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Abstract

World population is growing faster than expected. Every year Earth resources are consumed
faster, as proven by the early fall of the Earth Overshoot Day that claims the end of year
resources. One of the simplest solutions to this problem would be investing in technologies
and innovations towards a smart extraction of what population needs. In the last few years
a lot of companies introduced automation and robots to improve production in terms of time
and obviously cost. Agricultural world is not distant from this evolution; in fact many of the
works attempted are now helped by a set of machines that simplifies human work. Hitherto
the application in precision agriculture has been always under the human control; there are a
lot of applications that see the participation of a worker and in parallel a machine used for a
lot of tasks. In the future may an entire field will be managed by a group of automated robots
that work together. Those machines will require a lot of specific features likes autonomous
navigation, mapping, visual object recognition and many others. This thesis is part of that
project and it regards the detection and classification of fruits for future application of auto-
harvesting and health control. In a more specific way apples will be considered in this thesis
work for fruit application and methods and algorithms as Y.O.L.O. and Mask R-CNN to do
the processing of images will be described.These techniques permits the detection of apples
in post processing and in real-time with accuracies that range over 32% to 78%. The final
result can be used in future applications for spatial localization of fruits and for the detection
of possible diseases. It should be emphasised that, even if the thesis shows the results of the
object class apple, the algorithms can be applied in a wide range of objects with the only
requirement of a different training images dataset.
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Chapter 1

Introduction

World population is growing faster than expected and in parallel the request of food and
beverage is increasing. During the last 15-20 years the major exponents of technology asked
themselves on how to reduce the cost and to increase the production of all the raw materials
using new advanced methods of analysis. One of the sectors that also nowadays is still in
development is the agricultural field. Researchers devoted to the automation of the agricul-
tural field try to use newest technology to make the work simpler and faster. During these
years the methods have changed becoming more precise and making possible the usage of
these techniques not only in theory but also in practice. It is interesting to see how in these
years the methods have changed. In particular this elaborate is centred on the detection of
fruits and specifically on apples.

1.1 State of Art
Precision agriculture is a branch of scientific research that has been continuously evolving from
late ’90s. The first real approach can be found in the following works listed in chronological
order (only the important aspects are mentioned, for further information see [1, 2, 3, 4, 5]).

“A New Method for Fruit Recognition System”

This was a work dated back to 2009. It is based on the k-Nearest Neighbours (KNN) algorithm.
The system uses a colour-based, shape-based and size-based feature analysis to classify the
fruit in the images. The authors assure a value for the accuracy up to 90%. This particular
system works as follows:

1. Ask to the user the generation of a shape that encloses the fruit to recognise;

2. Calculate the average RGB of the fruit;

3. Calculate the fruit shape roundness: shape = 4π
1

Area
P erimeter2

2
;

4. Compute the KNN algorithm and generate the result.

This model is based on a particular database that includes details of colour (minimum and
maximum RGB values) and shape roundness for each type of fruit in the trained system.
In fact 50 images were processed and catalogued according to these features. Then, when
an image is given to this model, the KNN algorithm measures the distance between feature
values detected and the stored ones choosing the smallest distance that gives the highest
probability class of belonging. This was an old model that requires also a user intervention
for the classification but needs few data for training and very low hardware performance.

1



Chapter 1. Introduction

“Thai Fruit Recognition System (TFRS)”

This was a work dated back to 2009. It is similar to the previous explained one: it uses edge
shape, size and colour features to determine which kind of thai fruit is detected among the
39 classes in the training dataset. The only differentiation from the previous model is the
computation with the chain code method of the shape of the object: it is not asked to the
user the generation of the shape of fruit, but the image has to be very clear. The dataset
used is only formed by 128 images subdivided into 39 classes (an average of 3.28 images per
class) but the authors assure an accuracy about 87% and an average processing time per
image 55sec.

“Fruit Recognition using Color and Texture Feature”

This was a work dated back to 2010. The authors’ aim was the development of a fruit
recognition system based on intensity, colour, shape and texture feature of the image. The
idea at the base is always the same: using a dataset for the training of the model and then
compare it to the processed picture. The dataset used is composed by 15 classes of fruits
and 2633 images (175.53 images per class). The different approach used is about the usage
of HSV format for the processed images: a module transforms the picture from RGB into
HSV and then the chrominance channels ‘H’ and ‘S’ give colour features while luminance
channel ‘V’ gives texture features. The test image is then compared with the stored values
and a classification is done using the Minimum Distance Criterion. This is one of the first
algorithms that during the classification makes use of the RoIs (§4).

“Automatic Fruit Recognition and Counting from Multiple Images”

This was a work dated back to 2014. It represents one of the first similar applications of what
has been done on this thesis work. The researchers’ aim was the development of a system
able to count the pepper on a plant starting from multiple images. The overall system
is formed by an initial colour transformation module (from RGB to a custom value useful
for peppers) followed by a Naïve Bayes classifier; then a Bag-of-Words model with a SVM
classifier processes the test image and gives the result. It should be underlined that it was
used a Support Vector Machine classifier, one of the latest; also it was created an algorithm
able to identify the same pepper on different images taken in succession. This allows a count
of peppers with an accuracy of 74.2%. Therefore in this application it is possible to see a
dataset composed by 28,000 images and the sliding window technique to detect a pepper.

“Automatic Fruit Recognition from Natural Images using Color and Texture
Features”

This was a work dated back to 2017. The authors’ aim was the classification of 8 different
fruits using a training database of 240 images. The methodology introduces a new GrabCut
algorithm to split the fruits from the background. This procedure makes easier the creation
of the RoIs that are processed by the feature extractor (colours and texture) and finally given
to the SVM classifier. The results have an accuracy about 83%, making this method a good
classifier for fruits.

1.2 Motivations
As it can be clearly seen in previous works described in SoA section, all the solutions found
until this thesis are referred to a classification of the fruit from images. The aim of my work
is instead the detection of fruit that implies not only the comprehension of the presence of an

2
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apple in pictures but also the identification of its location. This is a big deal considering the
power needed by the hardware and the huge dataset needed for the training of a network.
The final platform can be applied in several manners, from auto-harvesting to the monitoring
of health conditions of the plant and fruits. The purpose of this thesis is to set the base for a
general methodology for future applications and to make clear how a neural network works.

1.3 Objectives
This thesis can be subdivided into different objectives:

• Making a general overview of the machine learning world;

• Explaining what are the neural networks for object detection;

• Instructing neural networks for the detection of apples with high confidence.
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Chapter 2

The History of Machine Learning

This chapter discusses several general concepts from machine learning science used in the
thesis to devise the classification algorithm. Machine learning is becoming over the time,
a wide field of research with almost eighty years of history. For this reason only neural
networks, a sub-field of machine learning, evolved in the past few years in a branch of study
dubbed deep learning, are covered in this part of the work.

2.1 Historical Overview of Deep Learning Techniques
“Machine learning is the science of getting computers to act without being explicitly pro-
grammed”. It is the sub-field of computer science that, as explained by Arthur Samuel (1959)
gives computers the ability to learn without being explicitly programmed. Teaching instead of
programming. The tendency of building an aware machine can be traced back to the origin
of modern computing, if not even before. The time-line 2.1 represents key points of machine
learning history that will be treated in the following.

Figure 2.1: Visual representation of historical key events.

Early works in machine learning field were largely inspired by the first studies on human
brain. The first researchers to make a contribute were Warren McCulloch and Walter Pitts.
Together they invented an approach called thresholded logic unit (TLU) basing the main
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structure on biological neuron: this was an explicit intent to emulate the internal behaviour
of our brains.
The year of that first step was 1943. However, it isn’t until Frank Rosenblatt’s perceptron
that it is possible to observe the first real ancestor of an actual neural network. For that
year, 1957, it was a huge innovation. Through a learning procedure, it has the capability to
improve its performances and with that it could detect correctly numbers and letters from an
image. Rosenblatt was so convinced that his invention would drive to a mature and actual
AI, that in 1959 he remarked: “(the perceptron is) the embryo of an electronic computer that
(the Navy) expects will be able to walk, talk, see, write, reproduce itself and be conscious of its
existence”. Perceptron is considered an important step forward, mainly for its capability to
learn from its mistakes, and it was the first real example of supervised learning. Rosenblatt’s
perceptron began to earn popularity between researchers; the 60s in fact saw a huge amount
of intelligent programs in very different fields of application: programs able to play table
games, plan sequences of actions and able to elaborate opinions in precise fields.
But in particular, Marvin Minsky started to gain interest in the perceptron idea. Largely
considered as one of the father’s of artificial intelligence, perceived the hidden limitations
of Rosenblatt’s perceptron. In 1969 he published, along with Seymor Papert, a textbook
called Perceptrons that stifled the rising Ronsenblatt’s idea, ending the embryonic idea of
neural networks. They gave a demonstration of inability to learn the trivial exclusive-or
function (XOR problem), also giving it an unlimited training time. Indeed, the exclusive-or
is a non-linear function and the perceptron, being a linear model, is incapable to learn it.
This unlucky discover turned out, in a matter of weeks, all researches on neural networks and
push the field of machine learning in what has later been called dark age or AI winter.
Lately, a well known researcher, Geoffrey Hinton, in 1986, turned the doom of machine
learning. With a famous publication, written in cooperation with Ronald Williams and
David Rumelhart, entitled “Learning representations by back-propagation errors” he gave
a proof that neural networks with multiple hidden layers could be quickly trained. This
was done by means of a new algorithm called backpropagation that still today represents
a pillar of machine learning. Non-linear functions were not anymore a limitation because
the additional layers provided networks with the capability to learn every type of function.
Indeed, after this publication, in the same year, it was mathematically demonstrated this
peculiar capability with a theorem known as the universal approximation theorem. This new
algorithm has opened the feasibility of several different projects. For example, exploiting
the novel backpropagation, Yann Lecun at AT&T Bell Labs devised a new type of neural
network known as Convolutional Neural Networks (CNN) in order to recognize handwritten
digits (figure 2.2).
Unfortunately, at that time it was not possible to apply the new technique to larger problems
due especially to the calculation power of the computers: neural networks were put aside for
a second time. But this time the slowdown concerned only the field of neural networks, and
so by the 90s other machine learning algorithms started to gain popularity. For example,
support vector machine (SVM) proved to be a very promising and usable solution.
Around 2006 Hinton once again introduced a new surprising idea: unsupervised pre-training
and deep belief networks. As explained by him “the idea is to train a simple two layers
unsupervised model like a restricted Boltzmann machine, freeze all the parameters, stick on
a new layer on top and train just the parameters for the new layer”. With unsupervised
learning a neural network is shown unlabeled data and asked simply to look for recurring
patterns. Finally researchers, using this new methodology, could train more complex and
deeper (multiple hidden layers) neural networks creating a completely new field of machine
learning known as Deep Learning.
After this turn point, many researchers started to gain interest in these novel techniques and
several publication started to be published by different research centres around the world.
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(a) Graphical representa-
tion of LeNet architecture.

(b) LeNet-5 can tell apart
two characters even when

they strongly overlap.

Figure 2.2: LeNet-5 is a convolutional network designed for handwritten and
machine-printed character recognition.

Figure 2.3: Representation of how deep learning is collocated in time within
the AI research and in space within the machine learning field.

Since that moment neural networks, a little bit at a time, started to surpass traditional
methods achieving important results in many different fields and applications: computer
vision, speech recognition, medical diagnosis and many others. An important contribution
in this last achievements has been given by Fei-Fei Li, a Stanford A.I. professor, convinced
that Data drives learning. In 2007 she published “ImageNet” (Deng et al., 2009), composing
an open database, through a collaboration between several research centres, of more than 16
million catalogued images. It was uploaded on the Web in 2009, and the following year she
established an annual competition to boost computer-vision breakthroughs, the Large Scale
Visual Recognition Challenge (LSVRC).
A major improvement has been done by AlexNet in 2012. For the first time, they had the
groundbreaking idea to train the network using graphics processing units (GPUs). GPUs are
parallel floating point calculators and they demonstrate how this hardware can be used to
machine learning application with astonishment result also for huge models. Therefore they
introduced the concept of dropout for the over-fitting problem and the introduction of the
rectified linear activation unit (ReLU) as models for the neurons.
The foundation Partnership on AI on September 2016 testify the complete evolution and
relevance of machine learning technique on our life. Corporations like Amazon, Facebook,
Google, DeepMind, Microsoft, IBM, Apple joined this partnership with the precise purpose
to build a true A.I. for the good of mankind.
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2.2 An Introduction to Neural Networks

2.2.1 Thresholded Logic Unit (TLU)

The best way to understand what is a neural network is briefly introducing how biological
neurons works.

Figure 2.4: Presynaptic and postsynaptic neurons.

A brain neuron (figure 2.4) is a cell composed of a body, minor extensions called dendrites and
a major one, the axon. At the end of axon is possible to observe a series of little protuberances
said synapses used as contact elements for other nearby neurons. Neurons are able to transmit
an electric signal along their axons. As soon as this signal is close to the synapses, the latter
release a certain amount of chemical substance known as neurotransmitters. The quantity of
neurotransmitter released in the synaptic slit determines the conductivity of the synapse, that
is how much the synapse boosts or attenuates the electric signal from the axon. Downstream
of the synaptic slit, the post-synaptic neuron is endowed with receptors able to capture
neurotransmitters. When that happens, local currents are generated near the synapses.
These currents can sum up in space and time. If the sum exceeds a certain threshold, an
impulse of a certain entity and duration, known as spike, is generated. This signal goes across
the new axon starting over the process.

(a) Two brain neurons connected with their
synapses.

(b) A simple neural network composed by two unde-
fined units.

Figure 2.5: The different parts of brain neurons are modeled achieving what
is called a neural network. The brain cells are highlighted with different colours
in order to put in evidence the duality with the positronic representation.

An attempt of reverse engineering of this biological structure is done by neural networks
(figure 2.5). In a neural network neurons are represented as units able to elaborate input
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signals from other neurons. Synapses are described as connections among units. The electric
signal that goes through, along the axon, is represented with a number, usually between 0
and 1. The synapses conductivity is defined with variables known as weight of the connection
(wj). Usually, units perform two very simple operations on input signals: they compute
the activation potential and with their activation they produce an output signal through an
activation function. The activation potential is computed as the sum of the weighted signals
from other neurons (figure 2.6). The output signal is processed on the base of the activation
potential and certain mathematical functions that determine the nature of the unit.
Now it is easy to make a parallelism and understand how the first TLU works. This unit
follows the following precise rules:

• Each artificial neuron has a given threshold, θ;

• Each logic unit has a binary output;

• Each neuron has a link with an inhibitory signal;

• A neuron receives many input signals, all having identical weights;

• Without an inhibitory signal, all weighted signals are summed together and the output
f is equal to 1 if the sum is greater equal than the threshold.

