
POLITECNICO DI TORINO

Master of Science in Mechatronic Engineering

Master degree Thesis

Analysis and developement of a
semi-automatic assembly machine

Supervisors:
Luigi Mazza
Terenziano Raparelli

Candidate:
Luca Turtù

October 2018

Acknowledgments

Vorrei iniziare ringraziando la mia famiglia, in particolar modo i miei genitori.

Senza i vostri sforzi e sacrifici non sarei arrivato dove sono, quindi ci tengo a

ringraziarvi di cuore e a dirvi che questo risultato è sopratutto vostro e questa

tesi è a voi dedicata.

Vorrei poi ringraziare di cuore mio fratello Giorgio, che mi ha sempre sostenuto ed

aiutato, stimolandomi con la tenacia e la perseveranza che lo contraddistringuono.

Un ringraziamento speciale a Greta, la mia più grande forza, che mi ha aiutato e

sopratutto sopportato nei momenti in cui ne avevo più bisogno. Grazie per essermi

sempre stata vicina.

Come non ringraziare i miei amici, in primis Giovanni, che riesce sempre a capirmi

quando gli altri non riescono e che ormai considero più un fratello che un amico, e

Lorenzo, anche lui un amico come ce ne sono pochi, paziente e disposto a darti una

mano, anche a costo di rimetterci in prima persona.

Un ringraziamento anche a Mirco, Genny, Giulia, Luca, Gloria, Francesco, Melissa

e Arianna perchè siete degli amici eccezionali e spero che sarete l̀ı a sopportarmi

anche in futuro.

Ci tenevo poi a ringraziare tutti i miei ex compagni di liceo e di università, i miei

coinquilini, sia vecchi che nuovi, con cui ho passato delle bellissime esperienze ed

avventure, perciò un grazie va anche a Martino, Roberto, Paolo, Marco e Andrea.

Un grande ringraziamento va anche ai miei due relatori, sempre pronti a rispon-

dere ad ogni mio dubbio o perplessità, ed in particolar modo a Sandro e Alessio per

avermi accolto nella loro azienda come fossi uno di loro.

Infine volevo ringraziare Roberto, Carlo, Stefano, Andrea, Matteo e Quinto che mi

hanno seguito durante tutto il percorso, per avermi sopportato e aiutato a crescere.

Grazie a tutti!

I

Table of contents

Acknowledgments I

1 Introduction 1

1.1 Products assembled . 2

1.2 Unit description . 3

1.3 PLC Programming . 6

1.4 Program Blocks . 7

2 Hardware Configuration 10

2.1 Decentralized Systems . 10

2.2 Motors . 14

2.3 Robots . 18

2.4 Other Devices . 21

2.4.1 Press . 21

2.4.2 Measurement Instruments . 21

2.4.3 Laser and Dataman . 22

3 Operation 150 23

3.1 Dowel Pin Insertion . 23

3.1.1 Cycle Description . 28

3.1.2 Feeder Management . 31

3.2 Runout Test . 32

4 Operations 160 and 170 40

4.1 Operation 160 . 41

4.1.1 EOL Test . 41

4.1.1.1 Test cycle . 45

4.1.2 Leak Test . 48

4.2 Operation 170 . 51

II

5 Software Implementations 54

5.1 Safety Management . 54

5.2 Motors . 57

5.2.1 General Management . 58

5.2.2 Absolute and Relative Positioning 62

5.3 Robots Management . 64

5.3.1 General Function Block . 64

5.3.2 Robot Programming . 66

5.4 Piece and Pallet Identification . 73

5.4.1 Data Blocks Used . 73

5.4.2 Informations Transfer . 76

5.5 SCADA System . 81

6 Conclusions 89

Bibliography 91

III

List of tables

4.1 Viscosity Coefficient of Gases and Liquids. [13] 49

5.1 Pallet DB. 73

5.2 Process DB. 75

5.3 Configuration DB. 76

IV

List of figures

1.1 Layout of the last unit. 5

1.2 Ladder Diagram [5]. 6

2.1 ET 200SP - 7300AC1 configuration. 11

2.2 CPX-CP - Configuration. 13

2.3 Connection between valve manifolds/input modules and CPX-CP

system. 13

2.4 Drive - Status Word. 15

2.5 Drive - Control Word. 17

2.6 Robot - Input Addresses. 19

2.7 Robot - Output Addresses. 20

3.1 CPX-CP System - Zoom on Dowel Pin Block Valve and Module Input. 23

3.2 Kistler Press - Dowel Pin Insertion. 24

3.3 Indirect Command Signals . 27

3.4 Dowel Pin Feeder. 31

3.5 Circular Runout. [10] . 32

3.6 Concentricity. [10] . 33

3.7 Runout Station - Transducers. 34

3.8 TQM Data Block. 36

3.9 Runout Station. 37

3.10 Runout in polar (above) and cartesian coordinates (below). 39

4.1 EOL Test Stations. 43

4.2 Air Circuit EOL Test. 44

4.3 Leak Test Stations. 50

4.4 Laser Station. 52

5.1 Safey Doors Function. 55

5.2 FC8002 - Safey Doors Function compiled. 57

5.3 Transfer Motor Input and Output Data. 59

5.4 Motor Data Block - Input and Output data. 60

5.5 Drive - Operating Mode. 61

V

5.6 Target Position Transfer. 62

5.7 Motor Following Error. 63

5.8 Robot Function Block - Commands and Faults. 66

5.9 Pallet DB - Data Block Structure. 74

5.10 Pallet block - Reading the antenna. 77

5.11 Read Pallet Tag Function. 78

5.12 Supervision Layout. 85

5.13 Motor Parameters Settings. 86

5.14 Supervision - normal configuration above, test-skip configuration below 88

VI

Chapter 1

Introduction

Nowadays the assembly machines are widely used in the industries, since they reduce

the production time and human error, while increase the accuracy and repeatabil-

ity.

This thesis concerns, precisely, the analysis and development of the last part of

a semi-automatic machine, that assembles and then tests two different camshaft

phaser (intake and exhaust) for automotive applications. The line was completely

designed and built by OTS Assembly, which is a company that deals, precisely, with

the construction of prototypes of assembly machines.

The machine is a prototype of a pallettized assembly line, that means that the

various components assembled to form the piece are processed directly on the pallet

while this one moves along the line.

The pallet, in this case, is a rectangular part (250x200), designed to contain the

piece to be worked and any components to be inserted, moved by two parallel belts

running on aluminum profiles.

The machine produces two different pieces, that differ in functionalities, specifica-

tions, dimensions and especially for the operations they must undergo. Thus, two

different sets of 60 pallets are needed.

This means that there are 60 pallets moving along the line.

Since there are a lot of operations to do to assemble and test the products, to

better organize the work the machine has been divided in different units, each of

them grouping different operations to be applied. There are 7 units, for a total of 22

operations (11 for intake and 11 for exhaust) distributed among them, operations

that vary depending on the tipology selected.

1

1 – Introduction

Moreover the machine can work one tipology at a time, that must be specified be-

fore starting. This is because the assembly line requires mechanical retooling of the

various stations, in addiction to the changing of the pallet type.

The main purpose was, first of all, programming, and subsequently control, all the

devices present in the last unit, such as robots, drives, measurement instruments,

sensors, actuators and so on, so that it is possible to create operating cycles of the

stations that have to process the pieces. All these devices are managed by a fail-safe

PLC Siemens 1500F (CPU 1517F-3 PN/DP), that is a controller that implements

machine safety in addition to managing the normal operations of the machine itself.

Then creating a supervision program to allow the operator that uses the machine

to be able to interface with it.

1.1 Products assembled

The assembly line produces cam phasers, both exhaust and intake, which are used

to adjust hydraulically the position respectively of the exhaust and intake camshafts

while the engine is operating.

The cam lobes on the camshafts are meant to control the timing of the opening

(or closing) of the poppet valves and therefore the timing and quantity of air in-

serted into the engine or the gases exhausted from the engine: the entire cam can

be rotated clockwise or counterclockwise in relation to the crankshaft position to

make the poppet valves open sooner or later in the piston stroke.

The main benefits attainable by using such device can be related to [2]:

• reduced pumped work, due to the possibility to avoid throttling, managing

the intake air quantity directly through the intake valve opening duration,

timing and maximum lift

• air motion control, thanks to a Late Intake Valve Opening (the intake flow

velocity is higher since the piston velocity is higher)

• volumetric efficiency optimization, taking advantage of fluid mass inertia

2

1 – Introduction

by means of Late Intake Valve Closing, Early Exhaust Valve Opening and

increased valve overlap.

This usually brings to an increase of maximum torque (the increased volumet-

ric efficiency can be considered as “natural supercharging”). These strategies

are effective at medium-high engine speed

The cam phasers have two main elements, a stator and a rotor.

The stator is composed of a sprocket (or housing) fastened between an inner plate

and an outer plate. The outer plate is directly bolted to the camshaft, so that a

chain (directly hooked to the sprocket) transmit motion from the crankshaft to the

camshaft.

The rotor, instead, positioned inside the stator, is connected to the camshaft using

a dowel pin and they can move independently thanks to a backlash, in general set

to be about 20 ◦.

Thus the rotor is responsible of driving the camshaft.

1.2 Unit description

Each unit has been considered as a machine of its own, that can work regardless of

the others, as long as no emergency occurs.

There are safety guards to protect the operator, that are used to open safety relays

in case one of them opens. If this happens, the entire line does not stop, but only

the unit in which one of these opens.

When a safety guard is opened, the air is discharged, so everything powered by pres-

surized air fails. When the guard is closed, the machine needs a ‘restart’ command

to come back working again, done by pressing the special restart button on the unit

pushbutton.

The same thing happens when other critical situations happen, for instance when a

circuit breaker present in the cabinet of the unit opens. When one of the emergency

buttons along all the line is pressed or for instance a circuit braker inside the gen-

eral cabinet opens, instead, all the assembly line stops. To restore the emergency it

is necessary to release the red emergency buttons pressed or close back the circuit

3

1 – Introduction

breaker and then to press a ‘master start’ button, that is present only at the begin-

ning of the line on the general pushbutton.

Moreover, each unit has its own operation to be performed. For what concerns

the last unit, showed in (Fig 1.1) there are three operations, which can be different

or common depending on whether they have to be applied to an intake piece, an

exhaust one, or both, and that will be explained in details in the following chapters.

Two robots are present. Each of them has two ad hoc grippers designed to permit

a form-fit pick, in order to have a reduced cycle time.

The robots are supposed to pick the piece directly from the pallet and place it under

the station where it must be worked, and vice-versa, once the station finished, to

put it back on the pallet.

• OP. 150

The first operation is different for the two products.

– EXHAUST: a press inserts a dowel pin into the exhaust cam phaser,

whose function is to connect the rotor of the cam phaser directly to the

camshaft

– INTAKE: a Runout measurement is performed to check how much one

entire feature or surface varies with respect to a datum when the part is

rotated 360 ◦ around the datum axis.

There are two stations, that cannot run simultaneously though, since the

software used (ITAGEO 6 from TQMitaca) can manage only one at a

time.

• OP. 160

This operation is common to both products and consists of two tests.

– The first one is a End-Of-Line (EOL) test for Automotive Applications

that checks the effective functionality of the finished product by simulat-

ing some relevant working conditions and measuring the responses.

– The second one is a Leak Test. As the word says, this test is meant to

check that there are no fluid-losses.

4

1 – Introduction

In this case, instead, there are respectively 2 stations for the EOL test

and 4 for the Leak test, that can work simultaneously, given the lenght

of the operations.

• OP.170

Also this one is common to both and consists of marking the good products

coming out of the tests with a laser, while rejecting the bad ones.

Before starting with the description of the operations, it is important to illustrate

what components are present in the unit and how they have been configured inside

the SIEMENS TIA Portal, an environment for creating the program running the

assembly line.

Figure 1.1: Layout of the last unit.

5

1 – Introduction

1.3 PLC Programming

The entire machine is controlled by a programmable logic controller (PLC), that is

a real-time system optimized for use in severe conditions such as high/low temper-

atures or an environment with excessive electrical noise. This control technology is

designed to have multiple interfaces (I/Os) to connect and control multiple mecha-

tronic devices such as sensors and actuators. [3]

This programmable logic controller is programmed through specific program lan-

guages, that can be both graphical and textual, depending on the application.

Between the graphical languages, one of the most known is the so called Ladder

diagram.

This particular programming way makes use of a particular logic that is similar to

relay schematic circuits.

Figure 1.2: Ladder Diagram [5].

The fundamental elements of a ladder are the so called “Contacts” and “Coils”,

that are often associate with the inputs and outputs.

An important observation to make is that contacts can be tied either to inputs or

outputs, while coil are generally associated to outputs.

The two vertical lines are the so called contacts, while the circles represent the coils.

Depending on the way the contacts are opened or closed, the power can flow from

6

1 – Introduction

the hot rail (left) to power the coils, and finally to the neutral rail.

Power flows through these contacts when they are closed and this depends on the

contact type, that can be:

• Normally Open (NO): this contact is closed when the input or output (associ-

ated to it) status bit is 1. A graphical example is represented by the A contact

in Fig. 1.2

• Normally Closed (NC): this contact is closed, instead, when the input or out-

put status bit is 0. A graphicl example is the B contact in the picture.

