when ve-
hicles could be required in the future. Of course achieving the first point requires datasets
that provide socio-demographical informations. These datasets can be very useful as they
can give many informations (such as age and income) that can help identifying the char-
acteristics of the most frequent users of the service. Knowing where people that share
these characteristics live can provide informations about where the demand is expected to
be high. Such datasets are often not available or their access is highly restricted, even if
some researches associated to national projects managed to have access to such kind of
data [1]. Spatial and temporal analysis instead can be done much easier. Datasets used
to do such kind of analysis have informations such coordinates of the rent car (departure
and arrival) and informations about the vehicle(fuel/battery level, vehicle ID, customer
ID, interior conditions etc.). Some factors (e.g weather) can infuence the usage of the car
sharing service and knowing the behaviour of these factors is helpful to predict how the
rental can be potentially influenced (short-term or long-term) by them.

1.3 State of the art
Clustering is one of the most adopted technology that has been exploited so far to ana-
lyze and characterize the car sharing service. Clustering algorithms such as k-means or
partitioning around medoids have been used at different granularities to identify areas and
times with highest demand,travel and users features. Such analysis leads to informations
about groups of days with similar usage patterns (from a spatial point of view), asym-
metries in the spatio-temporal distribution of the vehicles availability and demand [2] or
users behavioural classes [3] [4]. All these informations can be used to predict where de-
mand will be present, taking into consideration the external factors mentioned above. For
example classifying the different areas as business or residential can help to do a better
analysis. Infact travels from a residential and a business area are expected to be more
frequent in the morning, when workers use the car sharing service to reach their working
places. Prediction models for car sharing usage are a field in continous evolution.

Also deep networks have been used to predict the distribution of demand by training
them with spatial and temporal features of car sharing demand [5]. This means we can
use for example the previous 7-day car sharing demand data to predict the demand in the
eighth day by training the network properly.
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Chapter 2

Used tools and algorithms

This chapter describes the tools I used to reach the thesis objective and the regression
algorithms that were run using car sharing data as an input.

2.1 Eclipse IDE
The Eclipse IDE was used to write the Java code to implement the pre-processing of the
datasets, in particular to:

• elaborate the input datasets in order to obtain new datasets with the information I
needed to make a prediction about the availability (in terms of number of vehicles)
of the car sharing service;

• compute error measures starting from the RapidMiner output files.

2.2 RapidMiner
RapidMiner and its library of algorithms were used to predict the number of vehicles
present in a certain area and to generate the graphs showing the informations about the
error measures starting from the error files given as an output of the prediction error
computation part of the Java framework. In particular also some algorithms of the Weka
extension of RapidMiner were used.

2.3 Regression algorithms
Several regression algorithms were applied to make predictions. Each one of the algorithms
in some cases was subject of an optimization process, in order to tune its parameter in the
best way and make it able to predict data more efficiently.

2.3.1 SVM overview
SVM is a tool that can be useful not only to solve regression problems but also to classify
data and recognize data patterns [6]. Basically SVM is an algorithm that tries to find the
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2 – Used tools and algorithms

best way to separate data, in order have different spaces in which the input data share some
features. Such separation is based on the concept of hyperplane, that can be considered
a line able to separate the input variable space. The distance between the line and the
closest data points is referred to as the margin. The best or optimal line that can separate
the two classes is the line that has the largest margin. This is called the Maximal-Margin
hyperplane. The hyperplane is learned from training data using an optimization procedure
that maximizes the margin. The margin is calculated as the perpendicular distance from
the line to only the closest points. Only these points are relevant in defining the line
and in the construction of the classifier. These points are called the support vectors. In
practice data usually can not be separated by an hyperplane, so the margin constraint is
relaxed, allowing some points to violate the separating line. Such violation is measured
usually referring to a threshold, that helps classifying it as allowable or not. Usually a
classification or regression problem can not be solved in a two dimensional space, so the
learning of the hyperplane problem is solved moving into an higher dimensional space using
some linear algebra, in particular using kernel functions. Such functions are able to map the
input data into another space and to solve the problem into another space. It is desirable
to use more complex kernels as it allows lines to separate the classes that are curved or
even more complex. The equation for making a prediction for a new input computes the
dot product between the input (x) and each support vector (xi) and is calculated as follows

f(x) = B0 + sum(ai ∗ (x, xi))

This equation involves calculating the inner products of a new input vector (x) with
all support vectors in training data. The coefficients B0 and ai (for each input) must be
estimated from the training data by the learning algorithm.

The kernel functions considered in this paper are:

• Linear: the dot product is rewritten as

K(x, y) = sum(x ∗ y);

• Polynomial: instead of the dot product, a polynomial function is used, for example:

K(x, y) = 1 + sum(x ∗ y)d,

where d is the degree of the function and is a parameter of the algorithm;

• RBF: a radial basis function is used as a kernel function, for example:

K(x, y) = exp( ||x− y||
2

2σ2 ),

where σ is a parameter of the algorithm;

• Sigmoid: a sigmoid function is used as a kernel function, for example:

K(x, y) = tanh(γ ∗ xT y + r),

where r and γ are kernel parameters.
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2.3 – Regression algorithms

2.3.2 W-SMOreg algorithm
The W-SMOreg algorithm is a regression algorithm based on Support Vector Machine
(SVM). In particular w-SMOreg is based on sequential minimal optimization (SMO), which
is an iterative algorithm for solving the regression problem using SVM. This algorithm is
not present in the base library of RapidMIner but it is included in the Weka extension.

2.3.3 LibSVM algorithm
The LibSVM algorithm is one of the most spread SVM based algorithm. It is an integrated
software for support vector classification, that can also support multi-class classification
and regression. In this paper it was applied on the input datasets considering all the
kernel mentioned above and using epsilon-SVR SVM implementation, specific for solving
regression problems.

2.3.4 DecisionStump and RepTree algorithm
The RepTree algorithm and the DecisionStump algorithms are decision tree based algo-
rithms that support regression. A decision tree is basically a tree where each node repre-
sents a splitting condition on an attribute that can split data into groups, where each group
of data represents the inputs for which the condition is satisfied or not, in order to be able
to classify data giving it a label. The leafs of the tree represent the decision made for the
inputs, i.e. the labels that is given to that specific group of data inputs. This algorithm
builds a decision/regression tree using information gain/variance (which are measures that
gives information about the quality of the splitting condition) and prunes it using reduced-
error pruning (with backfitting, to improve its generalization capabilities). This means that
starting at the leaves, each node is replaced with most popular class and if the prediction
accuracy is not affected then the change is kept [11]. The textitDecisionStump algorithm
instead is a simplified decision tree, that splits data ccording to only one splitting condition.

2.3.5 Weka Multilayer Perceptron algorithm
This algorithm is basically a neural net that supports regression. A neural net is a net made
up of neurons and connections. Each neuron can be considered as an object that elaborates
its inputs and generates some outputs that are given as an input to other neurons using
its connections. Neural nets can be used for both classification and regression problems,
so the final outputs that are generated give informations about the label of the input data
(i.e, its classification) or a numerical prediction, as in this specific case.

11



12



Chapter 3

Framework overview and
pre-processing

This chapter focuses on the description of the framework I implemented and the step of
pre-processing of the car sharing data, that was the preliminary step before running the
regression algorithms on the datasets I used.

3.1 Framework Description

Figure 3.1: Framework Overview

The diagram above shows the main steps through which all the analisys described in
this work passed. Here is a brief description of each block, in particular of the ones that
correspond to a part of the framework I implemented in Java code:

• Vehicles per cell computation: this is the part of the framework I implemented in
Java code that is in charge of computing the number of vehicles available for rental
inside each cell in which each city I considered was divide. Since the input datasets
had different formats for each city the implementation of this block (in terms of code)
is slightly different, but the final output is quite the same. For Seattle and Portland
dataset it was necessary to clean data, considering that GPS system could locate
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3 – Framework overview and pre-processing

a vehicle in different positions in two consecutive timestamps even if the vehicle is
actually not moving;

• Feature Enrichment: this part of the framework is in charge of adding addition fea-
tures to the dataset. In particular it adds some timing informations to the dataset
produced by the Vechile per cell coomputation block. This was a necessary step in
order to make an analysis of the prediction error through slots of time and days of
the week;

• Prediction Evaluation: it computes different error measure in order to evaluate the
performance of the various regression algorithms that were run on the input datasets.

3.2 Input Dataset
The input files from which this works starts are CSV files ( Comma Separated Values )
that contains informations about car trips exploiting two popular service providers (that
starting from this point will be referred as provider1 and provider2 ) service providers
during a period of time that goes from April 2016 to July 2016 relative to an italian city
(which will be referred from now on as use case 1 city ). Such data was generated by
retrieving from the server of each service provider the position of each vehicle ( sampled
every 5 minutes by default ) and generating from these informations a dataset containing
all the car trips in use case 1 city. This dataset has been the point of beginning of my work,
as all the work I did is relative to the number of vehicles available in each cell in which
the city of interest was divided. Each of the input file described above has the following
attributes:

• Vehicle_ID: it is string made of letters and numbers that uniquely identifies the
vehicle;

• Start_Date: it is a string that identifies the timestamp, in the format yyyy-MM-dd
hh:mm:ss, in which the vehicle starts its travel;

• Start_Latitude: it is a double number and it is the latitude at which the vehicle starts
its travel;

• Start_Longitude: it is double number and is the longitude at which the vehicle starts
its travel;

• Start_Fuel_Level: it is an integer number ( within a range that goes from 0 to 100
) that inidcates the level of fuel of the vehicle at tthe Start_Date;

• End_Date: it is a string that identifies the timestamp, in the format yyyy-MM-dd
hh:mm:ss, in which the vehicle ends its travel;

• End_Latitude: it is a double number and it is the latitude at which the vehicle ends
its travel;

• End_Longitude: it is double number and is the longitude at which the vehicle ends
its travel;

14



3.3 – Spatial granularity

• End_Fuel_Level: it is an integer number ( within a range that goes from 0 to 100 )
that inidcates the level of fuel of the vehicle at tthe Start_Date;

• Duration: it an integer number that indicates the duration of the car travel (i.e, the
absolute difference between Start_Date and End_Date. It is measured in minutes
and it is a multiple of the sampling time (i.e., 5 minutes in this case);

• Distance: it is an integer number and indicates the distance made by the car during
its travel. It is measured in metres;

• Fuel_Delta: it is an integer number that indicates the difference between End_Fuel_Level
and Start_Fuel_Level;

3.3 Spatial granularity
use case 1 city urban area was divided in cells, in order to see wHere the service is most
used. Each cell is identified by a progressive numeric ID and covers an area of about 1km2.
During the various analysis described in this thesis I had to make a selection of these cells,
by choosing for the prediction algorithms I applied on the dataset only the data relative to
the most dynamic cells. Applying a prediction algorithm on the data relative to a cell in
which the number of various stays static for long periods of time is not meaningful in order
to see how the algorithm performs, as its work is highly facilitated. It is more interesting
instead to apply it on the data relative to cells in which the number of vehicles available
for rental varies dinamically through time. This cells are tipically located, as I found out
during the various experiments I made, in the central area of the city.

