
i

POLITECNICO DI TORINO

ENGINEERING FACULTY

MASTER’S DEGREE COURSE

IN

MECHATRONIC ENGINEERING

MASTER’S DEGREE THESIS

Enhancement of Data Analysis and Visualization

Supervisor:
Professor Enrico Masala

Student:
Bisola Adeniyi

----Academic Year 2018/2019----

ii

APRECIATION

Special appreciation to my thesis supervisor, Professor Enrico Masala for his patience
towards me, lenient with my terms and always ready to impart more knowledge in me and to
guide me through any problem I was having with the thesis. Being able to manage a distance
thesis student is not the easiest of things to do, but Professor Enrico Masala saw me through

the thesis phases until completion and this thesis would not be possible without his help.

Appreciation to all the professors that helped in passing this knowledge and in instilling and
guiding me through my years here as a student.

iii

TABLE OF CONTENTS

 Page

APPRECIATION…………………………………………………………………………….ii

TABLE OF CONTENTS…………………………………………………………………….iii

CHAPTER I – Introduction…………………………………………………………………...1

CHAPTER II – Context and Motivation………………………………………………………2

CHAPTER III – Contribution.……………………………………………………………….4

User Interface……………………………...………………………………………….5

 Advantages…………………………………………………………………….6

Disadvantages………………………………………………………………….8

Dynamic feature value selection……………………………………………………...10

 Advantages…………………………………………………………………...11

 Disadvantages………………………………………………….…………….13

Richer graphs and plots……………………………………………………………….14

 Advantages…………………………………………………………………...15

 Disadvantages…………………………………………….………………….17

CHAPTER IV – Results……...………………………………………………………………19

 User Interface………………………………………………………………………...20

 Improved label readability……………………………………………………21

 Changeable shapes for plotted points…………………………………...……26

 Personalised background colour……………………………………………...30

 Personalised axis colour…………………………………………………...…34

 Axes manipulation……………………………………………………………38

 Settings stored upon changes……………………………………………...…42

 Dynamic feature value selection…………………………………………………….43

Filterable subset of data………………………………………………………44

Filtered data reflected in plugins……………………………………………...46

Richer graphs and plots……………………………………………………………….49

Combo boxes for shapes……………………………………………………...50

iv

Combo boxes specially for colour…………………………………………….54

Bar used to easily set bars and shape…………………………………………58

Filter data set with tick box…………………………………………………...62

CHAPTER V – Conclusions………………………...……………………………………….67

REFERENCES……………………………………………………………………………….68

1

CHAPTER I – Introduction

This thesis is to research and investigate into making some modifications to the GUI of

W.E.K.A to allow better customization for analysing data via csv files. Normally, these files

come in extremely large data sets that are difficult or too many to analyse. The aim of this

thesis is to enable a better analysis of the data sets in any particular uploaded CVS file and to

make them easier to be understood, analysed, visualized, queried and manipulated by users of

Waikato Environment for Knowledge Analysis Software (W.E.K.A). In the course of this

thesis, I made changes to enhance the differences between the datasets through colours, colour

bars, plots, data points, to distinguish between certain features using different shapes and tick

boxes and to improved visualization by adding a feature to minimize and maximize data sets

within a confined plot. The software package which I worked on (W.E.K.A), is an open source

software package and I was able to adapt and extend its functionalities to better suit the need

of dynamic interactive representations of the information included in databases with objective

quality metrics, in particular, extending its data visualization capabilities. WEKA is released

as open source software, to foster diffusion and usage in the international research community.

 A few bits of the knowledge of W.E.K.A and its origination is helpful to understand

how the software came about. According to University of Waikato, Weka is a collection of

machine learning algorithms for data mining tasks. It contains tools for data preparation,

classification, regression, clustering, association rules mining, and visualization. Found only

on the islands of New Zealand, the Weka is a flightless bird with an inquisitive nature. The

name is pronounced like this, and the bird sounds like this. Weka is open source software issued

under the GNU General Public License.

 An exciting and potentially far-reaching development in computer science is the

invention and application of methods of machine learning (ML). These enable a computer

program to automatically analyse a large body of data and decide what information is most

relevant. This crystallised information can then be used to automatically make predictions or

to help people make decisions faster and more accurately.

According the W.E.K.A, their objectives are to

• make ML techniques generally available;

• apply them to practical problems that matter to New Zealand industry;

• develop new machine learning algorithms and give them to the world;

https://www.cs.waikato.ac.nz/ml/weka/sounds/weka-say.au
https://www.cs.waikato.ac.nz/ml/weka/sounds/weka-long.au
http://www.gnu.org/licenses/gpl.html

2

• contribute to a theoretical framework for the field.

W.E.K.A software team has incorporated several standard ML techniques into a software

"workbench" called W.E.K.A, for Waikato Environment for Knowledge Analysis. With it, a

specialist in a field is able to use ML to derive useful knowledge from databases that are far

too large to be analysed by hand. Weka's users are ML researchers and industrial scientists,

but it is also widely used for teaching. Recently, our team has also worked on Massive Online

Analysis(MOA), an environment for mining data streams

http://moa.cs.waikato.ac.nz/

3

CHAPTER II – Context and Motivation

In the section I would be describing the data that we want to visualize; this data can

come different file format that are presently supported by the W.E.K.A version 3.9.2 (which

was the latest version as of the inception of this project). The file format type. arff, arff.gz,

names, .data, .csv, .json, .json.gz, .libsvm, .m, .dat, .bsi, xrff, .xrff.gz : For the purpose of this

thesis, I solely did all my testing with files that have the data format arff.gz as this was what I

had available. Basically, the data set files contain instances and certain combination of these

instances is what we actually want to visualize. An instance is a combination of attributes and

it is this attribute that we would work on. An attribute normally contains video quality values

with the like of (PSNR SSIM VIF etc...), and input parameters or "features" with the likes of

(seq, rate, etc...). These video values are normally numerical as they contain integers and

double representing video data, likewise the input parameters and features are normally

nominal as they just contain values.

What we aim to achieve is a thorough investigation or a close to perfect understanding

of how these "features" affect the video quality values. To do these there are there are panels

and inbuilt features already provided by the W.E.K.A software application to hep us out. These

can be done through the Panels provided by the application. The panels provided by default by

W.E.K.A are:

Preprocess Panel – initially process the data we intend using, filter out unwanted attributes and

see a thumbnail view of out the attributes look like and also see their properties.

Classify Panel – this panel lets the user pick an attribute from the data sets and see all the

relevant property associated with it in a detailed view, there by classifying it.

 Clustered Panel – this panel lets us choose an inbuilt clusterer present in the application for

clustered the selected data you want, but it must be a nominal value.

Associate Panel – this panel creates an associated output for each of the attribute values that

is selected.

Visualize Panel – this panel is responsible for seeing each of the data points in a plotted graph

via a GUI. It also allows for manipulation and in-depth investigation of all data points. The

base of the thesis and majority of the newly added features was be on this panel

4

Select Attributes Panel – this panel displays the properties of a selected attribute based on

certain choices.

Auto-WEKA Panel – this panel is used automated different set of data set based on the attribute

selected.

 It is good to know that more panels that aid with understand data can also be added to

the W.E.K.A application via plugins. This can be done by clicking on tools from the Weka

GUI Chooser Menu. Then packet manager and select and install the plugins you prefer. As said

earlier most of the work that would be discussed in this thesis would be on the Visualize Panel

as this is the panel that is mostly utilised by researchers and would go a great effort improving

the usability of the W.E.K.A application.

 The thesis covers the previous and existing features that existed prior to the thesis

inception. The progress that was made during the thesis development, the life cycle of the

development, the result attained from each of the newly added featured to W.E.K.A application

explained in detail and the comparisons, advantages and disadvantages. Majorly, all the

features added to the thesis increases the robustness of the software application. Making it

richer, easier to access, easier to use, easier to understand, easier to manipulate data, easier to

distinguish between data and easier to filter out data. All features added to this application

comes in very handy because they are used for research purposes for scientists, governments

and schools, they are used for learning purposes as well.

 In addition, in the sight of motivation, the main aim for this thesis was to make working

in a data visualization environment easier. It enables a better and quality analysis of multimedia

research data in particularly large data sets of several quality measures. Large data sets

comprise of amount of up to 100s of thousands of data that is to be manipulated. As a researcher

a lot of newly added features would come in handy and it would make life seamlessly easier.

A lot of inferences and conclusions would be arrived at faster due to the enhanced ability of

the user interface, the richer graph plots and the newly added dynamic features. There is always

a room for improvement, so the features added to the application can also be upgraded as it is

deemed fit. W.E.K.A been an open source software has made it easy for online community of

software engineers and researchers to add to its functionalities and improve its service

continuously.

 Finally, efforts to determine whether the features improved upon and added during this

thesis are solidly tested and won’t constitute a nuisance to the end users have been taken. So,

5

the software would be durable, reliable and reusable for very large data sets with very good

error handling measures taken into consideration. In the view of these, I am certain that the

improvement to the W.E.K.A application would help a lot of user spend lesser time analysing

data and spend more time been productive.

6

CHAPTER III – Contribution

This chapter would focus on the contributions I have made to the W.E.K.A

development environment. It is a work through from the inception of the practical work for

my thesis to the end. All the features I added, the disadvantages and limitations the

application had and the advantages and versatility my code changes gave to the application.

