
POLITECNICO DI TORINO

Master degree course in Computer Engineering

(Embedded Systems)

Master Degree Thesis

Implementation of a Vehicle Function for an

automotive Electronic Control Unit

External Temperature Management to avoid Overheating

effects

Supervisor

Prof. Massimo Violante

Candidate

Piergiovanni Ferrara

Company supervisor

Mrs. Lorena Capuana

ACADEMIC YEAR 2017-2018

To my girlfriend for her support and love.

To my family too, who gave me the opportunity to study

to achieve this important goal.

Acknowledgements

I would like to thank Prof. Massimo Violante that gave me the opportunity to

meet TXT e-solutions company and make a thesis work with their collaboration.

I would like to also thank my company supervisor Mrs. Lorena Capuana and

other people of the company, for the provided support throughout the development

of my thesis work.

Last but not least, a big thank goes to Mr. Devis Renna of a big electronic

components maker for the automotive industry (Tier 1), who answered to all my

questions related to the requirements of the project.

Contents

Introduction 7

1 AUTOSAR 12

1.1 Introduction . 12

1.2 Main working topics . 12

1.2.1 Architecture . 13

1.2.2 Methodology . 19

1.2.3 Application interfaces . 24

1.3 AUTOSAR benefits and drawbacks 24

2 In-Vehicle Network Protocols 26

2.1 Introduction . 26

2.2 Controller Area Network (CAN) . 27

2.3 Local Interconnection Network (LIN) 30

2.4 FlexRay . 32

3 Model-based software design 34

3.1 Introduction . 34

3.2 What is Model-based software design? 34

3.3 V-shaped development flow steps . 37

3.4 MBSD - practical perspective . 41

3

CONTENTS

3.4.1 Modelling . 41

3.4.2 Model validation . 43

3.4.3 Code generation and integration 44

3.5 MBSD benefits . 45

4 External Temperature Management (ETM) 47

4.1 Introduction . 47

4.2 Developed Vehicle Function (VF) . 48

4.2.1 Functional diagram . 50

4.2.2 Model architecture . 51

4.2.3 External interfaces . 53

4.2.4 Inner states . 55

4.2.5 Model tests . 64

4.2.6 VF code generation and integration 75

5 Tests and results 82

Conclusions 93

Bibliography 97

Acronyms 104

4

Summary

Significant researches over the course of the last years have contributed to the inven-

tion of new technological features installed in vehicles. They range from safety to

entertainment features for which costumers are more than willing to pay. Many de-

vices are involved in today’s cars to warn the driver and show information about the

environment like car rear view cameras, pedestrians detectors, lane crossing detec-

tors, external temperature sensors, etc. Among all, modern cars have temperature

sensors to measure and display the ambient temperature to the car dashboard for

the driver. It is a very appreciated feature and despite appearing to be provided

by a not so complex device, it has to be properly managed. This is because when

the temperature sensor is installed on the side view mirror of the car, it is affected

by the overheating effect caused by many possible events. In fact, the sun could

directly irradiate the sensor or it could even receive the heat coming from warm

surfaces of the vehicle itself or surrounding vehicles.

In this thesis work, a software solution to avoid annoying behaviours and un-

reliable temperature measurements has been developed. To achieve it, the logic

implements sampling and filtering operations before sending the external tempera-

ture measurement as output.

Starting from the analysis of the requirements of a big Original Equipment Man-

ufacturer (OEM), the External Temperature Management (ETM) Vehicle function

has been developed by following the Model-Based Software Design (MBSD) ap-

5

CONTENTS

proach which is highly adopted as a software development methodology in the au-

tomotive sector and allows to auto-generate a bug-free C-code. After integrating

TargetLink tool, the C-code can be deployed into the target Electronic Control Unit

(ECU). In addition, the software has been implemented to be AUTomotive Open

System ARchitecture (AUTOSAR)-compliant in order to satisfy OEM requirements.

Many tests have been carried out to validate the software implementation, both

on the model during Model-in-the-loop (MIL) phase and on the real BCM during

the Hardware-in-the-loop (HIL) phase.

6

Introduction

In a technological age, a societal need becomes of interest for researchers that in-

troduce new products, services and ideas to the market. For instance, the history

of automotive technology and human factors research can be viewed similarly [15].

When we look at the last fifty years, we understand that being a mechanical engineer

was enough, today most vehicle components are controlled by embedded systems

and the new technological features we may currently have on a vehicle make growing

the number of Electronic Control Unit (ECU)s , up to hundreds of them. These

are the results of years of researches and studies in the automotive sector. In fact,

many and many years ago the technology was not so advanced.

In the new age, it is widely-known that modern cars are always equipped with

new devices and sensors to make our life easier, from safety-related electronics

to entertainment features. Instrumentation panel (also called dashboard), for in-

stance, shows traditional information but is also becoming more and more user-

customizable.

The aforementioned ECU term refers to an embedded system able to control

other electronic elements and receive information, within the vehicle, after down-

loading a software algorithm on it. Throughout the thesis work, the term Body

Computer Module (BCM) will be also used to indicate an Electronic Control Unit

in charge of controlling vehicle’s accessories like power windows, power mirrors, air

conditioning, immobilizer system, central locking, etc., as in this case. For the sake

7

CONTENTS

Figure 1: Typical vehicle ECU

of clarity, a typical ECU in shown in figure 1, while an ECUs network on a car is

shown in figure 2.

Many ECUs are interconnected and each of them has been programmed to per-

form a specific function. They are placed in different locations and the communi-

cation between them relies on suitable communication buses to exchange important

information within the vehicle. Clearly, one of the most appreciated info shown

on the dashboard is the external temperature. In fact, nowadays every car owns

temperature sensors that are able to measure the ambient temperature outside the

vehicle and display it on the dashboard. Car makers may decide to install the sensor

in different external locations on the car, for example, behind the bumper or the

grill.

Some other car-makers are used to install the external temperature sensor on the

side view mirror of car, because it could be a good place for hosting it. However, it

is often affected by the overheating phenomenon that causes an overheating effect

on the sensor. This occurs because some events can influence the real temperature

value of the environment measured by the Negative Temperature Coefficient (NTC)

8

CONTENTS

Figure 2: ECUs network and communication buses on a car [from [1]]

sensor. Possible events could be:

❼ Direct sun radiation towards the sensor

❼ Heat radiation coming from hot surfaces near the NTC sensor (car body, mirror

cover, car engine, etc.)

❼ Heat radiation coming from hot surfaces even far from the NTC sensor (as-

phalt, etc.)

❼ Air convection due to warm air coming from near vehicles

In order to avoid unpleasant behaviours it is strongly necessary to filter the tem-

perature measurements and evaluate the condition of the vehicle before giving the

value as output.

This work aims at providing a solution to avoid incorrect and unreliable tem-

perature values to display in the car dashboard for the user. The specifications of

9

CONTENTS

what to achieve come entirely from a real project of a big Original Equipment Man-

ufacturer (OEM). The goal is to implement a Vehicle Function (VF), that is the

software application implementing the algorithm for managing the external temper-

ature. The VF will be developed by following a specific design approach, mainly

used in the Automotive domain. The adopted approach is the Model-Based Software

Design (MBSD). Furthermore, as the software will be deployed on a real automotive

BCM, developed by a big electronic components maker for the automotive industry

(Tier 1), it must be compliant with the AUTomotive Open System ARchitecture

(AUTOSAR) standard.

The main goal of the work is not only to provide a working solution, but also an

optimized one, in terms of code occupation in memory and execution time for the

Central Processing Unit (CPU), that mitigates the waste of hardware resources. To

achieve it, the implementation will be conceived in such a way to make the software

lightweight.

The presented thesis is divided into five chapters:

In Chapter 1 the AUTOSAR standard is presented and its main concepts de-

scribed, to give the knowledge for understanding how the Vehicle Function is struc-

tured to follow the automotive standard.

In Chapter 2 the most common In-Vehicle Network protocols are described.

Among them, Controller Area Network (CAN) protocol will be part of the develop-

ing work to exchange data.

In Chapter 3 the Model-Based Software Design (MBSD) approach is explained.

It is the used design method for the presented work and highly adopted in the au-

tomotive domain.

10

CONTENTS

In Chapter 4 the External Temperature Management (ETM) Vehicle Func-

tion is described following a top-down approach. Its behaviour and algorithm are

explained. In addition, the flow concerning the model test, code generation and

integration is shown.

In Chapter 5 Tests executed on a real BCM and results of the proposed ap-

proach are analysed and reported.

11

Chapter 1

AUTOSAR

1.1 Introduction

AUTomotive Open System ARchitecture (AUTOSAR) is a worldwide development

partnership of automotive interested parties founded in 2003. It pursues the objec-

tive of creating and establishing an open and standardized software architecture for

automotive Electronic Control Unit (ECU)s (from [20]). The partnership structure

includes: Core partners (OEM & Tier1 supplier), Premium Members and Associate

Members.

In the following sections, the standard will be briefly described.

1.2 Main working topics

In order to discern the concepts of the AUTOSAR standard, it is suggested to follow

the description of the main working topics. They are:

❼ Architecture: three-layered Software (SW) architecture including AUTOSAR

Application layer, Basic Software (BSW) and Runtime Environment (RTE)

12

CHAPTER 1. AUTOSAR

Figure 1.1: AUTOSAR architecture made by layers

❼ Methodology: formats and templates to include the configuration process of

the BSW stack and integration of the application SW into the ECUs

❼ Application interfaces: interfaces specification for typical automotive ap-

plications in terms of syntax and semantics (as a standard for application

software).

These topics are explained in the next sections.

1.2.1 Architecture

As written before, a typical AUTOSAR SW running on an ECU is made of layers,

therefore the actual AUTOSAR architecture is shown in figure 1.1.

Basically, there are three main layers already mentioned before, however, the

BSW layer can be further divided in many layers as it includes several services. It

13

CHAPTER 1. AUTOSAR

is also fundamental the separation between the Application space and the Infras-

tructure space. The first contains the SW applications (topmost layer), while the

second includes the remaining layers. A brief description on the main elements is

provided in the following sections.

1.2.1.1 Software Component (SW-C)

The application space, in AUTOSAR, is made of interconnected SW-Cs, that rep-

resent the SW application, provided with an AUTOSAR interface and described by

an Software Component (SW-C) Template.

An SW-C encapsulates part of the functionality of the application [6]. It means

that we may have even more than one SW-C to make the overall SW application.

In fact, an SW-C has well-defined ports, through which it can interact with other

components [3]. A port is used to provide or retrieve information (data, operations

calls, etc.). As already mentioned above, every component is defined by using an

SW-C template, such that a new Component Type is also defined. The latter implies

that such a component can be used an arbitrary number of times within the same

system as well as in different systems, therefore multiple instances of the same

component may exist [5]. Finally, components are developed against the Virtual

Functional Bus (VFB), described later, without direct dependency on ECUs and

communication busses.

To be an AUTOSAR SW-C complete and ready to be shipped, we need to have [6]:

❼ A complete and formal Software Component Description which specifies how

the infrastructure must be configured for the component

❼ An implementation of the component, which could be provided either as object

code (already compiled code) or source code

Concerning SW-C ports, AUTOSAR supports three main ports interfaces [3]:

14

CHAPTER 1. AUTOSAR

Figure 1.2: AUTOSAR-standard port-icons of ports interfaces

❼ Sender-Receiver: a sender distributes information to one or up to several re-

ceivers, or one receiver gets information from one or up to several senders

❼ Client-Server: a server provides a set of operations (Get, Set, etc.) and several

clients can invoke those operations

❼ Calibration: static communication pattern that allows modules to access static

calibration parameters.

They have its own port-icons according to the AUTOSAR standard:

15

CHAPTER 1. AUTOSAR

In the figure above, for every port interface:

❼ PPort : refers to the port that provides something to others

❼ RPort : refers to the port that receives something from others

1.2.1.2 Virtual Functional Bus (VFB)

Virtual Functional Bus (VFB) is the most abstract level, where components are

described with the means of datatypes and interfaces, ports and connections be-

tween them, as well as hierarchical components [12]. To achieve the relocatability,

AUTOSAR SW-Cs are implemented independently from the underlying hardware

[6]. This entails that components must not call directly the Operating System or

the communication Hardware, therefore components can be deployed (integration

process) to ECUs very late in the development process.

1.2.1.3 Run Time Environment (RTE)

Runtime Environment (RTE) is the implementation (for a particular ECU) of the

AUTOSAR VFB and acts as a system level communication center for inter- and

intra-ECU information exchange [6].

By specifying interfaces and their communication mechanisms (application de-

pendent), the applications are decoupled from the underlying HW and BSW, en-

abling the realization of standard Library Functions.