The following equation shows the characteristics of the thresholded unit function.

f =

 1 :
nq

j=1
wjxj ≥ θ ∧ no_inhibition

0 : otherwise

Figure 2.6: McCulloch and Pitts’s threshold logic unit.

With this unit is trivial to implement any Boolean logic function except for the exclusive-OR
that can be achieved starting by a cascade of three neurons. These was a groundbreaking
achievement but unfortunately not very practical; the network doesn’t display any kind of
learning. In order to perform the desired computations, weights and connections have to be
set manually. So, it is easy to understand that it does not bring any real advantage over
traditional boolean circuits.

2.2.2 The Perceptron

The differences of perceptron with the old TLU can be summarized by the following points.

• Weights and biases are not all identical;

• Weights can be either positive and negative;

• The inhibitory signal is no longer present;
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• Perceptron has been introduced with a learning rule.

The activation function, presented in the following equation is very similar to the TLU one.

output =
I

0 :
q

j wjxj ≤ threshold

1 :
q

j wjxj > threshold

Now consider w and x as an array and b (bias) as the inverse of the threshold the equation
can be re-written as:

a =
I

0 : w · x+ b ≤ 0
1 : w · x+ b > 0

where a is the activation function. The bias can be think as a threshold that largely influences
the output of the unit. In fact with a high value of it, the unit will likely have an output
equal to one.

Figure 2.7: Rosenblatt’s perceptron.

But what is much more important of this new idea is the learning algorithms, which enables
to use artificial neurons in a radically different way to conventional logic circuits. This new
unit, unlike its predecessors, can learn how to solve problems from its own. So, instead of
creating a circuit by hand, Rosemblatt’s perceptron is able to adjust its variables to deal
with the given problem. The learning procedure is very trivial. Defining the output with
y = y(xj) , where x are perceptron’s inputs, and a the actual output, is possible to define
the delta error. Delta error is the difference between the true output and the present one,
and the weight modification is proportional to delta

δ = (y(xj) − a)
∆wj = η · δ · a

where η is the so called learning rate (0 ÷ 1). It is trivial to understand how this equation
works. If the output of the ith neuron is under the desired value, weights of the unit are
modified to raise its total input. On the other hand, if it is higher than the desired value,
weights are adjusted accordingly to the delta error.

2.2.3 Framework of Neural Networks

The previous architectures have in common the single output. This structure doesn’t permits
the learning of non-linear function. In fact, functions as XOR cannot be recognised by the
perceptron and this situation gives birth to the AI winter. In order to obtain more complex
equations neural networks were transformed adding more layers mutually interconnected.
The impossibility to learn only problems linearly separable is now not anymore present. The
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Figure 2.8: Nomenclature of a four-layer neural network.

new architecture has many weights and biases that define it and needs obviously a more
complex algorithm to be trained. The commonly used notation is presented in figure 2.8.
The network used as example is a four layers neural network. The leftmost layer is composed
of units known as input neurons and together they form the so called input layer. On the other
side there is a layer known as output layer made by output neurons and that in this particular
case contains only one unit. The two external layers are connected by the intermediate hidden
layers. Four parameters are necessary and sufficient to describe the neural net:

• xj is the jth input for the jth input neuron. Usually they are collected in a vector x;

• bl
j is the jth bias of the lth layer. Also bias are collected in a vector bl for each layer;

• al
j is the activation function of the jth unit in the lth layer. al is the related vector;

• wl
jk is used to identify a weight for the link from the kth neuron in the (l − 1)th layer

to the jth unit in the lth layer. In this case is it possible to compress all weights in a
matrix for each layer wl.

The differences between this structure and the previous perceptron can be showed using the
activation function produced at each neuron given by:

al
j = σ(

Ø
k
wl

jka
l−1
k + bl

j) −→ al = σ(wlal−1 + bl)

With only one hidden layer, a network is able to compute a huge number of functions but
already with two, its capabilities grows exponentially. This is trivial to understand because
the second hidden layer allows to sum more complex functions coming from the previous
layer. As example adding only one hidden layer the net is able to pass from the impossibility
of learn the function XOR to the computation of a complex structure as showed in figure 2.9.
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(a) Three layers neural network with two input neu-
rons and one output neuron.

(b) Plot of the possible output graph.

Figure 2.9: Visual representation of the computational capabilities of a simple
neural network.

2.2.4 Main Activation Functions

Modern neural networks exploit different kind of activation units. Many models have been
developed over time. The following are most used ones.

Sigmoid Unit

Learning procedure involves a change of weights and also biases (the perceptron learning
procedure implies only weights change). This naturally creates a difference in the output as
presented in figure 2.10.

Figure 2.10: Weights variation propagate along the network resulting in a
variation of the output.

Imaging that the network is made again of perceptrons, and that due to the expression of their
activation functions, tiny changes at the input layer of the network can produce a completely
different result at the output layer. So, if the output was zero, it could change to one with
slightly variations of the values of some variables. The aim of the introduction of the sigmoid
function is to lessen the effect of small variation and balance them to the final output.

σ(z) = 1
1 + e−z
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(a) Perceptron activation function. Output can only
flip from zero to one depending from the bias.

(b) Sigmoid function output can assume any values
between zero and one.

Figure 2.11: Step function and sigmoid function plots.

The new activation function results:

σ(wx+ b) = 1
1 + exp(−

q
j wjxj − b)

This new type of unit overcomes the major problem of the perceptron model. Indeed, the
output of the function does not have a discontinuous behaviour anymore, but it responds in a
smooth way to input variations. The sigmoid function can be seen as a smoothed perceptron
activation function.
The weights and biases change respectively the inclination and the position of the plot as
shown in figure 2.12.

Figure 2.12: Depiction of how weights and bias influence the shape of the
graph.

Linear Unit

A linear unit is a transfer function which produces an output equal to the activation potential.
It does not make any modification to the input a = σ(z) = z. The resulting graph is a simply
straight line going trough the first and third quadrant.
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Tanh Unit

The hyperbolic tangent (tanh) function could be a great alternative to the sigmoid one. Many
papers have demonstrated that this kind of artificial neurons in some situations perform much
better than with other activation units. The main difference with the other activation function
can be noticed in figure 2.13; in fact the output has a range between -1 and 1 and not between
0 and 1. This must be kept into consideration for the specific application devised. The tanh
equation is:

tanh(z) = ez − e−z

ez + e−z

so the activation function can be calculated with tanh(wx+ b):

σ(z) = 1 + tanh(z/2)
2

Figure 2.13: Plot of the tanh unit activation function. The range of the
vertical axis is between -1 and 1.

Rectified Linear Unit (ReLU)

ReLU is also known as a ramp function and is similar to half-wave rectification in electrical
engineering. Nowadays, rectifier is the most popular activation function for deep neural
networks. This is due to many factors (most important the vanishing or exploding gradient).
The expression of the ReLU function is:

σ(z) = max(0, wx+ b)
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Figure 2.14: Plot of the rectified linear unit (ReLu) activation function.

Softmax Unit

These special units are mostly used for the output layer of a neural network, especially for
classification problems. For this reason, this unit is always used in the final layer and aL is
a vector made of output components aL

j and so zL = wLaL−1 + bL.

aL
j = σ(zL

j ) = ezL
jq

k e
zL

k

What is very interesting of this unit is that can be thought as a probability distribution since:

Ø
j

aL
j =

q
j e

zL
jq

k e
zL

k

= 1 (2.1)

Thus, for this last characteristic, softmax units are increasingly used in the output layer. In
this way, it is possible to interpret networks predictions as probabilities, or a fast overview
of the confidence of the network in its answer.

2.2.5 Gradient Descent

Far from now is clear how a simple neural network can work. More complex structure needs
computation different from the basic ones in order to learn and to give significant results. At
this purpose is useful introduce what is one of the central concepts in neural networks: the
cost function. This is the factor that quantify if the net is near or not from the goals. One
of the first, simple and nowadays most used is the mean squared error:

C(w, b) = 1
2n
Ø

x

||y(x) − a||2 (2.2)

where y(x) are the desired output and a the actual one. An hypothetical perfect training
algorithm should have variables in a way that C(w, b) ≈ 0. It means that the net should
cyclically adjust the variables in order to minimize the cost function.
In order to find this algorithm it is better to consider a generic case in which the input
of the cost function is a n-dimensional vector v. It is not practical and in some cases not
even possible to use calculus to minimize the C(v) function. Another approach has to be
adopted due to the huge amount of variables given by v. Considering small variations for
each components vj of the vector, C function varies as in equation 2.3.

∆C ≈ ∂C

∂v1
∆v1 + ∂C

∂v2
∆v2 + ∂C

∂v3
∆v3 + · · · + ∂C

∂vn
∆vn (2.3)
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All different ∆v can be merged in an array ∆v = (∆v1,∆v2)T and all derivatives in ∇C =
( ∂C
∂v1

,
∂C

∂v2
)T defining the gradient of C, is possible to obtain equation 2.4.

∆C ≈ ∇C · ∆v (2.4)

What is very useful in equation 2.4 is that permits to choose ∆v so as to make ∆C negative.
So keeping in mind that ∇C contains how C varies for each component vj , is natural to set
∆v as in equation 2.5

∆v = vÍ − v = −η∇C (2.5)
where η is again the small positive value known as learning rate. Substituting 2.5 in 2.4 the
following result is obtained:

∆C ≈ −η∇C · ∇C = −η||∇C||2 (2.6)

Equation 2.7 can be interpreted as an update rule. This gives what is called gradient descent
algorithm. This powerful methodology cyclically updates v trying to minimize the reference
cost function C, so that

v → vÍ = v − η∇C (2.7)
This type of algorithm is largely used in machine learning and requires only little modification.
The main problem related to this computation is referred to the choice of the learning rate
(figure 2.15): a high value is able to face large number of variables and do a fast computation
but may not never converge to the final solution; on the opposite a small value risk to take
too much time for the training and make the algorithm unusable.

Figure 2.15: Representation of big and small learning rate.

The equation obtained so far are for a general case. Using weights and biases in equation
2.7 instead of general variables v, it is possible to obtain the actual algorithm used to train
neural networks. In other words, the equation expressing C has components wj and bjsuch
that

wj → wÍ
j = wj − η

∂C

∂wj
(2.8)

bj → bÍ
j = bj − η

∂C

∂bj
(2.9)

At this point is worth to take a look again to the formula of the cost function presented
in equation 2.2. The cost function in a compact representation can be expressed as C =
1
n

q
xCx, that is simply an average over the elements Cx = ||y(x) − a||2

2 where x is an
input array of the input layer. Thus, in order to obtain ∇C , the gradients ∇Cx have to
be separately computed for each input x and then averaged over all the inputs, so that
∇C = 1

n

q
x ∇Cx.
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2.2.6 Stochastic Gradient Descent

This is the first solution to the application of the gradient descent to a huge training input
number. The stochastic gradient descent considerably reduce the learning process time; in-
stead of using all training data to compute ∇C, it is possible to estimate its value by adding
a small number of ∇Cx. Instead of using all the n training inputs, only a subset of m of
them is used.

∇C = 1
n

Ø
x

∇Cx ≈ 1
m

Ø
j

∇Cj (2.10)

The parameter n represents all training inputs and m is the chosen mini-batch of input
vectors. At this point is possible to rewrite equation 2.9 as

wj → wÍ
j = wj − η

m

∂C

∂wj
(2.11)

bj → bÍ
j = bj − η

m

∂C

∂bj
(2.12)

The sum is not anymore over all training inputs but only on the inputs of the selected
mini-batch. After updating all weights and biases another randomly mini-batch is selected.
The gradient stochastic algorithm cyclically takes a new mini-batch, in a random manner,
from the training data until all inputs have been considered. At this point a training epoch
is completed and the algorithm starts the cycle again with a new epoch. The presented
algorithm can have mini-batches of different sizes and it is also possible to choose a mini-
batch of one only element. This procedure goes under the name of online or incremental
learning and is similar to how human brains work.

2.2.7 Backpropagation Algorithm

Until now the main problem in order to apply gradient descent and thus make the network
learn is the computation of the ∂C

∂wl
jk

and ∂C

∂bl
j

. This algorithm is called backpropagation

because, starting from output layer of a network and going back, it is able to compute the
two partial derivatives of the cost function and subsequently compute in a easy way weights
and biases. Practically, it is a technique that allows to use gradient descent and naturally all
its versions in a practical case. Firstly, the algorithm defines a new quantity know as output
error δl

j . Using this notation, output error refers to the jth neuron of the lth layer. This
quantity is defined with equation 2.13. It is the variation of the selected cost function respect
to the potential activation function. Again z refers to the jth neuron of the lth layer.

δl
j = ∂C

∂zl
j

(2.13)

It is possible to group together all components in a single vector δl. So, backpropagation
uses this novel quantities δl

j , and uses them to compute ∂C

∂wl
jk

, ∂C
∂bl

j

. At this point with some

mathematical passages it is possible to extract the four fundamental equation of backpropa-
gation.

δL = ∇aC ¤ σÍ(zL) (2.14)
δl = ((wl+1)T δl+1) ¤ σÍ(zl) (2.15)

∂C

∂bl
j

= δl
j (2.16)

∂C

∂wl
jk

= al−1
k δl

j (2.17)
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Where the last equation represent the selected cost function. Observing the four equations of
the backpropagation algorithm, it is possible to understand how it works. Firstly, error values
are computed for the output layer and then are back propagated until the input layer through
the second equation. The third and fourth equations relate these previously computed errors
with the partial derivatives, essential for gradient descent. It is therefore possible to use
the results for the two equations 2.11 and 2.12 for the learning process. In conclusion,
algorithms such as gradient descent or stochastic gradient descent are always related with
backpropagation, that makes computations feasible. For example, using stochastic gradient
descent and backpropagation, choosing a mini-batch of m training inputs, the following steps
must be performed:

1. A group of m examples is selected from the n available of the dataset;

2. For each x of the m available:

• x is applied to the input layer;
• Feedforward: following all layers l = 2, 3, . . . , L, potentials zx,l = wlax,l−1 + bl and
also activation functions are computed ax,l = σ(zx,l);

• Output errors: δx,L is computed as δx,L = ∇aCx ¤ σÍ(zx,L);
• Backpropagation: for all layers l = L − 1, L − 2, . . . , 2 are computed δx,l =

((wl+1)T δx,l+1) ¤ σÍ(zx,l).

