
 

 

POLITECNICO  DI  TORINO 

Master’s  degree  course  in  Electronic  Engineering 

Master’s  Degree  Thesis 

Studying and developing  

  a monitoring system for urban sustainability 

  
Supervisor 

Prof. Maurizio Rebaudengo 

Prof. Bartolomeo Montrucchio 

Candidate 

Mingyang Zhang 

September 2018  



Acknowledgment 

1 

 

 

 

Acknowledgment 

I want to dedicate this work to my wife, for supporting me all the time. 

Thanks to Prof. Maurizio Rebaudengo and Prof. Bartolomeo Montrucchio, who gave 

me this opportunity and taught me a lot of things. I have been able to deepen my 

knowledge of sensors, Linux programming, data visualization in this project. 

Thanks to Edoardo Giusto and Mohammad Vakili, who helped me a lot during this 

thesis. It was a fantastic experience and I have grown up a lot and learned a lot working 

with both of you during last months. 

  



Contents 

2 

 

Contents 

 

Introduction .............................................................................................................. 4 

Chapter 1 IoT ....................................................................................................... 6 

1.1 Wireless Sensor Networks ...................................................................... 8 

1.1.1 Applications of WSN ..................................................................... 9 

1.1 Operating Systems used in IoT ............................................................. 10 

1.1.2 TinyOS ......................................................................................... 12 

1.1.3 Contiki .......................................................................................... 13 

1.1.4 μC/OS-II ....................................................................................... 14 

1.1.5 Linux on embedded systems ........................................................ 15 

Chapter 2 Air Pollution Monitoring ................................................................... 18 

2.1 Air pollution .......................................................................................... 18 

2.1.1 Air Pollution in China .................................................................. 20 

2.1.2 Air Pollution in Europe ................................................................ 21 

2.2 Available Air Pollution Monitoring Platforms ...................................... 22 

2.1.3 Libelium ....................................................................................... 22 

2.1.4 uRADMonitor .............................................................................. 25 

Chapter 3 Design and Development .................................................................. 27 

3.1 Design of System Architecture ............................................................. 27 



 

3 

 

3.2 Hardware ............................................................................................... 29 

3.2.1 Sensors ......................................................................................... 30 

3.2.2 Boards........................................................................................... 34 

3.2.3 Casing ........................................................................................... 38 

3.3 Software ................................................................................................ 39 

3.3.1 Raspberry Pi side .......................................................................... 41 

3.3.2 Server side .................................................................................... 47 

3.3.3 Visualization interface .................................................................. 52 

Chapter 4 Experimental Data Analysis .............................................................. 55 

4.1 Correlation Analysis of PM Sensors ..................................................... 55 

4.2 Test of other sensors .............................................................................. 58 

Chapter 5 Future Work ....................................................................................... 60 

Chapter 6 Conclusion ......................................................................................... 62 

Bibliography ........................................................................................................... 64 

 

 

 



 

4 

 

 

Introduction 

With the development of industrialization and urbanization in contemporary society, 

the air pollution is getting more and more serious. So there is an urgent need to develop 

a set of scalable, easy-to-maintain, safe and secure air pollution monitoring system that 

can be in real time. Currently, there are two main methods for monitoring urban air 

pollution:  

1) Traditional manual sampling with the analytical methods used in laboratories;  

2) Automated air environment monitoring systems using equipment with online 

monitoring abilities.  

The first method takes a long time to sample and is susceptible to human activities. 

Moreover, a high concentration of harmful gases may harm the workers at the scene.  

This article uses the wireless sensor networks(WSN) for air pollution monitoring. 

The monitoring system can well solve the problems of the above methods. Wireless 

sensor network has the following advantages in the field of air pollution monitoring:  

1) Simple deployment, flexible, monitoring nodes are mobile; 

2) Robust;  

3)Easy to operate and maintain, new sensor nodes can be automatically added to the 

monitoring system. 



 

5 

 

This thesis proposes an air pollution monitoring system based on WSN. Moreover, 

it explains in detail the system architecture, software and hardware design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IoT 

6 

 

 

 

 

 

 

 

 

Chapter 1  IoT 

"Internet of Things" refers to a huge network formed by the combination of internet 

and various information sensing devices, such as radio frequency identification (RFID) 

devices, infrared sensors, global positioning systems, laser scanners. Its purpose is to 

make all items connected to the network. The systems can be automatically, in real-time 

identify, locate, track, monitor, and trigger events of things. "Internet of Things" is another 

revolution of the world information industry followed by computers, the Internet and 

mobile communication networks. 

The concept of "Internet of Things" broke the traditional idea which has always been 

the separation of physical infrastructures and IT infrastructures: on the one hand, there 

are airports, roads and buildings, on the other hand, there are data centers and personal 

computers. In the "Internet of Things" era, reinforced concrete, cables will be integrated 

into a unified infrastructure with chips and broadband.  



IoT 

7 

 

The concept of "Internet of Things" was introduced in 1999. Its definition was 

straightforward: connect all items with the Internet by using information sensing devices 

such as RF identification for intelligent identification and management. That is to say that 

the Internet of Things is a new technology that connects various sensors and the existing 

Internet. 

If we had computers that knew everything there was to know about things—using 

data they gathered without any help from us—we would be able to track and count 

everything, and significantly reduce waste, loss, and cost.1  In 2005, the International 

Telecommunication Union (ITU) released the "ITU Internet Report 2005: Internet of 

Things". The report points out that the ubiquitous Internet communication era is coming. 

Information about all objects in the world, from tires, toothbrushes, homes to paper towels, 

can be actively transmitted through the Internet. Radio Frequency Identification (RFID), 

sensor technology, nanotechnology, intelligent embedded technology will be used in a 

wider range of applications. 

 

Figure 1.1: Introducing a new dimension to the telecommunication environment2 



IoT 

8 

 

The world’s first international IoT conference was held in Zurich in March 2008. It 

was called "Internet of Things 2008" explores how the new concept of "Internet of 

Things" and new technologies can advance the "Internet of Things" to the next stage of 

development. After Barack Obama became the US president, he held a "Round Table" 

meeting with American business leaders. As one of the only two representatives, the CEO 

of IBM, Samuel Palmisano first proposed the concept of "smart planet." He suggested the 

new government should invest in a new generation of smart infrastructure. He also 

clarified its short-term and long-term benefits. Barack Obama gave a positive response to 

this: "The stimulus funds will be invested in emerging technologies such as broadband 

networks. There is no doubt that this is the opportunity of the United States to maintain 

and regain a competitive advantage in the 21st century." Once this concept was put 

forward, it attracted high attention in the United States. Moreover, even some analysts 

believe that IBM’s concept may become the US national strategy and cause a worldwide 

sensation. 