In principle, the RTE can be logically divided into two sub-parts that realize:

❼ the communication between SW-Cs

❼ the scheduling of the SW-Cs

16

CHAPTER 1. AUTOSAR

To fully describe the concept of the RTE, the Basic Software Scheduler has to be

considered as well; the Basic Software (BSW) will be described in the next subsec-

tion. The Basic Software Scheduler schedules the schedulable entities of the basic

software modules. Since an AUTOSAR Software Component is not allowed to ac-

cess Basic Software directly, the access to services and other elements is abstracted

via ports and AUTOSAR interfaces. With respect to the component implementa-

tion, therefore the RTE provides appropriately generated Application Programming

Interface (API)s for Basic Software access.

1.2.1.4 Basic Software (BSW)

The BSW is the standardized software layer, which provides the infrastructure and

services for execution of Software Components on an ECU as an integration platform

for Hardware (HW)-independent software applications. Infrastructure is separated

from the Application, in fact the latter is defined by the SW-Cs (see fig. 1.1).

BSW includes:

❼ System services

❼ I/O services

❼ Communication and Network management

❼ NVRAM management

❼ Operating System (OS)

❼ Microcontroller abstraction

❼ Complex Device Drivers, etc.

17

CHAPTER 1. AUTOSAR

Essentially, the BSW aggregates all the functionalities that are utilized by the

applications and actually point to resources at lower levels.

1.2.1.5 Microcontroller Abstraction layer (MCAL)

Access to Microcontroller registers is routed through the Microcontroller Abstraction

Layer (MCAL) to avoid direct access to microcontroller registers from higher-level

software. Thus, it contains internal drivers with direct access to the µC and periph-

erals, therefore handles the requests from BSW. In addition, MCAL implements

notification mechanisms to support the distribution of commands, responses and in-

formation to different processes [6]. As you may imagine, its implementation strictly

depends on the microcontroller.

1.2.1.6 ECU Hardware

This is the last layer that represents the actual hardware including the Microcon-

troller, so the CPU and its peripherals with their characteristics.

Hereinafter, to have a clear overview on how SW-Cs communicate and interact,

some remarkable words are provided.

SW-Cs communication is supported by ports that implement the interface according

to the communication paradigm (client-server, sender-receiver, ..etc). The commu-

nication is channelled via the RTE, and the proper layer in the BSW is encapsulated,

therefore not visible at the application layer.

Hence, SW-Cs inside a single ECU are connected each other through SW-C ports

and RTE, while different ECUs communicate through CAN bus (or others) via SW-

C ports.

18

CHAPTER 1. AUTOSAR

Figure 1.3: Communication between SW-Cs and ECUs

In the figure above, communications between SW-Cs within an ECU (grey lines)

and between different ECUs (green lines) are clearly visible.

1.2.2 Methodology

Following the AUTOSAR methodology, the architecture is derived from the formal

description of software and hardware components.

Starting from templates for SW Component, ECU Resource and System (with as-

sociated XML schema), a concrete specification is generated, presented as XML file

and defined by OEM or Tier 1. Methodology prescribes to:

❼ Formally describe functional software in terms of SW-Cs description

❼ VFB takes SW-Cs description as input and validates the interaction of all com-

ponents and interfaces before software implementation. VFB is implemented

by the AUTOSAR RTE (it represents the concrete interface) and underlying

19

CHAPTER 1. AUTOSAR

Figure 1.4: Software implementation process based on AUTOSAR-standard

BSW.

❼ Map of SW-Cs to ECUs and configuration of BSW

Hence, to configure the system, input descriptions of all software components,

ECU resources and system constraints are necessary. The flow, that the AUTOSAR

methodology prescribes, is reported in figure 1.4.

The implementation process follows those steps, starting from descriptions until

the SW executables, for each ECU, are created. Steps are briefly described in the

next sections.

1.2.2.1 SW-C description (step 1a)

The SW-C description consists on a formal description defined in a SW-C Template:

20

CHAPTER 1. AUTOSAR

❼ General characteristics: name, manufacturer, etc.

❼ Communication properties: p ports, r ports and interfaces

❼ Runnable entities with trigger events, port access, etc

❼ Inner structure (composition): sub-components and connections

❼ Required HW resources: CPU time, scheduling and memory (size, type, etc.)

Structure and format are first described by the SW-C Template but then, what

SW-Cs are connected together, as a system of SW-Cs, will be saved in one description

which will be used for next process steps (mapping, software configurations, etc.).

1.2.2.2 ECU Resource description (step 1b)

The ECU Resource description contains:

❼ General characteristics: name, manufacturer, etc.

❼ Temperature: own, environment, cooling/heating

❼ Available signal processing methods

❼ Available programming capabilities

❼ Available HW: µC, architecture (e.g. multiprocessor)

– memory

– interfaces (CAN, LIN, FlexRay, etc.)

– periphery (sensors / actuators)

– connectors (i.e. number of pins)

❼ SW below RTE for micro controller

21

CHAPTER 1. AUTOSAR

❼ Signal path from Pin to ECU-abstraction

The hardware is described independently of the application software.

1.2.2.3 System description (step 1c)

The System description contains:

❼ Network topology: bus systems, connected ECUs, power supply, etc.

❼ Communication

❼ Mapping/Clustering of SW-Cs

1.2.2.4 Distribution of SW-C descriptions to ECUs (step 2)

SW-Cs are distributed to ECUs. In particular:

❼ Configuration on the basis of descriptions (not on the basis of implementa-

tions!) of SW Components, ECU Resources and System description

❼ Consideration of ECU Resources available and constraints (for example, timing

requirements) given in the System description

Figure 1.5 summarizes the distribution process to ECUs.

1.2.2.5 ECUs configuration (step 3)

Generation of required configuration for AUTOSAR-Infrastructure per ECU. It con-

sists in taking the ECU description, System description and AUTOSAR RTE config-

uration information to build the AUTOSAR-Infrastructure. Figure 1.6 summarizes

the ECU configuration process.

22

CHAPTER 1. AUTOSAR

Figure 1.5: Distribution of SW-Cs descriptions to ECUs

Figure 1.6: Configuration process per ECU

23

CHAPTER 1. AUTOSAR

1.2.2.6 Software executables generation for ECUs (step 4)

After ECUs have been configured, the Software executables are generated for each

and every ECU. This refers to the BSW,RTE and the linking of components ([6], [4]).

The ECU Configuration Description is needed as it contains the information about

which BSW modules and SW-C implementations are used to create the executable.

The output of this step is the ECU executable.

1.2.3 Application interfaces

To ease the re-use of software components across several OEMs, AUTOSAR pro-

ceeds on the standardization of the application interfaces agreed among the partners.

As described before, a SW-C has well-define ports interfaces to make the commu-

nication to other SW-Cs and among different ECUs. These standardized interfaces

allow software designers and implementers to use them in case of expanding or

reusing software components independent of a specific hardware and/or Electronic

Control Unit (ECU). Typical examples of applications are electronic stability con-

trol (ESC), steering, electric parking brake, park distance control, exterior light,

anti-theft systems, remote keyless entry and so on [2].

1.3 AUTOSAR benefits and drawbacks

Generally, the use of a standard as a reference for software development plays an

important role, since it can provide lot of benefits. AUTOSAR benefits are:

❼ Use of common interfaces among OEM and Tier 1

❼ Increase in design flexibility

❼ Simplification of the integration task with the BSW

24

CHAPTER 1. AUTOSAR

❼ Reduction of SW development costs

❼ SW-C exchange

❼ SW-C reuse for different HW platform

AUTOSAR standard embraces more than 180 organizations worldwide in the

automotive domain who believe that this automotive standard really makes the

difference, however some others are still no confident on it.

To capture a snapshot of the current benefits and drawbacks of using AUTOSAR,

a web survey among the global AUTOSAR community has been performed [13]. Two

research questions have been provided:

❼ Question 1: Which are the benefits of using AUTOSAR?

❼ Question 2: Which are the drawbacks and risks of using AUTOSAR?

Both questions had their answer options for what concerns the benefits and

drawbacks about AUTOSAR.

Not surprisingly, the most mentioned benefit was Standardization (88%) that is

the main characteristic of AUTOSAR software architecture, then Reuse (80%) and

Interoperability (51%); the others reached less than 50% of the common answers.

On the other hand, the most underlined drawback was Complexity (65%) and

comments about it have been also provided by respondents. They have argued that

AUTOSAR gets tougher when working with large projects and many developers,

therefore they have suggested to make AUTOSAR more tool oriented in order to

reduce that complexity. Then, Initial investment (59%) to teach it to people and

Learning curve (51%). The latter states that many engineers have difficulty in

learning the standard.

25

Chapter 2

In-Vehicle Network Protocols

2.1 Introduction

Electronic Control Units (ECUs) are the most common components that control all

the electrical and electronic parts of a vehicle. In the Introduction, we have seen

that a modern car is surrounded by hundreds of ECUs where each and every of them

performs a specific task (see figure 2). In addition, they exchange important data,

get information from the environment by using sensors and drive several actuators.

But, how different ECUs, within the vehicle, are interconnected?

Many network protocols have been invented and developed for automotive pur-

poses by big organizations. In the past, electronic devices were connected by using

simple wiring systems, but then they were replaced to reduce the costs and weigh

of them in the vehicle. The new most important network protocols are: Controller

Area Network (CAN), Local Interconnection Network (LIN) and FlexRay. They dif-

fer in some characteristics that suggest their usage according to the needs. Table

2.1 provides a comparison.

26

CHAPTER 2. IN-VEHICLE NETWORK PROTOCOLS

Application Bus Access Control Physical layer Bandwidth

CAN
Soft Real-Time

systems
CSMA/CD

Multiple

master
Electrical 500 Kbps

LIN

Low-level

Communication

systems

Polling
Single

master
Electrical 19.6 Kbps

FlexRay
Hard Real-time

systems

TDMA/

FTDMA

Multiple

master

Electrical/

optical
10 Mbps

Table 2.1: In-vehicle network protocols comparison

These network protocols must satisfy safety and security requirements when

involved in vehicles. In the next sections, they will be briefly described.

2.2 Controller Area Network (CAN)

Controller Area Network (CAN) is a serial communication protocol originally devel-

oped by Bosch in 1985. It has been adopted for the first time in 1993 after becoming

the international standard known as ISO 11898.

CAN applications

CAN protocol has been thought, at the beginning, to be used in the automotive

sector, as it was suitable for making the communication between ECUs in vehicles.

However, as other industries have realized the advantages that CAN offered over

the past 20 years, they have adopted the bus for a wide variety of applications.

For instance, Railway applications such as streetcars, trams, undergrounds, light

railways, and long-distance trains incorporate CAN protocol. But that is not all,

27

CHAPTER 2. IN-VEHICLE NETWORK PROTOCOLS

CAN buses can be found in many aerospace applications, medical equipments in

hospital, lifts and escalators, etc. [10].

For what concerns CAN in vehicles, it can be found on different levels, for ex-

ample, in linking the door units or brake controllers, passenger counting units, and

more.

CAN characteristics

CAN protocol was developed as a multi-master bus made of two wires only (CANH

and CANL), in which data are not sent as large blocks from point A to point B

under the supervision of a central bus master [11], but in broadcast to the entire

network in order to guarantee data consistency in every node of the system.

It is a Carrier-Sense Multiple-Access Collision-Detection (CSMA/CD) commu-

nication protocol. CSMA means that every node must check the bus status before

sending data on it and wait for a prescribed period in case of bus occupancy. CD

means that collisions are detected on the bus and solved through a bit-wise arbitra-

tion, based on a preprogrammed priority of the message in the identifier field of a

message.

How does the arbitration work?

During arbitration, every transmitter compares the level of the bit sent with the

level read from the bus, when the levels are equal means that bus is free, therefore any

node may start to transmit a message. A CAN frame/message, sent in broadcast,

does not contain any address of the destination node, but an arbitration ID. It is

unique and identifies every frame such that each CAN node may decide whether to

get the message or not. When multiple masters start transmitting simultaneously, as

soon as one master generates a dominant bit (0), the other that transmits a recessive

28

CHAPTER 2. IN-VEHICLE NETWORK PROTOCOLS

bit (1) will lose the contention and will retry the transmission later. Thus, the node

with the higher priority message gains bus access. This mechanism consists in a

non-destructive bit-wise arbitration since the node can continue with the sending

without destroying the message.

A typical CAN transceiver has a driver input and a receiver output, both pulled

high internally. The driver input is used to send data on the bus, while the receiver

output permits to read the bus status. Whenever the bus is free, i.e. no one is

transmitting on it, a logical 1 (high voltage) is read; this is because of the lines that

are pulled high. CAN transceiver schema is shown below:

Figure 2.1: CAN transceiver components and inverted bus logic [from [11]]

On the top side of the figure 2.1 it is the driver input, while the receiver output

is shown just below. The CAN transceiver is needed for interfacing the digital part

to the physical CAN lines. In addition, as written before, the logic is inverted,

therefore 0 is the dominant bit, whereas 1 is the recessive bit.

