
POLITECNICO DI TORINO

Master Degree in Electronic Engineering

Master Degree Thesis

Fault injection techniques for
Real-Time Operating Systems

Supervisor
Prof. Maurizio Rebaudengo

Candidate
Dario Mamone - s242209

CNRS - LIRMM - Université de Montpellier
Supervising professor

Prof. Alberto Bosio

Academic Year 2017-2018

Acknowledgments

I would like to thank professor Maurizio Rebaudengo for the constant support, for the
possibility to have a study experience abroad and, furthermore, for having introduced me
to the world of research.

I wish to thank professor Alberto Bosio as well for all the suggestions provided for the
development of this work and for his constant availability during my stay in Montpellier.

i

Abstract

When an electronic system stops working properly, the causes of such malfunctioning
could be due to a human factor or to the external environment. If the former ones can be
discarded, then it is highly probable that the system encountered an error as consequence
of high energy particles which stroke the hardware causing a permanent or transient
damage: in the former case, the whole system is definitively harmed and only a physical
substitution of the broken circuit can solve the problem; in the latter case, instead, power
cycling would be a sufficient solution. In both circumstances, if the system must be al-
ways active and respond respecting well defined deadlines, such misbehaviors can lead
to catastrophic consequences; in the worst case, the element to be substituted cannot be
even accessed: this is the case of automotive, avionic and aerospace applications.
In order to avoid these scenarios, the system must be extensively tested and then strengthen
where it showed high sensitivity to random variation in signals and data: fault injection
is exactly that technique which allows to spot vulnerabilities in a system, highlighting
those parts which need to be hardened.

This work aims to investigate the effects of Single Event Upset (SEU), caused usually
by high energy particles, in Real-Time Operating Systems (RTOS) specifically developed
for embedded solutions, analyzing the consequences of faults injected on most relevant
data of the operating system itself. SEU effects are simulated using a prototyping board
designed by STMicroelectronics running FreeRTOS as embedded OS; parameters of the
injection are sent to the hardware from a host computer, which automatizes the process.
Fault injection campaigns are performed on various parts of the OS and information about
the status of the system are extracted after the injection.

iii

Contents

Acknowledgments i

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 State of the art . 2
1.3 Structure of the thesis . 3
1.4 Hardware and software used . 4

2 Physics of Single Event Effects 5
2.1 Introduction . 5
2.2 Cosmic rays . 5
2.3 SEE Classification . 6

2.3.1 Destructive SEE . 6
2.3.2 Non-destructive SEE . 7

3 Fault injection 9
3.1 Dependability . 9

3.1.1 Attributes . 9
3.1.2 Threats . 10
3.1.3 Means . 11

3.2 Architecture of a fault injection system . 12
3.2.1 Injection technique . 12
3.2.2 Fault model choice . 13
3.2.3 Fault injection space . 15
3.2.4 Fault lists definition . 15
3.2.5 Communication . 15

4 Real-Time Operating Systems 17
4.1 RTOS common features . 17

4.1.1 System Tick . 18
4.1.2 Scheduler . 19
4.1.3 Execution delay and timeouts . 22

4.2 FreeRTOS . 22
4.2.1 FreeRTOS properties . 22
4.2.2 FreeRTOS files . 24
4.2.3 FreeRTOS setup . 25
4.2.4 FreeRTOS data and structures . 26

v

Contents

4.2.5 FreeRTOS kernel . 29
4.2.6 FreeRTOS mutexes . 34

5 Fault Injection Environment 39
5.1 Specifications . 39
5.2 Overview . 39

5.2.1 Hardware . 41
5.2.2 Operations . 42

5.3 Host-side FIEmon.py script . 43
5.3.1 Single injection mode (SIJ) . 44
5.3.2 Normal injection mode (INJ) . 46
5.3.3 Fine injection mode (DEP) . 46
5.3.4 Random injection mode (RAD) . 47

5.4 DUT-side FIEbrd system . 47
5.5 FreeRTOS code modification . 51

6 Experimental environment 53
6.1 Classes of misbehaviors . 53
6.2 Definitions . 53

6.2.1 Fault lists . 54
6.3 Host-side FIEparser.py script . 56

6.3.1 Parsing algorithm . 56

7 Benchmarks under test 59
7.1 a2time - Angle to time conversion . 60
7.2 aifftr - Fast Fourier Transform . 60
7.3 aifirf - Finite Impulse Response filter . 60
7.4 aiifft - Inverse Fast Fourier Transform . 61
7.5 bitmnp - Bit manipulation . 61
7.6 idctrn - Inverse Discrete Cosine Transform 61
7.7 iirflt - Infinite Impulse Response filter . 61
7.8 matrix - Matrix arithmetic . 61
7.9 pntrch - Pointer chasing . 61
7.10 puwmod - Pulse Width Modulation . 61
7.11 rspeed - Road speed calculation . 61
7.12 tblook - Table lookup and interpolation 62
7.13 ttsprk - Tooth to spark algorithm . 62

8 Experimental results 63
8.1 Experiments summary . 63
8.2 List 1 - Global FreeRTOS variables . 65

8.2.1 Bits 0-7 injection results . 65
8.2.2 MSB injection results . 70

8.3 List 2 - Current task TCB . 74
8.3.1 Bits 0-7 injection results . 74
8.3.2 MSB injection results . 79

8.4 List 2 - Ready task TCB . 83
8.4.1 Bits 0-7 injection results . 83
8.4.2 MSB injection results . 87

vi

Contents

8.5 List 3 - Ready tasks list . 91
8.5.1 Bits 0-7 injection results . 91
8.5.2 MSB injection results . 95

8.6 List 3 - Delayed tasks list . 99
8.6.1 Bits 0-7 injection results . 99
8.6.2 MSB injection results . 103

8.7 List 4 - Mutex . 107
8.7.1 Bits 0-7 injection results . 107
8.7.2 MSB injection results . 112

8.8 Consistency dependence on tolerance . 116

9 Conclusions 119
9.1 Summary . 119
9.2 RTOS hardening . 120
9.3 Future improvements . 121

Appendices 123

A Mutex take and give algorithm 125
A.1 Mutex take operation pseudocode . 125
A.2 Mutex give operation pseudocode . 125

B FIEmon.py detailed algorithm 127

C FIEparser.py detailed algorithm 131

Bibliography 133

vii

List of Figures

2.1 Latchup parasitic circuit . 7

3.1 Examples of fault excited by a high energy particle in an AND gate. On
the left the fault does not turn into a misbehavior while on the right a
failure of the circuit can be observed. 11

3.2 Diagrams of two possible injection spaces: on the left, an example of
software-based injection in memory; on the right an example of physical
injection in a die: geometrical position is actually a (x,y) tuple. 15

4.1 State transition diagram for a generic OS 18
4.2 RTOS set with a low frequency system tick; its very low reactivity is high-

lighted. 19
4.3 RTOS set with a high frequency system tick: time required by switching

routine to perform operations is not negligible anymore if compared to
useful time dedicated to real tasks. 19

4.4 Behavior of a tickless cooperative RTOS: when a task releases the core or
it goes in blocked state another ready task is scheduled, if available. . . . 20

4.5 Behavior of a prioritized tickless cooperative RTOS: when a task releases
the core or it goes in blocked state, the ready task with the highest priority
is scheduled, if available. 21

4.6 Behavior of a ticked RTOS with generic preemption: at every system tick
a task is scheduled using a defined algorithm. 21

4.7 Behavior of a ticked RTOS with prioritized preemption but without time
slicing. At every tick interrupt, if a new task with a priority higher than
the current task priority is available, such task is switched in. 21

4.8 Behavior of a ticked RTOS with prioritized preemption and time slicing.
At every tick interrupt, if a new task with a priority equal or higher than
the current task priority is available, such task is switched in. 22

4.9 FreeRTOS state transition diagram . 23
4.10 FreeRTOS pxReadyTasksLists vector . 26
4.11 Kernel operations - Task creation . 30
4.12 Kernel operations - Start of the scheduler 31
4.13 Kernel operations - Management of the system tick interrupt 32
4.14 Kernel operations - Context switch done by PendSV interrupt routine . . 33
4.15 Mutex - Creation mechanism . 35
4.16 Mutex - Take mechanism . 36
4.17 Mutex - Give mechanism . 37

5.1 Top view of the injection system . 40

ix

List of Figures

5.2 Sequence of steps made by host-side computer and DUT-side board. All
communications are made using a USART peripheral. 42

5.3 Generic flow diagram of the host-side algorithm 45
5.4 Generic flow diagram of the DUT-side sequence of operations 48

6.1 Generic flow diagram of the parsing algorithm used to extract results . . . 57

7.1 Bipolar stepper motor driver control circuit with connections to internal coils 62

8.1 Results of injections in 8LSB, using a2time benchmark 67
8.2 Results of injections in 8LSB, using idctrn benchmark 68
8.3 Results of injections in 8LSB, using tblook benchmark 69
8.4 Results of injections in 1MSB, using a2time benchmark 71
8.5 Results of injections in 1MSB, using idctrn benchmark 72
8.6 Results of injections in 1MSB, using tblook benchmark 73
8.7 Results of injections in 8LSB, using a2time benchmark 76
8.8 Results of injections in 8LSB, using idctrn benchmark 77
8.9 Results of injections in 8LSB, using tblook benchmark 78
8.10 Results of injections in 1MSB, using a2time benchmark 80
8.11 Results of injections in 1MSB, using idctrn benchmark 81
8.12 Results of injections in 1MSB, using tblook benchmark 82
8.13 Results of injections in 8LSB, using a2time benchmark 84
8.14 Results of injections in 8LSB, using idctrn benchmark 85
8.15 Results of injections in 8LSB, using tblook benchmark 86
8.16 Results of injections in 1MSB, using a2time benchmark 88
8.17 Results of injections in 1MSB, using idctrn benchmark 89
8.18 Results of injections in 1MSB, using tblook benchmark 90
8.19 Results of injections in 8LSB, using a2time benchmark 92
8.20 Results of injections in 8LSB, using idctrn benchmark 93
8.21 Results of injections in 8LSB, using tblook benchmark 94
8.22 Results of injections in 1MSB, using a2time benchmark 96
8.23 Results of injections in 1MSB, using idctrn benchmark 97
8.24 Results of injections in 1MSB, using tblook benchmark 98
8.25 Results of injections in 8LSB, using a2time benchmark 100
8.26 Results of injections in 8LSB, using idctrn benchmark 101
8.27 Results of injections in 8LSB, using tblook benchmark 102
8.28 Results of injections in 1MSB, using a2time benchmark 104
8.29 Results of injections in 1MSB, using idctrn benchmark 105
8.30 Results of injections in 1MSB, using tblook benchmark 106
8.31 Results of injections in 8LSB, using a2time benchmark 109
8.32 Results of injections in 8LSB, using idctrn benchmark 110
8.33 Results of injections in 8LSB, using tblook benchmark 111
8.34 Results of injections in 1MSB, using a2time benchmark 113
8.35 Results of injections in 1MSB, using idctrn benchmark 114
8.36 Results of injections in 1MSB, using tblook benchmark 115
8.37 Tolerance-Consistency dependency for idctrn benchmark 116
8.38 Identification of faulting bits dependence on tolerance, for tolerance values

of 0, 1, 2, 4, 7 and for idctrn benchmark, fault list 1 117

x

List of Tables

3.1 Summary of injection techniques . 14

5.1 Summary of Fault Injection Environment 41

8.1 Summary of experimental injection campaigns performed with target bits
specified . 64

8.2 Number of experiments per list, divided by target bits 64
8.3 Faults producing misbehaviors for experiments in list 1, 0-7 LSB 65
8.4 Faults producing misbehaviors for experiments in list 1, 1 MSB 70
8.5 Faults producing misbehaviors for experiments in list 2, current TCB, 0-7

LSB . 74
8.6 Faults producing misbehaviors for experiments in list 2, current TCB, 1

MSB . 79
8.7 Faults producing misbehaviors for experiments in list 2, ready TCB, 0-7 LSB 83
8.8 Faults producing misbehaviors for experiments in list 2, ready TCB, 1 MSB 87
8.9 Faults producing misbehaviors for experiments in list 3, ready tasks list,

0-7 LSB . 91
8.10 Faults producing misbehaviors for experiments in list 3, ready tasks list, 1

MSB . 95
8.11 Faults producing misbehaviors for experiments in list 3, delayed tasks list,

0-7 LSB . 99
8.12 Faults producing misbehaviors for experiments in list 3, delayed tasks list,

1 MSB . 103
8.13 Faults producing misbehaviors for experiments in list 4, 0-7 LSB 107
8.14 Faults producing misbehaviors for experiments in list 4, 1 MSB 112

9.1 Summary of most sensitive faults to LSB injections 120
9.2 Summary of most sensitive faults to MSB injections 121

xi

Chapter 1

Introduction

1.1 Motivation

Nowadays, embedded systems are used in a huge amount of fields, from medicine to auto-
motive, from consumer electronics to avionics and aerospace, from security and access
control systems to biology and so on. In all these cases the system must meet both
required and desirable features chosen at design time and/or imposed by a standard,
according to its mission. In any case, a desirable property for every system is a high de-
pendability: this can be achieved with a deep analysis of the system, targeted to identify
weaknesses and then with the implementation of some techniques which allow to mitigate
or completely remove them. However, extensive testing phases require money and time,
delaying the entrance of the product on the market and increasing the final per-unit price:
for these reasons an optimal trade-off must be found during the design phase so that the
product final price does not exceed the target one and, at the same time, the system can
still work with the desired quality level.
Dependability can be reduced in many ways: without taking into consideration errors
due to design, hardware and software bugs, problems occurred during fabrication and
intentional tampering, there are many other external events that can affect this prop-
erty during the lifetime of the application; some of them are due to the interaction of
the circuit with the surrounding environment and this could cause problems like memory
bit-flip, signal degradation, data loss, permanent damage of the physical circuit.
As modern electronics is becoming more and more complex, with even more strict specific-
ations - operations must be done in a fast, correct and safe way, ensuring the continuous
stability of the application - and at the same time many hardware platforms support the
integration of an OS, it is a good practice to surround the application with an operating
system, which preferably includes some kind of robustness, even if resources are poor: the
overhead added is minimal if compared to the advantages it brings. If some timing con-
straints have to be respected, a RTOS can be considered as possible solution. However,
the RTOS itself introduces a new place where weaknesses could manifest their dangerous-
ness, so it is important to characterize its behavior in presence of faults and eventually to
implement some techniques to prevent, remove or tolerate them: this requires the devel-
opment of new testing systems aimed at measuring the RTOS robustness, spotting all its
vulnerabilities and characterizing the behavior of the application when such faults occur.

1

Chapter 1. Introduction

1.2 State of the art

Fault injection has a very long tradition in the world of testing: many injection systems,
in fact, have already been developed to test generic RAMs, FPGAs, ASICs, or even ISA-
based circuits exploiting different techniques. Many of these testing environments have
been created to evaluate the dependability, to identify vulnerabilities, or, in the case of
software-based testing, to perform an analysis of the system under test using a more
portable and easier to implement solution. Some examples of the most famous software-
based injection environments are FERRARI[1], Xception[2], FTAPE[3].
However, this thesis has the aim to develop a system to inject faults in OS-related variables
in order to test its robustness: up to now, it seems that fault injection in operating systems
has been done only in those parts of OSs that are exposed the most, but it was never
performed extensively in internal data used exactly by a RTOS; some of these past works,
in fact, allow to perform tests on OSs whose code is partially or completely closed source,
reducing drastically places where it is possible to inject. In the following sections the
most relevant found documents concerning the topic of fault injection in OSs are briefly
described.

1 - A Generic Fault Injection Framework for the Android OS
[4] This work is a bachelor thesis made at Technischen Universität Darmstadt with the aim
to develop an injection framework for Android. Two types of injections are performed: the
first one is based on the modification of the operating system code before compiling it; the
second one instead requires the presence of an external actor able to manage the injection
remotely. The device under test, a virtual machine, remains for the whole duration of
the campaigns attached to the host computer exploiting a TCP communication, while
GDB (GNU Debugger) is used to perform the injection. Injections are done in the driver
calls and during memory accesses as soon as a predefined breakpoint inserted in the code
through GDB is hit: in the former case, when a driver call occurs, parameters passed
to it are modified on the fly; in the latter case instead, content of hardware registers
accessed by the kernel when trying to read or write a datum in the memory is subjected
to injection: they are data memory and address registers integrated in the load-store unit
of the architecture.

2 - FIFA: A Kernel-Level Fault Injection Framework for ARM-based Embed-
ded Linux System
[5] This work is the most similar to this thesis but shows anyway some relevant differences.
This time the injection is done on a Linux OS running on ARM hardware and managed
by a host computer that communicates with the device under test through a serial port.
The injection can be done exploiting hardware breakpoints provided by ARM or using
KGDB remotely: in all cases the memory location to be tested is accessed when the kernel
executes a particular part of the code, injecting so in a non defined time instant.

3 - An RTOS-based Fault Injection Simulator for Embedded Processors
[6] The fault injector presented in this work aims to study the effects of some injections
in the system in order to tamper it. More precisely, injections are done in some memory
locations containing results of some encryption and decryption processes to perform a
Differential Fault Attack (DFA): this kind of cryptanalysis technique allows to find relev-
ant information about a cryptographic key doing some injections during the encryption
of a clear text and then comparing its encrypted version with the fault-free one. In this

2

Chapter 1. Introduction

case the targets of the injection are generic memory cells containing user data and not
system data.

4 - Robustness Evaluation of Operating Systems
[7] In this doctoral thesis a system able to inject faults in Windows CE is presented.
Again interface between the user and kernel of the operating system is selected as target
of the injection: three drivers (serial port, network card and flash card reader drivers)
are subjected to tests. Anyway, also in this case, the internal data of the OS are not put
under test because they are hidden to the user.

1.3 Structure of the thesis

The thesis has been written so that, for each chapter, all the required knowledge have
been already given, at least generically, by the previous ones. Some chapters contain very
detailed descriptions, for example, of some parts of the developed injection environment or
of the operating system used as target of the experiments: sometimes the discussion could
seem too complicated, but, in these cases, it was necessary to report all the information
to provide a complete overview of the topic.

Chapter 1 - Introduction
The current chapter contains the motivation of this work and the state of the art of fault
injection techniques on operating system.

Chapter 2 - Physics of Single Event Effects
This chapter explains briefly the physics behind SEE and provides a classification scheme.

Chapter 3 - Fault injection
The topic of fault injection is introduced starting from the more generic concept of de-
pendability, providing then descriptions concerning the various injection techniques.

Chapter 4 - Real-Time Operating Systems
Real-Time Operating Systems are analyzed from a generic point of view; FreeRTOS most
important data and kernel operations are then studied, providing detailed descriptions of
those parts which are most relevant for this work.

Chapter 5 - Fault injection Environment
A very detailed description of the developed fault injection environment is provided; here
it is possible to find a sufficient amount of information to learn how to use the injector.

Chapter 6 - Experimental environment
Important definitions related to identified misbehaviors classes and to quantities defined
to present results in a compact way are provided here.

Chapter 7 - Benchmarks under test
In this chapter the Automotive suite of benchmarks provided by EEMBC® is described:
such programs are used as standards to give scientific relevance to injection experiments.

Chapter 8 - Experimental results
Results related to all experimental campaigns performed are reported, with a detailed
description of the behavior of the system in all the relevant cases in which the OS has
shown a misbehavior.

3

Chapter 1. Introduction

Chapter 9 - Conclusions
A brief summary of the behavior of the system under test is given, with some suggestions
for future improvements of the tested RTOS.

1.4 Hardware and software used
In order to provide a summary and to introduce all software tools and hardware platforms
used to develop the work, a quick list is written below.

• STM32F3DISCOVERY This is a prototyping board produced by STMicroelectron-
ics with integrated programmer/debugger; this platform has been chosen because it is
cheap and complete. Moreover all STM32 devices are well supported by guides, tutori-
als and a very active community.

• Eclipse Neon This is a well-known IDE written in Java, complete, free and easy to
use.