This dissertation contributes to the area of pure experimental computer science. Specifically,

it introduces problem solving and techniques to the fields of operating big data systems, data

visualization systems, and experimental systems research in general. The primary objective

of this dissertation is to test the hypothesis that:

1. enables a better and quality analysis of multimedia research data in particularly large

data sets,

2. enables manipulation of data in particularly large data sets of objective video quality

measures

It should be noted that while it is possible to formally prove the correctness or falsehood

of this hypothesis, it is not possible for this thesis to be the final upgrade for the software

application because it would always be in progress. Instead, this dissertation is limited to

providing, hopefully strong, evidence and feature additions to the W.E.K.A software

application. It does so by breaking down all the features enhancements into smaller features

that would be discussed later. The thesis would be written by the application platform

provided by the university of Waikato. The university is located in New Zealand, is

committed to delivering a world-class education and research portfolio, providing a full and

dynamic university experience, distinctive in character, and pursuing strong international

links to advance knowledge.

 Further down this chapter we would also pick the features that have been developed

one after the order, we would identify the disadvantage before the feature was added, the

obstruction is caused and the hindrances it had. Also, after the new features have been added

we would discuss numerous advantages as well to the application and how is feels better

compared to the way it was before. This contributions to the application would make the

software easier to use, faster to use and data would be analysed faster in an even better way.

7

Chapters 4 present the results of all the added feature. What has been added and what

has been upgraded and how it all blends in together to form a new interesting feature for the

application.

The three major contributions from this study are that:

1. improvement of user interface for the software application which was formally a

bottleneck for research with large data sets

2. dynamic feature content and graph plots were all improved upon in various areas and

3. the three major feature addition resulted in significant performance improvements.

The first result increases aesthetics and clarity: while it has long been known that the

presentation of data points is a primary bottleneck for large data sets with various attributes, it

was generally accepted that the existent feature was enough to do the job that is needed to be

done, this brought forth problems and limitations in data research bringing forth a lot of

errors and thus a big problem when using the wrongly analysed data. It is useless. This study

improves on the already existent user interface and makes it better and more usable to the end

users and researchers. The second result implies that more advanced features were added

under study, features like filtering data sets, removing selected data sets and making sure that

the filtered data sets are filtered in all places that use the datasets including plugins. This

comes in extremely handy for separating datasets for certain purposes and scattering them

sparsely for easier investigation. Also, to enrich the graph plot, certain features were added to

the panel below the plot to make it easier to interact with the data. For example, tick boxes

for filtering the data, bars represent the colours and shapes of data sets and also when these

bars are clicked on a window displays where we can easily modify their present value. The

third result is rounds up all the previous, because a combination of all the features written

above improves the performance and usability of the software application. This chapter

would show the codes changes and additions written in a way to evict and counter act existent

bugs so as to make it even easier for users to work with and implement the features that

would be discussed in chapter 4. With the contribution that has been made to this project,

more detailed oriented data visualization and investigation can be perform in a lesser amount

of time. but in analysing the reasons for its failure, a better understanding of the technique is

obtained. With this improved understanding, it is possible to enumerate the scenarios in

which the technique might be employed beneficially.

https://www2.cs.arizona.edu/projects/scout/Papers/mosberger/doc013.html#s2

8

Chapter 5 speaks about the conclusion and the summary of the dissertation work, an outline

of future research directions, and some concluding remarks. Below are the contributions

made for each of the section investigated:

User Interface

 As discussed above this is one of the important features added to this thesis, the addition

of all the features under user interface has proved to be:

Improved label readability

For improved label readability in the class panel tab under in the visualization panel this was

added to the ClassPanel.java class in the PaintNornimal() method for create the U.I that is

discussed in chapter 4.

jj.setLocation(x, y+10);

This was used to move the location of the attribute numbers slightly above by 10 pixels to the

y-axis , while x axis position is maintained.

gx.setColor(m_colorList.get(i % m_colorList.size()));
gx.fillRect(x, y + 25, 20, 10);

The function above gets the present colour of the attribute, sets its for the graphic, draws a

rectangle with the following dimension and fill it with the colour gotten from the attribute.

Changeable shape for plotted points

 Instead of just displaying data points with a cross sign when analysing data, we can

now display these points in different shapes as well, these shapes are outlined here, and the

code changes made as well.

public static final int MAX_SHAPES = 7;
public static final int ERROR_SHAPE = 1000;
public static final int MISSING_SHAPE = 2000;
public static final int X_SHAPE = 0;
public static final int PLUS_SHAPE = 1;
public static final int DIAMOND_SHAPE = 2;
public static final int TRIANGLEUP_SHAPE = 3;
public static final int TRIANGLEDOWN_SHAPE = 4;
public static final int DEFAULT_SHAPE_SIZE = 2;

https://www2.cs.arizona.edu/projects/scout/Papers/mosberger/doc031.html#s5

9

These shapes are defined as static final integers assigned a corresponding number

which is also known as its index so that they can be used as an enum. When this index is

called automatically the logic should draw the respective shape. There are other static

variables like Error, Missing and Default and Max and their names connote their meaning.

public void setCSindex(int c) {

 m_shIndex = c;
 m_setShape = true;
 m_setAttrShape = false;

 for (int i = 0; i < m_plots.size(); i++) {

 PlotData2D temp_plot = (m_plots.get(i));

 if(temp_plot.m_plotInstances.attribute(i).isNominal())
 m_plots.get(i).setShindex(m_shIndex);

 }

 determineBounds();
 m_axisChanged = true;
 this.repaint();

}

This is the method that calls in the shape change for each attribute. It is in the Plot2D.java

class, this method setCSindex, is called to set every index of the data point. Where the

parameter is an integer value represent the shape that has been selected. For the value to be set,

every data point in the instance of the plot that requires this value and is nominal will be set.

After this is done, the method determineBounds() is called to reconfigure the boundary of the

x and y axis, the Boolean status of axis changed is true and the plot is repainted again to reflect

the changes made.

switch (shape) {

 case X_SHAPE:

 drawX(gx, x, y, size);

 break;

 case PLUS_SHAPE:

 drawPlus(gx, x, y, size);

 break;

 case DIAMOND_SHAPE:

10

 drawDiamond(gx, x, y, size);

 break;

 case TRIANGLEUP_SHAPE:

 drawTriangleUp(gx, x, y, size);

 break;

 case TRIANGLEDOWN_SHAPE:

 drawTriangleDown(gx, x, y, size);

 break;

 case CIRCLE_SHAPE:

 drawCircle(gx, x, y, size);

 break;

 case SQUARE_SHAPE:

 drawSquare(gx, x, y, size);

 break;

 case ERROR_SHAPE: // draws the nominal error shape

 gx.drawRect((int) (x - size), (int) (y - size), (size * 2), (size * 2));

 break;

}

This code shows how the colours are set. Note that the mshIndex has the same value as the

shape. And when the shape is set, the switch method looks for which of the is the appropriate

enum number and performs the method that belongs to it. Below I would outline all the method

responsible for each of the shapes we would be using.

For X shape representation

private static void drawX(Graphics gx, double x, double y, int size) {

 gx.drawLine((int) (x - size), (int) (y - size), (int) (x + size),

 (int) (y + size));

 gx.drawLine((int) (x + size), (int) (y - size), (int) (x - size),

 (int) (y + size));

11

}

For Square shape representation
private static void drawSquare(Graphics gx, double x, double y, int size) {

gx.drawLine((int)(x-size),(int)(y+size),(int)(x+size),(int)(y+size));

gx.drawLine((int)(x-size),(int)(y+size),(int)(x-size),(int)(y-size));

gx.drawLine((int)(x-size),(int)(y-size),(int)(x+size),(int)(y-size));

gx.drawLine((int)(x+size),(int)(y-size),(int)(x+size),(int) (y+ size));

}

For Plus Shape representation
private static void drawPlus(Graphics gx, double x, double y, int size) {

 gx.drawLine((int)(x-size),(int)(y),(int)(x+size),(int)(y));

 gx.drawLine((int)(x),(int)(y-size),(int)(x),(int)(y+size));

}

For Diamond shape representation

private static void drawDiamond(Graphics gx, double x, double y, int size) {

 gx.drawLine((int) (x - size), (int) (y), (int) (x), (int) (y - size));

 gx.drawLine((int) (x), (int) (y - size), (int) (x + size), (int) (y));

 gx.drawLine((int) (x + size), (int) (y), (int) (x), (int) (y + size));

 gx.drawLine((int) (x), (int) (y + size), (int) (x - size), (int) (y));

 }

For Triangle up representation
private static void drawTriangleUp(Graphics gx, double x, double y, int size) {

 gx.drawLine((int) (x), (int) (y - size), (int) (x - size), (int) (y + size));

12

 gx.drawLine((int) (x-size),(int)(y+size), (int) (x + size), (int) (y + size));

 gx.drawLine((int) (x + size), (int) (y + size), (int) (x), (int) (y - size));

