POLITECNICO DI TORINO

Collegio di Ingegneria Civile

Corso di Laurea Magistrale in Ingegneria Civile Geotecnica

Tesi di Laurea Magistrale

BIM e interoperabilità con il programma di calcolo strutturale Advance Design

Relatore

Prof. Anna Osello

Correlatore

Ing. Francesca Maria Ugliotti Ing. Francesco Tondolo

> **Candidato** Cristiano Rizzo

Ottobre 2018

Abstract

L'obiettivo della tesi è valutare l'interoperabilità tra software nell'ambito strutturale mettendone in evidenza i limiti e le soluzioni adottate. Il caso studio analizzato è un complesso scolastico, nel quale è stato eseguito un rilievo architettonico, rilevando anche aspetti riguardanti il Facility Management e un rilievo strutturale, dove è stata adottata una metodologia al fine di inserire nel modello BIM tutti di dati raccolti. Viene mappato tutto il processo dal modello architettonico all'analisi della struttura sul software di calcolo, evidenziando vantaggi e svantaggi della progettazione BIM.

Indice

Lo studio si inserisce nell'ambito del progetto TOBIM di digitalizzazione degli edifici pubblici della Città di Torino ed è finalizzato ad indagare l'interoperabilità tra software di modellazione e di calcolo per le verifiche di tipo strutturale.

A partire dal caso studio del complesso scolastico di Via Cecchi è stato testato un metodo di lavoro atto a massimizzare il trasferimento delle informazioni verso software di calcolo strutturale diversi.

La presente tesi sviluppa le analisi di interoperabilità con il software Advance Design mentre la tesi di Laura Muratore "BIM e interoperabilità con il software di calcolo strutturale Midas" approfondisce l'utilizzo del software Midas Gen.

L'approccio di ricerca adottato è sinergico, pertanto sono presentate valutazioni comparative tra i due software.

Abstract		3
Capitolo 1 -	– Introduzione	21
Capitolo 2 -	– Modellazione BIM per il calcolo strutturale	23
Capitolo 3 -	- Metodologia applicata al caso studio	
Capitolo 4 -	- Rilievo architettonico e modellazione	29
4.1. Me	etodologia rilievo	
4.2. Do	ocumentazione di partenza	
4.3. Cr	reazione modello architettonico pre – rilievo	
4.4. Ri	ilievo in situ	
4.4.1.	Rilievo geometrico	
4.4.2.	Rilievo fotografico	
4.4.3.	Indagine conoscitiva schema strutturale	41
4.4.4.	Terminali d'impianto termico e dispositivi d'illuminazione	
4.4.5.	Rilievo di dettaglio infissi	
4.4.6.	Codifica locali	46
4.5. Ela	aborazione dati raccolti e modellazione	

4.5	.1.	Inserimento dei locali	46
4.5	.2.	Modellazione infissi e terminali d'impianto termico	47
4.5	.3.	Implementazione modello	52
Capitolo	5 -	Rilievo strutturale e modellazione	54
5.1.	Cer	nni teorici	54
5.1	.1.	Normativa di riferimento	54
5.1	.2.	Prove strutturali	59
5.2.	Pro	cedura utilizzata e obiettivi	64
5.3.	Ana	alisi storico – critica	66
5.4.	Inte	egrazione strutturale modello BIM	69
5.4	.1.	Modello strutturale	69
5.4	.2.	Criticità carpenterie – rilievo architettonico	78
5.4	.3.	Valutazione livelli di dettaglio tramite BIM	81
5.5.	Pro	gettazione BIM rilievo strutturale	85
5.5	.1.	Criticità e soluzione individuata	86
5.5	.2.	Descrizione soluzione adottata	86
5.6.	Pro	va Pacometrica	93
5.6	.1.	Piano delle indagini	94
5.6	.2.	Rilievo in situ	99
5.6	.3.	Analisi dei dati	. 102
5.6	.4.	Inserimento armature rilevate	. 108
5.1.	Pro	va Sclerometrica	. 113
5.2.	Val	utazione del livello di conoscenza raggiunto	. 114
Capitolo	06-	Interoperabilità dei software	. 117
6.1.	Ric	erca software di calcolo strutturale	. 117
6.1	.1.	Advance Design 2018	. 118
6.1	.2.	Midas Gen 2018	. 122
6.2.	Ind	ividuazione punti di attenzione per l'interoperabilità	. 123
6.3.	Ecc	entricità	. 124
6.3	.1.	Advance Design	. 128
6.3	.2.	Midas Gen	. 130

6.3.3.	Incidenza eccentricità	
6.4. Zor	na rigida nodo trave – pilastro	
6.4.1.	Individuazione criticità di modellazione	
6.4.2.	Ricerca soluzioni	
6.5. Sol	laio	
6.5.1.	Individuazione punti di attenzione legati all'esportazione	
6.5.2.	Sovrapposizione carichi trave – solaio	141
6.5.3.	Ricerca soluzioni al problema sovrapposizione	147
6.5.4.	Implementazione soluzione adottata	
6.5.5.	Verifica incidenza soluzione adottata	
6.6. Ap	plicazione dei carichi	177
6.6.1.	Advance Design	
6.6.2.	Midas Gen	
Capitolo 7 -	Modellazione e analisi strutturale su software di calcolo	
7.1. Ch	eck modello ed esportazione su software di calcolo	
7.1.1.	Controllo analitico	
7.1.2.	Controllo peso degli elementi strutturali	
7.2. Op	erazioni post – esportazione	
7.2.1.	Advance Design	
7.2.2.	Midas Gen	
7.3. Ap	plicazione carichi e calcolo sollecitazioni	
7.3.1.	Cenni teorici	
7.3.2.	Calcolo carichi agenti	
7.3.3.	Advance Design	
7.3.4.	Midas Gen	
7.4. Ve	rifica di alcuni elementi strutturali	
7.4.1.	Cenni teorici	
7.4.2.	Advance Design	
7.4.3.	Midas Gen	
Capitolo 8 -	Risultati	
8.1. Mo	odellazione strutturale BIM	

8.2.	Prove strutturali in situ	229
8.3.	Interoperabilità con il software di calcolo	230
8.4.	Definizione tempi operativi	232
8.5.	Valutazione vantaggi metodologia BIM	238
8.5	.1. Advance Design	239
8.5	.2. Midas Gen	240
Capitolo	9 – Conclusioni	241
Allegato	o A – Relazione specialistica rilievo strutturale	242
Allegato	B – Script Visual Basic	254
Bibliogr	afia	263
Sitograf	Ĩa	263

Indice delle tabelle

Tabella 1. Livelli di conoscenza e fattori di confidenza per edifici in c.a. o in acciaio	57
Tabella 2. Livelli di rilievo e prove per edifici in c.a	58
Tabella 3. Materiale di archivio	67
Tabella 4. Schema pilastri edifici 1-2-3	71
Tabella 5. Definizione livelli di posizionamento elementi strutturali	72
Tabella 6. Estratto abaco pilastri strutturali	74
Tabella 7. Rappresentazione analitica elementi in Revit	75
Tabella 8 Assegnazione massa al pilastro di riferimento, edificio 1	95
Tabella 9. Assegnazione massa al pilastro di riferimento, edificio 2	95
Tabella 10. Assegnazione massa al pilastro di riferimento, edificio 3	96
Tabella 11. Range di tolleranza assunti	103
Tabella 12. Risultati prova pacometrica, edificio 1	104
Tabella 13. Risultati prova pacometrica, edificio 2	104
Tabella 14. Risultati prova pacometrica, edificio 3	105
Tabella 15. Risultati rilevati per il pilastro 5, edificio 2 (PT ED2)	108
Tabella 16. Risultati prova sclerometrica in situ	113
Tabella 17. Caratteristiche meccaniche ottenute da prova sclerometrica	113
Tabella 18. Percentuale degli elementi indagati e verificati per prova pacometrica	114
Tabella 19. Percentuale degli elementi indagati e verificati per prova sclerometrica	114
Tabella 20. Calcolo caratteristiche meccaniche medie divise per i fattori di confidenza	116
Tabella 21. Ricerca software di calcolo strutturale	118
Tabella 22. Elementi esportabili da Revit ad Advance Design	121
Tabella 23. Percentuale di errore – Momento dell'estremo finale del pilastro	131
Tabella 24. Percentuale di errore – Momento della trave	131
Tabella 25. Percentuale di errore – Momento dell'estremo finale del pilastro	131
Tabella 26. Sintesi momento massimo casi analizzati per la verifica della sovrappos	izione
trave-solaio	144
Tabella 27. Verifica sovrapposizione trave-solaio	145
Tabella 28. Tabella conclusiva casi indagati – confronto software	146
Tabella 29. Errore sovrapposizione trave solaio – Advance Design	152
Tabella 30. Elenco intersezione solaio trave	167
Tabella 31. Informazioni solai	168

Tabella 32. Informazioni travi	168
Tabella 33. Intersezione travi-pilastri e individuazione travi opposte	169
Tabella 34. Calcolo coefficiente di ripartizione per ogni solaio	169
Tabella 35. Calcolo coefficiente ripartizione casi indagati	171
Tabella 36. Coefficiente di ripartizione per ogni caso indagato	171
Tabella 37. Carico equivalente calcolato per i casi indagati	172
Tabella 38. Tabella 39. Calcolo Momento flettente ottenuto con l'applicazione de	el carico
iniziale	173
Tabella 40 Calcolo Momento flettente ottenuto con l'applicazione del carico equiva	lente - –
trave 60 cm e 80 cm	173
Tabella 41. Calcolo Momento flettente ottenuto con l'applicazione del carico equiva	lente - –
trave 80 cm	174
Tabella 42. Percentuale errore commesso senza l'applicazione del carico equivalente.	174
Tabella 43. Calcolo momento flettente con trave di larghezza 30 cm	175
Tabella 44. Percentuale errore ottenuta	176
Tabella 45. Muri controterra edificio 2 in Revit	188
Tabella 46. Tabella conclusiva del peso dei singoli elementi strutturali	188
Tabella 47. Confronto peso elementi Revit – Midas Gen	189
Tabella 48. Confronto peso elementi Revit – Advance Design	189
Tabella 49. Individuazione possibile criticità	189
Tabella 50. Confronto differenza volume e peso	190
Tabella 51. Carichi G1 e G2 noti dalle carpenterie	202
Tabella 52. Tabella carichi accidentali noti da carpenteria	203
Tabella 53. Tabella carichi accidentali da normativa	203
Tabella 54. Tabella riassuntiva caratteristiche del vento	204
Tabella 55. Definizione coefficienti delle tre combinazioni	205
Tabella 56. Dati ottenuti dal rilievo strutturale in situ per il pilastro 24 PT ED2	213
Tabella 57. Dati ottenuti dal rilievo strutturale in situ per pilastro 5 PT ED2	214
Tabella 58. Armatura longitudinale pilastro 5 PT ED2	221
Tabella 59. Armatura trasversale pilastro 5 PT ED2	221
Tabella 60. Verifica a taglio pilastro 5 PT ED2	221
Tabella 61. Armatura longitudinale pilastro 24 PT ED2	222
Tabella 62. Armatura trasversale pilastro 24 PT ED2	222
Tabella 63. Verifica a taglio pilastro 24 PT ED2	223

Tabella 64. Armatura longitudinale trave 102 piano primo edificio 2	
Tabella 65. Armatura trasversale trave 102 piano primo edificio 2	
Tabella 66. Verifica SLU momento resistente trave 102 piano primo edificio 2	
Tabella 67. Verifica a taglio trave 102 piano primo edificio 2	
Tabella 68. Armatura longitudinale trave 118 piano primo edificio 2	
Tabella 69. Armatura trasversale trave 118 piano primo edificio 2	
Tabella 70. Verifica SLU momento resistente trave 118 piano primo edificio 2	
Tabella 71. Verifica a taglio trave 118 piano primo edificio 2	
Tabella 72. Linea guida modellazione punti di attenzione interoperabilità	
Tabella 73. Elementi analitici edificio 2	
Tabella 74. Operazioni pre – esportazione	
Tabella 75. Operazioni pre - esportazione	
Tabella 76. Operazioni post – esportazione	
Tabella 77. Tempo impiegato per operazioni post - esportazione	
Tabella 78. Tempo impiegato per operazioni post – esportazione, Midas Gen	
Tabella 79. Confronto software tempi impiegati	
Tabella 80. Incidenza percentuale operazioni	
Tabella 81. Percentuale vantaggio utilizzo metodologia BIM	
Tabella 82. Percentuale vantaggio utilizzo metodologia BIM	
Tabella 83. Allegato A – Livelli di conoscenza per edifici in c.a. o in acciaio	
Tabella 84. Allegato A - Livelli di rilievo e prove per edifici in c.a	
Tabella 85. Allegato A - Pilastri indagati edificio 1 prova pacometrica	
Tabella 86. Allegato A - Pilastri indagati edificio 2 prova pacometrica	
Tabella 87. Allegato A – Pilastri indagati edificio 3 prova pacometrica	
Tabella 88. Allegato A – Pilastri indagati edificio 3 prova sclerometrica	
Tabella 89. Allegato A - Caratteristiche meccaniche da analisi dei dati prova scle	erometrica
Tabella 90. Allegato A – Tolleranza per l'analisi dei dati prova pacometrica	
Tabella 91. Allegato A – Risultati prova pacometrica edificio 1	
Tabella 92. Allegato A – Risultati prova pacometrica edificio 2	
Tabella 93. Allegato A – Risultati prova pacometrica edificio 3	
Tabella 94. Allegato A - Elementi indagati e verificati in percentuale per	la prova
pacometrica	

Tabella 95. Allegato A - Elementi indagati e verificati in percentuale per la prova
sclerometrica
Tabella 96. Allegato A - Caratteristiche meccaniche ottenute dalla prova sclerometrica 252
Tabella 97. Allegato A - Calcolo delle caratteristiche meccaniche medie divise per i fattori di
confidenza

Indice delle figure

Figura 1. Interoperabilità tra i diversi attori del processo edilizio	23
Figura 2. Confronto tra pianificazione in CAD e pianificazione in BIM	24
Figura 3. Localizzazione del complesso scolastico utilizzato come caso studio	26
Figura 4. Diagramma di flusso metodologia applicata al caso studio	28
Figura 5. Diagramma di flusso metodologia rilievo architettonico	30
Figura 6. Individuazione edifici del complesso scolastico	31
Figura 7. Esempio di pianta PT e sezione (da documentazione fornita)	32
Figura 8. Livelli di quota degli edifici del complesso scolastico	33
Figura 9. Dettaglio - Criticità dei muri perimetrali	34
Figura 10. Dettaglio – Collegamenti tra edifici e presenza giunto sismico	34
Figura 11. Dispositivi per il rilievo geometrico: distanziometro e metro a nastro	35
Figura 12. Esempio – Pianta piano primo, edificio 2	36
Figura 13. Esempio - Rilievo geometrico interno. Pianta piano terreno, edificio 2	36
Figura 14. Esempio - Rilievo geometrico esterno. Pianta piano terreno, edificio 1	37
Figura 15. Dislivello tra edifici e uniformità muri esterni della facciata	38
Figura 16. Giunto sismico tra edificio 3 e ingresso 3 dall'esterno e dall'interno	38
Figura 17. Vista dal retro dei tre edifici	39
Figura 18. Vista frontale edificio 1, edificio 2 ed ingresso 1	39
Figura 19. Giunto sismico dall'interno	40
Figura 20. Corridoio piano terra edificio 2	40
Figura 21. Corridoio piano tipo aule	40
Figura 22. Maglia strutturale – Pianta primo piano, edificio 1	41
Figura 23. Maglia strutturale – Pianta secondo piano, edificio 2	41
Figura 24. Rilievo terminali di impianto termico, dispositivi illuminazione e infissi	43
Figura 25. Tavola rilievo di dettaglio infissi – W3.1 lato interno	44
Figura 26. Esempi applicativi dell'utilizzo di Google Keep – interfaccia applicazione	45
Figura 27. Esempi applicativi dell'utilizzo di Google Keep – W3.1 lato esterno	45
Figura 28. Individuazione spessore elemento termosifone parametrico	47
Figura 29. Tipologie nella famiglia del terminale impianto termico	48
Figura 30. Parametri del terminale impianto termico – 5 EL_H 87	48
Figura 31. Visualizzazione 3D dell'elemento parametrico - 30 EL_H 87	49
Figura 32. Esempio di modellazione della geometria della famiglia degli infissi – W1	49

Figura 33. Parametri dimensionali infissi – W1	50
Figura 34. Parametri energetici infissi – W1	50
Figura 35. Modellazione parametrica infisso vista dall'alto – W1	50
Figura 36. Famiglia nidificata - Rappresentazione 3D interno W1	51
Figura 37. Famiglia nidificata – Rappresentazione 3D esterno W2	51
Figura 38. Strumentazione utilizzata per la prova pacometrica	60
Figura 39. Strumentazione per la prova sclerometrica	61
Figura 40. Angolazioni di utilizzo dello sclerometro	63
Figura 41. Diagramma di flusso procedura rilievo strutturale e modellazione	65
Figura 42. Tavola di carpenteria PT ED2	68
Figura 43. Stralcio carpenteria – Tabella pilastri ED2	70
Figura 44. Creazione famiglia pilastro in Revit	72
Figura 45. Prospetto edifico 1 – individuazione livelli di riferimento	73
Figura 46. Pianta strutturale 01 ED1 – visualizzazione griglie	73
Figura 47. Contrassegno di posizione pilastro 38-47	74
Figura 48. Stralcio modello fisico edificio 1	75
Figura 49. Confronto visualizzazione modello fisico e analitico	76
Figura 50. Carpenteria piano terra, edificio 1	78
Figura 51. Carpenteria piano primo, edificio 1	78
Figura 52. Carpenteria originaria, edificio 3	79
Figura 53. Architettonico e strutturale sovrapposto, edificio 3	79
Figura 54. A sinistra modello architettonico nuovo, a destra modello strutturale da carpen-	teria
	80
Figura 55. Trave ribassata riscontrata da rilievo in situ	80
Figura 56. Creazione parametri condivisi – livelli di conoscenza	82
Figura 57. Inserimento parametro condiviso "Livello di dettaglio" nel progetto	82
Figura 58. Regole di filtraggio	83
Figura 59. Diagramma di flusso del progetto del rilievo strutturale	85
Figura 60. Definizione parametri inseriti nella massa generica	87
Figura 61. Inserimento parametri nel progetto nelle categorie di elementi selezionate	87
Figura 62. Famiglia Pacometro – parametri utilizzati	88
Figura 63. Proprietà abaco – Pacometro	89
Figura 64. Step 1 – Pilastri indagati - Pacometro	90
Figura 65. Filtro masse fittizie con pacometro	91

Figura 66. Script di Python della funzione All intersecting element of category by
boundingbox91
Figura 67. Intersezione elementi prova pacometrica
Figura 68. Esempio - Contrassegno pilastro
Figura 69. Combinazione parametri pacometro
Figura 70. Stralcio da abachi per individuazione del pilastro associato alla massa generica
creata
Figura 71. Elementi indagati per la prova pacometrica edificio 2
Figura 72. Parametri "Misurazioni pacometro"
Figura 73. Parametri da inserire nell'abaco della prova pacometrica
Figura 74. Rilievo staffe in situ
Figura 75. Rilievo barre
Figura 76. Scheda tecnica armatura vista frontale – P22 PT ED1 101
Figura 77. Scheda tecnica armatura vista dall'alto - P22 PT ED1101
Figura 78. Rilievo completo prova pacometrica - P22 PT ED1102
Figura 79. Esempio armatura pilastro da carpenteria103
Figura 80- Leggenda risultati prova pacometrica103
Figura 81. Individuazione pilastro da armare in Revit – Pilastro 5 PT ED2108
Figura 82. Dettaglio armatura pilastro Pilastro 5 PT ED2 – da carpenteria109
Figura 83. Rilievo in situ per pilastro pilastro 5 PT ED2 – Risultati da prova pacometrica 109
Figura 84. Inserimento armatura longitudinale pilastro 5 PT ED2 110
Figura 85. Inserimento armatura trasversale pilastro 5 PT ED2 110
Figura 86. Visualizzazione pilastro pilastro 5 PT ED2 armato111
Figura 87. Flusso di lavoro BIM Designers - Revit
Figura 88. Diagramma di flusso esportazione/importazione modello Revit-Advance Design
Eisene 80 Criticità: cocontricità elementi (cri) definizione ne de ricide trave rilectre (dr) 122
Figura 89. Criticità: eccentricità elementi (sx), definizione nodo rigido trave-pilastro (dx). 123
Figura 90. Criticita: modellazione solalo
Figura 91. Individuazione elementi eccentrici – Pilastri 22 e 23 PT ED2
Figura 92. Tetato triumensionale
Figura 95. Dettagilo collegamento analítico errato
Figura 94. Correzione collegamento analitico per travi e pilastri
Figura 95. Modello analitico generato automaticamente – errore collegamento analitico
automatico

Figura 96. Dettaglio collegamento analitico corretto manualmente	
Figura 97. Proprietà dei collegamenti analitici	
Figura 98. Esportazione telaio in Advance Design	
Figura 99. Spostamento pilastro e inserimento offset architettonico	
Figura 100. Verifica collegamento rigido	
Figura 101. Diagramma momento soluzione con spostamento pilastro e	offset architettonico
Figura 102. Diagramma momento non considerando l'eccentricità del pila	astro 130
Figura 103. Impostazioni modello analitico trave	
Figura 104. Impostazioni modello analitico pilastro	
Figura 105. Telaio spaziale in Advance Design	
Figura 106. Diagramma momento flettente applicando il solo peso propri	o134
Figura 107. Diagramma di momento flettente considerando zona rigida	
Figura 108. Stratigrafia solaio: Latero cementizio - 40 cm	
Figura 109. Orditura solaio strutturale in Revit	
Figura 110. Visualizzazione analitica telaio spaziale in Revit	
Figura 111. Solaio esportato sul software di calcolo come lastra	
Figura 112. Mesh del solaio nel software di calcolo	
Figura 113. Area di carico bidirezionale	
Figura 114. Diagramma di momento flettente con carichi orditi in due dir	ezioni140
Figura 115. Area di carico monodirezionale	
Figura 116. Diagramma momento flettente con area di carico monodirezi	onale 141
Figura 117. Diagramma di momento applicando il solo peso proprio	
Figura 118. Diagramma di momento applicando un carico areale	
Figura 119. Inserimento carico lineare equivalente al peso proprio	
Figura 120. Diagramma momento flettente carico lineare equivalente al j	peso proprio 143
Figura 121. Diagramma di momento applicando pp e carico areale sottra	atto del peso di metà
trave	
Figura 122. Diagramma di momento applicando il peso proprio e il cario	areale145
Figura 123. Modellazione solaio in Revit da filo trave	
Figura 124. Visualizzazione analitica solaio modellato da filo trave	
Figura 125. Inserimento collegamento analitico	
Figura 126. Inserimento solaio ridotto direttamente sul software di calcole	o149
Figura 127. Diagramma momento flettente segmentato	