Moreover, contacts can be also associated to timers and counters to perform partic-

ular operations. An example of how timers can be implements is showed in chapter

3 (3.1).

Siemens has implemented its own Ladder, called KOP and that will be present

later on, since largely used and that implements other functionalities.

Two others languages worth being briefly explained, that are Instruction List

and Structured Text and that are part of the Textual languages.

The first one is similar to assembly and it’s a low programming language, while the

second is more similar to modern programming language and it’s a high program-

ming language.

Also in this case Siemens implemented its own languages, that are rispectively AWL

and SCL, that have both been used and explained later on.

1.4 Program Blocks

Program blocks are the instruments necessary for programming any kind of software

for the Siemens PLC used.

They can be of different types:

• Data block is a particular block that permits to save program variables and

data

7

1 – Introduction

• Function Block which is a code block that can store values directly inside

its own instance data block

• Function is a code block or a subroutin but without a dedicated memory

Several DBs are necessary to store informations. In particular there are some of

them necessary exclusively to exchange informations with the outside.

They can be Optimized or not, depending on the use they have to perform: if they

are optimized, each DB element present on it has a simbolic address, that is adjusted

automatically if other elements are added, so it is not possible to point it directly

with an address. This is not always a good solution, especially for those situations

in which it is important to know which address to point, where non Optimized DBs

are used.

To create a DB it is only necessary to specify a name and a number, that must be

univocal.

An example can be the DB intended for storing informations coming by the motor

(or to send to the motor), for the TQM software, or for other applications.

Through a SCADA system, implemented in Visual Basic (see 5.5), it is possi-

ble to control, for example, the position of the motors or the actuators, feedbacks of

the alarms and to pass whatsoever information necessary for the operator to use the

machine, such as the number of products to produce, the type of piece, particular

parameters for the tests and so on.

This supervision program can read and write determinated data blocks created in-

side the PLC.

These DBs are only used to exchange informations, that are then passed to other

DBs specific for the device that are necessary for the implementation of the PLC

software.

The informations sent to those DBs are then passed to other DBs, specific for the

device to be controlled to store particular data to be passed to them or received by

them, such as input and output data.

Infact, especially for the output signals, direct commands are not used, both because

it is possible that the command remains set and because the same output can be

used in different situations.

8

1 – Introduction

For example it is possible to command an actuator in automatic mode, during the

normal operation of the machine, or in manual mode, for example during calibration

operations.

Both these commands are passed through the same signal output, so it is necessary

to distinguish between the two situations.

There are also other blocks to be added into the list, for instance the Program

Block, which is is the main block of the program, used only once and called cycli-

cally. Moreover, in a similar way to any other programming language, it is also

possible to recall functions within other functions or function blocks.

Infact, the Porgram Block, mentioned before, contains other sub-mains program,

one for each unit, which, in turn, contain functions to check and control all the

sensors or processes.

9

Chapter 2

Hardware Configuration

First of all it was necessary to specify the controller used, that is a SIMATIC

S7-1500 with a fail-safe CPU 1517F-3 PN/DP. This means that one CPU im-

plements machine safety (through emergency buttons, safety guards and so on) in

addition to managing the normal operations of the machine itself.

Given the dimensions of the assembly line, the inputs/outputs can be very far apart

from the CPU. To avoid wiring problems several SIMATIC ET 200SP nodes and

FESTO CPX-CP systems have been used.

ET 200SP is a multi-functional distributed I/O system that comprises an inter-

face module to communicate with the CPU via PROFINET, up to 64 I/O modules

plugged into passive base units and a server module, which completes the structure

[6].

Also the CPX-CP is a distributed I/O system that communicates via PROFINET

with the CPU. The difference is in the communication with the modules connected

to it, that takes place through another fieldbus instead (Ethernet Powerlink). This

system is responsibile for controlling actuators and sensors.

In the next section of this chapter it is described how these distributed I/O sys-

tems have been configured inside the TIA Portal development environment and

how they interact with the other elements present in the line so that the PLC can

communicate with them all.

2.1 Decentralized Systems

First of all it is important to specify that, to make the PLC communicate with every

device in its network, a GSD file is required. A GSD (General Station Description)

10

2 – Hardware Configuration

file contains all the informations necessary to describe a device, such as the commu-

nications oprions and the available diagnostic. The communication takes place via

PROFINET, that is an industrial Ethernet, so every device must have its own IP

address, to be uniquely identified, as well as a name.

Once chosen the appropriate GSD, to the ET 200SP has been given an IP address

and the name 7300AC1. In the next figure(Fig 2.1) is represented in details how

this system is composed.

Figure 2.1: ET 200SP - 7300AC1 configuration.

To each module in the figure has been assigned a starting Input/Output Address,

so that each signal managed by its own module can be associated to a particular

subaddress, in order to be used to command outputs or to receive input feedbacks.

Module 0 is the interface module that communicates directly with the CPU, as

mentioned before, while module 19, is the server module, a mechanical/electrical

device that closes off the backplane bus of the ET 200SP.

All the other elements present are I/O interface modules: the light grey units are

supplied with 24 V, while the dark ones are fed by the left module.

In particular these modules are:

• 1: 4-channel serial interface module with IO link devices, used to connect three

antennas, one for each operation, that read a pallet tag present on each pallet

(see 5.4)

11

2 – Hardware Configuration

• 2-4: modules with 16 digital input (each) at 24V, where are connected feed-

back relay signals coming from safety guards and emergency buttons, as well as

all the others pushbutton used by the operators to interact with the machine,

such as start cycle button, stop cycle, jog movement, automatic movement

and so on

• 5: analog input module 16-bit, used to connect torque transducers to measure

the torque applied to the pieces during EOL test

• 6-7 : technology modules (TM) PosInput, to whom are connected two absolute

encoders, also used during EOL test, to check the position of the pieces

• 8-11: modules with 16 digital output (each) at 24V, used to give commands

such as ‘Start/Stop’, ‘Reset ’ through the pushbuttons, to command belt con-

veyors and the laser

• 12-16: fail-safe modules with 8 digital input (each) at 24V, to whom are

connected all the elements necessary to guarantee machine safety, so all the

emergency pushbuttons and safety guards present on the unit (see 5.1)

• 17: fail-safe module with 4 digital output 24V to command the restoration of

the air pressure inside the machine, that goes down whenever a safety guard

is opened or an emergency pushbutton pressed

For what concerns the CPX-CP system, it provides decentralized control (since

in high-speed machines short cycle times and short pneumatic tubing are required)

of the actuators and sensors present in the unit through a CPX terminal, that

communicates via PROFINET with the CPU, and CP interface modules. Also in

this case there is only one CPX-CP system (Fig. 2.2) for the last unit. An IP

address has been given to the CPX, as well as a name, 7400AC1, and the same

for the two CP interface modules. The first one, named 7400C1, handles 16 Bytes

Input/ 16 Bytes Output, while the second one, named 7400C2, 4 Bytes Input/ 4

Bytes Output. [7]

12

2 – Hardware Configuration

Figure 2.2: CPX-CP - Configuration.

the ‘

Figure 2.3: Connection between valve manifolds/input modules and CPX-CP sys-
tem.

13

2 – Hardware Configuration

The CPI modules are directly connected to FESTO valve manifolds, responsible

to command the valves to move the actuators, and to input modules, used to check

sensors instead. An example is showed in the following picture (Fig. 2.3), that

describes the connection between the elements just described.

2.2 Motors

In addittion to the actuators, there are also five synchronous BOSCH motors with

absolute encoder in the unit.

To control and interface them with the PROFINET fieldbus, BOSCH INDRA-Drives

are required.

As happened for the other devices, also for the drives a GSD file has been inserted

so that it was possible to enstablish what informations share between the drive and

the PLC, as well as a starting Input/Output Address and an IP addres.

All five motors have been interfaced through a 6 Input Words (for the PLC) and 11

Output Words (from the PLC) communication telegram.

The 6 Input Words are required to pass to the fieldbus master, that is the

PLC, informations reguarding the status of the drive or some important parameters

of the motor that the drive is controlling.

First of all it was necessary to configure the Drive, to specify how to control it.

So the ‘operation mode’ of the drive has been set to ‘Drive-Internal Interpolation’,

in such a way that the drive toggles a specific bit when the motor position is in a

certain window, given by the difference between the required position the motor has

to reach and the actual position read by the encoder.

Three others secondary operations modes had to be set in order for the communi-

cation to work, as showed in (Fig. 2.4, bit 8/9).

All the other bits present in the image compose the STATUS word of the drive, that

tells the PLC whatsoever information required for a correct use of the motor.

For example with the bit number 2 the drive tells that the axis of the motor is still,

or bit 4 that the required position has been reached.

The STATUS word is one one word out of the six, that communicate the following

informations instead:

14

2 – Hardware Configuration

Figure 2.4: Drive - Status Word.

15

2 – Hardware Configuration

• Actual Position: double integer data (DInt)

• Actual Speed: double integer data (DInt)

• Actual Torque: integer data (Int)

The data types, i.e. DInt or Int, have been choosen this way because these are the

formats with which the drive exchanges these kind of informations.

A similar description can be made for the 11 Output Words required to send

data from the PLC to the drive, so that it is possible to command the motor de-

pending on the application.

The first Word sends commands through individual bits (Fig. 2.5).

As an example the combination of bits 6 and 7 is responsible for the way the motor

turns: if both bits are equal to 0 the motor is set to positioning active, that means

that the motor goes to the target position set by the PLC. If the combination of

bits is 01 or 10 the motor moves in ‘Jog’ mode, i.e. the continuous movement of

the motor in a specific direction, while it is 11 the motor is stopped. The required

position, mentioned before, togheter with other data need to be told to the drive

and that is the reason of the other words.

• Target position: sends a double integer data (DInt) to change the position

the motor has to reach

• Speed: a double integer (Dint) to set the required operational speed (de-

pending on the situation, the motor needs to receive an automatic cycle speed

for the normal working conditions, or a jog speed, required for particular sit-

uations, for instance calibration operations, normally up to ten times slower

than the automatic one)

• Acceleration and Deceleration: two double integer data (DInt), normally

set to the maximum value

• Torque Limit Positive and Negative: two integer data (Int), to pass values

of the maximum and minimum torque reachable from the motor

16

2 – Hardware Configuration

Figure 2.5: Drive - Control Word.

17

2 – Hardware Configuration

In the next chapters it is described how these Status and Command words have

been utilized.

2.3 Robots

To take the pieces from the pallet and place them under the work station, two

SCARA robots EPSON G-10 have been used.

Also in this case a controller is required to interface the robots with the PLC so that

it is possible to control them and receive feedbacks.

The communication telegram between the PLC and the controller is composed, this

time, of 32 Bytes Input and 32 Bytes Output, which is one of the default fieldbus

configurations for the controller RC-700A used.

The association between the address and the corresponding command (or feedback),

however, has been changed with respect to the default configuration, depending on

the operation the robot is involved in. This means that the robot present on OP

150 has a different address configuration with respect to the robot on OP 160).

Moreover most of the bytes have not been used, but provided as reserves for any

future addition.

The first byte, similar to the motor drive, is composed of individual bits to give

standard commands to the robot or to receive feedback informations from it.

In the next picture (Fig. 2.6) are showed the Input addresses for the PLC and the

elements directly connected with the robots (i.e. the grippers), that are Outputs for

the controller named 7250AZ1 of the robot working on OP 150. The addresses not

present in the table have not been assigned.

The same thing has been done for the Outputs, that this time are Inputs for the

PLC (Fig. 2.7). Both Input and Output addresses go from 512 to 767.

A clarification must be done: the addresses showed in the pictures are the one

configured inside the robot configuration program. Once established the correct

GSD a starting Input/Output address has been choosen equal to 4250.

The robot couples automatically all its addresses with the ones set in the PLC

starting with the first one.

18

2 – Hardware Configuration

Figure 2.6: Robot - Input Addresses.

19

2 – Hardware Configuration

Figure 2.7: Robot - Output Addresses.

20

2 – Hardware Configuration

2.4 Other Devices

In addiction to the devices listed above, different others instruments have been used,

that differ from the others for either the fieldbus or their configuration.

In most of the cases they have been configured from their specific programming

tool or directly from the display of the instrument, so that it is only necessary to

specify which program execute and start the instrument through simple istructions

implemented and managed by the PLC.

2.4.1 Press

The first operation to perform in the unit provides a press to insert a dowel pin

in the exhaust cam phaser. To perform this operation a Kistler Press has been

choosen.

This particular device is controlled by a drive Indramat from Bosch, similar to the

ones used to control the motors, but the controller is itself managed by a Kistler

maXYmos. Thus, in the development environment the required GSD is the one

interfacing directly with the PLC, i.e. the maXYmos, that has been also used to

program what the press should do.

For the maXYmos 220 Input/Output Bytes are required.

2.4.2 Measurement Instruments

• OP150

The first instrument is a software from TQMitaca, necessary to perform the

runout measurement and no configuration is required to interface the instru-

ment with the PLC.