 }

For Triangle down representation

private static void drawTriangleDown(Graphics gx, double x, double y, int size) {

 gx.drawLine((int) (x), (int) (y + size), (int) (x - size), (int) (y - size));

 gx.drawLine((int)(x-size),(int)(y-size), (int) (x + size), (int) (y -size));

 gx.drawLine((int) (x + size), (int) (y - size), (int) (x), (int) (y + size));

 }

For Circle representation

private static void drawCircle(Graphics gx, double x, double y, int size) {

 gx.drawOval((int)x, (int)y, 2*size, 2*size);

}

For all this to be displayed in the user interface, it has to be set for every instance of the data

point in the system engine. Below is a snippet of what we are using to set the code for the shape

changes on data points.

if(m_setShape) {

 int newShapeIndex = 0;

 for(int kk=0; kk<temp_plot.m_plotInstances.instance(i).numValues(); kk++) {

 if(temp_plot.m_plotInstances.instance(i).value(m_shIndex) == kk) {

13

 newShape = kk%7;

 }

 }

 if (temp_plot.m_connectPoints[i] == true) {

 drawDataPoint(x, y, prevx, prevy, temp_plot.m_shapeSize[i], newShape, gx);

 } else {

 drawDataPoint(x, y, temp_plot.m_shapeSize[i], newShape, gx);

 }

}

For this code to be hit, m_setShape has to be true, that way the engine loops though all

instances of the data sets, picks out the shape and if the shape index is kk(which is a variation

of all the variables in the data plots instances), the newshapeIndex is set to have an index of

kk. This new shape index is now passed into the draw data point method which is the method

with the switch statements explained earlier. These create a rectangle shape for each of the

existing attributes and then fills the rectangle with the colour corresponding to the attribute.

There by making it appear like a label and easier to read and giving it more aesthetics as well.

The class were all these were added was in the ClassPanel.java class.

Background colour modification possible

For this feature to be added, series of code changes were added to the

VisualizePanel.java and the Plot.java classes.

VisualizePanel.java class

protected JButton m_BckClrBut = new JButton("Bgd Colour");

This statement creates a button for the visualization panel class, where we can click in order to

change the background colour. For this button to display in the window panel, it is also added

to the main Janel in the constructor of the visualizaPanel class. The name of the button would

be called “Bgd Colour”

m_BckClrBut.setToolTipText("Change Background Colour");

14

m_BckClrBut.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 openColourPanel(e);

 }

});

This is the action listener which performs an action once the Background colour button is

clicked. The action it performs in our case is the openColourPanel method.

protected void openColourPanel(ActionEvent e)

 {

 int m_iindex = 0;

 if ((e.getModifiers() & InputEvent.BUTTON1_MASK) == InputEvent.BUTTON1_MASK)

{

 Color tmp = JColorChooser.showDialog(VisualizePanel.this,

 "Select new Color", m_colorList.get(m_iindex));

 if (tmp != null) {

 m_colorList.set(m_iindex, tmp);

 VisualizePanel.this.repaint();

 rememberBgdCol = tmp;

 m_plot.setBackground(tmp);

 }

 }

 }

This method is now the method that opens a GUI colour chooser on the button click, when the

user selects a colour and applies it, the class would repain itself via the

VisualizePanel.this.repaint(); to apply the changes that have been selected. Then the

background colour is set in the m_plot class via the method setBackground(). To now change

the background colour, we only need to click on the Bgd Colour and a colour chooser would

open for the colour to be selected.

Personalize the colour of the axes

15

For this feature to be added, series of code changes were added to the

VisualizePanel.java, Plot2D.java and the Plot.java classes.

protected JButton m_AxisBut = new JButton("Axis Color");

This statement creates a button for the visualization panel class, where we can click in order to

change the axis colour. For this button to display in the window panel, it is also added to the

main JPanel in the constructor of the visualizaPanel class. The name of the button would be

called “Axis Colour”

m_AxisBut.setToolTipText("Change Axis Colour");

m_AxisBut.addActionListener(new ActionListener() {

 @Override

public void actionPerformed(ActionEvent e) {

 openAxisColourPanel(e);

 }

});

This is the action listener which performs an action once the Background colour button is

clicked. The action it performs in our case is the openColourPanel method.

 protected void openAxisColourPanel(ActionEvent e){

 int m_iindex = 0;

 if ((e.getModifiers() & InputEvent.BUTTON1_MASK) == InputEvent.BUTTON1_MASK) {

 Color tmp = JColorChooser.showDialog(VisualizePanel.this,

 "Select new Axis Color", m_colorList.get(m_iindex));

 if (tmp != null) {

 m_colorList.set(m_iindex, tmp);

 VisualizePanel.this.repaint();

 m_plot.m_plot2D.m_axisColour = tmp;

16

 }

 }

 }

This method is now the method that opens a GUI colour chooser on the button click, when

the user selects a colour and applies it, the class would repaint itself via the

VisualizePanel.this.repaint(); to apply the changes that have been selected. Then the

background colour is set in the m_plot2D that is in the Plot.java class via the m_axisColour

variable. To now change the axis colour, we only need to click on the Axis Colour and a colour

chooser would open for the colour to be selected.

Set minimum and maximum axis

Below is code changes and addition that were implemented for this feature to work.

The additions were also made in the VisualizePanel.java and Plot2D.java classes.

VisualizePanel.java

protected JButton m_setPlot = new JButton("Set Plot");

This statement creates a button for the visualization panel class, where we can click to

set the same plot given newly defined maximum and minimum x and y axes. For this button to

display in the window panel, it is also added to the main JPanel in the constructor of the

visualizaPanel class. The name of the button would be called “Set Plot”.

protected JButton m_resetPlot = new JButton("Reset Plot");

 This statement creates a button for the visualization panel class, where we can

click to reset the same plot to its original maximum and minimum x and y axes. For this button

to display in the window panel, it is also added to the main JPanel in the constructor of the

visualizaPanel class. The name of the button would be called “Reset Plot”.

m_setPlot.setToolTipText("Change Plot Configuration");

 This is just a tooltip setter that displays an information “Change Plot Configuration”

when the mouse hovers over “Set Plot”

17

m_setPlot.addActionListener(new ActionListener() {

@Override

public void actionPerformed(ActionEvent e) {

 JLabel Xmin = new JLabel("X min: ");

 xmin0 = m_xmin;

 JLabel Xmas = new JLabel("X max: ");

 xmax0 = m_xmas;

 JLabel Ymin = new JLabel("Y min: ");

 ymin0 = m_ymin;

 JLabel Ymas = new JLabel("Y max: ");

 ymax0 = m_ymas;

 JLabel TickSize = new JLabel("tick Size: ");

 newTickSize = m_tickSize;

 JButton doneBt = new JButton("Done");

 final JDialog jd =

 new JDialog((JFrame) VisualizePanel.this.getTopLevelAncestor(),

 "Set Plot", ModalityType.DOCUMENT_MODAL) {

 private static final long serialVersionUID = -269823533147146296L;

 @Override

 public void dispose() {

 m_plot.m_plot2D.m_XaxisStart = Integer.parseInt(xmin0.getText());

 m_plot.m_plot2D.m_XaxisEnd = Integer.parseInt(xmax0.getText());

 m_plot.m_plot2D.m_YaxisStart = Integer.parseInt(ymin0.getText());

 m_plot.m_plot2D.m_YaxisEnd = Integer.parseInt(ymax0.getText());

 super.dispose();

 }

 };

 doneBt.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent ae) {

 resetAxisPlotPanel(ae);

 setAxisPlotPanel(ae);

18

 jd.dispose();

 }

 });

 GridBagLayout gbl = new GridBagLayout();

 GridBagConstraints gbc = new GridBagConstraints();

 JPanel p1 = new JPanel(gbl);

 gbc.anchor = GridBagConstraints.WEST;

 gbc.fill = GridBagConstraints.HORIZONTAL;

 gbc.insets = new Insets(0, 2, 2, 2);

 gbc.gridwidth = GridBagConstraints.RELATIVE;

 p1.add(Xmin, gbc);

 gbc.weightx = 0;

 gbc.gridwidth = GridBagConstraints.REMAINDER;

 gbc.weightx = 1;

 p1.add(xmin0, gbc);

 gbc.insets = new Insets(0, 2, 2, 2);

 gbc.gridwidth = GridBagConstraints.RELATIVE;

 p1.add(Xmas, gbc);

 gbc.gridwidth = GridBagConstraints.REMAINDER;

 gbc.weightx = 1;

 p1.add(xmax0, gbc);

 gbc.insets = new Insets(8, 2, 2, 2);

 gbc.gridwidth = GridBagConstraints.RELATIVE;

 p1.add(Ymin, gbc);

 gbc.weightx = 1;

 gbc.gridwidth = GridBagConstraints.REMAINDER;

 gbc.weightx = 1;

 p1.add(ymin0, gbc);

 gbc.insets = new Insets(0, 2, 2, 2);

 gbc.gridwidth = GridBagConstraints.RELATIVE;

 p1.add(Ymas, gbc);

 gbc.gridwidth = GridBagConstraints.REMAINDER;

 gbc.weightx = 1;

 p1.add(ymax0, gbc);

 gbc.insets = new Insets(8, 2, 2, 2);

 gbc.gridwidth = GridBagConstraints.RELATIVE;

 p1.add(TickSize, gbc);

 gbc.gridwidth = GridBagConstraints.REMAINDER;