Figura 128. Individuazione area di carico reale	. 151
Figura 129. Diagramma di momento telaio con carico totale	. 152
Figura 130. Diagramma di momento telaio con carico equivalente reale	. 152
Figura 131. Lunghezze caratteristiche per definizione algoritmo	. 153
Figura 132. Workflow algoritmo	. 155
Figura 133. Intersezione travi solaio - Dynamo	. 156
Figura 134. Intersezione trave trave - Dynamo	. 156
Figura 135. Calcolo semilarghezza trave - Dynamo	. 157
Figura 136. Lunghezza trave - Dynamo	. 157
Figura 137.Operazione per ottenere lunghezza trave effettiva	. 157
Figura 138. Telaio una campata, un piano – Telaio una campata, due piani	. 158
Figura 139. Telaio due campate, un piano	. 158
Figura 140. Doppia intersezione travi	. 159
Figura 141. Schematizzazione telaio associando il codice identificativo per ogni trave	. 159
Figura 142. Telaio spaziale a due campate e Telaio spaziale a 4 campate	. 160
Figura 143. Telaio spaziale a 4 campate e due piani	. 160
Figura 144. Telaio spaziale a 8 campate e due piani	. 160
Figura 145. Selezione travi e solai	. 161
Figura 146. Selezione livello specifico travi	. 161
Figura 147. Selezione livello specifico solai	. 162
Figura 148. INPUT – selezione livello da analizzare	. 162
Figura 149. Informazioni solai	. 163
Figura 150. Semilarghezza travi	. 163
Figura 151.Intersezione travi - solai	. 164
Figura 152. Intersezione travi - pilastri	. 164
Figura 153. Selezione livello specifico	. 165
Figura 154. Distanza tra il centro dei pilastri intersecati dalla trave	. 165
Figura 155. Individuazione pilastri che intersecano le travi	. 165
Figura 156. Disegno centroide pilastri intersecati	. 166
Figura 157. Distanza pilastri intersecati	. 166
Figura 158. Legenda colori tipologia dimensioni solai	. 170
Figura 159. Diagramma incidenza del coefficiente di ripartizione dei casi indagati - trav	ve 60
cm e 80 cm	. 171

Figura 160. Diagramma incidenza del coefficiente di ripartizione dei casi indagati – trave	80
cm1	72
Figura 161. Esportazione modello in Advance Design e definizione orditura monodirezione	ale
	73
Figura 162. Diagramma di momento flettente con l'applicazione dei carichi equivalenti 1	74
Figura 163. Diagramma errore commesso senza l'applicazione del carico equivalente 1	75
Figura 164. Diagramma errore commesso senza l'applicazione del carico equivalente pe	r i
vari casi1	76
Figura 165. Definizione carichi in Revit1	77
Figura 166.Definizione combinazione dei carichi in Revit1	77
Figura 167. Applicazione dei carichi e visualizzazione tramite abaco carichi 1	78
Figura 168. Esportazione carichi areali da Revit ad Advance Design 1	78
Figura 169. Definizione area di carico monodirezionale1	79
Figura 170. Diagramma di momento flettente con carico areale applicato 1	79
Figura 171. Combinazione dei carichi esportata1	80
Figura 172. Diagramma di flusso check del modello1	83
Figura 173. Individuazione criticità in Revit 1	84
Figura 174. Individuazione criticità apparente1	85
Figura 175. Verifica criticità apparente1	86
Figura 176. Inserimento parametro "Edificio"1	87
Figura 177. Filtraggio rispetto al parametro edificio 21	87
Figura 178. Esportazione modello nel software di calcolo Advance Design 1	91
Figura 179. Operazioni post- esportazione1	91
Figura 180. Correzione elementi eccentrici1	92
Figura 181. Verifica livelli1	92
Figura 182. Verifica vincoli esportati1	93
Figura 183. Verifica materiali esportati1	93
Figura 184. Verifica centroide sezione1	94
Figura 185. Verifica mesh muri controterra1	94
Figura 186. Operazioni post-esportazione1	95
Figura 187. Tabella 3.1.II al Capitolo 3.1.4 del D.M. 14 gennaio 2008 1	97
Figura 188. Tabella 3.3.I al Capitolo 3.1.4 del D.M. 14 gennaio 2008 1	98
Figura 189. Tabella 3.3.II al Capitolo 3.1.4 del D.M. 14 gennaio 2008 1	99
Figura 190. Tabella 3.3.III al Capitolo 3.1.4 del D.M. 14 gennaio 2008 1	99

Figura 191. Definizione classe di rugosità del terreno da D.M. 14 gennaio 2008	199
Figura 192. Coefficiente di pressione da "Circolare Allegata n. 617 del 2 Febbraio 2009	9 200
Figura 193. Zona di carico da neve da D.M. 14 gennaio 2008	200
Figura 194. Coefficiente di forma - Tabella 3.4.II da D.M. 14 gennaio 2008	201
Figura 195. Coefficiente di esposizione - Tabella 3.4.I da D.M. 14 gennaio 2008	201
Figura 196. Coefficienti parziali per le azioni - Tabella 2.6.I da D.M. 14 gennaio 2008.	201
Figura 197. Valori dei coefficienti di combinazione- Tabella 2.5.I da D.M. 14 genna	io 2008
	202
Figura 198. Casi di carico	206
Figura 199. Applicazione peso proprio	206
Figura 200. Applicazione carichi sulle aree di carico	207
Figura 201. Applicazione Vento direzione Y+	207
Figura 202. Parametri per la combinazione dei carichi	208
Figura 203. Combinazione dei carichi utilizzata	208
Figura 204. Diagramma My riferita alla combinazione di carico utilizzata	209
Figura 205. Deformata riferita alla combinazione di carico utilizzata	209
Figura 206. Armatura da carpenteria per il pilastro 24 PT ED2	213
Figura 207. Armature da carpenteria per il pilastro 5 PT ED2	214
Figura 208. Scheda rilievo pilastro 5 PT ED2in situ	215
Figura 209. Armatura longitudinale da carpenteria trave 102 Piano primo edificio 2	216
Figura 210. Armatura trasversale da carpenteria trave 102 Piano primo edificio 2	216
Figura 211. Armatura longitudinale da carpenteria trave 118 Piano primo edificio 2	217
Figura 212. Armatura trasversale da carpenteria trave 118 Piano primo edificio 2	217
Figura 213. Ipotesi copriferro travi verificate	218
Figura 214. Ipotesi copriferro pilastro 5 PT ED2	218
Figura 215. Ipotesi materiali utilizzati	219
Figura 216. Ipotesi barre di armature utilizzate	219
Figura 217. Definizione dei carichi	219
Figura 218. Visualizzazione della geometria pilastro 5 PT ED2	220
Figura 219. Curve di interazione pilastro 5 PT ED2	221
Figura 220. Visualizzazione della geometria pilastro 24 PT ED2	222
Figura 221. Curve di interazione pilastro 24 PT ED2	223
Figura 222. Visualizzazione della geometria trave 102 piano primo edificio 2	224

Figura 223. Diagramma momento flettente/momento resistente trave 102 piano primo ec	lificio
2	225
Figura 224. Visualizzazione della geometria trave 118 piano primo edificio 2	226
Figura 225. Diagramma momento flettente/momento resistente trave 118 piano primo ec	lificio
2	227
Figura 226. Modello strutturale sul software di modellazione	228
Figura 227. Elementi analitici edificio 2	232
Figura 228. Tempo impiegato operazioni post-esportazione in Advance Design	236
Figura 229. Diagramma incidenza percentuale operazioni sul software di calcolo	238
Figura 230. Allegato A – Legenda risultati prova pacometrica	249

Capitolo 1 – Introduzione

L'obiettivo della tesi è valutare il potenziale di un modello strutturale realizzato attraverso la metodologia BIM, organizzando in un modello tutte le informazioni relative alla componente architettonica e strutturale, e l'interoperabilità del modello con software di calcolo strutturale.

L'utilizzo del BIM in campo strutturale potrebbe essere sviluppato maggiormente, è un tema sono ancora in fase di esplorazione da parte dei professionisti del settore. Un punto di attenzione su cui concentrarsi è la diversa visione nella modellazione tra architettonico e strutturale: la prima punta ad ottenere un modello più verosimile possibile, la seconda a schematizzare la struttura in aste e nodi per la successiva analisi ad elementi finiti.

Con il presente elaborato si vuole cercare di avvicinare le due visioni ad un punto d'incontro che possa rendere il modello BIM sempre più efficiente.

L'edificio utilizzato come caso studio fa parte del patrimonio esistente ed è un complesso scolastico situato in Via Cecchi a Torino. Esso rientra nel progetto TOBIM, promosso dal Comune di Torino e il Politecnico di Torino, finalizzato alla digitalizzazione del portafoglio immobiliare pubblico.

Dalla documentazione di partenza fornita dal Comune di Torino, è stato possibile realizzare un modello architettonico tramite il software BIM *Revit 2018*, che si basa sulle piante CAD del complesso aggiornate agli anni 2000. Da questa prima modellazione vengono evidenziate delle criticità, che sono state risolte in situ con un rilievo architettonico.

Il rilievo architettonico è stato svolto per valutare la situazione attuale della struttura e segue le impostazioni comuni elaborate nell'ambito del progetto TOBIM, per gli aspetti riguardanti il Facility Management (FM) che comprendono: locali, infissi, terminali d'impianto termico e dispositivi d'illuminazione. È stato successivamente implementato il modello di partenza con tutte le informazioni raccolte.

Dalla modellazione architettonica si passa a quella strutturale. Essa necessita di una ricerca più approfondita all'archivio della scolastica comunale di materiale originario dell'epoca della costruzione (carpenterie, dettagli costruttivi, certificazioni sui materiali, ecc.). Per verificare e completare le informazioni, è stato eseguito un rilievo strutturale.

Il rilievo strutturale è stato studiato in chiave BIM. Si valuta per prima cosa il livello di dettaglio con cui sono definiti i singoli elementi strutturali, per poi valutare un piano di

indagini ottimale. Il rilievo è stato incentrato sulla caratterizzazione meccanica dei materiali e sull'individuazione degli schemi di armatura presenti.

Le informazioni raccolte con il rilievo in situ sono state associate ai singoli elementi indagati, sfruttando anche le potenzialità del software integrato *Dynamo*. È stato così completato il modello BIM strutturale.

E' stato affrontato quindi il tema principale della tesi: l'interoperabilità con programmi di calcolo strutturale. Primo passaggio è la scelta dei software, basata su aspetti ritenuti fondamentali, quali la presenza di plug-in e la possibilità di utilizzare formati di scambio interno.

Lo studio dell'interoperabilità è stato incentrato su alcuni aspetti della modellazione strutturale: valutazione dell'eccentricità e della zona rigida all'intersezione trave – pilastro, modellazione dei solai e l'applicazione dei carichi.

Per ogni aspetto sono state valutate le possibilità di modellazione, le criticità rilevate e le possibili soluzioni. È stata scelta quella reputata migliore dal punto di vista dell'interoperabilità e dell'efficienza.

Il modello strutturale è stato allora implementato con le soluzioni adottate per i vari aspetti dell'interoperabilità affrontati ed esportato sui software di calcolo.

Prima dell'avvio dell'analisi vengono svolte alcune operazioni di controllo e di completamento al modello, per superare le criticità legate all'interoperabilità. Vengono a questo punto calcolate le sollecitazioni ed impostate le verifiche strutturali su alcuni elementi.

In conclusione all'elaborato, sono stati studiati i tempi operativi di modellazione e i vantaggi della metodologia BIM per i vari temi dell'interoperabilità affrontati.

Capitolo 2 – Modellazione BIM per il calcolo strutturale

Ad oggi la diffusione del BIM in Italia si è concentrata prevalentemente nel settore della progettazione architettonica: in questo campo le soluzioni sono sempre più avanzate e quindi ora sufficientemente mature per essere utilizzate in modo altamente professionale.

Sono partite solo in tempi più recenti proposte per soluzioni BIM legate ad aspetti strutturali ed impiantistici. Una delle potenzialità che il BIM offre è la possibilità di interazione tra le diverse figure professionali che intervengono nella realizzazione della totalità del progetto, in tutte le sue fasi, facendo risparmiare tempo e soldi.

Figura 1. Interoperabilità tra i diversi attori del processo edilizio Fonte: http://bim.acca.it/legame-bim-ifc/grafico_ifc-en/

La metodologia BIM (Building Information Modelling) porta ad una vera e propria rivoluzione digitale. Prima di questa metodologia si pensava che la rivoluzione fosse l'introduzione di sistemi grafici computerizzati (CAD): in realtà non è stato fatto altro che trasferire sul computer quanto prima veniva fatto manualmente, velocizzando le operazioni di disegno ed offrendo strumenti per aumentare la produttività, senza però modificare l'impostazione del sistema. Non vengono infatti identificati gli elementi grafici introdotti: una linea che indica una porta ha la stessa valenza di una che indica un muro o una finestra.

Nel software di modellazione BIM la rappresentazione grafica non è più bidimensionale ma è costituita da oggetti tridimensionali, costituendo un modello virtuale formato da oggetti elementari come muri, solai, pilastri, scale, fino ad arrivare agli elementi di arredo. Il software BIM, da questo modello tridimensionale, ha la possibilità di estrapolare automaticamente piante, prospetti e sezioni, facendo risparmiare molto tempo al progettista.

Figura 2. Confronto tra pianificazione in CAD e pianificazione in BIM Fonte: http://cadbimservices.com/en/cual-es-el-mejor-programa-bim/

Rivoluzione ancora più importante del modello BIM è che esso può contenere al suo interno tutte le informazioni necessarie per la costruzione: il progetto architettonico può essere quindi integrato con il progetto strutturale e quello degli impianti.

Altri vantaggi evidenti e molto importanti sono:

- Riduzione della duplicazione dei dati: ad esempio i dati nel progetto architettonico (geometrie, materiali, ecc.) sono utilizzati automaticamente dalle componenti strutturali e impiantistiche del progetto, evitando errori e ripetizioni.
- Controllo delle incongruenze tra i diversi modelli: sovrapponendo i tre progetti (architettonico, strutture ed impianti) nello stesso modello 3D vengono evidenziati subito eventuali errori progettuali che si riscontrerebbero solo in fase esecutiva. Prevenendo queste problematiche future si riducono tempi e costi.
- Aggiornamento automatico del modello complessivo: operando direttamente su una vista, anche il modello complessivo è aggiornato. Sono aggiornati anche tutti gli abachi riferiti al modello complessivo, compreso il computo metrico.
- Interoperabilità: questo termine indica la collaborazione che avviene tra i diversi progettisti e tra i diversi software di calcolo (strutturale, impiantistico, energetico, ecc.) con il modello BIM centrale.

L'interoperabilità è quindi il passaggio di informazioni dal software del modello BIM centrale a quello specifico ad un ambito, nel caso in esame all'ambito strutturale.

Operativamente questo passaggio di informazioni avviene tramite formati di scambio. Il formato standard più diffuso è l'IFC (Industry Foundation Classes data model): è molto completo perché include tutti i dati che possono essere presenti in un progetto, ma questo lo rende anche molto complesso. Questa complessità ha portato ogni produttore di software a valutare il formato IFC secondo una propria visione.

Il file di scambio viene letto dal software per il calcolo strutturale ed è il punto di partenza per eseguire le analisi strutturali. Terminata questa operazione è possibile esportare un file (IFC o formati di scambio interno) ed integrarlo nel modello di partenza.

Le operazioni di esportazione e importazione all'interno del modello BIM presentano una serie di criticità, legate ai diversi tipi di approccio della struttura nella modellazione architettonica e strutturale. Il progetto architettonico ha l'esigenza di avere un modello che sia più verosimile possibile, affinché gli elaborati grafici come piante, sezioni e prospetti siano il più vicino possibile alla realtà. La progettazione strutturale da un lato conserva questo criterio, per la produzione dei dettagli costruttivi dei vari elementi strutturali. Tuttavia, il modello sul software di calcolo deve rispondere anche ad esigenze legate all'analisi agli elementi finiti che alle volte entrano in contrasto con la verosimiglianza del modello.

La modellazione strutturale deve ridurre la struttura in un modello analitico che sia il più semplice possibile, schematizzando ad esempio gli elementi lineari (travi e pilastri) tramite aste legate a due nodi di estremità. In quest'ottica per garantire la continuità ed una corretta interazione tra gli elementi deve esserci sempre un nodo comune tra gli elementi convergenti.

Al momento attuale deve essere quindi trovata una strada che possa accontentare le esigenze di entrambi per perfezionare e rendere sempre più efficiente il modello BIM di partenza.

Capitolo 3 - Metodologia applicata al caso studio

Il caso studio è un complesso scolastico appartenente progetto TOBIM promosso dal Comune di Torino ed il Politecnico di Torino.

Il complesso scolastico si trova in Via Cecchi n. 16-18 ed è composto dalla scuola elementare "Aurora", scuola media "E. Morelli" e complesso sportivo comunale. All'interno del complesso sportivo è presente la palestra e la piscina comunale. Viene riportata in *Figura 3* del complesso visto dall'alto.

Figura 3. Localizzazione del complesso scolastico utilizzato come caso studio

Fonte: Google Maps

L'oggetto della tesi è l'interoperabilità del software di modellazione BIM con programmi di calcolo strutturale. E' necessario creare un modello BIM che rifletta lo stato dell'arte (as-is) dell'edificio esistente oggetto di analisi.

Il modello BIM è composto da una parte architettonica ed una strutturale. Per quanto riguarda la modellazione architettonica sono state reperite le informazioni di base e verificate attraverso un situ attraverso un rilievo architettonico. Esso ha seguito la metodologia del progetto TOBIM per quanto riguarda il Facility Management, cercando di valutare al meglio alcuni aspetti di maggiore interesse.

Il rilievo strutturale è stato pianificato e progettato ex novo in chiave BIM, sfruttando le potenzialità insite in questa metodologia. In particolare il BIM in questa fase ci ha permesso di:

- Identificare con maggiore chiarezza gli elementi da indagare e quali prove eseguire su di essi;
- Associare le informazioni raccolte direttamente sull'elemento strutturale indagato.

L'inserimento dei i dati raccolti direttamente negli elementi del modello BIM presenta dei limiti, che sono stati superati attraverso un algoritmo sviluppato utilizzando il software integrato *Dynamo*.

Una volta completata la modellazione strutturale in *Revit* si è indagata l'interoperabilità tra il software di modellazione e quelli di calcolo. Per lo studio di questa tematica si è ritenuto opportuno utilizzare strutture elementari, più semplici di quella in esame, per governare in modo più preciso e dettagliato le varie criticità. Per i vari punti di interesse identificati si sono ricercate soluzioni, privilegiando quelle che seguano la direzione dell'interoperabilità, avendo come obiettivo quello di massimizzare le potenzialità del modello BIM e fare in modo che nel software di calcolo vengano esportate quante più informazioni possibili nel miglior modo. Le soluzioni individuate sono state adottate per la struttura oggetto di analisi.

Il passaggio al software di calcolo strutturale con il modello strutturale implementato ha portato alla valutazione delle sollecitazioni e la successiva verifica di alcuni elementi strutturali. Infine di particolare interesse è stata la valutazione del processo utilizzato in termini quantitativi, eseguendo un analisi tempi operazioni/benefici complessiva riferita a tutta la trattazione del caso studio dal modello architettonico alle verifiche strutturali tramite la metodologia BIM.

I vari passaggi della metodologia utilizzata sono riassunti nel seguente diagramma di flusso.

Figura 4. Diagramma di flusso metodologia applicata al caso studio

Capitolo 4 - Rilievo architettonico e modellazione

L'intera parte architettonica del modello BIM viene definita a partire dalle impostazioni standard di modellazione definite nel progetto TOBIM (*da "BIM verso il catasto del futuro" di Osello A. e Ugliotti F.*).

Queste impostazioni comprendono la modellazione ed il rilievo non solo della geometria, ma anche degli infissi, dei terminali di impianto termico, dei dispositivi di illuminazione e delle informazioni riguardanti i singoli locali.

L'obiettivo del seguente capitolo è quindi la definizione del modello architettonico, a partire dalle informazioni contenute nella documentazione di partenza e verificate con quelle ottenute durante il rilievo.

4.1. Metodologia rilievo

La metodologia illustrata al presente Paragrafo ha lo scopo di portare alla definizione del modello architettonico.

Viene raccolta la documentazione di partenza. Essa è fornita dal Comune di Torino ed è aggiornata agli anni 2000. Con questo materiale viene creato il modello architettonico prerilievo, a partire dal Template di Progetto in cui sono contenute tutte le impostazioni comuni agli edifici che fanno parte del progetto TOBIM (*da "BIM verso il catasto del futuro" di Osello A. e Ugliotti F.*).

Per definire un modello aggiornato allo stato attuale del complesso (modello as-is) viene svolto un rilievo in sito, in cui vengono raccolte le informazioni relative alla geometria e ai dati relativi agli elementi secondari (infissi, dispositivi di illuminazione, terminali d'impianto termico e locali).