1.1 Wireless Sensor Networks 

The IoT presents itself practically as a set of Wireless Sensor Networks (WSNs). 

A wireless sensor network (WSN) is a network formed by a large number of sensor 

nodes where each node is equipped with a sensor to detect physical phenomena such as 

light, heat, pressure, etc.3 It is related to the development of the economic development 

and the security because of its characteristics of flexible networking. The Internet of 



IoT 

9 

 

Things is through a variety of sensors on the object and the wireless network of them, in 

the end, perceives the entire material world. 

The essential components of a sensor network node include the following basic units: 

sensing unit (sensor(s) and analog to digital converter(s)), processing unit (CPU, memory, 

embedded operating system), the communication unit (wireless communication modules) 

and power supply. Also, other functional units that can also be included: a positioning 

system, a mobile system, and a self-powered power supply system, etc. In a sensor 

network, nodes can be deployed in large quantities using aircraft deployment or manual 

laying. It is planted inside or near the object to be perceived. These nodes form a wireless 

network by self-organizing, and perceive, collect, and process the information in the 

network coverage area in a collaborative way in real-time. Then the data is transferred to 

the remote control management center. On the other hand, the remote management center 

can also control and manipulate the network nodes in real time. 

1.1.1 Applications of WSN 

With the IoT industry growing faster and faster, research of WSN is quite popular 

in universities and institutions. As it is shown in Figure 1.1, the number of installed 

sensors is growing rapidly. So the WSN research is quite commercially valuable with 

this growing market. Currently, WSN technology research for the Internet of Things 

includes the following aspects: 

1) Advanced testing technology and networked measurement and control; 

2) Research on intelligent sensor network node; 



IoT 

10 

 

3) Research on sensor network organization structure and underlying protocol; 

4) Detection and control of the sensor network itself; 

5) Security of the sensor network. 

 

Figure 1.2: Global installed industrial wireless sensing points3 

1.2 Operating Systems used in IoT 

For good portability, ease of development and maintenance, an operating system is 

needed for the WSN. An operating system not only can help developers control the 

hardware, manipulate with interrupts and scheduled tasks, but also provides universal 

functions like APIs, GUIs, network protocols and so on.  

For a WSN, the operating system should have the following characteristics:  

 Lite, low-power. This is because the power energy, communication 

capability and the computing capacity of the sensor node are limited. The 

sensor is battery powered and has limited energy, so energy efficient design 

is critical. Wireless sensor network usually transmits data in a "multi-hop" 

manner with a communication range of only a few tens of meters. A sensor 



IoT 

11 

 

node has a limit of memory, computing capabilities due to size, cost, and 

energy. These constraints require the operating system not only to be small, 

have the ability to run under limited resources, but also to save energy when 

dealing with data processing and data communication. 

 Reconfigurable, robust, and fault-tolerant. This is because the number of 

sensor nodes can reach several million and the network often has new nodes 

joining or existing nodes failing. This feature of WSN requires the sensor 

node operating system to have reconfigurability and adaptability, high 

robustness and fault tolerance. When the network topology changes, the 

operating system must be able to respond to this change and actively update 

itself when needed. 

 Good portability. Different sensor network applications are concerned with 

different physical quantities, so the requirements for the electronic system 

can be quite different. Hence, the development of the hardware platform, 

software system, and network protocol can be very different. This difficulty 

requires the operating system to have good portability, to work under a 

variety of hardware platforms, and to provide a variety of different functions 

to meet actual needs. 

 Modular. The trend of wireless sensor network design is not to make a unique 

platform for a specific application. With the widespread use of wireless 

sensor networks, the changes in node composition are enormous. On a 



IoT 

12 

 

specific hardware platform, it is critical to quickly and conveniently combine 

software modules to implement applications according to different scenarios. 

1.2.1 TinyOS 

TinyOS is an open source micro operating system developed by UC Berkeley. It is 

designed for wireless sensor networks and currently dominates the wireless sensor 

network operating system field. Its component-based architecture enables it to implement 

a variety of applications quickly. Moreover, its component libraries include network 

protocols, distributed services, sensor drivers, and data acquisition tools. A complete 

application system is made up of these libraries. Unused components will not be 

introduced, thus reducing the memory requirements. TinyOS uses an event-driven model 

that handles high-concurrency events in a small space and saves energy because the CPU 

does not need to look for events of interest actively. 

At present, TinyOS can run on many hardware platforms. The hardware platforms 

that exposes schematics on the TinyOS website are Telos (Rev A) and Telos (Rev B), 

Mica2 Dot, Mica2, Mica. There are also some commercial and non-commercial 

organizations which also have some hardware platforms to run TinyOS. TinyOS is also 

widely used in practical projects, and dozens of projects using TinyOS are listed on its 

official website and are continually being updated. 

The researchers from UC Berkeley present four broad requirements which 

motivate the design of TinyOS:4 



IoT 

13 

 

 Limited resources: due to the goals of small size, low cost, and low power 

consumption of sensor nodes. 

 Reactive Concurrency: concurrent tasks are needed to be dealt with on the 

sensor node, it requires an approach to concurrency management that reduces 

potential bugs while respecting resource and timing constraints. 

 Flexibility: The variation in hardware and applications and the rate of 

innovation requires a flexible OS that is both application-specific to reduce 

space and power, and independent of the boundary between hardware and 

software. 

 Low Power: Demands of size and cost, as well as untethered operation 

make low-power operation a key goal of mote design. 

1.2.2 Contiki 

Contiki is a multi-tasking operating system developed by Adam Dunkels from the 

Swedish Computer Science Research Institute, for embedded systems such as network 

sensor nodes with minimal memory resources. Contiki is written entirely in C language, 

and the source code is open. It supports network interconnection, is highly portable, and 

has a tiny amount of code. It supports embedded systems from 8-bit microcontrollers to 

old-fashioned 8-bit home computers. Since its launch in May 2003, Contiki has been 

ported to 20 hardware platforms of different types.  

Contiki provides a simple event-driven kernel that supports prototyping processes 

and optional preemptive multitasking. It delivers messages for inter-task communication, 



IoT 

14 

 

has a dynamic process structure, and supports loading and unloading programs. Using 

uIP to implement the native TCP/IP protocol, one can implements a graphical interface 

system on directly connected terminals and terminals connected through a network. At 

present, a basic system of Contiki (supporting multitasking, network and graphical 

interface) has a compiled code size of 32K, and a system that fully supports the Web 

server, Web browser, and other functions have a compiled code size of about 64K. The 

smallest system currently running Contiki has only 2K RAM, which runs the basic system, 

web server, virtual network computer server, and a small virtual desktop. 