3.4 Time granularity
The time granularity has an impact on how a cell can be considered dynamic or not. It is
highly rare that the number of vehicles inside a cell vary if the time at which the number
of vehicles is monitored is too small. For example once a cell is left in a cell at time x
is not so frequent that leaves the cell in the period of time between x and x+ 5 minutes.
For each cell 3 different csv files are generated, each one containing the number of vehicles
sampled at a different timestamp:

• 5 minutes, which is the default timestamp;

• 10 minutes;

• 15 minutes.

15



3 – Framework overview and pre-processing

From the code point of view the number of cars is sampled using a 5 minutes timestamp
and then the samples are skipped or taken into consideration according to a number passed
to the program from the command line, that indicates how many timestamps have to be
grouped together to obtain the number of present vehicles. For example, if the number
passed by the command line is 2, this means that in the final output file the rows are
printed alternatively in the output file, skipping one row.

3.5 Initial input dataset
The input dataset is generated starting from the provider1 travels dataset collected during
May 2016. The input csv files contain for each timestamp (i.e, 5 min, 10 min or 15 min) the
number of available vehicles in a given cell. If for a certain timestamp there is no vehicle
left inside the cell or leaving from the cell, the attribute storing the number of available
vehicles is kept unchanged. This attribute (i.e, numcars) is set to be a label attribute
by the Windowing operator, as it is the value that has to be predicted by the regression
algorithm W-SMOreg. During the analysis 12 cells were considered: 6 belonging to the
center of the city and 6 in the peripheral area. The cells are located in the following areas:

• cell 105: Center;

• cell 125: Center;

• cell 166: Peripheral;

• cell 43: Peripheral;

• cell 90: Center;

• cell 150: Peripheral;

• cell 71: Peripheral;

• cell 66: Center;

• cell 7: Peripheral;

• cell 85: Center;

• cell 126: Center;

• cell 50: Peripheral.

The considered cells were chosen among the cells that, during the period of the collection
of the data, were starting/destination cells of at least a car trip.

16



3.6 – Pre-processing and per cell vehicle number computation

3.5.1 Base dataset
The dataset initially used and obtained by elaborating the dataset described at the begin-
ning of this chapter contains the information of the number of vehicles at each timestamp,
for each one of the cells listed in the previous paragraph. Each record contains the following
attributes:

• cell: the integer value that uniquely identifies the considered cell;

• timestamp: the progressive integer number that identifies the timestamp;

• day: the integer value that identifies the day within the month in which the number
of cars is sampled;

• month: the string that identifies the month in which the number of cars is sampled;

• year : the integer value that identifies the year in which the number of cars is sampled
(it is always equal to 2016 in this case);

• numcars: the number of cars that is sampled at the moment identified by the previous
four attributes. It is an integer value.

3.5.2 Enriched dataset
In order to make a temporal analysis of the performance of the regression algorithms I
used it was necessary to add to the dataset described previously two more attributes:

• timeslot: an integer value that represents the period of time in which the timestamp
is located. In this case each timeslot is 3 hours wide. So, for example, if the timeslot
is equal to 1, it means that the timestamp is located in a period of time that goes
from 12am to 3am;

• week_day: an integer value that identifies the day of the week that corresponds to the
triplet (day,month,year). This number goes from 1 to 7, where 1=Sunday, 2=Monday
and so on.

By adding these attributes is was possible to find out how the various applied regression
algorithms behave for each day of the week and each timeslot.

3.6 Pre-processing and per cell vehicle number com-
putation

Since the input dataset is a collection of records that contain informations about car trips,
two informations are needed in order to compute the number of cars present in each cell
at each timestamp:

• the start coordinates (i.e., longitude and latitude), to obtain the vehicles that leave a
specific cell at a specific timestamp,
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3 – Framework overview and pre-processing

• the end coordinates, to obtain the vehicles that are parked within a specific cell at a
specific timestamp.

The computation in this case is made (initially) for the data concerning May 2016 and it
is relative to the provider1 service provider. The initial number of cars (i.e, the number of
cars present in the first timestamp of the 1st May) is set to 0, assuming that I don’t have
any information about the distribution of the vehicles in the previous month. However,
in order to avoid possible computation problems (i.e, negative numbers if a vehicle whose
presence in the cell is not known leaves the cell), if the recorded number of vehicles present
at a certain timestamp in a cell is set to 0, I check if any vehicle left the considered
cell during the time between two consecutive timestamps. If it is so, these vehicles are
considered as present vehicles, since before leaving those vehicles are considered available
in the time interval between the considered timestamp and the previous one. The number
of vehicles present in each cell is then computed adopting an incremental approach: at each
timestamp the number of present vehicles is computed adding to the number of vehicles
present in the previous timestamp the number of incoming vehicles in that timestamp and
subtracting the number of cars that left the cell in the previous timestamp:

numcars = numcarst−1 + incomingt − exitingt−1,

where t is the timestamp taken into consideration. Of course, as I said before, this com-
putation formula is valid for all the records except the first one, that has no previous
data to work on. Since the informations about some days are not available (e.g, there is
a hole of data between May 18th and May 23rd ) the number of vehicles present at the
first timestamp of some days cannot be computed. To avoid starting with a number of
vehicles equal to 0 in these cases I chose to set the number of vehicles to the average of the
number of the vehicles present at the first timestamp in the previous days. Of course it is
an approximation, so this number can lead to consider a cell with a level of availability of
cars that can be more/less than its actual level of occupancy.
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Chapter 4

SVM prediction

This chapter describes in details the prediction of an SVM based algorithm and the oper-
ators I exploited to make predictions about the number of available cars in a given area
at a given monet of time. It also gives informations about the output files produced by
the algorithm and the output of the part of the framework that evaluates the algorithm
performance. The final sections show graphically the error distribution of the algorithm.

4.1 Windowing operator
Windowing operator parameters are changed in order to measure the performance of theW-
SMOreg algorithm, using the datasets described in the first paragraph. I set the Windowing
parameters to the following values:

• window size: 3. I set it to 3 in order to use data concerning 3 contigous timestamps
(i.e, 15 minutes if the sampling time is equal to 5 minutes, 30 minutes if the sampling
time is equal to 10 minutes, 45 minutes if the sampling time is equal to 15 minutes).
This parameter is kept unchanged;

• step size: 1. This parameter is kept unchanged. It is the distance between first values;

• horizon: the horizon is the parameter that is changed according to the integer values
passed to the program from the command line. The program that evaluates the
prediction performances receives as initial parameters the starting horizon and the
last horizon value to be considered (both values are included in the analysis). I chose
to the consider the following horizon values: 2, 3, 4, 5, 6, 7 and 8. Increasing the
horizon value means increasing the distance of the prevision in the future and , in
terms of minutes, it increases as the sampling time increases.

Obviously changing the horizon means setting how far the prediction is distant in the
future and this distance varies (in terms of minutes) according to the time between two
consecutive timestamps:
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Sampling time Horizon Prediction at
5 minutes 2 10 minutes
5 minutes 3 15 minutes
5 minutes 4 20 minutes
5 minutes 5 25 minutes
5 minutes 6 30 minutes
5 minutes 7 35 minutes
5 minutes 8 40 minutes
10 minutes 2 20 minutes
10 minutes 3 30 minutes
10 minutes 4 40 minutes
10 minutes 5 50 minutes
10 minutes 6 60 minutes
10 minutes 7 70 minutes (1 hour and 10 minutes)
10 minutes 8 80 minutes (1 hour and 20 minutes)
15 minutes 2 30 minutes
15 minutes 3 45 minutes
15 minutes 4 60 minutes
15 minutes 5 75 minutes (1 hour and 15 minutes)
15 minutes 6 90 minutes (1 hour and a half)
15 minutes 7 105 minutes (1 hour and 45 minutes)
15 minutes 8 120 minutes (2 hours)

Table 4.1: Prediction moment for each (horizon,sampling time) couple

The windowing operator is also used to create a label attribute, which is the attribute
whose value that has to be predicted by the regression algorithm. In this case the label
attribute is the numcars attribute. Since any attribute with id or label role is not considered
by the operator during the windowing operation I had to modify/create new attributes:

• I initially chose as id the couple (timestamp,day), but in this way the windowing
operator didnt’ consider these attributes. This means that no timestamp-x or day-x
attributes were generated in the output of the operator, with x ∈ [0, (window_size−
1)]. I solved this problem using the Generate Concatenation operator, generating the
attribute day_timestamp and setting its role to the id value. This attribute is simply
a concatenation of the day and timestamp attributes, using the ’_’ as separator;

• A similar problem was present for the numcars attribute. Since its role was set to label,
no numcars-x attributes were generated in the output, with x ∈ [0, (window_size−
1)]. So I had to use the Generate Copy operator to create a copy of the numcars
attribute, naming it cars# and setting its role to regular attribute.

4.2 The W-SMOreg algorithm
The regression algorithm I chose to use is the W-SMOreg, a regression algorithm based
on SVM. The W-SMOreg algorithm is an algorithm included in the Weka extension of
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4.3 – Results file format

Rapidminer, that is a suite of machine learning algorithms developed at the University of
Wakato, New Zealand. I chose to keep the algorithm parameters unchanged:

• C: the complexity. It is a complexity parameter which SMO support vector machine
uses to build the hyperplane to separate the data. It controls how soft the class
margins are, in practice how many instances are used as ’support vectors’ to draw
the linear separation boundary in the transformed euclidean feature space. By default
the complexity constant is set to 1.0;

• N: the normalize parameter. It is set to 0, that means normalize;

• I: it is a string that contains all the parameters of the optimizer class used for solving
the quadratic optimization problem;

• K: the kernel to use. In this case the default kernel is the Polynomial kernel.

The most significant attribute (i.e, the one with the highest weight assigned by the algo-
rithm) in predicting the number of available cars is the cars#-0 attribute, that contains
the number of available cars registered in the previous timestamp before the value specified
by the horizon parameter. Its weight at each run is very close to 1. The algorithm is run
once for each cell, for each of the three sampling times I chose to consider in my analysis.
The computational time necessary to predict the data seems to be affected by the position
and occupancy level of the cell. For cells in the peripheral area of the use case 1 city, the
algorithm seems to take much less time than for the other cells in the center of the city. To
validate the algorithm I chose a X-validation, partitioning the data in 10 partitions. Nine
of them are used to train the W-SMOreg algorithm and the remaining one is used to test
the quality of the prediction.