• AC6 workbench for STM32 This additional package for Eclipse contains the cross
compiler arm-none-eabi, a debugger for STM32 devices and the code of FreeRTOS; it
can be downloaded from an Eclipse repository maintained by ac6-tools.com.

• STM32F3 HAL Hardware Abstraction Layer have been used as they partially remove
the complexity of low-level programming and allow to speed up the development.

• FreeRTOS v9.0.0 Lightweight, complete and open source Real-Time Operating Sys-
tem specifically designed for embedded systems with poor resources.

• EEMBC® Automotive suite v2.0 Set of official benchmarks provided by EEMBC®
containing different algorithms used in automotive field. This suite has been chosen
because it provides benchmarks that are widely used as standard programs for per-
formance tests under UNIX/Linux system; they have already been ported to other
minor hardware platforms.

• Python 2.7 Interpreted scripting language developed by Guido van Rossum. It has
been used to develop the host-side injection manager and the parser used to analyze the
produced data after each injection campaign. Three additional packages are required
for these scripts to work: numpy, matplotlib and serial.

4

Chapter 2

Physics of Single Event Effects

2.1 Introduction

A Single Event Effect (SEE) is the electrical noise induced in a circuit by a natural
phenomenon that is external to the circuit itself. SEEs are caused by ionizing particles
coming from space or Earth which collide with electronic devices: they may come from
deep space (cosmic and gamma rays), Sun (solar wind), magnetosphere (van Allen belts)
and Earth’s crust (from naturally radioactive materials). Those ionizing particles can be
both massive (heavy ions, protons, neutrons, electrons) or massless (photons); further-
more, the incriminated particles causing SEE can directly impact onto the device or they
can create a secondary cascade of particles when entering the atmosphere.
SEEs are dangerous because they may lead to misbehaviors or ruptures and their incid-
ence becomes even bigger because of the continuous scaling of technology. Their severity
can be analyzed taking into account the consequences of their impact on the circuit and
the way in which its mission is harmed. The consequences of a SEE and the probability
that a phenomenon has visible effects on a circuit can be estimated by reproducing the
phenomenon with testing techniques described in the next chapter (physical, logical or
simulation-based injection), then, with the results of these tests it is possible to know
which are the most sensitive parts of the system, to classify the misbehaviors and even-
tually to develop new methods to solve or at least to reduce some vulnerabilities.
Notoriously, on-board electronics used in avionics and aerospace are the most subjected
because they work at high altitudes or even outside the atmosphere, where there is no
protection against these phenomena, even though it is thought that also many sudden
failures in electronic devices working ashore (consumer electronics, industrial applications,
automotive circuits) are caused by ionizing particles that are able to reach the ground.

2.2 Cosmic rays

Cosmic rays are one of the first causes of SEEs in electronic devices and for this reason
they have been analyzed in detail since 60s . Usually their origin can be studied identifying
two actors: a particles source and an acceleration mechanism which actually makes them
dangerous for electronics; such particles originate in supernovae, at the center of galaxies
or in neutron stars with a high rotational frequency like pulsars. It is possible to identify
two types of cosmic rays: primary and secondary.

5

Chapter 2. Physics of Single Event Effects

Primary cosmic rays
Primary cosmic rays are composed by all those high energy particles coming from near
or distant astronomical objects which interact with the electronics and directly cause
SEEs; they are able to reach the atmosphere unperturbed, passing through its top part
where the air density is very low (over ~40km of altitude) without being subjected to any
major interaction. Primary cosmic rays are composed mainly by electrons and protons
but sometimes nuclei of heavier elements can be observed too.

Secondary cosmic rays
Secondary cosmic rays are generated by the interaction of high energy particles belonging
to primary cosmic rays with substances in the atmosphere, leading to the production of
a cascade of other particles like pions, muons and kaons; 80% of all particles reaching the
0m level of altitude (sea level) is made of muons, which have a flux through a horizontal
surface of 1 particle per 1cm2 in 1 minute.

2.3 SEE Classification

SEEs are classified according to the damage they cause and to the type of harming
mechanism they induce. JEDEC standards identify many classes of SEE but in the
following only the most relevant ones are described.

2.3.1 Destructive SEE

A destructive SEE (called hard error too) causes a permanent damage to a circuit: good
solutions adopted to reduce or totally remove the impact of such error are based on
adding some redundancy in the system at hardware level (system-level, block-level or
gate level) or at software level (data redundancy, SEC-DED algorithms). If even the
added redundancy does not have the expected protective effect and device breakage is
not avoided, only its physical substitution can solve the problem.
Most relevant destructive SEEs are: Single Event Latchup (SEL), Single Event Burnout
(SEB), Single Event Gate Rupture (SEGR) and Single Event Hard Error (SEHE).

Single Event Latchup (SEL)
Latchup is a type of SEE that can be triggered in any CMOS-based circuit because of
its intrinsic structure: in fact, as depicted in figure 2.1, it is possible to spot a parasitic
thyristor among the various wells. In this configuration, if a high energy ionizing particle
goes through the n-well of the PMOS region, a high number of electron-hole pairs are
generated, creating a flow that dissolves the charges in order to go back to equilibrium:
the current follows the path from the n-well to the p-substrate, but this leads to a rising
current flowing through the base of the parasitic PNP bipolar transistor which causes
its collector current to rise and so the voltage across the resistance Rp to increase. This
causes an increment of current flowing in the base of the NPN bipolar transistor which
brings its collector current (a fraction of the same passing in the PNP gate) to rise again
and provoking a loop mechanism that destroys the device. In some cases latchup is not
necessarily destructive.

Single Event Burnout (SEB)
This event happens when a high kinetic energy particle strikes the device generating a
high localized current spike: if this amount of current is not tolerated, the device breaks;

6

Chapter 2. Physics of Single Event Effects

Figure 2.1: Latchup parasitic circuit

in this case breakage is due to a current exceeding the device absolute maximum ratings
and not to internal mechanism triggered by the SEE. It may be caused by heavy ions,
protons and neutrons.

Single Event Gate Rupture (SEGR)
Gate rupture is caused by heavy ions, protons or neutrons impacting against the device
and thus creating a current path through the gate of a MOSFET; the gate is permanently
damaged as consequence of this event, leading to a slightly higher current drained from
the power line. Moreover the effect may vary according to the angle of incidence of the
ion.

Single Event Hard Error (SEHE)
This error affects mainly SRAMs and it is manifested as stuck-at bit in the memory or
in other parts of the device. It is thought that this effect is due to the deposition of a
large charge in some isolated locations of the circuit which interacts statically with the
surrounding integrated elements and that is not able to dissolve.

2.3.2 Non-destructive SEE

A non-destructive SEE (called soft error too) causes a transient error in the system that
can lead to silent or catastrophic misbehaviors but it doesn’t damage physically the circuit.
The error is surely removed with power cycling. Most relevant non-destructive SEEs are:
Single Event Upset (SEU), Single Event Functional Interrupt (SEFI) and Single Event
Transient (SET).

Single Event Upset (SEU)
This is one of the most studied SEE because it is very common: it is caused by the
interaction of a particle with a memory element and its consequent change of state (known
as bit-flip too). Most important types of SEU are Single Bit Upset (SBU) and Multiple
Bit Upset (MBU).

Single Event Functional Interrupt (SEFI)
This SEE can be detected when the device resets or locks-up indefinitely because of a
change in an internal register: in some cases this event is classified as subset of SEU since
it is usually caused by a flip in one or more bits in some control registers of the device.

7

Chapter 2. Physics of Single Event Effects

Single Event Transient (SET)
This event is caused by a momentary voltage spike in a precise position of a circuit caused
by a sudden event like a high energy particle hitting the device or a strong electromagnetic
interference with a near source. If such transient value of the signal is retained by a
memory element, a misbehavior could be seen.

8

Chapter 3

Fault injection

3.1 Dependability

Dependability is the property of an application to perform operations as expected, whenever
it is required.
Dependability is made of attributes, threats and means. Attributes are a set of properties
that describe the system from the dependability point of view; threats instead are those
events that induce the system to not operate as expected; means are all those techniques
and methods that a designer can exploit to avoid that faults cause system failures or
at least to mitigate errors. Following concepts are intensively used when talking about
dependability.

• MTTFMean time to failure: if the system must work correctly for a very long time,
it is important to consider this quantity. It represents the average time between the
system start up and the instant when the first failure occurs.

• MTTR Mean time to repair: it is the average time required to an operator to
repair the system, starting from the detection of the problem.

• MTBF Mean time between failures: this quantity expresses the average time
between two consecutive failures.

• Failure rate This quantity is indicated with λ and is expressed in [FIT] (Faults In
Time). It is used as parameter by the failure model adopted.

1FIT = 1
109

C
numberoffailures

hours

D
(3.1)

3.1.1 Attributes

Dependability has many attributes, but the most important ones are 4, usually pointed
with the acronym RAMS (Reliability, Availability, Maintainability and Safety). With
the growth of the electronic industry and with the constant request of increasingly de-
pendable systems, new attributes have been introduced in the last decades, like Security,
Confidentiality, Integrity.

9

Chapter 3. Fault injection

Reliability
Reliability is the probability that a system behaves correctly until a time t, starting from
t0 and assuming it worked well until t0.
This attribute can be expressed analytically by a probability model that well describes
the behavior of the system with the passing of the time. Such analytical function is
continuous and real and it has two or more parameters: the independent variable (time),
the failure rate and eventually other parameters required by the model.

R(t) = f(t, λ, ...) (3.2)

Availability
Availability is the probability that a system behaves correctly at a generic time t. It is
just the ratio between the time during which the system was available and the total time
the system was active for (available or not).

A = up_time

up_time + down_time
(3.3)

Maintainability
Maintainability is the probability that a broken system can be fixed before a time t. In
this case one needs to know if the system is accessible to the operator (physically or
remotely), if the failure can be repaired and only then one can estimate the average time
required for the fixing.

Safety
Safety is the probability that a system correctly works or stops working without harming
anything and anyone when a problem occurs. It is very difficult to estimate analytically
this attribute because it is strictly related to the system itself, its specifications and the
applicative field it was designed for. Safety can be expressed by words defining some
behaviors the system must adopt when problems occur and then testing if it acts in the
expected way by forcing those problem in the application. It is evident that in this case
fault injection testing techniques are very useful.

3.1.2 Threats

Threats are all those events that lead a system to not operate as desired. They have
several possible causes, be they internal or external to the device, intentional or accidental,
permanent or temporary. Threats have a life cycle and for this reason three different
stages are identified. When a phenomenon excites a particular combination of events in
the device, it is possible that a part of the system shows a local behavior different from
the expected one: in this case we talk of fault, whose effect is still restricted to a small
area in the circuit and it is still impossible to know if such event will propagate in the
circuit; if this happens and so the fault leads to a temporary change of the state of the
system, such fault has turned into an error. If the error affects those parts of the system
that are directly connected to the output, then the system explicitly shows a behavior
different from the expected one: the error has become a misbehavior, called also failure.
The possibility to observe a misbehavior on the output depends not only on the circuit
itself but also on the combination of values applied to the input and on previous values
stored in eventual memory elements.

10

Chapter 3. Fault injection

Figure 3.1: Examples of fault excited by a high energy particle in an AND gate. On the
left the fault does not turn into a misbehavior while on the right a failure of the circuit
can be observed.

3.1.3 Means

Dependability of a system can be increased by exploiting some techniques which reduce
the effect of some faults or, in the best case, make the application completely insensitive
to them. These methods are divided in 4 categories: fault prevention, fault removal, fault
tolerance and fault forecasting.

Fault prevention
Fault prevention encases all those techniques aiming to strengthen the system so that it
is less probable a fault is excited. An example of fault prevention method is the usage
of hardened technology during the fabrication of a device: usually, consumer electronics
is less stable, less safe and more prone to failures than other applications because a high
dependability is not required. On the contrary, in other fields, it is fundamental to have
a system which does not fail easily and for this reason new advanced (but expensive)
technologies are used to implement the circuit. Radiation hardening is, for example, a
set of techniques used extensively in avionics to reduce the impact of radiation and high
energy particles on the electronics.

Fault removal
These methods require that the system contains a unit able to perform a status check
of the system itself and eventually to remove the fault, possibly before it becomes a
misbehavior.

Fault tolerance
In some cases it is mandatory that the system continues its operations, even if it has been
degraded as result of a fault. A widely used solution to tolerate errors (so to identify,
to correct them or both) is the implementation of redundancy, which can be done at
different levels. Redundancy at system level is the most expensive solution but it is still
commonly used in some safety-critical application where a secondary or even a tertiary
computing system could be lifesaving in case of critical errors. Redundancy at hardware
level (consisting in the implementation of more identical devices in the same system or
units in the same device) is very efficient too and it ensures that the system works well
in many cases even if a problem occurs, but it could be expensive and, very often, other
relevant parameters like area and power consumption are affected negatively. Redund-

11

Chapter 3. Fault injection

ancy can be implemented at software level too, duplicating variables, implementing error
detection and possibly correction codes, doing stricter checks on system data.

Fault forecasting
This set of techniques requires to do an analysis of the application to spot the most
sensitive locations and then to statistically estimate how many errors will occur and in
which parts of the system.

3.2 Architecture of a fault injection system

When a product reaches the end of a specific design phase, the end of production, when it
is pretty old or it must be tested constantly to ensure it works properly, it is mandatory to
develop systems which can automatize the main testing operations and to check that all
the desired features of the application are still present. This scenario shows how relevant
testing operations are during the development of a new application: it has been estimated
that companies operating in the world of electronics spend more or less 40% of the budget
to perform all these tests, so testing has become not only an operation that must be done
obligatorily to ensure that every single product has the required quality but also a big
expenditure whose burden should be reduced as much as possible.
Aside all the common types of test a new application can be subjected to - like validation
of specifications, design verification, verification testing, production testing (also called
end-of-manufacturing test), burn-in and incoming inspection - a particularly interesting
one is the the robustness test which usually exploits fault injection techniques to analyze
the possible consequences of SEE on an electronic device, in order to characterize the
system safety end eventually its availability and reliability.
When designing a new testing system for robustness, it is important to define a set of
features that allow to setup the fault injection environment in an efficient way. All testing
systems must work defining a set of fault lists, each one containing a set of faults where
the injection has to be performed; then the engineer has to define one or more fault
models which can efficiently simulate the physical phenomenon harming the hardware or
software. Finally the architecture of the testing system must be designed: it is important
to use two separated actors, a host machine and device under test, which communicate
constantly; such separation is necessary because some injections could lead to unexpected
repercussion on the testing system itself and if they are not well isolated one from the
other, injection system could fail, producing wrong results. All these aspects are described
in detail in the following sections.

3.2.1 Injection technique

Fault injection testing systems can perform the injection in different ways: if it is im-
portant to reproduce precisely the physical phenomenon which awakens a fault with a
possible consequent failure, a physical approach can be used; however, nowadays, less
invasive techniques are preferred: physical injections do not give accurate information
about the consequences of the test. The three possible approaches are described below
and table 3.1 summarizes their pros and cons.

Physical testing
A proper laboratory instrumentation like a LINAC (LINear ACcelerator) or a laser-based
injector and a vacuum chamber is required; the cost of such equipment is very high and if

12

Chapter 3. Fault injection

the hardware is an instruction set architecture executing a code and accessing a memory,
it is quite difficult to inject in specific data both in the memory and in internal registers.
Moreover, if the layout of the circuit is not known, it is necessary to reverse-engineering
it to understand how the various parts (caches, registers, logical and arithmetic units,
peripherals) are arranged on the die. The circuit is put inside a vacuum chamber so that
the accelerated ions do not impact on other molecules present in the environment, then
it is positioned under a pointing device; as soon as the accelerated particles reach the
desired energy, the LINAC begins to hit the location pointed on the die. Results can
be extracted at runtime or when the injection has finished. Usually random injections
campaigns are performed and then results are extracted using statistics. This technique
has been mainly used to characterize the behavior of simple devices like CMOS-based,
logic circuits, FPGAs or RAMs.

Logical testing
It can be hardware-based or software-based. In the former case the circuit must include
internally a fault-injection unit that can be enabled when a test has to be run; moreover
a specific communication protocol must be implemented so that an eventual external
machine can send injection parameters to the device under test. Such technique can be
applied in a totally different way too: if the engineer is interested on the effect of external
phenomena on the propagation of signals on a board, he can use an automatic system
based on probes or nails able to force known values on traces of a PCB. In the first case
a relevant overhead in terms of area is added while in the second case the cost of the test
equipment could be prohibitive.
In the case of software-base injection (often referred to as SWIFI), instead, a software
that has low-level access to the various parts of the system is launched and then it injects
in the desired position. This technique leads to a real injection as well, but the timing of
the application changes because of the time required by the injection routine to run.

Simulation
Adopting this solution, the test is not done using the hardware but the effects of the SEE
are simulated using a description of the circuit and a simulation tool. This technique does
not require the physical circuit to be tested but only its hardware description; moreover,
it allows to test hardware very well but, in the case of software robustness testing using a
bit flip model, it is still impossible to inject in a memory location containing the data to
flip because usually, even in smaller instruction set architectures, it is difficult to identify
deterministically such memory cell.

3.2.2 Fault model choice

A fault model is the model of a real fault caused by one or more physical phenomena using
a simplified description, so that a testing system can easily reproduce the effect of the
fault itself. For example, the stuck-at fault model can be used to model the effects of some
physical events like electromigration, short circuit paths in the device between a signal line
and a power supply line, electromagnetic interference across too close interconnections,
gate rupture and so on. Another type of fault model is the so called stuck-on, which
expands the descriptive power of the stuck-at, considering the circuit from the point of
view of the single transistors. With the increase of the working frequency, path delay fault
models have become also very important as they allow to describe erroneous events due
to a too small clock period: this model can be used to characterize the various paths in

13

Chapter 3. Fault injection

Technique Advantages Disvantages

Physical - Physical phenomena causing
the SEE are replicated

- Possibility to physically inject
in well-defined parts of the die

- Very high cost
- Expert personnel required to
use the equipment

- Impossibility to inject in spe-
cific data

- Necessary reverse engineering
of the die if its layout is un-
known

Logical
Hardware
based

- Very precise hardware-related
injection

- Good simulation of the phys-
ical phenomenon

- Device under test not affected
in terms of executing time by
the operations of the injecting
unit

- Implementation of an addi-
tional hardware unit

- Definition of a communication
system with a machine con-
trolling the injection experi-
ment

- Eventually, additional pins to
be added on the board re-
quired

- Eventually, high overhead in
terms of area

Logical
Software
based

- Very precise software-related
injection

- High level of freedom during
the development of the inject-
ing system

- Low cost
- High portability of the sys-
tem: it is sufficient to adapt
the code to the architecture of
the microcontroller or micro-
processor

- Relevant overhead in terms of
code size added

- Relevant overhead in terms of
additional executing time

Simulation
based

- Absolutely not invasive
- No hardware resource needed
(besides a computer to run the
simulation)

- High level of freedom during
the development of the inject-
ing system

- HDL description of the circuit
rarely available

- Cost of the simulation tool can
be relevant

Table 3.1: Summary of injection techniques

14

Chapter 3. Fault injection

a circuit or to simulate the presence of too slow paths in the hardware using a software
approach.

3.2.3 Fault injection space

Another important thing to be defined is the injection space which is related to the
injection technique adopted. It is a multi-dimensional space: a good example can be
made of injection time, injection place and injection type, but many other parameters
can be added.

Figure 3.2: Diagrams of two possible injection spaces: on the left, an example of software-
based injection in memory; on the right an example of physical injection in a die: geo-
metrical position is actually a (x,y) tuple.

3.2.4 Fault lists definition

A fault list is a list of places, where the injection has to be done. Faults can be geometrical
position in a circuit die (for physical tests), units in the integrated device or geometrical
coordinates on a PCB (for hardware-based tests), variables and data in the memory (for
software-based tests), signals values or memory elements content (for simulation tests):
fault lists must be defined according to the injection technique adopted. It is used by the
testing system to automatize the process and it can be built automatically or by hand.
When the system under test is big and the number of faults in the fault lists is high, a
process of fault collapsing must be done: it can be made according to some logical or
boolean rules or analyzing the system; in fact, in the case of software test, some variables
to inject in could have no direct consequence on the dependability of the application
if they change their value (like debug variables and strings used for the user-machine
communication). Fault collapsing allows to decrease the length of the fault list reducing
test time.