Unlike what told until now, this one communicates in another way with the

PLC.

The software running on a dedicated PC has been programmed with all the in-

formations required to perform the test (mainly mechanical informations and

tolerances), and it is the same PC that exchanges informations, by reading

and writing in certain areas of memory of the PLC, called DB (Data Block)

and briefly explained later on. 1.4

21

2 – Hardware Configuration

In these areas the instrument writes whether the test is ok or not, while reads

determinated informations, such as in which one of the two runout stations

perform the test, the start and so on.

• OP160

In order for the last unit to perform different tests, two types of devices are

needed. They both are ATEQ instruments, but each of them has different

functionalities during the leak test phase.

The first instrument is an ATEQ D520 and its role is to maintain a certain

pressure and flow during the EOL test. There are two of them for cycle time

reasons.

The second one is an ATEQ F620, that is a leak tester and that takes care of

measuring the differential pressure decay to verify the eventual leaks. In this

case, always for cycle time reasons, there are four devices of this kind instead.

Despite they are two different devices, both of them have been configured to

communicate with 32 Bytes Input and 32 Bytes Output.

2.4.3 Laser and Dataman

The laser is one of the conclusive device of the unit, whose role is to print a QR

code in a certain portion of the pieces (depending on the type a different portion is

required).

The Datalogic Laser used for this task communicates via Ethernet/IP.

This means that no configuration inside the TIA Portal development environment

has been done. it was only necessary to assign an IP address to the laser through

its configuration tool.

A COGNEX Dataman is present after the laser station, to verify that the QR

code impressed by the laser is actually readable and matches the string passed to

the laser to generate it, and to perform a quality measurement of the QR code itself.

The communication in this case is still via PROFINET.

22

Chapter 3

Operation 150

This chapter is dedicated to the explanation of the various stations included inside

the OP150 mentioned in the introductive chapter, that depends on the piece tipol-

ogy the assembly line is processing.

The assembly line can process one tipology at a time, that must be choosen before

starting. So, the stations inside OP150 and described later on in this chapter are

mutually excluded.

If an Exhaust while the Intake piece must undergo a Runout test, to check the con-

centricity of the piece itself.

The next subsection explains the procedure implemented to insert the dowel pin,

that is a cilinder shaped piece that is used to connect the rotor of the exhaust cam

phaser directly to the camshaft, with a previous description of how the signals and

command are managed to create the cycle.

Thus, what is described for the Dowel Pin Insertion is valid for each following station.

3.1 Dowel Pin Insertion

In the Hardware Configuration chapter it was briefly described the CPX-CP decen-

tralized system used to connect and manage the pneumatic part of the unit. In the

Figure 3.1: CPX-CP System - Zoom on Dowel Pin Block Valve and Module Input.

23

3 – Operation 150

previous picture (Fig.3.1) are present the block valve to command actuators, with

the respective command signals (A460.0- 7 / A461.0-7), and the 16 Input Module

to receive feedbacks (E460.0-7 / E461.0-7) from the sensors connected to it.

Figure 3.2: Kistler Press - Dowel Pin Insertion.

To the block valve are directly connected solenoid valves, either bistable or

monostable, while to the 16 Input Module are connected proximity sensors and

photocells, elements that are showed in Fig. 3.2 and that are meant to make the

station works. They have been named using particular symbols, to distringuish what

they are:

• EV J - Bistable solenoid valve

24

3 – Operation 150

• EV M - Monostable solenoid valve

• SQ - Proximity sensor (or Reed switch)

• B - Photocell

To each of them has been assigned an address, in order to command them or

receive their feedbacks.

• A460.6/7 - Command given to the bistable solenoid valve used to command

the vertical cylinder C150-3. A460.6 is to command the cylinder to rod out

position and A460.7 to command it to rod in

• E460.6 - Proximity sensor signal sent when the cylinder reaches the rod in

position

• E460.7 - Proximity sensor signal sent when the cylinder reaches the rod out

position (E460.7)

• E460.5 - Photocell signal used to know if the piece is under the station

(E460.5)

• E461.0 - Photocell signal used to know if the dowel pin is in position under

the press to be inserted (E461.0)

• A480.1 - Command given to a monostable solenoid valve to blow the dowel

pin in position under the press

These input and output signals are not used directly, for different reasons.

For example, let’s consider an input signal coming from a proximity sensor checking

the rod in position of the cylinder. To be really sure that the cylinder is in position,

a certain delay is added to the signal after this last arrives (Delay-On), so that

during the cycle it is not used the original signal anymore, but the delayed one.

Another example can be the input signal coming from the pressure switches. Pres-

sure switches have pressure fluctiations, so to have a stable input signal, two delays

are necessary.

The first one is activated when the signal arrives, so it is a Delay-On, while the

25

3 – Operation 150

second when the signals goes off, that is a Delay-Off. Thanks to these two delays,

even if oscillations occur, the signal is at 1.

A similar thing happens for the output signals. Also in this case the reasons can be

multiple. Let’s try to explain them briefly with the following KOP segment showed

in Fig. 3.3.

The first reason is that the same output signal, in this case A460.7, responsible

for the vertical press cilinder to go downward, is used in different situations: manual

mode, automatic mode and reset.

The first istruction the PLC runs after the unit is ready to work is checking the

operative mode of the unit, selected by an manual selector present on the apposite

pushbutton.

There are two Int variables: the first one represents the number of station, in this

case 150, while the second the manual code, associated to the number of the cilinder,

that is 3 for the vertical one. These Int variables are used to select the element to

be moved directly from a HMI (Human Machine Interface) panel present on each

unit. The first variable is used to tell which station to control, while the second

which element of the station to move.

If these two conditions verify, then the PLC checks another manual selector, used to

perform the movement. This selector is used to choose where to move the cylinder

(in case of a motor it’s utilized to make the motor move in Jog+ or Jog-): if it’s

set to Minus the cylinder moves to rod in, viceversa if it’s set to Plus the cylinder

moves to rod out.

26

3 – Operation 150

Figure 3.3: Indirect Command Signals

27

3 – Operation 150

Considering the Minus selector is selected, a boolean variable corresponding to

the rod in command is set, while another boolean variable corresponding to the rod

out command is reset.

If the boolean variable is set and there is the safety for the execution of the move-

ment, the effective output command is given, as showed with the last line of the

segment.

This KOP segment is used also for giving the direct command (A460.7) during

the automatic cycle, or in case of a Reset. These two situations happen during the

normal cycle of the unit and are described in the following subchapter.

The ‘Indirect ’ commands, togheter with other signals, such as the dalayed ones

coming from the proximity sensors or particular safety conditions signals, are stored

inside a particular DB, called Management DB. There is one management DB for

each station cycle that has been implemented.

Safety condition signals are mainly mechanical conditions, so particular variables

have been created to avoid mechanical parts to collide implementing KOP segments

to interlock, for instance, particular actuators movement, or to wait untill a robot

is out of space.

Other safety conditions come instead from particular photocells (like the B460.5

showed in Fig. 3.3, that tells if a particular movement can be performed or not. If a

piece is under a station to be processed, the robot cannot place another piece under

the same station. Before starting the station cycle, then, it is firstly necessary to

create all these variables inside the Management DB, manage them, and in the end

use them to create the cycle of the station they are part of.

3.1.1 Cycle Description

The Exhaust cam phaser has a bias spring that permits more rapid respond of the

rotor or helps the camshaft to be placed in particular orientations during the engine’s

working cycle.

To perform the station cycle a Int variable is created. This variable is used as a

register, so that each time an operation is completed this register’s value is increased

28

3 – Operation 150

and the next step of the cycle can be performed.

Every time a new step is performed the register value is checked to control that

the step can be effectively performed. This is also a way to understand eventual

problems that can happen during the normal cycle of the station. If the register

value does not match, the cycle cannot continue, so there is a problem earlier on

and it is more easy to understand what the origin of the problem.

Each step corresponds to a specific segment implemented inside a function, called

inside the Main Program Cycle to be performed cyclically.

This register value is obviously set to 0 in order for the first step to be performed

and it is incremented by 10 at each step.

• Step 0 - This step corresponds to the Start Cycle.

Moreover, in order for the cycle to start, the station must be in ‘Home Po-

sition’, that is a particular rest condition that needs to be verified. This

condition is important to be sure that the previous cycle has been completed

and it is also a particular condition for when a reset is necessary.

When a Reset button is held for more than 3 seconds, the station automati-

cally moves to the Home Position, to start again with the cycle once a Start

button is pressed.

This Home Position corresponds to the cylinder C150-3 in rod-in and the

motor in a particular known position. If this happens the register value is

incremented and the previous results of the dowel pin insertion, given by the

press controller and that tells the PLC whether the dowel pin has been in-

serted correctly or not, are reset.

This reset is not necessary, but is done to be sure that errors due to incorrect

data reading are not present.

• Step 10 - This step checks that the robot is actually out of space.

The robot cycle is not included into the station’s cycle, nor into the one of

other stations. Each robot has its own cycle run by its controller and pro-

grammed inside its programming tool.

Through specific signals sent to the outside and specified earlier (Fig. 2.7),

the PLC knows exactly if the robot has performed a specific operation.

If the Out From Dowel Pin Press signal is equal to 1, the robot is out of space,

29

3 – Operation 150

so the station has the permission to continue with its cycle.

The motor can know move to load the spring and the next step can be per-

formed.

• Step 20 - The motor loads the bias spring moving to a specific position.

• Step 30 - The cylinder C150-3 can move to rod out position. This cylinder is

used to put the press in the right position to insert the dowel pin.

• Step 40 - A function is called to send the program to be performed by the press.

This program number corresponds to the program effectively implemented

through the software tool of the Kistler MaXYmos controller.

• Step 50 - A start command is set for the MaXYmos Controller to execute the

program. The press goes to a pre-insertion position.

• Step 60 - This step verifies that the motor has effectively loaded the spring

and that the press is in the right position. If this happens the cicly of the

press is paused by resetting its start command.

• Step 70 - The presence of the dowel pin is checked

• Step 80 - The press start command is set again, togheter with a ‘Continue’

command, so that the press inserts the dowel pin.

• Step 90 - The start and continue commands of the press are reset.

• Step 100 - The cylinder C150-3 move back to rod in position.

• Step 110 - The motor moves back just enough to make sure that the piece can

be properly removed

• Step 120 - The PLC gives to the robot the consent to pick the piece from the

station and the mission code to be performed.

• Step 130 - The robot must pick the piece and go out of space. If these two

conditions happen the next step is done.

• Step 140 - The motor moves back to the starting cycle position, so the cycle

can start again.

30

3 – Operation 150

3.1.2 Feeder Management

The dowel pin is inserted in a specified position by a press, but before must be

positionated under this last one.

To do that a circular vibrator has been utilized, that has its own cycle to position the

dowel pin correctly and that’s interlock with the insertion cycle previously described.

Also in this case actuators and valves are present (Fig. 3.4).

Figure 3.4: Dowel Pin Feeder.

The same approach of the previous cycle has been followed, so an integer value

has been created to perform the various steps.

The dowel pin is positionated under the press by an air blow, that shoots the ele-

ment inside a white tube that arrives directly under the press (see Fig. 3.2).

The first thing to do is having the vibrator in starting work position, that means

having the C150-7 cylinder, responsible for moving the dowel pin to be correctly

shooted inside the tube, in rod in position.

The vibrator constantly vibrates to make the dowel pin reach the position in which

31

3 – Operation 150

must be moved by the cylinder to be positionated in front of the air blow. If it’s on

correct position, a photocell (B480.4) signal goes from 0 to 1.

Before the cycle can continue, there must not be another dowel pin under the press,

and that is checked through a specific photocell, that is B460.1.

If no other element is present under the press, then the C150-7 cylinder can escape

the dowel pin, by commanding the bistable valve with the command signal A490.2

that moves the cylinder to rod out position.

At this point, by commanding the monostable valve through its command signal

(A480.1), the dowel pin is blown into the tube, to reach its position under the press.

Since this is the last station that actually insert a component, there is only one

feeder in the unit. However, there are many of them distributed along the assembly

line, each of which is responsible for getting pieces in the correct position to be

subsequently inserted as specified.

3.2 Runout Test

This particular test must be performed if an Intake cam phaser is under production.

Figure 3.5: Circular Runout. [10]

Making reference to Fig.3.5, the test is done to calculate the circular runout,

32

3 – Operation 150

which aims to check if the line is contained within the tolerance zone formed between

two coplanar and/or concentric circles perpendicular to a datum axis.

The TQM bench performs a dynamic measure: the measuring system manages the

rotation of the parts on a precision mandrel, controlled by an encoder.

The system uses only 1 probe for each section and acquires at least 3.600 couple of

point for each section.

With these points the TQM software re-creates the real profile of each sections and

it perform the measures.

To peform the test the instrument requires a reference, that can be either a section

or a plane. The instrument automatically relates the measures of each section with

the reference.

Moreover, on the reconstructed profiles it is possible to do the Fourier analyis and

it is also possible to measure particular characteristics created with more sections,

such as concentricity, cylindricity, flatness, parallelism and so on.