3. For each layer l = L,L−1, . . . , 2 are updated all variables, weights and biases, following
the stochastic gradient descent algorithm;

wl → wl − η

m

Ø
x

δx,l(ax,l−1)T

bl → bl − η

m

Ø
x

δx,l

4. A new mini-batch of input vectors is selected from the n−m available until the epoch
is concluded.

With this algorithm and with relatively enough computational power, is possible to train a
general multi-layer network. Unfortunately, this is the most basic and primitive algorithm
and a lot of possible problems could occur, making difficult the training of the network.

2.3 Training Problems of Neural Networks
Before starting, it is necessary to make some preliminary remarks. The type of neural net-
works presented so far are called feed-forward neural networks because the signal is always
propagated in one direction. But there are many others that are not explained in this chapter
like, recurrent neural networks, long short-term memory units, deep belief nets (generative
models), Hopfield networks and so on. Moreover, it is important to clarify that the approach
used to train the presented feed-forward neural networks is known as supervised learning.
Nowadays, other two main techniques are vastly used dubbed unsupervised learning and
reinforcement learning respectively.
Instead, in this section we will discuss different problems related with the training of neural
networks and their possible solutions.
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2.3.1 Neuron Saturation

In order to understand the problem we will observe a very simplified network with only one
neuron. As seen in the previous sections, partial derivatives of the selected cost function ∂C

∂w

and ∂C

∂b
influence how network neurons learn. Using again the basic quadratic cost function,

adapted for only one neuron C = (y − a)2

2 , it is trivial to achieve the following results:

∂C

∂w
= (a− y)σ̇(z)x = aσ̇(z)

∂C

∂b
= (a− y)σ̇(z)x = aσ̇(z)

In this simple case is easy to observe that both weights and bias are driven by the derivative
of the activation function. So practically when σ(z) is near 1 or 0 its derivative σ̇(z) gets
very small. This creates a learning slowdown of the network that sometimes prevents any
kind of improvement. The problem can be addressed with different approaches.

Learning Slowdown in the Final Layer

In order to solve the problem in the last layer (output layer), different types of cost functions
can be used.

• Cross-entropy cost function. This is one of the most used cost function. The expression
for multiple outputs is given by equation 2.18:

C = − 1
n

Ø
x

Ø
y

[yjln(aL
j ) + (1 − yj)ln(1 − aL

j )] (2.18)

Again, considering a single neuron with multiple inputs and only one output, it can be
demonstrated that the gradient takes the form of equation 2.19:

∂C

∂w
= 1
n

Ø
x

xj(σ(z) − y) (2.19)

Equation 2.19 suggests that weights updating is proportional to (σ(z) − y) and the
activation function, or better its derivative, does not play any role anymore.

• Log-likelihood cost function. This cost function is always used in conjunction with an
artificial neuron already presented: the softmax unit. As has been previously described,
softmax is increasingly exploited for the output layer in a lot of different applications. In
fact, due to its formulation 2.1, the output layer values can be described as a probability
distribution. The related cost function known as log-likelihood cost function is presented
in equation 2.20:

C = −ln(aL
x ) (2.20)

In 2.20 x is the designated training input to the network and L indicates the output
a of the final layer. If the network is very confident of the prediction, it estimates an
output value close to one, and the corresponding cost function is very small. Again, it
is possible to demonstrate that the gradients assumes the following expressions:

∂C

∂bL
j

= aL
j − yj (2.21)

∂C

∂wL
jk

= aL−1
k (aL

j − yj) (2.22)

Like the previous method, it is possible to notice that again the two partial derivatives
do not have any derivative term and so, the learning slowdown problem is prevented.
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Weight and Biases Initialization

With the previous solution there is an high probability to saturate some neurons in the
hidden layers. Indeed, changing the cost function only affects the final layer. It is possible
to reduce this problem initializing all variables with a Gaussian probability distribution with
mean 0 and standard deviation equal to 1

√
nin

where nin is the number of input weights of

the selected neuron. With this technique learning slowdown is greatly reduced because all
neuron units have less probability to saturate. Instead for biases initialization there are two
main approaches: either set at the beginning all biases equal to zero or use the previous
approach (mean of zero and standard deviation equal to 1). Indeed, biases affect much less
the slowdown problem than weights and so they do not need any adjustment.

2.3.2 Data Overfitting

Another main problem is given by data overfitting. Having a huge amount of variables to
train is likely to overfit data and instead of generalize abstract concepts the network could
learn peculiarities of the training set. This must be avoided because a network able to make
predictions only on data taken from the training set is useless. Fortunately, many different
techniques can be used to overcome this important problem.

Dividing Data

This method involves dividing available data in three different categories. Training data
dedicated to the learning process of the network, Validation data to test the network at the
end of each epoch and Test data in order to make a final check at the end of the training
session. So a first signal of overfitting is when the accuracy of the validation data stops
increasing and the one of training data keeps increasing. A basic strategy known as early
stopping consists of stopping training once the classification accuracy has saturated. In
general, keeping track during training of these three class of data can be very useful not only
for overfitting problem but also to set and find good hyper-parameters for the neural network.

Artificially Expanding the Training Data

Modern neural networks have thousands of parameters or even more and so, it is quite easy
to overfit training data without having a generalization of the problem. The easiest way
to overcome this problem is increasing the number of training example but naturally, this
option is not always available for practical reasons. Instead, a group of researchers have
developed a technique know as artificially expanding the training data in order to enhance
the dataset without adding more examples. The basic idea is to expand the available data
set by processing images with filters and distortions so applying operations that in a way
reflects real world variations. Example of image processing are rotation, translation, skewing
and elastic distortion.

Regularization Techniques

The methodologies just explained are one way to face overfitting problem but usually alone
are not sufficient. Fortunately, there is a set of techniques, known as regularization techniques,
that are able to reduce this major problem also with a fixed dataset. Here are presented the
two most used but, over the time, many papers have proposed valid alternatives.
The first one is L1 regularization. The procedure requires a modification of the selected cost
function. For example, using L1 regularization with the cross entropy equation presented in
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equation 2.18, a term called regularization term is added:

C = − 1
n

Ø
x

Ø
y

[yjln(aL
j ) + (1 − yj)ln(1 − aL

j )] + λ

n

Ø
w

|w| (2.23)

where in the second sum w is the number of weights and λ is a new hyper-parameter that
has to be set. It is possible to simplify equation 2.23 as:

C = Co + λ

n

Ø
w

|w| →
I
if λ is small the regularization term can be omitted
if λ is large the analyzed model learns small weights

Intuitively, the proposed method makes the model learn small weights and they can be
large only if they greatly decrease the value of the selected cost function. Moreover, L1
regularization tends to keep the majority of the weights equal to zero and concentrate non-
zero variables in a small region of important connections.
The second very popular technique is known as L2 regularization. Similar to L1 regularization,
it requires to modify the selected cost function adding an extra term.

C = Co + λ

2n
Ø
w

w2

Making all needed computations is possible to demonstrate that gradients assume the follow-
ing form:

∂C

∂w
= ∂Co

∂w
+ λ

n
w

∂C

∂b
= ∂Co

∂bo

Thus, gradient descent algorithms is expressed by

w → w − η
∂Co

∂w
− ηλ

n
w = (1 − ηλ

n
)w − η

∂Co

∂w

Dropout

It is a radically different technique for regularization. Unlike L1 and L2 regularization, this
techniques does not required to make changes to the selected cost function. For each training
step only a percentage of neurons are activated (usually 50%). The rest of the neurons are
bypassed and their weights and biases aren’t updated. At the successive training step the
process is repeated with a different neurons randomly picked-up. As it is explained by the
same authors "[. . . ]this technique reduces complex co-adaptation of neurons, since a neuron
cannot rely on the presence of particular other neurons". With this methodology, therefore, a
neuron is forced to learn more robust features that are useful to abstract data. Dropout has
been especially useful in training large, deep networks, where overfitting is a major problem.

2.3.3 Vanishing Gradient Problem

In the history part is not explained why after the publication of backpropagation, other
machine learning techniques like support vector machines (SVM) or random decision forest
took the lead putting aside neural networks. Why researchers have not taken advantage of
backpropagation algorithm to build neural networks of many layers? Unfortunately, though
backpropagation gives the way to compute the gradient and theoretically propagate it through
the network, updating all weights and biases, this does not train the network in a proper way.
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For problems related with gradient descent, usually early neurons learn very slowly or do not
learn at all. It has already been described how the variables inside a network are updated
according to the partial derivatives ∂C

∂w
and ∂C

∂b
. Unfortunately, these quantities tend to

decrease getting nearer the first layers. This phenomenon is known as the vanishing gradient
problem.

Figure 2.16: A seven layer neural network affected by vanishing gradient
problem.

The best way to understand this problem is to write the first 2.14 and second equation of
backpropagation 2.15 in matrix form. Taking 2.14 is possible to write

δL = D(zL)∇aC (2.24)

where D(zL) is a square matrix with all values equal to zero with the exception of the
diagonal whose entries are σÍ(zL

j ). Thus, in this case instead of the Hadamard product 2.24
has a conventional matrix multiplication. Again from 2.15 is possible to obtain 2.25.

δl = D(zl)(wl+1)T δl+1 (2.25)

Finally combining 2.24 and 2.25 is possible to obtain the following result:

δl = D(zl)(wl+1)T . . . D(zL−1)(wL)TD(zL)∇aC (2.26)

Looking carefully at equation 2.26 it is possible to notice that, aside ∇aC, it is made with
several terms with the form (wj)TD(zj). Considering the network made of sigmoid neurons,
a single entry of the matrix σÍ(zL

j ) could have maximum value σÍ(0) = 1
4 (figure 2.11). For

this reason, for a single entry it is possible to write |wjσ
Í(zj)| < 1/4. Thus, the matrix D(zj)

does not contain entries larger than 1
4 . It is trivial to notice the all terms tend to make

the gradient unstable. A neuron in the first layers has a lot of components in its version of
equation 2.26 and so, its gradient has a very small value. So, gradient tends to vanish in
earlier layers producing an almost null training of the variables or a great slow down in the
update of weights and biases during the process.
In conclusion, the problem just presented is only one of many that have prevented researchers
in training networks with multiple layers and with complex frameworks. Fortunately, some
researchers did not give up and kept searching for solutions for these problems. Nowadays, due
to the contribution of these scientists, from some specific research centers, many techniques
and algorithms have been devised able to face learning problems of deep and complex neural
networks. These new structure have gradually overcome other machine learning techniques
and now, as a matter of fact, they are leading almost all the research on artificial intelligence.

2.4 Deep Learning
This section analyzes the last part of the time line in figure 2.1, starting from 2006 when the
deep learning started to be a reality. The main idea under deep learning is to break down the
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problem in multiple simpler sub-problems. So, it simplifies a complex task in simpler ones
in order to achieve a higher accuracy. This approach is not so different from how the human
brain works but the complexity is still not even comparable. Anyway, deep learning tries to
emulate some peculiar capabilities of it and that is achieved giving a role to the different parts
of a network. It is not anymore a matter of stacking multiple fully connected layers but each
one has a specific role, finalized to the specific task assigned. Networks with this type of logic
and framework are called deep neural networks. Again before starting it is necessary to make
some preliminary remarks. Deep learning is a huge subject with many fields of application
and many different ideas and thus, for the sake of the discussion, only concepts related with
image recognition are presented. Classification is a sub-field of pattern recognition and it
attempts to assign each input value to one of a given set of classes. However, the majority
of concepts can be used for other applications such as speech recognition, natural language
processing, object detection or localization, robot navigation systems, self-driving cars and so
on. The following points try to summarize the key ideas that made possible the development
of deep neural networks:

• Reduction of number of parameters using ideas such as convolutional neural networks
(CNN), pooling layers, and so on;

• Overfitting reduction through powerful regularization techniques;

• Speed up training using ReLU activation function instead of sigmoid neurons;

• Train models with GPUs instead of CPUs.

2.4.1 Convolutional Neural Networks (CNN)

The network presented in figure 2.16 and all others showed until this section are shown with
fully connected layers (all neurons of a layer are connected to all neurons of the following
layer). With this approach it is possible to achieve great results but it is not trivial to
scale them to more complex problems. The major challenge is that networks with fully
connected layers take inputs without giving any particular meaning to them. For example,
when they receive as input an image, they do not give importance to the spacial structure of it.
Intuitively, fully connected layers lack logic and they require to be specialized for the specific
task presented. Moreover, fully connected layers exponentially grow number of parameters
and so models are more difficult to train. The main idea is to keep the information of the
spatial structure of the input image. This is achieved by convolutional neural networks that
have proved to be particularly efficient to classify pictures. In order to better understand
how a convolutional layer works it is useful to analyze CNN under its key parameters.

Receptive Field

In a convolutional network an input image is considered with its natural form, a matrix of
pixels for black and white pictures and as three distinct matrices for colour images (red,
green blue). As usual, the input layer is connected to an hidden layer but, this time, for
CNN architecture each neuron is not connected with all neurons of the following layer. With
CNN, input neurons are linked with only certain specific hidden units. So, each hidden unit
is connected to a selected portion of space of the input layer. This little window is known as
local receptive field. Each connection of the receptive field has a weight and a single bias. So
for example in figure 2.17 (a) is represented a local receptive field of 3x3 (in blue). So, for this
specific CNN layer there are 9+1 different variables. This property is known as shared weights
and biases. In order to compose the hidden layer, the window slides through the input image’s
pixels creating step by step a layer of hidden neurons. How much the receptive field slides
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(a) Monochrome image processed by a filter of 3x3
receptive field.

(b) Colour image processed by a filter of 4x4 recep-
tive field.

Figure 2.17: Two CNN layers with different input data.

is said stride length. This two terms, stride length and local receptive field dimension, are
adjusted with the dimension of the input image. With larger input pictures, it is better have
higher values of these two terms. Summing up, basically a CNN layer has a local receptive
field of KxK dimension with KxK+1 variables (weights and bias). This square window slides
through the input image of a quantity S and at each step applies the equation known as
convolution.

σ

A
b+

KØ
l=0

KØ
m=0

wl,maj+l,k+m

B
(2.27)

As it is possible to observe, equation 2.27 takes into account only one bias and KxK weights.
Instead, ajk are the input activation signals. The union between all groups of shared variables,
weights and biases, is known as kernel or filter.

Zero Padding

Taking the first picture presented in 2.17 and supposing to have a input image of 32x32 pixels
and a local receptive field of 3x3 the output image will be of 30x30 because is possible to
move the receptive field only 31 times. This results in a loss of information that sometimes
can be disadvantageous. For this reason, is possible to apply a technique, known as padding
or zero padding, in order to obtain an output volume of the same dimension. To do this, the
input image has to be surrounded by a frame of lenght P and all the new grid cells have
value zero. As shown in figure 2.18 a zero padding of 2 has been added. In order to compute
the dimension of the output image is possible to apply equation 2.28.