Finally, a CAN node, is reported in figure 2.2. It is composed of a microcontroller

along with a CAN controller and a CAN transceiver.

29

CHAPTER 2. IN-VEHICLE NETWORK PROTOCOLS

Figure 2.2: A CAN node

2.3 Local Interconnection Network (LIN)

Local Interconnection Network (LIN) is a serial communication protocol founded in

the late 1990s by the LIN Consortium made of five carmakers: BMW, Volkswagen

Group, Audi Group, Volvo Cars and Mercedes-Benz.

LIN applications

LIN procotol is suitable for automotive purposes, like CAN protocol, because it is

inexpensive, easy to use and provides a good level of security. We can state that

LIN is a cheaper complement of CAN as they are involved together. However, LIN

is slower than CAN.

LIN characteristics

LIN protocol was developed as a single-master and multiple-slave bus made of one

wire only. A good level of security is achieved thanks to different mechanisms like

parity bits or checksum. The master is in charge of initiating a communication.

A LIN frame is made of a header and a response part (length from 1 to 8 bytes)

[17]. The header part is sent by the master at the very beginning, then the response

part, in case of data to be sent to the slave. If the master requests data from the

slave, the latter sends the response part.

30

CHAPTER 2. IN-VEHICLE NETWORK PROTOCOLS

Figure 2.3: A typical LIN network bus [from [17]]

Figure 2.4: A LIN node

Like CAN protocol, LIN frames are sent in broadcast, therefore all the nodes

get the same message. In addition, the frame does not contain an address. It

is also important to note that LIN protocol does not allow a direct slave-to-slave

communication and arbitration (unlike CAN) is not needed because there is a single

master only. A typical LIN network bus is shown in figure 2.3.

From figure 2.3, it is worth noticing the co-existence of the CAN bus and the

LIN bus. The first is mainly used to connect master devices since it offers a higher

speed, while the second one makes the connection between a single master and many

slaves (actually up to 16 allowed). Finally, a LIN node is shown in figure 2.4.

Even here, microcontroller requires a LIN controller, connected to the LIN

transceiver to allow the translation from the digital part to the physical LIN bus.

31

CHAPTER 2. IN-VEHICLE NETWORK PROTOCOLS

2.4 FlexRay

FlexRay is a serial communication protocol developed by the FlexRay Consortium

with the goal of obtaining a fault-tolerant and deterministic standard.

FlexRay applications

Main fields of application of FlexRay, like the other twos protocols, are the auto-

motive sector and safety-critical applications [19]. This communication protocol is

even faster and more reliable than CAN protocol. Its high data rate can achieve up

to 10 Mbps.

FlexRay characteristics

FlexRay does not restrict the communication to any specific physical topology. It

can be: point-to-point topology, passive start or active star topology.

A FlexRay frame is made of three parts: header, payload and trailer. The header

consists of 40 bits and includes the ID, the payload consists of 254 bytes and the

trailer of 24 bits.

Signals are physically transmitted based on the transmission of differential volt-

ages, on Bus Plus (BP) and Bus Minus (BM)) lines) ([19]), to reduce possible inter-

ferences.

For what concerns the bus access, FlexRay nodes can obtain it in two different

ways: Time Division Multiple Access (TDMA) and Flexible Division Multiple Access

(FDMA) methods. TDMA consists in the division of the bus access in time slots

of equal length, each assigned to every node, therefore all the messages are sent

periodically and deterministically by the nodes. For sporadic transmission, the

protocol actually allows to send event-driven and dynamic messages, this is the

FDMA method.

32

CHAPTER 2. IN-VEHICLE NETWORK PROTOCOLS

A FlexRay node includes, like the others, a microcontroller along with a FlexRay

controller and FlexRay transceivers (one or two bus drivers, depending on the num-

ber of channels). It is shown in figure 2.5.

Figure 2.5: A FlexRay node

33

Chapter 3

Model-based software design

3.1 Introduction

The substantial growth in the number of vehicle Electronic Control Unit (ECU)s on

average and in the complexity of the algorithms that reside on their controllers, has

influenced the developing of embedded software, which is becoming more and more

complex. As a result the number of code lines increases as well, also because of the

amount of things the modern software has to perform. But then, the code has to be

deployed on the target hardware that, as a consequence, could not host all of that.

The latest automotive environment also needs reusable software in order to be

embedded in many different frameworks without so much difficulty. These aspects

resulted in one of the most significant initiatives in the automotive industry in the

years [16].

3.2 What is Model-based software design?

Model-Based Software Design (MBSD) methodology addresses that unmanageable

complexity and is getting very used when developing embedded software. It is

34

CHAPTER 3. MODEL-BASED SOFTWARE DESIGN

mostly suggested when dealing with complicated and real-time control systems in

many domains: Aerospace, Automotive, Industrial automation, etc. For instance,

the modern Automotive environment is growing day by day with new hardware and

new functionalities such that companies must be competitive on the market. MBSD

is applied on safety systems, body controls, powertrain, etc. Even more, it can

be found in the development of multimedia systems and entertainment. Although

MBSD is highly suggested in complex designs to develop, the use of it is convenient

also for less complicated designs because contributes in saving time and reducing

costs.

Model-Based Software Design is used to define in a clearer way the system design

specifications, to test system behaviour and to automatically generate the code for

software production and rapid prototyping. In addition, it offers the possibility to

validate in real-time the system before sending it to the manufacturing line.

What is a model? A model is the graphical representation, by means of vi-

sual method, of software algorithms. For instance, in the automotive domain it con-

sists in modelling Application Software Component (SW-C)s (see section 1.2.1.1) of

functionalities for Body Computer Module (BCM), for which the AUTomotive Open

System ARchitecture (AUTOSAR) open standard is followed.

Traditional embedded software is made by hand coding and followed by verifi-

cation sessions to check its correctness. These activities lack tool automation, so

the human interaction is necessary. Unfortunately, this is error prone and time con-

suming too. The MBSD approach comes to the aid of the software developer for

AUTOSAR-compliant applications and follows the V-shaped development flow. It

helps in developing the software by adhering to the following sequential steps divided

in two phases:

35

CHAPTER 3. MODEL-BASED SOFTWARE DESIGN

❼ Verification phase:

1. System Requirements Analysis

2. System Design

3. Architecture Design

4. Module Design

5. Coding

❼ Validation phase:

1. Unit Testing

2. Integration Testing

3. System Testing

4. User Acceptance Testing

In a few words: starting from the analysis of the system requirements, the

design of the system is produced based on the requirements (a further document

may be created), without knowledge of the hardware. The system model also needs

to be reviewed from a software implementation point of view before generating the

code for the target hardware. While performing these steps, test plans and test cases

are created at every stage, therefore errors and faults can be prevented and even

detected earlier. In fact, the advantage of this work flow is that it allows to reduce

delays and errors that could occur throughout the software development phase and

for which clients could complain. [18]

In the next sections, each and every stage of the V-shaped approach is described,

focusing also on the practical aspects of the MBSD, whereas at the end MBSD

benefits are reported.

36

CHAPTER 3. MODEL-BASED SOFTWARE DESIGN

3.3 V-shaped development flow steps

The Software Development Life Cycle (SDLC) is a well-defined sequence of stages

when developing a software product. There are different approaches that can be

adopted, the V-shaped development flow is an extension of the Waterfall model.

This is because in the latter, it is allowed to move to the forward stage only after

completing the previous stage and it is not possible to step backward if something

turned out to be wrong. On the other side, the V-shaped expresses the relationships

between each development stage and the corresponding test stage. In fact, at every

stage test plans and test cases are created for that specific stage. The V-shaped

development flow is depicted in the figure 3.1.

System Requirements Analysis

First of all in the Verification phase, requirements of the system need to be collected.

User’s requirements concern interface, data, performance and security parameters

that must be satisfied. During this phase, engineers want to understand what the

desired system has to perform but not how to accomplish that (it is addressed later).

In the meantime, the user acceptance test is planned and to gather information from

the user, different methodologies are preferred like questionnaires, interviews, uses

cases and others.

Functional Specification

After collecting system requirements, they have to be studied by engineers to get the

purpose of the system in order to avoid that the client may complain. Documents

are also produced to describe the intended specifications because at the end each

requirement must be mapped to an element of the domain model.

At the same time, test plans and test cases for system testing are generated.

37

CHAPTER 3. MODEL-BASED SOFTWARE DESIGN

Figure 3.1: V-shaped development flow

38

CHAPTER 3. MODEL-BASED SOFTWARE DESIGN

High Level Design

Once the requirements have been correctly understood and functionalities specifica-

tions have been exhaustively highlighted, from a high level, the specific functionali-

ties of the system are partitioned into submodules, which need to be designed and

implemented later. Furthermore, as all the modules that represent system function-

alities are interconnected together by means of interfaces, even their relationships

needs to be tested. Thus, during this phase integration testing is also planned.

Detailed Design

Software functions have to be defined for every software module to implement the

needed functionalities that engineers will develop. This is the lower level of design

and as a support, a document may be very useful, in which all the elements including

the interfaces, types and size are explained. Here, an unit testing is finally created.

Coding

After every functions have been defined, developers can actually start the coding

phase. It consists in developing C-code for the system functionalities that must

satisfy the user, according to the requirements documents. MBSD approach offers

the possibility to autogenerate the C-code for the system model.

Unit Testing

The purpose is to test the functionality of every unit and to check its compliance

with the specifications. A software unit is made of source code that needs to be all

covered during the test. Basically, every code line have to be tested by means of

test cases and test coverage has to be, as much as possible, the highest. Metrics

for unit testing are: Statement Coverage (SC), Branch Coverage (BC) and Modified

39

CHAPTER 3. MODEL-BASED SOFTWARE DESIGN

Condition/Decision Coverage (MC/DC). These are based on the requirements for

the inputs of a software unit. There are also other suitable methods for unit testing,

like Interface test, Function injection test, Resource usage test and Back-to-back test.

Integration Testing

After every unit has been tested, we want to confirm the interoperability of the

units. Thus, test cases have to test the interaction of them. Used methods are

very similar to those adopted for unit testing. Metrics for integration testing are:

Function Coverage (FC) and Function Call Coverage (FCC).

System Testing

Here, you need to define a set of test cases that can test the system when interacting

with the environment. Hence, the software has to satisfy the requirements. Three

different methodologies can be pursued: Hardware-in-the-loop (HIL) testing, ECU

network environment and Vehicle-in-the-loop (VIL) testing. The first two are heavily

used to figure out most of the problems in the software, whereas Vehicle-in-the-loop

testing is strongly suggested when testing automated driving features because the

software runs in a real vehicle with an emulated environment.

User Acceptance Testing

The purpose is to check that the system satisfies system requirements that have

been analysed at the first step. The test is carried out by the user and does not

involve the knowledge of the implementation, therefore the system is tested as a

black-box. In general, the system functionality is tested.

40

CHAPTER 3. MODEL-BASED SOFTWARE DESIGN

3.4 MBSD - practical perspective

From a practical viewpoint, the engineering process is described in the next sections,

in order to understand how engineers in their companies develop embedded software

by following the Model-based approach.

3.4.1 Modelling

The process starts with the modelling phase when the system engineers create mod-

els of the system and environment [8]. In fact, they capture and follow the require-

ments that affect the environment and system’s behaviour.

The usual adopted modelling software to create models is MatLab, provided with

Simulink tool. The latter allows to build models for the Plant and the Controller,

represented graphically, after analysing the requirements. On one hand, plant model

represents the environment, therefore the surrounding elements of the controller

model. The former can be created by exploiting Simulink blocks and mathematical

equations to represent the plant dynamics. On the other hand, controller model,

after analysing the plant and control requirements, can be created by making a finite

state machine for which StateFlow is strongly suggested.

3.4.1.1 What is Stateflow?

Stateflow is a software tool, integrated into MatLab, that permits to create a finite

state machine. The latter is a representation of an event-driven (reactive) system.

Since it is reactive, the system makes a transition from one state to another, if the

condition defining the change is true. A finite state machine can be used to rep-

resent many systems in the automotive sector for control-systems in cars. Starting

point is the Stateflow Chart, with its inputs, outputs, that can contain sequential and

combination logics in the form of state transition diagrams, flow charts, state tran-

41

CHAPTER 3. MODEL-BASED SOFTWARE DESIGN

sition table and truth tables. The Chart can be included in a Simulink model to build

the so-called Stateflow machine. Local and constant variables can be defined in the

Model explorer and they will be visible in every state of the Chart and can be used to

define transition conditions. A Stateflow Chart may contain several states. A state

describes an operating mode of a reactive system and it can be active or inactive,

according to conditions and events. In addition, state hierarchy is also possible - it

allows to organize hierarchical states with multiple levels in the Chart. Every state

which contains multiple states is called Superstate. Another aspect to consider is

the State Decomposition that differs in: Exclusive (OR) and Parallel (AND). On

one hand, the state decomposition Exclusive (OR) of a superstate implies that all

its substates are Exclusive (OR) as well and in particular it means that inner states

describe operating modes which are mutually exclusive, therefore only one substate

can be active at a time. They graphically have solid borders. On the other hand,

the state decomposition Parallel (AND) describes concurrent operating modes and

all the substates are active at the same time. In this case, they are graphically repre-

sented with dashed borders. Furthermore, it is also possible to set the main Chart as

Parallel (AND) which indicates that the main superstates are concurrently executed,

while being individually set as Exclusive (OR) (this implies the same behaviour to

their substates).[14]

During the Modelling phase, engineers can also import the arxml-file [16], already

prepared with the support of other tools, to generate a skeleton Simulink model that

contains the interface blocks (inports and outports) and other elements as defined

in the AUTomotive Open System ARchitecture (AUTOSAR) SW-C description file

(see section 1.2.1.1). Plant dynamics have to be matched, therefore the controller

needs to be designed accordingly.