Concentricity is particularly important, since it is the only parameter required

from the customer to distinguish a good piece from a reject one. The concentricity

Figure 3.6: Concentricity. [10]

(Fig.3.6) is different from the circular runout, since aims to understand if the center

33

3 – Operation 150

point is contained within the tolerance zone formed by a circle of diameter concen-

tric with a cerain datum, in this case an axis.

However, the runout can be seen as a combination of concentricity and circularity.

Runout = Circularity + Concentricity (3.1)

If the part is perfectly round (that means perfectly circular), the runout equals the

concentricity.

In order to better understand how the procedure works, let’s have a look at the

following picture (Fig.3.7). The cyan colored part is the outer plate, while the pur-

Figure 3.7: Runout Station - Transducers.

34

3 – Operation 150

ple one is the inner plate.

These two parts, toghether with the sprocket, are fastened togheter by a previous

operation and togheter form the stator.

Let’s call the internal diameter of the inner plate A and the external diameter of

the outer plate B.

To perform the test the parts must be blocked and centered under the instrument

by a pneumatic system with 3 pliers that work on the internal diameter of ”B”.

In the external diameter of ”B” there is a probe (or transducer, like showed in the

picture) that measure the section of the diameter itself.

The other 3 probes are: one to measure the external diameter and the other two for

the internal diameter of ”A”.

The software creates the axis of ”A” and measures the Runout of the two external

diameters with respect to ”A” (indicatively the runout of the external diameter of

B must be lower than 0.2).

To mark the piece as good the concentricity to be checked is the one of the external

diameter of ”B” with respect to ”A”. If the concentricity is less than 0.6 than the

piece is considered good.

The instrument requires all the mechanical specifications to perform an adeguate

measurement, so the diameters of the surfaces the transducers are directly connected

to, and the tolerances to satisfy, such as the required concentricity, angular toler-

ances and all the other tolerances specified from design, so that it automatically

marks the piece as reject or not.

In addition to that, it is necessary to exchange informations with the instrument.

As anticipated in chapter 2 this happens through a dedicated computer that runs

the program responsible of managing the instrument.

This PC exchange informations with the PLC in a trasparent manner, by reading

and writing in a specific DB.

This happens thanks to a library called LibNoDave that is responsible of this data

exchange.

The DB looks like the following picture (Fig. 3.8). The elements inside the data

blcok are used to send commands or receive signals, as explained for all the other

components in chapter 3.

35

3 – Operation 150

Figure 3.8: TQM Data Block.

The first two words are only to make the instrument undesrtand how many in-

formations exchange: in our case, as showed in the data block, are only exchanged

16 Input/Output bits (i.e. 1 Word), that are swapped due to endianness problem.

All these commands and feedback are exchanged during the runout measurement

cycle.

Making reference to Fig. 3.9, first of the station must be in Home Position, that

corresponds to the cylinder C150-20 and the cylinders of the pliers in rod in posi-

tion, and to the two probes of the internal inner plate in rod out position. At this

point the robot can place the piece under the station.

A single TQM instrument can handle two different measurement stations, but they

cannot work simultaneustly, so it is necessary to specify a priori which one of the

two stations has to work.

The previous result measures inside the DB (RESULT MEASURE OK or KO) are

reset and then it is possible to enable the corresponding station, thanks to the EN-

ABLE STATION command. Once the instrument receives the enable, after few

milliseconds sends to the PLC a feedback signal, called ECHO STATION to make

it aware that it has correctly received an enable command.

36

3 – Operation 150

Figure 3.9: Runout Station.

37

3 – Operation 150

The cylinder C150-20 can move downwards and the pliers block and center the

piece, then the two upper probes can move to rod in, so that they go directly in

contact with the internal diameter of the inner plate. The other two probes, instead,

are directly in contact when the robot places the piece under the station.

The motor can now start moving so that the probes can acquire all the 3.600 couple

of points needed. To do that the motor must do a little more than 360 ◦ to assure a

correct measurement.

Once the instrument finishes it automatically toggles a specific bit inside the data

block to inform the PLC if the piece is good (so the RESULT MEASURE - OK

signal passes from 0 to 1) or not (viceversa the RESULT MEASURE - KO passes

from 0 to 1), that is crucial to understand if the piece must undergo other tests

or must be rejected from the line, while the result data are directly send to the

customer SQL server and are not stored inside the PLC.

To complete the cycle the motor moves back to the start cycle position, the inner

plate internal probes are commanded to rod out, the pliers are removed and finally

the cylinder C150-20 is moved back to rod in position.

At the end of the test, the instrument plots automatically a runout graph.

In Fig. 3.10 it is possible to see the runout of the external diameter of B.

Above in the picture, the runout is represented in polar coordinates, while, below,

in cartesian coordinates.

The first one is fairly descriptive, but can be mixed with the geometrical shape of the

piece. The second one, instead, shows the displacement versus the angular position.

The runout measure is given by the difference between the maximum value of the

displacement and the minimum one, as showed with the red line in the picture.

In this case the runout seems to be approximately equal to 0,0165.

38

3 – Operation 150

Figure 3.10: Runout in polar (above) and cartesian coordinates (below).

For what said before, however, the concentricity is the parameter to be con-

sidered to mark the piece as good.

These two parameters are related, so, tipically, if one is not respected, neither is the

other one (see 3.1).

39

Chapter 4

Operations 160 and 170

In the previous chapter it was described the first test executed on the assembled

pieces, test that is performed, however, only on a specific typology, that is the In-

take one.

In the first part of this chapter are described the two other tests, present in the

operation 160 and that are applied to both the assembled typologies.

The first test performed is a EOL test, that is meant to determine if there are

defective pieces or specifications are not matched by simulating critical working sit-

uations. There are two EOL stations.

The second one is a Leak test. In this case the test aims at detecting manufacturing

defects that correspond to a leakage of gas from the product.

Indeed, although the preoducts are hydraulic phasers, the leak test is performed

using air. This has been done mainly for costs reason, but also because it is par-

ticularly difficult to mantain stationary conditions to perform the test using oil,

especially for what concerns the temperature. Also in this case there are more sta-

tions, in particular 4 of them.

The second part of this chapter is dedicated, instead, to the last operation to be

performed, that is operation 170.

This one is responsible of marking with a laser the pieces declared good by the

previous stations.

40

4 – Operations 160 and 170

4.1 Operation 160

4.1.1 EOL Test

The End-of-Line (EOL) test is a specific and critical step for an assembly line,

because it asseses not only the quality of the product, but also the yield of the

production process.

The defective products that do not match the specifications closely enough must be

marked as rejects and separated from the good ones.

Moreover the results of the testing should be repeatable under the same conditions

and reproducible in any other location using the same instrument, but more impor-

tantly stable over time and free of bias [11].

In order to do so a specific test cycle has been designed and an ATEQ instrument

has been used to simulate working conditions. The ATEQ D520 is not used only

to perform measurements (flow measurements are performed in working conditions),

but also as a sort of proportional valve to set two different pressures during the cycle

test.

Also in this case it was necessary to design different programs, directly from the

display of the instrument, that are then passed to the instrument itself during the

cycle and started when needed.

So a simple function block has been implemented to exchange these data.

The function is exactly equal to any other function that deals with the management

of the instruments: the first part is responsible of transferring and storing infor-

mations (from or inside the data block), while the second part regards its general

behavior.

In this case it was necessary to create an instrument cycle, where it is possilble to

select the program (created directly from the monitor of the instrument), to start

and stop it, so that the EOL test can be performed according to the specifications.

The EOL test aims, as told before, at testing the quality of the product by simulat-

ing working conditions and checking that everything works correctly.

As briefly explained in the previous chapters, the cam phasers are composed of two

main parts: a stator and a rotor.

41

4 – Operations 160 and 170

A vaned rotor is disposed inside a lobed stator and they are mechanically locked

togheter by a locking pin. In this position, which is the default position, a spring

biases a cylindrical locking pin outward to engage a pin bore disposed in the stator.

In this condition the stator and the rotor are coupled and cannot move one with

respect to the other.

So if I want the rotor to move with respect to the stator, the locking pin has to be

unlocked and this happens when the oil pump pressure reaches a pre-determined

level, so that the hydraulic force of the oil, through a suitable porting, causes the

locking pin to retract from the pin bore and to decouple the rotor from the stator.

Thus, depending on the conditions, the locking pin needs to be unlocked or not.

For example under conditions of low engine oil pump pressure (ad example during

the startup), it is desiderable to mechanically lock the rotor and stator togheter (in

default mode) to prevent unwanted relative angular movement of the rotor/stator

when the pump pressure is not high enough to reliably position the rotor relative to

the stator.

To better understand how the overall procedure has been implemented, let’s have a

look at the EOL station (Fig. 4.1).

The piece is placed under the station, that must be equipped according to the type

of piece, since they have different shapes (there are several sensors to ensure that

the station has been properly equipped to avoid damages).

As visible in the picture, there is also a sensor that checks if the piece is under the

station (Presence Phaser EOL 1). This is to avoid, instead, to put another piece

under the station when there is another already, or to perform a test when no piece

has been placed.

After the piece has been placed it is necessary to block it, so that a motor is able to

move the rotor simulating particular situations, and this is done by two horizontal

slides. At this point it is possible to move the vertical cylinder C160-70 so that the

cycle can begin.

To perform the tests, unlike what happens in practice, air was used instead of

oil.

Two different air entrances are necessary. The first one is directly above the piece,

42

4 – Operations 160 and 170

Figure 4.1: EOL Test Stations.

43

4 – Operations 160 and 170

called ”B” (Flow meter 1 in the picture), while the second is under the piece (not

visible in the picture) and is called ”A” instead.

These two air entrances are directly connected to the Ateq instrument (Fig. 4.2)

and commanded by monostable solenoid valves.

Figure 4.2: Air Circuit EOL Test.

In the circuit is represented the Ateq D520 used for this purpose, that is sup-

plied, through the In connector, by the Air Emergency Collector, that feeds every

instrument under emergency (as explained in the previous chapters particular de-

vices powered by air must be cut off when safety doors are opened or an emergency

button is pressed).

The instrument, then, depending on the program, is used to vary the pressure and

to supply the air for the test by connecting the Test connector to the first two

monostable solenoid valves that are commanded during the cycle test to make the

air flows through ”A” or ”B” to set pressures or measure flows.

The third valve (on the right) is used to exhaust the air. Let’s call the exhaust ”C”.

There is also another connection to the instrument, that is the pneumatic connector

”P” that is required as feedback for the instrument.

Moreover, it is also necessary to have an encoder, that measures with accuracy

44

4 – Operations 160 and 170

the position of the rotor during its movement, and a torque meter to calculate the

torque exchanged between rotor and stator in particular conditions.

4.1.1.1 Test cycle

The applied test cycle is essentially the same for both tipologies. The only difference

is in the direction of rotation of the rotor depending on the fact that the stator

housing has a different shape in the two cases.

To give an idea of the results, these tests have been performed on 10 different intake

pieces (unfortunately the exhaust ones are not showed since a mechanical retooling

was necessary), and, in the following lines, are reported the average values of the

results.

The tests applied, in order of application, are:

• 1: Locking pin locking control:

The first condition to verify is if the locking pin is unlocked only when a cer-

tain pressure is reached.

The locking pin should unlock when a pressure approximately equal to 0.5 -

0.6 bar is applied. Thus, if a lower pressure is applied, the unlocking should

not happen.

And this is what has been done: a first program on the Ateq has been created

to set the pressure to 0.3 bar and the second solenoid valve is commanded in

order to have the flow coming from ”A” (from under the piece).

This first test is not over yet, because the rotor is then moved in both direc-

tion, untill mechanical stop, with the motor set to move with a fixed torque

equal to 2 Nm to check that the mutual movement between the stator and

rotor is effectively blocked.

Each time the rotor reaches the mechanical stop, the position measured by

the encoder is saved, so that is possible, with a simple difference, to calculate

the free angle of the locking pin, that must be contained in a certain window

(approximately 1 ◦).

45

4 – Operations 160 and 170

• 2: Locking pin unlocking:

The program number is now changed to vary the pressure at 0.6 bar so that

the locking pin can be unlocked.

The same procedure described for the previous test has been implemented,

but this time the rotor is free to move with respect to the stator, so that the

wide rotor vane can actually touche the stator lobes (the other vanes and lobes

have extra clearance to prevent contact regardless of rotor position).

The wide angle vane is better able to sustain the shock of impact when a vane

strikes a lobe in an uncontrolled event such as at engine start-up.

When the wide rotor vane touches both the contact surfaces of the stator, the

position measured by the encoder is saved, so that it is possible to calculate

the total rotor displacement angle (normally within 20-30 ◦).

This is done saving the two contact positions measured with the encoder and

calculating the difference.

The encoder measurement showed that the assembly was correct, since the

average value of the displacement is 25,78◦.

Moreover, during all the relative movement between rotor and stator, the

frictional torque is acquired.

0,43 Nm < frictional torque < 0,57 Nm (4.1)

The average torque measured is 0,54 Nm.

• 3: Flows control:

Another program has been implemented to set a specific pressure (approxi-

mately 1 bar) to perform flow measurements.