O = (I −K + +2P )
S

+ 1 (2.28)

where O is the output length/height, I is the input length/height.
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Figure 2.18: CNN layer with zero padding equal two.

Features Map

Every local receptive field, associated to an hidden layer, trains its KxK weights and bias
and that variables are tuned to recognize a specific feature. Then, sliding the receptive field
over the image, the layer tries to detect the presence of that specific feature inside the input
picture. Whereby, a neuron of the layer is activated when its receptive field its excited by the
particular feature trained to recognize. But a CNN layer of this type can detect just a simple
kind of localized feature. For this reason each CNN layer has a stack of features map N .
Each feature map has different shared weights and bias and so a different kernel. To be more

Figure 2.19: CNN layer with N feature maps.

precise, each feature map trains its neurons to detect different features. All feature maps are
defined by a set of KxK shared variable, weights and biases. In this way a CNN layer it is
able to detect contemporaneously from the same image different features. Moreover, with
fully connected layers there is a weight and a bias for each connection instead, this approach
largely decreases the number of variables to train. For each feature map are needed K ·K+1
parameters and with N features map the total number of variable is (K ·K + 1)N .
Here is better to make a clarification; as for colour input image, also after a CNN layer,
instead of a matrix, our data is transformed in a 3 dimensional tensor with dimensions (K,
K, N). This means that the convolutional operation 2.27 is not any more done on a square
of pixels but on a cube of dimension KxKxN.

2.4.2 Pooling Layer

A convolutional neural network always contains also this kind of layer. More than a layer
is an operation made on the tensor output of the CNN layer. Its simple role is to further
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reduce the number of model parameters decreasing the dimension of the image going through
the network. The idea, as all other parts of a CNN, is supported by a logic framework.
Indeed, if a particular feature is detected by the previous convolutional layer it is not anymore
important its exact location in the original input image. So, pooling layer, with a very simple
mathematical operation, narrows down distance between detected features facilitating the
detection of more complex features from deeper convolutional layers. It gets closer features
in order to achieve a better overview of the overall image. Depending on mathematical
operations they perform, pooling layers can be of different types.

Max Pooling

In max pooling, each unit of the layer scans with its receptive field a portion of the input
matrix and outputs the maximum value of it. So, with a certain filter dimension it strides
across the matrix with the same length of the dimension. For example, in figure 2.20 the
input region is 2x2 and as for a CNN layer the window is slipped with a stride length of two
taking every time the maximum value.

Figure 2.20: Example of max pooling layer.

L2 Pooling

L2 pooling is another common approach. Again, it strides across the image with a certain
filter dimension but, in this case, it computes the square root of the sum of the squares of
the input values. In some cases, this approach could be more efficient than max pooling due
to its more complex operation.

2.4.3 Basic Architecture of a Convolutional Neural Network

Though the network depicted in 2.21 could seem very different from what have been pre-
sented so far, its basic working principle is always the same. Weights and biases are the
parameters to be trained and gradient descent, or its variations, with backpropagation are
used to achieve this purpose. Unlike fully connected layers, CNN gives more attention to the
spacial composition of its input and do not treat all inputs in the same manner. Moreover,
the problem of recognition is subdivided along the lenght of the network. First layers learn
to recognize simple features like lines, circles, edges, while deeper layers, supported by the
interposition of pooling layers, detect more complex compositions of features. The image is
first analysed through its edges and lines than, their detection is used, in later layers, to find
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Figure 2.21: Example of a common CNN. Zero padding has been set to zero
and convolutional and pooling layers has variable local receptive fields.

more abstract patterns like objects and physical elements. In a common CNN network after
a cascade of this layers (convolutional and pooling), data is flattened in a one dimensional
vector. This vector feeds a fully connected layer, usually characterized with dropout regu-
larization, attached to a final softmax layer. This later is used to make a prediction of the
input image. In conclusion, it is possible to think about a cascade of convolutional layers
as a detector of increasingly more complex patters and the last fully connected layer as a
computational model that takes detected features and associates them to the right outputs.
As a matter of fact, this simple logic of neural network performs much better than a trivial
network with a stuck of hidden layers. Moreover, substituting sigmoid function units with
rectified linear units it is possible to obtain faster training processes. In fact, in the case of
high values of z, rectified linear units max(0, z) does not saturate to one like sigmoid neurons.
In this way networks can keep learning at the same speed and do not risk a learning slowdown
due to the saturation of their units.
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Chapter 3

Machine and Deep Learning Platforms

One of the first step done during this thesis work was the research about possible available
platforms for the computation of machine and deep learning networks. It should be un-
derlined that most of the solutions found are written or base their functionality on Python
programming language; this was a choice due to my previous experience with it and the
flexibility given by this type of language, different from Matlab or R.

3.1 Machine Learning
As previously explained, machine learning is the highest branch of A.I. . Most of the algo-
rithms actually used are based on probabilistic and statistical computations that reach high
results especially when considering analytic data. In fact many algorithms of this type are
actually used by banks or insurance agencies for studying the behaviours of customers and
for offering the best tailored solutions. Many of these algorithms can be used with low com-
putational power and processing time almost null; the only request for a meaningful result
is the huge amount of data. It is not surprising that nowadays data have become the most
valuable good. The libraries and platforms found are:

• Scikit-Learn

• Mllib (Apache Spark)

• WEKA

• H2O

• Accord.net (developed in C#)

• Torch (developed on LuaJIT)

• pyBrain
Among these solutions, having slightly different each other for applications and supported
languages, Scikit-Learn [6] by Google is the most used ones. It is a simple and efficient tool
for data mining and data analysis built on NumPy, SciPy, and matplotlib. With this library
it is possible to do classification, regression, clustering and preprocessing of data and also
compare models and hyper-parameters.

3.2 Deep Learning
When talking about deep learning the algorithms that have to be used are more complex
and they require higher computational power. During the first part of the thesis work the
following platforms were found:
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• Tensor Flow (Google)

• Caffe (Berkeley AI Research)

• pyTorch

• CNTK (Microsoft)

• Nervana Neon (Intel)

• MXNet (Apache incubator)

• Deep Water

The major differences among these platforms are the documentation and hence the support
community. All these platforms are open-source because for now the main aim of the growing
deep learning community is the development of new solutions and merging this complex world
to real life. Obviously this choice implies that the available documentation is not the same
for all these solutions: only the most used ones have the necessary support community and
so only these ones are really growing.
The most significant ones are Tensor Flow [7], Caffe [8] and CNTK [9]. Tensor Flow is a
neural network library created by Google that learns to solve tasks by enhancing and pro-
cessing of data in different nodes that makes it possible to find a correct result. This machine
learning library offers to developers the usage of APIs for Python and C/C++ languages.
Thanks to the huge community that uses this platform it was taken into account as first
platform for deep learning algorithms used into this thesis. Furthermore, this is one of the
two platforms, alongside Caffe, supported by the Movidius (§7.2). Caffe framework is created
for commercial use in the first turn. At the same time, it is an open-source, it is written in
C++ language and it allows to write user algorithms in Python. Caffe offers a wide toolkit
for the development and deployment of modern deep learning algorithms. It is successfully
used for speech and images recognition in different fields including fields like astronomy and
robotics. It has a clean architecture for instant deployment that perform a quick switching
between central and graphics processing units. The open-source code that allows developers
not only to control integration but also modify it for their needs. This platform would have
been another good solution but it was not taken into account due to its poor community
contributions. CNTK is a Computational Network Toolkit developed by Microsoft for deep
learning algorithms. The toolkit is used in speech recognition services predominantly, such as
Windows Cortana, Skype Translator etc. The toolkit can also be used for automated transla-
tion and image recognition tasks resolution. It is developed in C++ language. CNTK allows
developers to create distributed neural networks made in the form of the oriented graph. It
supports several models of neural networks as feed-forward, convolutional, recurrent neural
networks as well as their combinations.
Above all those solutions is placed Keras [10]. Keras represents the library that can work
with neural networks on a higher level. It simplifies many tasks, it is used in quick experiments
and decreases the amount of the same code. It can be used with Tensor Flow, Caffe or CNTK
backend: this means that this platform can use the features of the toolkit listed but in a easier
way. For this reason it is considered as the best choice for deep learning computations.
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Object Detection

A particular area of Deep Learning is interested into the processing of images in order to
detect and recognise object. This area can be reconnected to the theory behind Computer
Vision and its evolutions. Computer vision is the interdisciplinary field that concerns the
creation of algorithms able to understand high-level features from digital images or videos.
From what concerns the engineering application, it seeks to automate tasks that the human
visual system can do.
This discipline embraces the acquisition, the processing and the analysis of the digital images
in order to produce numerical information to be used in the deep learning computation.
Computer vision was born in the late 1960s in universities pioneering artificial intelligence
but the real foundation of what is used also today is attributable to studies done around 1970s
that produced algorithms as extraction of edges, labelling of lines and other techniques.
The innovative techniques developed in the last years permit to create accurate machine
learning models that are capable of localizing and identifying multiple objects in a single
image. Those two operations are different and often confused with each other. The figure 4.1
explains the light difference.

Figure 4.1: Object Detection and Object Classification [11].
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In general, it can be possible to subdivide two scenarios, the first requires the identification
of that image under a specific category, so classification can be the right choice; the second
claims to identify the location of the objects recognised into the image and process that
information, in those case object detection can be used. Obviously the two methods are
far distance each other considering the complexity of the algorithm and results, so is not
always possible to make the right choice. Creating accurate machine learning models capable
of localizing and identifying multiple objects in a single image remains a core challenge in
computer vision. However the concept behind object detection is easy: every object class
owns special features that can be used to classify that class, as example all squares have four
edges, perpendicular at the corners and with equal side lengths; if the image shows those
characteristics, then a square is recognised. The same procedure is applied on all the desired
classes. It is important to say that with the usage of deep learning those features are learned
by the algorithm and not imposed by the programmer.

Region of Interests (RoIs)

Typically the process of object detection framework can be subdivided into three steps:

1. Creation of the Regions of Interests (RoIs): a model or an algorithm is used to generate
a large set of bounding boxes spanning the full image.

2. From each bounding boxes generated, visual features are extracted that are evaluated
in order to determine using visual features whether and which objects are present in
the proposals.

3. The overlapping boxes that include the same object are combined into a single box that
may contain the entire detected element.

An example is showed in figure 4.2.

Figure 4.2: An example of created Region of Interest [11].
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Image Gradient Vector

The creation of the RoIs can be implemented in various ways evolved during the years. All
these methods have their operating principle based on the Image Gradient Vector. The aim
is the knowledge of the direction of colours changing from one extreme to the other and then
measure the gradient on pixels of colours; it should be underlined that the gradient in these
cases is discrete due to the fact that each pixel is independent and cannot be further split.
The declared vector owns the variation of the colour of the pixel along both directions, x-axis
and y-axis. The definition for a pixel localised in the (x, y) location is the following:

∇f(x, y) =
C
gx

gy

D
=

∂f
∂x

∂f
∂y

 =
C
f(x, y + 1) − f(x, y − 1)
f(x+ 1, y) − f(x− 1, y)

D

It is noticeable how the partial derivative terms are computed as the colour difference between
adjacent pixels; for example ∂f

∂x is computed as the colour of the the pixel on the left, f(x, y−
1), minus the colour of the pixel on the right, f(x, y + 1); the same is for the other direction
(Figure 4.3).

Figure 4.3: Gradient representation [11].

As in mathematics also in this case the gradient has two important values used in the algo-
rithm:

• Magnitude computed as the L2-norm of the vector: g =
ñ
g2

x + g2
y

• Direction computed as the arctangent of the ratio between the partial derivatives on
two directions: θ = arctan (gy/gx)

This process applied to every pixel implies a lot of wasted time. Instead the process can
be included into the application of a convolution operator on the entire image matrix; these
operators can be different based on the algorithm and are created for a specific purpose as
sharpening, blurring and edge detection. Two examples are the Prewitt operator and the
Sobel operator.

4.1 Evolution of Object Detection
Next here are listed the main solutions and applications of object detection during its evolu-
tion.
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4.1.1 Haar Feature-based Cascade Classifiers

The Haar Feature-based Cascade Classifiers is the first real object detection classifier proposed
in the paper “Rapid Object Detection using a Boosted Cascade of Simple Features” [12] in
2001. This approach bases its function on machine learning using a cascade trained on several
positive and negative images and then applied on other test images. The train set is initially
supplied to the system which has to extract features from it. For this operation are used
Haar features (Figure 4.4) which are applied like a kernel used before. Each feature is a value
obtained by the subtraction of pixels sum under the white rectangle from the pixels sum
under the black rectangle.

(a) Edge Features

(b) Line Features

(c) Four-rectangle features

Figure 4.4: Haar features representation.

The computation for this calculus is huge (for example a 24x24 window has over 160000
features) but the solution can be found in the Integral Image. The integral image contains in
position (x, y) of the image the sum of the pixels above, while to the left of (x, y):

ii(x, y) =
Ø

xÍ≤x,yÍ≤y

i(xÍ, yÍ)

s(x, y) = s(x, y − 1) + i(x, y)

ii(x, y) = ii(x− 1, y) + s(x, y)

where ii(x, y) is the integral image and i(x, y) is the original image, s(x, y) is the cumulative
row sum, s(x,−1) = 0 and ii(−1, y) = 0. This procedure accelerates the calculation and
makes possible the integral image computation in one pass only over the original image.
However most of the calculated features are useless; taken a particular feature, a rectangle
with a blank and a dark area, it has relevance only in a specific zone of the image. An example
can be seen in the figure 4.5. If the feature that describes the difference of light between the
eyes and nose area is shifted to another point of the image it loses its meaning. Therefore

Figure 4.5: Haar features applied on face recognition [13].
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the features than can be combined into an effective classifier are a very small number, so the
goal is to find them out. The solution can be found using a tailored version of AdaBoost:

1. Every feature is applied on all the training images dataset;

2. The algorithm associates to each feature the best threshold that is able to classify into
positive or negative the prediction;

3. The previous step produces errors or misclassifications than can be used to make a rank
of the features and save only the best ones that can guarantee an accurate classification;

4. The procedure is repeated until the required accuracy or error rate is achieved.

The classifier obtained at the end is formed by all the “weak” classifiers that alone are
not able to recognise the object in the images but together can reach high accuracy. This
procedure may take long time also if the features have been reduced to the minimum number.
The problem lies in the application of all the features to all images area. Referring to the
figure 4.5 the area containing the face doesn’t occupy all the image so remaining zone can
be avoided during the previous procedure in order to waste less time. On this concept is
based the Cascade of Classifiers (figure 4.6). The features are grouped into different steps of

All Sub Windows

1 2 ... n Accepted Sub-window

Rejected Sub-window

Figure 4.6: Haar Cascade.

classifiers so they can be applied one-by-one to the area of images. If the first group doesn’t
give the result expected that area will be discarded and all the remaining features will not be
applied on it. Following this concept, only the area that will reach the last step will be the
searched one. This method gives better results in terms of time without losing the previous
accuracy.