I dati raccolti vengono elaborati ed il modello architettonico di partenza implementato. In questo modo si ottiene il modello BIM architettonico dell'edificio esistente studiato.

Figura 5. Diagramma di flusso metodologia rilievo architettonico

4.2. Documentazione di partenza

La documentazione di partenza riferita alla scuola media "E. Morelli", scuola elementare "Aurora" e complesso sportivo comunale collegato è stata fornita dal Comune di Torino.

- Situazione esistente aggiornata a Maggio 2000:
 - Piana piano interrato;
 - Pianta piano terra;
 - Piano primo piano;
 - Pianta secondo piano;
 - Prospetto laterale generale;
 - Prospetto laterale su Via Cecchi;
 - Prospetto laterale palestra;
 - Prospetto retro.
- Progetto prevenzione incendi complesso scolastico (con sopralluogo Dicembre 2010):
 - Inquadramento generale;
 - Pianta piano interrato;
 - Pianta piano terra;
 - Pianta primo piano;
 - Pianta secondo piano.

La particolarità del complesso è che i vari blocchi sono divisi da giunti sismici, che dividono in modo netto le varie parti. Si può valutare quindi il complesso come l'unione di blocchi.

Figura 6. Individuazione edifici del complesso scolastico

Nella Figura 6 sono riportati i nomi assegnati agli edifici.

- Edificio 1: corrispondente alla scuola media "E. Morelli";
- Ingresso 1: entrata collegata all'edificio 1 e 2;
- Edificio 2: all'interno al piano terra sono presenti i locali di servizio (aula magna, segreteria, presidenza) della scuola media "E. Morelli" mentre ai piani superiori sono presenti le aule della scuola elementare "Aurora";
- Ingresso 2: entrata collegata all'edificio 2 e 3;
- Edificio 3: edificio di competenza della scuola elementare "Aurora";
- Ingresso 3: entrata collegata all'edificio 3 e 4;
- Edificio 4: complesso sportivo composto dalla piscina comunale al piano seminterrato e dalla palestra comunale al piano primo.

All'esterno nel lato opposto alla strada comunale Cecchi è presente un cortile collegato ai primi tre edifici e i due ingressi ed un parcheggio collegato all'ingresso 3 e all'edificio 4. Viene riportata in *Figura* 7 una pianta di esempio e una sezione esemplificative della documentazione fortuna.

Figura 7. Esempio di pianta PT e sezione (da documentazione fornita)

4.3. Creazione modello architettonico pre – rilievo

Partendo dalla documentazione di partenza vista al *Paragrafo 4.2* viene impostato un primo modello architettonico sul software *Revit 2018*.

Il modello BIM architettonico viene costruito a partire dal Template di Progetto in cui sono contenute tutte le impostazioni comuni agli edifici che fanno parte del Progetto Pilota (*da "BIM verso il catasto del futuro" di Osello A. e Ugliotti F.*).

Primo passaggio importante è la definizione dei livelli di ogni piano dei diversi edifici. Nel caso in esame bisogna considerare che tra il piano terra dell'edificio 1 e l'ingresso 1 si ha un dislivello di 16 cm; stesso dislivello si presenta anche tra l'ingresso 1 e l'edificio 2. I successivi edifici (edificio 3, edificio 4 e ingresso tre) avranno il livello del piano terra coincidente con quello dell'edificio 2.

Figura 8. Livelli di quota degli edifici del complesso scolastico

Per quanto riguarda i piani superiori, per ogni edificio e ingresso il piano terra ha un'altezza di 3,60 m, il piano primo e secondo 3,10 m. Altezze da verificare durante il rilievo in sito.

Per ogni livello definito viene creata automaticamente una nuova pianta di pavimento. Su queste piante vengono riportate le piante disponibili dalla documentazione di partenza definendo i muri esterni ed interni.

In *Revit* i muri rappresentano una "famiglia" e per ogni spessore e tipologia di muro vengono creati nuovi "tipi". In questa fase non è possibile valutare nel dettaglio la struttura interna dei muri, ma vengono differenziati in base allo spessore, unica informazione disponibile al momento.

A partire dell'ausilio della documentazione è merso che per i livelli superiori al piano terra sono presenti delle criticità per quanto riguarda la definizione del filo esterno, dovute a spessore dei muri esterni maggiori rispetto al piano sottostante. Criticità che sono state risolte durante il rilievo, valutando il reale spessore dei muri ed eventuali "scalini" esterni che confermerebbero o meno le differenze sopradette. Nel dettaglio, queste problematiche sono presenti per i muri perimetrali laterali di ogni edificio come evidenziato nella seguente figura.

Figura 9. Dettaglio - Criticità dei muri perimetrali

Il collegamento tra i vari edifici ed ingressi avviene tramite dei giunti sismici, la cui presenza è da verificare durante il rilievo.

Si nota infatti che nelle piante CAD nella seguente figura fornite il giunto è presente in tutti i collegamenti tra gli edifici, tranne che tra l'edificio 3 e l'ingresso 3, dove pare ci sia metà struttura collegata direttamente e metà struttura collegata attraverso il giunto (meglio definito nell'immagine accanto). Si ipotizza un errore grafico ma è stato verificato durante il rilievo.

Figura 10. Dettaglio – Collegamenti tra edifici e presenza giunto sismico

Per quanto riguarda i muri di tamponamento interni vengono create le varie famiglie in base allo spessore rilevato sulle piante fornite.

4.4. Rilievo in situ

Il rilievo architettonico viene impostato secondo la metodologia definita al Capitolo 4.1.

Viene svolto in maniera speditiva, svolgendo tutte le varie operazioni, dal rilievo geometrico generale a quello di dettaglio, locale per locale. La durata del rilievo è stata complessivamente di quattro giorni, con la partecipazione di tre persone.

4.4.1. Rilievo geometrico

Il rilievo geometrico è stato effettuato tramite l'utilizzo di due strumenti: un distanziometro e un metro a nastro.

Figura 11. Dispositivi per il rilievo geometrico: distanziometro e metro a nastro

In preparazione a questo rilievo, a partire dal materiale fornito dal Comune di Torino, sono state create delle tavole. Le accortezze nella preparazione di queste tavole sono state le seguenti:

- Eliminazione di tutte le linee superflue o troppo spesse che potrebbero sottrarre spazio di scrittura;
- Eliminazione scritte e quote;
- Eliminazione eventuali retini e vegetazione.

Viene riportata una tavola di esempio.

Figura 12. Esempio – Pianta piano primo, edificio 2

Il rilievo è stato effettuato sia della parte interna, sia della parte esterna. Per quanto riguarda l'interno degli edifici, sono state rilevate le seguenti informazioni:

- distanze complessive e distanze di dettaglio per il posizionamento degli infissi;
- altezza dei vani;
- altezza da terra delle travi ribassate se presenti, le uniche visibili.

Figura 13. Esempio - Rilievo geometrico interno. Pianta piano terreno, edificio 2
Per quanto riguarda l'esterno, sono stati rilevate:

- Dimensioni di massima dei cortili interni;
- Distanze della parete esterna di muri ed infissi: verranno confrontate le somme di misure esterne ed interne per verificare la congruenza delle misure.

Figura 14. Esempio - Rilievo geometrico esterno. Pianta piano terreno, edificio 1

4.4.2. Rilievo fotografico

E' stata svolto un preciso rilievo fotografico. Sono state scattate foto in ogni locale di ogni edificio e successivamente sono state raggruppate in sottocartelle per edificio e per piano in modo da avere sempre un riscontro visivo documentato.

Vengono riportate alcune foto per verificare le criticità definite al Capitolo 4.3.

Figura 15. Dislivello tra edifici e uniformità muri esterni della facciata

Figura 16. Giunto sismico tra edificio 3 e ingresso 3 dall'esterno e dall'interno

Vengono riportate inoltre alcune foto per inquadrare in modo generale il complesso analizzato.

Figura 17. Vista dal retro dei tre edifici

Figura 18. Vista frontale edificio 1, edificio 2 ed ingresso 1

Figura 19. Giunto sismico dall'interno

Figura 20. Corridoio piano terra edificio 2

Figura 21. Corridoio piano tipo aule

4.4.3. Indagine conoscitiva schema strutturale

Per scopi propedeutici al successivo rilievo e modellazione strutturale, viene ipotizzata per i vari piani dei diversi edifici una maglia pilastri.

L'ipotetica maglia strutturale viene definita a partire dai pilastri e dalle travi effettivamente visibili. Per quanto riguarda le travi, saranno identificate le travi ribassate visibili, mentre per quanto riguarda i pilastri viene effettuata una prova pratica che si basa sul distinguere il suono ottenuto bussando prima su una parete di tamponamento e poi sul pilastro ipotizzato.

Nelle figure seguenti vengono riportate due tavole di esempio.

Figura 22. Maglia strutturale – Pianta primo piano, edificio 1

Figura 23. Maglia strutturale – Pianta secondo piano, edificio 2

4.4.4. Terminali d'impianto termico e dispositivi d'illuminazione

Questi aspetti sono legati al tema del Facility Management. In preparazione al rilievo di tali elementi sono state predisposte delle tavole come quelle per il rilievo geometrico, ovvero prive di elementi che possano intralciare l'inserimento di informazioni sulla tavola.

Le informazioni sono state rilevate nel seguente modo:

Dispositivi di illuminazione:

- Posizione dispositivi illuminazione;
- Informazioni dispositivo (Linda 2x36W):
 - Nome: plafoniera Linda;
 - Numero di lampade: 2;
 - Potenza: 36 W.

Dispositivo di illuminazione di emergenza:

- Posizione dispositivi illuminazione;
- Numero codice dispositivo: 6;
- Informazioni dispositivo (Beghelli 1x18W):
 - Nome dispositivo: Beghelli;
 - Numero di lampade: 1;
 - Potenza: 18W.

Le plafoniere sono quasi tutte 2x36W della ditta Linda mentre i dispositivi di illuminazione di emergenza sono quasi tutti 1x18W della ditta Beghelli quindi per rendere più speditivo il rilievo si ometterà di inserire sempre queste informazioni, si inseriranno solo nel caso in cui cambiasse il dispositivo.

Terminali di impianto termico:

- Larghezza totale: 152 cm;
- Altezza totale:68 cm;
- Spessore totale: 14 cm;
- Spessore elemento: 6 cm;
- Altezza da terra: 13 cm;
- Numero elementi: 25.

Nella figura seguente si riporta una pianta dove sono state rilevate queste informazioni. In questa tavola sono stati rilevati anche la posizione e la tipologia di infisso che verrà spiegata nel dettaglio nel *Paragrafo 4.4.5*.

Figura 24. Rilievo terminali di impianto termico, dispositivi illuminazione e infissi

Tutti questi elementi sono tabellati nel dettaglio per ogni locale, definendo una scheda per ogni piano di ogni edificio riguardante i dispositivi e i terminali d'impianto termico. Verrà tratta nel dettaglio al *Paragrafo 4.4.6*.

4.4.5. Rilievo di dettaglio infissi

Gli infissi sono stati rilevati in maniera dettagliata. Per prima cosa è stata definita la posizione in pianta tramite una codifica standard. Il simbolo utilizzato è "W" e la divisione è stata fatta seguendo la seguente nomenclatura: W_X.Y.

Nel dettaglio, i due simboli sono collegati alle seguenti informazioni:

- X: è il numero riferito alla famiglia di infisso (ad esempio una famiglia potrebbe essere un infisso formato da 3 finestre);
- Y: è il numero della famiglia X di infisso ma con dimensioni diverse e quindi una tipologia diversa.

Il rilievo è stato condotto in due modi, il primo consiste in un metodo tradizionale mentre il secondo tramite un metodo alternativo più speditivo.

Metodo tradizionale:

Inizialmente è stato eseguito un rilievo di dettaglio utilizzando un foglio cartaceo. Con questa metodologia bisogna prima disegnare uno schizzo schematico dell'infisso e poi inserire le informazioni utili per la sua modellazione.

Le informazion rilevate sono:

- Codice: W 3.1;
- Lato: Interno/Esterno;
- Tipologia di Telaio;
- Spessore telaio;
- Tipologia vetro/vetrocamera;
- Spessore vetro/vetrocamera;
- Cassonetto(spessore);
- Altezza cassonetto;
- Tapparella/scuri est.;
- Sottofinestra (spessore);
- Altezza sottofinestra;
- Geometria.

La tavola completa dell'infisso eseguita con un rilievo tradizionale è riportata nella seguente figura.

Figura 25. Tavola rilievo di dettaglio infissi – W3.1 lato interno

I limiti di questo tipo di rilevo sono stati:

- Difficolta nel riprodurre un livello di dettaglio adeguato in maniera speditiva;
- Difficolta ad avere un riscontro fotografico immediato;
- Tempo necessario per disegnare prima del rilievo tutti gli infissi diversi.

Metodo alternativo:

<u>1V0:</u>

Questi limiti sono stati superati utilizzando un metodo più speditivo tramite l'utilizzo dell'applicazione sullo smartphone *Google Keep*.

Questa applicazione permette di scattare una foto, inserirla in una nota e successivamente annotare qualcosa sia graficamente sulla foto stessa sia nella nota in cui è stata salvata.

Figura 26. Esempi applicativi dell'utilizzo di Google Keep – interfaccia applicazione

Figura 27. Esempi applicativi dell'utilizzo di Google Keep – W3.1 lato esterno

I vantaggi operativi riscontrati adottando questa metodologia sono stati:

- Precisione: è possibile rilevare con un livello di dettaglio maggiore le informazioni poiché il disegno di base è praticamente quello reale;
- Risparmio di tempo: queste operazioni richiedono una sola persona, in quanto è possibile misurare con il metro ed inserire le misure sullo smartphone in modo veloce e pratico;
- Facilità di modellazione: la possibilità di avere sempre un riscontro fotografico della geometria rilevata evita errori macroscopici;
- Informazioni disponibili a tutti: è possibile accedere alle informazioni sia dallo smartphone sia dal pc e condividere ad altri colleghi con la stessa applicazione le informazioni rilevate.

4.4.6. Codifica locali

Il seguente capitolo è stato svolto da Laura Muratore nella tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". Nel presente rilievo è stata svolta solo la parte riguardante i dati generali dell'edificio e i dati dei singoli locali in riferimento al progetto TOBIM del Comune di Torino per gli aspetti riguardanti il Facility Management.

4.5. Elaborazione dati raccolti e modellazione

A seguito del rilievo architettonico è stata affrontata la modellazione degli elementi che completano la parte architettonica del modello: i dispositivi di illuminazione, i terminali d'impianto termico e gli infissi.

In particolare, gli infissi e i terminali d'impianto termico sono stati collegati in un'unica famiglia nidificata.

È stato inoltre verificato il modello creato inizialmente al *Paragrafo 4.3*. In questo modo è stata ricostruita pienamente la geometria attuale.

La modellazione interna è stata completata con la parte esterna del complesso analizzato.

4.5.1. Inserimento dei locali

Il seguente capitolo è stato svolto da Laura Muratore nella tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". Viene illustrata la procedura di inserimento dei locali e delle informazioni associate ad essi sul software di modellazione *Revit*.

4.5.2. Modellazione infissi e terminali d'impianto termico

Il rilievo e la modellazione di tali elemento viene effettuato per sfruttare le informazioni in modo tabulare per analisi energetiche, quindi è importante inserire scrupolosamente le informazioni rilevate.

La modellazione di tali elementi viene fatta in maniera parametrica. Il termine "modellazione parametrica" fa riferimento alle relazioni esistenti tra tutti gli elementi di un progetto, che consentono di eseguire operazioni di coordinamento e gestione delle modifiche in Revit. I numeri o le caratteristiche che definiscono questo tipo di relazioni vengono definiti parametri, da cui l'uso di "parametrico" in riferimento all'operazione eseguita dal software.

Tale capacità garantisce il coordinamento e i vantaggi produttivi forniti da Revit in modo che le modifiche eseguite in un punto vengono estese all'intero progetto.

Nel caso in esame le lunghezze rilevate si parametrizzano assegnando un parametro come illustrato nella figura seguente.

spessore	elemento = 60
e ————	

Figura 28. Individuazione spessore elemento termosifone parametrico

Questo permette di modificare gli elementi direttamente dalle loro proprietà e, nel momento in cui vengono modificate, tutto l'elemento si adatta automaticamente alle nuove misure. In questo modo si può modificare geometricamente un elemento andando a variare solo il valore alcuni parametri.

La modellazione di questi elementi è stata fatta nel seguente modo:

 Prima è stata creata la famiglia di terminale di impianto termico, nella quale sono stati inseriti come "Tipo" tutte le diverse combinazioni di elementi. La nomenclatura per indicare l'elemento è la seguente: X EL_H Y

Dove:

- X è il numero di elementi presenti;
- Y è l'altezza del terminale di impianto termico.

Tipi di famiglia	(h. A			×
Nome del tipo:	5 EL_H 87			~	* M *)
Parametri di ric	10 EL_H 67 10 EL_H 87			^		Q
Par	11EL_H 87				Formula	Blocca
Dimensioni	14 EL_H 67 15 EL_H 67					*
profondita	15 EL_H 87 16 EL_H 67					
larghezza net dist elementi	17 EL_H 87				a netta - (spesso	ore ele 🗸
altezza termo	18 EL_H 67 18 EL_H 87				<u>, , , , , , , , , , , , , , , , , , , </u>	
POS ORIGINE	19 EL_H 67 19 EL_H 87					
Altro	20 EL_H 67 20 EL_H 87					*
VIS_sagomate	22 EL_H 67 22 EL_H 87					
Numero elem Dati identità	23 EL_H 67 23 EL_H 87					*
	24 EL_H 67 24 EL_H 87					
	25 EL_H 87 26 EL_H 67 27 EL_H 67			v		
/ * *		2↓ 21			Gestisci t	abelle di ricerca
Come gestire i t	ipi di famiglia			OK	Annulla	Applica

Figura 29. Tipologie nella famiglia del terminale impianto termico

Vengono quindi creati i parametri che si dovranno associare alle lunghezze rilevate come mostrato nella figura seguente

Nome del tipo: 5 EL_H 87		* * M	
Parametri di ricerca			Q
Parametro	Valore	Formula	Blocca
Dimensioni			*
spessore elemento	60.0	=	
profondita	130.0	=	
larghezza netta	302.0	=	
dist elementi	0.5	= (larghezza netta - (spessore el	
altezza termosifone	870.0	=	
Posizione termosifione	130.0	=	
POS ORIGINE	130.0	=	
Altro			\$
VIS_rettangolare	M	=	
VIS_sagomato		=	
Numero elementi	5	=	
Dati identità			¥
	= 2+ 2⊺	Gestisci tabelle d	di ricerca

Figura 30. Parametri del terminale impianto termico – 5 EL_H 87

L'elemento parametrico viene visualizzato in 3D come mostrato nella figura seguente.

Figura 31. Visualizzazione 3D dell'elemento parametrico - 30 EL_H 87

2) Creazione di famiglie infisso, una famiglia per ogni tipologia.

Inizialmente è stata modellata la geometria, schematizzandola in maniera più reale possibile come mostrato nella seguente figura.

Figura 32. Esempio di modellazione della geometria della famiglia degli infissi – W1

Successivamente sono stati inserirti i parametri riferiti alle lunghezze che si vuole parametrizzare e che sono state rilevate come mostrato nelle seguenti figure.

Materiali e finiture			\$
vetro	Vetro	=	
marmo	Marmo	=	
alluminio	Alluminio Blu	=	
Dimensioni			\$
Spessore telaio mobile	52.0	=	
Spessore telaio fisso	50.0	=	
Spessore davanzale	30.0	=	
Prof cassonetto	40.0	=	
Distanza telaio-filo muro	320.0	=	
Altezza	1660.0	=	
Larghezza	2160.0	=	
Larghezza approssimativa			
Altezza approssimativa		=	
larghezza vetro inf	870.0	=	
larghezza vetro sup (default)	860.0	=	
lunghezza vetro inf (default)	300.0	=	
lunghezza vetro sup (default)	1020.0	=	
spessore cornice	20.0	=	

Figura 33. Parametri dimensionali infissi – W1

Analisi energetica			*
Tipologia vetro (default)	singolo	=	
Tipologia telaio (default)	alluminio	=	
Tipologia oscurante (default)	tapparella]=	
Spessore vetro	20.0	=	
Spessore traverso sup (default)	60.0	=	
Spessore traverso inf (default)	50.0	=	
Spessore telaio	50.0	=	
Spessore sottofinestra (default)	197.8	=	
Spessore montante sx (default)	20.0	=	
Spessore montante dx (default)	20.0	=	
Spessore min divisori vert (defau	100.0	=	
Spessore min divisori orizz (defa	110.0	=	
Spessore max divisori vert (defau	100.0	=	
Spessore max divisori orizz (defa	110.0	=	
Profondità cassonetto (default)	250.0	=	
Numero divisori vert	0	=	
Numero divisori orizz	0	=	
Codice	W_E_01	=	
Altezza sottofinestra(rapporto)	920.0	=	
Altezza cassonetto (default)	440.0	=	

Figura 34. Parametri energetici infissi – W1

Infine, sono state assegnate alle lunghezze rilevate i parametri corrispondenti. Nella seguente figura si riportano alcune visualizzazioni della modellazione parametrica ottenuta.

Figura 35. Modellazione parametrica infisso vista dall'alto – W1

3) Creazione di una famiglia nidificata

A questo punto si crea una famiglia nidificata, ovvero si inserisce la famiglia termosifone creata precedentemente, unica per tutti i terminali di impianto termico, all'interno delle varie famiglie degli infissi, in modo da avere in un unico blocco sia l'infisso che il terminale di impianto termico. Si riporta un esempio del risultato ottenuto nella seguente figura.

Figura 36. Famiglia nidificata - Rappresentazione 3D interno W1

Figura 37. Famiglia nidificata – Rappresentazione 3D esterno W2

4.5.3. Implementazione modello

Il modello architettonico di partenza, definito al *Paragrafo 4.3*, era composto dai soli muri perimetrali e di tamponamento interno.

Dopo il rilievo architettonico, sono state confrontate le misure generali degli edifici e nel dettaglio dei singoli locali, privilegiando le informazioni valutate in situ.