3.2.5 Communication

An efficient communication mechanism must be used so that the host-machine can control
the DUT. Such system can be developed ad-hoc and inserted in the device or on the board
or it can be based on an existing unit or peripheral. An example of ad-hoc communication
system is the JTAG protocol which must be appositely inserted in the device: such
solution requires the whole design of the circuit to be reviewed so that a debug unit and
eventually scan registers can be added; very high speed communication (and in some

15

Chapter 3. Fault injection

cases even real-time tracing of the execution flow) between DUT and host is guaranteed.
A communicating system based, instead, on an existing resource does not require any
modification of the circuit; the only drawbacks are due to the fact that the used peripheral
cannot be used by the application.

16

Chapter 4

Real-Time Operating Systems

4.1 RTOS common features

A Real-Time Operating System is an operating system able to perform desired oper-
ations in a precise amount of time, respecting well defined deadlines. In some cases,
system reactivity and calculation times are very important for the whole application to
work according to the specifications. Moreover, in safety-critical applications, it is im-
portant to avoid such deadlines to be violated: if this happen, the system could injure
more or less severely other systems, people and objects.
When the application can tolerate some timing violations without messing up itself or
the environment, we talk about soft real-time systems: an example is the keyboard input
processing in a computer, as a quick response is preferred but not mandatory; on the
contrary, if a missed deadline causes severe damages to itself or to the surrounding envir-
onment, we speak of hard real-time systems: an example is the real-time mechanism that
injects fuel in the cylinders of an engine; in this case violations must be handled properly,
in order to avoid as much as possible dangerous consequences. It is common to have, at
the end of the system design, a mix of hard real-time, soft real-time and non real-time
behaviors.
RTOSs are able to schedule concurrent operations belonging to different contexts in the
form of tasks (or processes) and to switch among them in such a way that desired timing
is respected. Each task can be in a defined state in every moment of its life and the pro-
grammer can partially choice how and when a task must change it; usually all operating
systems (not only RTOSs) recognize three states for each task: the ready state, when the
task is ready to be scheduled; the running state when the task has been switched in and it
holds the core of the processor; the waiting state when, instead, the task is waiting for an
event to happen. Sometimes two additional states are added and they are the new state,
used to identify tasks that have been just created and the deleted state, when a task must
be removed and it is waiting for the kernel to clear its stack and to free all the memory
associated to it.
With the expression context switching we mean the mechanism that allows to run code
from different contexts, and so to assign the core to tasks so that all of them are executed
and their data are not mixed. A general scheme of states and transition mechanisms, valid
for both common OSs and RTOSs, is shown in figure 4.1. However, in the case of RTOSs,
when the system to be setup is complex, some calculations could lead to not satisfy time
boundaries because of problems like loss of synchronization, deadlock, starvation or just
because WCET (Worst Case Execution Time) for one or more portions of code has been

17

Chapter 4. Real-Time Operating Systems

Figure 4.1: State transition diagram for a generic OS

miscalculated: in any case, it is the duty of the programmer to handle properly these
events and to implement recovery mechanisms.
A RTOS can ensure the correct scheduling in real time by providing, mainly, three fea-
tures: a real timing system, an efficient scheduling policy and possibility to delay or to
stop execution of some tasks for a defined amount of real time.

4.1.1 System Tick

It is fundamental for a RTOS to have a real time reference able to keep the time for many
operations made by the kernel and by the tasks: such element is a hardware timer and
it can be a general purpose or a specific one, appositely inserted in the architecture as
reference for the OS; this hardware unit can generate an interrupt on a regular basis,
called system tick or not, according to the type of timing system the OS uses: in the first
case we talk about ticked systems while in the second case such OSs are called tickless.

Ticked systems
System tick raises an interrupt on a regular basis and lets its handler to be executed: a
check is performed on all the instantiated tasks to see if a context switch must be done
and, if so, it switches out from the core the current operation and choices, if available,
another one to be executed, according to the scheduling policy. A particular attention
must be payed when defining the period of the system tick: in fact, if it is too high, the
system could be not as fast as desired, producing slow responses to events that require a
high reactivity; on the contrary, if this value is too low, the overhead due to the switching
routine could impact negatively on the performance of the system. A value comprised
between 1ms and 100ms is usually a good starting point to tune this parameter. Figures
4.2 and 4.3 underline negative aspects of a bad tuned system; in both cases the RTOS
scheduler uses a round-robin policy. Anyway, it is important to highlight that the system
tick is not the only way to produce a switch between operations, since other events can
cause it, even if the tick didn’t occur yet: examples are the mechanism used to move
tasks from the ready state to the waiting state or the situation in which a task setups a

18

Chapter 4. Real-Time Operating Systems

Figure 4.2: RTOS set with a low frequency system tick; its very low reactivity is high-
lighted.

Figure 4.3: RTOS set with a high frequency system tick: time required by switching
routine to perform operations is not negligible anymore if compared to useful time dedic-
ated to real tasks.

timeout to wait for a busy resource.
In some cases, in ticked RTOSs, it can be comfortable to stop the tick generator when the
core is idle and there is no task to be instantiated because they are all blocked/waiting.
In this low-power mode the scheduler will be awakened by the first task entering again
the ready state.

Tickless systems
Tickless systems can have a very low overhead during the execution because the context
switch is done only when a new deadline is encountered: every time a task goes in a block-
ing/waiting state for a specified amount of time, it is added in an internal ordered queue
with all the other processes waiting for a time-related event; then the hardware timer
is set so that an interrupt is raised when the timeout occurs: the interrupt handler will
perform the context switch. These RTOSs are more error prone because the programmer
must pay more attention when defining deadlines and wake/sleep times for each task but
kernel procedures are called only when needed and not on a regular basis.

4.1.2 Scheduler

The scheduler of a RTOS is that part of the kernel that must assign the core to the various
tasks in turn, following the chosen scheduling policy. There are two possible approaches:

19

Chapter 4. Real-Time Operating Systems

Preemptive scheduling This approach allows to switch the current task out even if it
can still execute. This allows to give the core in a more fragmented way and ensure that, if
the system is well designed, all instantiated tasks are executed. Prioritized preemption is
a particular type of preemptive scheduling that exploits in a strict way the assignment of a
priority: every time a new task is created, it is assigned a priority and then the scheduling
is done taking in consideration such value. In general, when a task with higher priority
with respect to the current task priority is ready to be executed, the latter is switched
out and the core is given to the the former. Prioritized preemption is very useful when
there are some tasks needing a higher attention to be executed primarily with respect to
other less important ones.

Cooperative scheduling In this case, the core is assigned to a new task only when the
current one terminates, when it goes in a blocked/waiting state or when it voluntarily
switches out and so forces the scheduler to find a new candidate. If execution time
required by all the calculations made by the various tasks can be properly estimated and
a high level of freedom in the organization of the processes execution is preferable, the
cooperative approach can be used.

Following figures represent 5 possible configurations of the RTOS scheduler: figure 4.4
shows the case of a tickless cooperative one - in this case no system tick is implemented;
the programmer must calculate correctly the WCET of each task and then it must insert
in all of them, in the correct position, a yield operation that allows the other tasks to run.
Figure 4.5 instead is the case of a prioritized tickless cooperative RTOS where priority
is used to choice the task to be run when the previous one yields the core. Figure 4.6
represents a scheduler with a defined custom algorithm - in this case scheduling is made at
every system tick; many possible policies can be adopted, like round-robin, EDF (Earliest
Deadline First), FCFS (First Come First Served) and so on. In figure 4.7 instead the
scheduler is a prioritized preemptive one but without time slicing - with this solution the
scheduler, at every system tick, tries to find one or more tasks with a priority higher than
the current task priority and, if it exists, then it switches to one of them. Finally, figure
4.8 represents the behavior of a prioritized preemptive scheduler with round-robin time
slicing.

Figure 4.4: Behavior of a tickless cooperative RTOS: when a task releases the core or it
goes in blocked state another ready task is scheduled, if available.

20

Chapter 4. Real-Time Operating Systems

Figure 4.5: Behavior of a prioritized tickless cooperative RTOS: when a task releases the
core or it goes in blocked state, the ready task with the highest priority is scheduled, if
available.

Figure 4.6: Behavior of a ticked RTOS with generic preemption: at every system tick a
task is scheduled using a defined algorithm.

Figure 4.7: Behavior of a ticked RTOS with prioritized preemption but without time
slicing. At every tick interrupt, if a new task with a priority higher than the current task
priority is available, such task is switched in.

21

Chapter 4. Real-Time Operating Systems

Figure 4.8: Behavior of a ticked RTOS with prioritized preemption and time slicing. At
every tick interrupt, if a new task with a priority equal or higher than the current task
priority is available, such task is switched in.

4.1.3 Execution delay and timeouts

In a common OS, in principle, it is possible to wait for a lot of time before an event occurs
or a resource is released but in the world of RTOSs, as deadlines are often peremptory, it
is important to define timeouts to avoid the system to wait for too much. Furthermore,
delaying the execution of a portion of code of an arbitrary amount of real time could be
convenient in some cases. For these reasons RTOSs provide some facilities like retardation
of the execution of a task, suspension of the task and additional timeout parameters to
be defined by the programmer for waiting operations.

4.2 FreeRTOS

Following section is related to FreeRTOS v9.0.0.
FreeRTOS is a Real-Time Operating System written in C and developed for embedded
systems where other OSs won’t fit the memory. It is a good choice also for its completeness,
for the support provided by the community, the abundance of tutorials and guides and for
its license: in fact, FreeRTOS is released under the MIT Open Source license which gives
it gratuitousness and the possibility to use it in commercial-use applications, with no need
to document it. However it is not covered by any warranty and special support: to obtain
them, a commercial version called OpenRTOS™ must be bought. There exists another
version called SafeRTOS™ that implements additional features like memory protection,
forbids dynamic memory allocation and requires always deadlines to be specified in waiting
operations in order to avoid infinite stalls or deadlocks.
To have a full comprehension of this OS, please consult the official FreeRTOS reference
guide [12].

4.2.1 FreeRTOS properties

Before proceeding, FreeRTOS nomenclature is provided.

Application This term indicates the whole system running on the hardware platform,
with the operating system properly set and all the tasks instantiated: each FreeRTOS
project can be referred to by this term.

22

Chapter 4. Real-Time Operating Systems

Task In FreeRTOS a task is the basic element to be executed in parallel with other ones.
A FreeRTOS task should be thought more like a UNIX/Linux process than like a thread
as they are not supported by this RTOS: each task has its own stack, it can access to the
common heap and is not dependent on a father task.
Task Control Block The Task Control Block (TCB) is a data structure initialized for
each task every time one is created. It contains all the necessary information about the
task status, its stack position in the memory, mutexes and few other fields that can be
used for debug.
Task Handle A task handle is a variable pointing to the first element of a TCB in the
memory. It is used to address the task when necessary or to distinguish various tasks
when doing some debug operations.
Idle task This task is always created with the priority set to 0 (the lowest available):
when no other task is ready to run, this one is executed. It consists of just a loop, calling
eventually a yield function that allows to force a switch, whenever the list of ready tasks
is not empty. It is a good practice to not instantiate other tasks with 0 as priority.

From a technical point of view, FreeRTOS is a Real-Time Operating System with three
possible scheduling policies, to be chosen at compile time: prioritized preemptive with
time slicing (the most used), prioritized preemptive without time slicing and cooperative.
In all these cases the system is ticked, even if it is possible to turn off the system tick
source when the tickless low-power mode is activated: when the programmer already
knows that FreeRTOS will pass a lot of time in the idle state with no task ready to be
scheduled, it is possible to suspend the system tick until the next task to be awakened
reaches the timeout. In this way the core can be put in a low power mode so that the
interrupt handler is not executed at every tick produced by the timer.
Tasks can be in running, ready, delayed and suspended state; figure 4.9 shows the state
transition diagram for this RTOS.

Figure 4.9: FreeRTOS state transition diagram

23

Chapter 4. Real-Time Operating Systems

4.2.2 FreeRTOS files

The whole operating system is contained in few files: the most relevant ones are just 11
and each of them contains code for a fundamental part of the whole system; their content
is described below.

FreeRTOSConfig.h
This file is the first thing to look at when approaching FreeRTOS for the first time: it
contains some #defines that allow to adapt the behavior of the system to the program-
mer’s needs. Every additional #included header file that points to some modified parts
of the system or that implements some features which are not provided by default must
be added at the very end of this file.

FreeRTOS.h
In this file different parts of the system are made available or hidden to the programmer
according to the settings written in FreeRTOSConfig.h file. Moreover, here one can find
many definitions of dummy structures that are related to real objects used internally by
the system: in order to avoid that the programmer accesses sensitive data, such dummy
structures are used to obfuscate properly the code.

task.h / tasks.c
These two files (especially tasks.c) contain the kernel of FreeRTOS. In order to avoid the
programmer to access sensitive data, they have a slightly different name.

queue.h / queue.c
In this file the structure of the queue is defined and many queue management functions are
provided. It is important to note that this structure is used for semaphores and mutexes
too, with some modifications.

list.h / list.c
In this file all functions related to the list structure are defined and implemented: all the
common operations on lists can be done by calling such functions, which are available to
the programmer.

semphr.h
This file contains some macros that allow to reuse the same functions and definitions of
the queues for semaphores and mutexes: they are wrappers that call queues functions
with predefined parameters, according to the type of object to be used.

port.c
In this file there are some routines and functions written at low-level strictly related to the
hardware that is going to be used to run FreeRTOS. One can find here implementation
of functions that allow to start the scheduler, to call the first task when the OS is ready
to run, to end the scheduler and so on.

heap_n.c
FreeRTOS is provided with 5 heap management policies, each one contained in one of
these files. Usually the number 4 is the preferred one.

24

Chapter 4. Real-Time Operating Systems

4.2.3 FreeRTOS setup

One of the first things to do when designing a new FreeRTOS application is to define
how the kernel must operate, which are the additional features to activate and setup
the memory management. As already said, all these aspects can be set from the file
FreeRTOSConfig.h by changing the values of the #defines; most important ones are
reported below.

- configUSE_PREEMPTION If set to 1 the scheduler will act using a prioritized
preemptive algorithm; if set to 0 the scheduler will be a cooperative one.

- configUSE_TIME_SLICING If set to 1 the scheduler will use time slicing, sharing
the core among two or more tasks with the same highest priority; if set to 0 it will not
act in this way.

- configUSE_IDLE_HOOK If set to 1 a custom function is called by the idle task
every time it is executed. Such function is already defined as a hook but it must be
implemented by the programmer: this is the best place where to put a sequence of
operations to put the microcontroller in a sleep mode in order to save power. If set to
0, such hook is not available.

- configUSE_TICK_HOOK If set to 1 a tick hook is made visible to the programmer:
similarly to the idle hook, the tick hook is a prototype function provided by FreeRTOS
that must be implemented and that is called every time a tick occurs. Using this feature
brings some advantages but could slow down the switch operation. Again, if set to 0
this feature is not available.

- configTICK_RATE_HZ Here the period of the hardware timer can be chosen. It
is set to 1000Hz by default.

- configMINIMAL_STACK_SIZE Every time a new task is created, it is instanti-
ated in the memory with a stack size as big as defined by the programmer at compile
time. However, in order to reduce problems during the run, with this variable it is
possible to set a minimum size for this memory region for all the tasks.

- configTOTAL_HEAP_SIZE FreeRTOS normally uses some dynamic memory func-
tions to initialize idle task and few other features; however, if user code uses dynamic
memory too, heap is exploited: the total amount of available memory treated as heap
must be defined here and it must be sufficient to avoid the whole application to stall.

- configUSE_TRACE_FACILITY If set to 1, all the tracing macros present in
the FreeRTOS code are available. This feature is useful when performance of the
system must be estimated: it is made essentially of many macros accessible to the
programmer that must be implemented; each macro is called by a particular kernel
function (unaccessible in any other way) and allows to execute custom code useful to
trace events and eventually to send them to a monitoring computer. If set to 0 this
feature is completely deactivated.

- configUSE_MUTEXES If set to 1, mutexes can be used in the user code. In
FreeRTOS mutexes and binary semaphores are not the same thing: while mutexes
implement priority inheritance mechanism (very important to avoid deadlock in some
subtle cases), binary semaphores do not. If set to 0 mutexes are not available but
semaphores, both counting and binary, do.

25

Chapter 4. Real-Time Operating Systems

4.2.4 FreeRTOS data and structures

In this section variables, structures and functions are summarily described: their names
are the same used as targets for the injections and numbers are the same used as identifiers
in the experimental results, in the following chapters. This section is fundamental to fully
understand the results of the experiments.

Tasks lists
In FreeRTOS a list is a structure made of 3 fields; each element of the list is defined as
list item and it is described by another structure of 5 fields. The generic list structure
used by FreeRTOS is described below.

0. uxNumberOfItems This variable contains the number of items stored in the list.
1. pxIndex This field is a variable pointing to the last item inserted in the list.

2-4. xListEnd This object is defined as ‘MiniListItem_t’ and it is just a structure made
of 3 fields used to recognize the end of the list.

The list item object (single element to be put in a list) is instead described below.
0. xItemValue This value is used to sort the list in a descending order.
1. pxNext This is a pointer to the next item inserted in the list.
2. pxPrevious This is a pointer to the previous item inserted in the list.
3. pvOwner It is a pointer to the owner of the list item, usually a TCB structure.
4. pvContainer It is a pointer to the list structure containing the list item.

The definitions of ‘list’ type and of ‘list item’ are important to understand some variables
and fields structure in the next subsections.
FreeRTOS has 5 task lists: pxReadyTasksLists (this is actually a vector of lists, each one
for a priority defined in the system), xDelayedTaskList1 (this list contains the delayed
tasks), xDelayedTaskList2 (this list contains all the delayed tasks whose timeout over-
flowed the current tick count), xPendingReadyList (it contains the tasks that had to be
moved to ready state while the scheduler was stopped) and xSuspendedTaskList (used to
collect suspended tasks); the kernel continuously moves tasks in and out these lists when
they change state. Figure 4.10 shows the structure of pxReadyTasksLists; all the other
task lists have a structure similar to just one of the lists shown.

Figure 4.10: FreeRTOS pxReadyTasksLists vector

26

Chapter 4. Real-Time Operating Systems

Global variables
Global variables are used by the kernel to perform operations, to take decisions and to
know the state of the system every time the scheduler procedure is called. Relevant global
variables identified are listed below.

0. uxCurrentNumberOfTasks This variable is constantly updated with the number
of tasks running in the system. It is used by prvAddNewTaskToReadyList() to
determine if a first initialization of a list is required: if so, prvInitializeTaskLists()
is called and the lists pxReadyTasksLists, xDelayedTaskList1, xDelayedTaskList2,
xPendingReadyList and xSuspendedTaskList are initialized. It is also used when a
task is created, deleted or suspended: in particular, the function vTaskSuspend()
uses it to determine if all the tasks instantiated have been suspended and if so, the
OS links the pxCurrentTCB pointer to NULL.

1. xTickCount This value is set to zero when the scheduler is initialized and then is
incremented in the function xTaskIncrementTick(): if this variable is bigger than
xNextTaskUnblockTime and the pxDelayedTaskList is not empty, a task is removed
from that list and is put into pxReadyTasksLists. This varible is fundamental when
some tasks have been delayed: injecting here means that the system does not crash
but the timing of the application could be heavily modified if any of the created
tasks is in the suspended state.

2. uxTopReadyPriority Used to identify a ready task with the highest priority
among all possible ready tasks.

3. xSchedulerRunning This variable is used by prvAddNewTaskToReadyList(): if
the new created task has a priority higher than the task that is currently running,
a switch is forced. In vTaskSuspend() it is used to take decisions when putting a
new task in the xSuspendedTaskList.

4. uxPendedTicks This variable is used to keep count of the number of ticks passed
while the scheduler was in suspended state.