The Ateq D520 is a flow meter which measures a drop in pressure with a dif-

ferential sensor (transducer) which is placed at the extremities of a calibrated

flow tube.

When fluid (gas) moves through a calibrated flow tube (laminar flow), a drop

in pressure occurs, the value of which is proportional to flow.

∆P = 8µLQ/πR4 (4.2)

46

4 – Operations 160 and 170

µ: viscosity of the fluid

L: length of the calibrated flow tube

R: radius of the calibrated flow tube

Q : flow

∆P : drop in pressure in the calibrated flow tube

So it is possible to obtain directly the flow Q by the previous formula.

The first flow measurement performed is done commanding the second valve

(from left in Fig. 4.2) and the third (from left), so that the air flows directly

from ”B”, which is above the piece, and is directly exhausted from ”C”.

The rotor is moved in different position during this phase of the test, to con-

sider different working conditions. Each time the limit values change.

The first time the rotor is moved aproximately of 2 ◦.

36 lmin < Flow B < 40,5 lmin (4.3)

The average Flow B is 38,344 lmin.

Then the rotor is moved in middle position, which is half the displacement

angle (that is about 25◦).

37 lmin < Flow B < 43,7 lmin (4.4)

The average Flow B in middle position is 40,4 lmin.

Now the flow is changed, by releasing the command of the second valve, and

commanding the first one. In this case the air flows from ”A” to ”C” and the

same procedure explained previously is applied.

To perform this flow measurement the rotor is moved almost the whole dis-

placement angle, and this time:

36 lmin < Flow A < 50 lmin (4.5)

47

4 – Operations 160 and 170

The average Flow A is 43,373 lmin.

At the end the rotor is moved to the rest position.

• 4: Locking pin locking:

The last part of the cycle consists of placing the locking pin in the default

position.

The air flows and pressure are then removed and it is verified, again, that the

rotor is effectively blocked.

4.1.2 Leak Test

Leak Test is the last test performed on the products.

In the intruduction of this chapter has been anticipated that this test is performed

with air, even if the test piece is actually hydraulic actuated.

This is possible due to the physical properties of liquids and gases. The higher the

viscosity of the liquid, the slower it will leak through a particular hole.

Since the viscosity of a gas is generally much lower than that of a liquid (the vis-

cosity of air is about 50 times lower than that of air), if we consider the influence

of the viscosity only, a particular leak that passes 20 mm3 of air per second, would

only pass 0.4 mm3 of water per second.

Moreover the oil has viscosity that is even higher than that of the water, that leads

to a even bigger reduction of leak with respect to that of the air.

Furthermore the viscosity is very sensitive to temperature variations. As showed

in the previous table (Tab. 4.1) the higher is the viscosity the higher is the sen-

sitivity to the temperature variations and the oil undergoes a sharp change if its

temperature varies between 20 and 70◦C.

In order for the test to be correctly performed, thus, the oil must be kept at a fixed

temperature and this is very expensive in terms of costs.

The air, instead, does not change its viscosity in a significant way and it is easier to

mantain its temperature constant.

These are the main reasons for which the air has been preferred to the oil.

48

4 – Operations 160 and 170

Fluid Temperature Viscosity

Air

0◦C
20◦C
50◦C
70◦C

1.71 × 10−5 Pa s−1

1.81 × 10−5 Pa s−1

1.95 × 10−5 Pa s−1

2.04 × 10−5 Pa s−1

Water

0◦C
20◦C
50◦C
70◦C

1.79 × 10−3 Pa s−1

1.0 × 10−3 Pa s−1

0.55 × 10−3 Pa s−1

0.40 × 10−3 Pa s−1

Oil
20◦C
50◦C
70◦C

2.6 × 10−2 Pa s−1

1.0 × 10−2 Pa s−1

0.7 × 10−2 Pa s−1

Table 4.1: Viscosity Coefficient of Gases and Liquids. [13]

This test consists of filling the piece to a defined overpressure with air. After

filling the test piece it is always necessary to wait before measuring until the param-

eters have stabilized and the pressure has settled, that usually takes longer than the

actual measurement.

The pressure in the test piece is then measured over a defined time interval: if the

pressure reduces over time, there is a leak.

For this purpose an Ateq F620 has been choosen, which is a compact air/air leak

detector.

This instrument can detect a small variation (or drop) in differential pressure be-

tween the test and a reference, when both are filled to an identical pressure.

The station used to perform the cycle is represented in the next picture (Fig. 4.3).

There are four stations, each one with its own Ateq instrument.

The piece, moreover, is graphically modified since it is sensitive material.

Once the robot has placed the piece on the horizontal slide (C160-20), this last

is moved to rod in position to start the test. Then, the vertical one (C160-21) is

commanded to rod out position, so that the leak measurement can start.

49

4 – Operations 160 and 170

Figure 4.3: Leak Test Stations.

50

4 – Operations 160 and 170

The leak test is performed twice for each piece: the steps are the same, only the

pressure applied is different.

First thing the instrument is started so that the piece is filled with air at a certain

pressure. This step requires a time called filling time, followed by another time,

called stabilization time instead. Usually these times are the most expensive in

terms of durations and are in the order of seconds.

The instrument performs then the test over a defined time interval, called test time

and the differential pressure is calculated.

The same procedure is performed again with a higher pressure before moving the

two slides and removing the piece from the station.

Unfortunately, also in this case, it was not possible to store data, because the final

client was still considering the pressure values to perform the test at, and most im-

portantly the leak values to distinguish a good piece from a reject.

Leak values depend mainly on the way in which the seal is inserted.

Indeed, the seal insertion is one of the fews operation to be performed manually,

since, because of the shape and the material, it is practically impossible to insert it

other ways.

Therefore, positioning errors, no matters how small they are, can greatly vary the

leak values.

4.2 Operation 170

The previous test operations are necessary to identify the good pieces and the bad

ones: the bad must be removed from the line, while the good ones can be marked

with their own serial number and with a data matrix code. In the previous picture

(Fig. 4.4) is showed the last station present in the unit.

The station is composed of a rotary table with two positions and of a Datalogic

Laser.

To mark the piece it is necessary to place it on the table and rotate it, so that the

piece is moved directly in position where it has to be marked.

Moreover, it is necessary to close the safety guard of the laser (the black box showed

in the picture) in order for the operation to be performed. This safety guard is

51

4 – Operations 160 and 170

Figure 4.4: Laser Station.

52

4 – Operations 160 and 170

directly commanded by a solenoid valve and there is an apposite safety switch to

check whether the safety guard is open or not.

The laser marks a date-time format string (yyyy/MM/dd/hh/mm/ss), followed by

a serial number, and a data matrix containing the previous string on the lower part

of the piece.

Once the laser finishes, the table rotates again, so that a Cognex DataMan can read

the data matrix code impressed by the laser and performs a quality measurement.

Depending on the piece tipology, the laser has to mark in different positions, so

it has been necessary to create two different programs.

These two program have been programmed into the dedicated PC connected di-

rectly to the laser (the PC acts also as a controller for the laser) and consist of two

different graphical layouts, saved as .xlp.

To select the one corresponding to the correct tipology, the PLC has to send a string

to specify which is the correct layout file.

1 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[1] := BYTE TO CHAR(16#1B);// Escape

2 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[2] := BYTE TO CHAR(16#0C);// Lenght

3 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[3] := BYTE TO CHAR(16#00);// Lenght

4 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[4] := BYTE TO CHAR(16#F2);// Open file

5 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[5] := BYTE TO CHAR(16#82);// Open file

6 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[6] := ’I’;

7 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[7] := ’N’;

8 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[8] := ’T’;

9 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[9] := ’.’;

10 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[10] := ’x’;

11 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[11] := ’l’;

12 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[12] := ’p’;

13 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[13] := BYTE TO CHAR(16#0D);// CR

14 ”DB8953 − OP170 − DB TCP LASER − BUFFER TX”.Dato[14] := BYTE TO CHAR(16#0A);// LF

The first 5 lines of the previous code are only sent to the laser to inform it that a

new file has to be opened, file that is specified later by creating a new string. In

this case the string is INT.xlp.

The last 3 lines are, instead, to communicate that the string is finished.

Once the layout has been selected, it is necessary to send, in a similar manner,

another string corresponding to what the laser has to mark on the pieces.

53

Chapter 5

Software Implementations

In this chapter are described the main implementations that allowed to create the

operations previously described.

They permit to manage the devices that implement the machine safety, to configure

and control motors and robots, to create an exchange of informations about the

piece being processed, and finally allow the operator to interact directly with the

unit.

5.1 Safety Management

The first thing to do before starting programming is to define all the inputs and

outputs connected to the modules of the ET200SP and CPX, listed in the previous

chapter, and assign them an address, depending on the module they are connected

to.

Let’s consider as example the third of the five input fail-safe modules (2.1).

Its starting Address is 1220, so all the inputs connected to this module, depending

on the data type, will start from that address untill reaching the last available one.

In this case the inputs are booleans and correspond to the ones coming from the

safety doors. The correspective addresses are E1220.0, E1220.1, E1220.2, ..., E1220.7,

E1220.0, E1220.1, E1221.7, where E is the german mnemonic to indicate an input

(A is for the outputs instead). This has been done for all the modules present,

whether they are fail-safe or not. Now that the addresses have been prepared, they

have to be managed: the Main Safety Function Block manage all the fail-safe inputs

and outputs.

To better organize the work several functions have been created, one for each unit

for managing each unit’s safety, and a single function that is responsible of the

54

5 – Software Implementations

Figure 5.1: Safey Doors Function.

55

5 – Software Implementations

emergeny buttons, but is done exactly like the one explained in a moment. These

functions have then been included inside the Main Safety program block.

In general a function makes use of different types of variables: there are Input vari-

ables coming from outside the function, Input/Output variables that are created

inside the function and used as feedback for the function itself and finally there are

Output variables that are given to the outside.

The function implemented for the safety doors of the last unit, that groups OP150-

160-170, appears like in Fig. 5.1.

The first segment verifies that the first four doors are effectively closed.

If this happens, which means that all the bits are equal to 1, a temporary vari-

able (SAFETY GUARDS 1 2 3 4 OK) is activated. This is done for all the safety

guards in the unit in the segments 2 and 3 not showed because perfectly equal to

the previous one.

Every safety door has two channels, corresponding to two hardware phisical inputs,

for safety reasons.

The same thing has been done for the others eight doors present.

If all the three temporary variable, one for each set of doors, are set, as showed in Seg-

ment 4, an Input-Output Variable is activated (IN OUT SAFETY GUARDS OK).

This variable is used in Segment 5, togheter with an other Input variable to consent

the safety restore, and in Segment 6 to activate another I/O variable and two Out-

put variables.

The first output variable is A1250.1 and is responsible of commanding the emer-

gency relay associated to the safety guards, while the second is A1250.3, that

restores the pressure inside the unit, instead.

The Input, Output and Input/Ouput variables need to be passed into the function

or out of the function itself.

This is done by calling (or including) the function inside the Main Safety Program

Block and that appears in Fig. 5.2.

56

5 – Software Implementations

Figure 5.2: FC8002 - Safey Doors Function compiled.

The same procedure has been implemented for the emergency buttons present

in the unit.

5.2 Motors

In the previous chapter was described what informations the motors exchange with

the PLC, but these informations need to be handled.

The motors have been used in two different ways, depending on how to control their

positioning.

In some cases Absolute Positioning is required, so that the motor can perform a

move in a certain position without being affacted by the previous one.

In others Relative Positioning is preferable: in this case the next position depends

from the previous one.

Let’s consider the actual position of the motor is 90 degrees and the desired posi-

tion is 360 degrees. The motor will automatically move in the direction where the

distance is shorter, which is in counter clockwise direction.

This is not always a good situation, especially when the rotation direction of the

motor could cause collisions of mechanical parts, but it’s convenient in others.

Depending on the applications, one has been preferred to the other.

57

5 – Software Implementations

The general management is however the same and it is described with the fol-

lowing subsection.

5.2.1 General Management

To explain how the management works, the first motor of the unit is considered,

which is the one present in OP150 used during the Dowel Pin Insertion.

The first thing to do is acquiring input data from them and, at the same way,

send commands data. This has been done using an AWL segment code, which is

a particular instruction list code developed by Siemens, and that corrisponds to a

low-level programming which allows more versatility.

In chapter 2 was explained that 6 Input Words and 11 Ouptut Words form the com-

munication telegram between the PLC and the motor. In the same way of the safety

and of all the other devices connected to the PLC, also in this case it is necessary

to specify which is the starting Input and Output addresses.

For the first motor of the last unit this Address corresponds to 3750.

The input data correspond to the Status Word, the Actual Position, the Actual

Speed and in the end the Actual Torque.

The first code line is intended to load the input word (EW3750), that starts, as

specified, with the address 3750. Once the first word has been read , it is transfered

directly inside the specified DB, which in this case is DB8500 - OP150 Runout 1

Motor, and that is a DB intended to store the informations on that motor only.

For what concerns the output data, instead, the operation is different. In this

case, the element is read from the DB and then it is transfered to the output.