19

 gbc.weightx = 1;

 p1.add(newTickSize, gbc);

 gbc.insets = new Insets(8, 2, 2, 2);

 JPanel p3 = new JPanel(gbl);

 gbc.fill = GridBagConstraints.HORIZONTAL;

 gbc.gridwidth = GridBagConstraints.REMAINDER;

 gbc.weightx = 1;

 gbc.weighty = 0;

 p3.add(p1, gbc);

 gbc.insets = new Insets(8, 4, 8, 4);

 p3.add(doneBt, gbc);

 jd.getContentPane().setLayout(new BorderLayout());

 jd.getContentPane().add(p3, BorderLayout.NORTH);

 jd.pack();

 jd.setLocation(m_setPlot.getLocationOnScreen().x,

 m_setPlot.getLocationOnScreen().y - jd.getHeight());

 jd.setVisible(true);

 }

 });

This is the action listener for the set plot button. Once the button is click, the function above

is called. What this function typically does is to open a panel, for setting the new maximum

and minimum values of the x and y axes. It the “done” button that called the method that sets

the plot. This function is found just below.

protected void setAxisPlotPanel(ActionEvent e) {

 if ((e.getModifiers() & InputEvent.BUTTON1_MASK) == InputEvent.BUTTON1_MASK){

 int x,y,c,sh;

 x = m_plot.m_xIndex;
 y = m_plot.m_yIndex;
 c = m_plot.m_cIndex;
 sh = m_plot.m_shIndex;

 double x1,x2,y1,y2, tick, xvalue, yvalue;

 x1 = Integer.parseInt(xmin0.getText());
 x2 = Integer.parseInt(xmax0.getText());
 y1 = Integer.parseInt(ymin0.getText());
 y2 = Integer.parseInt(ymax0.getText());

20

 tick = Integer.parseInt(newTickSize.getText());

Instances insts = new
Instances(m_plot.m_plot2D.getMasterPlot().m_plotInstances, 500);

 for(int noa=0; noa<m_plot.m_plotInstances.numInstances(); noa++) {

 xvalue = m_plot.m_plot2D.getMasterPlot().m_plotInstances
 .instance(noa).value(m_plot.m_xIndex);

 yvalue = m_plot.m_plot2D.getMasterPlot().m_plotInstances
 .instance(noa).value(m_plot.m_yIndex);

 if ((xvalue <= x2)&&(xvalue >= x1)&&(yvalue <= y2)&&(yvalue >= y1)) {

insts.add(m_plot.m_plot2D.getMasterPlot().m_plotInstances
.instance(noa));

 }
 }

 if(insts.numInstances()==0) {

 resetAxisPlotPanel(e);
 }else {

 PlotData2D tempd = new PlotData2D(insts);

 m_plot.m_plot2D.removeAllPlots();

 try {
 addPlot(tempd);
 }catch(Exception ex) {

 ex.printStackTrace();
 System.err.println(ex.getMessage());

 }
 m_plot.m_plot2D.setPlotAxis((int)x1, (int)x2,
 (int)y1, (int)y2, (int)tick, true);

 try {
 VisualizePanel.this.setXIndex(x);
 VisualizePanel.this.setYIndex(y);
 VisualizePanel.this.setCIndex(c);
 VisualizePanel.this.setShIndex(sh);

 } catch(Exception ex) {}
 }
 }
 }

This is the actual engine responsible for setting the maximum and minimum x and y axes

values. This function receives an input of the newly desired x and y axes, runs a for loop of all

instances and picks only values that fall within the newly inputted values. This is just a way

for filtering out the unneeded values, after that the values that fulfilled the condition of the for

loop are then replotted on the graph plot.

21

m_resetPlot.setToolTipText("Reset Plot");
m_resetPlot.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {
 resetAxisPlotPanel(e);
 }
});

This is the action listener for the reset plot button. Once the reset button is click, the

function above is called. What this function typically does is to restore the graph plot

originally to the way it was before set plot button was clicked. This function is found just

below.

protected void resetAxisPlotPanel(ActionEvent e) {

 if ((e.getModifiers() & InputEvent.BUTTON1_MASK) == InputEvent.BUTTON1_MASK) {

 if(m_plot.m_plot2D.keyPressed) {
 int x = m_plot.m_xIndex;
 int y = m_plot.m_yIndex;
 int c = m_plot.m_cIndex;
 int sh = m_plot.m_shIndex;

 m_plot.m_plot2D.removeAllPlots();

 try {
 VisualizePanel.this.addPlot(unSetPlot);
 } catch (Exception ex) {
 System.err.println(ex);
 ex.printStackTrace();
 }
 m_plot.m_plot2D.setPlotAxis(0, 0, 0, 0, 0, false);

 try {
 VisualizePanel.this.setXIndex(x);
 VisualizePanel.this.setYIndex(y);
 VisualizePanel.this.setCIndex(c);
 VisualizePanel.this.setShIndex(sh);
 } catch (Exception er) {
 System.out.println("Error : " + er);
 }

 VisualizePanel.this.repaint();
 }
 }
 }

22

This is the actual engine responsible for the plot to have their original values. Note that this

must be reset for all action listeners as well so that they would be able to remember the original

state of the graph plot.

public void removeAllPlots() {
 m_masterPlot = null;
 m_plotInstances = null;
 m_plots = new ArrayList<PlotData2D>();
 m_xIndex = 0;
 m_yIndex = 0;
 m_cIndex = 0;
 }

This is useful when setting new plots because all existent plots have to be purged out for the

new plot to be plotted successfully.

private void plotReset(Instances inst, int cIndex, int sIndex) {
 .

.

.

.

.

.
 m_xIndex = xIndex; //- for the x axis
 m_yIndex = yIndex; //- for the y axis

 //this was my addition
 m_cIndex = cIndex;
 m_sIndex = sIndex;
 cancelShapes();
}

So, the issue was that when reset button is clicked and all values are reset, the x and y

axis are reset, but the colour and shape axes were previously not set. The lines in dots are

beyond the scope of this thesis.

Dynamic Feature Value Selection

Filtering data set

Below are the code changes that were added to the existing software application to make the

feature possible. The code additions were done mainly in the ClassPanel.java class.

NomCheckBx cc = new NomCheckBx(i);

if((IndexCollections.contains(String.valueOf(i)))&&(checkBxCollections !=null)) {

23

 boolean fff = true;

 if(checkBxCollections.get(i) == "false")

 fff = false;

 cc.setSelected(fff);

 }

 else {

 if(strAttr.contains(String.valueOf(i+1))) {

 cc.setEnabled(false);

 cc.setSelected(false);

 }else

 cc.setSelected(true);

 }

 int testVal = m_Instances.attributeStats(m_cIndex).nominalCounts[i];

 if (testVal == 0) {

 cc.setSelected(false);

 cc.setEnabled(false);

 }

 cc.setSize(m_labelMetrics.stringWidth(jj.getText()),

 m_labelMetrics.getAscent() + 4);

 this.add(cc);

 cc.setLocation(x, y-3);

This code snippet is found to the PaintNominal() method and is repeated 4 times for every

condition that is dictated in the for loop looping through every instance. It replicates the

checkbox for all the instances, checks if the checkbox is enabled (has been clicked). The

creation of this feature would not have been easy or even possible without the checkbox

component that was utilised.

private class NomCheckBx extends JCheckBox {

 /** for serialization */

private static final long serialVersionUID = -4686613106474820655L;

 private int m_index = 0;

 public NomCheckBx (int id) {

 super();

 m_index = id;

 defaultColor.add(m_colorList.get(m_index));

24

 JCheckBox pass = this;

 for(int k=0; k<m_colorList.size(); k++) {

 checkBxCollections.add(String.valueOf(true));

 }

 pass.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 if(!pass.isSelected()) {

 m_valCheckBxSel = false;

 pass.setSelected(m_valCheckBxSel);

 m_colorList.set(m_index, VisualizePanel.rememberBgdCol);

 sltdIndex = String.valueOf(m_index+1);

 sltdAttr = String.valueOf(m_cIndex+1);

 dnomIndexArr.put(m_index, sltdIndex);

 }else {

 m_valCheckBxSel = true;

 pass.setSelected(m_valCheckBxSel);

 dnomIndexArr.remove(m_index);

 m_colorList.set(m_index, defaultColor.get(m_index));

 }

 checkBxCollections.set(m_index, String.valueOf(m_valCheckBxSel));

 IndexCollections.add(String.valueOf(m_index));

 List<String> result2 = dnomIndexArr.values().stream()

 .collect(Collectors.toList());

 RemoveWithValues rem = new RemoveWithValues();

25

 int intarray[] = new int[result2.size()];

 int ii=0;

 for(String str:result2) {

 intarray[ii]=Integer.parseInt(str)-1;

 ii++;

 }

 rem.setNominalIndicesArr(intarray);

 rem.setAttributeIndex(sltdAttr);

 try {

 gblRem = rem;

 } catch (Exception ex) {}

 m_oldWidth = -9000;

 ClassPanel.this.repaint();

 if (m_Repainters.size() > 0) {

 for (int i = 0; i < m_Repainters.size(); i++) {

 (m_Repainters.get(i)).repaint();

 }

 }

 });

 This nomcheck box class extends the Jcheckbox class, so that it can contain all its features.