5. xYieldPending This variable is set if a context switching is required for any reason
(example: a task was put in the suspended state; now it is awakened because its
timeout elapsed and it has a priority that is higher than the priority of the current
task so a switch is required).

6. xNumOfOverflows Used by the mutex mechanism when a timeout is set for take
and give operations and to keep trace of the overflows of the system tick timer
(important to ensure correctness of timing).

7. uxTaskNumber It contains the number of tasks in the OS: when a task is removed,
this value is incremented to force the regeneration of the list of active tasks.

8. xNextTaskUnblockTime This value is set to portMAX_DELAY when the sched-
uler is started. In xTaskIncrementTick() it is compared to xTickCount+1 and if the
latter is bigger, the function removes the task from the list of delayed tasks. This
variable is used in prvAddCurrentTaskToDelayedList() too: here it is set to a value
equal to xTickCount+xTicksToWait, so that the scheduler, when xTaskIncrement-
Tick() is called, will perform a check if there is any task to be resumed from delayed
state.

9. uxSchedulerSuspended Used to take decisions when moving in/out tasks from
the various lists and by the function xTaskIncrementTick(): if this variable is true,
this function does almost nothing, otherwise, it checks for a new task to be switched
in.

27

Chapter 4. Real-Time Operating Systems

Task Control Block
The Task Control Block (TCB) is a data structure associated to each task created. It
contains all the necessary information about the task itself.

0. pxTopOfStack This variable points to the top of the stack.
1. uxPriority This is the actual priority of the task exploited by the kernel to select

the right ready task to be switched in.
2. pxStack This is a pointer to the base of the stack.
3. uxTCBNumber This variable is just a number given to the TCB to recognize it

among the other TCBs.
4. uxTaskNumber This variable is similar to uxTCBNumber but it defines numer-

ically the ID of the task.
5. uxBasePriority This is the base priority, used by the priority inheritance mech-

anism.
6. uxMutexesHeld Again this variable is exploited by the priority inheritance mech-

anism.
7. ulNotifiedValue This field is used by the notification mechanism (not considered

in this work).
8. ucNotifyState This field is used by the notification mechanism (not considered in

this work).
9-13. xStateListItem The container of this list item allows to understand which list the

task belongs to (ready, suspended, delayed) and so which is its state; since this is a
list item, it is actually made of 5 fields.

14-18. xEventListItem This item is inserted/removed from a list of a queue or mutex if
the task uses them; since this is a list item, it is actually made of 5 fields.

Queue
The queue data structure is exploited when a queue, a generic semaphore or a mutex has
to be created: the difference on their usage is related only to the way in which they are
initialized and accessed by the provided functions.

0. pcHead It points to the head of the queue storage area.
1. pcTail It points to the tail of the queue storage area (equal to pcHead if the queue

is used as mutex).
2. pcWriteTo This field points to the first free place in the storage area.
3. u.pcReadFrom This variable points to the last element queued.
4. u.uxRecursiveCallCount This field counts how many times the queue is recurs-

ively taken when the structure is used as a mutex (recursive take/give mechanism).
5-9. xTasksWaitingToSend List of tasks that are blocked waiting to post into the

queue (give the mutex); since this is a list item, it is actually made of 5 fields.
10-14. xTasksWaitingToReceive List of tasks that are blocked waiting to read from the

queue (take the mutex); since this is a list item, it is actually made of 5 fields.
15. uxMessagesWaiting This is the number of items actually in the queue (not the

number of bytes).
16. uxLength This is the total amount of items hold in the queue.
17. uxItemSize This is the size of each item in the queue.
18. cRxLock Total number of items removed from the queue; this variable is used when

the queue is accessed by an ISR.
19. cTxLock Total number of items put into the queue; this variable is used when the

queue is accessed by an ISR.

28

Chapter 4. Real-Time Operating Systems

20. uxQueueNumber Used for debug purposes (not considered in this work).
21. ucQueueType Used for debug purposes (not considered in this work).

4.2.5 FreeRTOS kernel

After the creation of the first tasks and an initial setup, FreeRTOS kernel works basically
using an interrupt that allows to perform, if needed, a context switch to another task
according to the selected scheduling policy: when the scheduler is started, the system tick
timer is setup so that it generates an interrupt with the desired frequency. Every time
such interrupt occurs, its handler is executed and a new ready task, if available, is selected
for the switch-in; the actual context switching is made by another interrupt routine that
is called (only if there is an available task) as soon as the ISR of the system tick is served:
this interrupt is the so called PendSV, whose code is written in assembler (this routine is
contained in the file port.c) and which saves the content of the registers in the stack. In
the following sections the main operations done by the kernel are described.
In figures, names of FreeRTOS variables are highlighted in red, green boxes contain func-
tion names, yellow boxes conditionals and blue ones descriptions of algorithm.

Task creation
A task can be created during the setup of the application or at runtime. The way in which
the task creation is managed changes slightly in these two cases: if the scheduler already
started, a check is done to see if the new task has a priority higher than the priority of
the current task and, if so, a pending switch is set. Figure 4.11 shows this operation in a
detailed way.

Start of the scheduler
The scheduler is started as last operation after setup. It enables all the required interrupts,
creates the IDLE task and setups the SVC (Supervisor Call) interrupt which is exploited
to run the first task. Figure 4.12 shows operations in a detailed way.

Context switch
As already said, the scheduler performs context switching only when a tick interrupt
occurs, choosing eventually the new task with a preemption/round-robin mechanism.
Then, as shown at the end of figure 4.13, the PendSV interrupt bit is set if necessary, in
order to actually do, in that case, a switch. Figure 4.14 shows summarily the operations
made by the PendSV handler.

29

Chapter 4. Real-Time Operating Systems

Figure 4.11: Kernel operations - Task creation

30

Chapter 4. Real-Time Operating Systems

Figure 4.12: Kernel operations - Start of the scheduler

31

Chapter 4. Real-Time Operating Systems

Figure 4.13: Kernel operations - Management of the system tick interrupt

32

Chapter 4. Real-Time Operating Systems

Figure 4.14: Kernel operations - Context switch done by PendSV interrupt routine

33

Chapter 4. Real-Time Operating Systems

4.2.6 FreeRTOS mutexes

In FreeRTOS, mutexes are treated as a particular type of queues. Only mutexes are
analyzed because they are the most interesting share control mechanism for this work.

Mutex creation
In FreeRTOS a mutex is a queue with 1 as number of items and 0 as item size. Initially
it has no holder, so no task that has taken it and it is set as unlocked. Figure 4.15 shows
this mechanism.

Mutex take operation
The ‘take’ (receive) operation requires an additional parameter, the tick count, that is the
maximum number of ticks to wait for if the mutex is already taken; when this timeout
elapses, the task goes on with its operations. As taking a mutex is a complex operation,
additionally to figure 4.16, a pseudo-code listing is provided in appendix A.1.

Mutex give operation
The ‘give’ (send) operation is slighty simpler: the template is similar to the take function
but some operations are not done because the give operation is made without a delay (to
take a mutex instead the programmer can specify a timeout to wait for). Again, because
of the complexity of this operation, pseudo-code is shown in appendix A.2, additionally
to the figure 4.17.

34

Chapter 4. Real-Time Operating Systems

Figure 4.15: Mutex - Creation mechanism

35

Chapter 4. Real-Time Operating Systems

Figure 4.16: Mutex - Take mechanism
36

Chapter 4. Real-Time Operating Systems

Figure 4.17: Mutex - Give mechanism

37

Chapter 5

Fault Injection Environment

5.1 Specifications

The aim of this work is to develop a Fault Injection Environment (FIE) able to reproduce
the effects of SEU (in particular SBU and MBU) in the memory of the device under test
(DUT), focusing only on main data structures and variables of a Real-Time Operating
System and to trace the events so that they can be saved on a host computer and suc-
cessively analyzed. The DUT must be chosen in order to be representative of a common
platform used in embedded systems, with limited resources. The FIE must be able to
perform automatically long injection campaigns after an initial configuration; moreover,
it must be able to inject in given memory location, at given times and in the desired bit
of the datum. Experiments must be repeatable in order to be relevant. The FIE must be
as less invasive as possible. As results of the work, most sensitive sections of the RTOS
must be identified.

5.2 Overview

The Fault Injection Environment is made of a board that acts as device under test (DUT)
and a host machine working as platform that runs the injection campaign and saves results.
From a generic point of view, the host-side program must send to the DUT a sequence of
injection parameters as soon as the application starts, then the system is left free to run
for a defined amount of time and finally the injection is performed on the desired datum.
A resume routine is used by the DUT to send back to the host results of the injection.
Figure 5.1 shows a top view scheme of the whole system.
FIE is composed by three parts: the first one is written for the DUT, it is architecture-
dependent and it allows to communicate with the the host machine and to inject in the
desired location; this part is called FIEbrd (that means ‘FIE board’) and it was developed
entirely in C. The second one is a Python script called FIEmon.py (which stands for ‘FIE
monitor’) that operates on the host-side, manages the injection campaign and saves results
of the various experiments in a file; it is important to say that for each injection campaign
two runs of the same algorithm must be done: the first one to produce a ‘golden’ file
containing the results of the execution of the benchmarks without injection and the other
one to get the outcomes of the real injection. Finally, there is another Python script, called
FIEparser.py, that must be used to extract data from the injection campaign: it takes as
input the two files previously created and performs some comparisons; this operation can
be done at any time after the injection campaign is finished.

39

Chapter 5. Fault Injection Environment

Figure 5.1: Top view of the injection system

The whole work has been divided into several steps: first of all it was necessary to
port the EEMBC® Automotive suite for FreeRTOS, in order to see how and how many
benchmarks could have been used; then a deep analysis of FreeRTOS has been done -
it was fundamental to understand how its kernel works. The definition of the fault list
followed as next step: candidate variables and data to inject in have been found among
the most used and sensitive parts of the operating system, so various fault lists have been
created, one for each type of OS resource. Next, the injection system has been written;
it includes a tracing capability, useful to receive some information from the board about
the operations performed by the kernel; these are the information logged and stored in a
file on the host machine. As the quantity of data generated by the experiments is pretty
high, the parser helps to do some automatic analysis on the information generated by the
board and to print them both on a terminal and in the form of histograms. Finally, a
lot of experiments have been done and results have been extracted with the help of the
parser itself. Table 5.1 summarizes the properties of the Fault Injection Environment.

Just to summarize, a bit of nomenclature used from now on is provided in the following
list.

Campaign This is a set of experiments made under well defined constraints and con-
ditions. A campaign is made of two runs: the golden and the injection one and each
run is made of one or more (even hundreds or thousands) experiments. When running
a campaign, the two runs must do the same experiments exactly in the same order and
under the same conditions.

Run The run is a set of experiments done sequentially and completely managed by the

40

Chapter 5. Fault Injection Environment

Property Value
Type of test Robustness test
Technique used Logical software-based fault injection
Target of injections OS variables and structures
Event to simulate Simulation of SEU (SBU and MBU)
Injection parameters Bit, variable, time instant
OS target FreeRTOS
Applicative used EEMBC Automotive suite benchmarks
Actors Board (DUT), host computer (manager)
Communication Host-DUT USART

Table 5.1: Summary of Fault Injection Environment

host-side program FIEmon.py. The golden run is a sequence of experiments made without
actually doing the injection: it is used to know which is the behavior of the system when
no injection is done; it is fundamental to do it because it allows to have a reference
to compare the degraded system to. The injection run is the sequence of experiments
actually doing the injection: this is the only case where problems can really occur while
the DUT executes the benchmark.

Experiment An experiment is the single iteration done during a run, with a real injection
in the injection run or a simulated one in the golden run.

Fault list Called sometimes only ‘list’, this is a set of places where to inject. Each list
contains all those faults that are strictly related to a part of the OS; it is made by many
faults.

Fault A fault is the actual location where the injection is done. All faults have the same
name of the variable instantiated in the memory. In this work a fault is called locus too.

5.2.1 Hardware

The FIE has been developed specifically for a board and tested on a host machine running
a Linux-based operating system, but these hardwares can be easily changed by porting
the code to other platforms.

DUT-side board
The STM32F3DISCOVERY board, like many other prototyping boards developed by
STMicroelectronics®, is made of two parts: the top one includes the microcontroller
STM32F103CBT6 which acts as programmer/debugger; the bottom, instead, contains
the real microcontroller (STM32F303VCT6) to be programmed and used.
To work correctly with these boards it is necessary to install on the computer the ST-
LINKv2 driver that allows to identify, once the device is connected, several peripheral:
a mass storage device where one can upload its own .bin file containing the compiled
program, a virtual serial port (marked under Linux with ttyACMn and under Window
with COMn), a debugger port, a SCSI raw port and other additional features.

Host-side machine
The whole system has been developed and used on a commercial computer running Arch
Linux. The fact that Python2.7, an interpreted language, has been used to develop the

41

Chapter 5. Fault Injection Environment

scripts, removes the obstacle due to an eventual porting; in this way no translation is
required since it is sufficient to install properly all the needed Python packages.

5.2.2 Operations

The STM32F3DISCOVERY board allows to send and receive data through a USART
peripheral exploiting serial port virtualization. FIE exploits this feature so that host
computer can send injection parameters to the DUT and receive back the outcome. It is
important that the operations made by the DUT do not start until the host-side program
is ready and synchronized: for this reason a synchronization mechanism is necessary.
Figure 5.2 shows the sequence of operations done by both actors.
As soon as the executable is uploaded to the board, the DUT setups the clock of the

Figure 5.2: Sequence of steps made by host-side computer and DUT-side board. All
communications are made using a USART peripheral.

microcontroller, the USART peripheral and the GPIO port connected to the LEDs on the
board. FIE uses the some peripherals of the STM32F303VCT6 microcontroller to work
and so it is important to develop applications that do not use them. Such peripherals are:
- USART1 This peripheral is already connected to the programmer/debugger STLINK
part of the board so all data written on this channel will be sent to the host computer
over a virtual serial communication. It is used to receive injection parameters from the
computer and to send back the outcome of the injection.

- TIM2 This is a general purpose 32 bit timer. It is used to define a time instant in
which injection is done. Interrupt generated by this peripheral (used in base count

42

Chapter 5. Fault Injection Environment

mode) is activated, so that an ISR is called when the fixed period elapses. This timer
will be called, from now on, ‘injection timer’.

- TIM3 This is a general purpose 16 bit timer. As the whole injection campaign must
be automatized, it is important that, after some time following the injection, the DUT
resets to proceed with the next experiment. This timer is set so that a fixed amount
of time elapses after the injection is done and then microcontroller is reset. This timer
interrupt too is enabled to put an end to the experiment and to proceed with the
software reset. This timer will be called, from now on, ‘resume timer’.

- GPIOE This is a GPIO port connected to 8 LEDs on the board. Two of them (PIN9
and PIN8) are turned on by the FIE to signal, respectively, at the instant when injection
is done and when resume timer elapses its count, causing so software reset.

After the peripherals setup, the DUT sends a byte, called STARTITCHAR and repres-
enting a ASCII character, to the host computer, to inform that the experiment is ready
to begin. Then the DUT starts to loop indefinitely waiting for a synchronization event
coming from the computer: such even consists in the reception of a sequence of 4 bytes
representing the INIT command that is sent back to the board by the computer as soon
as the STARTITCHAR is received. When the USART receives all the four bytes, the
DUT understands that the host is going to send injection parameters too, so it waits for
them to arrive. According to the internal algorithm, the host choices such parameters
and sends them over the serial connection in the form of string: all the parameters are
padded by a TAB character. When all of them are received by the DUT, they are sent
back to the host to allow the programmer to check visually if they are the correct ones.
The injection timer period and prescaler registers are setup according to these parameters
and its interrupt is activated: this peripheral is set so that an ISR is executed when their
counter register reaches a value equal to the period. Now both FIE on the board and on
the host machine wait for the benchmark application to perform some calculations: the
host-side script waits to receive the results of the injection while the DUT-side injector
waits for the injection timer (TIM2) to reach its timeout. When such event occurs, the
injecting function is called and the injection is performed in the desired location: some
checks are done before doing the injection because it can happen that the location is not
available or not allocated, especially if it is a pointer. If the location exists, the injec-
tion is performed using the bitwise operation with a mask chosen at compile time and
then the resume timer is setup. When also the resume timer reaches its timeout or if a
crash occurs, a function is called to send to the computer the results of the injection, a
STOPITCHAR to inform that the experiment finished and to do a software reset of the
DUT so that it is ready for the next experiment. When the host machine receives the
results, it logs them in a file and then updates the injection parameters. In the meantime,
the DUT sends another STARTITCHAR: if the experiments have come to an end the
computer-side script exits and the board will wait forever in the initial synchronization
loop; on the contrary, if other experiments must be done, the cycle is repeated and new
injection parameters are sent to the DUT.

5.3 Host-side FIEmon.py script

The Python2.7 FIEmon.py program is the host-side script able to manage the injection in
4 different ways and using 5 injection parameters. Operating modes are single injection
(SIJ), normal injection (INJ), fine injection (DEP) and random injection (RAD). Injection
parameters are the cycle, the bit where to inject, the fault where to inject, the value for

43

Chapter 5. Fault Injection Environment

the period register of the timer and the value for the prescaler register of the timer. For
each one of these parameters two variables are instantiated: a constant value, set by
the programmer when configuring the campaign and a counter, used at runtime to keep
track of the advancements of the experiments, up to the value set in the constant: each
parameter is updated with a new value only when all the previous ones have reached their
maximum assuring that experiments in every possible combination are done. A generic
idea of the algorithm used to perform the injection is shown in figure 5.3.
Global variables that must be properly set before running the experiments campaign are
instead described below.

• STARTITCHAR This character must be the same specified in the FIEbrd to
begin the synchronization between host and DUT;

• STOPTITCHAR This character must be the same specified in the FIEbrd to
signal the end of the experiment to the host machine, so that it can process the
received results of the injection;

• FILENAME This variables is used just to specify the name of the file to save the
results in. The format of the file name is not arbitrary and it must follow some rules
so that it can work easily with the parser:

[list name]_[benchmark name]_ < information > _[run type]

is the format, where all the various parts must not contain any space and they are
divided by underscore. [list name] is used to specify the list where injection is done;
[benchmark name] is instead the name of the benchmark used as workload for the
DUT; <information> is any additional information which can be relevant to specify
other conditions of the injection experiments; [run type] is finally a string which can
be ‘inj’ or ‘golden’ and nothing else: it is used by the parser to recognize which
of the two files given as input contains the golden run and which one the injection
run. An example of good naming for two files generated during a campaign is:
‘L2OSvars_a2time_8LSB_golden’ and ‘L2OSvars_a2time_8LSB_inj’;

• cFIE_ENABLED The value assigned to this variable specifies which mode is
used to perform the injection campaign. It is possible to use the 4 different modes,
according to the necessity;

• cFIE_LIST This variable is used to specify in which of the 4 lists the injections
must be done.

After the operating mode has been chosen assigning to the configuration variable cFIE_-
ENABLED the correct value, the variables related to such mode must be set as well, as
described in the following.

5.3.1 Single injection mode (SIJ)

In this mode the injection parameters are set just for one experiment: this means that
the whole campaign will be made of 2 runs, each one of one experiment only. This mode
must be used when a very precise injection in a defined moment and fault has to be done.
The variables to be set in this mode are:

• cFIE_INJ_CYCLE In this mode this is a dummy variable because only one
experiment is done in each run. It is set to 0 by default;

• cFIE_INJ_BITN This value allows to select in which bits the injection must be
done. Attention must be payed to the size of the data to inject in: if bit set as
target for the injection does not exist because the target data is shorter, then no
injection is done and an error is reported. Bit count starts from 0;

44

Chapter 5. Fault Injection Environment

Figure 5.3: Generic flow diagram of the host-side algorithm

45

Chapter 5. Fault Injection Environment

• cFIE_INJ_LOCUS This parameter says which is the fault to inject in among
those present in the selected list. Such parameter in used in SIJ mode only since in
the other ones injection is done automatically in all the faults of the selected list;

• cFIE_INJ_TIME_T This parameter is set to the desired value for the period of
the timer of the DUT (TIM2). Values allowed are comprised between 0 and 65535;

• cFIE_INJ_TIME_D This parameter is set to the desired value for the prescaler
of the timer of the DUT (TIM2). Values allowed are comprised between 0 and 65535.