4.1.2 Histogram of Oriented Gradients (HOG)

A great use of the image gradient vector can be seen into the HOG algorithm [14] in 2005.
This method extracts, with good results in terms of final score and processing time, features
out of the colors of pixels. The application of the HOG algorithm can be separated into five
steps:

1. Preprocessing the image: all the images have to be equals in dimensions of pixels in
order to gain higher and meaningful results;

2. Calculate the gradient into the two main directions with a kernel and then use it for the
computation of magnitude and direction; the gradient removed a lot of non-essential
information (e.g. constant coloured background), but highlighted outlines.

3. The image is divided into many 8x8 pixels cells where each magnitude is changed into
a 9 element bucket of unsigned direction; in the case of a magnitude lays between two
values of the bucket its magnitude is proportionally split into the two;
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Figure 4.7: HOG applied on face recognition dataset.

4. A 2x2 cells block slide over the image where in each region is formed a one-dimensional
vector of 36 values from the four histograms of four cells and then is normalized to have
a unit weight; the final feature of the HOG is the vector formed by the concatenation
of all the block vectors.

The main concept lies on the research of major gradient direction for each small group of
pixels that shows the flow from light to dark across the selected image. An example of the
resulted image can be seen in figure 4.7.

4.1.3 Regional CNN (R-CNN)

With the coming of deep learning, CNN became the most used architecture in object recog-
nition field. The main concept explained before (§2.4.3) can be combined to a process called
Selective Search [15] to reach higher velocity producing R-CNN [16]. This process instead of
using directly the proposed RoIs starts to analyse each individual pixel and groups it into
small congruent agglomerate and then combines the group that have the closest texture; the
algorithm is able to group firstly the small combinations and then combine gradually the
larger. The process is showed partially in figure 4.8 where the first row shows the merged
area using selective search and the second RoIs computed.

Figure 4.8: Example of Selective Search [15].
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The processed images are warped to the desired dimension and then fed into the CNN net.
Hence the areas of images enclosed to the proposed bounding boxes go through a pre-trained
network before the procedure of classification (figure 4.9).

Figure 4.9: Procedure of R-CNN [15].

This technique leads to the necessity of a huge amount of time during the training of network
due to all region proposals per image to classify; hence it is not compatible with a real time
application as the processing of a single image is around 50s. In addition the selective search
is not a machine learning algorithm but it is fixed so the production of incoherent candidates
is possible.

4.1.4 Fast R-CNN

A great innovation was introduced with the evolution of R-CNN to the “fast” one [17]. Instead
of using only the selective search as first step a CNN is adopted applied to feature extraction
that are combined with the result of selective search. This method produce RoIs of feature
map fed to a fully convoluted network that detects the object after being reduced to a fixed
size with a pooling layer (figure 4.10).

Figure 4.10: Procedure of Fast R-CNN.

This network is faster than the formers thanks to the avoidance of the feeding of 2000 regions
proposal to the convolutional neural network every time but only once. Fast R-CNN is 10x
faster than R-CNN in training and 150x faster in inferencing. Therefore this technique gen-
erates a sort of bottleneck during region proposals and this affects the overall performances.

4.1.5 Faster R-CNN

The usage of external algorithm like selective search is still time expensive; 87% of time is
occupied by the creation of the region proposal. This last version of R-CNN, faster R-CNN
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[18], replaces this step with an internal deep network and uses the RoIs derived directly from
the feature maps (figure 4.11). The new network is named Region Proposal Network (RPN)
and can reach time processing per image of about 10ms, so it is more efficient and faster.
RPN predicts the chance to recognise an anchor, a box of different size that may include the
desired object, on the background or foreground and refines it.

Figure 4.11: Procedure of Faster R-CNN.

The rest of the network is the same as the previous one. So Faster R-CNN is composed by
a fully convolutional network that is able to propose regions and the previous Fast R-CNN
structure to follow.

4.1.6 Single Shot multibox Detector (SSD)

SSD [19] has an architecture that permits to reach high value of mAP (§8.4.2) with an higher
frame rate than R-CNN. Single shot means that the picture is processed only one time in a
single forward pass over the network.

Figure 4.12: Structure of SSD.

SSD starts with a VGG-16 architecture used as base network for its high performance on
high quality image classification tasks; it is devoted to the extraction of feature maps. The
network is no more a fully connected one but it is used a set of auxiliary convolutional layers
that enables the extraction of features at multiple scales and progressively reduces the size
of the input image to that of subsequent layers. Rather than calling anchors likes CNN, SSD
uses priors a pre-computed with fixed size bounding boxes that try to match the positions of
the original ground truth boxes. The priors are selected with the requirements of a minimum
IoU (§8.4.1) of 0.5; hence they are submitted to the bounding box regression algorithm that
can start from not random coordinates. Therefore this technique starts with the priors as
predictions and goes closely to the ground truth bounding boxes.
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Y.O.L.O.

You Only Look Once (YOLO hereon) [20] is an object detection platform used for real-time
image processing. It is a project born from the concept of SSD so it analyses the image only
one time in a clever way. YOLO is faster than the previous methods and the predictions
computed are made from one single network that can be trained end-to-end in order to
improve the accuracy; furthermore YOLO demonstrates fewer false positives in background
areas due to its direct access to all the images at once and the detection of one object per
grid cell enforces the spacial diversity in making predictions.

Figure 5.1: Example of application of YOLO.

5.1 How it works

As first step YOLO divides up the image into a grid of S ×S cells (5.2a). Each of these cells
has to predict B bounding boxes that describe the rectangle enclosing only one object. From
all these operations there are also the confidence scores of the system that tells how certain
it is to have an object enclosed into the predicted bounding box. The image 5.2b shows the
possible boxes with also the confidence: higher confidence is indicated by a fatter drawn box.
Hence for each bounding box a classifier predicts a class giving a probability distribution over
all the possible ones; it depends on the dataset used for the training phase (PASCAL VOC,
COCO, etc.). The confidence score and the class prediction are then combined to produce
a result similar to figure 5.2c; this result highlights the differences between higher and lower
accuracy in parallel to the different classes. The number of total bounding boxes is given by
S×S×B but it is easy to see that most of them have very low confidence scores; it is possible
to save only from a certain level, as 30% is the default but it depends on the user’s requests.
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Cleaning the image from all the unsaved boxes produces the final result, an example in figure
5.2d.

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 5.2: YOLO procedure sequence.

5.2 Going deeper in details
YOLO for each cell:

• Predicts B boundary boxes with only one box confidence score individually;

• Classifies one object regardless how many number of boxes B are used;

• Predicts C conditional class probabilities based on the train dataset used.

Each boundary box has five elements describing it: x, y, w, h and the score. The four values
that indicates the position and the dimension of the box are normalized by the image width
and height in order to be in range 0 ÷ 1. Hence the final prediction has a shape defined by:

(S, S,B × 5 + C)

Example: dividing the image in 7 x 7 grid and using 2 bounding boxes with PASCAL VOC
(20 classes) produce a tensor of:

(7, 7, 30)

24 convolutional layers followed by 2 fully connected layers compose the network. The convo-
lutional layers are used to reduce the feature maps while the last one is used to output a tensor
with the desired shape; this tensor is then flattened and used to generate (S, S,B × 5 + C)
parameters.
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Layer Kernel Stride Output
---------------------------------------------
Input (416, 416, 3)
Convolution 3x3 1 (416, 416, 16)
MaxPooling 2x2 2 (208, 208, 16)
Convolution 3x3 1 (208, 208, 32)
MaxPooling 2x2 2 (104, 104, 32)
Convolution 3x3 1 (104, 104, 64)
MaxPooling 2x2 2 (52, 52, 64)
Convolution 3x3 1 (52, 52, 128)
MaxPooling 2x2 2 (26, 26, 128)
Convolution 3x3 1 (26, 26, 256)
MaxPooling 2x2 2 (13, 13, 256)
Convolution 3x3 1 (13, 13, 512)
MaxPooling 2x2 1 (13, 13, 512)
Convolution 3x3 1 (13, 13, 1024)
Convolution 3x3 1 (13, 13, 1024)
Convolution 1x1 1 (13, 13, 125)
---------------------------------------------

Figure 5.3: Structure of YOLO.

5.2.1 Loss Function

As mentioned before YOLO has to predict multiple bounding boxes for each grid cell hence
there can be multiple losses for the true positive. The purpose is the selection of only one
of them and make it responsible of that object recognition in that cell. Solution is found
considering the highest IoU with the ground truth. This method also leads to specializa-
tion among the bounding box predictions: certain sizes and aspect ratios became easier to
recognise. When only one for each cell prediction is selected the system can compute the loss
function by a composition of three factors:

• Classification loss;

• Localization loss;

• Confidence loss.
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Classification Loss

If there is an object detected this factor is given at each cell by the squarred error of the class
conditional probabilities for any class:

S2Ø
i=0

1
obj
i

Ø
c∈classes

(pi(c) − p̂i(c))2

with 1
obj
i equal to 1 if in the cell i it is present an object, otherwise is 0 and p̂i(c) is the

conditional class probability for class c in cell i.

Localization Loss

This parameter measures the errors considering the predicted boundary box locations and
sizes only for the box that are detecting an object:

λcoord
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with 1
obj
ij equal to 1 if the j-th boundary box in cell i is the selected one to recognise the

object, otherwise is 0 and λcoord is used to increase the weight for the loss in the boundary
box coordinates to normalize the error between large and small boxes.

Confidence Loss

This factor is computed in different ways if the object is detected or not:
S2q
i=0

Bq
j=0

1
obj
ij (Ci − Ĉi)2 if detected

λnoobj

S2q
i=0

Bq
j=0

1
noobj
ij (Ci − Ĉi)2 if not detected

with 1
obj
ij equal to 1 if the j-th boundary box in cell i is the selected one to recognise the

object, otherwise is 0 (1obj
ij is its complement), Ĉi is the box confidence score of the box j in

the cell i and λnoobj decreases the loss when there is the detection of the background.

5.2.2 Non-Maximal Suppression

It is possible that YOLO make a doubles detection of the same object. It is a heuristic result
that can be fixed with the appliance of non-maximal suppression. This method removes the
duplicate with lower confidence and adds approximately 3% to mAP. The procedure is not
standardised; one example can be:

1. Sorting all the prediction using the confidence scores;

2. Starting from the top scores ignoring any prediction with lower IoU with the same class;

3. Repeating the step 2 until all predictions are checked.
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5.3 YOLOv2

5.3.1 Accuracy Improvements

The performance of YOLO has been improved in terms of accuracy and processing time with
the second version, YOLOv2 [21]. This huge update is given by the following modifications.

YOLO YOLOv2
batch norm? X X X X X X X X
hi-re classifier? X X X X X X X
convolutional? X X X X X X
anchor boxes? X X
new network? X X X X X

dimension priors? X X X X
location prediction? X X X X

passthrough? X X X
multi-scale? X X

hi-res detector? X
Pascal VOC (2007) - mAP 63.4 65.8 69.5 69.2 69.6 74.4 75.4 76.8 78.6

Batch normalisation

The idea behind batch normalisation is that neural network layers work properly when the
input data are clean; in fact ideally those data have average value of 0 and a variance very
low. This technique permits to do a kind of feature scaling for the data that are between
layers stopping the deterioration during the flow through the network. An example is shown
in figure 5.4.

Figure 5.4: Example of batch normalisation.

Usually it is applied between the convolutional layer and the activation function and removes
the need for dropouts and increase mAP up to 2%.

High-resolution classifier

The training of YOLO is composed by the first training of the classifier and then the end-to-
end training of the fully connected layers for object detection. YOLOv1 trains the classifier
with 224x224 images and the classifier for object detection with 448x448 pictures. Instead
YOLOv2 has as input images for the classifier the same 224x224 images but there is the
presence of another retrain of the classifier with the 448x448 images and few epochs. This
modification makes the training of the object detector easier and improves the result of mAP
by 4%.
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Convolutional Layer with Anchor Boxes

As mentioned before, YOLO uses priors for the boundary boxes. Initially these boxes are
selected randomly and may work well for some objects and worse for others (figure 5.5) making
the gradients unstable with step changes. In fact at first time there is a contradictory response
from the system about what shapes use the most.

Figure 5.5: The shape works well on the object on the left (a man on bicycle)
but it is not proper for the object on the right (a car).

In real life application it is possible to notice that each object has a shape more or less
constant. This concept can be used in this way: if the priors that include a specific class are
constrained between offset values the diversity of the prediction will remain unchanged but
after each epoch the prediction will be more focused on a shape increasingly specific. The
network has to be modified with the following adjustments:

• The final fully connected layers used for the prediction of boundary boxes are removed;

• The predictions are done at boundary box level and not anymore at cells level;

• Change the image input size from 448x448 to 416x416 to have an odd number of cells
in the grid; it makes simpler to determine the belonging of an object to a centre cell
(figure 5.6);

Figure 5.6: YOLO grid modification.

• Changing and remove some layers of the network to achieve an output of 13x13.
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These changings have negative impact on mAP making it lower of 0.3 but give a better result
on recall that improves by 7%; also the accuracy is decreased a little but there is an augment
of ground truth object detected.

Dimension Clusters

Noticing that the priors have similarities and often are few for each dataset, instead of
choosing them by hand it is possible to use a K-means clustering on the training dataset and
obtain better results. K-means is able to find the top-K boundary boxes that cover the data
and they are found considering the centroids (figure 5.7). K-means requires the number K of

Figure 5.7: Five typologies of priors are found with K-means clustering.

clusters so depending on the dataset used and its complexity it has to be tuned. The criteria
for the choice is the IoU (figure 5.8) Considering this example of application it is possible

Figure 5.8: Clustering box dimensions on VOC and COCO. The right image
shows the relative centroids found for VOC and COCO.

to notice a growing of the average IoU of 0.2 but the priors become more “intelligent” and
reflect better the objects detected.

Direct Location Prediction

During the first iteration the system suffers instability of the model. It is due to the uncon-
strained anchor boxes that can end up at any point in the image. The random initialisation
leads to a very long convergence time for the system stabilisation. Instead of predicting offset
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like the previous version, YOLOv2 predicts location coordinates relative to the location of
the grid cell. A logistic activation is able to constrain the network prediction to fall in the
specified range (figure 5.9). This procedure is applied using the following formulas:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bh = phe
th

Pr(object) ∗ IoU(b, object) = σ(to)

Where:

• tx, ty, tw, th are the predicted values by YOLOv2;

• bx, by, bw, bh indicates the predicted boundary box;

• (cx, cy) is the point at the top-left corner of the prior;

• cw, ch are respectively the width and height of the prior;

• σ(to) is the confidence score associated to the box.