4.3 Results file format
Each results file is relative to a specific cell and its named results_cellX_Ymin_sampling,
where X is the cell number and Y is the sampling time. Each file contains, for each record,
the predicted value of the available cars in a given cell and month:

• timestamp-2: the integer value of the previous third timestamp;

• timestamp-1: the integer value of the previous second timestamp;

• timestamp-0: the integer value of the previous timestamp;

• day-2: the integer value of the previous third day;

• day-1: the integer value of the previous second day;

• day-0: the integer value of the previous day;

• cars#-2: the number of cars available in the considered cell going back in the past
for an amount of time equal to horizon+ 2 ∗ timestamp ;

• cars#-1: the number of cars available in the considered cell going back in the past
for an amoount of time equal to horizon+ 1 ∗ timestamp ;
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• cars#-0: the number of cars available in the considered cell going back in the past
for an amount of time equal to horizon ;

• label: the number of cars available in the considered cell in the current day at the
current timestamp (i.e., the value to be predicted);

• day_timestamp: the ID that uniquely identifies the record;

• prediction(label): the prediction value (i.e., the output of the W-SMOreg regression
algorithm). It is a double number.

4.4 Prediction error computation
Once all the results of the regression algorithm are generated for all the cells and for all
the horizon values I chose to consider, the next step is to evaluate how much the regression
algorithm was accurate in predicting the number of available cars in the future. In order
to do this two measures were computed:

• Mean Abs Error, MAE: this error measure can be expressed as |MAE = predicted_value−
actual_value|, where predicted_value is the output of the regression algorithm and
actual_value is the actual number of cars available that can be rented in the consid-
ered cell;

• Adjusted Mean Abs Error, A-MAE: this error measure instead is computed as
A−MAE = |rounded_predicted_value−actual_value|, where rounded_predicted_value
is the predicted_value approximated to the closest integer number, since the output
of the regression algorithm is a double number and the number of cars present in
a cell must be an integer value. This kind of approximation however can lead to a
prediction that includes a car that can be actually not present.

This two measure are then written in a file where each row has the following attributes:

• horizon: the horizon set for the Windowing Operator(range from 2 to 8, both in-
cluded);

• cell: the cell for which the prediction was made by the regression algorithm;

• samplingTime: the distance between two consecutive timestamps (5 minutes, 10
minutes or 15 minutes);

• mean_abs_error_r: the A-MAE value;

• mean_abs_error_nr. the MAE value.

These data are then used to generate, for each cell, a graph that shows three different
curves (one for each possible sampling time) that represent how the performances change
using different values of the horizon (i.e, how performances evolve as the distance between
the window and the prediction in the future increases). The performances are best for the
cells where the range of values of the available cars is less wide (for example cell 7 or 50,
that are both in the peripheral are of the city) and both MAE and A-MAE are very close
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to 0, independently from the sampling time. Performances decrease instead for the cells in
the central area, and differ significatively for the three considered sampling times. MAE
and A-MAE assume a range of values between 0 and 2.5 . The error evaluation is done
inside the predictionEvaluation Java project, that elaborates the results of the regression
algorithm in order to compute the MAE and A-MAE.

4.5 Performance evaluation output file format
The performance evaluation output file (name prediction_performances.csv has the follow-
ing fields:

• horizon: horizon value used by the Windowing operator (range from 2 to 8, both
included);

• cell: cell number;

• samplingTime: time interval between two consecutive timestamps in which the
number of cars is computed;

• mean_abs_error_r: A-MAE error measure;

• mean_abs_error_nr: MAE error measure.

4.6 Prediction error graphs - provider1
Graphs are generated from the file described in the previous paragraph. Each graph shows
in the horizontal and vertical axis respectively the horizon value and MAE and A-MAE
measures.
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(a)
Cell 7

(b) Cell 43

(c) Cell 50 (d) Cell 66

(e) Cell 71 (f) Cell 85

Figure 4.1: Prediction error graphs - provider1 (1)
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4.6 – Prediction error graphs - provider1

(a) Cell 90 (b) Cell 105

(c) Cell 125 (d) Cell 126

(e) Cell 150 (f) Cell 166

Figure 4.2: Prediction error graphs - provider1 (2)

Starting from these graphs I did an analysis with the final scope to determine which
are the best values of the horizon and sampling time to be used further:

• as the horizon value increases, as it was expected, the error increases. However the
behaviour is very similar if we considered the curves that represent each sampling
time. The error approximatively doubles from an horizon value equal to 2 to an
horizon value equal to 8. Since the number of present vehicles in each cells does
not seem to vary significatively in a period of time equal to the prediction horizon,
I chose for the future analysis an horizon equal to 8. In this way the data used for
prediction are at a significant distance from the data to predict and the error can be
more interesting to be analyzed. It should also be consdiered that an average user of
the service can be more interested in knowing the availability of vehicles not in the
immediate future but in a moment located further.

• also increasing the sampling time, as it was expected, leads to an increase of the error.
However the error gap between the three curves is not significatively high enough to
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prefer one of them instead of the others. In this case I prefered choosing 15 minutes
as sampling time, because the number of available cars in a cell has more probability
to vary in a slot of time equal to 15 minutes than in a slot equal to 10 or 5 minutes;

• the difference between the two error measures instead is not significant. In the future
analysis the only error measure used will be the A-MAE measure.

4.7 Prediction error graphs - provider2
The same analysis done for the provider1 input dataset is done using as an input the
information about the tracks concerning provider2 vehicles. The graphs below show how
the error evolves as the horizon of the prediction increases. However it was not possible to
do such analysis for all the cells considered for the provider1 dataset, because the number
of vehicles didn’t vary significantly among the considered days. This could be imputed
to the smaller number of parking machines of the provider and to the rare fruition of the
service in the peripheral areas of the city. Infact all the cells for which the regression
algorithm could not be applied are located quite far from the center of the use case 1 city.

(a) Cell 43 (b) Cell 66

(c) Cell 85 (d) Cell 90

(e) Cell 105 (f) Cell 125

Figure 4.3: Prediction error graphs - provider2 (1)
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4.7 – Prediction error graphs - provider2

(a) Cell 126 (b) Cell 150

(c) Cell 166

Figure 4.4: Prediction error graphs - provider2 (2)
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The same considerations made for the provider1 graphs set can be made for this set,
taking into consideration that in this case the sampling time is equal to 15 minutes. Also
in this case increasing the horizon value leads to an increase of the average error. Such
behaviour happens for all the cells considered in the analysis. The error for the highest
horizon value is approximatively the double of the value assumed for the lowest value.
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Chapter 5

Baseline prediction

This chapter describes the results, in terms of accuracy, of a prediction made considering
only the number of cars present in the past, without considering any other information
when making predictions. This analysis, called Baseline does not consider any time data,
but consider as a prediction the number of cars present at a certain moment in the past in
a given area.

5.1 Baseline analysis - provider1
The results obtained by applying the W-SMOreg regression algorithm seems to predict
quite well the occupancy of the cells and the prediction is more accurate when the number
of cars in the considered cell does not vary significantly during the day. In order to see
how other regression algorithms behave doing this task, I implemented a simple regression
algorithm that predicts the number of cars with an horizon of 2 hours ( 8 timestamps in
this case ). The data used to apply the algorithm takes as an input the CSV file concerning
the number of cars in each cell sampled every 15 minutes, concerning the two-days data
that are used to test the W-SMOreg algorithm. The idea on which the regression is based
is that the number of cars in the next 2 hours is the same that is present in the current
timestamp. The following graphs show for each timestamp the number of cars actually
present in the cell and the predicted number of cars using this approach. These graphs
also put in evidence which are the cells where the number of cars vary significantly during
the day and the timeslots where the prediction is more inaccurate. This kind of approach
is clearly more efficient when I have an almost constant number of cars in the cell during
all the considered timeslots, as it happens for example for cell 71 during May 30th. In
general, the prediction is close or equal to the actual number of cars for all the cells where
I have less movement (i.e., in the cells where the service is less used).
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5 – Baseline prediction

(a) Cell 7,May 30th (b) Cell 7,May 31th

(c) Cell 43, May 30th (d) Cell 43, May 31th

(e) Cell 50, May 30th (f) Cell 50, May 31th

(g) Cell 66, May 30th (h) Cell 66, May 31th

Figure 5.1: Baseline graphs - provider1 (1)
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5.1 – Baseline analysis - provider1

(a) Cell 71, May 30th (b) Cell 71, May 31th

(c) Cell 85, May 30th (d) Cell 85, May 31th

(e) Cell 90, May 30th (f) Cell 90, May 31th

(g) Cell 105, May 30th (h) Cell 105, May 31th

Figure 5.2: Baseline graphs - provider1 (2)
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5 – Baseline prediction

(a) Cell 125, May 30th (b) Cell 125, May 31th

(c) Cell 126, May 30th (d) Cell 126, May 31th

(e) Cell 150, May 30th (f) Cell 150, May 31th

(g) Cell 166, May 30th (h) Cell 166, May 31th

Figure 5.3: Baseline graphs - provider1 (3)
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5.2 – Baseline Analysis - provider2

The previous graphs show that the cells with the highest service usage are cell 66,85,
105,125 and 126. Indeed these are the cells where the baseline predicted value differs
significatively from the the actual number of cars, so during a period of two hours the
number of available vehicles changes dinamically in this city areas. It is surely not an
accident that all these cells are located in the center of the city. All the following analysis
is made considering these cells as points fo reference. The following graph shows how the
MAE measure evolves during time, for all the cells named previously and for both the days
whose data is used to test the W-SMO-reg algorithm.

Figure 5.4: MAE evolution graph

The previously shown graph puts in evidence which are the timeslots in which the
prediction based on the baseline is less accurate. In particular two periods of time seem to
be affected by the most significative prediction error:

• the period between 19th and 29th timestamps (i.e., indicatively between 5am and
7:30am);

• the period between 51th and 61th timestamps (i.e., indicatively between 12:30pm and
3pm).

5.2 Baseline Analysis - provider2
The same analysis described in the previous paragraph was done for the data concerning
the availble vehicles in each cell for the provider2 service provider. The results are quite
similar to the one obtained for the provider1 provider, either in terms of accuracy of the
prediction or in terms of cells with the highest traffic of incoming/exiting vehicles in the
considered timeslot (i.e., 2 hours). The graphs below show the number of cars predicted
using the baseline approach and the actual number of cars available for rental in each cell.
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5 – Baseline prediction

(a) Cell 43, May 30th (b) Cell 43, May 31th

(c) Cell 66, May 30th (d) Cell 66, May 31th

(e) Cell 85, May 30th (f) Cell 85, May 31th

(g) Cell 90, May 30th (h) Cell 90, May 31th

Figure 5.5: Baseline graphs - provider2 (1)
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5.2 – Baseline Analysis - provider2

(a) Cell 105, May 30th (b) Cell 105, May 31th

(c) Cell 125, May 30th (d) Cell 125, May 31th

(e) Cell 126, May 30th (f) Cell 126, May 31th

(g) Cell 150, May 30th (h) Cell 150, May 31th

(i) Cell 166, May 30th (j) Cell 166, May 31th

Figure 5.6: Baseline graphs - provider2 (2)
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5 – Baseline prediction

As I did for the provider1 dataset I generated a dataset that for each timestamp gives
an information about the MAE measure, considering all the cells. The timestamp for which
the error is higher are quite the same that for the previously considered case.