La criticità principale era la discontinuità che si formava per i muri perimetrali laterali dovuta allo spessore dei muri maggiore del piano rispetto a quello sottostante.

Durante il rilievo è stato verificato che i muri perimetrali non presentano tale discontinuità; è stato quindi definito lo spessore reale dei muri perimetrali in base alla misura diretta del parametro, oppure se non disponibile, è stato cambiato lo spessore dei muri in base alle misure interne ed esterne raccolte, in quanto non sempre si è potuto ottenere la misura diretta dello spessore del muro.

Ulteriore differenze sono state notate nei tamponamenti interni, che hanno subito diverse modifiche.

Conclusa questa prima fase, sono stati modellati i solai come pavimenti architettonici con spessore rilevato in situ e controllato con la documentazione di partenza.

A questo punto sono stati modellati gli infissi, i terminali d'impianto termico e i dispositivi d'illuminazione, come definito ai *Paragrafi 4.5.2*. Sono stati inoltre inseriti i locali, come da *Paragrafo 4.5.1*.

Il modello così completato è riportato nella pagina seguente.

Capitolo 5 - Rilievo strutturale e modellazione

5.1. Cenni teorici

5.1.1. Normativa di riferimento

La normativa di riferimento è il D.M. 14 Gennaio 2008 "Norme tecniche per le costruzioni" e la "Circolare Allegata n. 617 del 02 Febbraio 2009".

Il caso studio è una struttura esistente, è stato fatto quindi particolare riferimento al Capitolo 8 delle NTC e al Capitolo C8 della Circolare Allegata.

Come indicato al Capitolo 8.1. delle "Norme tecniche per le costruzioni", "è definita costruzione esistente quella che abbia, alla data della redazione della valutazione di sicurezza e/o del progetto di intervento, la struttura completamente realizzata."

La procedura di valutazione della conoscenza della struttura viene indicata al Capitolo 8.5. delle "Norme tecniche per le costruzioni" e si compone dei seguenti passaggi:

- Analisi storico-critica: consiste nella ricerca di tutte le informazioni relative alla struttura in esame, dalla progettazione ad oggi;
- Rilievo geometrico-strutturale: consiste nella progettazione del piano delle indagini e della successiva attuazione;
- Caratterizzazione meccanica dei materiali: consiste nell'estrapolare i valori delle resistenze meccaniche dalle prove eseguite nel rilievo strutturale;
- Livelli di conoscenza e fattori di confidenza: consiste nel valutare le informazioni raccolte in archivio e dalle prove strutturali e definire il livello di conoscenza raggiunto;
- Azioni e analisi strutturale: i valori delle azioni e le loro combinazioni da considerare nel calcolo sono quelle definite per le nuove costruzioni. Per i carichi permanenti, un accurato rilievo geometrico-strutturale e dei materiali potrà consentire di adottare coefficienti parziali modificati, assegnando valori di γ_G adeguatamente motivati. L'analisi potrà essere eseguita con riferimento ai soli Stati limite ultimi (SLU).

Al Capitolo C8 della "Circolare Allegata n. 617" viene introdotto nel dettaglio il problema della sicurezza nelle costruzioni esistenti in Italia, sia per l'elevata vulnerabilità rispetto alle azioni sismiche, sia per il valore storico, artistico e architettonico di gran parte del patrimonio

edilizio esistente. Le problematiche legate a queste strutture, soprattutto per quelle in muratura, sono molteplici, a causa della notevole varietà di tipologie strutturali possibili.

Si trascura la parte normativa riferita alla valutazione della sicurezza in presenza di azioni sismiche, non considerate nella presente tesi.

La "Circolare Allegata n. 617" stabilisce inoltre che la valutazione della sicurezza dovrà essere eseguita:

- ogni volta che verranno eseguiti interventi strutturali: dovrà essere determinato il livello di sicurezza della costruzione prima e dopo l'intervento;
- ogni volta che possono crearsi situazioni di potenziale pericolosità per il comportamento strutturale per carichi verticali e sismici agenti sulla struttura.

La verifica e la progettazione di interventi presentano un grado di incertezza diverso, non necessariamente maggiore, da quello di nuove costruzioni.

Per una costruzione esistente è possibile valutare le effettive caratteristiche meccaniche dei materiali e delle diverse parti strutturali, che possono avere anche notevole variabilità nell'ambito della stessa struttura, mentre in una nuova costruzione vengono imposti dati progettuali da conseguire in fase costruttiva.

Per questo motivo vengono introdotti i "fattori di confidenza", strettamente legati al livello di conoscenza conseguito nelle indagini conoscitive, che vanno preliminarmente a ridurre i valori medi di resistenza dei materiali della struttura esistente da adottare nella verifica. Questi valori sono stati ulteriormente ridotti, quando previsto, mediante i coefficienti parziali di sicurezza.

All'Appendice C8A.1.B.1 della "Circolare Allegata n. 617" vengono definiti i dati richiesti per la valutazione di costruzioni esistenti in calcestruzzo armato e le fonti a cui appoggiarsi per ottenerli.

Le fonti da considerare per l'acquisizione dei dati necessari sono:

- Documenti di progetto con particolare riferimento a relazioni geologiche, geotecniche e strutturali ed elaborati grafici strutturali;
- Eventuale documentazione acquisita in tempi successivi alla costruzione;
- Rilievo strutturale geometrico e dei dettagli esecutivi;
- Prove in-situ e in laboratorio.

Importante è acquisire dati sugli aspetti seguenti (si trascurano gli aspetti legati alla valutazione in presenza di azioni sismiche):

- Identificazione dell'organismo strutturale, sulla base dei disegni originali di progetto verificati con indagini in-situ;
- Informazione sulle dimensioni geometriche degli elementi strutturali, dei quantitativi delle armature e delle proprietà meccaniche dei materiali;
- Informazioni su possibili difetti locali dei materiali;
- Informazioni su possibili difetti nei particolari costruttivi (dettagli delle armature, eccentricità travi-pilastro, eccentricità pilastro-pilastro, etc.);
- Rivalutazione dei carichi variabili, in funzione della destinazione d'uso;
- Informazione sulla natura e l'entità di eventuali danni subiti in precedenza e sulle riparazioni effettuate.

La quantità e qualità dei dati acquisiti determina il metodo di analisi e i valori dei fattori di confidenza da applicare alle proprietà dei materiali da utilizzare nelle verifiche di sicurezza.

La "Circolare n. 617 del 2 Febbraio 2009" distingue tre livelli di conoscenza:

- LC1: Conoscenza Limitata;
- LC2: Conoscenza Adeguata;
- LC3: Conoscenza Accurata.

Gli aspetti che definiscono i livelli di conoscenza sono:

- Geometria: caratteristiche geometriche degli elementi strutturali;
- Dettagli strutturali: quantità e disposizione delle armature;
- Materiali: proprietà meccaniche dei materiali.

Nella seguente tabella, "Tabella C8A.1.2." all'interno dell'Appendice al Capitolo 8 (C8A) della "Circolare n. 617 del 02 Febbraio 2009", vengono schematizzati i livelli di confidenza e il relativo fattore di confidenza in base alle informazioni disponibili.

Livello di Conoscenza	Geometria (carpenterie)	Dettagli strutturali	Proprietà dei materiali	Metodi di analisi	FC
LC1		Progetto simulato in accordo alle norme dell'epoca e <i>limitate</i> verifiche in- situ	Valori usuali per la pratica costruttiva dell'epoca e <i>limitate</i> prove in-situ	Analisi lineare statica o dinamica	1.35
LC2	Da disegni di carpenteria originali con rilievo visivo a campione oppure rilievo ex-novo	Disegni costruttivi incompleti con limitate verifiche in situ oppure estese verifiche in- situ	Dalle specifiche originali di progetto o dai certificati di prova originali con limitate prove in-situ oppure estese prove in-situ	Tutti	1.20
LC3	completo	Disegni costruttivi completi con limitate verifiche in situ oppure esaustive verifiche in-situ	Dai certificati di prova originali o dalle specifiche originali di progetto con estese prove in situ oppure esaustive prove in-situ	Tutti	1.00

Tabella C8A.1.2 – Livelli di conoscenza in funzione dell'informazione disponibile e conseguenti metodi di analisi ammessi e valori dei fattori di confidenza per edifici in calcestruzzo armato o in acciaio

Tabella 1. Livelli di conoscenza e fattori di confidenza per edifici in c.a. o in acciaio

Fonte: Estratto dall'Appendice al Capitolo 8 (C8A) della Circolare n. 617 del 02 Febbraio 2009

I materiali su cui vengono svolte le prove sono il calcestruzzo e l'acciaio. La misura delle caratteristiche meccaniche si ottiene mediante estrazioni di campioni ed esecuzione di prove in laboratorio. Sono ammessi metodi di indagine non distruttiva di documentata affidabilità, che non possono essere impiegati in completa sostituzione a quelli distruttivi, ma sono consigliati a loro integrazione. Nel caso del calcestruzzo, è importante adottare metodi di prova che limitino l'influenza della carbonatazione degli strati superficiali sui valori di resistenza.

Le verifiche in-situ, per quanto riguarda i dettagli costruttivi, sono effettuate su un'opportuna percentuale degli elementi strutturali primari per ciascun tipologia di elemento (travi, pilastri, pareti), privilegiando gli elementi che svolgono un ruolo più critico nella struttura, generalmente i pilastri. Per quanto riguarda i materiali vengono indicati i campioni e i provini necessari ai diversi livelli di prove.

Nella seguente tabella, "Tabella C8A.1.3a." all'interno della "Circolare n. 617 del 02 Febbraio 2009", vengono definiti i livelli di rilievo e delle prove per le tipologie di verifiche definite nella tabella precedente come: verifiche limitate, estese ed esaustive.

	Rilievo (dei dettagli costruttivi)(a)	Prove (sui materiali) ^{(b})(c)
	Per ogni tipo di elemento "primario" (trave, p	ilastro)
Verifiche limitate	La quantità e disposizione dell'armatura è verificata per almeno il 15% degli elementi	1 provino di cls. per 300 m2 di piano dell'edificio, 1 campione di armatura per piano dell'edificio
Verifiche estese	La quantità e disposizione dell'armatura è verificata per almeno il 35% degli elementi	2 provini di cls. per 300 m2 di piano dell'edificio, 2 campioni di armatura per piano dell'edificio
Verifiche esaustive	La quantità e disposizione dell'armatura è verificata per almeno il 50% degli elementi	3 provini di cls. per 300 m2 di piano dell'edificio, 3 campioni di armatura per piano dell'edificio

Tabella C8A.1.3a - Definizione orientativa dei livelli di rilievo e prove per edifici in c.a.

NOTE ESPLICATIVE ALLA TABELLA C8A.1.3 (a, b)

Le percentuali di elementi da verificare ed il numero di provini da estrarre e sottoporre a prove di resistenza riportati nella Tabella C8A.1.3 hanno valore indicativo e vanno adattati ai singoli casi, tenendo conto dei seguenti aspetti: (a) Nel controllo del raggiungimento delle percentuali di elementi indagati ai fini del rilievo dei dettagli costruttivi si tiene conto delle eventuali situazioni ripetitive, che consentano di estendere ad una più ampia percentuale i controlli effettuati su alcuni elementi strutturali facenti parte di una serie con evidenti caratteristiche di ripetibilità, per uguale geometria e ruolo nello schema strutturale.

(b) Le prove sugli acciai sono finalizzate all'identificazione della classe dell'acciaio utilizzata con riferimento alla normativa vigente all'epoca di costruzione. Ai fini del raggiungimento del numero di prove sull'acciaio necessario per il livello di conoscenza è opportuno tener conto dei diametri (nelle strutture in c.a.) o dei profili (nelle strutture in acciaio) di più diffuso impiego negli elementi principali con esclusione delle staffe.

(c) Ai fini delle prove sui materiali è consentito sostituire alcune prove distruttive, non più del 50%, con un più ampio numero, almeno il triplo, di prove non distruttive, singole o combinate, tarate su quelle distruttive.

(d) Il numero di provini riportato nelle tabelle 8A.3a e 8A.3b può esser variato, in aumento o in diminuzione, in relazione alle caratteristiche di omogeneità del materiale. Nel caso del calcestruzzo in opera tali caratteristiche sono spesso legate alle modalità costruttive tipiche dell'epoca di costruzione e del tipo di manufatto, di cui occorrerà tener conto nel pianificare l'indagine. Sarà opportuno, in tal senso, prevedere l'effettuazione di una seconda campagna di prove integrative, nel caso in cui i risultati della prima risultino fortemente disomogenei.

Tabella 2. Livelli di rilievo e prove per edifici in c.a.

Fonte: Estratto da Circolare n. 617 del 02 Febbraio 2009

I Fattori di Confidenza indicati nella "Tabella C8A.2" possono essere utilizzati, in assenza di valutazioni più approfondite, per definire le resistenze dei materiali da utilizzare nelle formule di capacità degli elementi. Le resistenze medie, ottenute dalle prove in situ e dalle informazioni aggiuntive, sono divise per i Fattori di Confidenza.

Ulteriori indicazioni supplementari per edifici in calcestruzzo armato sono:

- Per l'identificazione della geometria, i dati raccolti includono i seguenti:
 - Identificazione del sistema resistente alle forze orizzontali in entrambe le direzioni;

- Tessitura dei solai;
- Dimensioni geometriche di travi, pilastri e pareti. Comprende inoltre la larghezza delle ali di travi a T;
- Possibili eccentricità fra travi e pilastri ai nodi.
- Per l'identificazione dei dettagli costruttivi, i dati raccolti devono includere i seguenti:
 - Quantità di armatura longitudinale in travi, pilastri e pareti;
 - Quantità e dettagli di armatura trasversale nelle zone critiche e nei nodi travepilastro;
 - Quantità di armatura longitudinale nei solai che contribuisce al momento negativo di travi a T;
 - o Lunghezze di appoggio e condizioni di vincolo degli elementi orizzontali;
 - Spessore del copriferro;
 - Lunghezza delle zone di sovrapposizione delle barre.
- Per l'identificazione dei materiali, i dati raccolti includono i seguenti:
 - Resistenza del calcestruzzo;
 - o Resistenza a snervamento, di rottura e deformazione ultima dell'acciaio.

5.1.2. Prove strutturali

Il rilievo strutturale è realizzato mediante delle prove sugli elementi strutturali.

Le prove possono essere distruttive o non distruttive. La differenza sostanziale è che con le prove distruttive si valutano le caratteristiche degli elementi indagati in modo diretto, mentre con quelle non distruttive si valutano in modo indiretto, interpretando i parametri ottenuti trasformandoli nelle caratteristiche cercate.

Le prove distruttive possono essere:

- Prova di compressione su carote di calcestruzzo: viene realizzata la prova a compressione su campioni di calcestruzzo ("carote") estratti dalla struttura mediante carotaggio. In questo modo si ricavano valori di resistenza del materiale. L'esecuzione dei carotaggi è regolata dalla norma UNI 12504-1 (UNI 2009), mentre la prova di compressione è regolata dalla norma UNI EN 12390;
- Valutazione del diametro della barra di armatura previa rimozione del calcestruzzo: viene valutato in modo diretto il diametro delle barre;

 Prova di trazione su barre di armatura d'acciaio estratte dalla struttura: la barra da prelevare deve avere una lunghezza pari a circa 450 mm, per poter essere sottoposta alla prova di rottura per trazione in conformità alla norma UNI EN 10002/1.

Le prove non distruttive possono essere:

Prova pacometrica:

Lo scopo della prova è quello di determinare la posizione delle barre d'armatura, lo spessore del copriferro e, in alcuni tipi di strumento, il diametro dei ferri.

L'utilizzo del pacometro è regolato dalla norma BS 1881:204.

La prova consiste nel far scorrere sulla superficie del manufatto una sonda emettitrice di campo magnetico, collegata ad un'unità di acquisizione ed elaborazione digitale, munita di display grafico ed emettitore sonoro. Si riporta la strumentazione utilizzata nella seguente figura..

Figura 38. Strumentazione utilizzata per la prova pacometrica

È una prova utile, se non indispensabile, per l'esecuzione di tutta un'altra serie di indagini in cui la presenza delle barre d'armatura deve essere ben definita e tracciata come, ad esempio, la prova sclerometrica.

Prova sclerometrica:

La prova di durezza superficiale o prova sclerometrica è regolamentata dalla normativa UNI EN 12504-2 "Prove sul calcestruzzo nelle strutture – Prove non distruttive – Determinazione dell'indice sclerometrico" ed ha come scopo la stima della resistenza a compressione del calcestruzzo in opera (su strutture già realizzate).

Deve essere usato uno sclerometro di tipo N, che è adatto a prove su calcestruzzo con spessore >10 cm e rocce lapidee. Si riporta la strumentazione utilizzata nella seguente figura.

Figura 39. Strumentazione per la prova sclerometrica

La superficie viene colpita nel punto da verificare da una forza nota applicata con un cilindro metallico spinto da una molla; il valore che si legge su una scala lineare alloggiata nella cassa dello sclerometro è detto "Indice di rimbalzo", che è un valore adimensionale. Esso viene quindi riportato su un grafico specifico per ogni sclerometro e, attraverso le relative curve di correlazione definite in funzione dell'angolo di battuta, si ricava la resistenza cubica del calcestruzzo.

È necessario verificare la taratura dello strumento prima di iniziare le battute. Viene verificato su un'incudine di taratura che ha un suo indice di rimbalzo conosciuto. L'indice deve essere 80 ± 2 . Se sono fuori da questo range significa che lo strumento non deve più essere usato.

La zona di indagine deve avere una dimensione minima di circa 30 x 30 cm, tale da consentire l'esecuzione di almeno 12 battute in punti opportunamente distribuiti e distanziati tra loro di

circa 2÷5 cm, al fine di evitare l'interazione reciproca tra le varie battute. Nell'elaborazione dei dati vengono scartati i due valori d'ala e viene calcolata il valore dell'indice di rimbalzo medio, valore utilizzato poi nelle curve di correlazione.

Per ottenere dei risultati il più possibile affidabili e con una precisione stimata dell'ordine del 15-20%, è opportuno valutare anche la deviazione standard: se i valori sono troppo dispersi, la prova è poco affidabile e il valore è da scartare.

Tra i parametri che possono falsare la prova i più comuni sono:

- o Umidità del materiale;
- Snellezza dell'elemento strutturale: per elementi monodimensionali lo spessore deve essere almeno di 12 cm, per quellI bidimensionali almeno di 10 cm;
- Carbonatazione del calcestruzzo: il fenomeno della carbonatazione provoca l'indurimento dello strato superficiale provocando così un'alterazione del fenomeno di rimbalzo. Lo sclerometro è indicato quindi per verifiche su calcestruzzi giovani, esenti dal problema;
- Presenza di armature o di inerti grossolani affioranti in corrispondenza dei punti di battitura: la battuta effettuata in corrispondenza di sottostanti armature o inerti grossolani affioranti falsa i valori di rimbalzo innalzando l'indice di rimbalzo;
- Imperfetta taratura dello strumento;
- Zone con difetti superficiali come nidi di ghiaia, porosità eccessiva, giunti tecnici, ecc.: la presenza di vuoti penalizza il valore degli indici di rimbalzo minori. Infatti lo sclerometro va usato soltanto su calcestruzzi a struttura chiusa e pertanto si debbono escludere quelli leggeri, cellulari o porosi (calcestruzzi a struttura aperta);
- La prova deve essere utilizzati in presenza di calcestruzzi con classe di resistenza superiore a 15 N/mm².

È necessario quindi, secondo il tipo di struttura da saggiare, prestare molta attenzione al corretto uso dello strumento in modo da ottenere risultati soddisfacenti.

Fattore importante, da tenere presente durante la prova, è che l'asse dello sclerometro deve essere sempre perpendicolare alla superficie della struttura in quanto una eventuale inclinazione ne influenzerebbe i risultati in modo negativo, in quanto il rimbalzo della massa battente può essere più o meno disturbato dalla forza di gravità.

Le inclinazioni previste dai diagrammi di correlazione allegati allo strumento sono relativi ai seguenti angoli come mostrato nella seguente figura.

- $\circ \quad \alpha = 0^{\circ}$ (pilastri, travi ecc.);
- $\circ \alpha = +90^{\circ}$ (solette orizzontali, intradosso di travi ed impalcati);
- $\circ \alpha = -90^{\circ}$ (plinti di fondazione, solette stradali ecc.).

Figura 40. Angolazioni di utilizzo dello sclerometro

<u>Prova ultrasonica</u>: consiste nel valutare la velocità di propagazione delle onde ultrasoniche nel calcestruzzo secondo la norma UNI EN 12504-4:2005. Tale velocità è strettamente correlata con il modulo elastico del calcestruzzo, a sua volta correlato con la resistenza a compressione.

Le prove distruttive danneggiano gli elementi indagati, ed è necessaria quindi la presenza di personale specializzato sia per la loro realizzazione sia per il successivo ripristino. Anche le prove non distruttive provocano disturbo negli ambienti in cui si svolgono le indagini, in quanto è necessario ad esempio rimuovere l'intonaco nella zona degli elementi indagati nello svolgimento della prova sclerometrica.

5.2. Procedura utilizzata e obiettivi

L'obiettivo è definire il livello di conoscenza della costruzione, valutando tutte le informazioni che possono essere raccolte attraverso documenti di archivio e prove strutturali, seguendo l'iter imposto dal D.M. 14 Gennaio 2008.

Si parte con l'analisi storico-critica della costruzione in esame, cercando tutta la documentazione disponibile nell'archivio del Comune di Torino.

Con la documentazione raccolta viene modellata la parte strutturale del complesso, integrando il modello sviluppato nel *Capitolo 4*. Completato questo modello può essere data un'idea della bontà delle informazioni disponibili grazie ad una vista tridimensionale in cui vengono visualizzati con colori differenti il livello di dettaglio dei singoli elementi.