5.3.2 Normal injection mode (INJ)

When using this mode it is possible to define a set of instants so that the injection is done,
for each fault in the selected list, in all of them. This is pretty useful when one wants to
do a campaign analyzing the effects of faults in many different moments.

• cFIE_INJ_CYCLE If this parameter is set to a value bigger than 0, each ex-
periment on a fault is repeated more than one time always in the same conditions,
leaving unchanged the other parameters. This can be useful to see if all injections
in same conditions lead to same results;

• cFIE_INJ_BITN This parameter can be positive or negative: if it is positive,
injection will be done starting from bit in position 0 up to the bit in the position
specified; instead if it is negative, injection is done starting from MSB and going
backward;

• cFIE_INJ_PERIOD_VECT This is a vector containing all the values for the
period register of the injection timer (TIM2) to be sent during the run. Values
allowed are comprised between 0 and 65535;

• cFIE_INJ_TIME_T This variable is the length (number of elements) of the
cFIE_INJ_PERIOD_VECT vector;

• cFIE_INJ_PRESC_VECT This is a vector containing all the values for the
prescaler register of the injection timer (TIM2) to be sent during the run. Values
allowed are comprised between 0 and 65535;

• cFIE_INJ_TIME_D This variable is the length (number of elements) of the
cFIE_INJ_PRESC_VECT vector.

5.3.3 Fine injection mode (DEP)

Sometimes it could be interesting to analyze the effect of the fault in close and subsequent
time instants: to solve this the fine injection mode can be used; this mode allows to define
in a ‘fine grain’ the instants where to inject: at each experiment in the same fault, the
time will advance of a very small amount with respect to the previous injection instant.

• cFIE_INJ_CYCLE If this parameter is set to a value bigger than 0, each ex-
periment on a fault is repeated more than one time always in the same conditions,
leaving unchanged the other parameters. This can be useful to see if all injections
in same conditions lead to same results;

• cFIE_INJ_BITN This parameter can be positive or negative: if it is positive,
injection will be done starting from bit in position 0 up to the bit in the specified
position; instead, if it is negative, injection is done starting from MSB and going
backward;

• cFIE_INJ_BASE_T This value is used as base value for the period register of
the injection timer (TIM2);

46

Chapter 5. Fault Injection Environment

• cFIE_INJ_TIME_T This value is the maximum added to the base value: all val-
ues for the period register starting from cFIE_INJ_BASE_T up to cFIE_INJ_BA-
SE_T+cFIE_INJ_TIME_T are used as parameters during the run;

• cFIE_INJ_BASE_D This value is used as base value for the prescaler register
of the injection timer (TIM2);

• cFIE_INJ_TIME_D This value is the maximum added to the base value: all
values for the prescaler register starting from cFIE_INJ_BASE_D up to cFIE_INJ_-
BASE_D+cFIE_INJ_TIME_D are used as parameters.

5.3.4 Random injection mode (RAD)

When the programmer has the time to perform a very high number of experiments in each
campaign but he doesn’t know when to inject, a random injection can be done: in this
mode the injection times are chosen pseudo-randomly so that the runs can be repeated.

• cFIE_INJ_CYCLE In RAD mode this variable is very useful: in fact it allows
to repeat the same injection in the same fault in many different instants chosen
pseudo-randomly by the algorithm;

• cFIE_INJ_BITN This parameter can be positive or negative: if it is positive,
injection will be done starting from bit in position 0 up to the bit in the position
specified; instead if it is negative, injection is done starting from MSB and going
backward;

• cFIE_INJ_BASE_T Like in DEP mode, this value is used as base value for the
period register of the injection timer (TIM2);

• cFIE_INJ_MOD_TAs RADmode performs injections in pseudo-random times,
a maximum value for such numbers is fixed with this variable;

• cFIE_INJ_BASE_D Like in DEP mode, this value is used to as base value for
the prescaler register of the injection timer (TIM2);

• cFIE_INJ_MOD_D Same thing of cFIE_INJ_MOD_T but used, this time,
for the prescaler register.

5.4 DUT-side FIEbrd system
The application on the board is made of some running tasks executing the user code and
the FIEbrd itself. In all the applications, 3 FreeRTOS tasks are instantiated: two of
them (called ld1 and ld2) just access a GPIO port and flip continuously the values of two
pins, sharing a mutex; the third task (called bm1), instead, executes the actual EEMBC®
benchmark. At the end of each iteration (tasks are always defined as infinite loop) all
the three tasks go in delayed state for an arbitrary amount of time of the order of some
milliseconds. Figure 5.4 shows which are the main operations done by the DUT.
The FIE system installed on the board is made of a set of files written starting from
scratch and some modification to the code of FreeRTOS, necessary to extract some data
usually not accessible to the programmer. The part of FIEbrd that is completely new
is made of 5 main files while the rest is built up changing preexisting or auto-generated
code used to setup the hardware of the microcontroller, the interrupt table and the RTOS
itself. The content of the 5 files is illustrated below.

FIE_config.h
This file is made only of preprocessor macros (mainly #defines) used by the rest of the
system as setup values. If nothing particular must be done, it is sufficient to regulate the

47

Chapter 5. Fault Injection Environment

Figure 5.4: Generic flow diagram of the DUT-side sequence of operations

48

Chapter 5. Fault Injection Environment

behavior of the injection system changing just these parameters.
ó cFIE_ENABLED This parameter is used to activate or deactivate the FIE system;

if this value is set to 0, then the whole FIE is excluded from the compilation, saving
space and allowing the application to run normally. A value equal to 1 instead enables
the injection system.

ó cFIE_INJECT_ENABLED In order to generate both injection and golden report
files, it is important to have a parameter that allows to enable or disable quickly the
injection: setting this #define to 1 the injection is always performed, doing thus an
injection run; if it is set to 0 instead injector is still called but injection is masked.

ó cFIE_PRECISEINJ_ENABLED Sometimes it is important to perform the in-
jection exactly when the system executes a portion of code: in order to support this
feature, this configuration variable can be set to 1 and then the injector can be called
in any part of the user code; when this feature is active, the system does not inject as
soon as the injection timer (TIM2) reaches the timeout, but only after the end of the
count of TIM2, when the injecting routine is explicitly called.

ó cFIE_TRACE_ENABLED In order to trace system events, it is possible to exploit
a tracing system integrated in the FIE. When this value is set to 1 some information
about the execution of the instantiated tasks are sent to the host machine after the
injection.

ó cFIE_TRACEPLUS_ENABLED This is still a beta feature: it would like to
emulate some other advanced tracers appositely developed for FreeRTOS but some
additional effort must be done. As such function was not strictly necessary for this
work, it has been partially implemented.

ó cFIE_INJ_MASK This mask is the one used by the injector function to select which
are the bits to be affected by the injection. Mixing this mask with the bit selection
made during the setup of the host-side script allows to simulate every type of SEU,
both SBU and MBU.

ó cFIE_OP With this macro it is possible to choose the type of bit-level operation to
perform when doing the injection. Three options are available: bit set (logic OR), bit
reset (logic AND) and bit flip (logic XOR).

ó cFIE_BM_NUMBER The amount of data sent to the host machine after the in-
jection depends on how many tasks running in the system the programmer wants to
trace. This variable contains exactly the number of tasks that must be monitored.

ó cFIE_LIST With this variable the list where the injection must be done is selected:
as the FIE to be designed must be as much low-size as possible, the code length of the
injector function is reduced selecting only one fault list at a time.

FIE_environment.h and FIE_environment.c
These two files contain the core of the Fault Injection Environment; here all the hidden
variables used by FreeRTOS are exported, the 4 fault lists are defined (only one at a time
is actually compiled in order to reduce code size) and the various functions are defined
and implemented. Moreover, some variables (both global and local) used by the FIE are
defined: some of them must be correctly inserted in the user code so that a good logging
of the events is performed. In the following all the functions of the FIE are described.
ó void FIE_start(void) This function must be called in the main() immediately before

the creation of the first task: it resets logging variables, synchronizes the DUT system
with the host machine and allows to receive the injection parameters.

ó void FIE_stop(void) This function is called when the experiment reaches its end to
send back to the host machine the values of the logging variables, stored in a file as

49

Chapter 5. Fault Injection Environment

result of the injection.
ó void FIE_timx_inj(void) With this function the injection timer is setup with some
of the injection parameters received by FIE_start(). This function must be called after
FIE_start().

ó void FIE_timx_res(void) Actually this function should not be used by the pro-
grammer because it is already called internally by the injection system: when the
injection timer reaches its timeout, injection is performed and the resume timer is
setup by means of this function.

ó void FIE_injector(void) This is the real function used to perform the injection.
According to the list chosen at compile time and the fault parameter received through
the connection with the host machine, it does the injection in the desired datum. It is
called by the timeout handler of the injection timer (TIM2).

Logging variables are those ones sent back to the host machine to keep track of system
status, of its activity and of relevant events in the running tasks; their name are strictly
related to the ad-hoc implementation of the benchmarks but they can be adapted easily.
ó FIE_REP_BM_CRC_OK This variable must be properly updated in the user

code. It is used to keep count of the number of times the benchmark made correct
calculations: CRC is calculated on the output RAM file, compared to the given one
and if they match, this variable is incremented by 1.

ó FIE_REP_BM_CRC_WRONG This variable must be properly updated in the
user code. It keeps trace of the number of times CRC was wrong.

ó FIE_REP_BM_MICROIT This variable must be properly updated in the user
code. It keeps trace of the number of microiterations done by the benchmark algorithm.

ó FIE_REP_BM_MACROIT This variable must be properly updated in the user
code. It keeps count of the number of iterations of infinite while loops of the task before
TIM3 resume timer marks the end of the experiment.

ó FIE_REP_SYS_INJOK As the injector shares the same memory of the user code,
it could happen that the injection harms the FIE itself so an integrity check is done
just before the results are sent to the host machine. A CRC is calculated among all
the parameters and, if it is equal to the one calculated after their reception, it means
that the injection system remained unharmed.

ó FIE_REP_SYS_INJ In some cases it could happen that the fault to inject in is
not available, especially if it is a variable that is still to be allocated. In such cases this
parameter is set to 0 to inform the host that the injection was skipped.

ó FIE_REP_SYS_OK This variable just says if, after the injection, the system
crashed or not. It is usually 1 but, if an error handler is called before the resume
timer (TIM3) reaches its timeout, it is set to 0 to highlight a crash.

ó FIE_REP_SYS_ETAF The acronym ETAF means Elapsed Time After Fault: this
is a numerical value that keeps count of the time (expressed in TIM3 ticks) elapsed
between the injection and an eventual crash: if this value is 0 and FIE_REP_SYS_OK
is 1, no crash occurred; if this variable is 0 and FIE_REP_SYS_OK is 0 then a crash
occurred immediately after or even during the injection; if this variable is greater that
0 and FIE_REP_SYS_OK is 0 then the crash occurred after the injection and before
the resume timer (TIM3) elapsed its count.

FIE_trc.h and FIE_trc.c
As already said, it could be useful to have a system deeply integrated in FreeRTOS able
to trace its main events: this RTOS already provides some blank macros inside the kernel
that must be implemented by the programmer, which allow to trace the main events of

50

Chapter 5. Fault Injection Environment

the kernel itself. In the FIE such feature has been exploited adding a trace function: the
number of 8 kernel events is continuously traced and stored in 8 tracing variables which
are sent to the host machine when the experiment ends; in this way some more accurate
comparisons about the execution can be done, basing the post campaign analysis not only
on user code events but also on kernel events. The variables are:
ó FIE_TRC_SWIN This tracing variable keeps count of all the times a task is switched

in.
ó FIE_TRC_SWOUT This tracing variable keeps count of all the times a task is
switched out. At the end of each experiment this value should be equal to FIE_TRC_-
SWIN or different from it by only one unit.

ó FIE_TRC_MOVRDY Every time a task is moved from the suspended or delayed
list to the ready list this tracing variable is incremented by one.

ó FIE_TRC_DELAY When a task calls the function vTaskDelay() to delay itself,
this value is incremented by one.

ó FIE_TRC_SUSPEND Like FIE_TRC_DELAY but this works for task suspension.
ó FIE_TRC_RESUME Resume operation is the opposite of suspension: every time
a task is resumed this variable is incremented by one.

ó FIE_TRC_QRECV When a queue receives a new item or a semaphore or mutex is
taken, this value is incremented by one.

ó FIE_TRC_QSEND When a queue releases an item or a semaphore or mutex is
given, this value is incremented by one.

5.5 FreeRTOS code modification

As FreeRTOS has been written so that many kernel data, variables, structures and func-
tions are not available to the programmer, some modifications to the code were necessary
in order to make them accessible.

FreeRTOSConfig.h
An additional #define has been added in order to activate/deactivate the DUT-side FIE.
In this way it is very simple to switch from a normal FreeRTOS version to the modified
one which supports the FIE. Such #define is configFIE_ENABLED; this name follows
the FreeRTOS rules for the nomenclature. Moreover, at the end of this file, a header file
containing all the function prototypes and the public data of the tracing system integrated
in the FIE is included.

task.h
At the end of this file, the definition of the TCB structure is added: according to the
value set in FreeRTOSConfig.h to #define configFIE_ENABLED, such definition can
be available or not: if the FIE is enabled, such structure is visible to all the other files
including FreeRTOS among the headers. More precisely, the structure called internally
by the kernel tskTCB is defined in this file and not in tasks.c and it is renamed as
FIE_TCB_t so that it can be used in other files; when the FIE is disabled, such structure
is hidden and it is only defined in tasks.c so that it is not accessible anymore to the
programmer. Moreover in this header all the functions extracting some data used by the
kernel are provided: again, if FIE is enabled, these functions can be called to get the
pointers to some kernel internal structure and variables that normally are not visible.

51

Chapter 5. Fault Injection Environment

tasks.c
This is the place where the TCB structure is normally defined: such definition is auto-
matically hidden if FIE is enabled and exported to task.h header file. Moreover, as many
other variables are not accessible to the programmer because they are defined as static,
when FIE is enabled, the same variables are defined in a normal way, allowing thus to
export them easily. All the functions used to get the pointers to some internal data and
structures defined in task.h are implemented at the end of this file.

queue.h
As the structure of the queue is used in many ways, it is not directly accessible to the pro-
grammer, so again, it is extracted and made available under the new type FIE_Queue_t.
More specifically, such structure is used for queues, semaphores and mutexes: a wrapper
made essentially of macro recalling queue functions with predefined parameters is used to
allow its reuse as a semaphore.

52

Chapter 6

Experimental environment

6.1 Classes of misbehaviors

Every injection could lead to different types of (mis)behaviors of the system; however,
only some of them can be actually identified and classified because of some limits in
the tracing capabilities of the injection environment. Results have been divided into 4
categories: crash, freeze, degradation and silent misbehavior.

Crash
When a critical error occurs on the device under test, the internal reset handler is called
in order to avoid further problems. In this case the misbehavior is classified as crash.
A crash is identified when the main error handler is called forcing thus a software reset
before the ‘resume timer’ reaches its timeout.

Freeze
A misbehavior is classified as freeze when the whole system stops working and does not
respond to any regular input or event: only interrupts are executed, then, when the ISR
returns, the system goes back to the frozen state. A freeze is identified when the whole
system stops but it does not crash: simply no task is scheduled anymore.

Degradation
A misbehavior is classified as degradation when only a part of the system shows a behavior
that is substantially different from the expected one: this means that only a part of the
system is blocked or acts incorrectly during the execution while the rest is still able to run
properly. A degradation is identified when the execution of one or more tasks is different
from the expected one.

Silent misbehavior
This type of misbehavior happens when, after the injection, the system continues working
in the expected way, without showing any appreciable difference with respect to the golden
run.

6.2 Definitions

The parser performs all the operations required to categorize the misbehaviors as already
said; however, in order to better understand the global results of a campaign, 4 quantities

53

Chapter 6. Experimental environment

have been defined: consistency (C), crash ratio (CR), freeze ratio (FR) and degradation
ratio (DR); they are all defined as ratios, expressed in percentage. They allow to get
easily which were the effects of the injection in each fault of a list. Note that the sum of
CR, FR and DR for each fault is always equal to 0 or 100.

Consistency
Consistency is defined, for each fault, as

C = Number of misbehaviors

Number of injections
(6.1)

It allows to understand how much that locus is sensitive to an injection, so how many
times it produces a misbehavior when the fault is activated. If this value is 0 it means that
the system is not sensitive to the injection in that particular locus at all. All the following
numerical values must be always compared to this quantity as it allows to understand the
overall incidence on the system.

Crash ratio
Crash ratio is defined, for each fault, as

CR = Number of crashes

Number of misbehaviors
(6.2)

It allows to understand which is the number of crashes over the total number of misbeha-
vior shown by the fault. The higher this value is, the more the fault is a sensitive point
of the RTOS.

Freeze ratio
Freeze ratio is defined, for each fault, as

FR = Number of freezes

Number of misbehaviors
(6.3)

Like the crash ratio, but it is the ratio between the number of freezes and the total number
of misbehavior os a fault.

Degradation ratio
Degradation ratio is defined, for each fault, as

DR = Number of degradations

Number of misbehaviors
(6.4)

This is the percentage of degradations over the total number of misbehavior identified.

6.2.1 Fault lists

Fault lists used are 4 and they are made exactly of the same variables described in 4.2.4;
they are reported below just for completeness.

List 1 - Global variables
0. uxCurrentNumberOfTasks
1. xTickCount
2. uxTopReadyPriority

54

Chapter 6. Experimental environment

3. xSchedulerRunning
4. uxPendedTicks
5. xYieldPending
6. xNumOfOverflows
7. uxTaskNumber
8. xNextTaskUnblockTime
9. uxSchedulerSuspended

List 2 - TCB data structure
0. pxTopOfStack
1. uxPriority
2. pxStack
3. uxTCBNumber
4. uxTaskNumber
5. uxBasePriority
6. uxMutexesHeld
7. ulNotifiedValue
8. ucNotifyState
9. xStateListItem.xItemValue
10. xStateListItem.pxNext
11. xStateListItem.pxPrevious
12. xStateListItem.pvOwner
13. xStateListItem.pvContainer
14. xEventListItem.xItemValue
15. xEventListItem.pxNext
16. xEventListItem.pxPrevious
17. xEventListItem.pvOwner
18. xEventListItem.pvContainer

List 3 - Task lists
0. uxNumberOfItems
1. pxIndex
2. xListEnd.xItemValue
3. xListEnd.pxNext
4. xListEnd.pxPrevious

List 4 - Mutex data structure
0. pcHead
1. pcTail
2. pcWriteTo
3. u.pcReadFrom
4. u.uxRecursiveCallCount
5. xTasksWaitingToSend.uxNumberOfItems
6. xTasksWaitingToSend.pxIndex
7. xTasksWaitingToSend.xListEnd.xItemValue
8. xTasksWaitingToSend.xListEnd.pxNext
9. xTasksWaitingToSend.xListEnd.pxPrevious
10. xTasksWaitingToReceive.uxNumberOfItems

55

Chapter 6. Experimental environment

11. xTasksWaitingToReceive.pxIndex
12. xTasksWaitingToReceive.xListEnd.xItemValue
13. xTasksWaitingToReceive.xListEnd.pxNext
14. xTasksWaitingToReceive.xListEnd.pxPrevious
15. uxMessagesWaiting
16. uxLength
17. uxItemSize
18. cRxLock
19. cTxLock
20. uxQueueNumber
21. ucQueueType

6.3 Host-side FIEparser.py script
The Python2.7 FIEparser.py program has to be used after the injection campaign is
terminated and both the injection and golden files have been created. It aims at comparing
the results of each experiment of the two runs in order to see if, under a particular
combination of injection parameters, the operating system has shown a misbehavior of
any kind.