The constructor of this call is where all the action happens, action listeners that detects when

the checkboxes are clicked or not are present in the constructor. When they are click, the data

points values are filtered out with the background colour of the graph, to hide the data plot for

that attribute. And when they are selected the attributes are given back their original colour and

thereby are now visible on in the graph. Notice also, that upon election and deselection, there

is a remove filtered that is called and used, this would be explained in detail in the next feature.

26

Filtering data for plugins

Below are the code changes that was added to the existing software application to make the

feature possible. The code additions were done in the ClassPanel.java, MatrixPanel.java and

the PreprocessPanel.java classes.

ClassPanel.java

RemoveWithValues rem = new RemoveWithValues();

 int intarray[] = new int[result2.size()];

 int ii=0;

 for(String str:result2) {

 intarray[ii]=Integer.parseInt(str)-1;

 ii++;

 }

 rem.setNominalIndicesArr(intarray);

 rem.setAttributeIndex(sltdAttr);

This RemovewithValue class is an inbuilt filter property from the WEKA software

application. And it came in handy in the implementation of this feature across platform. It

enabled effective filtering to be done by value once the checkbox is unselected.

MatrixPanel.java

jf.addWindowListener(new java.awt.event.WindowAdapter() {

 //@Override

 public void windowClosing(java.awt.event.WindowEvent e) {

 jf.dispose();

 gblRem = ClassPanel.gblRem;

 PreprocessPanel.gblRem = gblRem;

 PreprocessPanel.m_TFilter.doClick();

 System.exit(0);

 }

});

27

This is the action listener that closes the visualization panel, it makes it possible for the

Class panel filtered out attributes to be stored so that they can then be applied to the

Preprocess panel, it then triggers an automatic click function doClick().

PreprocessPanel.java

public static JButton m_TFilter = new JButton("Filter Check boxes");

This initialises an invisible button called “Filter Check boxes” for applying the filters

on checkboxes been selected. It is invisible on purpose because this button does not need

to be seen in the GUI but only used in the backend when required.

 m_TFilter.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 try {

 applyFilter(gblRem);

 m_TFilter.setEnabled(false);

 } catch (Exception ex) {

 if (m_Log instanceof TaskLogger) {

 ((TaskLogger) m_Log).taskFinished();

 }

 // Pop up an error optionpane

 JOptionPane.showMessageDialog(PreprocessPanel.this,

 "Problem filtering instances:\n" + ex.getMessage(),

 "Remove Attributes", JOptionPane.ERROR_MESSAGE);

 m_Log.logMessage("Problem removing attributes: " + ex.getMessage());

 m_Log.statusMessage("Problem removing attributes");

 ex.printStackTrace();

 }

 }

});

 This is the function that basically implements the filter and applies it to all instances of
the software application. This was it is available across panels and plugins as well.

28

CHAPTER 4 – Results

User Interface

1. Improved Label readability

This added feature is just about being able to better read the labels i.e. having labels

coloured black then the colour associated to it on the side, not colouring just the name of

the label. Previously, colours for data plots can be changed by clicking on the label but now

the colour can be easily changed still by click on the label but there is an additional panel

that easily depicts the colour selected. This make the software more user friendly and easy

to understand which attributes have been set to a particular colour. It also allows for easy

change in modification of the attributes colour if the case need be.

 4a.1.1 Visualization Panel with data plot

29

It is good to note that this feature is solely meant for nominal values and not string nor numeric

values. For the purpose of understanding in the X, Y, Colour and Shape section of the image

that was shown above, Nominal values are represented with “(Nom)”, Numerical values are

represented with “(Num)”, while string values are represented with “(Str)” This feature, can be

found in the class panel, as shown above. Notice the section highlighted in bold black at the

bottom of the image, this is the class panel. And this is where the colours for data points values

are represented. Also, you would observe that for each of the number of attributes present in

the plot page (13 in this instances), there are 13 labelled coloured values in the class panel.

 Previously, data points colours were represented in class panels, but this was rather

inconvenient at time. Most especially when the colour that is selected, is close to the colour of

the class panel background. Also, since the labels were represented on numbers, it was very

difficult to see since numbers have a small size. It was also difficult at times when the user

what to change the colour because of the number size and because by looking at the numbers

it is difficult to tell that they are clickable. This makes it very unfriendly from the user point of

view. Below is a clearer and bigger picture of what the previous class colour panel looked like.

4a.1.2 Class Panel with coloured numbers

While this diagram portrays the previous problems highlighted above, it also gave the

software application at empty fill and made the user interface looked scanty. With the

introduction of this new features all the problems highlighted so far have been solved. There

are now separate labels that fit just below the numbers (which are not black in colour by

default), to represent the colour of the data points. Also, these labels are rectangle, they are

easily noticeable and can be use for changing easily the colours of the attributes. The good part

is that it is user intuitive i.e. it is easy for the user to figure out that I could change my attribute

colours from here. Another interesting way of manipulation that I would say.

To make this possible some lines of code was added to the existing code which has been

discussed in chapter 3. The class were all these were added was in the ClassPanel.java class.

30

This class is responsible for all the logic and user interface responsible for the Class colour

section of the image Below is an image showing the newly added feature.

4a.1.3 Class Panel with black numbers and coloured label.

 Looking at the diagram above we can see now the difference. The label colour
representation perfectly fits under the number fonts. And it is easy to distinguish the name of
the attributes from the colour of the attributes. Also, by clicking on any of the colour shapes
(labels), a pop up would open with a colour chooser where we would be able to change the
colour of the attributes to whatsoever we desire.

4a.1.4 Colour Chooser Panel.

2. Changeable shapes for plotted points

This is just the ability to be able to change the shape of plotted points, previously the

shapes of all plotted points were just generic. They were only of the shape “x”. This limited

the usability of the application because users could not manipulate data with respect of

reference to shapes but only the colours. One interesting thing about this feature is that, it has

made it possible for the data points to be changed to different shapes. But this version of the

31

improvement, we made it possible for the shapes to be up to seven. “cross - X”, “plus - +”,

“square ”, “circle”, “Diamond”, “upward triangle” and “downward triangle”. These shapes are

defined as static final integers assigned a corresponding number which is also known as its

index so that they can be used as an enum. When this index is called automatically the logic

should draw the respective shape. There are other static variables like Error, Missing and

Default and Max and their names connote their meaning. For all these to be displayed in the

user interface, it has to be set for every instance of the data point in the system engine. Below

is a snippet of what we are using to set the code for the shape changes on data points.

 In the next is an image showing a plot with different set instance, you should notice that

this plot has different shapes belonging to a particulate attribute and that these attributes can

only have their shape changed when they are nominal. And depending on the nominal attributes

the dispersion of shape change differs. Just like for colour changes as well.

4a.2.1 Visualization Panel with data plot showing different shape colour.

 You would observe that for this particular selected attribute, the shapes representations

are repeated after a particular number. This is because of the modulus sign (%) used in the code

32

above. Since we only have 7 different shapes, we reuse them again if the case need be. Also,

the instance in this example where the attribute X axis is Seq(Nom), Y axis is vmaf0.6.0 (Num),

Colour is seq(Nom) and shape selected is seq(Nom) every attribute has a different shape. But

this is only because the seq(Nom) is selected. But this is only because the seq(Nom) is selected.

If another attribute was to be selected, it would have a different arrangement for the shape

representation. Now let’s take a look at the next diagram where all other selected values are

still the same except the shape. X axis is Seq(Nom), Y axis is vmaf0.6.0 (Num), Colour is

seq(Nom) and shape selected is gop(Nom), we would notice that the shapes are dispersed in a

way to explain the data manipulation. And an attribute could contain more that one shape. Take

attribute 8 for example, it contains the plus shape representation, the diamond shape

representation as well as the x shape representation.

4a.2.2 Visualization Panel with data plot showing different shape colour.

3. Background Colour modification feature has been added to the project.

 Previously, the background colour of the Visualization plot was unchangeable and was

always white. The could cause inconvenience when investigation data as some of the data

33

attributes can have colours that are very closely related to the background colour in terms of

property making it tricky and very difficult to see or tell the difference. For example, if the data

set is identified by a light or whitish colour, it would be difficult to understand the data point

for the data as the background is of simple white colour. For numeric data values this it now a

problem as data sets utilities only a range between 2 set of colours as in the image below. But

data visualization becomes a problem when we are viewing nominal data sets. The diagram

below is a depiction od the fact that this application needed improvement. While it might not

have been easily noticeable from the beginning, the fact that the plot background colour was

only white and could not be changed before proposed many hinderances.

4a.3.1 Visualization Panel with data plot on white background.

This looks good and clear now but can easily get vague and confusing when the colour

properties of the attribute have been changed and are now very similar to the background

colour, I would change the colour property of some of the data sets below and you would notice

how unclear some of them are. Note that, I manually changed the data property colours for this

illustration, but the opaqueness normally happens automatically sometimes when a nominal

attribute is selected. Let’s say for example, a user selects seq(Nom), and he/she decided to

34

change to modify the background colour to a colour very vague and extremely similar to white.