Plant model could be actually already provided or simulated by using hardware

simulator (last development stage). Thus, the main purpose is to model the Con-

42

CHAPTER 3. MODEL-BASED SOFTWARE DESIGN

troller. Once the model has been designed, we can connect Plant and Controller

input/output ports.

3.4.2 Model validation

It is widely-known that it is easier to solve problems (correct bugs in the model)

early in the development phase, therefore it is highly suggested to test and validate

the created model before moving forward to the next step. For instance, testing the

software of safety-critical systems, where damages can cause injuries, is crucial.

Testing usually includes the process of executing a program or model (in case of

MBSD approach), with the intent of finding software defects; they could result in

an error that may propagate to the end user if it becomes a failure and we want to

avoid this bad inconvenience [9]. In alignment with research studies, we can state

that MBSD approach for software safety is broadly applied in various application

domains.

For that reason, once the models have been created, they have to be analysed.

This phase is fundamental in the development process because it must provide as-

surances that if the system is built as described by the model, and the assumptions

about the components, the infrastructure, and the environment are true, then the

system will work as expected, i.e. exhibits the desired behaviour [8].

The basic idea of testing for MBSD is that instead of creating test cases man-

ually, a selected algorithm generates them automatically from a model. One of

the advantages of MBSD is that it allows tests to be linked directly to the system

requirements which renders readability, understandability, and maintainability of

tests easier [22]. Furthermore, it has been shown to provide good coverage of all the

behaviours of the system and to reduce the effort and cost for testing.

Controller behaviour has to be validated with the respect to the specifications

and refinements can be applied whether something turned out to be non-compliant

43

CHAPTER 3. MODEL-BASED SOFTWARE DESIGN

or wrong. This phase is also referred to as Model-in-the-loop (MIL) validation. It

is based on the behavioural model of the system itself and is tested in an open loop

(without a plant model, so simulated inputs) or closed loop (with a plant model).

Analysis and simulations, based on the models of the system, are carried out by

using Simulink tool that allows to track signals and information exchanged between

Controller and Plant; also we check how their states evolve. An important point in

model-based embedded systems is that the analysis perfectly predicts the system’s

behavior, without actually building the system. However, this may not be feasible

because of inherent inaccuracies in the models or lack of knowledge about details.

But, we shall aim for, as a minimum, analysis techniques that will pinpoint poten-

tial problems in the design when implemented on the platform and give an early

indication, well before integration [8].

Eventually, model is checked for compliance with modelling rules, such as MatLab

Automotive Advisory Board (MAAB), and naming conventions.

It is worth noticing that MBSD approach helps engineers in developing high

quality and bug-free software with the support of specific and automated tools.

3.4.3 Code generation and integration

When the system design has been completely verified and validated, next step con-

sists in generating the ingredients of the model implementation to be integrated in

the target hardware.

The first step is known as Synthesis and is accomplished by generating the

code for the target hardware (Electronic Control Unit (ECU) in vehicles). This

can be done automatically because supported by many tools like Embedded coder

(integrated in MatLab/Simulink), TargetLink (by dSpace), etc. The second step is

related to the deploy of the auto-generated code into the target hardware.

However, before generating the code, Simulink solver type and time solver must

44

CHAPTER 3. MODEL-BASED SOFTWARE DESIGN

be set. Usually, fixed-step type of discrete time solver is chosen since we need to

have a predictable number of model evaluations with the same rate to guarantee the

real-time behaviour. Besides that, hardware implementation and code generation

options need to be set-up as well. At this point, once the C-code has been auto-

generated, tools allow to perform a Software-in-the-loop (SIL) validation that is the

execution of the code together with the plant model, if any, in the development

Personal Computer (PC). During this phase, we can also do optimizations while

solving possible errors.

When we are sure that the implemented code does not contain any bug, the

software application needs to be integrated into the BSW, which provides the services

and drivers to communicate with the specific hardware.

Then, we are ready to deploy the code to the target hardware. We can vali-

date the behaviour of the generated code by running it on the hardware, while the

plant model still runs on the development PC with the simulation tool. It is called

Processor-in-the-loop (PIL).

Last possible step can be the validation of the Real Time (RT) behaviour of

the Controller even after being downloaded into the ECU that runs the control

algorithm and hardware simulators emulate the environment, physically connected

to the ECU, performing Hardware-in-the-loop (HIL), ECU-network environment or

Vehicle-in-the-loop (VIL) validation activities.

3.5 MBSD benefits

Why should we use Model-based software design?

The choice of adopting this approach provides benefits ([18]) like:

❼ Improved product development process

45

CHAPTER 3. MODEL-BASED SOFTWARE DESIGN

❼ Better cooperation between software developers as a team

❼ Link of the system requirements between model and requirements document

❼ Early testing to get more confidence with the design and fix errors

❼ Software safety testing

❼ Production of high quality software (bug-free code) at acceptable cost

❼ Auto-generation of code and documentation

❼ Reuse of the software for other hardware platforms

However, model-based development is not without risk. It is not obviously clear

whether a seamless development process from early design to final target code is

feasible: Some design steps might demand knowledge of environment properties

which are difficult to formalize. Design steps in the later phases will require precise

knowledge of the target platform, for instance to access device drivers or in order

to estimate the worst case execution times which are needed as input for scheduling

algorithms [7].

46

Chapter 4

External Temperature

Management (ETM)

4.1 Introduction

As already mentioned in the work introduction, I want to provide a solution that

avoids the overheating effects and gives correct and reliable temperature measure-

ments.

The main goal of this work is to implement an optimized software as a project

for a big Original Equipment Manufacturer (OEM) in the automotive sector. Code

occupation and execution time will be taken into account when designing the vehicle

function. This is particularly crucial, since automotive Electronic Control Unit

(ECU)s are equipped with microcontrollers that do not have infinite availability of

resources (CPU and Memory), therefore in this sense it is necessary to optimize.

In general, there is actually a big incoming request from the automotive industries

about that.

47

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

4.2 Developed Vehicle Function (VF)

The Vehicle Function (VF) is called External Temperature Management (ETM)

and the proposed implementation for the ETM follows the Model-Based Software

Design (MBSD) approach (chapter 3) and AUTomotive Open System ARchitecture

(AUTOSAR) standard (chapter 1) to develop a software to be deployed on real

BCM.

Sometimes during the code writing phase, useless and not optimized elements

can be introduced by developers and even programming errors can be made. On

the other side, by exploiting the MBSD approach, you can avoid making code errors

because the model, that represents your final software, can be validated many times

and applying refinements is always possible. In addition, it is possible to conceive

the model as much optimized as possible. Thus, during the development phase you

get more confident with the model and eventually a more optimized and bug-free

software is going to be generated.

Code generation can be automated after finalizing all the required checks on the

model and guarantees the absence of bugs in the code.

Another aspect to be considered is that when developing automotive application

the standard must be always followed, therefore the implemented software will be

AUTOSAR-compliant. This allows a faster integration with the lower software layers

and a higher versatility of the developed automotive application. The latter can be

deployed without any difficulty into different ECUs that could even have different

hardware inside. For more information, see the aforementioned AUTOSAR chapter.

Which is the usual product development process in the au-

tomotive industry?

In the most common cases, design information about the software we want to de-

velop are written with the means of documentations. A documentation reports all

48

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

high-level and low-level requirements that the application must satisfy. In general,

the most automotive industries follow the same flow. The Original Equipment Man-

ufacturer (OEM) is the automotive manufacturer that represents the brand of the

vehicle and is in charge of specifying the requirements, in a document, for the soft-

ware he wants to obtain. Thus, in this process the OEM represents the customer.

After the specifications have been described and the high-level design has been pro-

duced by the design team, the suppliers can start developing the software for the

OEM (actually sometimes the OEM can develop part of the whole software). OEM

suppliers are called Tier 1s, which supply hardware components but also software for

vehicles. Further companies can come into play which behave as consultants to help

and provide services to Tier 1. Documentation, sometimes not so understandable,

is read and interpreted by a special team in the Tier 1/Consulting company, in or-

der to clarify the algorithm and mistakes, if any. Then, the software is ready to be

developed by software developers who try to follow step by step all the project require-

ments. At the end, before sending the software to the OEM, it must be validated by

the validation team to guarantee customer expectations and correct behaviour.

The above concept has been followed for making the present work. Me, as a

software developer for the consulting company TXT e-solutions, I have analysed

the requirements document produced by a big OEM and provided the software

implementation of the desired VF with the support of a Tier 1. The latter, as man-

ufacturer of ECUs and other vehicle parts, provided me the possibility to execute

tests on a real ECU.

In the next sections, firstly the Functional diagram is provided. Secondly, the

general Model architecture is given with a top-down approach, such that we can

move deeper into the main states to describe their functionalities. While modelling

the system, test cases have been generated to get confident with the system model,

49

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.1: BCM functional diagram for the ETM vehicle function

and eventually code generation for integration has been performed.

To not disclose sensitive information owned by the OEM company,

real variable names and some low-level details will not be provided.

4.2.1 Functional diagram

From a high level, the functional diagram for the BCM interfaces is shown in figure

4.1.

The BCM, which is nothing but an ECU used for this particular task, has its

own input and output signals (see the direction of the arrows). They are routed by

using different interfaces:

❼ Controller Area Network (CAN): 2-wire communication protocol with high

data rate (refer to sec. 2.2)

❼ Internal : internal (SW or physical) connection for data exchange

50

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

❼ Hardwire: wiring connection between components/units

The use of input/output ports will be explained in the following sections.

4.2.2 Model architecture

As already mentioned before, this work comes from a real project of a big interna-

tional company that designs components for the automotive sector and we want to

achieve a working and optimized software.

The actual model architecture for the ETM vehicle function follows exactly what

the specification of the VF prescribes. The specification of the VF is written on an

official document and an excel file is also provided. The latter helps to understand

the external interfaces (ports) of the BCM and other information - it is updated

whenever there are modifications on the requirements of the vehicle function. The

final software, that requires to be validated in real-time, will be deployed into a BCM

that receives the External Temperature value, as a discrete signal, from the NTC

temperature sensor and other useful information from BCMs connected through the

CAN communication protocol (see fig. 4.1), that is one of the most used protocol

in vehicles.

What is a NTC sensor?

A NTC (Negative Temperature Coefficient) sensor is basically a resistor whose resis-

tance varies significantly with the temperature and so takes the name of thermistor.

It is made of a semiconductor material and can be used as a temperature sensor

since the resistance decreases when temperature increases. The resistance can be

measured by providing a known direct current through the thermistor to measure the

voltage drop. The lower the voltage drop, the higher the temperature.

51

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Input and output ports have to be consistent with the environment the BCM

will be integrated on. Furthermore, ports and signals naming is also guaranteed in

order to ease the cooperation between the application layer and the basic software

layer. In fact, you may wonder that we can create an application without worrying

about the hardware to use and their compatibility.

In terms of AUTOSAR-standard terms, developing a model for an automotive

application means implementing a Software Component (SW-C, section 1.2.1.1) that

will be executed cyclically or in response to some events by the Operating System

(OS) as a Runnable entity. In this case, the Runnable entity will be executed

periodically with fixed period T = 50ms.

To build a model for the External Temperature Management (ETM) vehicle

function, MatLab/Simulink and StateFlow have been used. The second tool allows

to create a finite state machine, inside Simulink, that evolves according to incoming

inputs and local variables. Starting from a Simulink .slx or .mdl file, a StateFlow

Chart can be created that contains states, conditions and transitions to make ac-

tions. Then, it is necessary to import the .arxml file that contains the interfaces

blocks and other elements as defined in the AUTOSAR SW-C description file (see

section 1.2.1.1). This allows to use the naming convention adopted in the specifica-

tion of the VF.

It is worth highlighting that before actually implementing the model from scratch

through the Matlab environment, it has been conceived and designed by hand on

papers in order to understand how to deal and face the intended logic and algorithm.

This is particularly important since the goal is to implement an optimized software.