For example with the line 17, the command word is load and transfered to the out-

put word 3750 (AW3750) or with line 18 the TX DATA TARGET POSITION is

load and then transfered to the DInt output AD3752. Also the other output words,

that are Speed, Acceleration, Deceleration and the two Torque Limit, positive and

negative need to be load and transfered.

There is another problem to consider, that is the PLC and the motor drives have

58

5 – Software Implementations

Figure 5.3: Transfer Motor Input and Output Data.

59

5 – Software Implementations

different endianness. This means that the bytes are swapped, so the booleans of the

Status and Control words have been disposed in the following manner to have the

signals stored in the correct way (Fig.5.4).

Figure 5.4: Motor Data Block - Input and Output data.

This DB in not optimized, so every information passed to it has an absolute

address and it is possible to point it directly during the programming. The address

corresponds to the offset, as showed in the picture.

Once the configuration has been completed, a function has been created to manage

the motor, containing code semgments written with ladder logic.

This function is called inside the previous AWL code in line 14.

There are too many segments inside the function, so only few of them are described

to better understand how input and output data are used.

As an example of the Status Word signals management, this segment line shows

how the PLC interrogates two bits sent by the drive to understand in which status

mode the drive is (Fig. 5.5).

60

5 – Software Implementations

Figure 5.5: Drive - Operating Mode.

Making reference to Fig. 2.4, depending on combination of the two signals,

represented by bit 14 and 15, the drive can be in different states:

• 1 - 0

If the Ready for Operation 1 signal passes from 0 to 1 and Ready for Operation 2

passes from 1 to 0, then the drive is ready to power on

• 0 - 1

If the Ready for Operation 1 signal passes from 1 to 0 and Ready for Operation 2

from 0 to 1, then the drive is ready enable

• 1 - 1

If both Ready for Operation 1 and Ready for Operation 2 signals pass from 0

to 1, then the drive is ready for operating

Other segments are used to check if the motor is In Standstill, if it is In Reference,

that means that the drive knows through the encoder the exact position of the motor,

and all of the other feebacks that the drive sends to the PLC. Others, again, are

used to pass fundamental parameters for the cycle, such as target position, speed,

acceleration and so on.

Inside the same DB there are also elements in which are stored the numerical values

61

5 – Software Implementations

of the parameters just mentioned.

These elements are overwritten during the operation cycles, to change their values

depending on the situations (usaually only taget positions and speed are changed).

Figure 5.6: Target Position Transfer.

Thanks to the Move block implemented by Siemens, it is possible to move a

value into a specific variable or DB element.

During the cycle operations the TARGET POSITION element, present in the mo-

tor DB, is changed depending on the position the motor needs to reach. This value

is then moved into the TX DATA TARGET POSITION that is directly transfered

to the drive thanks to the AWL code showed at the beginning of this section.

This thing is done for all the informations to be passed to the motor, so it happens

for the speed, acceleration and so on.

What explained so far it is the general management of the motors. Each motor

has its own function, that differs from the other, because each of them need to work

in different conditions and with different parameters.

5.2.2 Absolute and Relative Positioning

The main difference reguards the calculation of the Following Error. This value

is used to understand how much the motor is near to the required position and it’s

represented by a temporary variable given by the absolute value of the difference

between the actual position of the motor and the required target position.

If the motor is set to Absolute Positioning then the following error is calulated

as showed in the next picture (Fig.5.7.

62

5 – Software Implementations

Figure 5.7: Motor Following Error.

Three different positioning windows are used to specify how much the motor is

close to the request position:

• FINE POSITION: the tolerance is plus or minus 1 degree

• COARSE POSITION: the tolerance is plus or minus 5 degrees

• MOVE EXECUTED POSITION: the tolerance is plus or minus 0.5 de-

grees

If the motor is in reference and the following error is less or equal than the FINE

PRECISION, then the motor is IN POSITION(FINE), that is like saying that the

motor position is inside the FINE POSITION windows.

If he motor is IN POSITION(FINE) then the PLC elaborates the next istructions:

if the DRIVE HALT command has been given to the drive (the Halt Drive is a kind

63

5 – Software Implementations

of ‘Start ’, Fig.2.5), if the motor is IN POSITION and if the following error is less

or equal then the MOVE EXECUTED POSITON then the motor has executed the

movement.

Otherwhise if he motor is not IN POSITION(FINE) the PLC executes the other

istruction, that is veryfing if the following error is less or equal then the COARSE

POSITION. If this is so, then the motor is almost in position.

These three outputs information about the motor position are saved inside the mo-

tor DB and used during the operation cycles.

The things change if the motor is set to Relative Positioning.

As anticipated before the rotation direction of the motor is decided depending on

the shorter direction to reach the target position and further operation is done.

If the absolute value of the following error is greater than 180 (half revolution of

the motor), then:

following error = 360 − following error (5.1)

The rest is the same as the others.

5.3 Robots Management

Two SCARA robots have been used to pick the pieces from the pallets they are

placed on and to put them under the stations in which they have to be worked on.

Also in this case there is a first general implementation, equal for each one and then

a specific function for each of them, that depends on the robot and that is meant

to pass them informations to make them work in the proper way.

5.3.1 General Function Block

The first thing done was implementing a Function Block, which is different from

a normal Function, since it has its own instance DB.

However, it is like the function for what concerns the programming, so the same

procedure described before for the motors has been done.

A function block is preferable because, unlike the function of the motors previously

64

5 – Software Implementations

described, this one is implemented only for giving the basic commands to the robots,

representing the first byte of Fig. 2.6, and for receiving feedbacks from them, always

the first byte of Fig. 2.7.

Moreover, it is not necessary to create an apposite DB for each motor, for the func-

tion block creates automatically it on its own when the function is called.

Thus, this function block does not transfer all the 32 Input Bytes inside the in-

stance DB, but only the first one, corresponding to the Status Byte and does the

same for the Control Byte, whose individual bits are stored and used inside the func-

tion block and then transfered out to send commands. However the same procedure

of Fig.5.3 is utilized. An example of how these input and output signals are used is

showed in the next picture (Fig.5.8).

The first segment (Network 2) is used to give standard commands to the robot.

Considering the first intruction executed by the PLC, if all those conditions are ver-

ified, a Command Start boolean variable passes from 0 to 1. This variable is loaded

and then transfered to the corresponding input boolean of the robot, which is Start.

The second segment (Network 12) set static variables inside the instance DB, by

acquiring feedback signals coming from the robot.

If the emergency has been restored, the safety guards closed, so that their signals

pass from 0 to 1, and there is the E Stop On signal rising, then this means that the

robot has another emergency that is blocking its functioning.

This variable is then reset inside this same function block, once that signal passes

from 1 to 0.

65

5 – Software Implementations

Figure 5.8: Robot Function Block - Commands and Faults.

5.3.2 Robot Programming

Those previous input and output signals are not sufficient. Other informations are

required to make the robot move and perform a real working cycle.

The robot cycle has been implemented through its specific programming tool and is

managed by its own controller, that is the RC-700A.

This software running on the robot controller must be interfaced with the PLC,

forming a kind of ‘hand shake’, so that the PLC and the robot controller cannot

66

5 – Software Implementations

work without a mutual consent. However, the master is always the PLC, which

communicates the exact function to be performed by the robot, depending on the

application and explained later on on this subsection.

First of all it was necessary to take some points, used to define the pick and place

positions and the trajectory the robot must follow.

Considering as example the first robot present on OP150: it has two grippers and

has to pick and place two different pieces, which have different dimensions.

Thus, several points have been taken for each possible combination of gripper and

type of piece.

A total of 21 points have been taken, both unlocking the brakes of the axes or mov-

ing the specified axis in jog mode through the robot programming tool to have more

accuracy.

To these points have then been assigned specific names, in order to be used for

programming the cycle.

The robot program consists of a loop cycle, in which the robot waits the func-

tion to be performed and that is passed by the PLC through a DInt variable called

Mission Code.

1 Do

2

3 Select Case nStart

4

5 ’Pick and Place on Pallet

6 Case 100

7 Pick Place on Pallet

8

9 ’Pick from Pallet

10 Case 101

11 Pick From Pallet

12

13 ’Place on Pallet

14 Case 112

15 Place on Pallet

16

17 ’Pick from Pallet

18 Case 201

19 Pick From Pallet

20 .

21 .

22 .

23

24 ’Place on Runout 1

25 Case 1101

26 Place on Runout 1

67

5 – Software Implementations

27

28 ’Pick and Place on Runout 2

29 Case 2000

30 Pick Place on Runout 2

31

32 ’Pick From Runout 2

33 Case 2002

34 Pick From Runout 2

35

36 ’Place on Runout 2

37 Case 2101

38 Place on Runout 2

39

40 Default

41 CycleSelection

42

43 Send

44

45 Loop

46

47 Fend

Once the robot is in the loop cycle, a Select Case have been implemented, so that,

depending on the mission code passed by the PLC, the robots executes one program

rather than another.

The nStart corresponds to the function number to be performed and is equal to

the value passed through the mission code.

Let’s consider the following lines.

1 Function Pick From Pallet

2

3 Mem Mission Status = 1

4

5 nStart = 0

6

7 Print ”Pick from pallet”

8

9 ’Intake

10 If InW(Mission Code) = 101 Then

11

12 Mem Mission Status = 2

13

14 Pass P Pick Index Pallet G1 Int :Z(Z High)

15

16 Wait Sw(DI Safe Pos Index Pallet) = On And Sw(DI Free Station Index Pallet) = Off

17

18 Mem Out From Pallet = False

19

20 Mem Mission Status = 3

21

22 Move P Pick Index Pallet G1 Int

23

24 Mem Mission Status = 5

25

26 Close Gripper 1

27

28 Mem Return Mission Code = 101

29

68

5 – Software Implementations

30 Mem Mission Status = 6

31

32 Pass P Pick Index Pallet G1 Int :Z(Z High)

33

34 Mem Out From Pallet = True

35

36 ’Exhaust

37 ElseIf InW(Mission Code) = 201 Then

38 .

39 .

40 .

41 EndIf

42

43 Mem Mission Status = 9

44

45 Fend

This function, as the name suggests, is that intended for the robot to pick up a piece

from the pallet.

The robot enters this function each time the PLC sends one of the two mission

codes, 101 for intake or 201 for exhaust (later in this section is explained how).

The robot has to move two tipology of pieces, that differ both for dimension and for

the station they have to be worked on.

So it is necessary to distinguish the two situations, since also the safety conditions

and the trajectory of the robot change.

In case the first mission code is sent, the function executes the following instructions:

• Line 3 - The robot sends an output, called Mem Mission Status (2.7). This

DInt variable is used to inform the PLC at what point of the mission the robot

is and its value ranges from 0 to 9 (some are left as spare).

– 1 : Pick in progress

– 2 : Waiting Pick

– 3 : Move down for pick

– 5 : Closing gripper

– 6 : Move up for pick

– 9 : Pick done

In this case the robot sends a mission status equal to 1, to inform that the

picking is in progress.

69

5 – Software Implementations

• Line 14 - Pass command is used to perform a ‘Point to Point’ motion. From its

previous position, the robot moves to the pick point, in this case P Pick Index

Pallet G1 Int .

A point is composed of three coordinates, X,Y and Z. In this case the pick

point (previously saved with the exact picking coordinates) is modified, so

that the robot moves exactly above the pick-up point, without moving to the

previously saved Z coordinate, that is set to another value, called Z High.

This is done for mantaining a certain cycle time.

The robot is already in position before being able to pick up the piece. When

the safety conditions, received as inputs and sent by the PLC, are satisfied, so

that the robot can pick, Line 22 completes the movement thanks to a Move

command, that moves the robot using a linear interpolation.

• Line 16 - The robot waits untill the safety conditions are reached.

• Line 28 - This is an echo mission code. It is used as double check to control

that the mission has been completed and it is used during the robot cycle (see

later) to perform the next operation.

In order for the two systems to communicate with each other, a PLC function is

necessary, function that is specific for each robot, since the operations they have to

perform are different.

The first part of it is exactly like the motor one, or the function block used for the

general management of the robots.

So it is necessary to read the input data and store them inside a specific DB and

transfer output data directly from the data block to the robot.

Then it is necessary to create the effective cycle of the robot, which has been done

in SCL language.

70

5 – Software Implementations

1

2 //

3 // CYCLE CODE 101 − PICK FROM PALLET (INTAKE TIPOLOGY)

4 //

5

6 IF ”DB8550 − OP150 ROBOT 7250AZ01”.REGISTER.STEP CYCLE > 0 AND ”DB8550 − OP150 ROBOT

7250AZ01”.REGISTER.CYCLE CODE = 101 THEN

7 CASE ”DB8550 − OP150 ROBOT 7250AZ01”.REGISTER.STEP CYCLE OF

8 1: // INITIALIZATION

9 ”DB8550 − OP150 ROBOT 7250AZ01”.REGISTER.MISSION CODE := 0;

10

11 IF ”DB8550 − OP150 ROBOT 7250AZ01”.REGISTER.MISSION CODE = ”DB8550 − OP150 ROBOT

7250AZ01”.REGISTER.MEM RETURN MISSION CODE THEN

12 ”DB8550 − OP150 ROBOT 7250AZ01”.REGISTER.STEP CYCLE := 10;

13 END IF;

14

15 10: // PICK FROM PALLET

16 ”DB8550 − OP150 ROBOT 7250AZ01”.REGISTER.MISSION CODE := 101;

17

18 IF ”DB8550 − OP150 ROBOT 7250AZ01”.REGISTER.MISSION CODE = ”DB8550 − OP150 ROBOT

7250AZ01”.MEM RETURN MISSION CODE THEN

19 ”DB8550 − OP150 ROBOT 7250AZ01”.REGISTER.STEP CYCLE := 40;

20 END IF;

21 .