6.3.1 Parsing algorithm

The parser exploits an empirical approach to categorize the results of the injections, based
on the difference found between the injection run file and the golden run file. Logged
data are written on a file, one text line per experiment, and they are made of three parts:
injection parameters, benchmark results and number of iterations each task was executed
for, general system and injection status. The format of the experiment outcome, saved on
the log file in a single line, is shown below (here split in three lines). Meaning of names
has been already explained in previous chapters.

[cycle] [bit] [locus] [timer period] [timer prescaler]

[BM_CRCOK] [BM_CRCWRONG] [BM_MICROIT] [BM_MACROIT]

[SY S_INJOK] [SY S_INJ] [SY S_OK] [SY S_ETAF]

Comparisons are made between benchmarks results and number of iterations to under-
stand if, after the injection all the tasks are still working or not. It is important to
highlight that very small differences in the execution of the tasks are not detected: if
the number of times each instantiated task was scheduled is the same between the two
experiments - under the same experimental conditions - in the injection and golden runs,
the injection is classified as ‘silent’, even if a slight difference was actually present. In
order to tune this diversity threshold, the script can receive as input an additional para-
meter called tolerance, which is used internally to discriminate between ‘silent injection’
and ‘misbehavior’: only if the difference between injection and golden experiment exceeds
such value, result is classified as misbehavior.

56

Chapter 6. Experimental environment

Figure 6.1: Generic flow diagram of the parsing algorithm used to extract results

57

Chapter 7

Benchmarks under test

In order to perform experiments using standard programs and so to ensure repeatability
of the injections, EEMBC® Automotive suite [13] has been used: it is a set of benchmarks
belonging to the Multibench™ suite that reproduce some very common calculations in
the automotive field; they are thought to be used under an enclosing environment written
specifically for UNIX/Linux systems called MITH (Multi-Instance Test Harness), that
allows to instantiate a chosen subset of benchmarks among the given ones in the same
run and to tune the parameters of the execution. These benchmarks have been written for
multicore processors to test the scalability of the platform used, analyzing the distribution
of the workload among the different cores and eventually helping to find bottlenecks in
the schedule and in the execution; however, they have been used in a single core micro-
controller because the performance analysis was not relevant for this work.
16 benchmarks were available: 13 of them have been ported successfully to the embedded
environment whereas the remaining 3 have been discarded because of some difficulties
encountered during the translation (benchmark requiring too much memory); MITH en-
vironment, instead, wasn’t ported because it would have used too much memory.
Each benchmark is given with three elements, listed below.
Workload It is the algorithm executed, which can be single-thread or multi-thread.
Dataset Every benchmark is given with different set of input data, provided in the form
of files, each one with a different number of input values. More or less all the benchmarks
have a ‘4M’ dataset (about 4MB of data) and a ‘4k’ dataset (about 4kB of input data),
even if, in some special cases, some of them use a reduced amount of input values.
CRC In order to check if the calculations have been done in the right way, various pre-
calculated CRCs are provided, each one for a different dataset. These CRCs are included
in the code and they are used by a ‘check’ function which performs the CRC calculation
on the fly on the output values and compare it with the given one. Such function has to
be called when the main algorithm ends.
All the benchmarks come with a sequence of functions that must be called in a defined
order: their identifiers end with the name of the benchmark they are written for, but the
operations done are similar in all the cases. The calling order is shown in the list below:
the general benchmark name is replaced by an asterisk.

• define_params_* This function allows to setup the most general benchmark
parameters like the dataset to be used and the correct given CRC related to that
dataset. The input file containing such dataset is read and all the values are instan-
tiated in a RAM file. Even if one wants to execute many times the benchmark, this
function must be called only one time.

59

Chapter 7. Benchmarks under test

• bmark_init_* The parameters related to the current run of the benchmark are
set: the memory required for the output file is allocated and all the counters are
reset. If one wants to execute the whole benchmark many times, this function must
be called every time the new iteration begins.

• t_run_test_* This is the function which actually contains the benchmark al-
gorithm. It is made of a loop that allows to repeat the algorithm many times
without having to clear and reinitialize the parameters: at every iteration it just
repeats the calculations overwriting the results in the output file of the previous
iteration.

• bmark_verify_* This function is the one charged to calculate the CRC on the
fly and to compare it with the given one: it just returns a boolean value as result
of the comparison.

• bmark_fini_*When the CRC has been calculated, this function must be called to
free the memory allocated for the output file, preparing, eventually, the benchmark
for another run. It is the opposite of bmark_init_*.

• bmark_clean_* This function completely clears the memory and resets the vari-
ables used by the benchmark. It is the opposite of define_params_*.

7.1 a2time - Angle to time conversion

This benchmark simulates a mechanism made of an engine with different cylinders (4, 6
or 8, to be chosen before compilation) with a crankshaft, a toothed reluctor wheel and
a sensor able to generate a pulse every time it detects the passage a tooth: this type
of mechanism is used to control the injection of fuel in the various cylinders and the
subsequent spark. The wheel usually has one or more missing teeth that are used as
reference point during the calculations. Differential angle between two subsequent points
in the dataset is found (they are adjusted in case of overflow of the toothed wheel); then
a counter keeping track of the shaft revolution is updated; when a cylinder finds an angle
value that is the right one to perform ignition - this is called ‘firing angle’ - a ‘fire’ signal
is asserted for that element of the engine. In the output file both engine speed and firing
times for the various cylinders are stored.

7.2 aifftr - Fast Fourier Transform

This benchmark calculates the power spectrum of a time varying signal with the Fast
Fourier Transform (FFT), by using a radix-2 decimation algorithm on complex input
values. First of all a bit reversal vector is found and then applied to dataset points.

7.3 aifirf - Finite Impulse Response filter

This benchmark emulates a Finite Impulse Response filter; each input sample is given to
two different pipelines that act one as low-pass filter and the other one as high-pass filter;
their order is 35 in both cases. Their outputs are written back into the memory in an
interleaved way.

60

Chapter 7. Benchmarks under test

7.4 aiifft - Inverse Fast Fourier Transform

This benchmark calculates the values assumed by a signal in the time domain starting
from its spectrum and using the Inverse Fast Fourier Transform.

7.5 bitmnp - Bit manipulation

This benchmark simulates an algorithm that receives as input numbers in BCD format
and shows them on a display: it updates the content of the screen by refreshing column
by column. This algorithm uses intensively conditionals to stress the logical units of the
hardware.

7.6 idctrn - Inverse Discrete Cosine Transform

This benchmark simulates the Inverse Discrete Cosine Transform widely used in digital
graphics; it is applied to an input dataset representing a matrix of 64 bits values.

7.7 iirflt - Infinite Impulse Response filter

This benchmark implements a second order Infinite Impulse Response filter in the direct
form II. Even in this case two filters operating on same input values are present in the
algorithm, a low-pass and a high-pass filter.

7.8 matrix - Matrix arithmetic

This benchmark performs many calculations with matrix arithmetic. Specifically, LU
decomposition of the matrix is done, then its determinant is calculated.

7.9 pntrch - Pointer chasing

This benchmark performs a linear search of a token in a doubly linked list. Each token
to search for in the list is taken from the dataset and if it is found, then, the number of
steps done through the list is saved in the output file stored in the memory and then next
token is retrieved.

7.10 puwmod - Pulse Width Modulation

This benchmark simulates a unit controlling a H-bridge motor driver (figure 7.1) which
can drive the motor both in clockwise and counterclockwise directions. The algorithm
returns a set of output values that can be applied to two H-bridges, useful to control a
bipolar stepper motor driver.

7.11 rspeed - Road speed calculation

This benchmark estimates the road speed by taking values from a digital timer and pulses
from a tonewheel. Like a2time benchmark, the mechanism simulated is made of a shaft

61

Chapter 7. Benchmarks under test

Figure 7.1: Bipolar stepper motor driver control circuit with connections to internal coils

that has a wheel and a tonewheel attached, with a sensor able to detect movement of
the latter; when such event occurs, an internal cumulative variable is updated, adding
to it the value of the timer and then, if required, the speed is calculated by dividing the
number of teeth by the total time. When this is done, cumulative variable is reset and the
algorithm is repeated with the next set of data coming from the timer. Speed calculation
is done two times per revolution of the wheel.

7.12 tblook - Table lookup and interpolation
This benchmark simulates a solution that can be used in embedded systems when the
chosen hardware has few RAM available: instead of saving all the samples coming from
one or more resources (sensors, connections, calculations), only a subset of them is actually
saved and then they are interpolated in order to find, approximately, missing points.

7.13 ttsprk - Tooth to spark algorithm
This benchmark simulates the regulation of the injection and ignition processes in an
engine. In a control unit a tooth-to-spark algorithm controls the amount of fuel to inject
in the cylinder, the mass of air to be used during the combustion and regulates the timing
of the entire process according to operating conditions.

62

Chapter 8

Experimental results

8.1 Experiments summary
The Fault Injection Environment allows to perform a very high number of injections under
many possible conditions and with different settings; in order to have a consistent amount
of experiments which are statistically relevant and to not spend too much time to per-
form all the campaigns, only a subset of 3 applications, each one running one benchmark,
have been extensively tested: a2time, idctrn and tblook; on the other benchmarks only a
reduced number of tests have been conduced. Table 8.1 shows which are the experiments
done, specifying for each benchmark the list and the bits where injection was performed.
All experiments simulated the effect of SBUs, using the bit-flip model. Injections have
been done at fixed time instants for 0 to 7 LSBs exploiting INJ mode of the FIE, while
injections in MSB have been done at random times, setting the FIE to RAD mode: in
the former case 50 time instants have been tested (chosen randomly but fixed for all
the faults in the list) while in the second case 500 injections have been done at different
random times for each fault in the selected list. Table 8.2 contains the total number of
experiments done in the various lists, dividing between injections in 8 LSBs and in MSB.
In the following sections results are analyzed and, for each relevant fault, an explanation
of the observed behavior of the system is provided if possible. At the beginning of each
section, a table is provided with all the faults that gave a result; some of them have a
consistency close to 0% and for this reason an exact value is not provided but ~0% is
used: such values are not considered relevant for the purposes of the discussion.
In following tables, ‘CURTCB’ stands for current task TCB, ‘RDYTCB’ for ready task
TCB, ‘DLDLST’ for delayed task list and ‘RDYLST’ for ready tasks list.

NOTE: All the following results have been extracted using a value for the tolerance
parameter equal to 10.

63

Chapter 8. Experimental results

List 1 List 2
CURTCB

List 2
RDYTCB

List 3
DLDLST

List 3
RDYLST List 4

a2time 0-7,MSB 0-7,MSB 0-7,MSB 0-7,MSB 0-7,MSB 0-7,MSB
aifftr 0-7 0-7
aifirf 0-7 0-7
aiifft 0-7 0-7
bitmnp 0-7 0-7
idctrn 0-7,MSB 0-7,MSB 0-7,MSB 0-7,MSB 0-7,MSB 0-7,MSB
iirflt 0-7 0-7
matrix 0-7 0-7
pntrch 0-7 0-7
puwmod 0-7 0-7
rspeed 0-7 0-7
tblook 0-7,MSB 0-7,MSB 0-7,MSB 0-7,MSB 0-7,MSB 0-7,MSB
ttsprk 0-7 0-7

Table 8.1: Summary of experimental injection campaigns performed with target bits
specified

List 1 List 2
CURTCB

List 2
RDYTCB

List 3
DLDLST

List 3
RDYLST List 4

0-7LSB 4000 7600 7600 2000 2000 8800
1MSB 5000 9500 9500 2500 2500 11000

Table 8.2: Number of experiments per list, divided by target bits

64

Chapter 8. Experimental results

8.2 List 1 - Global FreeRTOS variables

8.2.1 Bits 0-7 injection results

Fault
number

Fault
name Consistency

1 xTickCount C<10%
2 uxTopReadyPriority 80%<C<90%
3 xSchedulerRunning 10%<C<20%
8 xNextTaskUnblockTime C~0%
9 uxSchedulerSuspended C=100%

Table 8.3: Faults producing misbehaviors for experiments in list 1, 0-7 LSB

Results obtained when injecting in 8LSB are more or less the same for all the benchmarks:
faults which gave some results are 1,2,3,8 and 9, corresponding to xTicksCount, uxTo-
pReadyPriority, xSchedulerRunning, xNextTaskUnblockTime and uxSchedulerSuspended.
No crash occurred because when injecting in LSBs it is unlikely to modify sensitive data
which are used, for example, to index elements in lists or vectors. All misbehaviors are
recognized as freezes or degradations which means that global variables, in the case of
slight modifications, are used mainly to regulate the scheduling process.
1) Experiments in locus 1 (xTicksCount) gave results only for injections in the 7th bit:
such variable is used by the kernel in xTaskIncrementTick() to understand when a task
must be moved back from the xDelayedTaskList1 list to the right pxReadyTasksLists (in
order to awake it after the delay timeout elapsed), so it is easy to understand why it gives
a misbehavior only when the injection is done on higher bits and such misbehaviors are
all degradations (change of the tasks scheduling without any sudden error): such variable
is compared to xNextTaskUnblockTime and, only if it is greater, the check on delayed
tasks is done and its change leads to a different scheduling of the tasks.
2) Fault 2 (uxTopReadyPriority) causes mainly freezes and few degradations: this is due
to the fact that such variable is used to select the right ready task, if any available, to be
moved to running state among the ones in the pxReadyTasksLists vector, using the macro
taskSELECT_HIGHEST_PRIORITY_TASK(); if this variable points erroneously to a
position in the list where no task is available, system freezes in a loop thanks to a pre-
ventive configASSERT() check on the ready tasks list.
3) Variable related to fault 3 (xSchedulerRunning), instead, gave results only for injections
in 1st LSB: it is used to know if the scheduler is suspended or not and if yes, no task is
scheduled, so, when the injection is done on the 1st LSB (the only one used to understand
the state of the scheduler), the whole system halts, producing a freeze.
8) This variable (xNextTaskUnblockTime) has a low consistency but such result depends
heavily on the tolerance set to perform the post campaign analysis: decreasing such para-
meter, the consistency of such fault increases from ~0% up to a value comprised between
5% and 10%. This is due to the fact xNextTaskUnblockTime, when affected by an in-
jection in LSB, changes the behavior of the system in a very slight way, modifying the
scheduling sequence of tasks, and such difference could be not seen if tolerance is too high.
The presence of such misbehavior is due to comparison made by the function xTaskIn-
crementTick() with xTicksCount, to understand if there is a delayed task that needs to
be moved back to the ready list as its timeout has expired.

65

Chapter 8. Experimental results

9) Fault 9 (uxSchedulerSuspended) always produces a freeze: this is due to the fact that
this variable is always checked by a configASSERT() before it is used: in all cases, if its
value is different from the expected one, the system is blocked by an infinite loop. Such
checks are done in the function vTaskDelay(), in xTaskResumeAll() and in vTaskSuspend-
All(): the first function is often used by the instantiated tasks, while the other twos are
called internally by vTaskDelay() itself and by other debug functions, to retrieve system
information, ensuring thus that a check on uxSchedulerSuspended is done in any case.

66

Chapter 8. Experimental results

Figure 8.1: Results of injections in 8LSB, using a2time benchmark

67

Chapter 8. Experimental results

Figure 8.2: Results of injections in 8LSB, using idctrn benchmark

68

Chapter 8. Experimental results

Figure 8.3: Results of injections in 8LSB, using tblook benchmark

69

Chapter 8. Experimental results

8.2.2 MSB injection results

Fault
number

Fault
name Consistency

2 uxTopReadyPriority C=100%
4 uxPendedTicks C=100%
8 xNextTaskUnblockTime 5%<C<50%
9 uxSchedulerSuspended C=100%

Table 8.4: Faults producing misbehaviors for experiments in list 1, 1 MSB

When injecting on the MSB, instead, results are slightly different: misbehaviors in faults
2,8 and 9 are conserved, faults 1 and 3 disappear and fault 4 appears.
2) This time uxTopReadyPriority is heavily modified by the injection in the MSB, so
the selection of the ready task with the highest priority in the vector pxReadyTasksLists
is done trying to access to a completely wrong position in the memory: this leads to a
crash.
4) Fault 4 is uxPendedTicks and injecting here always produces a freeze of the whole
system: as said before, function xTaskIncrementTick() always checks if the scheduler is
suspended or not; during a normal operation, if this time it is, the value of uxPendedTicks
is incremented by one. When xTaskResumeAll() is called (by vTaskDelay() for example),
all the pended ticks happened while the scheduler was stopped are solved; however, after
the injection in the MSB, the value stored in uxPendedTicks becomes huge (flip is always
made from 0 to 1 and this variable is unsigned) and so the whole system freezes because
it is busy to solve, emptily, an enormous number of pended operations.
8) In MSB injections, xNextTaskUnblockTime fault becomes more relevant: this unsigned
variable is compared to xTickCount in xTaskIncrementTick() and, only if it is greater
than the tick count, the delayed task with the satisfied elapsed delay is moved back to the
ready list. When the MSB of this variable is flipped (always from 0 to 1) and if all the
tasks are already in the delayed state, no task is awaken because it would seem that no
delayed task has reached its timeout delay for a long time; low consistency of this fault is
due to the fact that if the injection happens when there is at least one task in the ready or
running state, it will overwrite this variable as soon as it will call vTaskDelay(), nullifying
the effect of the injection (this value is updated by the delaying function with the new
value imposed by the task that is going to be retarded). It must be noted that, this time,
unlike LSB experiments, all misbehaviors are system freezes and not degradations.
9) Fault 9 (uxSchedulerSuspended) has the same behavior with same explanation of the
LSB experiments.

70

Chapter 8. Experimental results

Figure 8.4: Results of injections in 1MSB, using a2time benchmark

71

Chapter 8. Experimental results

Figure 8.5: Results of injections in 1MSB, using idctrn benchmark

72

Chapter 8. Experimental results

Figure 8.6: Results of injections in 1MSB, using tblook benchmark

73

Chapter 8. Experimental results

8.3 List 2 - Current task TCB

8.3.1 Bits 0-7 injection results

Fault
number

Fault
name Consistency

1 uxPriority 50%<C<90%
2 pxStack(idctrn only) 40%<C<50%
5 uxBasePriority(idctrn only) 30%<C<40%
6 uxMutexesHeld(idctrn only) C~0%
10 xStateListItem.pxNext C=100%
11 xStateListItem.pxPrevious 60%<C<100%
12 xStateListItem.pvOwner C=100%
13 xStateListItem.pvContainer 60%<C<100%
18 xEventListItem.pvContainer 60%<C<100%

Table 8.5: Faults producing misbehaviors for experiments in list 2, current TCB, 0-7 LSB

Injections in LSBs gave relevant results in faults 1, 2, 5, 10, 11, 12, 13 and 18 (corres-
ponding to variables uxPriority, pxStack, uxBasePriority, xStateListItem.pxNext, StateL-
istItem.pxPrevious, xStateListItem.pvOwner, xStateListItem.pvContainer and xEventL-
istItem.pvContainer).
1) Fault 1 (uxPriority) causes mainly freezes. This variable is used by the kernel when
a task is moved back from the delayed state to the ready state, to know in which ready
list it must be added among the possible priority-ordered lists. Injections in this loc-
ation could lead to point to a wrong memory; moreover, if the value is wrong and
the new required list is empty (because of the injection), a configASSERT() in taskSE-
LECT_HIGHEST_PRIORITY_TASK() brings the system to an infinite loop: this ex-
plains the freezes.
2) Fault 2 (pxStack) produces misbehaviors only in the multithread application, show-
ing only freezes: this happens because in this particular application some tasks, actually
performing the benchmark calculations, are created and deleted at runtime, exploiting re-
spectively the functions xTaskCreate() and vTaskDelete(); in order to completely remove
such tasks from the system and to free their allocated memory, the latter function needs
some information present in their TCBs, and one of these information is the base point
of the allocated stack: when the stack, which is made of concatenated lists, is deallocated
- using FreeRTOS and not standard C functions - two checks (on the block size and on
the next free block status) are performed and if one of them fails the systems hangs in an
configASSERT() loop.
5) Fault 5 (uxBasePriority) causes crashes, freezes and degradations, but only in multi-
thread benchmark idctrn: this happens because, as said before, idctrn is a multithread
benchmark which intensively exploits mutexes and in particular the priority inversion
mechanism, in the case the various tasks sharing a mutex have a different priority. If
this variable is changed by the injection, priority inversion is harmed leading to a wrong
scheduling - after the inversion the restored priority is the wrong one and not the original
one - and causing freezes and degradations. In other cases such injection leads to an
erroneous access to the pxReadyTasksLists vector, since the restored priority contained
in uxPriority is the wrong one.