A questo punto è quindi possibile pianificare e progettare il rilievo strutturale in chiave BIM, valutato nel dettaglio al Paragrafo 5.5. Con il rilievo strutturale sono stati raccolti dati relativi alla geometria degli elementi strutturali e dati relativi alla disposizione delle armature e delle caratteristiche meccaniche dei materiali.

Grazie alla progettazione BIM del rilievo, sono state pianificate le indagini definendo gli elementi da indagare e i dati da raccogliere. Una volta preparato tutto il materiale necessario, è stato svolto il rilievo in situ.

I dati raccolti devono essere poi elaborati: sono stati analizzati e confrontati con la documentazione disponibile per poi essere introdotti all'interno del modello, associando i dati ai singoli elementi analizzati.

Con tutte le informazioni raccolte è stato quindi possibile capire il livello di conoscenza raggiunto e i Fattori di Confidenza da applicare. Nella seguente figura si riporta il diagramma di flusso della procedura utilizza.

Figura 41. Diagramma di flusso procedura rilievo strutturale e modellazione

5.3. Analisi storico – critica

E 'stata eseguita una ricerca nell'archivio della scolastica del Comune di Torino. La documentazione trovata anche se non del tutto completa era sufficientemente esaustiva per gli scopi della presente tesi.

Nel dettaglio la documentazione trovata è la seguente, divisa per i vari blocchi in cui è stato suddiviso l'intero complesso:

- Edificio 1:
 - Pianta solaio quota +0.25 (corrispondente al piano terra dell'edificio);
 - Pianta solaio quota +4.23 (corrispondente al piano primo dell'edificio);
 - Pianta solaio copertura.
- Edificio 2:
 - Tabella fondazioni, pilastri e muri;
 - Pianta fondazioni;
 - Pianta solaio quota -0.05 (corrispondente al piano terra dell'edificio);
 - Pianta solaio quota +3.93 (corrispondente al piano primo dell'edificio);
 - Pianta solaio sottotetto;
 - Pianta solaio copertura.
- Edificio 3:
 - Tabella fondazioni, pilastri e muri;
 - Pianta fondazioni;
 - Pianta solaio quota -0.07-0.57 (corrispondente al piano terra dell'edificio);
 - Pianta solaio sottotetto;
 - Pianta solaio copertura.
- Ingresso 1:
 - Pianta solaio quota +4.08 (corrispondente al piano primo dell'ingresso);
 - Particolare scala.
- Ingresso 2:
 - o Tabella fondazioni, pilastri e muri;
 - o Pianta fondazioni;
 - Pianta solaio quota -0.07 (corrispondente al piano terra dell'ingresso);
 - Pianta solaio quota +3.93 (corrispondente al piano primo dell'ingresso);
 - Particolare scala.

- Ingresso 3:
 - Tabella fondazioni, pilastri e muri;
 - o Pianta fondazioni;
 - Pianta solaio quota -0.07 (corrispondente al piano terra dell'ingresso);
 - Armature solai e travi;
 - Tipologia serramenti;
 - o Sezioni, prospetti e planimetrie;
 - Particolare scale anti-incendio;
 - Rapporto di prova: prove di compressione su saggi cilindrici di calcestruzzo.
- Edificio 4:
 - Pianta della copertura;
 - Pianta del solaio intermedio.

Per quanto riguarda le tavole di carpenterie, indispensabili per definire gli elementi strutturali di cui è composta la struttura, possiamo riassumere il materiale trovato nella seguente tabella.

MATERIALE DI ARCHIVIO						
Tavole di carpenteria	Pianta fondazioni	Piano terra	Piano primo	Piano secondo	Piano sottotetto	Piano copertura
Edificio 1	Х	\checkmark	\checkmark	Х	Х	\checkmark
Edificio 2	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark
Edificio 3	\checkmark	\checkmark	Х	Х	\checkmark	\checkmark
Edificio 4	Х	\checkmark	\checkmark	-	Х	\checkmark
Ingresso 1	Х	Х	\checkmark	Х	Х	Х
Ingresso 2	\checkmark	\checkmark	\checkmark	Х	Х	Х
Ingresso 3	\checkmark	\checkmark	-	-	Х	X

Tabella 3. Materiale di archivio

Con la dicitura "-" si intende che il piano fisicamente non esiste.

L'edificio 1, 2, e 3 sono simili tra loro e si caratterizzano per una maglia strutturale che segue la stessa numerazione e dimensione di pilastri e travi; per questo dove manca la carpenteria si è ipotizzata uguale a quella dell'edificio dove è presente. Valgono le stesse considerazioni per i primi due ingressi.

Nei primi tre edifici e i primi due ingressi, manca la carpenteria del piano secondo, perciò si ipotizza uguale a quella del piano primo.

L'edificio 4 ha una struttura completamente diversa, e il materiale risulta insufficiente; sono presenti le carpenterie ma non una tabella di numerazione e dimensione di travi e pilastri, ed inoltre manca la carpenteria del piano fondazioni. Data quindi la mancanza di dati completi e la difficoltà nell'ipotizzarli si esclude la modellazione della parte strutturale dell'edificio.

L'ingresso 3 viene escluso dalla modellazione in quanto ritenuto a livello architettonico direttamente collegato all'edificio 4.

Nell'immagine seguente viene riportata una tavola di carpenteria di esempio.

Figura 42. Tavola di carpenteria PT ED2

5.4. Integrazione strutturale modello BIM

Con la documentazione raccolta viene modellata la parte strutturale del complesso, integrando il modello sviluppato nel *Capitolo 4*.

Completato questo modello può essere data un'idea della bontà delle informazioni disponibili grazie ad una vista tridimensionale in cui vengono visualizzati con colori differenti il livello di dettaglio dei singoli elementi.

5.4.1. Modello strutturale

Per implementare il modello architettonico con le informazioni riguardanti aspetti strutturali sono state utilizzate le tavole di carpenteria. A partire da tale documentazione sono stati modellati e inseriti gli elementi strutturali. Vengono evidenziate inoltre le potenzialità del software BIM in termini di modellazione strutturale e possibili applicazioni.

Per arrivare alla realizzazione del modello strutturale sono stati necessari alcuni step:

- Individuazione elementi strutturali da inserire a partire dalle tavole di carpenteria;
- Creazione famiglie caricabili degli elementi strutturali da inserire;
- Inserimento elementi struttura.

Le informazioni inserite all'interno del modello possono essere visualizzate in differenti modi:

- Modello fisico: rappresentazione tridimensionale degli elementi fisici strutturali;
- Abachi: informazioni raccolte in tabella.

Inoltre durante la creazione del modello fisico, viene contemporaneamente generato il modello analitico, una rappresentazione tridimensionale semplificata.

Individuazione elementi da inserire a partire dalle tavole di carpenteria.

Il modello strutturale in Revit è stato definito utilizzando le informazioni ottenute dalle tavole di carpenteria. Di seguito si riporta uno stralcio della tavola di carpenteria dove vengono riportate le informazioni relative ai pilastri dell'edifico 2.

Figura 43. Stralcio carpenteria – Tabella pilastri ED2

Tutte le informazioni vengono riassunte in tabelle; di seguito viene riportato lo schema pilastri degli edifici 1-2-3.

SCHEMA PILASTRI EDIFICI 1-2-3								
Calling		Dimensioni [cm]						
numerico	Pianta fondazioni	Piano terra	Piano primo	Piano secondo	Piano sottotetto	Piano locale tecnico		
1	35x25	30x35	30x30	30x30	30x30	-		
2	35x25	40x30	30x30	30x30	30x30	-		
3	35x25	40x30	30x30	30x30	30x30	-		
4	35x25	30x60	30x40	30x40	30x30	-		
5	30x80	30x80	30x55	30x55	30x45	-		
6	30x60	30x60	30x40	30x40	30x30	-		
7	35x25	30x40	30x30	30x30	30x30	-		
8	35x25	30x40	30x30	30x30	30x30	-		
9	35x25	30x35	30x30	30x30	30x30	-		
10	30x30	30x30	30x30	30x30	30x30	-		
11	30x30	30x30	30x30	30x30	30x30	-		
12	35x25	30x70	30x45	30x45	30x30	-		
13	30x70	30x60	30x45	30x45	30x30	-		

14	30x70	30x60	30x45	30x45	30x30	30x30
15	35x35	30x30	30x30	30x30	30x30	30x30
16	30x50	30x45	30x30	30x30	30x30	30x30
17	30x30	30x30	30x30	30x30	30x30	-
18	30x30	30x30	30x30	30x30	30x30	-
19	30x50	30x45	30x30	30x30	30x30	-
20	35x35	30x30	30x30	30x30	30x30	-
21	35x35	30x30	30x30	30x30	30x30	-
22	30x65	30x60	30x40	30x30	30x30	-
23	30x75	30x70*	30x55	30x45	30x45	-
24	30x65	30x60	30x40	30x30	30x30	-
25	35x35	30x30	30x30	30x30	30x30	30x30
26	35x35	30x30	30x30	30x30	30x30	30x40
27	30x50	30x45	30x30	30x30	30x30	-
28	30x50	30x45	30x30	30x30	30x30	-
29	35x35	30x30	30x30	30x30	30x30	-
30	35x35	30x30	30x30	30x30	30x30	-
31	35x35	30x30	30x30	30x30	30x30	-
32	35x35	30x30	30x30	30x30	30x30	-
33	35x35	30x30	30x30	30x30	30x30	-
34	35x35	30x30	30x30	30x30	30x30	-
35	35x35	30x30	30x30	30x30	30x30	-
36	35x25	30x45	30x30	30x30	30x30	-
37	35x25	30x35	30x30	30x30	30x30	-
38	35x25	30x40	30x30	30x30	30x30	-
39	35x25	30x40	30x30	30x30	30x30	-
40	35x25	30x40	30x30	30x30	30x30	-
41	35x25	30x40	30x30	30x30	30x30	-
42	35x25	30x40	30x30	30x30	30x30	-
43	35x25	30x40	30x30	30x30	30x30	-
44	35x25	30x40	30x30	30x30	30x30	-
45	35x25	30x35	30x30	30x30	30x30	-

*P.23 - Piano terra: nell'edificio 1 la dimensione del pilastro è di 30x60 cm.

Tabella 4. Schema pilastri edifici 1-2-3

Per quanto riguarda le travi non è presente uno schema preciso, vengono disegnate sul modello direttamente riferendosi alle carpenterie.

Per quanto riguarda i muri controterra, il loro spessore è per tutti gli edifici ed ingressi di 25 cm, mentre i cordoli al di sotto sono di 45x25cm negli edifici e 45x30 cm negli ingressi.

Creazione famiglie caricabili degli elementi strutturali da inserire

All'interno del software Revit i vari elementi strutturali sono considerati come famiglie caricabili.

Ad ogni famiglia verranno associati i vari tipi, cioè tutte le diverse dimensioni che potranno avere gli elementi strutturali.

ipi di famiglia			×
Nome del tipo:	Pilastro_25x40 cm	v 🏞 🛤	*
Daramaki di rice	Pilastro 25x35 cm		
Parameuro	Pilastro_25x45 cm		~
Para	Pilastro_25x70 cm	Formula	Blocca
Matoriali o fi	Pilastro_30x30 cm Pilastro_30x35 cm		*
Materiale stru	Pilastro_30x40 cm		
Dimensional	Pilastro_30x45 cm Pilastro_30x50 cm		
Dimensioni	Pilastro_30x55 cm		×
b b	Pilastro_30x60 cm Pilastro_30x65 cm		
n	Pilastro_30x70 cm		
Altro	PIlastro_30x75 cm		*
Area pilastro (Pilastro 35x25 cm		
Dati identità	Pilastro_35x30 cm		×
	Pilastro_35x35 cm Pilastro_35x50 cm		
	Pilastro_40x30 cm		
	Pilastro_45x60 cm Pilastro_50x25 cm		
	Pilastro_50x30 cm		
	Pilastro_50x60 cm Pilastro_55x30 cm		
🥒 🔭 🎦	n tE ₽E \$4 \$1	Gestis	sci tabelle di ricerca
Come destire i ti	ni di famiolia		
some gesure ru	prontaniiqiia	OK Annulla	Applica

Figura 44. Creazione famiglia pilastro in Revit

Inserimento elementi struttura

Gli elementi creati vengono inseriti nel modello BIM tramite l'ausilio di livelli e griglie di riferimento.

Ogni elemento strutturale in Revit è vincolato a livelli di riferimento. Il vantaggio è che a qualsiasi cambiamento di tali livelli segue l'aggiornamento dell'intero modello e quindi tutti gli elementi ad esso associati. Nel dettaglio, ogni famiglia necessita di vincoli differenti riassunti nella tabella seguente.

Oggetto	Livelli di posizionamento
Pilastri	Livello di base – Livello superiore
Travi	Livello di riferimento
Muri controterra e setti	Vincolo di base – Vincolo parte superiore
Plinti	Livello

Tabella 5. Definizione livelli di posizionamento elementi strutturali

Viene riportata nella figura seguente un prospetto dove si evidenziano i livelli di riferimento.

Figura 45. Prospetto edifico 1 – individuazione livelli di riferimento

Per quanto riguarda il posizionamento dei pilastri vengono utilizzate delle griglie di riferimento a supporto dell'operazione. Queste hanno due funzioni operative:

- Allineare correttamente le pilastrate e fare in modo che, qualora venga spostata una griglia, tutta la pilastrata ad essa associata cambi posizione insieme ad essa.
- Identificare la posizione di un pilastro come intersezione di due griglie.

I vari elementi sono stati modellati sulle piante strutturali dei vari livelli. Vengono riportate nelle figure seguenti un esempio di pianta strutturale in *Revit* e nel dettaglio il contrassegno di posizione del pilastro 38-47.

Figura 46. Pianta strutturale 01 ED1 – visualizzazione griglie

Figura 47. Contrassegno di posizione pilastro 38-47

Il modello strutturale creato può essere visualizzato in modi differenti.

<u>Abachi</u>: raccolta di informazioni estratte dalle proprietà degli elementi di un progetto e visualizzate in una tabella. Viene riportato un estratto della tabella dei pilastri strutturali inseriti.

<abaco pilastri="" strutturali=""></abaco>							
Α	B	С	D				
Famiglia e tipo	Lunghezza	Livello di base	Livello superiore				
Pilastro in calcostruzzo - Rettangolare: Pilastro 30x35 cm	4.00	1 0 32 PT Ed2	L 3 68 01 Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro 40x30 cm	4.00	L -0.32 PT Ed2	L 3.68 01 Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro 40x30 cm	4.00	L -0.32 PT Ed2	L 3.68 01 Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro 30x60 cm	4.00	L -0.32 PT Ed2	L 3.68 01 Ed2				
Pilastro in calcestruzzo - Rettangolare: Pllastro_30x80 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_30x60 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_40x30 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_40x30 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_30x35 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_30x70 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_30x60 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_30x60 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_30x30 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_30x45 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_30x45 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_30x30 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_30x30 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_30x60 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				
Pilastro in calcestruzzo - Rettangolare: Pilastro_30x70 cm	4.00	L0.32_PT_Ed2	L_3.68_01_Ed2				

Tabella 6. Estratto abaco pilastri strutturali

<u>Modello fisico</u>: viene riportata in figura una visualizzazione dell'edificio 1 tramite una vista tridimensionale.

Figura 48. Stralcio modello fisico edificio 1

Durante la creazione del modello fisico, viene contemporaneamente generato il modello analitico, una rappresentazione tridimensionale semplificata. Il modello analitico di una struttura include una serie di modelli analitici, legata ai seguenti elementi strutturali: pilastri strutturali, elementi del telaio strutturale quali travi e controventi, pavimenti strutturali, muri strutturali ed elementi della fondazione strutturale. Le rappresentazioni utilizzate sono riassunte nella seguente tabella.

Oggetto	Rappresentazione analitica
Pilastri analitici	Linea
Travi analitiche	Linea
Muri struttuali	Superficie bidimensionale
Plinti	Punto

Tabella 7. Rappresentazione analitica elementi in Revit

Viene riportato un esempio di modello fisico e analitico a confronto.

Figura 49. Confronto visualizzazione modello fisico e analitico

Viene infine riportata una tavola di sintesi del modello strutturale.

5.4.2. Criticità carpenterie – rilievo architettonico

Confrontando le carpenterie con il rilievo architettonico eseguito, sono state riscontrate delle differenze macroscopiche.

- Edificio 1:

Nel progetto originario non era prevista la scala anti- incendio ma una pensilina, questo crea delle differenze ai piani primo e secondo, come si vede nelle figure seguenti.

Figura 50. Carpenteria piano terra, edificio 1

Figura 51. Carpenteria piano primo, edificio 1

Si ipotizza allora di utilizzare la stessa disposizione delle travi del piano terra anche ai piani superiori. Nel piano fondazioni è stato cambiato l'andamento del muro controterra in modo da non intralciare le fondazioni della scala anti-incendio.

- Edificio 3

Il piano terra dell'edificio è stato cambiato molto rispetto alle carpenterie originarie. Questo piano originariamente presentava un livello costante di -0.32 m, tranne nella zona dell'aula magna dove scendeva a -0.69 m.

Ad oggi l'aula magna è sempre ad un livello inferiore, ma è stata ridimensioanta la stanza per definire un nuovo corridoio. Il nuovo corridoio è però realizzato al livello -0.32 m come mostrato nelle figure seguenti.

È quindi necessario ipotizzare una serie di travi su cui appoggi il solaio del nuovo corridoio. Nel seguito l'edificio tre non viene analizzato nel dettaglio.

Figura 52. Carpenteria originaria, edificio 3

Figura 53. Architettonico e strutturale sovrapposto, edificio 3

Al secondo piano un pilastro presente in carpenteria non è stato rilevato durante il rilievo architettonico. La carpenteria del piano secondo non è disponibile quindi il confronto è stato fatto con la carpenteria del piano primo.

Si suppone però che la differenza non sia legata alla mancanza della tavola di carpenteria, bensì ad un cambiamento dovuto alla costruzione della scala anti- incendio. È stato definito un nuovo corridoio ridimensionando la stanza; si ipotizza che da questo cambiamento sia stato eliminato il pilastro ed inserita una trave ribassata.

Capitolo 5 – Rilievo strutturale e modellazione

Figura 54. A sinistra modello architettonico nuovo, a destra modello strutturale da carpenteria

Figura 55. Trave ribassata riscontrata da rilievo in situ

5.4.3. Valutazione livelli di dettaglio tramite BIM

L'obiettivo è trovare un rappresentazione che ci indichi in maniera visiva e diretta il livello di conoscenza del complesso scolastico analizzato, dato che le tavole di carpenteria trovate non sono complete. Per far ciò è stata definita una metodologia BIM per arrivare ad ottenere tale visualizzazione. Il metodo si basa sull'attribuzione ad ogni elemento del suo livello di dettaglio e, tramite delle regole di filtraggio, visualizzare la struttura con un colore diverso per ogni livello di conoscenza raggiunto.

Di seguito si riporta nel dettaglio il procedimento utilizzato, che comprende:

- Creazione parametri per identificare il livello di conoscenza;
- Regole di filtraggio applicate alla vista tridimensionale.

Creazione parametri per identificare livelli di conoscenza

I parametri possono essere inseriti come parametri di progetto o come parametri condivisi. I parametri di progetto sono limitati al progetto stesso, mentre i parametri condivisi possono essere utilizzati in più modelli. È sempre meglio quindi creare dei parametri condivisi, nel caso servissero in altre occasioni.

Viene creato un file di parametri condivisi relativi all'ambito strutturale. Il file viene salvato come file di testo denominato "Rilievo strutturale parametri" (.txt).

All'interno del file i parametri possono essere divisi in gruppi. È stato creato allora un gruppo di parametri chiamato "Livello di conoscenza" con al suo interno un parametro definito "Livello di dettaglio" con le seguenti proprietà:

- Disciplina: Comune;
- Tipo di parametro: Testo.

modified parametri condivisi	*	Proprietà parametro
File parametri condivisi:		Nome:
C:\Users\Utente\Desktop\Rilievo struttur Sfi	oglia Crea	Livello di dettaglio
Gruppo di parametri:		Disciplina:
Livello di conoscenza	~	Comune
		Tipo di parametro:
Parametri:	Parametri	Testo
Entent of declagno	Nuovo	Descrizione comandi:
	Description	«Nessuna descrizione comando. Modificare il parametro pe.
	Proprieta	
	Sposta a	
	Sposta a Elimina	OK Annulla
	Sposta a Elimina	OK Annulla
	Sposta a Elimina Gruppi Nuovo	OK Annulla
	Gruppi Rinomina	OK Annulla
	Sposta a Elimina Gruppi Nuovo Elimina	OK Annulla

Figura 56. Creazione parametri condivisi – livelli di conoscenza

La disciplina può essere scelta tra: comune, strutturale, HVAC, elettricità, tubazioni ed energia. Il tipo di parametro può invece essere scelto tra testo, intero, numero, lunghezza, area, volume, angolo, inclinazione, valuta, densità, URL, materiale, immagine, si/no, testo multilinea, oppure scegliere un tipo di famiglia Revit.

In questo caso non è un parametro con una disciplina o un tipo specifico quindi viene scelta la disciplina comune e parametro testo.

Una volta creato il parametro condiviso, si passa alla creazione del parametro di progetto importando il parametro condiviso appena creato nella seguente figura. È necessario settare le seguenti proprietà:

- Scegliere una tipologia di informazioni in cui raggruppare il parametro. Viene scelta la categoria Testo;
- Scegliere le categorie di elementi in cui verrà visualizzato il parametro: vengono selezionati tutti gli elementi strutturali;

Parametri progetto	\times	Proprietà parametro	;
Parametri progetto X Parametri par gli elementi in questo progetto: Eccenterio Atesza Atesza Atesza seto olfenetri Atesza seto olfe		Proprietà parametro Tipo di parametro (Più comparire negli abachi ma non nelle etichette) (Più comparire negli abachi ma n	Cetegorie Elenco del fitti: Struttura Utacondi categorie deselezionate Ace rele strutturale Amatra su area softutarie Amatra su area softutarie Amatra su area softutarie Carichi strutturali inteni Carichi strutturali
		Raggruppa parametro in: Cell gruppo Descrizione comandi: -Alessura descrizione comando: Modificare il parametro per creane una descrizione co Aggiungi e tutti gli elementi nelle categorie selezionate	Ponsadois suturitai Ponsadois suturitai Ponsadois suturitai Gingle Gingle Gingle Gingle Gingle Geselezione tutti Deselezione tutti OK Annulla ?