In fact, when building the finite state machine, it is suggested to avoid the use of

redundant states whenever they can be merged together and useless Matlab func-

tions. The latter would be translated into C-functions that for sure would decrease

performance due to context switches. In addition, variables use has been controlled

to the essential to reduce the memory size. The implemented StateFlow main chart

52

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

is reported in figure 4.2.

Input and output ports are clearly visible and names also suggest which is the

functionality they provide. Names are the same of those shown in figure 4.1 and port

types follow the current implementation. Despite that, their meaning is explained

in the next section (4.2.3).

4.2.3 External interfaces

The main chart, therefore the SW-C in general, has input ports that can be dif-

ferentiated in DataReceivePorts and ClientPorts, while the output ports are called

DataSendPorts. To understand how they are used, according to the AUTOSAR

standard, refer to section 1.2.1.1. They are highlighted in the tables below, pro-

vided with a short description to understand its specific usage.

DataReceivePorts are:

PortName Description

TempSensor Used by the BCM to get temperature measurement from the sensor

TempSensorFail Used to know whether there is a fail on the temperature sensor or not

CarIgnitionSwitch Used by the BCM to get the key mode status

VehicleSpeed Used by the BCM to get the average vehicle speed

VehicleSpeedFail Used to know whether there is a fail on the average vehicle speed or not

DurationLastSleep Used to know the duration of last sleep state and to be added to the current time permanence in KEY OFF

Table 4.1: Table containing SW-C DataReceivePorts

While ClientPorts are:

PortName Description

TempSensorPresent Used by the BCM to get whether the temperature sensor is present or not

CommMode Used to know the communication mode (CAN Network)

Table 4.2: Table containing SW-C ClientPorts

53

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.2: Main chart containing working states

54

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Finally, there is only one DataSendPort, that is:

PortName Description

ExternalTemperature Used by the BCM to send the temperature value as output

Table 4.3: Table containing SW-C DataSendPorts

These are the main ports that the model uses to receive data from its inputs.

However, as shown in figure 4.2, there are four more ports called RTE xxxx which

are used to know the Runtime Environment (RTE) returned value when getting the

associated data. They will be used during the simulation phase.

4.2.4 Inner states

The model is periodically evaluated at a fixed rate of 50ms by the Simulink solver,

as requested in the specification of the Vehicle Function (VF).

The two basic inner states are SamplingFiltering and TemperatureManagement

that are executed at the same rate. These states need to run concurrently and from

the StateFlow point of view is necessary to set them as Parallel(AND). However, the

Simulink solver evaluates the states in sequence, in fact an execution order has to

be decided in any case, therefore the concurrency is only an illusion for the software

developer. But it is necessary in order to indicate that those states are independent

one from the other and there is no hierarchy in the execution. Independent states

are represented by Simulink with dashed lines and are shown in figure 4.3.

The execution order is clearly visible, in fact SamplingFiltering state shows the

number 1, while TemperatureManagement state shows number 2. In the next sec-

tions, they are described.

55

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.3: Inner states of the main chart

4.2.4.1 SamplingFiltering state

Focusing on the ETM specifications and the needed logic, on one hand the Sam-

plingFiltering state is in charge of sampling the temperature values coming from the

NTC sensor every 50ms, putting them into a vector of 10 elements with a shift op-

eration. A filtering operation is also fundamental to reject maximum and minimum

values that sometimes may be spurious. Then, the arithmetic average, on 8 samples,

is performed to obtain a reliable temperature value even though sharp temperature

variations are very unlikely.

Values for the input port TempSensor come as a voltage measurement, but they

will be translated into Celsius degrees by other software components. The allowed

range for temperature is [-54.5, 99.5] ❽. Inner states of SamplingFiltering state are

provided in figure 4.4.

There are three states only inside. The main one is SamplingSpikeFiltering which

performs the sampling and filtering of the input temperature values. To accomplish

these operations, two Stateflow functions (sample and filter) have been implemented.

The other states are: KEY OFF1minCount and No Sampling ; the first state counts

up to one minute when at KEY OFF in order to sample every minute, whereas the

56

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.4: SamplingFiltering state blocks

second state is reached when something wrong happened, like temperature sensor

not present or failed.

4.2.4.2 TemperatureManagement state

On the other hand, the TemperatureManagement state is more complex because it

is the core of the logic that manages the temperature, before sending it as output.

For the sake of clarity, its rationale will be explained in the next sections.

Before moving forward, I want to underline that the BCM will receive and send data

through the CAN Network. The latter can be actually active or not and it generally

depends on the car ignition switch. There are functionalities that work in Full

Communication (CAN Network active) only, others work also in No Communication

(CAN Network not-active).

The core of the temperature conditioning process is active in Full Communication

only.

At this point, it is worth introducing the concept of car ignition switch to un-

57

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

derstand what will be provided in the next sections.

What is a car ignition switch? Car Ignition switch is the device in which

we can insert the car ignition key. Generally, it has four positions to decide which

car’s electrical and electronic systems will be switched ON and OFF.

First position is Accessories for which you can usually use the radio and regulate

power window without starting the car’s engine. Second position is OFF. It is re-

ferred to when the engine is OFF while some electrical systems still work. However,

most of the elements are switched OFF in this ignition position. Third position is

ON. This position starts all the electrical systems that can be used by the driver.

This is the utmost position before starting the car. The last position is just the one

that starts the engine. Once the driver turns clockwise the key and the car actually

starts, the driver can release the key and it will return to its previous ON position.

For what concerns the ETM vehicle function, the only necessary and considered

ignition status are: OFF, START and ON (also called RUN). The latter two can be

merged together as they implicate the same condition for our model and we can also

build an optimal model. In alignment with what has been mentioned before, we can

say that basically the CAN Network is active at KEY ON and KEY START, while

it becomes inactive after some point at KEY OFF whether there are no coming

input data.

In the next sections, I will describe the functionality by differentiating the two

macro-states Key ON and Key OFF, belonging to TemperatureManagement, in

which the system will behave differently.

Key ON state

Key ON state, as the name suggests, contains functionalities that work only

58

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.5: Key ON blocks

when the car ignition switch is moved to the third position and/or is maintained in

that position. Main block are reported in figure 4.5.

Inner blocks Ventilate, OverHeatingFilter and VehicleSpeedCheck are indepen-

dent each other.

The purpose of Ventilate state is to understand whether the NTC temperature

sensor is ventilated, that is when the vehicle speed (DataReceivePort through CAN

Network) is above the threshold (30 Km/h), or not. Whenever the sensor is con-

sidered as ventilated, then the ExternalTemperature output is updated, no matter

the measured temperature value by the sensor. To make such a decision, the vehicle

speed must be greater than the threshold for at least 60 seconds, called T1 for the

sake of simplicity. If the vehicle speed suddenly drops below the threshold while the

timer did not reach T1 time yet, the not-ventilated condition is considered again.

Instead, if it drops while being in the ventilated state, the system must move to the

not-ventilated state if the condition (vehicle speed < threshold) is true for another

predefined time of 30 seconds, called T2. This mechanism is managed by the Ven-

tilate block. It is a fundamental algorithm and its high-level logic is provided in

figure 4.6.

OverHeatingFilter block checks in parallel whether the ventilate condition (set by

the Ventilate state) has been achieved or not, and updates the ExternalTemperature

59

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.6: Ventilate logic: updates the temperature sensor status as ventilated/not ventilated

accordingly. Thus, this block is the only one in charge of changing the output value

while at Key ON

When the sensor is known to be ventilated, the ExternalTemperature is updated.

Instead, if the sensor is not ventilated and the measured temperature value is greater

than the current ExternalTemperature value, the latter is not updated since a hot

condition for the sensor is supposed, otherwise it is updated (measured temperature

< current ExternalTemperature). Of course, the output must belong to the same

allowed range of the input, but it is managed by another block.

Last but not least, VehicleSpeedCheck block monitors the vehicle speeed signal

coming as input. We need to take into account conditions when the vehicle speed

is not available for some reasons or there is a fail on it. A possible fail is captured

by checking the vehicle speed fail status signal. Even here, we use a timer to decide

whether to actually consider the fail on vehicle speed or not; fail status signal must

be present for 60 seconds to decide that there is a real fail or we must get RTE error

for VehicleSpeed. If so, the ExternalTemperature value is set to zero to signal the

situation. For the BSW this will be considered a fail condition and the user will be

informed about it.

60

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.7: Key OFF blocks

Key OFF state

Key OFF state contains functionalities that work only when the car ignition

switch is moved to the second position and/or is maintained in that position. Main

block are reported in figure 4.7.

Inner blocks LastTime and Initializaion are independent each other.

The purpose of Key Off state is to set the ExternalTemperature output at Key

Off in relation to certain conditions. LastTime block is in charge of counting the

time permanence at Key Off and a local variable for it is always updated. This value

is used by the Initialization state which, on its turn, depending on the time perma-

nence, evolves its internal finite state machine. As the VF specification prescribes,

during the first five minutes the ExternalTemperature output is not updated, then it

changes according to the information provided by the LastTime block. If a battery

reset has happened (default transition) or we are coming from a fail condition on

the vehicle speed or we move from a condition where the temperature sensor was

failed, the ExternalTemperature is set to the current measured temperature value,

otherwise it is set to the value kept in memory that is nothing but the last value

sent as output. Every minute the time permanence in Key Off is checked and if it is

61

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

greater than a certain time threshold, then ExternalTemperature output is updated

according to the following equation:

ExternalTemperature =
tempvalue ∗ (TM3 − Thr1) + TMemory ∗ (Thr2 − TM3)

(Thr2 − Thr1)
(4.1)

where:

❼ tempvalue: current arithmetically averaged temperature value

❼ TM3: time permanence at Key Off

❼ TMemory: last temperature value sent to ExternalTemperature output

❼ Thr1: lower time threshold

❼ Thr2: higher time threshold

Basically, the above equation computes the weighted average that represents

the updated ExternalTemperature output. Thr1 and Thr2 are constant values,

therefore when the time permanence TM3 becomes bigger, the value of Thr2 - TM3

decreases, while the result of TM3 - Thr1 increases and the weight on tempvalue

gets heavier, therefore the actual value will tend to be the current arithmetically

averaged temperature value, otherwise it will be closer to the last temperature value

which is TMemory. The weighted average equation has been implemented by a

Function in Stateflow.

When the time permanence is greater than 30 minutes, Last ExternalTempera-

ture is updated to the current averaged temperature value. Then, every minute the

logic continues updating the output until the maximum allowed time is reached. In

fact, LastTime block uses a 16 bit-variable counter to count every step of 50ms each

and stops when 65535 steps are reached, which correspond to about 3276 seconds

= 54.6 minutes. The update logic at Key Off also stops its execution.

62

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Diagnosis state

Diagnosis state includes functionalities that are necessary to know whether:

❼ There is a fail on the temperature sensor or not

❼ The measured value is outside the allowed range

❼ The information is not available due to a disconnection of the sensor itself

from the system

For what concerns the knowledge of fails, another port is exploited. TempSen-

sorFail port, that is a DataReceivePort (see table 4.1), gives the information about

a possible fail that may occur when trying to deliver the temperature value coming

from the sensor (TempSensor port).

In order to be sure that there is actually a real fail on it, a debounce operation

on the TempSensorFail must be performed. In particular:

❼ After three consecutive cycle with the signal carrying a fail status, TempSen-

sorFail is set to Fail present

❼ After three consecutive cycle with the signal carrying a no-fail status, TempSen-

sorFail is set to Fail not present.

Basically, the process needs to wait for three consecutive cycle that is 150ms

(since the runnable entity is cyclically executed every 50ms), before setting the

actual fail status in both cases.

Sometimes the read temperature value may also be outside the sensor specifi-

cations, therefore a check on it must be performed. Temperature lower and upper

limits are -54.5 ❽ and -99.5 ❽ respectively.

63

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Finally, to get the presence or absence of the temperature device, the proper

TempSensorPresent port that is a ClientPort (see table 4.2), is used by calling the

get operation defined in the VF specifications.

All these checks work in Full Communication only because require the use of the

CAN Network to update the ExternalTemperature output and both at Key ON and

Key OFF.

4.2.5 Model tests

As already stressed before (see chapter 3), testing the model is really important to

check whether errors in the design are present and to deliver a perfectly working

product to the customer. Practically speaking, testing means creating test cases to

stimulate the system model and analyse the results. Test cases must be compliant

with the input specifications which can be read from the requirements document.

Produced results have to be compared with the expected outputs. A picture, sum-

marizing the concept, is shown in figure 4.8.

To accomplish this essential task, once again Simulink has been exploited since

it makes at our disposal a way of generating custom waveforms according to the

needs. The used Simulink block is called Signal Builder. Signals for every input and

for the expected ExternalTemperature output have been generated.