1.2.3 μC/OS-II 

The μC/OS-II operating system is a free embedded operating system with excellent 

performance, open source code, and wide application. In July 2002, μC/OS-II received 

the US Federal Aviation Administration's certification for commercial aircraft in 

compliance with the RTCA DO-178B standard. It is a compact, real-time operating 

system with a deprived real-time kernel. The kernel provides tasks such as task scheduling 

and management, time management, synchronization and communication between tasks, 

memory management, and interrupt services. It is portable, scalable, configurable, and 

stable. 

μC/OS-II allows defining several functions in C, each of which can execute as an 

independent thread or task. Each task runs at a different priority and runs as if it owns the 

CPU. Higher priority tasks can preempt lower priority tasks at any time. Higher priority 

tasks use the operating system (OS) services (such as a delay or event) to allow lower 



IoT 

15 

 

priority tasks to execute. OS services are provided for managing tasks and memory, 

communicating between tasks, and timing. 5 

1.2.4 Linux on embedded systems 

It is a group of different operating systems based on the Linux kernel. They are used 

in embedded systems. As a real operating system (by the traditional definition), the most 

significant advantage of using embedded Linux is that its source code is open and follows 

the GPL. 

Also, embedded Linux inherits unlimited open source resources on the Internet and 

has the features of embedded operating systems at the same time. Embedded Linux has 

the features of free copyright fees, excellent performance, easy software porting, open 

code, many application software support, product development cycle short. New products 

can come on the market quickly because many open codes can be referenced and ported. 

As it is easy to develop and there is much code to take as a reference, we chose Linux 

as the operating system. Particularly in this project, we use the Arch Linux ARM, a 

lightweight and flexible Linux distribution for ARM computers. It has the following 

principles:6 

 Simplicity: It ships software as released by the original developers (upstream) 

with minimal distribution-specific (downstream) changes. 

 Modernity: Arch Linux strives to maintain the latest stable release versions 

of its software as long as systemic package breakage can be reasonably 

avoided. 



IoT 

16 

 

 Pragmatism: Evidence-based technical analysis and debate are what matter, 

not politics or popular opinion. 

 User centrality: The Arch Linux is targeted at the proficient GNU/Linux user, 

or anyone with a do-it-yourself attitude who is willing to read the 

documentation, and solve their problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IoT 

17 

 

  



Air Pollution Monitoring 

18 

 

 

 

 

 

Chapter 2 Air Pollution Monitoring 

2.1 Air pollution 

The so-called air pollution refers to the human or the nature discharging various 

pollutants into the atmosphere. Its content exceeds the affordability of the environment, 

which deteriorates the air quality and influences people's work, life, health, property, 

and ecological environment.  

Sources of pollution can be classified into natural sources and human-made 

sources. Natural pollution sources refer to places or areas where natural pollutants are 

emitted into the atmosphere, such as active volcanoes that emit dust, sulfur dioxide, and 

hydrogen sulfide. Human-made pollution sources can be classified according to 

different methods. According to the spatial distribution of pollution sources, they can be 

divided into point pollution sources, surface pollution sources and regional pollution 

sources. According to people's social activities, they can be divided into domestic 

pollution sources, industrial pollution sources, traffic pollution sources and so on. 



Air Pollution Monitoring 

19 

 

According to the form of existence, they can be divided into fixed pollution sources and 

mobile pollution sources. 

Particulates are a source of air pollution which is highly concerned nowadays. They 

are microscopic solid or liquid matter suspended in the atmosphere of Earth.7 

Researches in recent decades in the field of international environmental epidemiology 

have confirmed that long-term or short-term exposure to inhalable particulate matter 

(PM10), especially PM2.5, can lead to the increase of incidence of cardiopulmonary 

disease and mortality. The study of the relationship between national air pollution and 

mortality and morbidity in the United States shows that population mortality is related 

to the concentration of particulate matter before death.8 

 

Figure 2.1: The penetration of particulate in the respiratory system9 



Air Pollution Monitoring 

20 

 

2.1.1 Air Pollution in China 

Currently, China is the country with the most severe air pollution in the world. The 

fall of Beijing had initially been a good season with white clouds and blue sky. However, 

for many years, the sky in Beijing has always been grey and even smoggy. It is difficult 

to see the blue sky and white clouds in the daytime, and the stars are not seen at night. 

China has been struggling to rein in air pollution ever since the late 1990s after Beijing 

won the bid for the 2008 Olympics.10 At the beginning of winter in 2011, the number of 

smoggy days in Beijing was even higher than average years. The air quality monitoring 

report issued by the environmental monitoring department is very different from the 

experience of the public. The PM2.5 monitored by the US Embassy in Beijing indicates 

that the air pollution situation in Beijing has repeatedly reached the "serious health hazard 

level" and the "dangerous level." As a result, "PM2.5" quickly entered the public view 

and became a topic of widespread concern and discussion. Figure 2.2 shows an extremely 

PM2.5 polluted day in northeastern China. 



Air Pollution Monitoring 

21 

 

 

Figure 2.2: AQI in northeastern China on Sunday, November 8, 201511 

2.1.2 Air Pollution in Europe 

The situation is better in Europe. In Europe, emissions of many air pollutants have 

decreased substantially over the past decades, resulting in improved air quality across the 

region. However, air pollutant concentrations are still too high, and air quality problems 

persist.12 European Union has a high standard of air quality for its member countries. 

Even with this high standard, Italy is one of the countries with the most polluted air in 

Europe, as it is shown in Figure 2.3. Moreover, Italy is the country in the European Union 

with the record number of premature deaths concerning the normal life expectancy due 

to air pollution. The estimate refers to a report of the European Environment Agency 

(EEA): in 2012 Italy recorded 84,400 deaths of this type, out of a total of 491,000 at an 

EU level. 



Air Pollution Monitoring 

22 

 

 

Figure 2.3: ten worst European countries for PM2.5 pollution13 

 

2.2 Available Air Pollution Monitoring Platforms 

2.1.3 Libelium 

Libelium Waspmote is a leading commercial platform in this area. It is not only an 

air quality monitoring platform but a multifunctional platform. By using the "gases pro" 

module board, the developers can build an air pollution detecting system easily. 