Note that the values of c are normalized by the size of the image.

Figure 5.9: Visualization of YOLOv2 boxes algorithm. The dotted box is
the prior and the blue box is the predicted boundary.

This changing improves the mAP up to 5%.

Fine-Grained Features

YOLO predicts with a 13x13 feature map grid. This is sufficient and works well with medium
dimension objects into the image instead small objects give some problems during the recog-
nition. Algorithms as Faster R-CNN and SSD run the proposal networks over various feature
maps to get different dimensions object using a range of resolutions. As we said YOLO runs
only once so to satisfy this requirement the solution is found adding a passthrough layer
that modifies the feature map from the 13x13 dimension into 26x26 resolution. The resulted
expanded feature map passes into the detector and gives a 1% performance increase.
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Multi-Scale Training

The input images size for YOLO was imposed to be 448x448. This new model changes this
requirements with the usage of the priors into 416x416 but since the architecture is formed
only by convolutional and pooling layers it is possible to change the sizes on the fly. This
gives the possibility to create a version more robust and stable running images of different
sizes. Instead of fixing the image input size, the network change the accepted dimension
every few iterations. The entire model down-samples by a factor of 32 so it can be possible
to train the architecture over images of sizes from 320x320 to 608x608 (320, 352,384,...,608).
Every 10 batches the network randomly chooses the dimensions and continue the training.
This methodology forces the network to learn to predict well across different input images
dimensions hence at various resolutions. With this changing the system can be modelled for
lower resolution applications and gives mAP similar to Fast R-CNN but running at more
than 90FPS (highest result at the moment for object detection); while for high resolution the
medium mAP is about 78.6 (on PascalVoc).

Accuracy Comparison for Different Detectors

Figure 5.10: Accuracy comparison for different detectors.

5.3.2 Speed Improvements

A first changing is about the feature extractor VGG16 : it tooks 30.69 billion floating point
operations for the analysis of a single image (224x224). GoogLeNet with a custom architec-
ture processes 8.52 billion operations so it can replace the previous network. The processing
time has a huge improvement but the accuracy drops from 90.0% to 88.0%.

Also the classification model is changed. The new classificator called Darknet-19 is similar to
the previous and uses mostly 3x3 filters but doubles the number of channels after every pooling
step. Furthermore there is the adding of the global average pooling to make predictions and
1x1 filters that compress the feature map representation between the 3x3 convolutional layers.
The full new architecture is showed below:

47



Chapter 5. Y.O.L.O.

Layer Filters Stride Output
---------------------------------------------
Convolution 32 3x3 224x224
MaxPooling 2x2/2 112x112
Convolution 64 3x3 112x112
MaxPooling 2x2/2 56x56
Convolution 128 3x3 56x56
Convolution 64 1x1 56x56
Convolution 128 3x3 56x56
MaxPooling 2x2/2 28x28
Convolution 256 3x3 28x28
Convolution 128 1x1 28x28
Convolution 256 3x3 28x28
MaxPooling 2x2/2 14x14
Convolution 512 3x3 14x14
Convolution 256 1x1 14x14
Convolution 512 3x3 14x14
Convolution 256 1x1 14x14
Convolution 512 3x3 14x14
MaxPooling 2x2/2 7x7
Convolution 1024 3x3 7x7
Convolution 512 1x1 7x7
Convolution 1024 3x3 7x7
Convolution 512 1x1 7x7
Convolution 1024 3x3 7x7
---------------------------------------------

The previous cross-out section, i.e. the last convolutional layers, is replaced by three 3x3
layers outputting each 1024 channels followed by a final 1x1 convolutional layer that converts
the 7x7x1024 output into 7x7x125. Darknet-19 requires only 5.58 billion operations to process
an image and can achieve 72.9% top-1 and 91.2% top-5 accuracy on ImageNet.
YOLOv2 is trained on ImageNet with 1000 classes and for 160 epochs (in this thesis work
has been used COCO). The data for the training are:

• Stochastic gradient descent with starting learning rate of 0.1;

• Polynomial rate decay with a power of 4;

• Weight decay of 0.0005;

• Momentum of 0.9 .

5.3.3 Hierarchical Clasification

Datasets for object detection have far fewer class categories than those for classification.
YOLOv2 uses a method that mix images from both classifications and detection datasets
during the training. The network is trained end-to-end with object detection samples while
the classification loss is backpropagated to train the classifier path. The main problem lies
on how to merge different datasets that have not mutual exclusive classes. This problem is
solved by the usage of hierarchical classification (figure 5.11).
This new dataset structure is able to link an image recognised as “dog” from COCO to
“Norfolk terrier” recognise from ImageNet. In this way it composes a parent/child structure
used also for the final classification result. In fact if the confidence of the children is too low,
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Figure 5.11: Structure of COCO, ImageNet and WordTree dataset.

the system gives as output the confidence it has about the parent.Example: if “biplane” has
low confidence the system answer with “airplane”.
YOLO9000 pushes the usage of WordTree to the limits merging COCO detection dataset
with the top 9000 classes from the full ImageNet release. Using a joint type of training this
architecture is able to find object in images using the detection data that came from COCO
and it is also capable of classification of a large variety of these object using ImageNet.

5.4 YOLOv3

YOLOv3 [22] is the latest evolution of this architecture. From the point of view of the class
prediction it introduces a huge modification. Most of the current classifiers assume that
the output labels are mutually exclusive so the final softmax function that converts scores
into probabilities has maximum result 1. YOLOv3 cancelled this concept and became a
multi-label classificator. As an example there can be as output simultaneously “vehicle” and
“car”. So the softmax function cannot be anymore limited to 1 hence it is replaced with an
independent logistic regression classifiers that calculate the likeliness of the input belonging
to a specific label. Therefore the mean square error used in classification loss is replaced
with the cross-entropy loss for each label. Also the cost function changed. It is associated
an objectness score equal to 1 to the bounding box prior that overlaps a ground truth object
the most; all the other priors that satisfy the requirement of a predefined threshold for the
IoU (0.5 as default) the cost function is 0. So each ground truth object is associated to only
one boundary box prior and if any of the bounding box satisfies the requirements it incurs in
no classification.

5.4.1 Prediction

YOLOv3 generates 3 predictions per location and each of them has a boundary box, an
objectness and 80 class scores. This concept is similar to Feature Pyramid Networks (FPN),
in fact the sequence of the operations is:

1. Making a prediction in the last feature map layer;

2. Considering 2 layers back and up-samples this layer by 2;

3. Searching for the feature map with higher resolution in the considered layer and merge
it with the up-sampled feature map using a technique named element-wise addition;

4. Applying a convolutional filter on the merged map in order to generate the second set
of prediction;
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5. Replying from step 2 to have a resulted feature map layer with a good high-level struc-
ture, semantic information, and good resolution spatial information on object locations.

The priors for YOLOv3 are generated using K-Means clustering and considering COCO
dataset. The number of preselected cluster is 9: (10x13), (16x30), (33xx3); (30x61), (62x45),
(59x119); (116x90), (156x198), (373x326). They are grouped and assigned to a specific feature
map to better detect the object.

5.4.2 Feature Extraction

Also the architecture of Darknet-19 experiences an improvement becoming Darknet-53, so
much more layers are added (figure 5.12). This network achieves the highest measured floating
point operation per second so its application requires for now the utilization of GPU hardware.

Figure 5.12: Darknet-53 structure.
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5.4.3 Performance

YOLOv3 is the fastest network tested on COCO and shows improvement in detecting small
objects.

Figure 5.13: Performance comparison.
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Mask R-CNN

Object classification projects are able to find into an image a specific object among the trained
classes; its successive evolution step, object detection, finds and locates that object using a
box that encloses the shape recognised. Mask R-CNN [23] is the last achieved result for
computer vision. It introduces the concept of Image Segmentation: the object found are no
more only enclosed in a box but there is the grouping of the pixels that belong to the same
object. The procedure followed by this new algorithm is (figure 6.1):

1. Classification: this image contains a balloon;

2. Object Detection: this image contains seven balloons and the locations are defined;

3. Semantic Segmentation: the seven balloons are formed by this group of pixels;

4. Instance Segmentation: the seven balloons at these seven locations have these seven
groups of pixels that define each balloon.

Figure 6.1: Example instance segmentation [24].

6.1 How It Works
Mask R-CNN, as the predecessors, is a two stage framework: the first stage is devoted to
the scanning of the images and to the generation of the region proposals, i.e. areas that
may contain an object; the second stage has to classify the region proposals and to make the
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new masks for the detected objects. The architecture is slightly modified with respect to the
Faster R-CNN; a new section formed by two convolutional networks is added in parallel to
the last fully connected network and the masks are created in it.

Figure 6.2: Mask R-CNN flowchart.

Mask R-CNN starts as usual to process the images with a feature extractor, typically ResNet50
or ResNet101 ; these layers are first used to detect low level information as edges and cor-
ners and then reach a level of detection capable of recognition of high level features (dog,
house, pen). The images are in fact converted from the RGB initial form to a feature map
of 32x32x2048 that is used as input for the next stages. This backbone is improved by the
utilization of the FPN network (figure 6.3) that makes available to all the features map at
each level the access to lower and higher level features.

Figure 6.3: Features Pyramid Network.

The rest of the network is similar to Faster R-CNN (§4.1.5) until the mask branch.

Mask Representation

Figure 6.4: Mask example.

The mask branch is a convolutional network that uses the positive selected regions from RoIs
classifier and creates a shape of the object detected. So the mask is able to encode an input
of the object spatial layout so the information extracted can be addressed by the pixel-to-
pixel correspondence given by the convolutions. This network has to identify for each RoI an
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m × m mask using a fully convolutional network. With this method each layer in the mask
branch can maintain the explicit object spatial layout avoiding the warping into a vector
representation with no spatial dimensions. Therefore this network is not complicated as it
seems and in fact requires few parameters to work. It is easy to see that the pixel-to-pixel
behaviour needs a perfect correlation between the predicted mask and the RoIs of the original
image in order to give significant results. This problem is faced by the RoIAlign. This layer
substitutes the RoIPool and aligns the extracted features with the input.

Figure 6.5: Original image on left and feature map dimension on right.

The basic idea is the following. Hypothesising that the CNN transforms the original 128x128
image into a feature map of 25x25, the RoI of 15x15 on the upper left is the considered
one. This region is warped into the feature map by a ratio of 25/128 pixels so the RoI
becomes an area of 15 ∗ 25/128 Ä 2.93 → 2.93x2.93 pixels. Old RoIPool rounds this value to
2x2 pixels causing a misalignment; instead RoIAlign avoids the rounding and use a bilinear
interpolation. This gives a precise idea of what would be at pixel 2.93.
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6.2 Visualisation of the Steps

(a) RoIs before refinement. (b) RoIs after refinement.

(c) Classification with RoIs refined. (d) Top boundary box predictions.

(e) Application of the masks.

Figure 6.6: Visualization of the steps during the processing of an image with
Mask R-CNN.
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Embedded System

One of the main problems for neural networks is the hardware capacity for the training
and deployment. The training phase needs a powerful hardware that can take from hours
to days for the generation of all the weights of the system. Instead the deployment of the
net can be sometimes done in a lightweight way. One of the purpose of this thesis was the
application and the usage of object detection on embedded systems. This hardware can be
useful for applications on robots, rover and drones due to its minimum requirements of power
consumption and its weight. In fact usually with embedded systems one refers to a specific
hardware, often with small size, designed to a specific usage. A set of possible hardware
was analysed in search of the best one for this type of application and the final system was
composed of a RaspberryPi with a Intel Movidius Neural Compute Stick (Movidius NCS
hereon).

7.1 Raspberry Pi
The RaspberryPi is a single-board computer that mounts a kernel Linux-based operating
systems, in particular the most used is a dedicated one called Raspbian.

Figure 7.1: RaspberryPi 3.

Although its little dimensions (85,60mm x 56mm) this computer has powerful hardware.
The entire project is based on a Broadcom system-on-a-chip with an ARM processor and
a VideoCore GPU. 512 Megabyte of RAM and logic ports complete this powerful system
that can be used in infinite ways. Moreover the cost of the board helped the widespread
distribution and application making it the most used hardware for simple projects.
Unfortunately, even if this board is extremely powerful for its dimensions, it is not sufficient
for the operations needed by the computation of a neural network.
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7.2 Movidius NCS
This little device is one of the most recent products of Intel concerning machine learning. It
is defined as tiny fanless deep learning USB drive designed to learn A.I. programming. The

Figure 7.2: Movidius Neural Compute Stick.

company added this product under the class of Vision Processing Unit (VPU), similar to the
classic GPU but for embedded purposes. This little device supports the calculation needed
by a convolutional neural network so it can be used for many deep learning applications.
Moreover, the stick has lower power consumption so it is perfectly applicable on embedded
systems. The VPU includes 4Gbits of LPDDR3 DRAM, imaging and vision accelerators,
and an array of 12 VLIW vector processors called SHAVE processors. These processors are
used to accelerate neural networks by running parts of the neural networks in parallel.

7.2.1 How It Works

The VPU also has a SPARC microprocessor core that runs custom firmware. When the NCS
is first plugged in, there is no firmware loaded onto it. The VPU boots from the internal
ROM and connects to the host machine as a USB 2.0 device. Applications executing on
the host machine communicate to the VPU SOC using the Neural Compute API (NCAPI).
When the NCAPI initializes and opens a device, the firmware from the Neural Compute SDK
(NCSDK) is loaded onto the NCS. At this time, the NCS resets and reconnects to the host
machine as either a USB 2.0 or USB 3.0 device (depending on the host type). It is now ready
to accept the neural network graph files and instructions to execute inferences.
A graph file (a particular file produced from the neural network) is loaded into the DRAM
attached to the VPU via the NCAPI. A LEON processor coordinates the process receiving
the graph file and images for inference via the USB connection. It also parses the graph file
and schedules kernels to the SHAVE neural compute accelerator engines. In addition, the
LEON processor also takes care of monitoring die temperature and throttling processing on
high temperature alerts. The output of the neural network and associated statistics are sent
back to the host machine via the USB connection and are received by the host application
via the NCAPI.
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Figure 7.3: Workflow from acquisition to processing on NCS.