Figura 57. Inserimento parametro condiviso "Livello di dettaglio" nel progetto

Regole di filtraggio applicate alla vista tridimensionale

A questo punto si vuole realizzare una vista 3D dove si possano vedere immediatamente i diversi livelli di conoscenza della struttura con colori differenti.

Per fare ciò si applicano dei filtri alla vista 3D con regole di filtraggio che stabiliscono colori diversi per i diversi valori del parametro "Livelli di dettaglio" come mostrato nella seguente figura.

Sostituzioni visibilità/grafica p	er Vista 3D: 3	D rilievo geo,	/carpenterie	DIODENI	Togene anne	- per serie	1910 90. 90 11	X Moduli aggiuntivi BIM One Modifica 📼 🗸	
Categorie del modello Categorie	di annotazioni	Categorie del I	modello analitico	Categorie impo	rtate Filtri			modello 🔯 Locale 🖾 Area 🔻	
coregone der modene coregone	ar annotae.on	outegene der		categorie impo				di modello 📴 Delimitatore locale 🕅 Contorno area	
Destacione (Consultate Testia						po di modello • 🖳 Assegna etichetta, al locale, • 🕅 Assegna etichetta, all'area			
Nome	Visibilità	Linee	Motivi	Tracparenza	linee	Motivi	Mezzitoni	Modello Locale e area 🔻	
Carpenteria coerente		Linee	Modifi	nasparenza	Linee	mourr			
Ipotesi plausibili									
Differenze rilievo- carpe									
Criticità									
Aggiungi Rimuovi Qui è possibile definire e mo	dificare tutti	Su Modificay	Filtri	iasati su regole isipanteria conto micità ifferenze rilievo- totesi plausibili i selezione	nte			Categorie Selezionare una o più categorie da includere nel filtro. I parametri comun di tali categorie potornone essaitu di tali categorie deselezionate Categorie deselezionate Carchi stutturali Carchi stuttura	
quadio di sezio	â		<u>8</u>	M *				Cododianalici C	<

Figura 58. Regole di filtraggio

Vengono definite quattro condizioni:

- 1. Carpenteria coerente: elemento definito nelle tavole di carpenteria e confermato dal rilievo architettonico (solo geometricamente), filtro di colore verde;
- 2. Ipotesi plausibili: elemento non definito nelle tavole di carpenteria ma ipotizzato e confermato dal rilievo architettonico, filtro di colore giallo;
- 3. Differenza rilievo- carpenteria: elemento definito nelle tavole di carpenteria ma difforme rispetto al rilievo geometrico, filtro di colore viola;
- 4. Criticità: elemento non definito nelle tavole di carpenteria, ipotizzato con un certo livello di incertezza, filtro di colore rosso.

I filtri possono essere visibili o meno, quindi posso visualizzare tutta la struttura per avere un'idea globale ma anche visualizzare solo gli elementi con una specifica condizione.

Nel seguito viene riportata la tavola dei livelli di dettaglio globale.

Politecnico di Torino	DISEG	Ingegneria	a civile			
Studenti: Cristiano Rizzo e Muratore Laura						
Tesi: BIM e interoperabilità con programmi di calcolo						
Tavola: Livelli di conoscenza						
Scala 1:300	01	Aaa.	16/10/2018			

end	<u>a</u>
	Carpenteria coerente
	Ipotesi plausibile
	Differenza tra carpenteria e rilievo architettonico
	Totale mancanza di dati

5.5. Progettazione BIM rilievo strutturale

L'intento è quello di preparare e inserire nel modello BIM i dati che verranno rilevati in situ, permettendo quindi di leggere informazioni di tipo strutturale all'interno di elementi travi e pilastri definiti in Revit.

Un secondo obiettivo è legato alla visualizzazione grafica del piano di indagini da effettuare. È stato trovato un modo per avere una rappresentazione che ci indichi in maniera visiva e diretta gli elementi indagati e specificare quale prova è stata eseguita su ogni singolo elemento. Per far ciò è stata definita una metodologia BIM per arrivare ad ottenere tale visualizzazione. Il metodo si basa sull'attribuzione ad ogni elemento indagato della tipologia di prova eseguita su di esso e, tramite delle regole di filtraggio, visualizzare gli elementi con un colore diverso per ogni prova effettuata.

In Figura si riporta il diagramma di flusso del progetto del rilievo strutturale eseguito.

Figura 59. Diagramma di flusso del progetto del rilievo strutturale

5.5.1. Criticità e soluzione individuata

L'inserimento di queste informazioni avviene tramite dei parametri che al loro interno contengono i dati rilevati. Inizialmente si è cercato di inserire queste informazioni direttamente all'interno degli elementi strutturali che dovevano contenerle ma, facendo ciò, ci si scontrava con un grosso problema, l'impossibilità di definire a quale faccia del pilastro o della trave corrispondesse una prova effettuata o un particolare dato.

Questo succede perché il software BIM in questione, *Revit 2018*, legge ogni elemento come un unico blocco, e non contiene dentro di sé un'informazione riferita alle facce del solido 3D.

La soluzione al problema adottata è stata l'utilizzo di una massa fittizia che possa essere associata alla faccia dell'elemento strutturale analizzato, e di conseguenza associare anche le informazioni rilevate. È stato possibile associare la massa al pilastro di riferimento tramite l'ausilio di Dynamo.

5.5.2. Descrizione soluzione adottata

Si descrive nel dettaglio il processo a partire dalla creazione della massa fittizia da associare al pilastro fino ad arrivare all'inserimento dei risultati delle prove in situ direttamente nel pilastro e in particolare sulla faccia dell'elemento rilevata.

Il processo si compone di 3 step:

- Creazione della massa fittizia;
- Attribuzione all'elemento della tipologia di prova effettuata;
- Associazione della massa fittizia all'elemento di riferimento tramite Dynamo.

1 - Creazione massa fittizia - Pacometro

Viene creata una nuova famiglia partendo dal file modello "Massa Metrica - massa concettuale.

Estrudendo una geometria semplice si ottiene la massa pacometro, definita come piastra di dimensioni 250x500 mm. L'area indagata da questa prova può variare, per questo vengono create 3 dimensioni (altezza, larghezza e lunghezza) parametriche in modo da poter modificare puntualmente ogni massa per ogni misurazione effettuata.

I parametri relativi alle dimensioni della massa, sono stati creati come parametri condivisi all'interno dello stesso file "Rilievo strutturale parametri.txt" definito nel *Paragrafo 5.4.3* introducendo il gruppo "Prove non invasive". Sono stati associati alla disciplina "Comune" e

tipo di parametro "Lunghezza": in questo modo il software assocerà al parametro l'unità di misura corrispondente, come mostrato nella figura seguente.

Modifica parametri condivisi	×	Proprietà parametro	×	
File parametri condivisi:		Nome:		
C:\Users\Utente\Desktop\Rilievo struttur	Sfoglia Crea	Altezza		
Gruppo di parametri:		Disciplina:		
Prove non invasive	×	Comune		
		Tipo di parametro:		
Parametri:	Parametri	Lunghezza		
Larghezza	Nuovo	Descrizione comandi:		
Pacometro Pilastro associato	Proprietà	<nessuna comando.="" descrizione="" il="" modificare="" paramet<="" td=""></nessuna>		
Sclerometro	Sposta a			
	Elimina	ОК	Annulla	
	Gruppi			
	Nuovo			
	Rinomina			
	Elimina			

Figura 60. Definizione parametri inseriti nella massa generica

Sono stati poi aggiunti come parametri di progetto "Istanza", associati alle categorie di pilastri strutturali, masse e abachi e raggruppati in "Dimensioni", come mostrato nella figura seguente.

roprietà parametro				
Tipo di parametro		Categorie		
O Parametro di progetto		Elenco dei filtri: Struttura ~		
(Può comparire negli abad	Nascondi categorie deselezionate			
Parametro condiviso		Gruppi di modello		
(Può essere condiviso da nelle etichette ed essere	più progetti e famiglie, comparire negli abachi e esportato via ODBC)	Informazioni sul progetto Livelli		
	Seleziona Esporta	Hanicotti armatura strutturaie		
		Materiali		
Dati parametro		Modelli generici		
Nome:		Here Mun		
Altezza	ОТіро	Nedi eselitiei		
Disciplina:	 Istanza 	- Nodrananici		
Comune	\sim	Pavimenti analitici		
Tipo di parametro:	Tvalori vengono allineati ner tino di gruppo	Pilastri		
Lungheren		🗌 Pilastri analitici		
Lungnezza	I valori possono variare in base all'istanza	Pilastri strutturali		
Raggruppa parametro in:	del gruppo	Platee analitiche		
Dimensioni	~	Plinti analitici		
Descrizione comandi:		Rampe inclinate		
«Nessi na descrizione comar	do. Modificare il parametro per creare una descrizione co	<		
		Seleziona tutti Deseleziona tutti		
🗸 Aggiungi a tutti gli elementi	nelle categorie selezionate	OK Annulla ?		

Figura 61. Inserimento parametri nel progetto nelle categorie di elementi selezionate

I parametri "Altezza", "Lunghezza" e "Larghezza" sono utilizzati come nuovi parametri all'interno delle proprietà della famiglia, senza bloccare il valore in modo tale da definire a piacere la dimensione anche per i singoli elementi del modello come mostrato nella figura seguente.

	The last free fails			
	Tipi di tamiglia			^
larghezza = 250	Nome del tipo: Destra			
	Parametri di ricerca			Q
	Parametro	Valore	Formula	Blocca
	Vincoli			*
	Prospetto di default	1219.2	=	
	Dimensioni			*
	Altezza (default)	1000.0	=	
	Larghezza (default)	250.0	=	
	Lunghezza (default)	500.0	=	
	Dati identità			×
8				
				duuunuuud
	🖉 🛍 🛅 to 🖅	21 21	Gestisci tab	oelle di ricerca
	Come gestire i tipi di famiglia		OK Annulla	Applica
		~		

Figura 62. Famiglia Pacometro – parametri utilizzati

Vengono creati quattro tipi all'interno della famiglia, coincidenti con le quattro facce del pilastro:

- Famiglia Pacometro:
 - o Tipo Fronte;
 - Tipo Retro;
 - Tipo Destra;
 - Tipo Sinistra.

Viene a questo punto caricata nel progetto la famiglia e si passa all'inserimento delle masse.

2 - Individuazione della tipologia di prova effettuata

Per le famiglie masse create è possibile definire degli abachi. Un abaco è una raccolta di informazioni estratte dalle proprietà degli elementi di un progetto e visualizzate in una tabella. Esso può essere creato per una categoria (o famiglia) specifica.

In questo caso viene scelto di creare un abaco della categoria massa, in cui possono essere inserite le informazioni volute sotto forma di parametri.

La criticità riscontrata è che tutte e due le prove effettuate sono definite tramite elementi della famiglia massa, quindi nell'abaco verranno visualizzate tutte le masse presenti nel progetto.

La problematica viene risolta inserendo nel progetto parametri che possano differenziare le due prove:

- Pacometro: con questo parametro verranno raggruppati tutti gli elementi strutturali e le masse su cui viene effettuata la prova pacometrica;
- Sclerometro: con questo parametro verranno raggruppati tutti gli elementi strutturali e le masse su cui viene effettuata la prova sclerometrica.

A questo punto si applica un filtro ai due abachi definiti, come mostrato in nella figure seguenti.

Proprietà aba	со	×
Campi Filtro	Ordinamento/Raggruppamento Formattazione Aspetto	
Filtra per:	Pacometro ~ uguale ~ Si	\sim
E:	(nessuno) V	\sim
		
Proprietà abao	0	×
Proprietà abac Campi Filtro	CO Ordinamento/Raggruppamento Formattazione Aspetto	×
Proprietà abac Campi Filtro Filtra per:	CO Ordinamento/Raggruppamento Formattazione Aspetto Sclerometro V uguale V Si	×

Figura 63. Proprietà abaco – Pacometro

Questi parametri sono aggiunti come parametri condivisi all'interno dello stesso file "Rilievo strutturale parametri.txt" definito nel *Paragrafo 5.4.3* introducendo il gruppo "Prove non invasive". Tutti i parametri sono aggiunti come parametri di progetto "Istanza" ed associati alle categorie di pilastri strutturali, masse e abachi

3 - Associazione della massa fittizia all'elemento di riferimento

All'interno dell'abaco deve essere inserito un dato che mi permetta di capire a che elemento strutturale sono associate quelle informazioni. Viene definito allora il parametro "Pilastro associato".

Lo scopo del parametro è associare la massa fittizia all'elemento di riferimento, trasferendone così anche le informazioni. All'interno di *Revit* non è stato trovato nessun modo per raggiungere l'obbiettivo.

Per risolvere questo problema è stato necessario l'ausilio del software *Dynamo*, un'interfaccia di programmazione grafica che consente di personalizzare il flusso di lavoro relativo alle informazioni edilizie attraverso degli algoritmi.

L'algoritmo che è stato creato si basa sostanzialmente sull'intersezione della massa con l'elemento strutturale ad esso associata e si compone dei seguenti passaggi:

- <u>Step 1: Definizione dei dati dei pilastri indagati:</u>

Inizialmente sono stati individuati i pilastri indagati, filtrando l'intera lista dei pilastri solo con quelli contenenti il parametro "Sclerometro" e solo con quelli contenenti il parametro "Pacometro", come mostrato nella figure seguenti.

Le funzioni utilizzate in questo primo step sono:

- o Categories: viene selezionata la categoria Pilastri strutturali;
- All elements of Category: sono selezionati tutti gli elementi della categoria impostata;
- Element.GetParameterValueByName: sono ottenuti i valori di uno dei parametri dell'elemento;
- Equals: determina se due istanze di oggetto sono uguali, nel caso in esame se il parametro Sclerometro o Pacometro contenga al suo interno "Si";
- List.FilterByBoolMask: applica un filtro ad una sequenza sulla base di indici corrispondenti ad un elenco di valori booleani separato;

• Watch: viene stampato a video il risultato ottenuto.

Figura 64. Step 1 – Pilastri indagati - Pacometro

- <u>Step 2: Definizione dei dati delle masse:</u>

È stato svolto lo stesso procedimento con le masse, filtrando le masse che coincidono con la prova sclerometrica e con la prova pacometrica, come mostrato in nelle figure seguenti.

Dati Masse			
Categories Massa Category	String Pacometro >	Element.GetParameterValueByName element > Var[]_] parameterName > ObjectA > bood ObjectB >	Watch
All Elements of Category		String	•
Categoy Elements	Wolch > Lift 1055522 Fronts 1055526 Fronts 1055526 Fronts 1055526 Fronts 105522 Fronts 105525 Fronts 105525		List Wil Fronte 1005552 Wil Fronte 1005552 Wil Fronte 1005568 Will Hetro 1005568 Will Hetro 1005568 Will Hetro 1005572 Will Fronte 1073571 Will Fronte 1073571 Will Fronte 1073573 Will Fronte 1073574 Will Fronte 1073574
	101 Fronte 1074930 102 Fronte 1074930 102 Retro 1075221 102 Retro 1075234 102 Rt (67)		(60)

Figura 65. Filtro masse fittizie con pacometro

- <u>Step 3: Intersezione elementi:</u>

Viene utilizzata una funzione che permette di trovare una lista di tutti quegli elementi che intersecano le masse selezionate, successivamente trasformata in variabile per motivi di scrittura del codice, come mostrato nelle figure seguenti

Le funzioni utilizzate in questa fase sono le seguenti:

• All intersecting element of category by boundingbox: trova tutti gli elementi che intersecano una bounding box di un elemento dato.

Questa funzione si può trovare nel pacchetto Clockwork scaricabile in Dynamo. Essa contiene al suo interno un altro piccolo algoritmo e si basa sostanzialmente su uno script scritto nel linguaggio di programmazione Python.

Figura 66. Script di Python della funzione All intersecting element of category by boundingbox

 Flatten: restituisce la versione 1D dell'elenco di input multidimensionale. Se l'input è un valore singolo, restituisce tale valore.

Figura 67. Intersezione elementi prova pacometrica

- <u>Step 4: Combinazione parametri elementi:</u>

Lo step finale è quello di associare ad ogni massa il contrassegno del pilastro corrispondente che interseca, tramite il parametro "Pilastro associato".

Tutti i pilastri hanno un contrassegno dato dall'intersezione delle due griglie dove è posizionato, come mostrato nella figura seguente.

Figura 68. Esempio - Contrassegno pilastro

In questa ultima fase viene utilizzata la funzione "Element.SetParameterByName", che setta uno dei parametri dell'elemento: viene inserito il nome del parametro da modificare, "Pilastro associato", e viene assegnato il valore del contrassegno del pilastro intersecato di riferimento, come mostrato nelle figure seguenti.

Figura 69. Combinazione parametri pacometro

In questo modo è stato popolato il parametro Pilastro associato riferito ad ogni massa per ognuna delle due prove, come si vede nell'estratto di abaco delle due prove, come mostrato nella seguente figura.

Livello di riferimento	Pilastro associato	Pacometro	Famiglia	Тіро
PT ED2	57-63	Si	Pacometro	Fronte
PT ED2	58-63	Si	Pacometro	Fronte
PT ED2	59-63	Si	Pacometro	Fronte
PT ED2	61-65	Si	Pacometro	Fronte
PT ED2	59-65	Si	Pacometro	Retro
PT ED2	58-65	Si	Pacometro	Retro
PT ED2	57-65	Si	Pacometro	Retro

Figura 70. Stralcio da abachi per individuazione del pilastro associato alla massa generica creata

5.6. Prova Pacometrica

La prova pacometrica ha lo scopo di indagare le armature presenti all'interno degli elementi strutturali, come definito nei *Cenni teorici* al *Paragrafo 5.1.2*.

Prima dello svolgimento della prova in situ viene preparato il piano delle indagini, in cui si definiscono gli elementi indagabili e i dati da rilevare. Dopo il rilievo è stato necessario analizzare i dati raccolti.

5.6.1. Piano delle indagini

5.6.1.1. Individuazione elementi indagabili

Nel caso in esame sono state svolte prove solo sugli elementi strutturali pilastri con almeno una faccia accessibile. Essi devono essere definiti prima dello svolgimento delle prove, preparando delle tavole per ogni piano di ogni edificio per identificarli.

La prova pacometrica viene effettuata su tutti i pilastri accessibili di tutti gli edifici.

Per identificare gli elementi su cui effettuare le prove vengono sovrapposte le piante architettoniche con quelle strutturali.

La posizione degli elementi indagati è definita nella *Relazione specialistica* presente nell' *Allegato A*.

Si vuole a questo punto riassumere gli elementi indagabili attraverso delle tabelle. Si utilizza allora lo strumento abaco fornito da *Revit*.

Per ogni elemento scelto si compila il parametro pacometro con la dicitura "Si", definito al *Paragrafo 5.5*.

Viene definito l'abaco dei pilastri strutturali. In esso saranno presenti tutti gli elementi presenti nella costruzione. Viene allora applicato un filtro, come definito al *Paragrafo 5.5*, per visualizzare solo gli elementi su cui viene effettuata la prova pacometrica. L'abaco ottenuto può a questo punto essere esportato su Excel tramite il modulo aggiuntivo *BIM One* scaricabile gratuitamente dall'*Autodesk App Store*.

Le tabelle ottenute sono le seguenti, in cui viene calcolata la percentuale di elementi indagati per ogni edificio.