22 .

23 .

24

25 40: //

26 ”DB8550 − OP150 ROBOT 7250AZ01”.REGISTER.STEP CYCLE := 1000;

27

28 1000: // END CYCLE

29 ”DB8550 − OP150 ROBOT 7250AZ01”.REGISTER.STEP CYCLE := 0;

30 ”DB8550 − OP150 ROBOT 7250AZ01”.REGISTER.CYCLE CODE := 0;

31 ”DB8550 − OP150 ROBOT 7250AZ01”.REGISTER.MISSION CODE := 0;

32

33 END CASE;

34

35 END IF;

The REGISTER.CYCLE CODE corresponds to the mission code to be passed to

the robot. However it is called in another way to distinguish it from the value effec-

tively sent to the robot, which is the REGISTER.MISSION CODE instead.

This value is set depending on the conditions.

Let’s consider as example the same mission code as before, so the mission code num-

ber 101, corresponding to the pick from pallet for the intake tipology.

This mission code is set if the the gripper is open, there is the consent to pick from

pallet and most importantly there is a piece present on the pallet.

If these conditions verify, the cycle code is set to 101 and the REGISTER.STEP CYCLE

is set to 1.

This last is used to sequence the cycle through a select case.

• Line 8 - If the step cycle register is equal to 1 (start cycle) , the mission code

sent to the robot is set to 0.

71

5 – Software Implementations

• Line 11 - If the mission code value is equal to the REGISTER.MEM RETURN

MISSION CODE, received as echo from the robot, the step cycle is updated

and set to 10.

• Line 15 - Now that the step cycle is equal to 10, the mission code is set to

101, that corresponds to the pick from pallet explained before.

Thus, the robot perform all its operations, until the mission code echo (Line

28 of the previous lines describing the pick function) is set qual to the mission

code.

This means that the robot has effectively picked the piece from the pallet.

At this point the step cycle is updated to 40 (spares are left).

• Line 25 - The step cycle is set equal to 1000, that corresponds to the end of

cycle, where all the registers are set equal to 0.

There is a cycle like this for each function programmed inside the robot.

72

5 – Software Implementations

5.4 Piece and Pallet Identification

This particular section is dedicated to the description of how the data structures,

containing the informations on the pieces present on the pallets and on the pallets

themselves, have been conceived and how these informations are moved throughout

the assembly line so that each station knows exactly which operations the piece

must be subjected to.

The first module of Fig. 2.1 is an interface module to connect three antennas,

whose function is to read/write the pallet tags present on each pallet. These pallet

tags are read/write memories used to store informations. However, since their writ-

ing cycles are limited, the informations are not stored inside of them.

To solve this problem, the now well known data blocks (DBs), togheter with appro-

priate functions, have been used.

5.4.1 Data Blocks Used

The first DB is the Pallet one, which is composed of an array of 200 elements, going

from 0 to 199. Each element is composed as follows:

ID Tag It is an array of 7 chars to form a string containing the name
of the tag present on the pallet

Pallet
type

It is a DInt variable to distinguish between an Intake pallet
and an Exhaust one. A boolean variable would have been
sufficient, but an integer variable has been preferred for any
possible addictions of products

Index
Data

It is a DInt variable used to store the element number of the
Process DB. This variable is used to associate the pallet
with the informations on the piece present on it and on the
processes it needs to be subjected at

Table 5.1: Pallet DB.

73

5 – Software Implementations

Figure 5.9: Pallet DB - Data Block Structure.

In picture 5.9 is represented how the previous data block has been implemented

and looks exactly like the motor data block described before.

In this case, however, each element has exactly the same structure, that has been

explained in the table 5.1.

To avoid creating the same structure for each element, the so called PLC data

types have been used.

Thanks to this functionality it is possible to define a general structure that can be

used multiple times in the program, so that it is not necessary anymore to specify

the same structure for each of the 200 elements of the data block. Moreover if some-

thing changes, it is only necessary to change the data type once.

There are two of them, the first is the ID TAG, which contains an array of 7 chars.

The second is the INF PALLET that contains the previous data type, togheter with

the other two elements, that are the PALLET TYPE and the INDEX DATA.

The following data blocks have been implemented exactly in the same way.

74

5 – Software Implementations

The Process DB is intended for storing all the informations necessary for the

proccessing of the piece. Even in this case there are 200 elements, each of them

composed in the following way:

ID It is an array of 32 chars to form a string containing the
piece identification number, generated the first time the
piece reaches the first antenna of the assembly line

Product type Same description made for the Pallet type

Exclusions There are as many boolean variables as the number of
operations the piece must be subjected to, for a total
of 18 booleans. These variables are supposed to exclude
some operations. For example, if tests are not required
for an Intake Product, the last three booleans, corre-
sponding to OP150, OP160 and OP170, will be equal to
1

Process It is a DInt variable used to pass the process to be per-
formed and that corresponds to the operation number
(explained later)

State Process It is a DInt reduntant variable hat has the same value
as the previous one and that is usefull to double check
in case of errors

Station Reject It is a DInt variable to indicate the number of station
that has produced a reject

Reject Type It is a DInt variable to distinguish all the possible rejects
that the assembly line can generate

Table 5.2: Process DB.

There is another DB to describe before explaining how informations are moved

and this last one is the Configuration DB.

It is composed of as many elements as the number of Operations, each of them

75

5 – Software Implementations

composed as showed in the next table.

Input
Code

It is an array of 5 DInt. These array’s elements are Con-
sent values that are written to specify which operation to
perform. Some of them are left as spares or used to calibrate
the stations with appropriate Master pieces.

Output
Code

It is an array of 5 DInt, whose values are written to indicate
the next operation to be performed.

Table 5.3: Configuration DB.

The input code is essentially the output code of the previous operation. This means

that the input code is a sort of authorization to process a piece.

When a piece reaches for example the operation 150, if the input code is equal to

150, the piece is processed, otherwise the piece continues moving untill the right

operation is performed.

If the piece is processed, then the operation set the output code, that will be, exactly,

the next input code.

When the pallet reaches the first operation, however, needs to be initialized with

these codes and all the informations stored have to be reset.

For these reasons other data blocks are necessary: these ones store preset values to

initialize the others data blocks described untill now to a preset value.

5.4.2 Informations Transfer

The pallet moves along the line through a conveyor belt untill the piece has to be

worked.

At this point the pallet is stopped through a cylinder, called Index Cylinder and

showed in the next picture (Fig. 5.10), and slightly lifted by another cylinder (unseen

since it is under the pallet) untill the pallet is blocked against a specific structure

designed to constrain it, so that is possible to read the antenna and understand the

operations the piece must undergo.

76

5 – Software Implementations

Figure 5.10: Pallet block - Reading the antenna.

Now that the data block have been described, it is possible to explain how the

functions to read and write informations have been designed. and the order in which

they are called.

• 1 - Read Pallet Tag

When the pallets arrive in front of any of the antennas distributed along the

assembly line, the antennas read the tag identification name, provided by the

tag pallet itself through 8 Bytes.

To bypass the writing cycles problem of the pallet tags, this identification

name is associated directly to the pallets they are mounted on.

Each pallet has a physical number impressed on it and this number corre-

sponds to the number of the element inside the Pallet DB mentioned before.

The elements go from 0 to 199, so the pallet number 1 corresponds to the

element 1 inside the data block.

The first time a new pallet enters the line (this operation is made only once)

the pallet tag must be read, converted and then stored inside the ID Tag array

of chars (5.1) of the element corresponding to the pallet number.

77

5 – Software Implementations

This is the objective of the next function, written in SCL (Structured Control

Language) and that, unlike the AWL, is a high-level textual programming code

based on Pascal.

Figure 5.11: Read Pallet Tag Function.

78

5 – Software Implementations

This function, showed in Fig. 5.11, makes use of indirect addressing, imple-

mented with lines going from 10 to 12 through the PEEK instruction, that

permits to read a certain memory address.

So it is necessary to specify which memory address to read, in this case an

Input Area, indicated by the 16#81, and the byteOffset, that is the byte to

read. This function is general, so the byteOffset is passed from the outside

and corresponds to the considered antenna’s starting address.

The last information to specify is the dBNumber, that is equal to 0 since it is

not a DB the function is reading from.

A simple for cycle is used to convert each byte read into a char.

The function returns also a value, that is 1 if the antenna reads something,

or -1 if it reads nothing, used to call (or not) the other functions. During the

manual association it is also necessary to specify the pallet type, contained

inside the same data block too.

Once the association has been made, every time a pallet reaches an antenna

another function is called, that searches in which of the n pallets is stored the

same array of chars read from the antenna.

• 2 - Search ID Tag

If the previous function return value is 1 this other function is called.

This one transforms the incoming array of chars, read from the previous func-

tion, into a string and does the same for the arrays of chars of all the elements

present in the Pallet DB. If the two strings match, the function returns the

element number through a Dint variable, which corresponds, again, to the

pallet number.

Also in this case a return value is generated to continue.

Moreover the pallet number is used to associate the measures effectuated and

the results obtained, that are stored in a separate data block, since they need

to be sent to a server.

• 3 - Search Free Position inside the Process DB

This function works similarly to the previous one and it’s called only when the

pallet enters the line and meets the first antenna.

79

5 – Software Implementations

This one, instead, generates a null string from an array of 32 chars present

inside the Initialization Variable DB and then compares it with the strings

generated from all the ID array of chars inside the Process DB . If the two

strings match, the element number is returned.

That element stores, in addition to the piece identification number, all the

informations about the processes the piece must be subjected to.

The element number generated by this function is then moved inside the Index

Data variable of the pallet.

This is the way a piece is associated to the pallet it is transported from.

• 4 - Process Authorization

This function has been implemented to check whether the piece can be pro-

cessed or not.

The Process variable inside the Process DB (5.2) stores a value indicating

exactly the process that the piece must undergo, that is written after the pre-

vious operation is completed.

Each operation has its processing code associated to it. For example OP150

has value 150, that is exactly equal to the operation number, and so on for all

the others.

Inside each element of the Configuration DB (there are as many elements as

the operations, so there is one element for OP150, one for OP160 and so on)

there is the so called Input Code array (5.3). The elements of this array store

the Process values of the corresponding operation. Thus, always considering

OP150, the first element of the array is equal to 150, while the others are left

as spares.

When the pallet reaches a whatsoever antenna along the line, the Process

Authorization function checks all the elements inside the Input Code array

of the element corresponding to the OP the antenna is mounted on, and ver-

ifies if one of them (in the previous example there is only the first element of

the array different from 0) matches the value of the Process value inside the

80

5 – Software Implementations

Process DB. Moreover the function checks if inside the Process DB the Process

is equal to the State Process (they have to be equal) and if the piece has not

been rejected in some previous operations.

If this happens then the return value of the function is set to 1, the effective

operation cycle starts and an output code is generated, whose value is taken

from one of the elements of the Output Code array inside the Configuration

DB. Similarly these values correspond to the suboperations the piece must

undergo after the actual process is completed.

When the process is actually completed the output code, generated previously

by the Process Authorization, overwrites the Process and the State Process

values inside the Process DB, and everything starts all over again when the

next antenna is intercepted.

5.5 SCADA System

As anticipated before, with an ad-hoc Visual Basic Implementation it is possible to

interact directly with the machine.

Thanks to a free library called LibNoDave it is possible to read and write infor-

mations from and into a whatsoever data block (it is also possible to write input

and output directly) created inside the PLC.

This is a very powerful instrument, because the operator can interact with the ma-

chine without knowing nothing of PLC programming.

Moreover it is very easy to perform diagnostics or understand what is happening

inside the machine.

Before starting with the general implementation of the software, it is worth explain-

ing the data blocks the program interacts with.

• Alarms and Warnings : this data block is dedicated to sharing with the oper-

ator all the informations reguarding the status of the machine.

For example each time a safety guard is opened, or an emergency pushbutton

is pressed, a station is on fault, a profinet anomaly occurs, and so on, a boolean

variable is set inside this specific DB.

81

5 – Software Implementations

The program can read the set variable and the operator knows exactly which

one of the doors is opened, so that it’s easier for him to perform his job.

This data block is only read.

• PC Input Int : it is a read only data block that is meant to send to the

program informations that are represented by Integer variables, such as the

integer measurement results.

• PC Input Real : it is the same as the previous one, but this time all the elements

are represented by Real variables.

• PC Output Int : this db can be either written or read and is supposed to write

all the informations that are represented by Integer values.

• PC Input Real : this one is also a read/write DB, but is for reading/writing

real data inside the data block.