This could cause unclarity, but it is a good thing that he can always change it back to a more

suitable colour. But what if this colour change was automatically cause by the colour filter

within the code and there is no way to change the colour and neither the background colour as

we already know. This would not be a pleasant issue for a user to find a work around to. In the

diagram below is portrayed a nearly perfect example the one described earlier.

4a.3.2 Visualization Panel with data plot (light colours) on white background.

You would notice the data plot colour for the attributes, most of them are very unclear

with attribute 12 been the most unclear. Note that the colours of this data points can be changed

because seq(nom) was selected as colour and it is a nominal value. This diagram is a nightmare

for a user trying to distinguish between data sets, but with the ability to change the background

colour, data sets would always appear clear.

For this feature to be added, series of code changes were added to the

VisualizePanel.java and the Plot.java classes which have been discussed in chapter 3.

35

4a.3.3 Visualization Panel with data plot (light colours) on modified background.

 Another advantage of this ability to change the background colour as well is that, the data

sets can easily be views anywhere. Previously, if it was very sunny outside, it could be difficult

to understand your datasets plots but with the ability to change the background colour, this

issued is automatically solved.

36

4a.3.4 Visualization Panel after click on Background button.

4 Personalize the colour of the Axes

Looking at the feature added in the previous point, another interesting feature to the

software application would now be a little step forward. The ability for use to be able to change

the colours for our x and y axes as well. Previously, the axis colour of the Visualization plot

was unchangeable and was always black. The could cause inconvenience when investigation

data as some of the data attributes can have colours that are very closely related to the

background colour in terms of property making it tricky and very difficult to see or tell the

difference. For example, if the background of the plot is identified by a dark or blackish colour,

it would be difficult to understand the data point for the data compared to the background of a

lighter or white colour. For numeric data values this it now a problem as data sets utilities only

a range between 2 set of colours as in the image below. But data visualization becomes a

problem when we are viewing nominal data sets. The previous diagram below is a depiction of

the fact that this application still needed improvement. While it might not have been easily

noticeable from the beginning, the fact that the plot axis was only black and could not be

changed before proposed many hinderances. For this feature to be added, series of code

37

changes were added to the VisualizePanel.java, Plot2D.java and the Plot.java classes discussed

in chapter 3.

4a.4.1 Visualization Panel after click on Background button.

As can the observed the present colour of the axis above is red. This means that axis colour can

now be easily changed in the advent of any unclear data changes or for easy readability of data.

5 Set minimum and maximum for the axes

 Previously, with the software application only displays graph plots of data set loaded

into it. But suppose n the visualize panel a user wants to inspect the data sets between a

particular area in the y axis and the x axis, plotting this to a specific point would be impossible

because until now the feature did not exist. Now, we can pick out particular areas of the plot

we want to see by just specifying the maximum and minimum values for the x and y axes and

this automatically zooms the graph plots to the measure given. This comes in very handy to

users of the software for research, data manipulation and thorough understanding of data. The

diagram below shows an image of a graph plot with this particular configuration.

38

X – psnr000 (Num)

Y – pvqm000 (Num)

4a.5.1 Visualization Panel with an instance graph plot.

 Looking at the image, we can see a dispersion of data, but the information is not so

helpful, if we can zoom into it to understand the data more. It’s a good thing we have a tool for

doing that for us, which I would talk about later, but this tool is limited. With the addition of

this feature we can specify exactly to which minimum and maximum values we want the graph

plots to be displayed.

Let’s assume we want to see only graph plots for X axis between 34 – 40 metrics, Y axis

between 10 – 40 metrics, with a tick size of 5.

The tick size is just to divide the plot view into grids for an even better visualization.

39

4a.5.2 Visualization Panel with an instance graph plot with set plot button clicked.

 After the done button is clicked, the software engine, runs the application in the background
and applies all the changes that have been set. And a zoomed-out plot is presented. An
illustration of this is seen in the image below. Fig 4.5.3. Notice how sparsely dispersed the data
points now are and how easier it is to understand the graph. We can also see from the graph
that the minimum and maximum values for x and y axes circled in red colour are displayed just
as was set in the set plot variables and the grid boxes in the plot are 5 in number. This plot ca
further be set to even lesser values which mean that more precise access to data points can be
gotten if need be.

40

4a.5.3 Visualization Panel with an instance graph plot zoomed out.

 But for this illustration, I would explain how we can return to the original plot. To return to

the original plot, we just must click on the reset plot button. Yes, its as easy as that clicking on

this button takes every of the plot settings back to the way it was before the plots were set. This

feature for sure makes this software a very handy tool in the hands of potential researchers and

users.

Below is code changes and addition that were implemented for this feature to work.

The additions were also made in the VisualizePanel.java and Plot2D.java classes discussed in

Chapter 3.

4a.5.4 Visualization Button Panel.

41

From the image above we can ser the set plot button highlighted in blue, the reset button

highlighted in black and the tooltip text for set plot button highlighted in green.

6. REMEMBER the settings when changing visualization

This feature was more like fixing a bug than added a whole new functionality. The

added value to the user is like that of the feature described above. The main difference is that

while the user can enter the exact points for x and y axes they want to inspect in the previous

feature, for this feature they just must select the points they one to see zoom out directly on the

graph. While this is very user friendly and handy, its down fall is that the user could not be able

to enter the enter number for the maximum and minimum values of the x and y axes. This issue

as said, has now been fixed and added already as a feature. But there is one problem though,

when a portion of the graph is selected to be zoomed out, upon reset the graph returns to its

original plot but does not remember all its set attributes.

4a.6.1 Visualization Button Panel with a graph plot instance.

42

 This could be very worrying, most especially if the plot attributes and properties have

taken time and expertise to set. Setting them again could be time consuming and could lead to

mistakes. Fig 4.6.1 shows an image with a graph plot instance with the following properties:

X: seq (Nom), Y: ssim000 (Num), Colour: vmaf0.6 (Num), Shape: slicearg (Nom).

4a.6.2 Visualization Button Panel with a section highlighted.

Let try to zoom out a section of the graph so be able to read the data from this graph

plot properly, to be able to do that, we must click on the select instance button that is shown

under the red arrow in Fig 4.6.1. Then select Rectangle. This would enable the user to draw a

rectangular shape on the section they plan to zoom out. In our scenario, a sample of this is

given in Fig 4.6.2. Now in other for this section selection to be zoomed out and the graph data

points plotted out again, the submit button must be Clicked. Clicking it would give the image

below in Fig 4.6.3, you would see that Fig.3 is an exact replica of the highlighted section of

Fig 4.6.2 only that is its maximised. Note also the buttons beside the submit button, which are

clear, open and save buttons.

Clear – this would clear the highlighted section symbol and cancel the operation

43

Save – This would save the data values for the highlighted section in .arff format.

Open – This would file that have been saved with already highlighted section.

4a.6.3 Visualization Button Panel zoomed out.

 As said earlier, the problem with this cool feature was that the reset button was buggy.

When the reset button is clicked, it resets the plot to its original form, but the colour attributes

and shape attributes are no longer remembered. This has now been fixed and when the reset

button is clicked all attributes and properties are reset correctly, including the colours and

shapes.

The code changes for this one was a rather simple one, which was implemented in the

Plot.java class found in the visualizePanel.java class as discussed in chapter 3.

44

4a.6.4 Visualization Button Panel.

 One more important and interesting thing to know is that, when selecting an instance

that would be used for zooming out the graph, rectangle is not the only option available. There

are also other shapes that the user can choose from to enable him zoom out. The shapes

available are Rectangle, Polygon and Polyline, like seen in the image below Fig 4.6.5 This

option also make it easier for the user to choose the one they prefer the most and makes it easy

to point pick certain areas for data manipulation.

45

4a.6.5 Visualization Button Panel with all instances

Dynamic feature value selection

 This section is all about improving feature selections. When I say dynamic features, I

mean the features that adds to the manipulative advantage of the software. These features make

working around the software application easier and more fun. The best part of it is that specific

part of the application can be selected for you at runtime. The strong point of this feature is the

filtering of data points, not only in the visualize panel for users to see and use but also across

all other panels and plugins. Below I would give a more detailed illustrations of the features

and enhancement added to the software application, along with the code changes and addition

made during development.

1. Filterable subset of data

This feature added the ability to be able to quickly filter out and "filter in" a subset of the

data. This is a very useful feature as users of the software would love from time to time to filter

in and out of the data they have. If a user for example, decides that certain data points are

46

useless from the data points on the graph plot and decides that he wants to remove them

temporarily or entirely from the plotted graph, this was impossible to be done because prior till

now, a remedy did not exist. But thanks, to this feature, users can add and remove data points

and/or attributes from the graph plots, just as easy and they can also replace it back to the way

it was as far as they have not closed the window. The user now can easily filter the data sets

depending as they want. It is useful to know that there already exists an in-built filtering option

that is used to for filtering values in the PreprocessPanel where the file is first loaded, but apart

from the fact that this filtering handles different data values, it is also limited in its use and can

not be applied to the visualization panel.