EDIFICIO 1						
Num.	Contrassegno di posizione pilastro	Livello di base	Livello superiore	Pacometro		
1	40-52	РТ	01	Si		
2	41-47	PT	01	Si		
3	41-47	01	02	Si		
4	41-47	02	03	Si		
5	41-49	PT	01	Si		
6	41-49	01	02	Si		
7	41-50	01	02	Si		
8	41-50	02	03	Si		
9	42-49	PT	01	Si		
10	43-47	PT	01	Si		
11	43-47	01	02	Si		
12	43-47	02	03	Si		
13	43-49	01	02	Si		

14	43-50	01	02	Si
15	45-49	01	02	Si
16	45-49	02	03	Si
17	45-50	РТ	01	Si
18	45-50	01	02	Si
19	45-50	02	03	Si
	TOTALE	VALUTATI [%	[]	9

Capitolo 5 – Rilievo strutturale e modellazione

Tabella 8 Assegnazione massa al pilastro di riferimento, edificio 1

	EDIFICIO 2					
Num.	Contrassegno di posizione pilastro	Livello di base Livello superiore		Pacometro		
1	55-66	L_3.68_01_Ed2	L_7.18_02_Ed2	Si		
2	57-63	L0.32_PT_Ed2	L_3.68_01_Ed2	Si		
3	57-65	L0.32_PT_Ed2	L_3.68_01_Ed2	Si		
4	57-65	L_3.68_01_Ed2	L_7.18_02_Ed2	Si		
5	57-66	L_3.68_01_Ed2	L_7.18_02_Ed2	Si		
6	57-66	L_7.18_02_Ed2	L_10.28_03_Ed2	Si		
7	58-63	L0.32_PT_Ed2	L_3.68_01_Ed2	Si		
8	58-65	L0.32_PT_Ed2	L_3.68_01_Ed2	Si		
9	58-65	L_3.68_01_Ed2	L_7.18_02_Ed2	Si		
10	58-65	L_7.18_02_Ed2	L_10.28_03_Ed2	Si		
11	59-63	L0.32_PT_Ed2	L_3.68_01_Ed2	Si		
12	59-65	L0.32_PT_Ed2	L_3.68_01_Ed2	Si		
13	59-65	L_3.68_01_Ed2	L_7.18_02_Ed2	Si		
14	59-66	L_3.68_01_Ed2	L_7.18_02_Ed2	Si		
15	59-66	L_7.18_02_Ed2	L_10.28_03_Ed2	Si		
16	61-65	L0.32_PT_Ed2	L_3.68_01_Ed2	Si		
17	61-65	L_3.68_01_Ed2	L_7.18_02_Ed2	Si		
18	61-65	L_7.18_02_Ed2	L_10.28_03_Ed2	Si		
	ТОТА	LE VALUTATI [%]	9		

Tabella 9. Assegnazione massa al pilastro di riferimento, edificio 2

	EDIFICIO 3							
Num.	Contrassegno di posizione pilastro	Livello di base	Livello superiore	Pacometro				
1	82-91	L_7.18_02_Ed2	L_10.28_03_Ed2	Si				
2	82-91	L0.32_PT_Ed2	L_3.68_01_Ed2	Si				
3	82-91	L_3.68_01_Ed2	L_7.18_02_Ed2	Si				
4	83-89	L0.69_PT_Ed3	L_3.68_01_Ed2	Si				
5	83-91	L_3.68_01_Ed2	L_7.18_02_Ed2	Si				
6	83-91	L_7.18_02_Ed2	L_10.28_03_Ed2	Si				
7	83-92	L_3.68_01_Ed2	L_7.18_02_Ed2	Si				
8	83-92	L_7.18_02_Ed2	L_10.28_03_Ed2	Si				
9	84-89	L0.69_PT_Ed3	L_3.68_01_Ed2	Si				
10	84-91	L_3.68_01_Ed2	L_7.18_02_Ed2	Si				
11	84-91	L_7.18_02_Ed2	L_10.28_03_Ed2	Si				

12	85-89	L0.69_PT_Ed3	L_3.68_01_Ed2	Si
13	85-90	S1	L0.32_PT_Ed2	Si
14	85-91	L_3.68_01_Ed2	L_7.18_02_Ed2	Si
15	85-91	L_7.18_02_Ed2	L_10.28_03_Ed2	Si
16	85-92	L_3.68_01_Ed2	L_7.18_02_Ed2	Si
17	85-92	S1	L0.32_PT_Ed2	Si
18	85-93	S1	L0.32_PT_Ed2	Si
19	86-90	S1	L0.32_PT_Ed2	Si
20	86-94	S1	L0.32_PT_Ed2	Si
21	86-95	S1	L0.32_PT_Ed2	Si
22	87-91	L0.32_PT_Ed2	L_3.68_01_Ed2	Si
23	87-92	L_7.18_02_Ed2	L_10.28_03_Ed2	Si
24	88-91	S1	L0.32_PT_Ed2	Si
	ТОТА	LE VALUTATI [%]	9

Tabella 10. Assegnazione massa al pilastro di riferimento, edificio 3

Ulteriore possibilità per visualizzare al meglio gli elementi indagati è definire una vista 3D ed applicare dei filtri sul colore degli elementi che presentano il parametro pacometro. Si decide di visualizzare in arancione gli elementi indagati e le masse collegate.

Nella seguente figura è presente una visualizzazione degli elementi indagati con la prova pacometrica riferiti all'edificio 2.

Figura 71. Elementi indagati per la prova pacometrica edificio 2

5.6.1.2. Individuazione dati da rilevare

I risultati della prova pacometrica possono essere riassunti tramite i seguenti parametri:

- c'medio barra: copriferro medio barre;
- c'medio staffa: copriferro medio staffe;
- smedio barra: spaziatura media delle barre;
- smedio staffa: spaziatura media delle staffe;
- Numero barre;
- Φ_{barre} : diametro delle barre;
- Φ_{staffe} : diametro delle staffe;
- Livello di riferimento: piano dell'elemento pilastro indagato.

I parametri sono stati creati come parametri condivisi, definendo un nuovo gruppo "Misurazioni Pacometro" all'interno del file "Rilievo strutturale parametri.txt" definito al *Paragrafo 5.4.3*, come mostrato nella seguente figura.

Le proprietà date ai nuovi parametri condivisi sono le seguenti:

c'medio barra, c'medio staffa: disciplina "Strutturale" e tipo di parametro "Copriferro armatura". In questo modo il software assocerà al parametro l'unità di misura corrispondente, in questo caso i millimetri;

Modifica parametri condivisi	×	Proprietà parametro	×
File parametri condivisi:		Nome:	
C:\Users\Utente\Desktop\Rilievo struttur	oglia Crea	c' medio barra	
Cruppo di parametri:	1	Disciplina:	
Misurazioni Pacometro	~	Strutturale	×
		Tipo di parametro:	
Parametri:	Parametri	Copriferro armatura	~
c' medio staffa	Nuovo	Descrizione comandi:	
Numero barre s medio barra	Proprietà	<nessuna comando.="" descrizione="" il="" modificare="" parar<="" td=""><td>netro pe</td></nessuna>	netro pe
s medio staffa Φ barre	Sposta a		
Φ staffe	Elimina	OK Ar	nnulla
	Gruppi		
	Gruppi Nuovo		
	Gruppi Nuovo Rinomina		
	Gruppi Nuovo Rinomina Elimina		

Figura 72. Parametri "Misurazioni pacometro"

- s_{medio barra}, s_{medio staffa}: disciplina "Strutturale" e tipo di parametro "Spaziatura armatura". In questo modo il software assocerà al parametro l'unità di misura corrispondente, in questo caso i millimetri;
- Numero barre e Livello di riferimento: disciplina "Comune" e tipo di parametro "Testo";
- Φ_{barre}, Φ_{staffe}: disciplina "Strutturale" e tipo di parametro "Diametro barra". In questo modo il software associerà al parametro l'unità di misura corrispondente, in questo caso i millimetri.

Tutti i parametri sono aggiunti come parametri di progetto "Istanza", associati alle categorie di pilastri strutturali, masse ed abachi e raggruppati come "Risultati analisi".

All'abaco già creato al *Pargrafo 5.5* vengono aggiunti i parametri appena definiti, come mostrato nella figura seguente.

ampi Filtro	Ordinamen	to/Raggruppamento	Formattazione	Aspetto	
Selezionare Massa Campi dispo	campi disponibil nibili: sul tipo	i da:	Cam	npi <u>d</u> i abaco (in ordine): htrassegno	•
Contraggio Costo Descrizione Erm Fasedi cre Fase di cre Fase di der frc IfcGUID Immagine t Modello	gno tipo e assieme tipo azione nolizione ipo	v	Live Pila Pac Far Tip Alte Lur C'n fr fr Sm Sm UR	ello di riferimento stro associato cometro inglia ezza ghezza nero barre necio barre necio staffa edio staffa L	
🥢 🖒	lementi nei colle	gamenti	Ø	*b ↑E ↓E	

Figura 73. Parametri da inserire nell'abaco della prova pacometrica

L'abaco è così pronto per essere esportato in un file Excel, utile per l'analisi dei dati successiva.

5.6.2. Rilievo in situ

Per evitare qualsiasi intervento invasivo alla struttura verranno predisposti dei fogli di carta in modo tale da coprire l'area indagata. Nel caso in esame, volendo stimare anche il valore del copriferro, verrà sottratto dal valore rilevato dallo strumento lo spessore di intonaco ipotizzato.

Per ogni elemento indagato la prova si sviluppa in due fasi:

- Prima fase, rilievo delle staffe

È necessario posizionare il pacometro tra le due barre verticali: in generale ci saranno sempre due barre d'angolo e qualche volta anche una barra centrale. Per iniziare il rilievo allora posiziono lo strumento ipotizzando che siano tutte e tre le barre, per evitare errori grossolani di misurazione, come mostrato nella seguente figura.

Figura 74. Rilievo staffe in situ

Posizionato lo strumento, viene fatta scorrere la sonda sul canale compreso tra le due barre. Sul display dello strumento si legge la distanza dalla barra più vicina, si continua finché lo strumento non rileva la posizione precisa della staffa con un suono. A questo punto viene segnata la posizione, l'asse della staffa corrisponde con l'asse della sonda. Viene segnato inoltre il valore che compare sul display, che corrisponde allo spessore del copriferro.

Generalmente vengono rilevate tre o quattro staffe, in modo tale da avere un'idea del passo.

- <u>Seconda fase, rilievo delle barre</u>

In questa seconda fase lo strumento viene posizionato tra le due staffe rilevate precedentemente partendo dal filo sinistro o destro dell'elemento.

Si segue la stessa procedura e si ripete la misura per ogni interspazio delle staffe per evitare errori grossolani.

Il risultato finale è quello riportato mostrato nella seguente figura.

Figura 75. Rilievo barre

I risultati devono essere però rappresentati in maniera ordinata su una scheda tecnica, per essere fruibili.

Nella prima parte della scheda viene disegnata l'armatura vista frontale, indicando l'altezza a cui è stata effettuata la prova, il passo staffe e il passo tra le barre come mostrato nella seguente figura.

Figura 76. Scheda tecnica armatura vista frontale – P22 PT ED1

Nella seconda parte della scheda viene disegnata l'armatura vista dall'alto, indicando i copriferri rilevati per le barre e per le staffe, come mostrato nella seguente figura.

Figura 77. Scheda tecnica armatura vista dall'alto - P22 PT ED1

Lo spessore dell'intonaco è calcolato sottraendo alla dimensione totale del pilastro rilevata quella effettiva dell'elemento, come mostrato nella seguente figura.

Nell'esempio:

330 mm - 300 mm = 30 mm

 $\frac{30}{2}$ mm = 15 mm di intonaco per parte.

Figura 78. Rilievo completo prova pacometrica - P22 PT ED1

È stato realizzato anche un rilievo fotografico dei pilastri indagati con le relative armature disegnate, nominando ogni foto con il numero identificativo del pilastro e la faccia su cui è stata eseguita la prova. Sono stati inseriti nel modello solamente i dati relativi a facce interamente analizzate.

5.6.3. Analisi dei dati

Alla fine del rilievo strutturale in situ è necessario elaborare i risultati ottenuti, partendo dalle schede tecniche delle armature, riportate in figura nella pagina precedente.

I valori di copriferro vengono calcolati come media di quelli rilevati. Al valore ottenuto è stato sottratto il valore di intonaco ipotizzato.

Questi valori sono stati inseriti nel file Excel estratto dal modello, facendo attenzione a compilare le colonne vuote senza modificare altro. Per importare la tabella completata è stato utilizzato il modulo aggiuntivo *BIM One*.

I parametri relativi al diametro delle barre e delle staffe vengono compilati con i valori trovati all'interno della documentazione d'archivio, come mostrato in seguente figura.

Sono stati confrontati gli schemi di armatura rilevati in sito con i disegni di carpenteria reperiti in archivio ed è stata definita una legenda di colori sulle tabelle *Excel* completate per identificare gli elementi verificati.

Figura 79. Esempio armatura pilastro da carpenteria

La legenda è articolata nel modo seguente:

- Verde chiaro: valori coerenti con la carpenteria;
- Verde scuro: valori non coerenti con la carpenteria ma comunque a favore di sicurezza;
- Rosso chiaro: valori non coerenti con la carpenteria e non a favore di sicurezza.

I valori vengono classificati con un range di tolleranza rispetto ai valori di carpenteria.

TOLLERANZA COPRIFERRO STAFFE	$\pm 15 \text{ mm}$
TOLLERANZA COPRIFERRO BARRE	$\pm 20 \text{ mm}$
TOLLERANZA INTERASSE BARRE	$\pm 50 \text{ mm}$
TOLLERANZA INTERASSE STAFFE	±50 mm

Tabella 11. Range di tolleranza assunti

Considerazioni:

- Se i valori rientrano nella tolleranza, vengono classificati come coerenti con la carpenteria (colore verde chiaro);
- Se l'interasse delle barre e delle staffe supera la tolleranza sono state inserite meno ferri del dovuto, e questo non è a favore di sicurezza;
- Se l'interasse delle barre e delle staffe è minore della tolleranza sono state inserite più barre rispetto alle carpenterie, e questo è a favore di sicurezza;
- Se il numero delle barre è maggiore della tolleranza, si considera come situazione a favore di sicurezza.

Vengono riportate le seguenti tabelle classificando i valori come da legenda, non riportando tutte le colonne dell'abaco ma solo quelle utili alla presente trattazione. Si riporta nella figura seguente la leggenda per la corretta interpretazione delle tabelle.

Valori coerenti con la carpenteria
Valori non coerenti con la carpenteria ma a favore di sicurezza
Valori non coerenti con la carpenteria e a sfavore di sicurezza

Figura 80- Leggenda risultati prova pacometrica

	EDIFICIO 1						
Contrassegno	Livello di riferimento	Numero barre	c' medio barra	c' medio staffa	s medio barra	s medio staffa	
35	PT ED1	4	40.0 mm	40.0 mm	200.0 mm	145.0 mm	
4	PT ED1	4	27.0 mm	26.0 mm	200.0 mm	170.0 mm	
17	PT ED1	4	33.0 mm	32.0 mm	200.0 mm	145.0 mm	
22	PT ED1	4	34.0 mm	26.5 mm	180.0 mm	190.0 mm	
23	PT ED1	4	28.0 mm	29.0 mm	210.0 mm	165.0 mm	
6	PT ED1	4	30.0 mm	24.0 mm	230.0 mm	165.0 mm	
6	01 ED1	4	48.0 mm	38.0 mm	210.0 mm	155.0 mm	
4	01 ED1	4	39.0 mm	35.0 mm	190.0 mm	140.0 mm	
35	01 ED1	4	46.5 mm	41.0 mm	200.0 mm	175.0 mm	
33	01 ED1	4	31.0 mm	24.5 mm	230.0 mm	190.0 mm	
31	01 ED1	4	46.5 mm	37.0 mm	200.0 mm	155.0 mm	
26	01 ED1	1/125mm	53.0 mm	50.0 mm	125.0 mm	180.0 mm	
4	02 ED1	4	36.0 mm	29.0 mm	210.0 mm	170.0 mm	
6	02 ED1	4	36.0 mm	29.0 mm	210.0 mm	140.0 mm	
31	02 ED1	4	38.0 mm	42.0 mm	200.0 mm	150.0 mm	
35	02 ED1	4	29.5 mm	21.5 mm	200.0 mm	150.0 mm	
26	02 ED1	1/185mm	37.0 mm	41.0 mm	185.0 mm	175.0 mm	
22	01 ED1	6	31.0 mm	29.0 mm	105.0 mm	140.0 mm	
24	01 ED1	4	35.0 mm	34.0 mm	200.0 mm	135.0 mm	
ΤΟΤΑ	LE VALUTA	TI E VERI	FICATI CON	CARPENTERI	A [%]	9	

Tabella 12. Risultati prova pacometrica, edificio 1

	EDIFICIO 2						
Contrassegno	Livello di riferimento	Numero barre	c' medio barra	c' medio staffa	s medio barra	s medio staffa	
4	PT ED2	6	35.0 mm	38.0 mm	110.0 mm	94.0 mm	
5	PT ED2	9	30.0 mm	33.0 mm	115.0 mm	143.0 mm	
6	PT ED2	6	26.8 mm	34.5 mm	110.0 mm	155.0 mm	
26	PT ED2	4	34.0 mm	39.0 mm	220.0 mm	150.0 mm	
24	PT ED2	6	37.0 mm	35.0 mm	240.0 mm	117.0 mm	
23	PT ED2	9	39.0 mm	32.0 mm	120.0 mm	127.0 mm	
22	PT ED2	6	28.0 mm	22.0 mm	155.0 mm	170.0 mm	
26	01 ED2	4	39.0 mm	48.0 mm	210.0 mm	150.0 mm	
33	01 ED2	4	45.5 mm	47.0 mm	190.0 mm	120.0 mm	
31	01 ED2	4	48.0 mm	48.0 mm	190.0 mm	155.0 mm	
29	01 ED2	4	42.0 mm	41.0 mm	175.0 mm	127.0 mm	
24	01 ED2	4	40.0 mm	41.0 mm	190.0 mm	150.0 mm	
23	01 ED2	4	43.0 mm	40.0 mm	190.0 mm	160.0 mm	
22	01 ED2	4	48.5 mm	53.5 mm	200.0 mm	160.0 mm	
33	02 ED2	4	40.0 mm	40.0 mm	220.0 mm	150.0 mm	
31	02 ED2	4	40.0 mm	46.0 mm	200.0 mm	150.0 mm	
23	02 ED2	4	41.0 mm	38.0 mm	200.0 mm	160.0 mm	
26	02 ED2	4	40.0 mm	40.0 mm	210.0 mm	150.0 mm	
TOTA	ALE VALUTA	ΓΙ E VERI	FICATI CON (CARPENTERL	A [%]	9	

Tabella 13. Risultati prova pacometrica, edificio 2

EDIFICIO 3						
Contrassegno	Livello di riferimento	Numero barre	c' medio barra	c' medio staffa	s medio barra	s medio staffa
60	PT ED3	1/200mm	45.0 mm	39.0 mm	200.0 mm	170.0 mm
4	PT ED3	4	34.4 mm	42.0 mm	160.0 mm	80.0 mm
5	PT ED3	4	29.0 mm	32.0 mm	225.0 mm	140.0 mm
6	PT ED3	4	50.5 mm	47.0 mm	220.0 mm	160.0 mm
26	PT ED3	4	46.0 mm	52.0 mm	190.0 mm	190.0 mm
33	01 ED3	8	35.0 mm	42.0 mm	116.0 mm	80.0 mm
31	01 ED3	16	39.0 mm	32.0 mm	58.0 mm	30.0 mm
22	01 ED3	12	43.0 mm	42.0 mm	42.0 mm	80.0 mm
23	01 ED3	8	45.0 mm	37.0 mm	45.0 mm	35.0 mm
24	01 ED3	4	42.0 mm	56.0 mm	200.0 mm	40.0 mm
60	01 ED3	1/200mm	49.0 mm	33.0 mm	200.0 mm	200.0 mm
35	02 ED3	4	24.0 mm	18.0 mm	160.0 mm	140.0 mm
22	02 ED3	8	41.0 mm	40.0 mm	80.0 mm	97.0 mm
23	02 ED3	8	25.0 mm	31.0 mm	70.0 mm	80.0 mm
24	02 ED3	8	39.0 mm	42.0 mm	60.0 mm	60.0 mm
60	02 ED3	1/100mm	39.0 mm	30.0 mm	100.0 mm	150.0 mm
27	S1 ED3	6	44.0 mm	41.0 mm	160.0 mm	150.0 mm
18	S1 ED3	9	44.0 mm	39.0 mm	110.0 mm	180.0 mm
14	S1 ED3	15	43.0 mm	38.0 mm	124.0 mm	150.0 mm
11	S1 ED3	9	40.0 mm	54.0 mm	105.0 mm	130.0 mm
A	S1 ED3	9	38.0 mm	38.0 mm	106.0 mm	160.0 mm
33	S1 ED3	4	37.0 mm	29.0 mm	260.0 mm	170.0 mm
42	S1 ED3	6	37.0 mm	24.0 mm	165.0 mm	150.0 mm
TOTALE VALUTATI E VERIFICATI CON CARPENTERIA [%]						

Tabella 14. Risultati prova pacometrica, edificio 3

Le percentuali di pilastri verificati sono le stesse di quelle dei pilastri indagabili, ipotizzando verificato l'elemento che presenta un numero di barre uguale o superiore al valore da carpenteria.

Viene riportata nella pagina seguente la tavola di sintesi relativa alla prova pacometrica.

PROVA PACOMETRICA COMPLESSO SCOLASTICO VIA CECCHI

di Torino DISE		Ingegneria civile						
Rizzo Cristiano								
e interoperabilità con il software Advance Desing								
Prova pacometrica pilastri indagati								
300	01	Agg.	16/10/2018					

Livello di riferimento	Pilastro associato	Pacometro	Famiglia	Tipo	Numero barre	c' medio barra	c' medio staffa	s medio barra	s medio staff
						0	•	0	0
PT ED2	57-63	Si	Pacometro	Fronte	6	45 mm	48 mm	110 mm	94 mm
PT ED2	58-63	Si	Pacometro	Fronte	9	45 mm	48 mm	115 mm	143 mm
PT ED2	59-63	Si	Pacometro	Fronte	6	37 mm	45 mm	110 mm	155 mm
PT ED2	61-65	Si	Pacometro	Fronte	4	44 mm	49 mm	220 mm	150 mm
PT ED2	59-65	Si	Pacometro	Retro	6	52 mm	50 mm	240 mm	117 mm
PT ED2	58-65	Si	Pacometro	Retro	9	54 mm	47 mm	120 mm	127 mm
PT ED2	57-65	Si	Pacometro	Retro	6	43 mm	37 mm	155 mm	170 mm

Tesi: BIM Tavola: P Scala 1:1

e interoperabilità con il software Advance Desing						
Prova pacometrica dettaglio piano terra edificio 2						
100	02	Agg.	16/10/2018			

5.6.4. Inserimento armature rilevate

L'inserimento delle armature è stato eseguito con il software *BIM Designers* (software che verrà introdotto nel *Capitolo 6*), tramite il quale è possibile inserire le armature rilevate direttamente in *Revit* tramite un plug-in sul software di calcolo *Advance Design* o in modalità stand-alone.

Si sceglie di prendere in esame un solo pilastro come riferimento per esplicitare la procedura e la potenzialità di questo plug-in. Il pilastro considerato è il 5 al piano terra, come mostrato nella seguente figura.

Figura 81. Individuazione pilastro da armare in Revit – Pilastro 5 PT ED2

Le informazioni riguardanti l'armatura sono quelle ottenute dal rilevo strutturale integrate con le informazioni relative carpenterie.

- Informazioni dal rilievo strutturale:

EDIFICIO 2							
Num.	Livello di riferimento	Numero barre	c' medio barra	c' medio staffa	s medio barra	s medio staffa	
5	PT ED2	9	30.0 mm	33.0 mm	115.0 mm	143.0 mm	

Tabella 15. Risultati rilevati per il pilastro 5, edificio 2 (PT ED2)

Per quanto riguarda il c' medio, poiché sui software è possibile inserire un unico valore, è stata calcolata la media dei valori. Per cui il c' medio è uguale a 31,5 mm.