Air Pollution Monitoring 

23 

 

 

Figure 2.4: Libelium Waspmote14 

Main characteristics of Libelium Waspmote: 

 Robust waterproof IP65 enclosure 

 Add or change a sensor probe in seconds 

 Solar powered external panel option 

 Radios available: 802.15.4, 868 MHz, 900 MHz, Wi-Fi, 4G, Sigfox and 

LoRaWAN 

 Over the air programming (OTAP) of multiple nodes at once (via Wi-Fi or 

4G radios) 

 Special holders and brackets ready for installation in street lights and 

building fronts 

 Graphical and intuitive interface Programming Cloud Service 

 Built-in, 3-axes accelerometer 



Air Pollution Monitoring 

24 

 

 External, contactless reset with a magnet 

 Optional industrial protocols: RS-232, RS-485, Modbus, CAN Bus 

 Optional GPS receiver 

 Optional External Battery Module 

 External SIM connector for the 4G models 

 Fully certified: CE (Europe), FCC (USA), IC (Canada), ANATEL (Brazil), 

RCM (Australia), PTCRB (USA, cellular connectivity), AT&T (USA, 

cellular connectivity) 

 

Figure 2.5: Libelium gases pro system15 



Air Pollution Monitoring 

25 

 

2.1.4 uRADMonitor 

uRADMonitor is another crucial player in the market of the air quality monitoring 

station. 

It can detect eight different gas and several radiations. In general, this project is 

similar to the aim of our project. The manufacturer offers people several different models 

which aim at different detecting parameters and also use different communication 

between stations and the backend server. Therefore, customers can choose the 

corresponding model(s) for their applications. 

Besides, they also provide a data management system which allows the customers 

to check all the collected data on a dashboard. This dashboard displays the parameters 

which the users want to check on a map with colors indicating number level for that 

gas/radiation.  

 

Figure 2.6: uRADMonitor Modules with different internet connections 

uRADMonitor has the ability to detect the following pollution: 

 Temperature 

 Pressure 

 Humidity 



Air Pollution Monitoring 

26 

 

 VOC 

 Noise 

 Formaldehyde 

 Carbon Dioxide 

 PM2.5 

 PM10 

 Radiation 

 

 

 

 

 

  



Design and Development 

27 

 

 

 

 

 

Chapter 3 Design and Development 

3.1 Design of System Architecture 

This project aims to build a system which is lost-cost, low-power, real-time, with 

good visualization interface by using a single board computer. Main substances to be 

sampled are: 

 Particulate matter 10 micrometres or less in diameter(PM10); 

 Particulate matter 2.5 micrometres or less in diameter(PM2.5); 

 Temperature; 

 Atmospheric pressure; 

 Relative humidity. 

 



Design and Development 

28 

 

 

Figure 3.1: System architecture 

The architecture of this system in Figure 3.2 is pretty simple. There is one single 

board computer (Raspberry Pi Zero W in this project) used as a medium between the 

sensor and the internet. This single board computer is connected to each sensor and 

samples data from them. Afterwards, the sampled data are sent to a remote server. The 

internet connection needed to execute the forwarding is provided by a hotspot network 

made by a smartphone in this case. Then the remote server will run an ad-hoc written 

software to parse the data and put them in a database designed for storing the data related 

all sensors. After that, a dashboard and graph composer, which is Grafana in this case16, 

will read data from the database and realize data visualization by making graphs, maps, 

etc. 

As we want to make a mobile platform for monitoring the air quality, some 

fundamental requirements of this platform should have the following characteristics: 



Design and Development 

29 

 

 Low-cost: it is crucial to choose components with a low budget in this very 

competitive industrial IoT market; 

 Low-power: since this platform will be battery-powered, battery life is crucial; 

 Portable: This means the size of the final product should be small. Otherwise, the 

mobile ability would be reduced; 

 Networkable: We can only monitor the data in real time if the internet is available 

for the platforms; 

 Sensor calibration: to ensure a reliable report of the atmospheric situation. 

3.2 Hardware 

Different sensors and boards were chosen to meet the design requirements of the 

platform. The final requirements of the hardware are: 

 Low-cost; 

 Precise and stable, to ensure a certified measurement; 

 WIFI / cellular data connection; 

 Linux kernel based system, ensuring high flexibility at the prototype stage; 

 Low energy consumption. 

The hardware part is divided into sensors and boards. For the particulate matter 

sensor, we chose HPMA115S0-XXX from Honeywell because it is laser-based (more 

precise than infrared ones) and easy to use (with an embedded MCU). We chose DHT22 

for temperature and relative humidity detection because it is low-cost, small, and low-

power.  



Design and Development 

30 

 

3.2.1 Sensors  

3.2.1.1 HPMA115S0-XXX - Particle Sensor 

The Honeywell HPM Series Particle sensor is a laser-based sensing element that 

uses the light scattering technique to detect and count particles within the concentration 

range of 0 µg/m³ to 1,000 µg/m³ in a very given atmosphere. A laser light source 

illuminates a particle as it is pulled through the detection chamber. As particles undergo 

the ray, the light source becomes obscured and is recorded on a light detector. The light 

is then analyzed and converted to an electrical signal to calculate concentrations in real 

time. The Honeywell particle sensing element provides data on the particle concentration 

for a given particle concentration range. 

 

Figure 3.3: HPMA115S0-XXX Particle Sensor 

In this sensor, there is a fan to make the particles to be testes pass through the system 

and an air inlet with a fence to filter out undesirable particles. 



Design and Development 

31 

 

 

Figure 3.4: the internal structure of the particle sensor 

Moreover, this sensor has an internal microcontroller, which uses UART (Universal 

Asynchronous Receiver Transmitter) to transfer data to external devices. 

The writing frequency on the serial port is about 1 Hz.  

3.2.1.2 AM2302(DHT22) -Temperature and Relative Humidity Sensor 

AM2302(DHT22) was chosen because it is a low-cost sensor with fairly precise 

measurement results. It applies exclusive digital-signal-collecting-technique and 

humidity sensing technology, assuring its reliability and stability. Its sensing elements are 

connected with an 8-bit single-chip computer. Every sensor of this model is temperature 

compensated and calibrated in accurate calibration chamber, and the calibration-

coefficient is saved in OTP memory. When the sensor is detecting, it will cite the 

coefficient from memory. Small size, low consumption and long transmission 



Design and Development 

32 

 

distance(100m) enable AM2302 to be suited to all kinds of harsh application occasions. 

Single-row packaged with four pins, making the connection very convenient. 