Figure 5.7: Baseline error distribution by timeslot
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Chapter 6

SVM prediction using Sliding
Window operator

This chapter describes another method of validation of the same regression algorithm
described in chapter 4. It also shows how changing the parameters of this kind of validation
changes the performance of the regression algorithm.

6.1 Sliding Window operator
Since now the W-SMOreg was validated using the Cross-validation operator, splitting data
into 10 subsets. 9 of the subsets are then used to train the algorithm and the remaining one
to test it. In order to see how wide has to be the training set to obtain good performances,
I chose to validate the regression algorithm using the Sliding Window operator. This
operator validates an algorithm through two windows: one relative to the training data
and one relative to the test data. This two windows are moved forward of the specified
step and are separated by a gap defined by the horizon parameter. The data on which the
regression algorithm is applied is the same used previously and it is relative to the number
of vehicles present in each cell, monitored every 15 minutes. The Sliding Window operator
is configured with the following parameters. These parameters are changed to see how the
size of the two windows affects the regression algorithm performances:

• training window width (number of records): 96 (1-day data), 192 (2-days data),
480 (5-days data), 672 (1 week data), 960 (10-days data) amd 1344(2-weeks data).

• training windows step size(number of records): -1. It means that the training
window is moved forward for a number of examples equal to the test window size.

• horizon (number of records): 8. It is the gap between training and test window.

• test window width(number of records): 96 (1-day data), 480(2-days data), 672
(1 week data).

The Sliding Window validation is applied to the data concerning the cells with the
highest traffic of incoming and exiting cars, which are:
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6 – SVM prediction using Sliding Window operator

• cell 66;

• cell 85;

• cell 105;

• cell 125;

• cell 126.

All these cells belong to the central area of the city and, according the Baseline analysis
done in the previous chapter, are the cells in which the number of available cars changes
more dinamically. The folllowing graphs show how the MAE and A-MAE error measures
change according to the training window size.
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6.2 – Performance analysis by changing training/test window width

6.2 Performance analysis by changing training/test
window width

6.2.1 Performance by varying training window width

(a) Cell 66 (b) Cell 85

(c) Cell 105 (d) Cell 125

(e) Cell 126

Figure 6.1: Sliding window performance with varying training window width

The most significant information that can be extracted from these graphs is that in most
of the considered cells the error decreases as the training window size increases. This means
that the W-SMOreg algorithm behaves better as it has more data available for the training
phase. Since the smallest training window sizes did not lead to an accurate prediction I
chose to go on with my analysis focusing on three window sizes: 1 week, 10 days and 2
weeks. The following step is to see how the test window size can affect the performance of
the validation, showing how (for a fixed training window size) the error evolves when the
test window width increases. The graphs below show such variation. Each graph concerns
a constant training window width and each curve is relative to each of the cells mentioned
above.
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6.2.2 Performance by varying test window width

(a) 1 week training (b) 10 days training

(c) 2 weeks training

Figure 6.2: Sliding window performance with constant training window width and varying
test window width

Since the analysis was done using as an input the data concerning May 2016, it was not
possible to extend the test window width for some training window widths. The graphs
above show the results for the following training and test window widths.

Training window width Test window width
7 days 1 day
7 days 2 days
7 days 5 days
7 days 7 days
10 days 1 day
10 days 2 days
10 days 5 days
10 days 7 days
14 days 1 day
14 days 2 days

Table 6.1: Training window and test window values
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Chapter 7

Baseline and SVM comparison

This chapter makes a graphical comparison of the same SVM based regression algorthm
described in the previous chapters and the Baseline tecnique.

7.1 Baseline and SVM comparison graphs
The graphs below show a comparison between the prediction performance of theW-SMOreg
algorithm with Polynomial Kernel and the Baseline algorithm. Data were grouped by
timestamp, in order to see which were the timeslots where the prediction performance was
worst. These graphs show that performances between the two algorithms are very similar.
Probably the accuracy of the SVM-based algorithm was affected by two factors:

• the approximation of the predicted number of vehicles;

• the width of the window generated by the Windowing operator, that is currently set
to 3 (i.e, 45 minutes).
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(a) Cell 66 - 1 day test window (b) Cell 66 - 2 days test window

(c) Cell 85 - 1 day test window (d) Cell 85 - 2 days test window

(e) Cell 105 - 1 day test window (f) Cell 105 - 2 days test window

(g) Cell 125 - 1 day test window (h) Cell 125 - 2 days test window

(i) Cell 126 - 1 day test window (j) Cell 126 - 2 days test window

Figure 7.1: SVM performance compared to Baseline performance - per cell
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7.1 – Baseline and SVM comparison graphs

These results are obtained using as input a larger dataset than the one cosidered before.
Such dataset concerns a period that goes from the second half of April 2016 to the end of
June 2016. The graphs below instead show the average prediction errors considering all
the cells.

(a) 1 day test window (b) 2 days test window

Figure 7.2: SVM performance compared to Baseline performance - all cells

All these graphs show that the baseline and the W-SMOreg algorithm have very similar
accuracy when predicting the number of available cars in the future. In particular the W-
SMOreg does not have a significant improvement or decrease of accuracy when extending
the test window size. So even if the SVM considers more informations when making
a prediction it can not give better results than an algorithm that uses a sort of naive
approach. This could happen because the W-SMOreg algorithm uses data that are too far
from the moment for which the prediction is made. The Baseline approach instead has a
different prediction horizon, as it considers for making a prediction only data that are very
close to the moment of prediction.
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Chapter 8

Other algorithms prediction

This chapter describes the performance of some regression algorithms based on different
techniques from the one considered so far.

The same analysis that is described in the previous paragraph was done using other
prediction algorithms: W-DecisionStump, W-MultilayerPerceptron, and W-RepTree algo-
rithm, keeping the default parameters. In both cases the prediction perfomance was worse
than the Baseline algorithm performance. Both graphs consider the prediction error con-
sidering all cells.

Baseline and the other regression algorithms start from different points of time. Infact
every different implementation of the baseline skips a number of records from the input
file equal to the prediction horizon. The input files of the other algorithms are instead all
aligned together (i.e, the prediction output files start from the same day and timestamp).
Since the baseline and the prediction results are not aligned, I had to align them by using
the Filtering Examples By Range operator. In this way I can filter the examples by range
specifying the indexes of the examples in the dataset, where the index is the number of
the row in the input file. The MultilayerPerceptron algorithm is based on backpropagation
and exploits it to classify instances. The use of this algorithm leads to the building of
a network, in which all the nodes are usually sigmoids. In this case, since the class is
numeric, the output nodes become unthresholded linear units.

(a) W-DecisionStump performance (b) W-MultilayerPerceptron

Figure 8.1: Other algorithms performances compared to Baseline performance - all cells

The W-DecisionStump algorithm has the worst performance among all the prediction
algorithms considered in this paper. Indeed it is a decision tree that has only a root
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node that uses the cars-0 attribute to discriminate the cells and to make a prediction.
From the computational point of view it is instead the fastest algorithm, thanks to its
semplicity. TheMultilayerPerceptron algorithm instead has the worst performance in terms
of computational time (i.e, it is the slowest algorithm used so far) and makes predictions
that are quite worse than the ones made by the W-SMOreg algorithm. Since predictions
made by W-DecisionStump were so inaccurate, I switched this decision tree algorithm
with the W-RepTree algortithm. The W-Reptree algorithm is based on a decision tree that
can make a decision/regression using information about gain/variance and prunes it using
reduced-error pruning (with backfitting).

The graphs below show the comparison between four different regression algorithms:
Baseline algorithm,W-RepTree,W-MultilayerPerceptron andW-SMOreg for both provider1
and provider2. Each graph refers to a different test set dimension for the last three algo-
rithms and to a different prediction horizon for the textitBaseline algorithm. This pa-
rameter is named h and it assumes the following values: 96, 48, 24 and 12. This values
correspond to 1 day, 12 hours, 6 hours and 3 hours, since the default timestamp is set to
15 minutes.

(a) h=96 - provider1 (b) h=48 - provider1

(c) h=24 - provider1 (d) h=12 -provider1

Figure 8.2: Other algorithms performances compared to Baseline performance - all cells -
provider1
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(a) h=96 - provider2 (b) h=48 - provider2

(c) h=24 - provider2 (d) h=12 - provider2

Figure 8.3: Other algorithms performances compared to Baseline performance - all cells -
provider2
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Results given by this graphs are quite clear. Predictions made by the SVM-based
algorithm are the best ones and are quite close to the ones made by the Baseline algorithm.
The W-MultilayerPerceptron algorithm behaves in the worst way. Its predictions are quite
inaccurate and its computational time is the highest one compared to the others. The
decision tree-based algorithm it’s a good compromise between computational time and
quality of the prediction. It is the fastest algorithm ( its computational time never exceeds
3 seconds ) and its prediction error is between the two algorithms previously considered.
From these graphs another relevant informations can be extracted, in particular analyzing
where the peaks of each curve are located. Since the horizontal axis represents time, with
a granularity equal to 15 minutes, each graph gives informations about the timeslots where
the algorithms behave worse. Such peaks are located in the time slots described previously
in this paper (i.e., during day-time), but another slot where the prediction errors are quite
high is the slot between 9 p.m. and 12 p.m. This information was not present in the analisys
done before, probably because the errors where computed starting from data covering only
two working days, respectively a Monday and a Tuesday in May.
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Chapter 9

Temporal analysis

This chapter shows the results of an analysis of the data at different time granularities,
in particular it gives information about the accuracy of the prediction of the W-SMOreg
algorithm for each day of the week and for each slot of time in which I divided each day.

9.1 Error Temporal Analysis - provider1
The next step is to see how the prediction error is distributed through time. In order to
see this I worked with two granularities: timeslots and days of the week. The division of
each day in timeslots is done taking into consideration slots of three hours(i.e., each slot is
made of 12 timestamps):

• slot 1: from 12am to 3am;

• slot 2: from 3am to 6am;

• slot 3: from 6am to 9am;

• slot 4: from 9am to 12pm;

• slot 5: from 12pm to 3pm;

• slot 6: from 3pm to 6pm;

• slot 7: from 6pm to 9pm;

• slot 8: from 9pm to 12am.

The day of the week instead is modelled as an integer number from 1 to 7, where
1 corresponds to Sunday. Since this informations were not present in the initial input
dataset, each row of the input dataset was extended adding this two numerical attributes.
The analysis is done taking into consideration the prediction algorithm that gave the best
performances in terms of prediction error (i.e., W-SMOreg), considering all the results
obtained so far.