74

Chapter 8. Experimental results

10) xStateListItem.pxNext field is used by vTaskSwitchContext(), a fundamental func-
tion used by the kernel every time another task must be switched in: such function calls
taskSELECT_HIGHEST_PRIORITY_TASK(), a macro used to select, if available, the
ready task with the highest priority; listGET_OWNER_OF_NEXT_ENTRY() is the
macro which actually changes the current running task with the new one, exploiting
exactly xStateListItem.pxNext: injecting in this variable means that the current TCB
variable will point to a non sense memory region (which should contain instead a TCB
data structure), provoking thus a crash.
11) xStateListItem.pxPrevious is instead heavily used by vListInsertEnd() and uxLis-
tRemove(): in the first case the new item’s pxPrevious is set to pxPrevious of the older
item in the list, while, in the second function, pxNext->pxPrevious of the item to remove
is set equal to pxPrevious, as in normal insert/remove operations. Changing this value
with an injection leads mainly to crashes because the pointer, very often, points to a
totally wrong position in memory.
12) The fault 12 (xStateListItem.pvOwner) is used, for example, in xTaskIncrement-
Tick() and is accessed by listGET_OWNER_OF_HEAD_ENTRY() to know if there
is a delayed task which needs to be moved to the ready list since its delay has expired.
This variable is used by vTaskSwitchContext() too: while the variable related to fault
10 is accessed to get the next item in the list of ready tasks, this variable contains the
pointer to the TCB of such ‘next’ item to be eventually switched in: again, as the switch
function is called very often, it is obvious to see a consistency of 100% for this fault and
a very high number of crashes.
13) xStateListItem.pvContainer is a field accessed by xTaskResumeAll() which, if there
are some pending operations requiring a movement of the task from delayed to ready list,
calls uxListRemove(): this function exploits pvContainer of the item to be removed in
order to know the list it belongs to; if this value is different from the expected one, the
index (value used by the list to surf among the list items) will continue to point to the
item to be deleted, which is in a memory location that is not valid anymore.
18) Misbehavior in locus 18 (xEventListItem.pvContainer) can be explained in this way:
when calling xTaskResumeAll(), xTaskIncrementTick() is called too and here a com-
parison between xTickCount and xNextTaskUnblockTime is done to know if there is a
delayed task which needs to be awaken; pvContainer (that points to the list containing
xEventListItem) is accessed to remove such task from the waiting list, but if it is injected,
it will point to a completely wrong place, causing thus a crash.

75

Chapter 8. Experimental results

Figure 8.7: Results of injections in 8LSB, using a2time benchmark

76

Chapter 8. Experimental results

Figure 8.8: Results of injections in 8LSB, using idctrn benchmark

77

Chapter 8. Experimental results

Figure 8.9: Results of injections in 8LSB, using tblook benchmark

78

Chapter 8. Experimental results

8.3.2 MSB injection results

Fault
number

Fault
name Consistency

0 pxTopOfStack(idctrn only) C~0%
1 uxPriority 5%<C<70%
2 pxStack(idctrn only) 30%<C<40%
10 xStateListItem.pxNext C=100%
11 xStateListItem.pxPrevious 60%<C<100%
12 xStateListItem.pvOwner C=100%
13 xStateListItem.pvContainer 60%<C<100%
18 xEventListItem.pvContainer 60%<C<100%

Table 8.6: Faults producing misbehaviors for experiments in list 2, current TCB, 1 MSB

There are, again, visible similarities between the LSB and the MSB set of experiments:
all the considerations provided for the LSB injections are still valid.
0) For the multithread benchmark idctrn fault 0 appears too (pxTopOfStack), producing
crashes only: the other benchmark applications are not affected in this way because stack
creation and deletion processes are not used at all.
10, 11, 12, 13, 18) Injections in MSB gives results that are similar to the ones got with
experiments on LSBs: faults 10, 11, 12, 13 and 18 continue to have more or less the same
behavior causing the 100% of crashes as, this time, the memory accessed by such pointer
is absolutely invalid.

79

Chapter 8. Experimental results

Figure 8.10: Results of injections in 1MSB, using a2time benchmark

80

Chapter 8. Experimental results

Figure 8.11: Results of injections in 1MSB, using idctrn benchmark

81

Chapter 8. Experimental results

Figure 8.12: Results of injections in 1MSB, using tblook benchmark

82

Chapter 8. Experimental results

8.4 List 2 - Ready task TCB

8.4.1 Bits 0-7 injection results

Fault
number

Fault
name Consistency

1 uxPriority 2%<C<80%
2 pxStack(idctrn only) 35%<C<45%
5 uxBasePriority 2%<C<35%
10 xStateListItem.pxNext 35%<C<80%
11 xStateListItem.pxPrevious 35%<C<80%
12 xStateListItem.pvOwner 35%<C<80%
13 xStateListItem.pvContainer 35%<C<80%
18 xEventListItem.pvContainer 35%<C<80%

Table 8.7: Faults producing misbehaviors for experiments in list 2, ready TCB, 0-7 LSB

When injecting in ready task TCB, the number of injections done is actually lower than
the total number of experiments: the FIE, in fact, has a system that is able to understand
if the datum under test is present in memory or not, and, if not, experiment is aborted;
TCBs belonging to ready tasks are not always instantiated in the ready tasks list (for
example when all the created tasks are in the delayed state), so in some cases injection
was not actually performed, obtaining thus a reduced consistency.
10, 11, 12, 13, 18) In any case, it is interesting to notice that faults 10, 11, 12, 13 and
18 (xStateListItem.pxNext, xStateListItem.pxPrevious, xStateListItem.pvOwner, xStateL-
istItem.pvContainer and xEventListItem.pvContainer) have almost a fixed consistency
and in the most of cases they produce a crash because they are pointers.
In idctrn, some other faults (0,1,3,4,6,7,8,9) appear with a fixed consistency: actually
these faults could be left unconsidered, as they are caused by an injection made in a
moment when the kernel was performing a sensitive operation; such behavior in fact was
observed only when injecting in a particular time instant, with an unusual behavior in
the DUT-side injector (system crashed before the injector could complete its operations,
suggesting that injector interrupted a critical operation of the kernel since its ISR has
maximum priority).

83

Chapter 8. Experimental results

Figure 8.13: Results of injections in 8LSB, using a2time benchmark

84

Chapter 8. Experimental results

Figure 8.14: Results of injections in 8LSB, using idctrn benchmark

85

Chapter 8. Experimental results

Figure 8.15: Results of injections in 8LSB, using tblook benchmark

86

Chapter 8. Experimental results

8.4.2 MSB injection results

Fault
number

Fault
name Consistency

0 pxTopOfStack C~0%
1 uxPriority C~0%
2 pxStack(idctrn only) 32%<C<36%
3 uxTCBNumber C~0%
5 uxBasePriority C~0%
6 uxMutexesHeld C~0%
7 ulNotifiedValue C~0%
8 ucNotifyState C~0%
9 xStateListItem.xItemValue C~0%
10 xStateListItem.pxNext 32%<C<100%
11 xStateListItem.pxPrevious 32%<C<100%
12 xStateListItem.pvOwner 32%<C<100%
13 xStateListItem.pvContainer 32%<C<100%
14 xEventListItem.xItemValue C~0%
15 xEventListItem.pxNext C~0%
16 xEventListItem.pxPrevious C~0%
17 xEventListItem.pvOwner C~0%
18 xEventListItem.pvContainer 32%<C<100%

Table 8.8: Faults producing misbehaviors for experiments in list 2, ready TCB, 1 MSB

Experiments on MSB of a ready task’s TCB produced the most critical results: the
usual pointers (10, 11, 12 and 13) always produce crashes but this time, for many other
variables, even if consistency is low (in many cases it is lower than 1%), the common
result is a crash too. The TCB of a ready task is a very sensitive part of FreeRTOS since
it is surely accessed by the kernel when the task is selected to be switched in, so, the fault
will manifest itself. In any case, most important results with a relevant consistency level,
are still the faults 2, 10 ,11, 12, 13 and 18 as for the injections in current TCB.

87

Chapter 8. Experimental results

Figure 8.16: Results of injections in 1MSB, using a2time benchmark

88

Chapter 8. Experimental results

Figure 8.17: Results of injections in 1MSB, using idctrn benchmark

89

Chapter 8. Experimental results

Figure 8.18: Results of injections in 1MSB, using tblook benchmark

90

Chapter 8. Experimental results

8.5 List 3 - Ready tasks list

8.5.1 Bits 0-7 injection results

Fault
number

Fault
name Consistency

0 uxNumberOfItems C=100%
1 pxIndex C=100%
4 xListEnd.pxPrevious 10%<C<60%

Table 8.9: Faults producing misbehaviors for experiments in list 3, ready tasks list, 0-7
LSB

This list gave some results for faults 0, 1 and 4, related to variables uxNumberOfItems,
pxIndex and xListEnd.pxPrevious.
0) The fault 0 (uxNumberOfItems) is an integer containing the number of elements in the
list: injecting here leads mainly to crashes. The consistency equal to 100% is justified
by the fact that this variable is accessed very often by the kernel, in particular by the
function vTaskSwitchContext(), which performs a check of the length of the ready list
before another available ready task is switched in as running task: if this variable is equal
to zero the system hangs in a configASSERT() (this happens because, in this case, the
RTOS would expect to have a non-void ready task list during the context switching).
Crashes are easily explainable referring to the fact that, if pxReadyTasksLists holds,
actually, a number of tasks different from the value of uxNumberOfItems, a switch is
done anyway, making the variable pxCurrentTCB to point to a non-sense position in
memory.
1) The variable pxIndex related to fault 1 produces crashes too: this happens because
this variable is a pointer to the last item inserted and when it is modified, kernel tries
to access to a wrong memory region. Functions vListInsertEnd() and uxListRemove()
access this parameter, respectively, to update pxNext and pxPrevious pointers of the new
inserted item with the values of pxIndex and pxIndex->pxPrevious and to update it with
the last item in the list, so with pxPrevious of the removed item. In both cases, after the
injection such value is used before it is overwritten by the update and then it points to a
wrong position in the memory.
4) The fault 4 (xListEnd.pxPrevious) is again a pointer which points to the last useful item
in a list, just before the list end marker called xListEnd. Again, item insertion and deletion
operations update this variable so that pxIndex always points to the end of the list (which
is always a xListEnd structure). Function prvAddCurrentTaskToDelayedList() is used to
move a task from the ready to the delayed task list and to do this the function vListInsert()
is exploited: variable xListEnd.pxPrevious is used exactly to start the iteration during the
insertion of the new item in the right position in xDelayedTaskList1 or xDelayedTaskList2;
these two lists, as already explained, are used, respectively, when the wakeup time of the
task does not overflow or overflows the tick counter. If the value is injected, the iteration
across the list is made in a bad way.

91

Chapter 8. Experimental results

Figure 8.19: Results of injections in 8LSB, using a2time benchmark

92

Chapter 8. Experimental results

Figure 8.20: Results of injections in 8LSB, using idctrn benchmark

93

Chapter 8. Experimental results

Figure 8.21: Results of injections in 8LSB, using tblook benchmark

94

Chapter 8. Experimental results

8.5.2 MSB injection results

Fault
number

Fault
name Consistency

0 uxNumberOfItems C=100%
1 pxIndex C=100%
3 xListEnd.pxNext C~0%
4 xListEnd.pxPrevious 5%<C<70%

Table 8.10: Faults producing misbehaviors for experiments in list 3, ready tasks list, 1
MSB

Injections in MSB have very similar results with respect to the 8LSB case, with similar
levels of consistency; however, crashes happens in 100% of cases for all experiments, due
to the fact that pointers, this time, point to a completely wrong memory position, which
probably is even outside the RAM.

95

Chapter 8. Experimental results

Figure 8.22: Results of injections in 1MSB, using a2time benchmark

96

Chapter 8. Experimental results

Figure 8.23: Results of injections in 1MSB, using idctrn benchmark

97

Chapter 8. Experimental results

Figure 8.24: Results of injections in 1MSB, using tblook benchmark

98

Chapter 8. Experimental results

8.6 List 3 - Delayed tasks list

8.6.1 Bits 0-7 injection results

Fault
number

Fault
name Consistency

0 uxNumberOfItems 10%<C<20%
3 xListEnd.pxNext C=100%

Table 8.11: Faults producing misbehaviors for experiments in list 3, delayed tasks list,
0-7 LSB

It is important to make a comparison with results of experiment on ready tasks list: this
fault list produces a lower number of misbehaviors as fewer fields are used by the kernel.
The overall number of crashes is lower: in any case they always happen only for pointers
or pointer-related variables. Faults 0 and 3 (uxNumberOfItems and xListEnd.pxNext) give
results.
0) Fault 0 (uxNumberOfItems) causes freezes and degradations because, when the number
of items in the list is changed, some tasks are not moved back again to the ready state
- as one can see from the following graphs, only 2 LSB give misbehaviors and the total
number of instantiated tasks is 3 (idctrn has more instantiated tasks running in parallel
as this is a multithread benchmark, but such tasks are never delayed so they never enter
the list under test).
3) Fault 3 (xListEnd.pxNext) is used in delayed-to-ready state transition and it mani-
fests a consistency of 100% because it is used in a complementary way with respect to
xListEnd.pxPrevious, used instead in the case of ready-to-delayed state transition: prvAd-
dTaskToReadyList() function, in fact, is called if there is a task which has reached its
timeout delay and, if so, such task is moved back to ready state list using vListInser-
tEnd(), keeping the injected xListEnd.pxNext, which will be used then to surf the ready
task list but that will point to a wrong next item.

99

Chapter 8. Experimental results

Figure 8.25: Results of injections in 8LSB, using a2time benchmark

100

Chapter 8. Experimental results

Figure 8.26: Results of injections in 8LSB, using idctrn benchmark

101

Chapter 8. Experimental results

Figure 8.27: Results of injections in 8LSB, using tblook benchmark

102

Chapter 8. Experimental results

8.6.2 MSB injection results

Fault
number

Fault
name Consistency

3 xListEnd.pxNext C=100%

Table 8.12: Faults producing misbehaviors for experiments in list 3, delayed tasks list, 1
MSB

3) Only fault 3 corresponding to xListEnd.pxNext is visible and, this time it causes always
crashes: as said multiple times, MSB injections in pointers easily lead to completely wrong
accesses to memory which immediately raises an exception and the consequent call of the
ISR related to a default error.

103

Chapter 8. Experimental results

Figure 8.28: Results of injections in 1MSB, using a2time benchmark

104

Chapter 8. Experimental results

Figure 8.29: Results of injections in 1MSB, using idctrn benchmark

105

Chapter 8. Experimental results

Figure 8.30: Results of injections in 1MSB, using tblook benchmark

106

Chapter 8. Experimental results

8.7 List 4 - Mutex
Experiments done on mutexes are the ones which could lead to obtain the most interesting
results: injections in RTOS variables could cause, in fact, a change in user data due to
the fact that a multiple access could be erroneously done if the mutex does not work as
expected. However, this kind of behavior was never experienced because the take/give
operations were made around very small portions of code, not sufficiently long to allow in
the meantime a context switch and an attempt of another task to take the same mutex.

8.7.1 Bits 0-7 injection results

Fault
number

Fault
name Consistency

5 xTasksWaitingToSend.uxNumberOfItems 38%<C<100%
10 xTasksWaitingToReceive.uxNumberOfItems 38%<C<100%
15 uxMessagesWaiting 4%<C<15%
16 uxLength 4%<C<15%
17 uxItemSize 38%<C<100%

Table 8.13: Faults producing misbehaviors for experiments in list 4, 0-7 LSB

Results obtained in both LSBs and MSB targeted injections are similar. Faults 5, 10, 15,
16 and 17 are visible, corresponding to faults xTasksWaitingToSend.uxNumberOfItems,
xTasksWaitingToReceive.uxNumberOfItems, uxMessagesWaiting, uxLength and uxItemS-
ize.
5) Fault 5 (xTasksWaitingToSend.uxNumberOfItems) causes always freezes: xTasksWaiting-
ToSend is an event list containing all those items belonging to tasks which are waiting to
release the mutex. When the mutex is taken by a task, xQueueGenericReceive() function
is called and that event list is checked: if it is not empty, then the mutex can be taken.
10) Fault 10 (xTasksWaitingToReceive.uxNumberOfItems) is the opposite of fault 5 as it
is a value which represents the number of tasks waiting to take the mutex.
15) This fault (uxMessagesWaiting) is visible only for 1st LSB injections: the kernel just
checks if this value is different from 0 and if so it performs the needed operations, regard-
less of the actual number of messages waiting in the mutex. As only first bit gives result,
after the injection the value of this variable is always the opposite of the expected one,
leading to 100% of degradations or crashes.
16) Fault uxLength is used by xQueueGenericSend() function, called when the mutex
is given, and it is compared to uxMessagesWaiting: if the latter value is lower than
uxLength, then the mutex is actually released: when injecting in this variable, it happens
often that its value is flipped from 1 to 0, preventing other tasks to take the mutex (even
if the releasing task successfully gave it). In idctrn benchmark this variable causes a crash
because 8 tasks are trying to access the same mutex, leading to more complex and critical
mechanisms; the other two benchmark applications use a mutex shared just among two
tasks.
17) Fault 17 (uxItemSize) causes always freezes: when xQueueGenericSend() is called to
give the mutex, there is always a check on the operation. The item to be added to the
queue must be not NULL or uxItemSize must be equal to zero in order to perform cor-
rectly the operations; as in mutexes send operation is made adding a NULL element to

107

Chapter 8. Experimental results

the queue, uxItemSize must be zero: when injection is performed, such variable becomes
in any case different from 0, leading a configASSERT() to hang the system.

108

Chapter 8. Experimental results

Figure 8.31: Results of injections in 8LSB, using a2time benchmark

109

Chapter 8. Experimental results

Figure 8.32: Results of injections in 8LSB, using idctrn benchmark

110

Chapter 8. Experimental results

Figure 8.33: Results of injections in 8LSB, using tblook benchmark

111

Chapter 8. Experimental results

8.7.2 MSB injection results

Fault
number

Fault
name Consistency

1 pcTail C~0%
5 xTasksWaitingToSend.uxNumberOfItems 36%<C<100%
10 xTasksWaitingToReceive.uxNumberOfItems 36%<C<100%
17 uxItemSize 36%<C<100%

Table 8.14: Faults producing misbehaviors for experiments in list 4, 1 MSB

Behavior of injections in MSB are more or less the same obtained for experiments in
8LSB, except for faults 15 and 16 which disappear.
15) This fault (uxMessagesWaiting) is not visible anymore because only 1st LSB injections
cause a misbehavior.
16) Same behavior of fault 15.