Technical Specification: 

- 3.3-5.5V DC Power supply 

-Output signal: digital signal via1-wire bus 

-Sensing element: Polymer humidity capacitor 

-Operating range: humidity 0~100 %RH; temperature -40~80 Celsius 

-Accuracy: humidity ±2 %RH(Max ±5 %RH); temperature ±0.5 Celsius 

-Resolution or sensitivity: humidity 0.1 %RH; temperature 0.1 Celsius 

-Repeatability: humidity ±1 %RH; temperature ±0.2 Celsius 

-Humidity hysteresis: ±0.3 %RH 

-Long-term Stability: ±0.5 %RH/year 

-Interchangeability: fully interchangeable 

 

Figure 3.5: AM2302 



Design and Development 

33 

 

 

3.2.1.3 BME280 -Temperature Humidity Pressure Sensor 

To fulfill the requirement of small-size, we have chosen BME280 as the pressure 

sensor. BME280 is an environmental sensor with temperature, barometric pressure, and 

humidity. This sensor is excellent for all sorts of weather/environmental sensing and can 

be used in both I2C and SPI. This precision sensor from Bosch is a low-cost sensing 

solution for measuring humidity with ±3% accuracy, barometric pressure with ±1 hPa 

absolute accuracy, and temperature with ±1.0°C accuracy. BME280 is the next-generation 

of sensors from Bosch and is the upgrade to the BMP085/BMP180/BMP183 - with a low 

altitude noise of 0.25m and the same fast conversion time. It has the same specifications, 

but developers can use either I2C or SPI. 

Key features: 

- Package 2.5 mm x 2.5 mm x 0.93 mm metal lid LGA 

- Digital interface I²C (up to 3.4 MHz) and SPI (3 and 4 wire, up to 10 MHz) 

- Supply voltage VDD main supply voltage range: 1.71 V to 3.6 V 

VDDIO interface voltage range: 1.2 V to 3.6 V 

- Current consumption 1.8 µA @ 1 Hz humidity and temperature 

2.8 µA @ 1 Hz pressure and temperature 

3.6 µA @ 1 Hz humidity, pressure, and temperature 

0.1 µA in sleep mode 

- Operating range -40~+85 °C, 0~100 % rel. humidity, 300~1100 hPa 



Design and Development 

34 

 

- Humidity sensor and pressure sensor can be independently enabled/disabled 

Key parameters for humidity sensor: 

- Response time 1 s 

- Accuracy tolerance ±3 % relative humidity 

- Hysteresis ±1% relative humidity 

Key parameters for pressure sensor: 

- RMS Noise 0.2 Pa, equivalent to 1.7 cm 

- Offset temperature coefficient ±1.5 Pa/K, equivalent to ±12.6 cm at 1 °C 

temperature change 

 

Figure 3.6: BME280 

 

 

3.2.2 Boards 

In this project, we use a single-board computer, Raspberry Pi Zero, and another RTC 

board DS3231 to keep track of time. 



Design and Development 

35 

 

3.2.2.1 Raspberry Pi Zero 

In the early stage of prototyping, we used Raspberry Pi model 3 as our single board 

computer. It has quad-core 1.2GHz Broadcom BCM2837 64bit CPU, which is pretty 

powerful for a single board computer, and 1GB of RAM on the board. It is also equipped 

with full-size HDMI, which is pretty handy during the development since we can use it 

to connect to an external monitor. 

However, after we finished the software, we found that the excellent performance of 

this board is redundant in this project. The system will become expensive and consume 

much power if we use this board, which is the opposite direction of the original intention. 

To fulfill the design requirements of low-cost and low-power, we dropped this board and 

moved to Raspberry Pi Zero W. 

The Raspberry Pi Zero W is a new small single-board computer from the Raspberry 

Pi Foundation from the UK. Its size is just 65mm × 30mm × 5mm, as small as a piece of 

gum. So it perfectly meets the requirements of miniaturization of this project. Launched 

at the end of February 2017, the Pi Zero W has all the functionality of the original Pi Zero, 

but comes with added connectivity, consisting of: 

 802.11 b/g/n wireless LAN 

 Bluetooth 4.1 

 Bluetooth Low Energy (BLE) 

Like the Pi Zero, it also has: 

 1GHz, single-core CPU 

 512MB RAM 



Design and Development 

36 

 

 Mini HDMI and USB On-The-Go ports 

 Micro USB power 

 HAT-compatible 40-pin header 

 Composite video and reset headers 

 CSI camera connector17 

 

Figure 3.7: Raspberry Pi Zero W 

3.2.2.2 DS3231 Real time clock 

The DS3231 is a low cost, high precision I2C real-time clock (RTC) with an 

integrated temperature-compensated crystal oscillator (TCXO) and crystal. The device 

includes a battery input that maintains accurate timing when the mains supply is 

disconnected. The integrated crystal oscillator increases the long-term accuracy of the 

device. 

The RTC saves seconds, minutes, hours, weeks, dates, months, and years. For 

months less than 31 days, the final days of the month will be automatically adjusted. It 



Design and Development 

37 

 

also corrects the days for the leap year. The working format of the clock can be 24 hours 

or a 12-hour format with AM/PM indication. Two configurable calendar alarms and a 

configurable square wave output are available. The address and data are transmitted 

serially via the I2C bidirectional bus. 

A precision, temperature-compensated voltage reference, and comparator circuit 

monitors the VCC status, detects power failures, provides a reset output, and 

automatically switches to the backup supply when necessary. In addition, the RST 

monitor pin can be used as a manual input to generate a reset of the microprocessor. 

 

Figure 3.8: DS3231 RTC 

Key characteristics: 

 Accuracy of ±2ppm from 0°C to +40°C 

 Accuracy is ±3.5ppm from -40°C to +85°C 

 Provide battery backup input for continuous timing 



Design and Development 

38 

 

 Range of working temperature: Commercial grade: 0°C to +70°C 

Industrial grade: -40°C to +85°C 

 Low power consumption 

 The real-time clock generates seconds, minutes, hours, weeks, dates, months, 

and years, and provides leap year compensation that is valid until 2100 

 Two calendar alarm clocks 

 Programmable square wave output 

 High speed (400kHz) I2C interface 

 Working at 3.3V 

 Digital temperature sensor output: ±3°C accuracy 

 Ageing correction register 

 RST output/button reset debounce input 

3.2.3 Casing 

For the implemented hardware system, we have designed and built a case using 3D 

printing, which is mainly designed for protecting the hardware from environmental noise 

(sunlight, water, etc.). The implemented sensing system is shown in Figure 3.9. 



Design and Development 

39 

 

 

Figure 3.9: one platform with case 

 

3.3 Software 

As the requirements of the project involved, some requirements for software have to 

be fulfilled to make the final product more acceptable by the market. They are: 

 The operating system should be lightweight (low-power); 

 The operating system and other software should be open-source or free to use 

(low-cost); 

 It is better to choose popular software or languages since it would be easier for 

prototyping; 

 Software for database and user interface should be able to deal with massive 

amount of data. 