The following graphs show how the error is distributed through the various slots, con-
sidering all the cells and all the days of the week. The horizontal axis represent time, and
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each integer value represent a day of the week. The vertical axis represent the average
absolute error, that is computed making an average on all the cells. These graphs are
generated keeping constant a slot ( and changing it progressively ) and then aggregating
by the day of the week.

All the data obtained and represented in this chapter is obtained applying the W-
SMOreg algorithm with the parameters described before in this paper and using a test
window size equal to 24, which corresponds to data covering a period of time of six hours.
The horizon parameter of the Sliding Window operator is kept constant and equal to 8
(i.e, 2 hours).

(a) Errors slot 1 - provider1 (b) Errors slot 2 - provider1

(c) Errors slot 3 - provider1 (d) Errors slot 4 - provider1

(e) Errors slot 5 - provider1 (f) Errors slot 6 - provider1

(g) Errors slot 7 - provider1 (h) Errors slot 8 - provider1

Figure 9.1: Prediction error distribution for each slot of time
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9.1 – Error Temporal Analysis - provider1

The following graph instead shows the performance of theW-SMOreg algorithm, making
an average of the error on all the days of the week and all the cells.

Figure 9.2: Prediction error distribution for each day of the week, for all slots

This graph shows that the days in which the algorithm behaves worst are Wednesday
and Tuesday, with an average error respectively equal to 2,30 and 2,355. The days in which
the prediction is more accurate are instead Sunday and Monday, with an error respectively
equal to 1,655 and 1,855.

9.1.1 Analysis by slot - provider1
Here are the considerations that can be taken from the graphs in the previous paragraph,
for each slot:

• slot 1: the average error has a range that goes (approximatively) from 1 to 2,4. The
highest values are reached for Sunday, Wednesday and Saturday. Probably the peaks
during weekend are related to the frequent use of the service during night-time, to
move from peripheral areas to the central area, in which all the considered cells are
located;

• slot 2: the average error has a range that goes(approximatively) from 1,125 to 1,475.
During the first three days of the week the error assumes its highest values, reaching
a peak during Tuesday and reaching a minimum during Friday. The lowest values are
reached on Sunday. This is the slot for which the prediction error is lowest and for
which the error range is less wide;

• slot 3: the average error has a range that goes (approximatively) from 1,1 to 3. The
behaviour is quite similar to the previous slot. Infact during working days, the error
assumes values always above 2. The lowest peaks are instead located, as the previous
slot, during weekends, in particular on Sunday;
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• slot 4: the average error has a range that goes (approximatively) from 1,5 to 2,9.
The highest peak is reached on Wednesday and the lowest peaks are reached during
weekends and on Thursday;

• slot 5: the range is from 1,4 to 2,75. The highest peak is reached on Tuesday and the
lowest peak is on Sunday;

• slot 6: the range is from 1,85 to 2,75. Its highest values are located between Tuesday
and Thursday, with a peak on Wednesday.

• slot 7: the range is from 1,83 to 2,275. During working days the error increases until
it reaches a peak on Wednesday, then decreases significatively on Thursday and then
increases again until it reaches its maximum value on Saturday;

• slot 8: the range is from 1,45 to 2,25. During working days the error is quite high
on Monday, Tuesday and Wednesday. It decreases for the data relative to Thursdays
and then rises up again until it reaches a maximum on Saturday.
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9.1 – Error Temporal Analysis - provider1

The following graphs instead show how the error is distributed through the various days
of the week, considering all the cells and all the slots in which I chose to divide the 24
hours of each day. The horizontal axis represents time, and each integer value represents
a slot. The vertical axis represent the average absolute error, that is computed making an
average on all the cells. These graphs are generated keeping constant a day of the week (
and changing it progressively ) and then aggregating by the slot of time:

(a) Sunday errors - provider1 (b) Monday errors - provider1

(c) Tuesday errors - provider1 (d) Wednesday errors - provider1

(e) Thursday errors - provider1 (f) Friday errors- provider1

(g) Saturday errors - provider1

Figure 9.3: Prediction error distribution for each day of the week - provider1
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The graph below instead summarizes the informations about the algorithm performance
for each slot, considering making an average on all days of the week and all the cells.

Figure 9.4: Prediction error distribution for each slot, for all days

As the graph shows the average error values are quite similar, except for slot 2, for
which the error is lowest and it is equal to 1,30 approximatively. For all the other slots the
error assumes values in the range between 1,95 and 2,40, so it can be approximatively be
considered equal to 2.

9.1.2 Analysis by day of the week - provider1
Here are the considerations that can be taken from the graphs in the previous paragraph,
for each day of the week:

• Sunday: range between 1,10 and 2,40. The highest peak is located on slot 1 (between
12am and 3am) and then the error decreases for data related to slot 2 and goes up
for all the afternoon slots up to slot 6;

• Monday: range between 1 and 1,65. The error during slot 1 is very low and its were
the curve has its minimum. It then raises up to 2 and stays in a range between 1,80
and 2,10 until slot 7;

• Tuesday: range between 1,5 and 3,1. The highest peaks are located on slot 3 (
between 9am and 12pm ) and slot 5 ( between 3pm and 6pm ). The minimum is
instead reached for slot 2 ( between 6am and 9am );

• Wednesday: range between 1,35 and 3. The curve has a behaviour similar to the
previous one, with a significant difference on slot 4;

• Thursday : range between 1,2 and 2,7. The behaviour is similar to the previous
curve. There is just a small decrease of the prediction quality during slot 1 and a
better precision on slot 8;
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• Friday: range between 1,15 and 2,3. The shape of the curve is very similar to the one
representative of Wednesday. Between slot 3 and slot the error keeps itself in a range
between 2 and 2,30;

• Saturday: range between 1,35 and 2,30. In this case we have an evolution of the error
quite similar to the one observed for Sunday. The highest peak is on slot 1 (between
12am and 3am). It differes significatively from Sunday curve between slot 6 and 8,
where there is a less prediction accuracy that decreases progressively.
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9.2 Error Temporal Analysis - provider2
The analysis described before is done for the data collected for provider2. The granularity
of time, the methods and the conditions are exactly the same.

(a) Errors slot 1 - provider2 (b) Errors slot 2 - provider2

(c) Errors slot 3 - provider2 (d) Errors slot 4 - provider2

(e) Errors slot 5 - provider2 (f) Errors slot 6 - provider2

(g) Errors slot 7 - provider2 (h) Errors slot 8 - provider2

Figure 9.5: Prediction error distribution for each slot of time - provider2
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(a) Sunday errors - provider2 (b) Monday errors - provider2

(c) Tuesday errors - provider2 (d) Wednesday errors - provider2

(e) Thursday errors - provider2 (f) Friday errors- provider2

(g) Saturday errors - provider2

Figure 9.6: Prediction error distribution for each day of the week - provider2
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The two graphs below summarize the previous graphs, showing the evolution of the
error through the slots and the days of week. In the first case I just computed the error
grouping by the slot attribute, in the second case instead I grouped data by the week_day
attribute.

Figure 9.7: Prediction error distribution for each slot, all days of the week - provider2

Figure 9.8: Prediction error distribution for each day, all slots - provider2

9.2.1 Analysis by slot - provider2
Here are the considerations that can be taken from the graphs in the previous paragraph,
for each slot:
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9.2 – Error Temporal Analysis - provider2

• slot 1: range between 2,05 and 3. The error is lowest during working days, in partic-
ular during Tuesday, and it assumes its hgihest values during weekends;

• slot 2: range between 1,65 and 3,55. The curve decreases from Sunday to Wednesday
and then increases progressively from Wednesday to Saturday;

• slot 3: range between 2,15 and 3,55. The shape of the curve is very different from
the previous ones. The error is lowest during Sunday and has a peak on Monday.
Starting from Monday the error decreases progressivley until Saturday;

• slot 4: range between 2,725 and 3,30. The behaviour is quite different from the
previous slots. The highest peak is on Wednesday. Starting from this day the curve
decreases until Saturday, where we have the lowest peak of error.

• slot 5: range between 2,2 and 3,65. The highest error value is obtained for Tuesday
and then the error goes down until Saturday, passing through a significant peak on
Thursday;

• slot 6: range between 2,3 and 2,975. Highest peaks located on Sunday and Tuesday
and lowest peak on Monday;

• slot 7: range between 1,75 and 3. The shape of the curve is quite similar to the one
representative of slot 1. The error is highest on Sunday and Saturday and it is lowest
on Thursday. For the other days we have very close error values;

• slot 8: range between 1,8 and 3,25. Sunday, Thursday, Friday and Saturday are the
days that correspond to the lowest accuracy of prediction. From Thursday to Friday
the error increases progressively until it reaches its maximum on Saturday.

Considering the error per slot of time, the shape of the curve is quite similar to the one
representing the same informations for provider1. The highest peaks are located on slot 3
and 4. The lowest peak instead is located on slot 2.

9.2.2 Analysis by day of the week - provider2
Here are the considerations that can be taken from the graphs in the previous paragraph,
for each day of the week:

• Sunday: range between 2,05 and 3. During daytime the prediction error is quite low
for slot 2 and 3, then increases for slot 4 and keeps itself in a range between 2,9 and
3 for the slots from 6 to 8. The highest peak is on slot 1, during night-time;

• Monday: range between 1,65 and 3,55. The shape is quite opposite from the pre-
vious one. The prediction error during daytime is higher than the one measured
during Sunday. Starting from the highest peak, located on slot 3, the error decreases
progressively until slot 8. The minimum error value is reached for slot 2;

• Tuesday: range between 1,6 and 3,65. The shape is similar to the one of the previously
described curve. The main difference is an higher value of error for slot 5, where the
maximum peak is located;
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• Wednesday: range between 1,3 and 3,3. This case is still similar to the ones previously
considered, except for an higher value during slot 4, where we have a maximum. The
error is also higher during night-time;

• Thursday: range between 1,4 and 3,1. We have the typical trend of the other working
days, but an higher value for slot 1;

• Friday: range between 1,8 and 2,95. The shape of the curve is not significantly
different from the other concerning working days. However the gap between slot 4
and slot 5 is quite high, and there is also an high peak of error for slot 8;

• Saturday: range between 1,7 and 3,25. The evolution of the error through time is
similar to the one obtained for Sunday. The main difference is an higher distribution
in the morning, in particular during slot 3. Starting from slot 5, the error increases
progressively until it reaches its maximum value for slot 8.