4b.1.1 VisualizationPanel with all data sets

Fig4b.1.1 shows the application panel with a ploted graph of the following selections, X –

seq(Nom), Y – vmaf0.6.0(Num), Colour – seq(Nom), Shape – slicearg(Nom). Notice how all

the data points on the graph plot are displayed. The selection has 13 attributes, numbered 1 to

13. Also, the attribute 9 is missing as it does not exist. As we have discussed earlier, colour

selection, shape representation are very good ways to manipulate and investigate the data

47

points, but they do not help us if we are only concerned about some data points. It can then

further be argued that the zoom in/out features, or the maximization/minimization axis feature

can also be used to fulfil this request, but while this is true, we have to bear in mind that if the

user is trying to exclude some attributes this is not an effective way either. Filtering would

make it easier to select off the exact attribute that the user does not want.

4b.1.2 VisualizationPanel with attributes 2 and 3 removed from data set attributes

For example, if we want to remove an attribute from a data plots, all we have to do is to

unselect the checkbox to remove the attribute and select it to put it back, as far as the attribute

is a nominal attribute. When the attribute is unselected, the colour of the attribute label

automatically becomes white. In the image above, we want to remove data sets from the graph

plot of attribute 2 and 3. This is possible by clicking on the checkbox corresponding to the

number and colour of the concerned attribute to unselect. the image in fig4b.1.2, notice how

easy this is done just with a click and it is immediately reflected on the graph and the plot is

automatically replotted. Another interesting thing is that it is also possible to selected random

attribute number from the set of data points given. We can choose to filter off the first and ninth

48

attributes, just for illustration. In the image below (Fig4b1.3), we would notice that attribute

number 2 and 5 are filtered out, while attribute number 3 is reselected again. This like the

previous example automatically resets the plot and resets the attributes the way they would

now be in their desired positions.

4b.1.3 VisualizationPanel with attributes 2 and 5 removed from, 3 added to data set attributes

 The selection and deselection basically work the same way and no matter the number

of attributes be select to be filtered off, their attribute would automatically be filtered out. Also,

when we reselect them, they would appear again on the graph plot. This makes certain data

analysis very easy to manage and to understand. It also makes the users life easy in terms of

implementation, if he/she had a lot of attributes, say 100, all they have to do is to select the

attributes they want, and it would automatically be filtered in/out of the graph plot.

The interesting thing about this filtered data sets is that they are applicable across all

the instances. When the desired selection has been made as a nominal value, even if the colour

combo box is switched to that of a numeric selection, it would still reflect that some data has

49

been filtered out. Let’s consider Fig 4b1.4, this image is based on the selection from Fig 4b1.2,

even though the filtering was done when colour was selected as a nominal value, the data sets

still are represented correctly, when another colour attribute is selected. This is the same as

well for the shape representation via the combo box. As far as the selection for X and Y in their

combo boxes are the same.

4b.1.4 VisualizationPanel displaying to numeric data set with filtered attributes

 Now when all the appropriate selection is made, and the user decides to close their

visualization panel window, something interesting happens. The state of the filtered attribute

values is remembered upon closure. This way the user can pick up from exactly where they left

off, and they do not need to reset and prepare their visualization panel again for the data they

are working on. This comes in also, very handy because it relieves the stress of trying to

remember where you left off and just automatically populated only the filtered in values. When

the Visualization panel window is opened again, the checkboxes for the already filtered out

attributes are become greyed out and their data plots values are also filtered out just as expected.

Let’s look at the image below. Fig4b.1.5, you would be able to observe that the attribute values

50

for attributes 2 and 3 are greyed out, just like the attribute number 9. This is because there are

no data plots for this attribute numbers as we can see in the graph. Also, reopened a

visualization panel window after it has been filtered automatically produces this effect. For

easy remembrance of data. It is important to note that the user should now exist the current

window if they do not choose to go on with the present filtered values they have, this is because

they would lose all the filtered-out data and would to depend on a new instance of the filtered

in data. The user can always reload the file again if they need the data they have already filtered

out.

4b.1.5 VisualizationPanel remembers data plots after reopened.

code changes added to the existing software application to make the feature possible are found

in the ClassPanel.java class and have been discussed in chapter 3.

2. Filtered data reflected in plugins

So far, we have been talking about filtering data and also how the addition of this feature

has greatly fostered this application and can be of great help to other potential users and

51

researchers. But this is not all to this feature. We have seen how selecting check boxes can

filter and unfilter values from a data plot. Let’s take a look at the image below.

4b.2.1 VisualizationPanel with attributes 2, 3 and 4 removed from data set attributes

 In this image, we can see that the attribute numbers for 2, 3 and 4 have been unselected,

hence the reason the data plots are missing as well. Let’s assume that this is the way I intend

my data sets values to look like and I would like this to be applied throughout the

application so that I can easily use it in another panel. All we must do is just to click on the

exit button and close the window. It automatically gets saved, this is of course taking into

consideration that this is the final state of the sets as explained above. Once the window is

closed, we are left with the matrix panel. And this panel should automatically reflect the

changes that have occurred in the visualization panel. Let’s take a look at the image in

Fig4b.2.2 for a perfect illustration, we would notice that the graph plots of the matrix panel

have been changed when compared to its original version (a closer screen shot of the 2

version are available below for clarity). This confirms that was discussed in the previous

feature. The plot instances of our new data sets have been saved.

52

4b.2.2 Matrix Panel with Filtered out attributes

The area concerned, i.e. that has the filtered-out values have been circled in red in the

image above.

Original plot

53

Newly filtered plot.

 You would be able to know the difference in the newly filtered plot, that some data

points have been removed.

4b.2.3 Visualize Panel with filtered out data sets

54

 A very interesting thing happens now when we go back to the visualization panel by

clicking on the Newly filtered plot. The plot values are still retained. It remembers which

values have been filtered out and it does not show this value. Fig 4b.2.3 is a perfect

example. Another interesting thing is the ability for the changes made to be reflected across

platforms other than just panel. The filterable datasets also reflect in plugins as well, for

example 3D plugins. This is known as the 3D visualization panel.

4b.2.4 Visualize 3D panel with filtered data set.

 After filtering of data points has been done in the visualization panel, the window is

closed, and the user clicks on visualize 3D panel, which is not a pre-installed panel and has

to be installed via plugins found in the tool menu, the exact filtered out changes now reflects

as well on the 3D plugins. This gives the advantage of also been able to see our set of newly

filtered out data in 3D view, giving us the same existent advantage to inspect every part of

it as a 3D model. A good example of this can be seen in the image above Fig4b.2.4. as we

can see the same filtered data plots are now present in 3D form and we can see that they

are properly filtered and can be used for investigation and easy data analysis. Also, all the

55

settings in this panel works as usual and when a change is made in this panel, the Update

display button applies these changes.

4b.2.5 Visualize panel with filtered data set as nominal.

 So far for this feature, we have been talking about filtered data sets across platforms

and across panels, but just for numeric values, but it is astonishing to know that this feature

also applies to nominal values as well. In the image above Fig4b.2.5, we can see that this

is now a nominal attribute and the colour combo box now has “seq (Nom)”, selected as the

colour. Automatically converting it to a nominal value. We can also see that the filter

properties work as anticipated with no problem. The filtered-out attribute numbers have

filtered out checkboxes and their data sets are filtered out as well, with no inherent bugs or

problem. Lastly, if we close the window and open the Visualize 3D panel, we would see

that the attributes are reflected exactly as they should again in 3D format. With the colour

attributes selected as appropriate and with the right instances been filtered out. Below in

Fig4b.2.6, we would see an illustration of what has been explained so far and how exact

the anticipated properties are replicated. It is also good to know that in other to zoom in

56

and out of this 3D graph plot is it enough to place your mouse on the screen and scroll in

or out of it.

4b.2.6 Visualize 3D panel with filtered nominal data set.

Code changes that was added to the existing software application to make the feature possible

were done in the ClassPanel.java, MatrixPanel.java and the PreprocessPanel.java classes, they

have also to discussed ore elaborately in chapter 3.

Richer Graph Plots

In this section I am going to speak about and show features that mainly affects the cosmetic

aspect of the software application. I have spoken about the user interface, how the background

colour and axis colour can now be changed, how attributes can now be arranged and analysed

with respect to shapes and not only colours, how the class panel has been rearranged for a better

user experience. I have spoken as well about how the ability to filter data has been added to the

application. In this section, we would be exploring richer graph plot capabilities. i.e. majorly

57

the features that I would discuss here would be just like by-products of the previous features I

have discussed earlier. A combination of all the other features produce a more powerful

application with more interesting feature outreach that we would be exploring.

1. Data points on graph can be filtered by colour and shapes

One of the things that makes the graph plot for the W.E.K.A application richer is that data

points can now be filtered by colour and by shape. When I say filtered, I am not referring to

filtered out but to data attributes been distinguished. Prior to new, this separation and

distinguishing was only possible through colours, but a very unsettling way for the users. Most

times it was difficult for the user to understand how to use the application properly, or to

understand it due to lack of certain features. Take a look for example at the image below

Fig4c.1.1 Visualize Panel

 This is a visualization panel with numerical values plotted again nominal values. The

colour of the graph is set to numerical as well hence for the way we see the graph now. When

the colour is changed to a nominal value as in Fig4c.1.2 as we can see below, we would observe

58

that the data plots are now separated by attributes that can be easily distinguishable by their

colour. But this is a feature that was already existent in the application.