112

Chapter 8. Experimental results

Figure 8.34: Results of injections in 1MSB, using a2time benchmark

113

Chapter 8. Experimental results

Figure 8.35: Results of injections in 1MSB, using idctrn benchmark

114

Chapter 8. Experimental results

Figure 8.36: Results of injections in 1MSB, using tblook benchmark

115

Chapter 8. Experimental results

8.8 Consistency dependence on tolerance
As the algorithm used to extract results performs analysis on the behavior of the sys-
tem, there is a dependence between the results obtained and the value of the tolerance
parameter passed to the parsing script: in particular, for those faults that cause freezes
and degradations, such relation is highly visible as a different tolerance leads the parser
to be more or less sensitive to differences between the golden run and the injection run;
such dependency is clearly visible in a restricted subset of faults in list 1 (FreeRTOS
global variables) while other lists give more homogeneous results for different tolerance
values. Figure 8.37 shows how consistency increases for lower values of tolerance, as, even
small variations (that are probably not necessarily due to the injection) are classified as
misbehaviors. It is anyway interesting to notice that only faults related to the real-time
scheduling of tasks are very dependent on tolerance: uxTopReadyPriority, for example, is
a variable not used to manage timing-related operations but it is exploited just to know,
at every system tick, which is the highest priority available in the OS, so for every value of
tolerance it shows always the same results. Other variables like xTickCount and xNext-
TaskUnblockTime, one the contrary, are used exactly to manage time-related events, to
choose when a task must be moved back from delayed to ready state: a different level of
tolerance causes a different number of misbehaviors detected to be identified since injec-
tions in such places harms the system in a slight way; such misbehaviors can be seen only
reducing tolerance, but not too much to not classify erroneously also normal differences
between the two runs of the campaign.
Set of graphs in 8.38 instead shows how faulting bits are identified for different values of

Figure 8.37: Tolerance-Consistency dependency for idctrn benchmark

tolerance (please, focus on faults 1 and 8): when such parameter is set to 0, all injections
seem to have a failing outcome but this is clearly due to a wrong classification; to remove
these false positive results, tolerance is increased, but this time the number positives found
for time-related variables decreases with a dependency on bits: injections in higher bits
lead to more visible behaviors which can be identified also with higher tolerance values
but other misbehaviors which requires a higher sensitivity disappear.

116

Chapter 8. Experimental results

Figure 8.38: Identification of faulting bits dependence on tolerance, for tolerance values
of 0, 1, 2, 4, 7 and for idctrn benchmark, fault list 1

117

Chapter 9

Conclusions

After long injection campaigns, some vulnerabilities have been found in FreeRTOS: many
variables show always the same behavior, with some justifiable differences, for all the
benchmarks used. In some cases such differences are due to the speed of the algorithm
executed, in other cases instead they depend on the moment when injection was performed
and finally other ones are due to the different way in which the various features of the
RTOS are exploited.

9.1 Summary

Most critical vulnerabilities are pointers and numerical values stored in integer variables
(both signed and unsigned) used to address elements of lists or vectors, especially when
the bits injected are the first LSBs or the last MSBs: a modification of high order bits
can lead to point to parts of the memory that could not even map in a valid position;
changing the first LSBs instead leads to a memory access in a location which in many
cases is not tolerated.
Other variables instead produce freezes; in this case the problem is due to a critical error
that does not induce a crash and that is solved internally: when a critical datum is used
by a kernel function, a configASSERT() function is usually called in order to perform a
preliminary analysis on its integrity and eventually on its expected value, and it blocks the
execution stalling in a infinite while loop if such datum is different from the expected one.
This is already a partial solution to injections but freezing a system instead of allowing
it to run is only a way to avoid further problems: a better solution is the use of a sort of
data redundancy in the RTOS code and the implementation of a voter which performs a
choice every time sensible variables are accessed.
Finally degradations are caused by changes in the scheduling process: this mainly hap-
pens when the kernel modifies its choices using values stored in injected variables and
so showing a final behavior different from the expected one. In this case no problem is
detected by the configASSERT() function and so system does not freeze.

In general, injections done in faults of the first fault list (global variables) cause freezes
and degradations, whereas crashes occur only in injections in higher order bits.
Concerning experiments involving TCBs - second fault list - instead, system showed a
slight worse tolerance to faults in the case of injections in ready task’s TCB rather than
current task’s one: this is due to the fact that values flipped in current task’s TCB, in
some occasions, are overwritten or not read by the kernel after the injection and so in this

119

Chapter 9. Conclusions

case they do not produce any misbehavior; a ready task’s TCB, on the other hand, leads
to more misbehaviors because it is inevitably used as soon as the task is selected and
moved to running state: looking at consistency values in graphs, one must keep in mind
that they are lower in the case of ready tasks TCB injections only because, sometimes,
no ready task is available to perform the injection, reducing thus such value. Injections
in MSB produced critical misbehaviors too, with a higher number of crashes with respect
to experiments in LSBs in the same locations.
A similar reasoning can be applied to the third list: when injecting in the ready tasks list
the number of misbehavior is very high and most of them are crashes; when experiments
are done instead on the delayed task list, the number of misbehaviors, like the crashes,
reduces and freezes and degradations become more relevant. This happens because the
ready tasks list is continuously consulted by the kernel to take decisions while the delayed
tasks list is accessed a reduced number of times and is used less intensively.
Finally injections in mutexes structure are not so destructive: crashes happens only in
few faults while freezes are the recurrent misbehavior.

As final remark, exploiting the runtime task creation procedure, used by the multithread
task idctrn, solicits ulteriorly the system, causing more misbehavior and highlighting in
this case an even lower tolerance to faults.

Tables 9.1 and 9.2 contain a summary of the most sensitive variables of the system among
the tested ones: marked entries are pointers.

Fault list Fault number and name Consistency

1 2 - uxTopReadyPriority 80%<C<90%
9 - uxSchedulerSuspended C=100%

2, Current task TCB 10* - xStateListItem.pxNext C=100%
12* - xStateListItem.pvOwner C=100%

2, Ready task TCB 10* - xStateListItem.pxNext 35%<C<80%
11* - xStateListItem.pxPrevious 35%<C<80%
12* - xStateListItem.pvOwner 35%<C<80%
13* - xStateListItem.pvContainer 35%<C<80%
18* - xEventListItem.pvContainer 35%<C<80%

3, Ready task list 0 - uxNumberOfItems C=100%
1* - pxIndex C=100%

3, Delayed task list 3* - xListEnd.pxNext C=100%
4 5 - xTasksWaitingToSend.uxNumberOfItems 38%<C<100%

10 - xTasksWaitingToReceive.uxNumberOfItems 38%<C<100%
17 - uxItemSize 38%<C<100%

Table 9.1: Summary of most sensitive faults to LSB injections

9.2 RTOS hardening

FreeRTOS can be hardened in different ways. One of the best methods is the introduction
of a certain level of redundancy, especially in those places where most critical problems

120

Chapter 9. Conclusions

Fault list Fault number and name Consistency

1 2 - uxTopReadyPriority C=100%
4 - uxPendedTicks C=100%
9 - uxSchedulerSuspended C=100%

2, Current task TCB 10* - xStateListItem.pxNext C=100%
12* - xStateListItem.pvOwner C=100%

2, Ready task TCB 10* - xStateListItem.pxNext 32%<C<100%
11* - xStateListItem.pxPrevious 32%<C<100%
12* - xStateListItem.pvOwner 32%<C<100%
13* - xStateListItem.pvContainer 32%<C<100%
18* - xEventListItem.pvContainer 32%<C<100%

3, Ready task list 0 - uxNumberOfItems C=100%
1* - pxIndex C=100%

3, Delayed task list 3* - xListEnd.pxNext C=100%
4 5 - xTasksWaitingToSend.uxNumberOfItems 36%<C<100%

10 - xTasksWaitingToReceive.uxNumberOfItems 36%<C<100%
17 - uxItemSize 36%<C<100%

Table 9.2: Summary of most sensitive faults to MSB injections

occurred during experiments; this means that all the most sensitive data must be duplic-
ated or triplicated and a voting system must be implemented, adding some computational
overhead to all kernel procedures. Error correction mechanism would be preferable in the
case in which an application with a high reliability must be designed; on the contrary, if
the application has to show a high availability, a simple error detection system would be
sufficient, forcing a software reset or isolating the affected subpart of the system in case a
critical error is detected. It is important to notice that FreeRTOS already includes some
macros which must be implemented by the programmer to perform checks on the integrity
of some data in the system or in some parameter passed to kernel functions before using
them. This is a good starting point, supported already by the presence, in some critical
points of the code of the RTOS, of some configASSERT() macros, aiming at hanging the
system in case of unexpected values.

9.3 Future improvements
This work will be improved by separating, in the FIEbrd section, the hardware-dependent
code from the rest of the DUT-side system, in order to make simpler the porting to other
platforms. Then, always in the DUT-side, an advanced tracing system can be developed:
actually the written tracer already has an additional beta feature (which was not used
during the experiments), but it needs to be improved by compressing logged data and
by speeding up the transmission of such information to the host machine; this feature is
already provided by third-part software like SEGGER RTT but such system requires too
much memory, so an optimized ad-hoc solution would be better.
Another idea consists in the improvement of the algorithm used to identify and classify
results: a more accurate set of misbehaviors can be created and outcomes can be analyzed
with a deeper accuracy by exploiting other types of comparisons or by tracing system and
tasks events in a more efficient way.

121

Appendices

123

Appendix A

Mutex take and give algorithm

A.1 Mutex take operation pseudocode

Listing A.1: Pseudocode of the take operation on mutexes
IF there is a message in the queue THEN

- Set the holder of the mutex to the current TCB
- Decrement the number of waiting messages
IF the list of tasks that are waiting to release the mutex
is not empty THEN

- Remove that task from the xTaskWaitingToSend list
IF that task preempts the current one (equal or higher
priority) THEN

- Force a switch by setting the PendSV interrupt bit to
one in the interrupt control register

ELSE
- Set a timeout

Suspend the scheduler
Lock the queue
Check for timeout
IF it did not expire THEN

- Inherit the priority : if the mutex holder has a lower
priority than the current task , the former will inherit the

higher priority , it will be removed from the list of tasks
with the old priority and it will be reinserted in the

list of tasks with the new (higher) priority
- Put the tasks in the list of the tasks waiting to receive

the mutex
- Unlock the queue
- Resume the scheduler

ELSE
- Unlock the queue
- Resume the scheduler

A.2 Mutex give operation pseudocode

Listing A.2: Pseudocode of the give operation on mutexes
IF there is a message in the queue THEN

- Set the holder of the mutex to NULL
- Disinherit the priority (set again uxPriority to
uxBasePriority)

125

Chapter A. Mutex take and give algorithm

IF the list of tasks that are waiting to get the mutex is
not empty THEN

- Remove that task from the xTaskWaitingToReceive list
IF that task preempts the current one (equal or higher
priority) THEN

- Force a switch by setting the PendSV interrupt bit to
one in the interrupt control register

ELSE
- Set a timeout

Suspend the scheduler
Lock the queue
Check for timeout

Check only to know if overflow occurred or not in the
meantime , because the Give operation is made with a delay
time of 0 (so it is not needed to see if the timeout
expired , as in Take).

Unlock the queue
Resume the scheduler

126

Appendix B

FIEmon.py detailed algorithm

The detailed pseudocode of the host-side script FIEmon.py is reported below.

Listing B.1: Detailed pseudocode of the host-side algorithm
// Initialization section
Initialize USART serial connection

Set baud rate
Set timeout of blocking operations
Set parity
Set byte size
Open channel

Create a log file with desired name
Flush serial buffer
Initialize injection parameters

Set cycle counter $ FIE_INJ_CYCLE = 0;
IF ($ cFIE_INJ_BITN >= 0)

Set bit number counter $ FIE_INJ_BITN = 0
ELSE

Set bit number counter $ FIE_INJ_BITN = max (# bit of the
first fault)

Set locus counter $ FIE_INJ_LOCUS = 0
Set period timer counter $ FIE_INJ_TIME_T = 0
Set prescaler timer counter $ FIE_INJ_TIME_D = 0

// Main loop controlling the run
$end = 0;
WHILE ($end == 0){

// Wait for STARTITCHAR to start the synchronization
$ startchar = Receive char from serial (blocking)
IF ($ startchar == $ STARTITCHAR) break

// Send synchronization confirmation and back paramters
Send INIT command through serial port
Send injection parameters

// Receive results of the injection and log them in the
file
$ bufchar = Receive char from serial (blocking)
$buf = ""
WHILE ($ bufchar != $ STOPITCHAR){

$buf = $buf + append $ bufchar
}
Save $buf in the log file

127

Chapter B. FIEmon.py detailed algorithm

// If SIJ mode activated exit here
IF ($ cFIE_ENABLED == $ cFIE_SIJmode){

EXIT
}

// Update , checking one by one , the five variables
IF (cycle counter < $ cFIE_INJ_CYCLE){

cycle counter ++
}
IF ($ cFIE_INJ_BITN > 0){

IF (bit number counter < $ cFIE_INJ_BITN){
cycle counter = 0
bit number counter ++

}
ELIF (locus counter < $ cFIE_INJ_LOCUS){

cycle counter = 0
bit number counter = 0
locus counter ++

}
ELIF (timer period counter < $ cFIE_INJ_TIME_T){

cycle counter = 0
bit number counter = 0
locus counter = 0
timer period counter ++

}
ELIF (timer prescaler counter < $ cFIE_INJ_TIME_D){

cycle counter = 0
bit number counter = 0
locus counter = 0
timer period counter = 0
timer prescaler counter ++

}
ELSE {

$end = 1
}

}
ELIF ($ cFIE_INJ_BITN < 0){

IF (bit number counter > 0){
cycle counter = 0
bit number counter --

}
ELIF (locus counter < $ cFIE_INJ_LOCUS){

cycle counter = 0
locus counter ++
bit number counter = max (# bit of the first fault)

}
ELIF (timer period counter < $ cFIE_INJ_TIME_T){

cycle counter = 0
locus counter = 0
bit number counter = max (# bit of the first fault)
timer period counter ++

}
ELIF (timer prescaler counter < $ cFIE_INJ_TIME_D){

cycle counter = 0
locus counter = 0
bit number counter = max (# bit of the first fault)
timer period counter = 0
timer prescaler counter ++

}
ELSE {

$end = 1

128

Chapter B. FIEmon.py detailed algorithm

}
}

}
Close log file
Close serial connection
EXIT

129

Appendix C

FIEparser.py detailed algorithm

The detailed pseudocode of the host-side script FIEparser.py is reported below.

Listing C.1: Detailed pseudocode of the host-side algorithm
// Initialization section
Define the fault lists
Define lengths expressed in bits of all the faults
Set the tolerance passed as parameter or use the default one
Create void lists

$ l_vuln_loci = []
$ l_crash = []
$ l_freeze = []
$ l_degr = []

Initialize counters
$ _n_of_injections = 0
$ _n_of_misbehaviors = 0
$ _n_of_crashes = 0
$ _n_of_freezes = 0
$ _n_of_degradations = 0

Begin the parsing operations
Open golden run file
Open injection run file
FOR each experiment line in both golden and injection run
files{

Divide the line in three parts
$ bm_params_inj = Find injection parameters
$ bm_res_inj = Find tasks log informations
$ sys_res_inj = Find system status
$ bm_params_golden = Find injection parameters
$ bm_res_golden = Find tasks log informations
$ sys_res_golden = Find system status

$ warning = 0
FOR each task log in $ bm_res_inj {

Compare number of events
IF (| var_inj | > var_golden + threshold OR | var_inj | <
var_golden - threshold){

$ warning ++
}

}
IF ($ sys_res_inj == crash){

Set the misbehavior as crash
$ _n_of_crashes ++

}
ELIF ($ warning == total number of tasks){

Set the misbehavior as freeze

131

Chapter C. FIEparser.py detailed algorithm

$ _n_of_freezes ++
}
ELIF ($ warning < total number of tasks){

Set the misbehavior as degradation
$ _n_of_degradations ++

}
}

Plot results in graphs

132

Bibliography

[1] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. Ferrari: A tool
for the validation of system dependability properties. IEEE, pages 336–344, 1992.

[2] João Carreira, Henrique Madeira, and João Gabriel Silva. Xception: A technique for
the experimental evaluation of dependability in modern computers. IEEE Transac-
tions on Software Engineering, 24(2):125–136, February 1998.

[3] Timothy K. Tsai and Ravishankar K. Iyer. Ftape: a fault injection tool to measure
fault tolerance. American Institute of Aeronautics and Astronautics, 1994.

[4] Gregor Wicklein. A Generic Fault Injection Framework for the Android OS. Tech-
nische Universität Darmstadt, Germany - Darmstadt, July 2012.

[5] EunJin Jeong, Namgoo Lee, Jinhan Kim, Duseok Kang, and Soonhoi Ha. Fifa: A
kernel-level fault injection framework for arm-based embedded linux system. 10th
IEEE International Conference on Software Testing, Verification and Validation,
pages 23–34, 2017.

[6] Nejmeddine Alimi, Mohsen Machhout, Younes Lahbib, and Rached Tourki. An rtos-
based fault injection simulator for embedded processors. International Journal of
Advanced Computer Science and Applications, 8(5):300–306, 2017.

[7] Andréas Johansson. Robustness Evaluation of Operating Systems. Technische Uni-
versität Darmstadt, Germany - Darmstadt, January 2008.

[8] Claus Grupen. Astroparticle physics. Springer, Germany - Siegen, 2005.

[9] Luca Sterpone. Electronics System Design Techniques for Safety Critical Applica-
tions. Springer, Italy - Torino, 2008.

[10] Jean Arlat, Yves Crouzet, Johan Karlsson, Peter Folkesson, Emmerich Fuchs, and
Günther H. Leber. Comparison of physical and software-implemented fault injection
techniques. IEEE Transactions on Computers, 52(9):1115–1133, September 2003.

[11] P. Rech, A. Bosio, P. Girard, S. Pravossoudovitch, A. Virazel, and L. Dilillo. A
memory fault simulator for radiation-induced effects in srams. IEEE Asian Test
Symposium, pages 100–105, 2010.

[12] Richard Barry. Using the FreeRTOS real time kernel. FreeRTOS, www.freertos.org,
2009.

[13] EEMBC. Autobench - Software benchmark data book. EEMBC, www.eembc.org,
2015.

133

	Acknowledgments
	Abstract
	Introduction
	Motivation
	State of the art
	Structure of the thesis
	Hardware and software used

	Physics of Single Event Effects
	Introduction
	Cosmic rays
	SEE Classification
	Destructive SEE
	Non-destructive SEE

	Fault injection
	Dependability
	Attributes
	Threats
	Means

	Architecture of a fault injection system
	Injection technique
	Fault model choice
	Fault injection space
	Fault lists definition
	Communication

	Real-Time Operating Systems
	RTOS common features
	System Tick
	Scheduler
	Execution delay and timeouts

	FreeRTOS
	FreeRTOS properties
	FreeRTOS files
	FreeRTOS setup
	FreeRTOS data and structures
	FreeRTOS kernel
	FreeRTOS mutexes

	Fault Injection Environment
	Specifications
	Overview
	Hardware
	Operations

	Host-side FIEmon.py script
	Single injection mode (SIJ)
	Normal injection mode (INJ)
	Fine injection mode (DEP)
	Random injection mode (RAD)

	DUT-side FIEbrd system
	FreeRTOS code modification

	Experimental environment
	Classes of misbehaviors
	Definitions
	Fault lists

	Host-side FIEparser.py script
	Parsing algorithm

	Benchmarks under test
	a2time - Angle to time conversion
	aifftr - Fast Fourier Transform
	aifirf - Finite Impulse Response filter
	aiifft - Inverse Fast Fourier Transform
	bitmnp - Bit manipulation
	idctrn - Inverse Discrete Cosine Transform
	iirflt - Infinite Impulse Response filter
	matrix - Matrix arithmetic
	pntrch - Pointer chasing
	puwmod - Pulse Width Modulation
	rspeed - Road speed calculation
	tblook - Table lookup and interpolation
	ttsprk - Tooth to spark algorithm

	Experimental results
	Experiments summary
	List 1 - Global FreeRTOS variables
	Bits 0-7 injection results
	MSB injection results

	List 2 - Current task TCB
	Bits 0-7 injection results
	MSB injection results

	List 2 - Ready task TCB
	Bits 0-7 injection results
	MSB injection results

	List 3 - Ready tasks list
	Bits 0-7 injection results
	MSB injection results

	List 3 - Delayed tasks list
	Bits 0-7 injection results
	MSB injection results

	List 4 - Mutex
	Bits 0-7 injection results
	MSB injection results

	Consistency dependence on tolerance

	Conclusions
	Summary
	RTOS hardening
	Future improvements

	Appendices
	Mutex take and give algorithm
	Mutex take operation pseudocode
	Mutex give operation pseudocode

	FIEmon.py detailed algorithm
	FIEparser.py detailed algorithm
	Bibliography

		Politecnico di Torino
	2018-10-11T12:10:20+0000
	Politecnico di Torino
	Maurizio Rebaudengo
	S