Things change significatively between the two service providers when the error per day is
analyzed. The highest prediction errors are made on weekends, in particular on Sunday.
The lowest peak instead is on the same day, which is Monday. For the other working days
the error keeps itself in the range between 2,4 and 2,5.
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Chapter 10

Seattle data analysis

This chapter describes the analyses made using as in input the data of another city, Seattle.
Sections 1 and 2 to describe the input dataset and its attributes and the pre-processing of
the data. Instead sections from 4 to 7 describe the operators used in the process of analysis
and show graphically the accuracy of the regression algorithm, comparing it with another
regression technique. Finally the last section illustrates an analysis made at different
granularities of time, in particular day of the week and slot of time.

10.1 Dataset
The dataset used in this analysis is made up of data collected through car2go APIs from
car2go servers. It contains data concerning the positions of the vehicles monitored every
10 minutes for a period that goes from 07/08/2016 to 12/08/2016 [7]. The area related to
the observation is Seattle and its metropolitan area.

10.1.1 Size and attributes

The dataset contains more than 450,000 rows. The most relevant attributes of each record
are:

• vin: vehicle identification number

• datetime: timestamp of the observation

• longitude: longitude of the car’s position

• latitude latitude of the car’s position

The tuples of the dataset contain two more attributes that are not relevant for the scope
of the analysis: a progressive number associated to each tuple and an attribute whose scope
is not clear.

61



10 – Seattle data analysis

10.2 Pre-processing and vehicles per cell computation
Since the initial dataset contained the positions of the vehicles in terms of latitude and
longitude and I was interested in locating them in one of the cells in which the city was
divided I had to preprocess the dataset before applying the regression algorithm. The first
step was to generate a CSV file in which the positions of each vehicle are located in a
specific cell and then compute from this file the number of vehicles present in each cell in
a given day and timestamp. Of course if I had generated the final output file at his step it
would not be complete, since are generated no tuples if a cell has no available vehicles inside
it in a given couple (day,timestamp). So I had for each missing couple (day,timestamp) a
record that indicates the absence of vehicles in the cell in that specific period of time.

10.3 Spatial granularity

Figure 10.1: Seattle map with chosen cells
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The spatial division of the area object of this analysis is quite the same of the one
applied to the use case 1 city. Seattle was divided in cells, each one covering an area of
1km2. Since Seattle has an extensions of 217km2 and the use case 1 city instead covers
130km2, the number of cells in which the city is divided is larger. However, not all these
cells were considered during this work. I chose to analyze only 11 cells out of 200, selecting
the ones with the highest variance in terms of number of available vehicles in the cell during
the day. Such cells are all located in the central area of Seattle.

10.4 SVM regression
Since in the previous chapter I found out that the SVM-based regression algorithm behaves
best when trying to predict the number of cars available for rental in a cell in the future,
the W-SMOreg algorithm was the algorithm I chose to perform regression in this analysis
from now on. All the algorithm parameters are kept unchanged. As I did for the analysis
described in the previous chapters, the label (i.e, the value to predict) is the number of cars
that can be rented inside a cell in the future. However some parameters of the operators
were changed, since the sampling time at which the positions of the vehicles are monitored
is no more 15 minutes but 10 minutes.

10.4.1 Windowing operator
The Windowing operator acts as described before, but the window size is set to 4 instead of
3. This means that, for each attribute, I kept the four previous values that the attributes
assume in the four records before the current one. This also means that each record has a
vision in the past wide 40 minutes (for the data relative to the use case 1 city the window
was 45 minutes). Of course the attribute that stores the number of available vehicles makes
an exception, since the horizon parameter is set to predict the label attribute using not
the labels immediately before the one considered, but locating them in a period of time
in the past. In particular three different horizon values were used, in order to see how the
prediction is efficient changing the distance between the values used to make a prediction
and the moment of the prediction itself:

• horizon = 6 : setting the horizon to 6 means that to make a prediction of the number
of cars I use the number of cars available 60, 70, 80 and 90 minutes ago;

• horizon = 9 : setting the horizon to 9 means that to make a prediction of the number
of cars I use the number of cars available 90, 100, 110 and 120 minutes ago;

• horizon = 12 : setting the horizon to 12 means that to make a prediction of the
number of cars I use the number of cars available 120, 130, 140 and 150 minutes ago.

10.4.2 Sliding Window operator
Analyzing the use case 1 dataset the validation using a sliding window seemed to be the
best way to train and test the regression algorithm. I chose to set the training window
width parameter to 288, in order to train the regression algorithm with the data covering
a period of time equal to two days. The test set instead is set to 144, meaning that, using
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the data inside the training set, I made predictions for the data covering a period equal
to one day. The step size parameter is kept unchanged, so the training window and the
test window step forward of an amount of records equal to the test window size, until all
the dataset is covered. The horizon value parameter is the same set for the Windowing
operator, so it assumes three different values according to the one set for the Windowing
operator at that run.

10.5 Prediction error computation
The predictionEvaluation part of the framework, once the W-SMOreg algorithm generated
all the CSV files containing all the predictions for each cell and for all the horizon values,
computes the prediction errors using the following formula:

abserror = |rounded_predicted_value− actual_value|

The output file generated at this step has the following attributes:

• cell: the ID of the cell (from 0 to 199);

• horizon: the integer value of the horizon parameter that was set for both the Win-
dowing and Sliding Window operator ( possible values: 6, 9 and 12);

• day: the integer value of the day within the month;

• timestamp: the integer value of the timestamp, that assumes values from 1 to 143;

• abs_error : the error computed applying the formula described above.

So far no attributes concerning month, day of the week or timeslot are present. The
first one is absent because it is constant, since data is relative to five days of August 2016.
The last two attributes will be added later, in order to make a temporal analysis by day
of the week and slot of time.

10.6 Prediction error with different horizons
The graphs below show how the error made by the applied regression algorithm evolves
through time, where time has the same granularity of the sampling time (i.e, 10 minutes).
Each graph is relative to a cell and shows three different curves, each one representing a
different value of the horizon of the prediction. The error represented in these graphs is
averaged on the timestamp attribute.
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(a) Cell 54 (b) Cell 74

(c) Cell 87 (d) Cell 89

(e) Cell 90 (f) Cell 93

(g) Cell 109 (h) Cell 110

(i) Cell 128 (j) Cell 129

Figure 10.2: Prediction error distribution for each cell
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From the graphs above two different behaviours among the different areas of the city
can be deducted. Such behaviours can help dividing the considered cells in two groups:

• a group made up of cell 87,89 and 90. These cells have a similar distribution of the
error and peaks located approximatively at the same timestamps. At the beginning of
the day, from 12am to 8:30am, the error is lower. For cell 87 it is close to 0, meaning
probably that the number of available vehicles is constant during this period of time.
The same situation is present at the end of the day, from 8:30pm to 12am. The
error reaches his maximum values in two different slots of time: 8:30am-12:30pm and
5:30pm-8:30pm. However the values assumed are quite different: for cell 89 and cell
88 the values during the second slot are very high and go above 30 for a prediction
horizon equal to 12. This means that during this moment of the day we have a large
amount of vehicles left in the cells that can not be predicted for high values of the
prediction horizon. Anyway also for the smallest values of the prediction horizon the
error can be considered high in the same way;

• a group made up of all the other cells but the ones belonging to the group described
above. For all these cells the error is distributed more uniformly among the day and
has a smaller range of values than the other group. Anyway the slots of time where
the error is higher seem to be the same we have for the other group.

Performances are quite different for different values of the prediction horizon. As it was
expected as the horizon value increases performance gets worse:

• horizon equal to 12 : it is the value of the horizon for which the error is highest. The
gap between the curves representing the other horizon values becomes significant in
particular during the slots mentioned above: 8:30am-12:30pm and 5:30pm-8:30pm;

• horizon equal to 9 : the curve representing this value in most of the cases is between
the other two curves. However in many cases its error value have a gap between the
blue curve that is smaller than the gap between the yellow curve. In some cases it is
also the horizon value for which the prediction is most accurate.

• horizon equal to 6 : for this horizon value the regression algorithm behaves best in
most of the cases, but it is also the value for which the regression algorithm needs
more time to be trained and tested.

For all the analysis described after this one, the horizon value of the Windowing and
Sliding Window operators is set to 9. For the reasons described above it seems to be a
good compromise between computational time and efficiency of the prediction.

10.7 SVM and Baselines comparison
The next step is to see how the performance of the SVM-based algorithm differ from the
one of the Baseline algorithm, which is a prediction algorithm that takes as a prediction
the label at a specified time in the past, without considering all the other attributes. It can
be seen as a sort of naive prediction algorithm, that says that at a specific timestamp the
number of predicted available cars is equal to the number of cars available x timestamps
ago. During these analysis three values of x were considered:
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• 6: the prediction is equal to the number of cars available an hour ago;

• 9: the prediction is equal to the number of cars available an hour and a half ago;

• 12: the prediction is equal to the number of cars available 2 hours ago.

The graph below shows the distribution of the error through time of 4 different algo-
rithms:

• W-SMOreg

• baseline_6 : baseline algorithm with horizon parameter equal to 6;

• baseline_9 : baseline algorithm with horizon parameter equal to 9;

• baseline_12 : baseline algorithm with horizon parameter equal to 12.

Figure 10.3: Comparison between W-SMOreg and 3 different baselines

The behaviour of the four error curves can be considered approximatively the same,
with highest values located in the same range of timestamp values. For most of the time
the SVM error stays between baseline_6 and baseline_9 error, except for two timestamp
ranges where it assumes the highest error values among all the algorithms:

• 1-45, that correspond to 12am-7:30am hour slot;

• 130-143, that correspond to 9:30pm-12am hour slot.

The error range of the regression algorithm is approximatively from 2 to 8. The highest
values are reached as usual in the same slots mentioned in the previous section.
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10.8 Temporal analysis
The next step is to see how the W-SMOreg algorithm behaves for each day of the week and
for each slot of time. Since data cover only five days, there is no data relative to Sunday,
Monday, Friday and Saturday. That is because of two reasons:

• the regression algorithm uses Sunday and Monday data to train, since the training
window covers two days data;

• the initial input dataset goes from approximatively 2:30pm of a Sunday to 6pm of a
Friday.

For the same reasons the error distribution of each day through the various slots of time
is not complete, since some values are missing. The division of the day into slots and the
enumeration of the days of the week are the same as used in the analysis of the car2go
dataset concerning use case 1.

10.8.1 Analysis by day of the week
Each graph below puts in evidence how the error is distributed through the 8 slots of time
in which the day was divided, for each day of the week. A single graph is relative to a
single day. The error in this case is computed by keeping constant the week_day attribute,
grouping data by the timeslot attribute and computing the average absolute error.

(a) Tuesday (b) Wednesday

(c) Thursday

Figure 10.4: Error distribution through the slots for each day of the week
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The following considerations can be made by observing these graphs, for each day:

• Tuesday: the error assumes values that go from approximatively 3.3 to 5.7 . The
highest peak is reached for slot 7 (period of time between 5pm and 9pm). The lowest
peak is instead reached at the end of the day;

• Wednesday: the error assumes values that go from 2.25 to 7.1 . The highest peak
is reached for slot 4 (between 12pm and 3pm), but also the value assumed for slot 7
is quite high. The lowest peak is reached for slot 2 (between 3am and 6am), but also
for the previous and the following slot is quite low;

• Thursday: the error assumes values that go from 2.10 to 5.55 . The highest peak is
reached for slot 4 (between 12pm and 3pm). The lowest error values are located in
the first three slots, showing a behaviour similar to the Wednesday data.