Fig4c.1.2 Visualize Panel with nominal colour attributes

 The feature that was added now to W.E.K.A application makes the graph plot also

possible to be distinguishable by shapes. For example, under the same instance as the previous

diagram, with all settings remaining the same, lets select the shape attribute which has now

been added as a new feature to be “bitratetype (Nom)” as is in the case of Fig 4c.1.3. We will

notice that the data plots on the graphs have different shapes and not just a single shape “x”.

Also, we would notice that the shapes are dispersed as in the bitratetype. Some of the attributes

have different shapes within them. Let’s consider attribute number 8 for example. In this

attribute, we have the plus shape representation, we have the cross-shape representation, we

have the up-triangle shape representation and we have the diamond shape representation. It is

a clear fact that this separation of attributes by shapes is not so clear when compared to if they

are separated by colour, but it is good to know that a combination of these two features gives

a very good user experience. And, sometimes the user might still prefer to use the shape

59

representation even, so an added option is always a good thing and another reason for the user

to enjoy using the W.E.K.A application. Just for clarity again, I would zoom out a portion of

the graph plot so that it can be clearer and more visible. I would analyse the data points between

attribute number 3 and number 7.

Fig4c.1.3 Visualize Panel with nominal shape attributes

 An already zoom out image of this graph can be seen in Fig4c.1.4, we would see that

the data points attribute number 3 to 7 are have been zoomed out and can be seen in a clearer

way. This was possible from the select instance combo box that can be found above the data

plot. The rectangle instance is used to get a decent representation for attributes number 3 to 7.

Another thing we would observe thing is that maximized data plot is only along the y axis,

while the x axis remains the same. It does not change while the points in the y axis modulate

according to the image drawn via the selected instance, this is because the x axis has a nominal

attribute selected, but this limitation is resolved from the minimize and maximise feature. We

would also be able to able to see the shape representation for each attribute clearer and more

distinctively. Notice how the checkboxes selected only represent the attribute data points

displayed in the graph. This was it is not misleading to the user of the software application,

since all other attributes have been temporarily filtered out. Also, on the selection of this

60

instance, the colours of each attributes are retained correctly, just as they were before the

instance was selected. And the program does not crash or develop abnormalities.

Fig4c.1.4 Visualize Panel with nominal shape attributes zoomed out

 Another good example of shape representation can be found in the example below in Fig4c.1.5

and 6.

Fig4c.1.5 Visualize Panel with nominal shape attributes zoomed in

61

 Looking, the data point plot of which the colour attributes are x – pnsr000(Num), y –

pvqm000(Num), colour – reqrate(Nom), shape – seq(Nom), we would see the advantage and

beauty of have the shape attribute feature implemented.

Fig4c.1.6 Visualize Panel with nominal shape attributes zoomed in

 With Rectangle selected as the select instance, and the points mapped out by the

rectangle is 9.65 – 27.762 by the y axis and 29.718 – 38.923 by the x axis. Also, you would

notice now that both the x and y axes are zoom out properly, and this is because both properties

selected it in the combo box above are numerical properties.

2. Bottom bar used to easily set colours

 One interesting feature also worth discussing is the ability of the W.E.K.A software

application to make it possible for colours to be easily set and changed by the bottom bar found

in the class panel. Even if this feature was existent before, the panel to which it belongs has

been endowed with other features (the colour labels and the checkboxes), and yet it still works

62

as expected. More would not be said about how this feature is implemented but rather what it

does, because this has already been discussed in detail earlier. From the previous image, when

we reset the plot we would get the image we have below in Fig 4c.2.1.

Fig4c.2.1 Visualization panel with properties psnr000 and pvqm000

 We would see that the data points on the graph plot are ore clustered and with different

colours. In Fig4c.2.1, there are 7 attributes named -1, 500000, 1000000, 2000000, 4000000,

8000000, 16000000. Each of these attributes have different colours. If the attribute differences

are not clear, we can decide to change the attribute colour by selecting on the concerned

attribute or it colour label and changing it easily. Changing the colour for attribute 50000 from

red to yellow, we would have the image below in fig4c.2.2. We can now see a clear difference

between the colours in the attribute and this makes the user understand their work even easier.

If the user is still undecisive of the way the attributes colours should look individually on the

graph plot, he/she can always change their colours again from the bottom bar.

63

Fig4c.2.2 Visualization panel with properties psnr000 and pvqm000

An illustration of this is in Fig4c.2.3, I have changed the attribute colour for number 3

(1000000) and number 7 (16000000) from green to greenish brown and from orange to red

respectively.

Fig4c.2.3 Visualization panel with properties psnr000 and pvqm00

64

3. Filter colour of data set with tick boxes

The last feature I would be elaborating about that added to the richness of the graph plot is

the luxury of filtering our data sets with check boxes. Prior to this feature there was not way of

filtering data sets from the visualization panel and saving it. At least there was not easy way.

We would only highlight, and instance of the graph plot we want to see or change the property

of the graph plot, also we would filter out the attributes from the data set in the pre-process

panel, but this was a hard method that filters out all the attributes values in a data set for the

attribute we have selected. It had almost no manipulability and effective if we need to remove

just certain values from the data set.

Fig4c.3.1 Visualization panel with properties seq and ssim000

 But the addition of this feature eliminated this problem and datasets can now be easily

filtered out with the highest dexterity as desired by the user. It can be done just by ticking or

unticking the checkbox of the attribute concerned. As can be seen in the Fig 4c.3.1 and

65

Fig4c.3.2, the second attribute of the select instance in the graph plot can be filtered out just

by unticking its checkbox.

Fig4c.3.2 Visualization panel with properties seq and ssim000 with filter

 Notice how the yellow colour of the attribute is filtered out and it now automatically

represented by the colour white which is the colour of the graph plot background.

66

CHAPTER 5 – Conclusions

 Data mining can be a tedious task, most especially when the tools needed to make it

happen are lacking. Also, creating a solution for reading and investigating large chunk of data

can be a laborious task. With the help of my supervisor Prof. Enrico Masala, I was able to come

up with an improvement to the WEKA software where. This way, future usage and

investigations with this software can be done easily. I also mainly concentrated on the

visualization aspect of the software because it is the most utilised feature when mining data.

Now when a scientist, student, researcher or user what to use WEKA for data mining, it makes

their job an easier as features like, selecting distinct attributes, isolating preferred instances,

modifying the minimum and maximum value of plot axis, displaying different attributes by

colour and shapes, ability to change the colour and shape for better visualization have been

added to the project.

67

REFERENCES

1. Machine Learning Group at the University of Waikato. University of Waikato, 2018,
https://www.cs.waikato.ac.nz/ml/weka/, accessed 17th May 2018.

2. Stryker JP, Kuh CV, Voytuk JA, A Data Based Assessment of Research Doctorate in
the US, Context and Motivation, Washington National Academic Press 2011,
accessed 26th August 2018.

3. Machine Learning Group at the University of Waikato. University of Waikato , 2018,
https://www.cs.waikato.ac.nz/ml/index.html, accessed 18th May 2018.

4. Computer Science Paper at the University of Arizona, University of Arizona,
https://www2.cs.arizona.edu/projects/scout/Papers/mosberger/doc012.html, access
29th August, 2018.

5. Margaret Rouse, https://searchmicroservices.techtarget.com/definition/user-interface-
UI, TechTarget, User Interface, accessed 4th September 2018.

6. Junaid Rehman, Advantage and Disadvantages of Graphic User interface, IT Release,
http://www.itrelease.com/2017/11/advantages-disadvantages-graphical-user-
interface/, accessed 7th September 2018.

7. Visualr Insights, 10 Advantages of data visualization, VisualR,
https://visualrsoftware.com/advantages-data-visualization/, accessed 9th September
2018.

8. Arden Manning, Business Intelligence and Analytics, Yseop, Top 4 limitations of data
visualization tools. https://yseop.com/blog/top-4-limitations-of-data-visualization-
tools-2/, accessed 9th September 2018.

9. Robert Cordray, Big Data Zone, DZone, 7 Benefits of Data Visualization,
https://dzone.com/articles/6-ways-data-visualization-can-change-your-company,
accessed 9th September 2018.

https://www.cs.waikato.ac.nz/ml/weka/
https://www.ncbi.nlm.nih.gov/books/NBK83399/
https://www.ncbi.nlm.nih.gov/books/NBK83399/
https://www.cs.waikato.ac.nz/ml/index.html
https://www2.cs.arizona.edu/projects/scout/Papers/mosberger/doc012.html
Margaret%20Rouse
https://searchmicroservices.techtarget.com/definition/user-interface-UI
https://searchmicroservices.techtarget.com/definition/user-interface-UI
http://www.itrelease.com/author/admin/
http://www.itrelease.com/2017/11/advantages-disadvantages-graphical-user-interface/
http://www.itrelease.com/2017/11/advantages-disadvantages-graphical-user-interface/
https://visualrsoftware.com/author/admin/
https://visualrsoftware.com/advantages-data-visualization/
https://yseop.com/blog/top-4-limitations-of-data-visualization-tools-2/
https://yseop.com/blog/top-4-limitations-of-data-visualization-tools-2/
https://dzone.com/articles/6-ways-data-visualization-can-change-your-company

		Politecnico di Torino
	2018-10-12T07:25:55+0000
	Politecnico di Torino
	Enrico Masala
	S