As the final platform should be low-power, stable and networkable, it is also crucial 

to carefully choose an appropriate operating system and programming language(s). 



Design and Development 

40 

 

The Arch Linux ARM was chosen as the operating system for this platform because 

it is a clear Linux system without redundant packages and libraries. Using this lightweight 

OS further decreases the power consumption of the platform. 

C was chosen as the primary programming language for the communication between 

the board and sensors. There are several reasons for doing so: 

 Portable, it makes the possible transplant after prototyping easier; 

 High efficiency, compared with Python or other high-level languages, C is more 

efficient which helps to meet the low-power requirement; 

 Widely used, there are many reusable open-source projects written in C; 

 Stable, it is crucial to have the ability to operate continuously. 

After the design of the software structure to meet the requirements of the whole 

system, the software of this project is divided into 3 parts: 

1. On Raspberry Pi Zero, there are a series of scripts and a C program which 

configure the environment, synchronize data with the server, initialize the sensors, and 

reads data periodically. 

2. There are also two Python scripts running on a remote server. One Python script 

is for receiving data from boards and put them into a database where all the data are stored 

and ready to be read by users. Another Python script is for catching data of traffic flows 

in Turin from 5T (a website which provides services and innovation for mobility in Turin) 

and put them in a table of the database also waiting to be used. 



Design and Development 

41 

 

3. A visualization interface made with Grafana for users to check air pollution or 

traffic situation on a map. It makes a query from the database and shows them on a user-

friendly interface. 

3.3.1 Raspberry Pi side 

Software on Raspberry Pi is intended to get environment data and send them to the 

server periodically. For this purpose, we have designed a series of scripts which execute 

several different jobs. 

Since we have 12 boards in the test station, we cannot synchronize data files on all 

board with the server at the same time (because it requires a relatively higher network 

speed). So the first script we have on Raspberry Pi is called "crontab_select.sh" which is 

used to decide what the crontab jobs are for different boards. The algorithm of this script 

is shown in Figure 3.10. We number the 12 boards in the test station as "0, 1, 2, …, 10, 

11" and save this id of each board in a .txt file. In the script, we first read this number 

from the file and decide which crontab we want to use. 



Design and Development 

42 

 

 

Figure 3.10: algorithm of "crontab_select.sh" 

After executing "crontab_select.sh", the 12 boards are divided into 3 groups in which 

every 4 boards use the same crontab. For example, the content of "crontab_0" is shown 

in Figure 3.11. 

 

Figure 3.11: crontab_0 

In the crontab, there are several jobs after each reboot for setting up the environment 

and several scheduled jobs for pushing data to the server. The script "my_chmod.sh" grant 

execution permission to all the scripts in this project to avoid potential permission 



Design and Development 

43 

 

problems when executing any script. Then after 5 seconds of sleeping (to make sure that 

the system is ready), we regulate system clock and run the script "run.sh" which compiles 

(if it is needed) and executes the c program for reading data from the sensor and save 

them to CSV files. 

For the scheduled pushing, we assign different time for each group of boards to avoid 

the hotspot having too many devices connected at the same time. In this way, at set 

intervals, the script "until_doomsdayPUSH.sh " is executed for sending data to the server. 

There are 4 scripts executed in "until_doomsdayPUSH.sh".  

The first which is called "connect_update_time.sh" is intended to connect the board 

to an available hotspot and the algorithm of it is described in Figure 3.12. As it is shown, 

we use 3 hotspots for this test station in case of the failure of any single smartphone. The 

board will try these 3 hotspots one by one, and it will try to push again at next set time if 

all the hotspots are not available. 

The second script in " until_doomsdayPUSH.sh " is "my_mv.sh" which move all the 

ready-to-synchronize files to a folder waiting to be sent. After that is finished, the third 

script "my_rsync.sh" will call "rsync" (an open source utility that provides fast 

incremental file transfer18) to synchronize all the data files with a remote server. 

The last executed script is called "disconnect_wlan0.sh". This script will tell the 

board to disconnect from the hotspot. By doing this, the power consumption of the board 

is further decreased. 

 



Design and Development 

44 

 

 

Figure 3.12: algorithm of "connect_update_time.sh" 

Now let us further analyze the code running on the Raspberry Pi zero for getting and 

saving data from sensors.  

The PM sensors use UART (Universal Asynchronous Receiver Transmitter) to 

transfer data, but there is only 1 physical UART on the Raspberry Pi Zero W (one pin for 

TXD and another for RXD). Therefore, we must use a software UART. By using the 

library "pigpio" which is developed for Raspberry Pis to manipulate the GPIOs19 , 4 

GPIOs are taken as input ports for 4 software UARTs. 



Design and Development 

45 

 

The auto-send mode of this PM sensor is enabled by default after powered up. What 

Raspberry Pi needs to do is to read in the data from different pins and check them 

according to the data format given by the manufacturer. 

Besides, the relative humidity / temperature sensor AM2302 uses the 1-wire bus with 

a particular communication process (shown in Figure 3.13), so I have implemented a 

specific c program for communicating with it. Also, any GPIO could be used to do this 

job since it does not ask for a particular protocol. 

 

Figure 3.13: communication process of AM2302 

As for the sensor BME280, I have also written a code segment which is dedicated to 

reading data from it by using the I2C pins on Raspberry Pi. 



Design and Development 

46 

 

 

Figure 3.14: flowchart of code for sensors on Raspberry Pi Zero 

Now let us discuss the architecture of code for sensors. In this C program, I use one 

parent process to manage the infinite loop of reading data from child processes and write 

them to disk. And there are six child processes, each of which corresponds to a sensor. 

One child process can read from one sensor using a specified protocol. 

At first, the parent process initializes a pipe which is used for data transferring later. 

After doing that, it forks 6 child processes. Then the child processes start to do the work 

about the sensors. The parent process will also set up an alarm which rings every one 

minute. As it is shown in Figure 3.15, the parent process will make a check for the death 



Design and Development 

47 

 

of every child processes everytime this alarm rings. If any child process is reported as 

dead, the parent process should restart it immediately. 

 

Figure 3.15: flowchart of the alarm 

For the reading and saving, the parent enters an infinite loop in which it checks if 

any child has written something in the pipe. If yes, it should read and write it to a CSV 

file in a specified format. 

3.3.2 Server side 

The job of the server is to receive data from platforms or catch data from specified 

websites and display the data to users in a friendly interface.  

For displaying the data from 5T, the main problem is that the data provided by 5T 

are in XML format. It is not easy to directly insert them into the database or use them in 

the user interface. So a better solution would be parsing data in the XML file and insert 

them into a database which would provide the data to users later. The language chosen 

for doing so is Python because there are excellent parsers in modules for Python. 