The graph below instead shows the distribution of the error through the various slots,
considering all data.

Figure 10.5: Comparison between W-SMOreg and 3 different baselines

This graph confirms the observations made before for each day:

• prediction is more accurate for the periods of time between 12am and 6am and be-
tween 9pm and 12am;

• prediction is instead less accurate for slot 4 and 7.

• prediction between slot 5 and 6 (from 12pm to 6pm) has an average absolute error
equal to 4.
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10.8.2 Analysis by timeslot
The analysis by timeslot is definitely more exaustive than the one made by day of the
week. Basically the reason is that the amount of time covered by the dataset was not wide
enough to make an accurate analysis of how the error in each slot is distributed through
the days of the week. That is why most of graphs have only two or three points and I
obtained only data concerning Tuesday, Wednesday or Thursday.

(a) Slot 1 (b) Slot 2

(c) Slot 3 (d) Slot 4

(e) Slot 5 (f) Slot 6

(g) Slot 7 (h) Slot 8

Figure 10.6: Prediction error distribution for each timeslot, for each day
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Even if the analysis is not enough exaustive, some considerations can be made for each
slot:

• slot 1: it is one of the slots of time for which the error range is less wide. For the
analyzed two days, Wednesday and Thursday, the average error is equal to 2.82 and
2.55 respectively;

• slot2: it is the slot for which the error range is least wide. It is equal to 2.16 for
Wednesday and to 2.141 for Thursday;

• slot 3: the behaviour is similar to the previous two slots, except that the error is
slightly higher on Thursday than on Wednesday. Anyway the difference between the
two error values is very small;

• slot 4: together with slot 7 is the slot for which the difference between the two values
is higher. The difference is 1.55 and the error is higher for Wednesday, where the error
assumes its maximum value among all the curves represented in this set of graphs;

• slot 5: the behaviour is very similar to the one described for slot 3, except that the
range is slightly higher;

• slot 6: it is the only slot for which we have data relative to three days and not only
two. The error descreases starting from Tuesday to Thursday, with a gap between
the two values equal to 1.3 . The gap between Wednesday and Tuesday is instead
equal to 0.55 and the gap with Thursday is equal to 0.75;

• slot 7: the gap between the two values, relative to Tuesday and Wednesday is equal
to 1.2. The error in this case is higher on Wednesday than on Tuesday;

• slot 8: in this case the behaviour is very similar to the one observed for slot 1, except
that the two considered days are Tuesday and Wednesday and not Wednesday and
Thursday.
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Chapter 11

Portland data analysis

This chapter illustrates the analyses made using as in input the car sharing data of the
city of Portland. Sections 1 and 2 to describe the input dataset,its attributes and how
the city was divided in different areas. Instead sections from 3 to 6 describe a comparison
between the W-SMOreg algorithm and the RepTree algorithm, the process of optimization
of the parameters and the comparison between these regression algorithms and the Baseline
approach. Last sections describe the temporal analysis of the error distribution and some
experiments made considering different SVM based algorithms and different kind of training
sets.

11.1 Dataset
This dataset contains data collected in the same way as the previous one. It is relative
to the positions of 316 vehicles monitored almost every 15 minutes. The period of the
observation is very wide as it goes from June 2012 to December 2013 [8]. This data
has been presented in the PDX Tech Meetup [9] in 2015 and in the MapCamp Portland
Hackathon [10] in 2014.

11.1.1 Size and attributes of the original dataset
The dataset contains more than 10 million rows. The most relevant attributes of each
tuple are:

• licence: it is the plate of the vehicle. It was used as an ID for the vehicle;

• date: timestamp of the observation;

• latitude: latitude of the car’s position;

• longitude: longitude of the car’s position;

• fuel: fuel level of the car at the moment of observation.
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11.1.2 Base dataset
Starting from the original input dataset data was elaborated in order to obtain the number
of vehicles available in a cell at a given timestamp. Such elaboration led to the generation
of a dataset with the following attributes:

• cell: the integer value that uniquely identifies the considered cell;

• timestamp: the progressive integer number that identifies the timestamp;

• day: the integer value that identifies the day within the month in which the number
of cars is sampled;

• month: the string that identifies the month in which the number of cars is sampled;

• year : the integer value that identifies the year in which the number of cars is sampled;

• numcars: the number of cars that is sampled at the moment identified by the previous
four attributes. It is an integer value.

11.1.3 Enriched dataset
To perform the analysis by day of the week and slot of time, two attribute were added as
it was done for the datasets concerning the use case 1 city and Seattle, using the same
dimension of the slots and the same enumeration of the days of the week.

11.2 Spatial granularity
Also in this case the area of interest (Portland) was divided in cells, each one covering
an area of 1km2. In this case a different approach was adopted to choose the cells with
the most interisting informations to analyze. Once the dataset with the informations of
availability of vehicles was generated, I chose to order the cells according to the variance
of the numcars attribute. Among these cells I chose the ones with the highest variance. In
particular the chosen cells were:

• cell 20;

• cell 40;

• cell 41;

• cell 60;

• cell 61;

• cell 80;

• cell 100;
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11.2 – Spatial granularity

Figure 11.1: Portland map with chosen cells
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11.3 SVM and RepTree regression
In the analysis of this dataset two regression algorithms were used to perform regression,
and their results were compared. The first one, used for all the datasets considered in
this paper is the W-SMOreg algorithm; the second one is instead the RepTree algorithm,
a decision tree based algorithm that performs regression. For both the algorithms the
parameters the same used for the dataset relative to the use case 1. In particular the
horizon parameter used for the validation of the two algorithms is kept equal to 8, so the
prediction is set 2 hours far from the values used to build the model. However in this case
the test set width is kept constant and equal to 96, the amount of records covering a period
equal to one day. The same thing was done for the training set, that is kept equal to 1344,
the amount of records that cover a period of time equal to 2 weeks.

11.3.1 Windowing Operator
Also in this analysis the data is prepared by the Windowing Operator before running the
regression algorithm. The window size is kept equal to 3 as in the previous analysis and
the horizon is kept equal to 8.

Figure 11.2: Comparison between W-SMOreg and 3 different baselines

The graphs above show the evolution fo the error through, comparing W-SMOreg and
RepTree algorithms with three baselines, each one with a different prediction horizon:

• baseline_6: it is a baseline that makes its prediction taking the value of the numcars
attribute an hour and a half ago;

• baseline_8: it is a baseline that makes its prediction taking the value of the numcars
attribute 2 hours ago;
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11.3 – SVM and RepTree regression

Figure 11.3: Comparison between RepTree and 3 different baselines
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• baseline_10: it is a baseline that makes its prediction taking the value of the num-
cars attribute 2 hours and a half ago.

The algorithms seems to behave in two different ways, in particular:

• the W-SMOreg algorithm seems to follow the shape of the curves representing the
three different baselines, keeping itself between baseline_6 and baseline_8 ;

• the RepTree algorithm instead follows the shape of the other curves only in part
and the width of the values that its prediction error assumes is smaller than the one
assumed by the other regression algorithm. In particular the error curve follows the
shape of the other curves up to the first peak and then seems to keep itself quite
stable for the other timestamp values.
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11.4 Optimization of the SVM algorithm parameters
During this analysis a process of optimization of the parameter of each algorithm was run
before running each SVM based regression algorithm. The Grid Optimization (Evolution-
ary) operator was used to reach this scope, trying to optimize the following parameters
searching their optimal values in the following ranges:

• degree: range from 0 to 100;

• gamma: range from 0 to 50;

• C : range from 0 to 1024;

• nu: range from 0 to 0,5.

The parameters of this block were kept unchanged, in particular the max generations
attribute is kept equal to 50. This means that the optimization algorithm will stop after
50 evaluations. This parameters are set for the optimization algorithms applied on the
dataset, except the LibSVM with linear kernel. In this case I had to set a smaller range
for the C cost parameter and to reduce the numer of max generations to 25. I had to make
this change because the computational time of the process was too long, since sometimes
it exceeded the 12 hours of running time without giving any parameters result file.

Since using a test window with a width equal to 96 (i.e, 1 day) was computationally
prohibitive, the test window size was changed to 192 (i.e, 2 days). The input data used to
optimize the algorithm is relative to cell 40 and covers the data of July. I chose this cell
because its the cell with the highest variancy in temrs of number of vehicles present inside
it.

11.5 SVM and Baselines comparison for each consid-
ered cell

The graphs below shows the same comparison described in the previous section, but con-
sidering each cell separetely and considering only the W-SMOreg algorithm. These graphs
confirm the results obtained in the previous section. The W-SMOreg algorithm error is
for most of the timestamps between the baseline_6 and baseline_8 curves. Its peaks vary
significatively among the cells and its highest value is reached for cell 40, which is the cells
whose behaviour seems to be the most difficult to predict. However the curves represented
in the graphs have a similar shape. The lowest accuracy of the prediction models is reached
for almost the same timestamp ranges, which are 20-35 and 60-75.
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(a) Cell 20 (b) Cell 40

(c) Cell 41 (d) Cell 60

(e) Cell 80 (f) Cell 100

Figure 11.4: Prediction error distribution for each cell
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11.6 RepTree and Baselines comparison

(a) Cell 20 (b) Cell 40

(c) Cell 41 (d) Cell 60

(e) Cell 80 (f) Cell 100

Figure 11.5: Prediction error distribution for each cell

Things change significatively between the two regression algorithm I exploited to make
predicictions starting from the dataset. In general the RepTree algorithm has less accuracy
than the W-SMOreg algorithm, but it behaves better in the slots in which the W-SMOreg
algorithm and the three baselines behave worst in temrs of accuracy of the prediction. On
the other slots instead it is the algorithm that behaves worst among all the considered ones.
Anyway it is a very fast algorithm, so it can predict a value for the numcars attribute in
an amount of time that is far smaller than the one required to train and test the other
regression algorithm.
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11.7 Temporal analysis
The temporal analysis of the data is done adding two more attributes to the input dataset,
in order to assign to each timestamp a slot of time (3 hours wide) and to each day a
numerical attribute identifying the day inside the week. In this way it was possibile to see
in which parts of the day the regression algorithms have less accuracy and for which days
the prediction of the number of cars differs most from the actual number of cars value. So,
as it was done for the use case 1 dataset, the day is divided into 8 slots, each one 3 hours
wide. A numerical attribute to identify the day of the week is also added, using the same
enumeration of the previous analysis (1 corresponds to Sunday, 2 corresponds to Monday
and so on). Each one of the graphs compares the W-SMOreg algorithm with the RepTree
algorithm.
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11.7.1 Analysis by day of the week