7.3 Object Detection Application
Combining the previous described hardware it can be possible the deployment of a simple
detection algorithm like Tiny-YOLO. This is a reduced version of YOLO, formed by nine con-
volutional layers and two last fully connected layers. Obviously the performance of this type
of network are not comparable from the full version of the platform but the easy composition
of the net makes them light and fast giving the possibility of a deployment on embedded
systems. A simple system has been created for the test phase of the Tiny-YOLO application;
the used hardware was:

• RaspberryPi 3;

• Movidius NCS;

• WebCam;

• Powerbank.

Figure 7.4: Hardware system used for the Tiny-YOLO deployment.

Like other applications, also in this case the architecture of Tiny-YOLO has been tested as
the original provided and with a retrained model specific for the detection of apples. The full
python code is showed in appendix A.
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This simple hardware structure has been developed to demonstrate that, also from a low
performing system, the acquisition and especially the processing of the images over a neural
network can be possible.

7.3.1 Tiny-Y.O.L.O.

With the deployment of original Tiny-YOLO and the help of NCS compute stick the system
was able to detect objects with a m-AP around 31.47% and a FramePerSecond (FPS) around
3FPS. It is not an incredible result but considering the used hardware and the small network
it can be comparable with older nets used.

7.3.2 Tiny-Y.O.L.O (Apple)

This version of the platform has been created by a retrain of the original Tiny-YOLO for the
only detection of apples. The retraining phase has been done on a simple laptop without GPU
support that has taken around 8 hours to finish. The train dataset was composed by more
than 300 images of apples of different species and colours. The result from the retraining was
satisfying: the mAP increased to 49.96% and the processing was done at around 4FPS.
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Metrics

Far from now different neural network structures and how they works have been described.
Nowadays there are two factions of researchers devoted to machine learning: one that assumes
theories about the uselessness of knowing the real “how” a neural network works and the
second strongly affirms the necessity of understanding each decision, each parameter and
each weight in order to have the total control of the net. It was not underlined until now
but effectively the structures of neural networks used for deep learning are so complex that is
almost impossible to understand why each node does what it does. Obviously the researchers
know the general algorithm functionality but often the weights used for the nodes are not so
clear. The point in common between these two groups is the necessity of a final evaluation
of the results obtained. It was explained how a neural network learns from the errors but
not how the final net with the updated weights and biases is evaluated. During the evolution
of this computer branch a lot of methods were developed and some of the most relevant are
listed below. Before the listing it is necessary to do a brief reminder. It has been introduced
the general division of data when using machine learning algorithms: in fact all the available
datasets are split into train, validation and test. All the listed methods use the test group of
data to make the evaluation.

8.1 Confusion Matrix
When the object detection was still a future goal the application of machine learning con-
cerned most areas of data analysis, an application highly used also in our time. The first
method for the evaluation of results was the usage of a confusion matrix. During the evalu-
ation the data into test dataset are given to the network that evaluates them and gives the
result. These are the Predicted values that goes into the confusion matrix. Test data are
those previously classified from the programmer and used as in this case for the confusion
matrix. The matrix is composed as explained in the scheme.

Predicted
P N

Real

P
True

Positive
(TP)

False
Negatives
(FN)

N
False
Positive
(FP)

True
Negatives
(TN)

This was an example of a two choices (True, False) neural network. So summarising is possible
to say as an example that if the predicted value is True for the system and the real one is
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also True the evaluated data give a True Positive in the confusion matrix evaluation; instead
if the real value is false the evaluated data give a False Positive. It is easy to note that the
system can be considered trustworthy if the values on the diagonal of the matrix are much
higher than the others. In fact the sum of numbers on the diagonal is the correct predicted
value. In order to have a consistent network this number has to be usually at least the 70% of
the total. The explained example refers to a system with only one boolean variable (True or
False). The same considerations can be applied to a network with multiple output variables;
an example is showed in figure 8.1.

Figure 8.1: Confusion matrix with more than one (ten) boolean variable.
9006 Positive (TP and TN) and 69 Negative (FP and FN) values.

8.2 Paired and Combined Criteria
One of the evolutions of the application of the confusion matrix was the adding of paired
criteria that take into account not only the single value but a combination. All the following
listed values can be considered for network comparisons and are all still used.

• Precision (or True Positive Rate): is the proportion of predicted positives which are
actual positive

TP

TP + FP

• Specificity (or True Negative Rate): proportion of actual negative which are predicted
negative

TN

TN + FP

• Recall (or Sensitivity): is the proportion of the predicted positives out of the possible
positives

TP

TP + FN
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• Positive likelihood: likelihood that a predicted positive is an actual positive

Sensitivity
1 − Specificity

• Negative likelihood: likelihood that a predicted negative is an actual negative

1 − Sensitivity
Specificity

Other Combined criteria are:

• Balanced Classification Rate (BCR)

1
2

3
TP

TP + FN
+ TN

TN + FP

4

• Balanced Error Rate (BER)
1 − BER

• Youden’s index: arithmetic mean between sensitivity and specificity

Sensitivity − (1 − Specificity)

• Mattews Correlation Coefficient (MCC): correlation between the actual and predicted
values (−1 ÷ 1)

TP × TN − FP × FNð
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

• Discriminant power normalised likelihood index
√

3
π

3
log

3 Sensitivity
1 − Specificity

4
+ log

3 Specificity
1 − Sensitivity

44
results < 1 are poor, > 3 are good and fair otherwise.

8.3 Graphical Tools
From the confusion matrix it is possible to derive two forms of graph useful for the perfor-
mance evaluation of the model.

ROC Curve

Receiver Operating Characteristics (ROC) curve (an example in figure 8.2) shows the locus
of rate of true positive (TP) with respect to the rate of false positive (FP). With this method
it is possible to underline the sensitivity of the classifier used in the model. The classifier has
to reach the true positive rate of 100% without development on the x-axis, the false positive.
This gives a value for the AUC (Area Under Curve) equal to 1. This result is impossible
to achieve and so good AUC values are over the 0.8 . This method is good also for the
evaluation of a overfitting learning curve; in fact it is possible to detect if the training phase
can be stopped because the maximum level of accuracy is reached and all the remaining
epochs could only gives as result an oscillation under that value, with a resulting loss of time.
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Figure 8.2: ROC Curve examples.

8.4 Metrics for Object Recognition
When approaching the object detection analysis, the previous evaluation methods could not
be correctly used because the variables in testing are no more only boolean data but pixels. In
order to have a unified method for algorithm comparison two main tools have been developed.

8.4.1 IoU

Intersection over Union is the evaluation metric used as base comparator for object detection
neural network. It measures the accuracy of an object detector on a particular test dataset.
Due to its simple functionality every algorithm that has as output bounding boxes can use
it. It requires only two elements for each image under evaluation:

• The ground-truth bounding boxes, the bounding boxes created by the programmer that
represent the minimum dimension box that includes the object;

• The predicted bounding boxes, the output of the model.

Its functionality is trivial and intuitive: IoU measure how much overlap is present between
the two selected regions (figure 8.3). Mathematically the IoU is computed as:

IoU = Area of Overlap
Area of Union

so its result is between 0÷1 (figure 8.4); obviously a perfect overlap gives 1 and a completely
wrong overlap gives 0 as result. Due to the nature of the dataset and predictions an high
result of IoU is over 0.95 but in general results over 0.5 are accepted.
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Figure 8.3: IoU in a real application of road signal detection. The green box
is the ground-truth and the red one is the predicted.

(a) Visualization
of the calculus.

(b) Examples of IoU values.

Figure 8.4: IoU visual representation.

Bounding Boxes Data

One of the requirements for the computation of IoU are the ground-truth bounding boxes.
Previously it has been said that every algorithm that uses bounding boxes can use IoU
as terms for comparisons. This is true but it is necessary a clarification: each algorithm
uses different types of annotations and requires its own format for the files in order to be
assembled for the IoU. As example VOC and YOLO use a first .txt and a second .xml files
for the ground truth, so for each different dataset it is necessary to correctly compose the
ground-truth. Several programs try to simplify this process with visual toolkits that permit
also different outputs for the selected dataset. For the experiments of this thesis LabelImg was
used [25], a powerful GitHub project that with a simplified graphical interface (figure 8.5).
It gives to the user the total control of the bounding box creation and generates annotation
formats for PascalVOC and YOLO.
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Figure 8.5: Screen-shot of LabelImg program.

This software is used also for the creation of the ground-truth data that can be used for the
re-train phase of a network. For this thesis it has been used for the creation of a new dataset
used for training different network on the detection of apples (see §9.2).
The second requirements for the IoU are the predicted bounding boxes. One more time the
is the problems of compatibility between data. In fact each network can output predicted
annotation in various formats. As example YOLO produces a .json format or .txt, PascalVOC
produces different .txt and .xml files; all these files have different formatting and have to be
pre-processed before being used for the IoU evaluation. Unfortunately not all the networks
give the possibility to define the type of output so is an users’ task the creation of the correct
type of files starting from the predicted output files.

8.4.2 Mean Average Precision

While IoU can be used for the evaluation of a single image prediction, mean Average Precision
(mAP) is referred to a general performance of the network. In order to understand this new
factor is necessary to introduce step-by-step the components that generate it.

Precision-Recall Curve

In §8.2 were introduced precision and recall factors. They depend from the predefined thresh-
old for the IoU detection (example IoU > 0.5); in fact the True and False results depend on
it: a box with IoU under the threshold is considered TN while over TP. This dependency can
be used to characterize the performance of a classifier considering how precision and recall
change, modifying the threshold. A good classifier precision will stay high as recall increases.
A poor classifier will have to take a large hit in precision to get a higher recall. This can be
showed in the precision-recall graph (figure 8.6).
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Figure 8.6: Example of a Precision-Recall graph. In this case it can achieve
40% recall without sacrificing any precision, but to get 100% recall, its precision

drops to 50%.

AP

Obviously comparing graphs from different algorithm is not always easy. In this perspective
a value can be useful and this is the role of Average Precision. Strictly this value is the area
under the precision-recall curve. Having this only element it is easy to compare the algorithms
but sometimes it has variations that can confuse the results. Hence the interpolated precision
is used. This technique is widely diffused so often with AP is indicated this method. The
area considered is no more the perfect area under the graph but the approximated one as in
the figure 8.7 (the dotted one).

Figure 8.7: Example of a Precision-Recall approximated graph.
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mAP

Hence when the network has to evaluate under different classes it is possible to produce an
AP for each one. The mean between all of the considered classes is the mAP value (figure
8.8).

(a) All the detected classes with False and True pre-
dictions.

(b) AP for each class and mAP.

Figure 8.8: The mAP is calculated over the AP of the classes that achieve a
level of IoU over a certain value (usually 0.5).
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Results and Conclusions

Up to now techniques and architectures at different levels of deepening have been explained,
in order to make a general knowledge of a wide argument as deep learning. Hence it is
possible to underline what has been done for the application of fruits (apple) recognition for
precision agriculture.

9.1 Dataset
If the concepts explained before are clear, also the importance of the correct dataset will be
obvious. The dataset contains all the resources on which the training phase of the neural
network is done. For the experiments of this thesis having a huge images dataset containing
multiple classes other than apple one was fundamentals. This is very important because
the network learns to identify simple features likes edges and shadows and recognises also
elements different from apples and avoid mismatch situations. Below are listed the datasets
used during the thesis.

COCO

Common Object in COntext (COCO) is a huge dataset used in several competitions and as
base dataset on which all the new neural networks for object detection can be trained. It
contains more than 200k labelled images of 80 classes with bounding boxes and masks for each
object. Microsoft and Facebook are some of the partners of this project steadily increasing.
The neural network used, YOLO and Mask R-CNN, have been trained on COCO as base
dataset.

Figure 9.1: Example of images into COCO dataset.
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ImageNet

ImageNet (figure 9.2) is an image database that contains URLs of figures organized according
to the WordNet hierarchy (figure 5.11). It contains 21841 classes (called in this particular
case synsets) with over 14 million images hand-annotated with the contained object. Over 1

Figure 9.2: Final structure ImageNet dataset.

million of these images have bounding boxes that can be used for object detection algorithms.
This is a project that continuously grows: the aim of the creators is offering tens of millions
of cleanly sorted images; up to now the dataset reaches the average of 1000 images per synset
giving to the users the URLs and permissions for research purposes. The competition based
on this huge dataset, ImageNet Large Scale Visual Recognition Challenge (ILSVRC ), is the
one that signs the start of the current epoch of deep learning. The following table shows the
statistics of some high level categories.

High level category # synsets Avg # images per synset Total # images
amphibian 94 591 56K
animal 3822 732 2799K

appliance 51 1164 59K
bird 856 949 812K

Table 9.1: Statistic of some high level categories of ImageNet.

Open Images v4

Open Images v4 [26] is a dataset of ∼9 million images that have been annotated with image-
level labels and object bounding boxes. The training set of v4 contains 14.6M bounding
boxes for 600 object classes on 1.74M images (figure 9.3), making it the largest existing
dataset with object location annotations. The boxes have been largely manually drawn by
professional annotators to ensure accuracy and consistency. The images are very diverse and
often contain complex scenes with several objects (8.4 per image on average). Moreover, the
dataset is already subdivided into train, validation and test in order to avoid confusions or
overlaps.
The only problem of this dataset regards the download of all the images; in fact the website
permits only to differentiate the download between three canonical dataset (train, validation
and test) and does not permits the download of a single class or other filters. So also if
there is the need of a single class, a user has to download about 500Gb of data. Under this
assumption is based my and Vittorio Mazzia work of OIDv4_Toolkit [27] (mentioned under
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3/10/2018 Flare Dendrogram
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Figure 9.3: Dendogram of the classes of Open Images.

the section Extras - Community Contribution of OIDv4). We have developed a python based
program that is able to download a single selected class over the three datasets. In this
way the retrain of the network has benefited of all the other apple images inside OIDv4 and
the overall performance had an increase. At the base of the downloader there is the simple
command given by aws s3 (Amazon Web Service):

aws s3 --no-sign-request --only-show-errors cp s3://open-images-dataset/PATH

With this command it is possible to download a single image in the selected server knowing
its position. The toolkit is able to read the .csv files provided by OIDv4 that contain the
name of the class and the name of the image and downloads all the searched ones. Obviously
the system is capable in a similar way to download the information related to the labels
and generates the .txt files with the correct annotations. With this method a download of
1000 labelled images takes about a minute, far less than doing the work starting from the
unlabelled picture. Obviously the dataset does not contain all the possible classes but it
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includes many of the most popular. However the OIDv4_Toolkit is much more than a simple
downloader. The features of this program are multiple and we are continuously developing
it to help all people like us facing this issue. Some of the possibilities that the toolkit offers
are:

• Filter the classes: OIDv4 classes have some attributes as IsGroupOf or IsTruncated
that define each picture; the Toolkit is able to detect them and select only the desired
images;

• Download a group of classes: in some applications it is useful to train the network
detecting multiple classes so the Toolkit permits the simultaneous download of those
classes and the creation of the correct labels;

• Visualize the labelled images: the Toolkit has a window able to visualize the downloaded
images and the bounding boxes so it is possible to control if the annotations are correct
and how the boxes are.