A ModelInput block contains the Signal Builder and provides signals as test

cases to the system model for its eight ports, while a ModelOutput block is placed

at the output to capture the ExternalTemperature value. All the signals are created

considering a 50ms time step, since it is the time period at which the model will be

cyclically evaluated.

As we needed to compare the output signal, the expected ExternalTEmperature

value has been generated inside the Signal Builder.

64

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.8: General model testing process

65

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Finally, to actually be able to compare such quantities, an Assertion System

block has been included in the model, just for testing purpose. It is in charge

of doing a compare and allows to have a tolerance of 150ms in case of inequality

between the model output and the expected one. If the inequality persists longer

than the tolerance, the simulation is automatically stopped and provided with an

alert.

After having integrated TargetLink tool, the model looked like the one shown in

figure 4.9. It contains ModelInput block, TargetLink Subsystem block including the

External Temperature Management (ETM) Chart (see fig. 4.2 for the chart), Mode-

lOutput block and Assertion System block. Furthermore, other required blocks have

been included: TargetLink Main Dialog and MIL Handler. The first block allows

to open the settings panel to set the options for the simulation, code generation

and others, while the second block enables some features, like Overflow checking,

for MIL simulation.

For the sake of an example, input signals (see section 4.2.3) can be customized

as in figure 4.10.

In this particular case, I wanted to test the model behaviour when the CAN

network moves from being not-active to active (No Communication to Full Com-

munication).

As already mentioned before, from figure 4.10 there are four more signals (the

bottommost) with respect to the input ports the TargetLink subsystem (figure 4.9)

should have. At this phase we want to also test the response coming from the lower

level (Basic Software (BSW)) through Runtime Environment (RTE) calls, when

getting data through DataReceivePorts. Not all the signals have this possibility,

but in our External Temperature Management (ETM) case they are: TempSensor,

CarIgnitionSwitch, VehicleSpeed and DurationLastSleep.

Each and every signal is generated (see figure 4.10), for testing purpose, as

follows:

66

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.9: Model after TargetLink integration

67

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.10: Input signals created with Signal Builder in No Communication to Full Communi-
cation test

68

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

❼ CarIgnitionSwitch: car ignition switch changes from being Key Off to Key On

and then back to Key Off

❼ durationLastSleep: duration of the last sleep state is zero

❼ TempSensorFail : no fail is present on the NTC sensor

❼ TempSensor : temperature value coming from the NTC sensor. It has a little

variation at some point in time

❼ VehicleSpeed : vehicle speed value is lower than the threshold (30 Km/h) just

at the beginning, then it increases overcoming it

❼ VehicleSpeedFail : no fail is present on vehicle speed

❼ TempSensorPresent : NTC sensor is present

❼ CommMode: Communication mode, so CAN Network changes at some point

in time from being inactive to active

❼ RTE Vspeed : response from the BSW through RTE for vehicle speed gets no

problem

❼ RTE CmdIgn: response from the BSW through RTE for car ignition switch

gets no problem

❼ RTE DurationLastSleep: response from the BSW through RTE for duration

of last sleep state gets no problem

❼ RTE ExtTempInfo: response from the BSW through RTE for External Tem-

perature info gets no problem

To accomplish the test of the model, the ExpectedExternalTemperature waveform

has been also generated and it is reported in figure 4.11.

69

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.11: ExpectedExternalTemperature signal created with Signal Builder

70

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.12: Assertion scope: result of the comparison between expected and actual output in
No Communication to Full Communication test

Then, as mentioned before, we are able to compare the ExpectedExternalTemper-

ature with the actual ExternalTemperature output (see table 4.3) of the main chart

thanks to the Assertion block. The result of the comparison, for the test example,

is shown in figure 4.12.

With those figures, I wanted to report an example of a test performed on the

model implementation. Of course, many other tests have been accomplished for

testing the most significant cases, namely most of the combinations of being in one

state or in the other through the developed finite state machine, but they are not

all reported here as they are many. Very important is the test of possible fails like

on the temperature sensor input info and vehicle speed signal through its dedicated

DataReceivePorts. Thus, it is worth showing the generated input signals with Signal

Builder (figure 4.13) and the result (figure 4.14) of the Model-in-the-loop (MIL)

validation when there is actually a fail on the temperature sensor (TempSensorFail

signal).

From the provided figures, you can notice that the ExternalTemperature goes

and remains at zero for some time almost in correspondence with the first change

in the TempSensorFail signal from zero to one. This follows the specification of the

algorithm for which the ExternalTemperature must go to zero when there is a fail

71

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.13: Input signals created with Signal Builder at Full Communication and Key ON with
a temperature sensor fail

Figure 4.14: Assertion scope: result of the comparison between expected and actual output at
Full Communication and Key ON with a temperature sensor fail

72

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

on such input information for at least three cycles. The event is captured by the

Diagnosis state (see section 4.2.4.2 at Diagnosis state paragraph).

As a further remark, from figure 4.13 you can see that there are actually two

time instants at which the TempSensorFail goes from zero to one, but as shown

in figure 4.14, the ExternalTemperature output moves to zero only once. It is

because at the point when the fail signal changes to zero (first time), the system is

being in a Not Ventilated state since the VehicleSpeed is lower than the predefined

threshold. Due to that, the OverHeatingFilter block is not allowed to change the

ExternalTemperature output because the measured temperature is greater than the

current one (it is actually zero because of the sensor fail) (see section 4.2.4.2 and

OverHeatingFilter state description in Key ON state paragraph).

Last but not least, the test of the system when there is a fail on the vehicle speed

input (VehicleSpeedFail signal) has been carried out. The generated input signals

with Signal Builder (figure 4.15) and the result (figure 4.16) of the MIL validation

are provided.

Recalling the logic that manages the fail event on the vehicle speed signal (see

section 4.2.4.2 and VehicleSpeedCheck description), from figure 4.15 you can notice

that even if there is a fail at the very beginning, the ExternalTemperature output

goes to zero only after about 120 seconds of simulation. This is due to the first

Key Off condition (check CarIgnitionSwitch signal) at which a fail on the vehicle

speed does not matter, therefore the time to wait to read the fail increases. It is

realized by the system after some time at Key On that is required, as the spec-

ification prescribes, to finally consider the fail on the vehicle speed as true. The

same behaviour is clearly visible again when the vehicle speed fail changes at one

later in time. It is worth highlighting that even though the fail moves to zero in

between, the ExternalTemperature does not update because of the logic inside the

OverHeatingFilter state (like the previous test example).

73

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.15: Input signals created with Signal Builder at Full Communication and Key ON with
a vehicle speed fail

Figure 4.16: Assertion scope: result of the comparison between expected and actual output at
Full Communication and Key ON with a vehicle speed fail

74

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

In the next section, the code generation and integration steps will be described.

4.2.6 VF code generation and integration

The goal is to deploy the implemented software on a real Body Computer Module

(BCM) and the code generation phase is carried out after the algorithm has been

validated in the simulation environment.

TargetLink (by dSpace) has been integrated into MatLab (supporting the AU-

TOSAR standard) at the Model-in-the-loop (MIL) phase and has been also used

to auto-generate the code for the specific hardware platform - in my case, the tar-

get BCM mounts a 32-bit microcontroller. The C code generation options can

range from ANSI C code to optimized fixed- or floating-point code for AUTOSAR

platforms and MISRA C compliance requirement. TargetLink tool guarantees an

efficient C code as it would have been written by hand. To achieve that, in terms of

code occupation and CPU execution time, TargetLink relies on optimization tech-

niques to manage the complexity and save execution time, and ROM and Stack

size. It also offers a Data Dictionary to handle variables, data structures, tasks and

functions of the project. The proper settings on TargetLink have been set, in order

to generate an AUTOSAR-compliant and Generic ANSI-C code (see figure 4.17).

Before actually generating the code, some parameters have been set. TargetLink

provides a Propety Manager to configure every SW-C input and output but also

constant and local variables. The suitable data and class types must be set in order

to succeed in the code integration.

Then, by clicking to the Generate Code button in the TargetLink Main Dialog,

the code generation process starts. Once finished, if no errors occurred, the devel-

oped vehicle function consists of an AUTOSAR-compliant ANSI-C code - TLProj

folder is created. It basically contains two files: ETM.h and ETM.c.

75

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.17: TargetLink Main Dialog settings

76

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

The header file declares the runnable entity as a C-function and other required

elements, while the source file defines the functionality of the runnable entity for

the ETM vehicle function. Moreover, documentations of the generated code are

automatically produced.

Next step in the development flow is the integration with the BSW, as it provides

all the required services and functionalities, like the Operating System (OS), that

allow to access through RTE calls to the drivers for managing registers of microcon-

troller and needed peripherals. This concept follows the AUTOSAR standard (see

chapter 1), for which from the application space is not possible to directly point to

the hardware resources.

Recalling the concept of the standard, there are three main layers: Application

layer, RTE layer and BSW layer. Hence, code integration has been accomplished by

combining the Application layer with the lower levels and to achieve it the Softune

Workbench has been used.

Another fundamental part of the whole software is played by the SensorIn/Sen-

sorOut components. Relocating them among ECUs is not always possible because

of the dependency with the hardware. They actually are AUTOSAR Atomic Soft-

ware Components, used for sensor evaluation and actuator control, therefore they

belong to the Application layer even though hardware-specific. In the case of ETM,

SensorIn component provides data to ETM component’s input, in particular - last

sleep state duration and external temperature value together with its fail status.

SensorOut component provides instead the external temperature value as output

from the BCM after being properly translated from voltage measurement to Celsius

degrees.

Lower levels implementation, for microcontroller and peripherals interaction, has

been developed by other teams and then all the needed files have been incorporated

in the same project to be cross-compiled for the target hardware.

77

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Hereinafter some additional details about the BSW layer are provided in order

to understand how the developed software will be actually executed on a real BCM

in co-existence of other functionalities.

4.2.6.1 OSEK OS standard

The BSW encompasses the OS, which must follow the OSEK standard. OSEK stan-

dard was founded in 1993 by a German automotive company consortium (BMW,

Robert Bosch GmbH, DaimlerChrysler, Opel, Siemens, and Volkswagen Group). In

1994, the French cars manufacturers Renault and PSA Peugeot Citroen joined the

consortium as well. It basically specifies interfaces to multitasking functions and

generic I/O and peripheral access, therefore it is architecture-dependent [21]. Fo-

cusing on tasks, they are executing processes that are executed according to their

timing requirements and scheduled by the OS Scheduler.

OSEK standard differentiates two task types with different behaviours: Basic

task and Extended task.

❼ Basic task: never blocks therefore it runs till completion

❼ Enhanced task: can go to sleep and also block.

Figure 4.18 shows the states that a basic task can achieve and its transitions

towards them.

A basic task must stay in the Suspended state whenever it has terminated (com-

pletion of its job) or it has not been activated yet. Before Running, it must move

to the Ready state but it can be also preempted (higher priority task).

Figure 4.19 shows instead the states that an extended task can achieve. It has

an additional state, Waiting state, with respect to a basic task.

78

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

Figure 4.18: Basic task states and its transitions

Figure 4.19: Extended task states and its transitions

79

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

The main difference is that an enhanced tasks can be blocked depending on event

objects. An event can be raised by other tasks (either basic or enhanced) or interrupt

routines. When task needs to wait for something, it is moved to the Waiting state

instead of being suspended until event notification, which causes the task to be

released and moved to the Ready state. The scheduling of tasks is managed by the

OS Scheduler in two ways: Preemptive scheduling and Non-preemptive scheduling.

❼ Preemptive scheduling: the scheduler can block (preempt) a task in favour

of higher priority tasks

❼ Non-preemptive scheduling: the scheduler can preempt a task in prefixed

compile-time points only.

These two scheduling methods can be also mixed. Hence, tasks are scheduled

according to the scheduling policy, but also based on their priority. The latter is

statically assigned to every task by the user at design time. Priorities are labelled

by numbers, the higher the number, the higher the priority of the task.

How is a software component executed?

A Software Component (SW-C) needs access to resources like memory and CPU,

therefore the Runtime Environment (RTE) must provide the environment for it.

The implementation, so the software itself, is invoked in response to Fixed-time

schedules or Events, as already mentioned before. According to fixed-time schedule,

the software may be run cyclically.

The actual implementation of a SW-C consists of a set of runnable entities. A

runnable, for short, is nothing but a set of instructions (implemented by the software

component) that can be started by the RTE. Generally, every runnable is associated

with a task (it can even host more than one runnable) and scheduled by the OS

Scheduler at run-time on the Electronic Control Unit (ECU). In this context, the

80

CHAPTER 4. EXTERNAL TEMPERATURE MANAGEMENT
(ETM)

RTE is in charge of guaranteeing the invocation of runnables at correct time instants

and providing the functions/data that the component needs.

Concerning our ETM vehicle function, its software implementation will be in-

cluded into a runnable entity that will be executed cyclically every 50ms, according

to the specifications. Thus, there are no events that can block the running algo-

rithm, which can execute till completion every time it is called by the OS Scheduler.