Design and Development 

48 

 

I use a Python script to get data from the 5T website. In the code, it reads the data 

from an XML file given by 5t, parses them and put them into a database finally. 

Extensible Markup Language (XML) is a markup language that defines a set of rules 

for encoding documents in a format that is both human-readable and machine-readable.20 

In this Python script, I have used the "xml" package for processing XML data. By using 

the methods in it, this script can parse the data to Python objects and then call methods in 

package "mysql" in order to insert data into the database. 

The reason for choosing Python as the language for this job is that Python is widely 

used in many operating systems and there are many good modules ready to be used which 

makes the development much easier. 

Besides, the data from 5T includes the location information in the form of longitude 

and latitude. But in order to show it on the map later, it is necessary to convert them to 

geohash (because it is easier to use in Grafana). I have used another module called 

"Geohash" to do the conversion from longitude and latitude to a geohash number. 

Geohash is a public domain geocoding system invented by Gustavo Niemeyer, 

which encodes a geographic location into a short string of letters and digits. It is a 

hierarchical spatial data structure which subdivides space into buckets of grid shape, 

which is one of the many applications of what is known as a Z-order curve, and generally 

space-filling curves.21 



Design and Development 

49 

 

 

Figure 3.16: 5t data in the database on the server after parsing in Python 

As for the database, in this project, I have used MySQL as the database management 

system. The reason for choosing it is that MySQL is open-source and good at big data.  

For a massive amount of data, usually, we use a relational database management system 

(RDBMS) to store and manage them. It is called a relational database because all data is 

stored in different tables. The relationship between the tables is based on the primary key 

or other keys (called foreign keys). 

MySQL is a fast-to-use RDBMS that many businesses (regardless of size) use to 

build their own databases. MySQL was developed, operated and supported by a 

Swedish company, MySQL AB.  

There are 5 tables in the database "weather_station" (the database used to store all 

data related to sensor nodes). Their explanations are as follows: 

1. Table "MEASURE_TABLE" is used to store the measured data (numbers of 

PM2.5, temperature, etc.) with a timestamp. 

2. Table "SENSOR_TABLE" is used to store all the data related to each sensor 

(ID, kind, unit, etc.). 



Design and Development 

50 

 

3. Table "BOARD_TABLE" is filled with information for boards (IP, version of 

the software, etc.). 

4. Table "POSITION_TABLE" is filled with position information of each 

sensor (longitude, latitude, and latitude). 

The structure of this database is shown as the following figure. 

 

Figure 3.17: structure of weather station database 

In the figure of database structure, "PK" is the abbreviation for "primary key." The 

primary key is an attribute or group of attributes that uniquely identifies a row in a table. 

A table can only have one primary key but can have multiple candidate indexes. 

Primary keys often form a referential integrity constraint with foreign keys to prevent 

data inconsistencies. The primary key ensures that the data is unique.  



Design and Development 

51 

 

And "FK" is short for "foreign key." A foreign key is one or more columns used to 

establish and enforce a link between two tables. Foreign key constraints are mainly used 

to maintain the consistency of data between the two tables. In short, the foreign key of 

the table is the primary key of another table, and the foreign key links the two tables. In 

general, to delete a primary key in a table, you must first ensure that there are no foreign 

keys in any other table (that is, the primary key in the table does not have a foreign key 

associated with it). 

For implementing the database on the server, I have written a script in which a 

series of MySQL commands are included. A server administrator can easily create 

databases for this project by executing this script. A part of it is shown in Figure 3.18. 

 

Figure 3.18: script piece for creating the databases 



Design and Development 

52 

 

3.3.3 Visualization interface 

As the ultimate purpose of this project is monitoring the air pollution, it is critical to 

design and develop a good interface for monitoring.  

In this project, Grafana has been used as the visualization tool. In order to fulfill the 

requirements of the system, there are several reasons for choosing Grafana: 

 Grafana is an open source program(low-cost); 

 It is designed for visualizing large-scale measurement data; 

 It also supports main popular data sources such as Graphite, InfluxDB, 

OpenTSDB, Elasticsearch, MySQL and so on; 

 It is the leader in this area, so many resources are available. 

As it is shown in Figure 3.19, after the query and some computation, we can get 

some curves showing air quality parameters which update in real time. 



Design and Development 

53 

 

 

Figure 3.19: dashboard of real data displaying 

 

 

 

 

Figure 3.20: query example(PM2.5) in Grafana 



Design and Development 

54 

 

Except for the graphs, several panels have also been included in the dashboard in the 

form of maps. Especially for the traffic data from 5t, it is better to show them on a map 

because in this way users will have a direct perception of the data in real time. An example 

of the map is shown in Figure 3.21. 

 

Figure 3.21: traffic data in real time on maps 

 

 

 

 

 

 

 

 

 

 

  



Experimental Data Analysis 

55 

 

 

 

 

 

Chapter 4 Experimental Data Analysis 

4.1 Correlation Analysis of PM Sensors 

Since there are 4 PM sensors in this project, the data from different sensors may 

conflict with each other. We need to test the correlation between different sensors before 

we use any of them.  

 

Figure 4.1: PM10 over 20 days 



Experimental Data Analysis 

56 

 

Figure 4.1 shows the concentration-time curve of PM10 detected by all 4 sensors. 

We can see that there are some peaks may happen to be noise. So we decided to apply a 

median filter on the data. This median filter was applied in Matlab using the function 

medfilt1(). The results are shown in Figure 4.2. 

Figure 4.2: PM2.5 and PM10 concentration after median filtering 

With the median filter applied, we can compute the correlation between different 

sensors. In Matlab, there is also another function for that which is called 

"plotregression()." By using this function, we can get the linear regression factor for each 

couple of PM sensors used in this project. In Figure 4.3 the correlation between sensor1 

and sensor 2 in which we can see that they are highly correlated. 



Experimental Data Analysis 

57 

 

 

Figure 4.3: correlation between sensor 1 and sensor 2 

 

Table 4-1: PM2.5 correlation factors of sensor couples 

In addition, PM2.5 and PM10 correlation factors between of each couple of the 

sensors are shown in Table 4-1 and Table 4-2. All of the factors are high, which proves 

that the sensors are consistent with each other. 

 

Table 4-2: PM10 correlation factors of sensor couples 



Experimental Data Analysis 

58 

 

4.2 Test of other sensors 

For temperature and humidity, the case is more straightforward. Curves of samples 

are shown in Figure 4.4 which is also drawn in Matlab. 