The system is still in development and often there are external contributions or requests that
confirm how much the community is growing and that this toolkit maybe can participate to
the evolution of object recognition research.

9.2 Re-Training
The detection of apples on trees with high confidence values requires a neural network tailored
for the purpose. Training a network starting from scratch is a extremely long work that
need huge computational power and time. Moreover the dataset used has to be sufficiently
extended including also categories that the system does not have to recognise. The huge
request of images generated the idea of “recycling” a trained model and re-use it for different
purposes. In Transfer Learning, the knowledge of an already trained machine learning model
is applied to a different but related problem. The main idea under this method is the fact that
all the objects in images are initially defined from simple detections as shadows, edges and
colours so the first part of different networks are very similar. Then the objects recognised
by the model can be comparable with others, for example a model that detects cars may be
trained also for trucks. This assumption gives to the user the possibility that maybe a small
dataset and a low-powered computer could have prevented. Transfer learning has been used
for the purpose of this thesis for the object detection of apples using the model explained in
§5 and §6.
The hardware used for the completion of re-training were the following:

• Private resources:

– Notebook: the re-training of tiny-YOLOv2 was completed on this device; the
time for the completion of 1000 epochs over an i7 of 7thgen was about 13 hours
that confirms the negative performance of also a good processor in training neural
networks;

– HPC: Hactar-PC is the super-computer that Politecnico di Torino gives to re-
searchers and students; during the usage of this hardware arose many problems.
The first huge one was the fact that into this hardware only two graphic units
are available and obviously are often busy; secondly the usage of a system like
that requires a precise form of scheduling, incompatible with deep learning trials
that require fast feedback to the user especially at the beginning where a lot of
parameters have to be tuned. As a result of these observations HPC has been only
tested but not used for the retraining phase of the thesis.
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• Cloud resources:

– Crestle [28] is one of the websites that give the possibility to use external server
with multiple configurations. On Crestle all the popular scientific computing and
deep learning packages are pre-installed and configured to run on a GPU. It is
one of the most popular online platforms for deep learning computations. The
retraining of Mask R-CNN has been done using this resource with 15 epochs (not
too much but with good results) and it took 1.5 hours;

– AWS: Amazon Web Services offers a lot of solutions including EC2 instances for
deep learning. It has been created a virtual Linux environment that supports
GPUs computations. On this environment has been done the re-training of YOLO
models: YOLOv2 with 4500 epochs that took about 12 hours and YOLOv3 with
2000 epochs that took about 23 hours. The trainings have been stopped when the
average loss values starting to oscillate over the final values.

For the correct re-training of the networks two main actions were needed: the creation of an
additional dataset of apples and a slightly modification of the network.

9.2.1 Dataset of Apples

Also even if the COCO dataset used for the original training of YOLO and Mask R-CNN
contains “apple” as one of the 80 classes, a new dataset that contains only apples was created
and used for the re-training. This aided the growing of the mAP and makes the system more
robust. Creating a new dataset consists on selecting a set of figures and makes the bounding
area around the apples. The two networks used, YOLO and Mask R-CNN, need different
types of annotations for each figure. YOLO, in all its versions, needs bounding boxes defined
in a .txt file with a specific format:

<object-class> <x> <y> <width> <height>

where:

• <object-class>: an integer number of object from 0 to (classes-1);

• <x> <y> <width> <height> are normalized float values relative to the center of the
rectangle bounding box, width and height of image and it can be equal to [0.0 ÷ 1.0].

Example:

0 0.684356 0.357294 0.266734 0.159234

The creation of this type of annotation has been possible with the usage of a software named
LabelImg (figure 8.5) with whom ∼1000 images containing apples have been processed.
A different process has been used for the annotations of Mask R-CNN. In fact this network
requires not the bounding boxes but a line over the shape of the apple. For this type of anno-
tation VGG Image Annotator (VIA) [29] has been used. This software gives the possibility
to make the outline profile and to generate a .json output that can be used for the neural
network. As an example (figure 9.4) is reported the same picture of LabelImg but processed
for Mask R-CNN in order to see the differences. With this method ∼300 images have been
processed and used during the re-training of the network.
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Figure 9.4: Annotation example with VIA.

From this software is possible to obtain the .json file structured as following:
" apple_ 1.jpg104549": {

" fileref ": "",
"size": 104549,
" filename ": " apple_ 1.jpg",
"base64 _img_data ": "",
" file_attributes ": {},
" regions ": {

"0": {
" shape_attributes ": {
"name": " polygon ",
" all_points_x ": [107, 71,..., 125, 107],
" all_points_y ": [224, 207,..., 232, 224]
},
" region_attributes ": {

" object_name ": "apple"
}

},
"1": {

" shape_attributes ": {
"name": " polygon ",
" all_points_x ": [197, 206, ... , 193,

197],
" all_points_y ": [275, 294, ... , 263,

275]
},
" region_attributes ": {

" object_name ": "apple"
}

}
}

}
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9.2.2 Network Modifications

The network used had to be changed in order to detect only apples. First the number of
classes specified in the configuration file was reduced from 80 to 2 (background and apple),
in this way the network output referred only to a specific object resulting more performing
and accurate. The other modification referred to specific hyper-parameters of the net:

• batch: a batch is a group of images used for the training of each epoch; for YOLO the
predefined batch dimension was modified into 64 images with a subdivision of 32;

• input image dimension: each net has a predefined dimension that can vary in order
to follow the dimension of the images that have to be used; in this case YOLO input
image was imposed to 608x608;

• learning rate: during the training the learning rate changed following the gradient
descent theory, so this parameter is reduced at three different steps: until the 200th

step is multiplied by 10 (0.0001 × 10), then until the 5000th step is reduced by 10 and
then until the 7000th step is again reduced by 10.

9.3 Results
The following table shows the mAP calculated over the different network used and testifies
the usefulness of the re-training done.

Architecture Dataset
COCO Apple %

Tiny Y.O.L.O.v2 31.47% 49.96% +58.75%
Y.O.L.O.v2 60% 76.88% +28.13%
Y.O.L.O.v3 63.2% 70.76% +11.96%
Mask R-CNN 68.8% 77.65% +12.86%

Table 9.2: Original network and re-trained one mAP results.

It is possible to underline how the “big” networks are subjected to a minor benefit of the mAP
with respect to the smallest one (Tiny YOLOv2). This result can be justified considering the
already robust neural networks used that give great outputs already with the original net.
The re-train for this case increases the mAP results but above all reduces the processing time
of the images, raising the FPS for a real-time application.

9.3.1 Examples of Processed Images
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(a) Tiny YOLOv2 COCO (b) Tiny YOLOv2 Apple

(c) YOLOv2 COCO (d) YOLOv2 Apple

(e) YOLOv3 COCO (f) YOLOv3 Apple

Figure 9.5: mAP graphs for the different networks before and after the re-
training.
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(a) Tiny YOLOv2 COCO (b) Tiny YOLOv2 Apple

(c) YOLOv2 COCO (d) YOLOv2 Apple

(e) YOLOv3 COCO (f) YOLOv3 Apple

Figure 9.6: Predicted object graphs for the different networks before and
after the re-training.
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(a) Tiny YOLOv2 COCO (b) Tiny YOLOv2 APPLE

(c) YOLOv2 COCO

Figure 9.7: YOLO outputs.

Figure 9.8: YOLOv3 outputs.
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(a) Original image (b) YOLOv3 output (c) Mask R-CNN output

Figure 9.9: Same images processed over two different networks.

(a) Original image (b) Mask R-CNN output

Figure 9.10: Outputs from Mask R-CNN.
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(a) Original image

(b) Mask R-CNN output

Figure 9.11: Outputs from Mask R-CNN.
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9.4 Conclusions and Future Works
As it is possible to see from the example images the different networks give as output good
results that can be useful during the process implied on precision agriculture; the re-training
had all better results than the original network testifying the benefit of transfer learning and
the works done during the months of this thesis. Next step can be the real application on a
rover to pose the basis of auto-harvesting and to use the trained network to make evaluations
of agricultural fields. Therefore the same procedure applied can be used for other fruits to
generalize the possible application of this methodology. As last project, these results can be
combined with a stereo-camera for the computation of the space-positioning of fruits.
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Appendix A

Raspberry Code

#--------------------------
#Project: Tiny -Yolov2_Apple on Movidius
#---------------------------
#--------------------------
# Initialization
#--------------------------
import numpy as np
import cv2
import json
import mvnc. mvncapi as mvncapi
import time
from darkflow . cython_utils . cy_yolo2_findboxes import box_constructor
from imutils .video import VideoStream
#----------------------------
# Functions declaration
#----------------------------
def get_meta ( meta_file ):

""" Open the meta file of the NN"""
with open(meta_file , ’r’) as fp:

meta = json.load(fp)
return meta

def pre_proc_img (img , meta ):
""" Preprocessing a frame

before feeding into into the NN"""
w, h, _ = meta[’inp_size ’]
img = img. astype (np. float32 )
imsz = cv2. resize (img , (w, h))
imsz = imsz / 255.
imsz = imsz [: ,: ,:: -1]
imsz = np. expand_dims (imsz , axis =0)
return imsz

def findboxes_meta (meta , net_out ):
boxes = list()
boxes = box_constructor (meta , net_out )
return boxes

def process_box_meta (meta , b, h, w, threshold ):
max_indx = np. argmax (b.probs)
max_prob = b.probs[ max_indx ]
label = meta[’labels ’][ max_indx ]
if max_prob > threshold :

left = int ((b.x - b.w/2.) * w)
right = int ((b.x + b.w/2.) * w)
top = int ((b.y - b.h/2.) * h)
bot = int ((b.y + b.h/2.) * h)
if left < 0 : left = 0
if right > w - 1: right = w - 1
if top < 0 : top = 0
if bot > h - 1: bot = h - 1
mess = ’{}’.format(label)
return (left , right , top , bot , mess , max_indx , max_prob )

return None
def procces_out (out , meta , img_orig_dimensions ):

h, w, _ = img_orig_dimensions
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boxes = findboxes_meta (meta ,out)
threshold = meta[’thresh ’]
boxesInfo = list()
for box in boxes:

tmpBox = process_box_meta (meta , box , h, w, threshold )
if tmpBox is None:

continue
boxesInfo . append ({

"label": tmpBox [4],
" confidence ": tmpBox [6],
" topleft ": {

"x": tmpBox [0],
"y": tmpBox [2]} ,

" bottomright ": {
"x": tmpBox [1],
"y": tmpBox [3]}

})
return boxesInfo

def add_bb_to_img (img_orig , boxes , fps ):
""" Draws rectangles and text on

the img_orig """
for box in boxes:

left = box[" topleft "][’x’]
right = box[" bottomright "][’x’]
top = box[" topleft "][’y’]
bot = box[" bottomright "][’y’]
label = box["label"]
confidence = box[" confidence "]
h, w, _ = img_orig .shape
thick = int((h + w) // 300)
cv2. rectangle (img_orig ,

(left , top), (right , bot),
[255 , 0, 0], thick)

info = label + ’ ’ + ’{:.2%} ’.format( confidence )
cv2. putText (

img_orig , info , (left + 5, top + 14),
0, 1e-3 * h, [255 , 0, 0],
thick // 3)

FPS = ’FPS: ’ + ’{:.2f}’.format(fps)
cv2. putText (

img_orig , FPS , (left + 5, bot - 12),
0, 1e-3 * h, [255 , 0, 0],
thick // 3)

def get_mvnc_device ():
""" Simply checks for all devices

attached at the Rasp and open them """
mvncapi . global_set_option ( mvncapi . GlobalOption . RW_LOG_LEVEL , 4)
# get a list of names for all the devices plugged into the system
devices = mvncapi . enumerate_devices ()
if (len( devices ) < 1):

print("Error --- no NCS device detected ")
quit ()

# get the first NCS device by its name.
# For this program we will always open the first NCS device.
dev = mvncapi . Device ( devices [0])
# try to open the device. this will throw an exception
# if someone else has it open already
try:

dev.open()
except:

print("Error - It hasn ’t been possible to open the divice ")
quit ()

return dev
def load_graph (dev , GRAPH_FILEPATH ):

""" Allocate the graph
to a certain device dev """

with open( GRAPH_FILEPATH , mode=’rb’) as f:
graph_file_buffer = f.read ()

graph = mvncapi .Graph(’graph1 ’)
input_fifo , output_fifo = graph. allocate_with_fifos (dev , graph_file_buffer )
return graph , input_fifo , output_fifo
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#-----------
# Main
#-----------
if __name__ == ’__main__ ’:

# Read the meta file with all the configurations
meta_file = ’graph/yolov2 - tiny_apple .meta ’
meta = get_meta ( meta_file )
threshold = 0.3
meta[’thresh ’] = threshold
# Initialize the device
dev = get_mvnc_device ()
# Load the .graph file into the NCS
graph_file = ’graph/yolov2 - tiny_apple .graph ’
graph , input_fifo , output_fifo = load_graph (dev , graph_file )
# Initialize the camera
# Chose the type of input camera
cam = 0
cam = VideoStream ( usePiCamera =cam > 0). start ()
time. sleep (2.0)
#-----------------
# Predictions
#-----------------
while (True ):

frame = cam.read ()
# Original frame
frame_orig = np.copy(frame)
img_orig_dimensions = frame_orig .shape
# Processing the captured frames
frame = pre_proc_img (frame , meta)
# Make a prediction with the Movidius NCS printing the relative fps
s_time = time.time ()
graph. queue_inference_with_fifo_elem (input_fifo , output_fifo , frame ,
’user object ’)
output , user_obj = output_fifo . read_elem ()
e_time = time.time ()
fps = 1/( e_time - s_time )
print("NCS FPS: {}".format (1/( e_time - s_time )))
# Reshape the output tensor
y_out = np. reshape (output , (13, 13 ,425))
y_out = np. squeeze (y_out)
# Use darkflow utils to extrapolate the dictionary
from the output tensor

boxes = procces_out (y_out , meta , img_orig_dimensions )
# Draw boxes and text
add_bb_to_img (frame_orig , boxes , fps)
# Display the processed original frames
cv2. imshow (’Tiny - Yolov2 Apple ’, frame_orig )
k = cv2. waitKey (1) & 0xFF
if k == 27:

break
# clean up the graph and device
graph. destroy ()
dev.close ()
dev. destroy ()
cv2. destroyAllWindows ()
cam.stop ()
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