Of course, the runnable entity for ETM will run in co-existence with other possible

runnable entities perhaps within the same SW-C.

81

Chapter 5

Tests and results

Last validation step performed by engineers is called Hardware-in-the-loop (HIL)

validation (see section 3.3). It allows to execute the generated code into the target

hardware, stimulating it through a hardware simulator. During this phase, a further

testing process is performed in order to guarantee the correct behaviour as expected.

In fact, with the help of emulators, the code downloaded into the hardware can be

debugged while checking the communication buses.

In case of misbehaviours, making changes back on the model is always possible

but it can often introduce a delay in the delivery of the project and costs.

The final aim of this thesis work is to demonstrate that the behaviour of the

simulated model is comparable with the one experienced on the real Body Computer

Module (BCM). Thus, the results of the HIL validation have to be collected and

compared to the results of the Model-in-the-loop (MIL) validation.

As already mentioned in previous chapters, the BCM receives input data from

the Controller Area Network (CAN) bus which are used to update internal data

and evolve the algorithm. Then, Vector CANalyzer has been exploited, on Personal

Computer (PC), to analyse exchanged data with the CAN bus,.

Vector CANalyzer is a software program that allows engineers to figure out

82

CHAPTER 5. TESTS AND RESULTS

Figure 5.1: CAN tools: PC with Vector CANalyzer and CANcaseXL connection

whether the messages through the CAN bus are correct or not when testing their

software implementations. It is important in order to deliver perfectly working

algorithms. Many features are provided like, the tracing of the data traffic on the

bus, the display of data messages, the statistical computations of the latter and

others.

The target BCM, which executes the software algorithm after the download (see

section 4.2.6), has been physically connected to a hardware simulator, which is

needed to stimulate the BCM through its inputs and check the outputs. To achieve

it, CANcaseXL has been also exploited. It is a Universal Serial Bus (USB) interface

with two CAN controllers which allow to send and receive several CAN messages,

such that a good test coverage can be obtained. Figure 5.1 shows how the connection

between the PC with CANalyzer and CaNcaseXL is made.

CANalyzer tool, in conjunction with CANcaseXL, has provided me the possi-

bility of seeing what was happening within the communication buses during the

execution of the implemented and deployed algorithm on the BCM, and producing

83

CHAPTER 5. TESTS AND RESULTS

Figure 5.2: Normal behaviour at Key On: MIL simulation results with Matlab

results to be compared. In addition, the use of an emulator has made me capable

of debugging the code to follow each and every executed instruction.

Model simulation results (similar tests to those in section 4.2.5 will be presented)

have to be almost equal to the ones that come from the real-time validation. This

permits to state that the code generation and integration processes have been suc-

cessfully performed and system behaviour is still consistent with the expectations.

Hence, in this chapter some significant test results are provided.

The normal case, in which there are no fails neither in the temperature sensor

nor in the vehicle speed signal at Key On, is firstly provided. Figure 5.2 shows the

main input signals involved and the ExternalTemperature output - they have been

obtained at Model-in-the-loop (MIL) phase.

CarIgnitionSwitch is at Key On till the end of the simulation. TempSensor

changes its value from 22 to 25 degrees, while VehicleSpeed is greater than the

threshold until some point (300 seconds), then it decreases. Finally, it gets again

greater than the threshold after about 500 seconds. ExternalTemperature value ba-

sically starts from its default value (25 degrees), then it goes to 24 as TempSensor

input contains such value. When TempSensor reaches 25 degrees (at about 350 sec-

onds), the value of ExternalTemperature does not change since the VehicleSpeed is

84

CHAPTER 5. TESTS AND RESULTS

Figure 5.3: Normal behaviour at Key On: HIL validation results with Vector CANalyzer

lower than threshold (it implies the Not Ventilated condition for the system) and

the new acquired temperature value is greater than the current ExternalTempera-

ture, but it changes to 25 degrees after some point when the system goes into the

Ventilate condition.

To compare and validate the behaviour, figure 5.3 reports the results analysed

after deploying the code on the BCM and running the signals tracing with Vector

CANalyzer.

It can be noticed that CarIgnitionSwitch is at Key ON (also called RUN) for all

the time. VehicleSpeed is greater than the threshold till some point in time; during

that time the ExternalTemperature value is updated according to the value coming

from the TempSensor input. Once the VehicleSpeed decreases below the threshold

85

CHAPTER 5. TESTS AND RESULTS

Figure 5.4: Normal behaviour at Key Off: MIL simulation results with Matlab

for enough time, then the system is considered as Not Ventilated - in fact even though

the TempSensor value increases (the actual signal on the plot corresponds to the

voltage read from the sensor and the lower the voltage, the higher the temperature

(refer to 4.2.2 and Negative Temperature Coefficient (NTC) sensor description)), the

ExternalTemperature does not change. The latter is updated only when the system

moves to the Ventilate state after being the VehicleSpeed greater than the threshold

for the predefined time. Finally the ExternalTemeperature value decreases as well

as the TempSensor value.

After the comparison, we can state that the normal behaviour of the developed

vehicle function is validated with respect to the model test (figure 5.2).

Another test has been performed at Key Off condition to check the behaviour

of the logics in LastTime and Initialization independent states. The first state

takes trace of the time permanence at Key Off, while the second state updates

the ExternalTemperature output according to different conditions (refer to chapter

4.2.4.2).

Figure 5.4 shows the MIL validation results. Even this time, there are no fails.

Simulation time has been very high, in order to test the condition at which we

86

CHAPTER 5. TESTS AND RESULTS

have a time permanence greater than 30 minutes.

CarIgnitionSwitch is at Key Off for all the simulation time. TempSensor input

varies many times during the simulation in order to make more updates on the

output. In fact, ExternalTemperature output does not change until 300 seconds

= 5 minutes, as the specifications prescribes, then it is updated to TMemory that

is the last ExternalTemperature (by default it is 25 since we are not coming from

other key conditions). After one minute, the output is updated according to the

weighted average formula (4.1). The latter is applied every minute as long as the

time permanence is lower than 1800 seconds = 30 minutes. Once that time has

been reached, the algorithm moves to the last state where the ExternalTemperature

output is updated to the current averaged temperature value. The output would

continue to be updated until 65535 steps = 3276 seconds which are 54.6 minutes.

By running the HIL validation (see figure 5.5), we are able to check whether the

behaviours are comparable each other.

Results are comparable, even though it has been difficult to provide the same

TempSensor inputs of the MIL validation with the use of a physical potentiometer.

It is just important to compare the logic from a functional point of view, without

worrying about the actual temperature values. The states evolution is visible as

the ExternalTemperature output does not change for the first 420 seconds as: for 5

minutes it must not change, then it must be updated to the TMemory value (until 6

minutes) and then the weighted average must be computed (from 6 minutes on); it

means that for 120 seconds after 300 seconds the temperature output remained the

same because TMemory and weighted average were identical to the last External-

Temperature value. As already mentioned before, the ExternalTemperature output

would continue to be updated until 3276 seconds = 54.6 minutes, but to reduce test

time the validation has been stopped at about 1900 seconds = 31.6 minutes that is

greater than the minimum time (30 minutes) to reach the last state.

The fail events have been also simulated. For instance, figure 5.6 shows the

87

CHAPTER 5. TESTS AND RESULTS

Figure 5.5: Normal behaviour at Key Off: HIL validation results with Vector CANalyzer

88

CHAPTER 5. TESTS AND RESULTS

Figure 5.6: VehicleSpeed fail: MIL simulation results with Matlab

results obtained during MIL phase when there is a fail on the VehicleSpeed.

CarIgnitionSwitch moves from Key Off to Key On and remains stable till the

end of the simulation. TempSensor is constantly at 24 degrees except for the last

200 seconds when it changes to 25 degrees. VehicleSpeedFail signal variates from

zero to one more than once. VehicleSpeed value is greater than the threshold at the

beginning and remains the same for some time, then it decreases but also increases

afterwards - actually it does twice the same. Finally, ExternalTemperature follows

the TempSensor value until the VehicleSpeedFail is at zero, then it moves to zero

when a fail is detected (according to the logic, at least some time has to pass in order

to actually consider the vehicle speed fail as true). In the meanwhile, the Vehicle-

Speed value decreases below the threshold, therefore even if the VehicleSpeedFail is

restored to zero, the output value does not change, thus it remains at zero. The

ExternalTemperature output can be updated to the TempSensor value only after

the VehicleSpeed signal goes and remains greater than the threshold for at least the

predefined time. The same behaviour is found later again in the plot.

Very similar results have been obtained during the validation phase - figure 5.7

reports them.

Once again, the TempSensor signal represents the input temperature value and

89

CHAPTER 5. TESTS AND RESULTS

Figure 5.7: VehicleSpeed fail: HIL validation results with Vector CANalyzer

90

CHAPTER 5. TESTS AND RESULTS

Figure 5.8: TempSensor fail: MIL simulation results with Matlab

it is captured as a voltage measurement. VehicleSpeedFail moves from Fail not

present to Fail present more than once, while also the VehicleSpeed changes from

being greater than the threshold and below the threshold. Of course, ExternalTem-

perature signal varies according to the conditions, already mentioned before and

still comparable.

Last simulation consists on the case in which there is a fail on the temperature

sensor. Figure 5.8 shows the results obtained during MIL phase when there is a fail

on the TempSensor.

CarIgnitionSwitch is mainly all the time at Key On. TempSensorFail goes to

one after 200 seconds and because of that the ExternalTemperature value goes to

zero to signalize the fail - it is restored to the current TempSensor value only after

60 seconds after the fail has disappeared. VehicleSpeed is greater than the threshold

for the entire simulation process.

The behaviour can be compared with the one reported in figure 5.9, where the

validation results are shown.

To emulate a fail on TempSensor, therefore to switch TempSensorFail signal from

Fail not present to Fail present, a physical jumper on the hardware simulator has

91

CHAPTER 5. TESTS AND RESULTS

Figure 5.9: TempSensor fail: HIL validation results with Vector CANalyzer

92

CHAPTER 5. TESTS AND RESULTS

been used. By removing it, the Open Circuit (OC) is simulated and TempSensorFail

and TempSensor signals change accordingly. TempSensor is pulled up to 5V - see

figure 5.9. As a result, the ExternalTemeperature output changes from being the

current TempSensor value to the value that is used to notify a fail. At about 25

seconds, it can be noticed that its value goes to zero for a little time, then it is set

to a high value (it is actually 170.5) - the latter action is performed by the BSW, in

fact the application only sets the value to zero for a little time. Finally, after about

60 seconds (as for the MIL case fig. 5.8), during which the VehicleSpeedFail signal

is at Fail not present, the ExternalTemperature output returns to the previous value.

In this chapter, the most significant test results have been reported. However, to

properly validate the developed algorithm many other tests have been performed,

which allows to state that all the implemented functionalities fulfil the project spec-

ifications.

93

Conclusions

In the current technological age, a vehicle is provided with several features that

require several ECUs as well. As a consequence, the software that implements such

new functionalities becomes too complex and lines of code grow out of all proportion.

This trend provides valued functionalities for the driver, but it must be controlled in

some way in order to make the software perfectly satisfying the CPU and memory

capabilities of the target hardware.

The goal of this thesis work was to provide a solution to the overheating ef-

fects that affect the temperature sensor in a car. It has been achieved by adopting

Model-Based Software Design (MBSD), that is one of the most used methodology for

automotive software development. In fact, MBSD allowed to manage the aforemen-

tioned complexity in the software and produce a bug-free C-code for production use.

In addition, the software has been implemented to be AUTomotive Open System

ARchitecture (AUTOSAR)-compliant.

As a first step, Original Equipment Manufacturer (OEM) vehicle function re-

quirements have been analysed and studied from the provided document to under-

stand the context, the logic and the algorithm to be implemented.

Since the beginning, the model has been conceived to be as much optimized as

possible, therefore a draft model by hand has been produced in order to have an idea

on what functionalities needed to develop and how to handle the optimization pur-

pose. An optimized model will be translated into a lightweight C-code for embedded

94

CHAPTER 5. TESTS AND RESULTS

systems deployment.

After some refinements, the implementation model has been moved to the Mat-

Lab (Simulink/Stateflow) environment. A finite state machine has been built that

evolved through the states according to specific conditions. The next phase is called

Model-in-the-loop (MIL) as improvements on the model can be applied while testing

its behaviour from a functional point of view. Thus, test cases (specifications com-

pliant) have been generated to validate the model against the OEM requirements.

It is worth highlighting the fact that the developer, when designing the future soft-

ware, must pay attention and worry about the model in development, such that he

can get confident with his work earlier in the design phase.

Afterwards, the system model has been automatically translated into an opti-

mized C-code, thanks to the use of the TargetLink tool, as a software component

(application) to be integrated with the Basic Software (BSW) platform. Then, the

whole package has been ready to be cross-compiled and deployed on a real Electronic

Control Unit, a Body Computer Module (BCM) in this case.