 

Figure 4.4: temperature and humidity samples 

A piece of code to analyze the data in MATLAB is shown in Figure 4.5. 



Experimental Data Analysis 

59 

 

 

Figure 4.5: MATLAB script segment to process data 

 

 

 

 

 

 

 

 

 

 

 

 



Future Work 

60 

 

 

 

 

 

 

 

 

Chapter 5 Future Work 

It should be noted that in this project we have still several points to be improved in 

the future. 

First, we used a single board computer Raspberry Pi Zero W in this project which is 

more expensive and consumes more power than a traditional microcontroller used in IoT. 

So in the future, it is better if we transplant the software to a low-cost, low power 

microcontroller and design a PCB (which will also make the system more robust) for the 

new system. 

Secondly, we are using a hotspot made by a smartphone as the internet access point. 

In order to make a real IoT node, we need to add another network module in the system 

(another solution is to use the one inside Raspberry Pi Zero W).  

Now we are using a remote and local file synchronization tool called "rsync" to 

transmit data between Raspberry Pi and server. But this tool takes more time and 



Future Work 

61 

 

bandwidth compared with MQTT, a lightweight messaging protocol which is used for 

small sensors mobile devices all over the world.22 In order to achieve our goals for this 

system, we want to move to MQTT in the future. 

Another thing is that we now only merely display all the data from sensors. There 

are chances that some of them are corrupted. So we need to write some code running in 

the server to process the data before visualizing them. In this way, we can avoid showing 

wrong data to the users. 

Last but not least, we now have only a simple visualization interface for users who 

use PCs. As we all know, it is the mobile internet era now, so we need to write applications 

for mobile users in the future. 

  



Conclusion 

62 

 

 

 

Chapter 6 Conclusion 

This thesis is intended to propose a system which is designed to detect and monitor 

air pollution in modern cities. Motivations, ideas, architecture, and implementation of this 

project were explained in detail. 

Proper sensors, boards, and tools have been used in this project to build a system 

which meets the design requirements and constraints. 

The architecture of hardware and software is fundamental to the design of this air 

pollution sensing and monitoring system. What is equally important is the data 

visualization of each wireless sensor node in the grid. Hardware and software have been 

combined together in this project to serve the same goal. 

A data visualization interface has been designed for the system, which is able to map 

urban air pollution on a large scale in real time. 

The proposed system has been tested in real conditions by several experiments. Most 

requirements made in the design stage were met, and data analysis were done after the 

test. 

In the future, after more specifications added to the project, a better system will be 

built and used in real conditions. 



Conclusion 

63 

 

  



Bibliography 

64 

 

 

 

 

 

 

Bibliography 

1 ASHTON, Kevin. 2009. "That 'Internet of Things' Thing". RFID Journal. 

https://www.rfidjournal.com/articles/view?4986. 

2 International Telecommunication Union. 2005. "ITU Internet Reports 2005: The 

Internet of Things". Geneva. 

3Levis, Philip, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse, Alec 

Woo, David Gay, et al. 2005. “TinyOS: An Operating System for Wireless Sensor 

Networks.” Ambient Intelligence 8491: 115–48. https://doi.org/10.1007/3-540-27139-

2_7. 

4 Levis, Philip, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse, 

Alec Woo, David Gay, et al. 2005. “TinyOS: An Operating System for Wireless Sensor 

Networks.” Ambient Intelligence 8491: 115–48. https://doi.org/10.1007/3-540-27139-

2_7. 

 

 



Bibliography 

65 

 

 
5 "Micro-Controller Operating Systems". 2018. En.Wikipedia.Org. 

https://en.wikipedia.org/wiki/Micro-Controller_Operating_Systems. 

6 "Arch Linux - Archwiki". 2018. Wiki.Archlinux.Org. 

https://wiki.archlinux.org/index.php/Arch_Linux. 

7 "Particulates". 2018. En.Wikipedia.Org. 

https://en.wikipedia.org/wiki/Particulates#cite_note-3. 

8 Samet, Jonathan M., Francesca Dominici, Frank C. Curriero, Ivan Coursac, and Scott 

L. Zeger. 2000. "Fine Particulate Air Pollution And Mortality In 20 U.S. Cities, 1987–

1994". New England Journal Of Medicine 343 (24): 1742-1749. 

doi:10.1056/nejm200012143432401. 

9 "Silent Tears". 2018. Blog.Nus.Edu.Sg. http://blog.nus.edu.sg/silenttears/2017/09/. 

10 "Rooftop Sensors On U.S. Embassies Are Warning The World About ‘Crazy Bad’ Air 

Pollution". 2018. Science | AAAS. http://www.sciencemag.org/news/2018/04/rooftop-

sensors-us-embassies-are-warning-world-about-crazy-bad-air-pollution. 

11 "China May Have Recorded Worst Pollution Ever". 2018. That's Online. 

http://www.thatsmags.com/china/post/11560/shenyang-pollution-soars-to-record-high-

of-1-400. 

12 "Air Pollution". 2018. European Environment Agency. 

https://www.eea.europa.eu/themes/air/intro. 

13 "Europe Pollution 'Kills 467,000 A Year'". 2018. BBC News. 

https://www.bbc.com/news/world-europe-38078488. 

 



Bibliography 

66 

 

 
14 "Waspmote - Open Source Sensor Node For The Internet Of Things | Zigbee, Sigfox, 

Lorawan, 3G / 4G Compatible | Libelium". 2018. Libelium.Com. 

http://www.libelium.com/products/waspmote/. 

15 Libelium. n.d. “Smart Gases PRO.” Power, 1–42. www.libelium.com. 

16 "Grafana - Archwiki". 2018. Wiki.Archlinux.Org. 

https://wiki.archlinux.org/index.php/Grafana. 

17 "Raspberry Pi Zero W - Raspberry Pi". 2018. Raspberry Pi. 

https://www.raspberrypi.org/products/raspberry-pi-zero-w/. 

18 "Rsync". 2018. Rsync.Samba.Org. https://rsync.samba.org/. 

19 "Pigpio Library". 2018. Abyz.Me.Uk. http://abyz.me.uk/rpi/pigpio/. 

20 "XML". 2018. En.Wikipedia.Org. https://en.wikipedia.org/wiki/XML. 

21 "Geohash". 2018. En.Wikipedia.Org. https://en.wikipedia.org/wiki/Geohash. 

22 "MQTT". 2018. Mqtt.Org. http://mqtt.org/. 

 

 

 

 

 

 


		Politecnico di Torino
	2018-10-12T16:05:41+0000
	Politecnico di Torino
	Maurizio Rebaudengo
	S