Thanks to this one it is possible for the operator to choose all the setting

parameters for the devices present inside the unit.

It is possible to insert the velocity of the motors, the positions the motors have

to reach, the limits the tests must fall into, and so on.

First of all it is necessary to create a communicatication with the PLC and this has

been done creating another specific library to adapt the libnodave one to the PLC

programming method used.

1 Imports libnodave

2 Public Class PLC Siemens : Implements IDisposable

3

4 Private Type Connection PLC As libnodave.daveOSserialType

5 Private Interface Connection PLC As libnodave.daveInterface

6 Private Connection PLC As libnodave.daveConnection

7 Private Const N Max Dati As Integer = 200

8 Private Memory Buffer(N Max Dati − 1) As Byte

9 Private Result As Integer

10 Public Connected As Boolean = False

11 Private Debug As Boolean = False

12 .

13 .

14 .

15

16 Public Sub New(Porta As Integer, Indirizzo As String, Rack As Integer, Slot As Integer, Optional In Debug As Boolean =

False)

17 Try

18

19 If In Debug = False Then

82

5 – Software Implementations

20 Type Connection PLC.rfd = libnodave.openSocket(Porta, Indirizzo)

21 Type Connection PLC.wfd = Tipo Connessione PLC.rfd

22 .

23 .

24 .

25 Else

26 Debug = True

27 Connesso = True

28

29 End If

30

31 Catch ex As Exception

32 RaiseEvent On Error(”Comunication PLC − Connection Error”)

33

34 End Try

35

36 End Sub

So a new Costructor is defined specifying its parameters.

The parameters are the TCP port (Porta), the IP address of the PLC (Indrizzo),

the Rack, the Slot and an optional variable used to simulate the program without

being physically connected to the PLC, setting all to Debug mode.

Togheter with the constructor, also the methods have been designed, that are the

actions performed to read and write inside the data blocks and that are called when

needed during the program.

Also the methods make use of the libnodave functions and an example is showed in

the next lines for what concerns a reading of an Int varibale.

1 Public Sub Read(Area Dati As Area Dati Enum, n DB As Integer, Indice As Integer, n Dati As Integer, ByRef Dati() As Int16)

2 Try

3 If Debug = False Then

4

5 Dim i As Integer

6 Dim Len As Integer

7 Dim N Byte As Integer

8 Dim Indice Lettura As Integer

9 Dim Indice Scrittura As Integer

10

11 Indice Lettura = Indice ∗ 2

12 Indice Scrittura = Indice

13

14 Len = n Dati ∗ 2

15 N Byte = Len

16

17 If N Byte > 0 Then

18

19 While N Byte > 0

20

21 If N Byte > N Max Dati Then

22 N Byte = N Max Dati

23 End If

24

25 Select Case Area Dati

26

27 Case Area Dati Enum.DB

28 Result = Connessione PLC.readBytes(libnodave.daveDB, n DB, Indice Lettura, N Byte,

Memory Buffer)

83

5 – Software Implementations

29

30 If Result = 0 Then

31 For i = 0 To N Byte / 2 − 1

32 Dati(Indice Scrittura + i) = Connessione PLC.getS16

33 Next

34 Else

35 RaiseEvent On Error(”Comunication PLC − Error Reading DBW Integer”)

36 Exit Sub

37 End If

38

39 .

40 .

41 .

42 Case Area Dati Enum.A

43 Result = Connessione PLC.readBytes(libnodave.daveOutputs, 0, Indice Lettura, N Byte,

Memory Buffer)

44 If Result = 0 Then

45 For i = 0 To N Byte / 2 − 1

46 Dati(Indice Scrittura + i) = Connessione PLC.getS16

47 Next

48 Else

49 RaiseEvent On Error(”Comunication PLC − Error Reading AW Integer”)

50 Exit Sub

51 End If

52

53 End Sub

In this case a select case has been used that is intend to select the memory area

that needs to be read. In the previous lines there is an example for reading a dat-

ablock (Area Dati DB) and an output area (Area Dati Enum A).

Thus, the properties of the method are used to specify which memory area to read,

so that the case is selected, the number of DB (if it is an input or output area this

number is set equal to 0), the starting element from where to read (Indice), the

number of elements to read (n Dati) and finally a buffer to store the results.

Now it is finally possible to import both the two libraries in the program, so that

a new communication can be enstablished and informations can be read and written.

1 PLC = New OTS.PLC Siemens(102, ”192.168.0.1”, 0, 1, Debug)

In this case, the data corresponding to the PLC we are dealing with, are passed as

parameters to the constructor to create the new object PLC, that has:

• Port: 102

• IP: 192.168.0.1

• Rack: 0

84

5 – Software Implementations

• Slot: 1 (this is always 1 for 1500 PLC series)

• Debug: initialized at False

When the connection is established the programm reads automatically all the data

blocks described previously in this section:

1 Public Sub LetturaDB8300()

2

3 PLC.Read(OTS.PLC Siemens.Area Dati Enum.DB, 8300, 0, 100, DB8300)

4

5 End Sub

The previous lines are responsible for reading the first 100 elements of the data block

number 8300, that is the one storing all the Alarms and Warnings of the last unit,

but there is a method like that for each data block to read.

The read data are stored in the buffer DB8300 that has been declared as an array

of 100 elemets.

Then a graphical interface has been created so that it is possible to see what hap-

pens and select what to do.

Let’s have a look at the next picture (Fig.5.12).

Figure 5.12: Supervision Layout.

85

5 – Software Implementations

Thanks to this interface the operator has always everything under control.

The red bar on the upper part of the layout represents the safety guard actually

open and the same problem is written also in the lower display bar, togheter with

other problems that are happening.

In this case for example it is showed that a circuit breaker tripped, so that the

operator can go on the cabinet and close it (the cabinet is really big, so this is a

huge help), and that some of the devices are in fault or not ready.

By clicking on the Parameter button, it is possible to insert and modify the pa-

rameters for the various operations. In the next picture is represented an example

for the first of the two runout motors. In Fig. 5.13 it is possible to specify three

Figure 5.13: Motor Parameters Settings.

different speeds and the start cycle position, by clicking on the white space and

inserting a value on the keyboard.

86

5 – Software Implementations

1 Private Sub lbl Par Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

2 lbl Speed Auto.Click, lbl Speed Manu.Click, lbl Speed Jog.Click, lbl Start Pos .Click

3

4 Try

5 .

6 .

7 .

8 If LoginSuceeded Then

9 tastieraNum(sender, sender.tabindex, 8313, True, PermissionParametersReal DB8313,

limInfReal DB8313(sender.tabindex), limSupReal DB8313(sender.tabindex))

10 End If

11

12 Catch ex As Exception

13

14 MsgBox(ex.Message, vbCritical)

15

16 End Try

17

18 End Sub

Thanks to these particular lines it is possible to write directly on the specific element

of the DB8313, which is the one where are stored the real values.

tastieraNum is a particular module that permits to send the desired value using

the tabindex associated to an object.

Each graphical object created inside Visual has an associated tabindex. So it is sim-

ply necessary to set the tabindex of each of the rectangular showed in the picture

equal to the element number whose value has to be changed.

Moreover also the actual position of the motor is visible in the grey bar below.

This is a only readable information, so it is not possible to modify it.

1 lbl Speed Auto.Text = Math.Round(DB8313(20), 3)

In this case it is only necessary to indicate which element, stored inside the buffer

(in this case DB8313), to read.

The element number 20 corresponds to the automatic speed of the motor, which is

round to the third decimal.

This supervision application is very usefull also for configuring more general pa-

rameters, such as the Input and Output codes stored inside the Configuration

DB (see 5.4.1).

87

5 – Software Implementations

Figure 5.14: Supervision - normal configuration above, test-skip configuration below

The previous example showed in Fig. 5.14 (image above) is the normal configu-

ration for an intake product.

In this case it is possible to see that the the dowel pin insertion is not performed (it

is only necessary for exhaust pieces), so all the input and output codes are set to 0,

while the other operations need to be performed.

If one does not want to perform the EOL and Leak tests, it is simply necessary to

change the output code of the Runout operation. In this case the piece goes directly

to the marking station, where it will not be marked, however, since there are not

the conditions to mark it as good.

The last operation, which is the 180, and that is not described in this work, is the

one intended for unloading the pieces. This one sets the output code equal to -1 and

not to 0, since 0 is a value that can be easily set by the PLC if any programming

errors exhist.

This has been done to better understand the problem, if any of that occurs.

The other elements inside the tables, which are set to 0, are spare codes. These are

particularly usefull, for example, in conditions where the stations have to be cali-

brated with particular pieces, called master pieces, that are, in general, monolithic

pieces with tighter tolerances.

88

Chapter 6

Conclusions

The main objective of this work was to ensure that all the devices were configured

and managed to make the various stations, present in the final part of the machine,

operate correctly.

Through the various implementations (see chapter 5) and the way in which the

operating cycles have been programmed, it was possible to have stations working

correctly as specified by the client, respecting the requested cycle time of 9 sec/pz.

The bottleneck was mainly represented by the EOL and Leak stations, since these

tests require a lot of time to be executed and this is the reason why there is more

than one station.

As anticipated, moreover, the final client is still working on internal tests to under-

stand the threshold values and pressures to perform the Leak test.

Thanks to the way in which the informations are stored and transmitted, how-

ever, a flexible software has been created, which allows to produce other eventual

tipologies of pieces (if possible with eventual mechanical retooling) and, most im-

portantly, simply by using the supervision program implemented in Visual Basic, it

is possible to decide the operations to be performed, excluding those that are not

necessary, usefull for example when it is necessary to calibrate a particular station.

Moreover the supervision program it is a great help for the operator, that can see

the results of the various tests and set the parameters of the devices intended to

perform them.

There is still some work to be done, like adding particular pages inside the Su-

pervision program to calculate the efficiency of the unit and add particular requests

from the client, such as a torque vs displacement graph during the EOL test, to

89

6 – Conclusions

better understand the frictional effect during all the movement of the rotor, and

other parameters to be controlled and displayed.

Thus as future works it is possible to implement these features togheter with some

modifications on the operating cycles, to try to reduce the cycle time a bit more,

for example making up for the speed of the motors, speeding up the robots and the

various pick and place operations instead.

90

Bibliography

[1] Kirk VanGelder, ”Fundamentals of Automotive Technology”, Jones and Bartlett

Learning, 24 feb 2017.

[2] “Reciprocating ICE components and geometrical properties”, Dipartimento di

Energia, POLITECNICO DI TORINO

[3] W. Bolton, ”Programmable Logic Controllers”(5th Edition), Newnes.

[4] PLC Manual’, available at http://www.plcmanual.com/plc-programming

[5] “Study of operation of wagon tippler and side arm charger” , available

https://www.scribd.com/document/321868948/study-of-operation-of-wagon-

tippler-and-side-arm-charger

[6] SIMATIC ET 200SP - System overview, available at

https://w3.siemens.com/mcms/distributed-io/en/ip20-systems/et-

200sp/system-overview/pages/default.aspx

[7] CPX Terminal with CPI system, available at

https://www.festo.com/net/SupportPortal/Files/404639/CPX-CP 2005-

07a 539297i1.pdf

[8] Rexroth IndraDrive Drive Controllers MPx-02; MPx-03; MPx-04, Bosch Rexroth

AG.

[9] Robot Controller RC700 / RC90 Option, available at

http://www.epson.com.cn/robots/admin/uploads/product catalog/files/IO RC

700 RC90 r4.pdf

[10] Roundtest (Roundform Measuring Instruments), available at

https://www.mitutoyo.co.jp/eng/products/menu/QuickGuide Roundtest.pdf

[11] “Cam phaser locking pin assembly guide”, available at

https://patents.google.com/patent/US20030196621A1/en

[12] User Manual ATEQ D520, available at https://atequsa.com/wp-

content/uploads/2014/07/PREMIER-D-USER-MANUAL-ENGLISH.pdf

[13] ”Calculation of Leak amount”, available at http://www.fukuda-

jp.com/en/msz/pdf/Calculation of leak amount(E) 01.pdf

91

Bibliography

[14] User Manual ATEQ F620, available at https://atequsa.com/wp-

content/uploads/2014/07/PRIMUS-USER-MANUAL-ENGLISH.pdf

92

	Acknowledgments
	Introduction
	Products assembled
	Unit description
	PLC Programming
	Program Blocks

	Hardware Configuration
	Decentralized Systems
	Motors
	Robots
	Other Devices
	Press
	Measurement Instruments
	Laser and Dataman

	Operation 150
	Dowel Pin Insertion
	Cycle Description
	Feeder Management

	Runout Test

	Operations 160 and 170
	Operation 160
	EOL Test
	Test cycle

	Leak Test

	Operation 170

	Software Implementations
	Safety Management
	Motors
	General Management
	Absolute and Relative Positioning

	Robots Management
	General Function Block
	Robot Programming

	Piece and Pallet Identification
	Data Blocks Used
	Informations Transfer

	SCADA System

	Conclusions
	Bibliography

		Politecnico di Torino
	2018-10-16T19:52:05+0000
	Politecnico di Torino
	Luigi Mazza
	S