Real-time validation tests, also called Hardware-in-the-loop (HIL), have been

carried out to achieve a high degree of confidentiality with the developed software.

For doing that, Vector CANalyzer tool has been used that provided a way of tracing

CAN buses. Furthermore, CANcaseXL has permitted me to send and receive CAN

messages, while debugging the code with an emulator.

To conclude, I would like to confirm that implementing a vehicle function from

scratch has been a good learning experience. I have acquired the knowledge about

automotive software development as I have worked on real project in an automotive

company. Also, I have adopted a well-known software design methodology with the

support of an automotive software standard. Moreover, I have learned new industrial

software tools. Then, because the whole engineering development process, used in

most of the automotive companies, has been followed, it has enabled me to obtain a

95

CHAPTER 5. TESTS AND RESULTS

correct, optimized and requirements-compliant vehicle function which may be used

for production.

96

List of Figures

1 Typical vehicle ECU . 8

2 ECUs network and communication buses on a car [from [1]] 9

1.1 AUTOSAR architecture made by layers 13

1.2 AUTOSAR-standard port-icons of ports interfaces 15

1.3 Communication between SW-Cs and ECUs 19

1.4 Software implementation process based on AUTOSAR-standard . . . 20

1.5 Distribution of SW-Cs descriptions to ECUs 23

1.6 Configuration process per ECU . 23

2.1 CAN transceiver components and inverted bus logic [from [11]] 29

2.2 A CAN node . 30

2.3 A typical LIN network bus [from [17]] 31

2.4 A LIN node . 31

2.5 A FlexRay node . 33

3.1 V-shaped development flow . 38

4.1 BCM functional diagram for the ETM vehicle function 50

4.2 Main chart containing working states 54

4.3 Inner states of the main chart . 56

4.4 SamplingFiltering state blocks . 57

97

LIST OF FIGURES

4.5 Key ON blocks . 59

4.6 Ventilate logic: updates the temperature sensor status as ventilat-

ed/not ventilated . 60

4.7 Key OFF blocks . 61

4.8 General model testing process . 65

4.9 Model after TargetLink integration 67

4.10 Input signals created with Signal Builder in No Communication to

Full Communication test . 68

4.11 ExpectedExternalTemperature signal created with Signal Builder . . 70

4.12 Assertion scope: result of the comparison between expected and ac-

tual output in No Communication to Full Communication test 71

4.13 Input signals created with Signal Builder at Full Communication and

Key ON with a temperature sensor fail 72

4.14 Assertion scope: result of the comparison between expected and ac-

tual output at Full Communication and Key ON with a temperature

sensor fail . 72

4.15 Input signals created with Signal Builder at Full Communication and

Key ON with a vehicle speed fail . 74

4.16 Assertion scope: result of the comparison between expected and ac-

tual output at Full Communication and Key ON with a vehicle speed

fail . 74

4.17 TargetLink Main Dialog settings . 76

4.18 Basic task states and its transitions 79

4.19 Extended task states and its transitions 79

5.1 CAN tools: PC with Vector CANalyzer and CANcaseXL connection . 83

5.2 Normal behaviour at Key On: MIL simulation results with Matlab . . 84

98

LIST OF FIGURES

5.3 Normal behaviour at Key On: HIL validation results with Vector

CANalyzer . 85

5.4 Normal behaviour at Key Off: MIL simulation results with Matlab . . 86

5.5 Normal behaviour at Key Off: HIL validation results with Vector

CANalyzer . 88

5.6 VehicleSpeed fail: MIL simulation results with Matlab 89

5.7 VehicleSpeed fail: HIL validation results with Vector CANalyzer . . . 90

5.8 TempSensor fail: MIL simulation results with Matlab 91

5.9 TempSensor fail: HIL validation results with Vector CANalyzer . . . 92

99

List of Tables

2.1 In-vehicle network protocols comparison 27

4.1 Table containing SW-C DataReceivePorts 53

4.2 Table containing SW-C ClientPorts 53

4.3 Table containing SW-C DataSendPorts 55

100

Bibliography

[1] Flex Automotive. CAN bus (Controller Area Network). http://www.flexautomotive.

net/EMCFLEXBLOG/post/2015/09/08/can-bus-for-controller-area-

network.

[2] AUTOSAR.org. Application Interface. https://www.autosar.org/standards/

application-interface/.

[3] AUTOSAR.org. AUTOSAR - Specification of the Virtual Functional Bus.

https://www.autosar.org/fileadmin/user_upload/standards/classic/

3-2/AUTOSAR_SWS_VFB.pdf.

[4] AUTOSAR.org. AUTOSAR Methodology. https://www.autosar.org/fileadmin/

user_upload/standards/classic/3-2/AUTOSAR_Methodology.pdf.

[5] AUTOSAR.org. Software Component Template. https://www.autosar.org/

fileadmin/user_upload/standards/classic/2-0/AUTOSAR_SoftwareComponentTemplate.

pdf.

[6] AUTOSAR.org. Technical Overview. https://www.autosar.org/fileadmin/

user_upload/standards/classic/3-0/AUTOSAR_TechnicalOverview.pdf.

[7] Schätz B. et al. “Model-Based Development of Embedded Systems”. In: Bruel

JM., Bellahsene Z. (eds) Advances in Object-Oriented Information Systems

(2002).

101

http://www.flexautomotive.net/EMCFLEXBLOG/post/2015/09/08/can-bus-for-controller-area-network
http://www.flexautomotive.net/EMCFLEXBLOG/post/2015/09/08/can-bus-for-controller-area-network
http://www.flexautomotive.net/EMCFLEXBLOG/post/2015/09/08/can-bus-for-controller-area-network
https://www.autosar.org/standards/application-interface/
https://www.autosar.org/standards/application-interface/
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AUTOSAR_SWS_VFB.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AUTOSAR_SWS_VFB.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AUTOSAR_Methodology.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-2/AUTOSAR_Methodology.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/2-0/AUTOSAR_SoftwareComponentTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/2-0/AUTOSAR_SoftwareComponentTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/2-0/AUTOSAR_SoftwareComponentTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-0/AUTOSAR_TechnicalOverview.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/3-0/AUTOSAR_TechnicalOverview.pdf

BIBLIOGRAPHY

[8] Karsai G. “A Challenge and Opportunity for Model-Based Software Develop-

ment”. In: Broy M., Krüger I.H., Meisinger M. (eds) Automotive Software –

Connected Services in Mobile Networks (2006).

[9] H.G. Gurbuz and Tekinerdogan B. “Model-based testing for software safety:

a systematic mapping study”. In: Software Qual J (2017).

[10] National Instruments. Controller Area Network (CAN) Overview. http://

www.ni.com/white-paper/2732/en/.

[11] Texas Instruments. Introduction to Controller Area Network (CAN). http:

//www.ti.com/lit/an/sloa101b/sloa101b.pdf.

[12] Real-Time Systems Laboratory. An introduction to AUTOSAR. https://

retis.sssup.it/sites/default/files/lesson19_autosar.pdf.

[13] Silverio Mart́ınez-Fernández et al. “A Survey on the Benefits and Drawbacks

of AUTOSAR”. In: Conference: WASA’15: 2015 Workshop on Automotive

Software Architecture (May 2015).

[14] Mathworks.com. Stateflow - User’s Guide. https://www.mathworks.com/

help/pdf_doc/stateflow/sf_ug.pdf.

[15] Paul Green Motoyuki Akamatsu and Klaus Bengler. “Automotive Technology

and Human Factors Research: Past, Present, and Future”. In: International

Journal of Vehicular Technology, vol. 2013, Article ID 526180 (2013).

[16] Guido Sandmann and Richard Thompson. “Development of AUTOSAR Soft-

ware Components within Model-Based Design”. In: SemanticScholar.com (2008).

[17] STMicroelectronics. LIN (Local Interconnect Network) Solutions, Application

Note (AN1278).

[18] Jnug Sung-Suk, Kim Jin-Ho, and Jeon Jea-Wook. “A Model-Based Design for

Electronic Control Unit of Electric Motorcycle”. In: Electrical Engineering, vol

194. Springer, Berlin, Heidelberg (2013).

102

http://www.ni.com/white-paper/2732/en/
http://www.ni.com/white-paper/2732/en/
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf
https://retis.sssup.it/sites/default/files/lesson19_autosar.pdf
https://retis.sssup.it/sites/default/files/lesson19_autosar.pdf
https://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf
https://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf

BIBLIOGRAPHY

[19] Vector.com. Learning module FlexRay. https://elearning.vector.com/vl_

flexray_introduction_en.html?markierung=flexray.

[20] Wikipedia. AUTOSAR. https://en.wikipedia.org/wiki/AUTOSAR.

[21] Wikipedia. OSEK. https://en.wikipedia.org/wiki/OSEK.

[22] Justyna Zander, Ina Schieferdecker, and Pieter Mosterman. Model-Based Test-

ing for Embedded Systems. Sept. 2011.

103

 https://elearning.vector.com/vl_flexray_introduction_en.html?markierung=flexray
 https://elearning.vector.com/vl_flexray_introduction_en.html?markierung=flexray
https://en.wikipedia.org/wiki/AUTOSAR
https://en.wikipedia.org/wiki/OSEK

Acronyms

API Application Programming Interface. 16

AUTOSAR AUTomotive Open System ARchitecture. 6, 9–16, 18, 19, 21, 23, 24,

34, 42, 47, 73, 75, 89, 91

BC Branch Coverage. 39

BCM Body Computer Module. 7, 9, 10, 47, 49, 50, 73, 76, 80–82, 90

BM Bus Minus. 31

BP Bus Plus. 31

BSW Basic Software. 11, 12, 15–17, 19, 23, 44, 59, 67, 68, 75, 76, 87, 90

CAN Controller Area Network. 10, 20, 25–31, 50, 62, 64, 80, 91

CD Collision-Detection. 27

CPU Central Processing Unit. 9

CSMA Carrier-Sense Multiple-Access. 27

CSMA/CD Carrier-Sense Multiple-Access Collision-Detection. 27

ECU Electronic Control Unit. 6, 7, 11–13, 15–21, 23, 25, 33, 44–49, 78, 91

104

Acronyms

ETM External Temperature Management. 5, 10, 47, 50, 51, 64, 67, 75, 79

FCC Function Call Coverage. 39

FDMA Flexible Division Multiple Access. 31

HIL Hardware-in-the-loop. 6, 39, 45, 80, 90

HW Hardware. 15, 16, 20, 24

LIN Local Interconnection Network. 20, 25, 26, 29, 30

MAAB MatLab Automotive Advisory Board. 43

MBSD Model-Based Software Design. 5, 9, 10, 34, 36, 38, 42, 43, 47, 89

MC/DC Modified Condition/Decision Coverage. 39

MCAL Microcontroller Abstraction Layer. 17

MIL Model-in-the-loop. 6, 43, 64, 69, 71, 73, 80, 82, 84–86, 90, 92, 93

NTC Negative Temperature Coefficient. 8, 9, 84

OC Open Circuit. 87

OEM Original Equipment Manufacturer. 5, 6, 9, 48, 49, 89, 90

OS Operating System. 51, 75, 76, 78, 79

PC Personal Computer. 44, 80

PIL Processor-in-the-loop. 44

RT Real Time. 44

105

Acronyms

RTE Runtime Environment. 11, 15–18, 20, 21, 23, 54, 59, 67, 68, 75, 78, 79

SC Statement Coverage. 39

SDLC Software Development Life Cycle. 36

SIL Software-in-the-loop. 44

SW Software. 11–13, 19, 21, 24, 50

SW-C Software Component. 13, 23, 34, 73, 78, 79

TDMA Time Division Multiple Access. 31

USB Universal Serial Bus. 81

VF Vehicle Function. 9, 47, 48, 54

VFB Virtual Functional Bus. 13, 15, 18

VIL Vehicle-in-the-loop. 39, 45

106

	Introduction
	AUTOSAR
	Introduction
	Main working topics
	Architecture
	Methodology
	Application interfaces

	AUTOSAR benefits and drawbacks

	In-Vehicle Network Protocols
	Introduction
	Controller Area Network (CAN)
	Local Interconnection Network (LIN)
	FlexRay

	Model-based software design
	Introduction
	What is Model-based software design?
	V-shaped development flow steps
	MBSD - practical perspective
	Modelling
	Model validation
	Code generation and integration

	MBSD benefits

	External Temperature Management (ETM)
	Introduction
	Developed Vehicle Function (VF)
	Functional diagram
	Model architecture
	External interfaces
	Inner states
	Model tests
	VF code generation and integration

	Tests and results
	Conclusions
	Bibliography
	Acronyms

		Politecnico di Torino
	2018-10-17T09:09:10+0000
	Politecnico di Torino
	Massimo Violante
	S