(a) Sunday (b) Monday

(c) Tuesday (d) Wednesday

(e) Thursday (f) Friday

(g) Saturday

Figure 11.6: Prediction error distribution for each slot, through each day of the week

This considerations can be taken from the graphs above, for each day:

• Sunday: the W-SMOreg algorithm behaves best for all the slots in this case. The
lowest accuracy for both the algorithms is reached for the slots between 3 and 6, so
in a period of time that goes from 9am to 6pm;

• Monday: in this case the RepTree algorithm gives better performances than the
W-SMOreg algorithm for the slots values in which the error is highest for the SVM
based algorithm. For both the algorithms the highest peaks of error are located on
slot 3 and slot 6. Lowest peaks instead are located on slot 1 and 2;
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• Tuesday: the shapes of the curves are very similar to the one described for the
previous day of the week. The peaks of error are located on the same slot values and
the error ranges of values have approximatively the same width;

• Wednesday: the shape of the curve representing the W-SMOreg algorithm is quite
the same described before. A small change in the RepTree curve can be noticed.
Infact the error does not decrease starting from slot 3 as in the previous cases, but it
increases slightly, reaching its maximum for slot 8;

• Thursday: for this day the difference between the behaviours of the two algorithms is
more noticeable. For the timestamps located in the third slot, the Reptree algorithm
is far more accurate than the W-SMOreg algorithm. In the other critical slot, slot 6,
the behaviour of the two algorithms can be considered the same;

• Friday: the error evolution is very similar to the one described for the previous day.
Critical slots are alway slot 3 and 6, where the two algorithms show more inaccuracy;

• Saturday: the graph is very similar to the one representing the error evolution on
Sunday. There is only one main difference between the two graphs, that is the decrease
of the error values for the RepTree curve starting from slot 5 to slot 8.
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11.7.2 Analysis by slot

(a) Slot 1 (b) Slot 2

(c) Slot 3 (d) Slot 4

(e) Slot 5 (f) Slot 6

(g) Slot 7 (h) Slot 8

Figure 11.7: Prediction error distribution for each day of the week, through each slot
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This considerations can be taken from the graphs above, for each slot of time:

• slot 1: the shape of the two curves is very similar, except that the RepTree algorithms
behaves worse than the W-SMOreg algorithm for all the values representing the days
of the week. The highest errors are made on Sunday and Thursday. On Monday and
Tuesday we have instead the highest accuracy of the prediction.

• slot 2: also in this case the W-SMOreg algorithm gives better performances that the
decision tree based algorithm. Also in this graph there is a peak fo error eached on
Thursday;

• slot 3: this is one of the slots for which the two algorithms behave very differently.
It is the slot in which the accuracy of the RepTree algorithm is better than the one
given by the W-SMOreg algorithm for almost all the days. The SVM based algorithm
behaves better only on Sunday and Saturday, but during working days the decision
based algorithm gives far more accurate predictions. The error seems also to be higher
during working days and lower during weekends;

• slot 4: the RepTree curve in this case stays always above the W-SMOreg curve.
The two curves assume close values only for Thursday, where the decision tree based
algorithm has its lowest peak of error and the SVM based algorithm has its highest
peak of error. The RepTree algorithm so is in general more inaccurate than the
other algorithm, in particular on Saturday, where the gap between the two curves is
approximatively equal to 2;

• slot 5: the graph is quite similar to one drawn for slot 4, except that the gap between
the two curves is a little bit higher;

• slot 6: since this slot and slot 3 are the slots that are most critical in order to make
predictions, the evolution of the error through the days of the week is very similar.

• slot 7: nothing particular can be said about the performance of the two algorithms for
this slot of time, except that the curves have two opposite behaviours during Sunday
and Monday. The RepTree curve decreases between Sunday and Monday, the W-
SMOreg algorithm instead increases from Sunday to Thursday and starts decreasing
until Saturday;

• slot 8: the curves are comparable to the ones drawn for slot 1, except that the highest
peaks of error of the two algorithms are not located on Thursday but on Wednesday.
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Figure 11.8: Prediction error distribution per slot

The graph above summarizes the results described in the section relative to the analysis
by slot of time. As it was said in that section of this paper, the most critical slots for the two
algorithms are slot 3 and slot 6, that correspond respectively to the periods of time between
9am-12pm and 6pm-9pm. Predictions are instead more accurate at the beginning of the day
and at its end. The two applied algorithms have a gap of error approximatively equal to 1,
making the W-SMOreg the most realiable algorithm considering its average performance.
However the RepTree algorithm is more accurate or has comparable performance during
critical slots.

Figure 11.9: Prediction error distribution per day of the week
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The graph above summarizes instead the results obtained by the analysis by day of the
week. Considering this granularity the behaviours of the two algorithms are quite different:

• W-SMOreg: the most critical days are Thursday and Friday and during working
days the error increases progressively between Sunday and Thursday. The best per-
formance is given when predicting the number of vehicles per cell during weekends;

• RepTree: the shape of the curve in this case is quite different. Between Sunday
and Thursday the error curve decreases progressively and then starts increasing pro-
gressively up to Saturday. In this case the best accuracy is reached on Monday and
Tuesday and the worst performance is reached during weekends.
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11.8 SVMs with different kernels comparison
Since theW-SMOreg algorithm was the algorithm that gave the best performance so far and
it is SVM based, the next step is to compare other SVM algorithms with different kernels in
order to see which one performs best. The comparison described in this chapter is between
the W-SMOreg algorithm (polynomial kernel) and the LibSVM algorithm with rbf and
sigmoid kernel. Both the LibSVM algorithms parameters were first optimized through
the operator described before, choosing the same parameters and the same ranges. The
input data of the optimization process is the same used before. The graph below shows
the comparison between these algorithms, considering all the cells and making an average
on the timestamp attribute.

Figure 11.10: Comparison between SVMs with different kernels - all cells

The graph below instead shows the same comparison, considering only cell 40 (i.e, the
cell that was considered during the optimization process).

11.9 Temporal Analysis with different training sets
This section describes the analysis by slot and by day of the week done using different
input dataset, each one related to a specific day of the week or to a specific slot of time.
In the first case this means that only data related to a day of the week is used to train
and test the W-SMOreg algorithm. In other words to predict data for a specific day of the
week I analyze only data relative to that day of the week in the past. The analysis was
done training the W-SMOreg algorithm because from the analysis described in the previous
section it seems to be the algorithm that gives the best performance when predicting the
number of cars available in each cell. The same kind of input dataset was built for each
slot of time, as it was done for each day of the week.
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Figure 11.11: Comparison between SVMs with different kernels - cell 40
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11.9 – Temporal Analysis with different training sets

11.9.1 Analysis by day of the week
The graphs below show the error distribution through the various slots of time, giving
as an input to the regression algorithm at each run the data relative to a specific day of
the week. As in the previous cases the valildation was done using the Sliding Window
operator, setting a training window with a width equal to 192(blue curve), 768 (red curve)
and 960 (yellowe curve), and a test window equal to 96. This means that to predict the
data relative to a certain day of the week I used data relative to that day in the previous
two weeks, 8 weeks and 10 weeks.

(a) Sunday (b) Monday

(c) Tuesday (d) Wednesday

(e) Thursday (f) Friday

(g) Saturday

Figure 11.12: Prediction error distribution for each day of the week, through each slot

As it was expected for each slot value each curve assumes a lower value if the training
set dimension is higher, except some cases in which the red curve stays above the blue curve
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or very close to it. The highest error values are assumed for data relative to Thursday and
Friday, and the less accurate prediction are made for slot 3, except during weekends, where
the most critical slot is slot 8.

11.9.2 Analysis by slot of time
The graphs below show the error distribution through the various days of the week, giving
as an input to the regression algorithm at each run the data relative to a specific slot
of time. As in the previous analysis the validation was done using the Sliding Window
operator, setting a training window width equal to 84 (blue curve), 168(red curve) and
672 (yellow curve) and a test window equal to 12. This means that to predict data for a
certain slot I used data relative to that slot in the previous week, 2 weeks and 8 weeks.

Also in this case as the training set increases the error assumes lower values for each
day of the week. The highest error values are reached for slot 4 and 5, and the most critical
days in which making a prediction of the available vehicles are Wednesday and Thursday
in most of the considered slots of time.

An important consideration could be taken by analyzing all these graphs. In all the
test cases described in this section the algorithm has in general a worse performance when
training is done considering each day or each slot of time data than when training cos-
ndiering all days of the week and slots together. This is probably related to the dimension
of the training set and to the fact that increasing the dimension of the training set in an
analysis such this means probably going too far in the past and refer to data that is too
much different to the data to be predicted.
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(a) Slot 1 (b) Slot 2

(c) Slot 3 (d) Slot 4

(e) Slot 5 (f) Slot 6

(g) Slot 7 (h) Slot 8

Figure 11.13: Prediction error distribution for each slot, through each day of the week
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Chapter 12

Conclusions and possibile
improvements

Among all the considered algorithms, the W-SMOreg seems to behave best considering
all the datasets which I worked on. However also the RepTree algorithm has acceptable
performances, considering that its computational time is very low and its prediction results
are not so inaccurate. From a computational point of view the W-SMOreg algorithm takes
about 10 minutes to train and test, the RepTree algorithm instead takes no more than 5
seconds to generate a tree that gives a good performance, even if it is an algorithm based
on simpler concepts. So in general the SVM based algorithms gave a better performance in
terms of accuracy but a worse performance in terms of computational time. The analysis
described in this paper also puts in evidence that to have a good performance in predicting
a period of data that varies from 3 months to 4 months, using data covering a period of
2 weeks is enough to have a good accuracy in predicting the number of available cars in
each cell in which the 3 cities subject of this analysis were divided. Even if in terms of
numbers the average error is higher for the two USA cities, it has to be considered that
in this cities the car sharing service is a highly consolidated reality and the number of
cars made at the customer disposal is higher than in use case 1 city. This means that
the usage of the service is probably more frequent than here in Italy, so the prediction of
the availability of cars could be more difficult than here. Another difference between the 3
considered cities is the usage pattern, in particular in terms of the periods of time during
the day in which the service is exploited but also the days of the week in which the service
is most used. Some possibile improvements and extension of this work could be consider
other regression algorithms and study their performances, for example other kinds and
implementations fo neural networks. Another possible extension and improvement could
be dividing the cities in a grid with smaller granularity, considering cells smaller or bigger in
order to see how their dimension could affect the regression algorithms performance. From
the data point of view the input datasets could be enriched with more informations than
the timing informations I added to the inital datasets. For example it could be extended
adding informations about the services or commercial activities present in each area, or
informations about weather or other external factors that could push a service customer
to exploit the service to travel among the different city areas.
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