- Informazioni dalle carpenterie

Figura 82. Dettaglio armatura pilastro Pilastro 5 PT ED2 – da carpenteria

Su questo pilastro abbiamo riscontrato una discordanza tra le carpenterie e il rilievo in situ tramite la prova pacometrica per quanto riguarda la diposizione delle armature come mostrato nella seguente figura.

Figura 83. Rilievo in situ per pilastro pilastro 5 PT ED2 – Risultati da prova pacometrica

Si è scelto in fine di disporre le armature longitudinali come rilevato con la prova pacometrica inserendo 3 barre longitudinali su ogni lato per un totale di 8 barre. Le informazioni che non sono state ottenute dal rilievo strutturale sono state completate dai dati nelle carpenterie.

Si sceglie quindi di utilizzare barre longitudinali $\phi 16$ e staffe $\phi 6$.

Si inserisce l'armatura longitudinale e trasversale in modo parametrico, completando una serie di parametri che ne permettono un inserimento facilitato.

Per quanto riguarda l'armatura longitudinale, c'è la possibilità di impostare 3 zone: superiore, principale e inferiore. Per ogni zona è possibile inserire l'armatura principale o secondaria, senza legature oppure con spilli o staffe, come mostrato nella seguente figura.

Figura 84. Inserimento armatura longitudinale pilastro 5 PT ED2

L'armatura trasversale conserva la stessa impostazione delle 3 zone di quella longitudinale ed è possibile creare delle zone dove far variare il passo delle staffe. Per semplicità e poiché non è stato rilevato il passo nelle zone critiche si pone la distanza tra le staffe costante per tutta la lunghezza del pilastro, come mostrato nella seguente figura.

Figura 85. Inserimento armatura trasversale pilastro 5 PT ED2

Il vantaggio di questa operazione non è solo l'ottimizzazione dell'inserimento dell'armatura ma anche il fatto che si lavora con oggetti di Revit. C'è la possibilità di modificare l'armatura successivamente o di visualizzare le proprietà dell'oggetto creato, perché è un oggetto al 100% di Revit. Nella seguente figura si riporta la visualizzazione del pilastro armato.

Figura 86. Visualizzazione pilastro pilastro 5 PT ED2 armato

I vantaggi di inserire le armature degli elementi direttamente nel modello BIM sono:

- Archiviazione informazioni in modo diretto e graficamente facili da leggere;
- Possibilità di estrarre delle tavole in ambiente Revit, con tutti i vantaggi che ne conseguono;
- Possibilità di estrarre computi metrici precisi e dettagliati.

Di seguito si riporta la tavola dei dettagli costruttivi dell'elemento di esempio.

5.1. Prova Sclerometrica

Il seguente capitolo è stato svolto da Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". Si riportano i risultati da lei conseguiti in merito a questa prova nella seguente tabella.

	PROVA SCLEROMETRICA													
Num.	Pilastro associato	Angolo di battuta	R1 [-]	R ₂ [-]	R3 [-]	R4 [-]	R5 [-]	R ₆ [-]	R7 [-]	R ₈ [-]	R9 [-]	R ₁₀ [-]	R ₁₁ [-]	R ₁₂ [-]
27	88-91	0	44	39	46	46	42	43	40	41	43	40	43	39
42	86-94	0	38	42	38	34	37	41	36	34	44	47	42	40
33	86-90	0	40	42	44	42	34	39	39	38	39	38	40	43
А	85-90	0	43	38	38	38	36	36	36	35	36	36	40	36
11	86-95	0	36	34	34	34	35	34	36	33	39	40	34	37
14	85-92	0	36	34	35	34	30	36	36	36	36	36	37	38
18	85-93	0	32	38	40	39	40	34	40	42	38	41	34	39

Tabella 16. Risultati prova sclerometrica in situ

Infine, si riportano le caratteristiche meccaniche ottenute per ogni elemento indagato.

CARATTERISTICHE MECCANICHE									
Num.	R _{cm} [N/mm ²]	f _{cm} [N/mm ²]	E _{cm} [N/mm ²]						
27	45.3	37.6	32735						
42	39.7	33.0	31468						
33	41.2	34.2	31825						
Α	35.6	29.6	30455						
11	32.5	27.0	29638						
14	33.1	27.5	29785						
18	38.0	31.6	31060						

Tabella 17. Caratteristiche meccaniche ottenute da prova sclerometrica

5.2. Valutazione del livello di conoscenza raggiunto

A seguito delle attività di indagine sopra descritte sono state raccolte tutte le informazioni utili per poter inserire la costruzione in esame in uno dei livelli di conoscenza definiti nel *Paragrafo 5.1.1*.

Si fa rifermenti alla "Tabella C8A.1.2." presente nel Paragrafo 5.1.1.

Le informazioni a disposizione sono le seguenti:

- Geometria: le caratteristiche geometriche degli elementi strutturali sono note dai disegni originali e dal rilievo geometrico effettuato;
- Dettagli strutturali: sono presenti i disegni costruttivi strutturali originali e i risultati delle prove pacometriche effettuate;
- Materiali: le proprietà meccaniche dei materiali sono riportate sui disegni costruttivi, definite in una campagna di indagini realizzata nel settembre 2012 e confermate dalle prove sclerometriche eseguite.

Si fa riferimento alla "Tabella C8A.1.3a." presente nel Paragrafo 5.1.1.

Nel caso in esame possono essere svolte solo prove strutturali sui pilastri. Le percentuali di elementi indagati e verificati sono riportate nelle seguenti tabelle:

PROVA PACOMETRICA							
EDIFICI	Elementi da indagare per normativa [%]						
Edificio 1	9	15					
Edificio 2	9	15					
Edificio 3	9	15					

Tabella 18. Percentuale degli elementi indagati e verificati per prova pacometrica

PROVA SCLEROMETRICA							
EDIFICI	Elementi da indagare per normativa [%]						
Edificio 1	0	15					
Edificio 2	0	15					
Edificio 3	3	15					

Tabella 19. Percentuale degli elementi indagati e verificati per prova sclerometrica

Non viene raggiunta la percentuale di elementi indagati, ma comunque tutti gli elementi che è stato possibile indagare risultano verificati.

Si ipotizza quindi di rientrare nel Livello di Conoscenza Adeguata (LC2) effettuando limitate verifiche in situ.

Il Livello di conoscenza Adeguata presenta le seguenti caratteristiche (citate direttamente dalla "*Circolare n. 617 del 02 Febbraio 2009*"):

"Geometria: la geometria della struttura è nota o in base a un rilievo o dai disegni originali. In quest'ultimo caso viene effettuato un rilievo visivo a campione per verificare l'effettiva corrispondenza del costruito ai disegni. I dati raccolti sulle dimensioni degli elementi strutturali, insieme a quelli riguardanti i dettagli strutturali, saranno tali da consentire la messa a punto di un modello strutturale idoneo ad un'analisi lineare o non lineare.

Dettagli costruttivi: i dettagli sono noti da un'estesa verifica in-situ oppure parzialmente noti dai disegni costruttivi originali incompleti. In quest'ultimo caso viene effettuata una limitata verifica in situ delle armature e dei collegamenti presenti negli elementi più importanti. I dati raccolti saranno tali da consentire, nel caso si esegua un'analisi lineare, verifiche locali di resistenza, oppure la messa a punto di un modello strutturale non lineare.

Proprietà dei materiali: informazioni sulle caratteristiche meccaniche dei materiali sono disponibili in base ai disegni costruttivi o ai certificati originali di prova, o da estese verifiche in-situ. Nel primo caso sono anche eseguite limitate prove in-situ; se i valori ottenuti dalle prove in-situ sono minori di quelli disponibili dai disegni o dai certificati originali, sono eseguite estese prove in-situ. I dati raccolti saranno tali da consentire, nel caso si esegua un'analisi lineare, verifiche locali di resistenza, oppure la messa a punto di un modello strutturale non lineare.

La valutazione della sicurezza nel caso di conoscenza adeguata è eseguita mediante metodi di analisi lineare o non lineare, statici o dinamici."

Il Fattore di Confidenza legato al livello di conoscenza raggiunto è 1,20. Come definito al *Paragrafo 5.1.1* le resistenze medie, ottenute dalle prove in situ e dalle informazioni aggiuntive, sono divise per i Fattori di Confidenza.

CAR	CARATTERISTICHE MECCANICHE								
Num.	$R_{cm} [N/mm^2]$	$R_{cm} [N/mm^2] f_{cm} [N/mm^2]$							
27	37.8	31.3	30993						
42	33.1	27.5	29793						
33	34.4	28.5	30131						
А	29.7	24.6	28834						
11	27.1	22.5	28060						
14	27.6	22.9	28199						
18	31.7	26.3	29406						

Tabella 20. Calcolo caratteristiche meccaniche medie divise per i fattori di confidenza

Riducendo i valori delle resistenze medie si ottengono dei valori comunque superiori a quelli del progetto originale, come riportato in tabella.

I valori non risultano rappresentativi dell'intera struttura, si ipotizza quindi di utilizzare i valori di progetto (25 MPa) come caratteristiche meccaniche dei materiali.

Capitolo 6 – Interoperabilità dei software

In questo capitolo è stato trattato il tema principale della tesi stessa: l'interoperabilità.

Il punto di partenza è il software di *Autodesk Revit 2018*. L'obiettivo è cercare un software di calcolo strutturale che si interfacci al meglio con esso. Il primo passo è stato eseguire una ricerca per la scelta dei programmi da utilizzare e, una volta individuati i due software, successivamente sono stati valutati alcuni aspetti ritenuti importanti per l'interoperabilità.

6.1. Ricerca software di calcolo strutturale

I software di calcolo strutturale sono molteplici, ognuno con i propri vantaggi e svantaggi. Nella presente tesi ci si è soffermati su alcuni aspetti, ritenuti indispensabili in questa fase iniziale:

- Presenza di plug-in in Revit: questo strumento rende più agevole e veloce il passaggio tra un software e l'altro;
- Possibilità di utilizzare un formato di scambio interno oltre l'IFC (Industry Foundation Classes), che è un formato dati aperto nato per facilitare l'interoperabilità tra i vari operatori che partecipano all'intero ciclo di vita della struttura: l'utilizzo di tale formato richiede uno studio approfondito della materia, ed esula dagli scopi della presente tesi;
- Utilizzo di normative nazionali e internazionali: nell'ottica di poter lavorare sia in Italia sia all'estero, è importante trovare un software versatile;
- Affidabilità del software di calcolo agli elementi finiti: la complessità della struttura può essere più o meno elevata, è importante trovare un software preparato ad entrambi i casi.

Sono stati confrontati diversi software di calcolo strutturale privilegiando gli aspetti riguardanti la presenza di plug–in in *Revit* e la possibilità di utilizzare un formato di scambio interno che non sia IFC.

Nella seguente tabella viene riscontrato che l'unico software di calcolo strutturale, tra quelli analizzati, che presenta un plug-in interno a *Revit* è *Advance Design*. Per quanto riguarda i formati di scambio interno invece presentano formati diversi da IFC i programmi *Advance Design*, *Sap 2000* e *Midas Gen*.

Software di calcolo	Plug-in in Revit	Formato di scambio interno
Travilog	Х	IFC
Axis VM	Х	IFC
Advance Design	\checkmark	IFCgtcx
Sap2000	Х	IFCexr
Midas Gen	Х	IFCmgt

Tabella 21. Ricerca software di calcolo strutturale

I software presi in considerazione sono i seguenti:

- Advance Design 2018;
- Midas Gen 2018.

6.1.1. Advance Design 2018

Questo software prodotto da *Graitec* ha delle ottime potenzialità in ottica interoperabilità. I suoi punti di forza sono:

- Presenza di Plug-in direttamente in *Revit*: *BIM Connect* e *BIM Designer Concrete design*;
- Possibilità di esportazione del file tramite un formato di scambio interno ".gtcx";
- Utilizzo di normative nazionali e internazionali molto complete.

Un flusso di lavoro BIM più intelligente e produttivo è riassunto nella seguente figura.

Figura 87. Flusso di lavoro BIM Designers - Revit

BIM CONNECT

Il *BIM Connect* è un'estensione gratuita per *Autodesk Revit Architecture* ed *Autodesk Revit Structure* che fornisce una condivisione intuitiva e bidirezionale del modello BIM.

Il BIM connect permette di eseguire le seguenti operazioni:

- Sincronizzazione di modelli: conservare gran parte degli elementi nel momento in cui vengono importati ed esportati da *Revit* nei prodotti di analisi *Graitec*;
- Importare/esportare: i maggiori formati come IFC, SDNF, CIS2, PSS;
- Trasferimento di carichi analitici: trasferire elementi strutturali con dati analitici;
- Trasferire muri e fondazioni curvi: usando i formati GTCX o IFC si possono esportare muri o fondazioni curvi e anche profili con fori;
- Trasferimento materiali: in un singolo file condividere e gestire modelli ed elementi in acciaio, calcestruzzo e legno.
- Mappare velocemente nuovi materiali: rileva e suggerisce automaticamente nuove sezioni e materiali da mappare.

È possibile eseguire la sincronizzazione del file *Revit* con il file di *Advance Design* selezionando e accettando solo le modifiche desiderate.

Figura 88. Diagramma di flusso esportazione/importazione modello Revit-Advance Design

Gli oggetti esportabili da Revit ad Advance Design sono schematizzati nella seguente tabella.

ELEMENTI MAPPATI	Autodesk Revit Structure	Advance Design		
	Nome	Nome		
	Numero	Solo su esportazione		
	PostIt	-		
	Cartella	Tipo di oggetto/Livello/Nome progetto		
	Fase	-		
	Materiale	Materiale		
	Inizio sezione/Fine sezione	Punto iniziale/ finale		
Trave	Offset iniziale / Offset finale	Punto iniziale / finale		
	Svincoli Iniziali / Finali	-		
	Punto iniziale / finale / raggio analitico	-		
	Inizio / fine / raggio CAD	Punto iniziale / finale / raggio		
	Taglio iniziale / finale	Punto iniziale / finale		
	Livello	Livello		
	Ritagli	Linea apertura		
	Fori	Linea aperuta		
	Nome	Nome		
	Numero	Solo su esportazione		
	PostIt			
	Cartella	Tipo di oggetto / Livello / Nome progetto		
	Fase			
	Materiale	Materiale		
	Inizio sezione / Fine sezione	Sezione		
	Offset iniziale / Offset finale	Punto iniziale / finale		
Colonna	Svincoli Iniziali / Finali	-		
	Punto iniziale / finale / raggio analitico	-		
	Inizio / fine / raggio CAD	Punto iniziale / finale / raggio		
	Taglio iniziale / finale	Punto iniziale / finale		
	Livello	Livello		
	LinkRigidi	-		
	Ritagli	-		
	Fori	_		
	Nome	Nome		
	Numero	Solo su esportazione		
	PostIt	1		
Fondazione	Cartella	Tipo di oggetto / Livello / Nome progetto		
continua	Materiale	Materiale		
	Inizio sezione / Fine sezione	Sezione		
	Offset iniziale / Offset finale	Punto iniziale / finale		
	Punto iniziale / finale / raggio analitico	-		

	Inizio / fine / raggio CAD	Punto iniziale / finale / raggio		
	Taglio iniziale / finale	Punto iniziale / finale		
	Livello	Livello		
	Nome	Nome		
	Numero	Solo su esportazione		
	PostIt			
	Cartella	Tipo di oggetto / Livello / Nome progetto		
	Materiale	Materiale		
Donoto	Punti/raggi	Punti/raggi		
Falete	Offset	Eccentricità		
	Normale	Parete		
	Spessore	Spessore		
	Ritagli	Finestre / Porte		
	Livello	Livello		
	Inizio / fine CAD	Punto iniziale / finale		
	Nome	Nome		
Γ	Numero	Solo su esportazione		
	PostIt			
Γ	Cartella	Tipo di oggetto / Livello / Nome progetto		
	Materiale	Materiale		
S = 1 = # =	Punti/raggi	Punti/raggi		
Solella	Offset	Eccentricità		
	Normale	Normale		
	Spessore	Spessore		
	Ritagli	Aperture solaio		
	Carichi	Carichi		
	Livello	Livello		
	Nome	Nome		
	Numero	Solo su esportazione		
	PostIt	-		
	Cartella	Tipo di oggetto / Livello / Nome progetto		
Fondazione	Materiale	Materiale		
isolutu	Origine	Punto		
	Angolo	Angolo		
	Volume	Volume		
	Livello	Livello		
	Sollecitazioni	G/Q/EC		
Ι Γ	Punti	x1/x2		
Carico	Orientamento	Tipo		
Ι Γ	Caso di carico	Tipo		
[[Natura carico	Tipo		

Tabella 22. Elementi esportabili da Revit ad Advance Design

ADVANCE BIM DESIGNERS – CONCRETE SERIES

Questo plug-in è una serie innovativa di applicazioni con lo scopo principale di ottimizzare la realizzazione delle tavole di armatura.

Grazie a questo software gli utenti possono, progettare, estrarre la documentazione, numerare e controllare gli elementi strutturali di un progetto BIM mentre stanno lavorando.

Il pregio di questo plug-in è che opera totalmente in ambiente Revit, ottimizza famiglie e processi in modo da generare un livello di dettaglio dell'armatura in modo più semplice senza però vincolarsi all'estensione utilizzata. La compatibilità multi-piattaforma di *Reinforced Concrete BIM Designers* permette il suo funzionamento in *Autodesk Revit, Advance Design* e anche su piattaforma stand.

Altre caratteristiche:

- I molteplici flussi di lavoro supportano una semplice scelta: i Reinforced Concrete BIM Designers possono essere utilizzati in qualsiasi fase del processo per supportare più flussi di lavoro, si possono generare le armature grazie ai risultati del calcolatore FEM o può lavorare in maniera autonoma tramite sui dati basati dall'utente;
- Relazioni di calcolo dettagliate: relazioni di calcolo dettagliate completamente personalizzabili, comprese le formule di calcolo con riferimenti alla normativa possono essere prodotte da qualsiasi piattaforma con estrema facilità.
- Documentazione: specifica per Stato, templates configurabili dall'utente completamente dimensionati e disegni con viste e sezioni che vengono estratti in automatico, completi di distinte delle barre e la possibilità di creare anche una tavola;
- Numerose normative internazionali: i Reinforced Concrete BIM Designers sono stati localizzati per l'Europa, il Canada e il Nord America.

6.1.2. Midas Gen 2018

Il seguente capitolo è stato svolto da Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". Vengono descritte le caratteristiche principali del software Midas.

6.2. Individuazione punti di attenzione per l'interoperabilità

Nello studio dell'interoperabilità sono state individuate alcune tematiche ritenute rilevanti. Per studiarle al meglio si è scelto di non utilizzare l'edificio del caso studio, che non avrebbe permesso di governare a pieno il problema perché troppo complesso, ma delle strutture semplici.

Con i due software di calcolo scelti sono stati portati avanti in parallelo lo studio dei seguenti temi:

- Valutazione dell'eccentricità tra gli elementi del modello;
- Individuazione di una zona rigida che simuli il nodo di intersezione trave pilastro;
- Modellazione dell'elemento solaio;
- Definizione dei carichi agenti sulla struttura.

Figura 89. Criticità: eccentricità elementi (sx), definizione nodo rigido trave-pilastro (dx)

Figura 90. Criticità: modellazione solaio

Sono stati confrontati per ogni argomento i livelli di interoperabilità raggiungibili con entrambi i software utilizzati al *Paragrafo 8.5*.

6.3. Eccentricità

All'interno della struttura in esame si presentano molti casi di eccentricità, dovuti principalmente a due fattori:

- Rastremazione della sezione del pilastro: si passa da una sezione del pilastro maggiore ad una minore ed il centro dell'elemento non corrisponde;
- Eccentricità dovute ad esigenze architettoniche: il centro degli elementi pilastri è sfalsato rispetto a quello delle travi ad esso collegate, per evitare a livello architettonico delle sporgenze non desiderate.

Figura 91. Individuazione elementi eccentrici – Pilastri 22 e 23 PT ED2

Autodesk Revit 2018 gestisce in modo automatico il problema, definendo la creazione di collegamenti analitici nelle impostazioni del modello analitico degli elementi.

L'argomento viene approfondito tramite un esempio di telaio semplice tridimensionale ad una campata ed un piano. Le travi vengono definite tutte con sezione (30x30 cm) mentre i pilastri vengono creati con sezione (30x30 cm) tranne un elemento, che sarà di sezione (60x75 cm) per simulare l'eccentricità, come mostrato nella seguente figura.

Figura 92. Telaio tridimensionale

Di default il modello analitico che si ottiene presenta collegamenti diretti tra le linee analitiche delle travi e il centro del pilastro, come mostrato nella seguente figura.

Figura 93. Dettaglio collegamento analitico errato

È evidente che la trave analitica non è corretta, in quanto schematizzata con una linea obliqua per collegarsi con il centro del pilastro. Per evitare ciò, è necessario cambiare le impostazioni del modello analitico della trave e del pilastro: per le travi analitiche si passa all'impostazione "collegamenti analitici = Si", per il pilastro si spunta la casella dei collegamenti analitici, come mostrato nella seguente figura.

Proprietà		×	Proprietà		×
R		R		•	
Travi analitiche (1)	∽ 🗄 Modifica	tipo	Pilastri analitici (1)	∼ 🗄 Modifica	tipo
Dimensioni		* ^	Dimensioni		^ ^
b			b		
Modello analitico		*	Modello analitico		*
Analizza come	Non portante		Analizza come	Non portante	
Verifica del codice	*		Verifica del codice		
Collegamenti anal	Dal pilastro 🖂 🗸		Collegamenti anal		
Proprietà analitiche	Sì	*	Proprietà analitiche		*
Tipo di famiglia	No		Tipo di famiglia	Calcestruzzo-Pilast	
Materiale fisico	Dal pilastro		Materiale fisico	CALCE	
Lunghezza	3.7780		Lunghezza	4.0000	
Rotazione trasvers	0.00°		Rotazione trasvers	0.00°	

Figura 94. Correzione collegamento analitico per travi e pilastri

Il modello analitico ottenuto è riportato nella seguente figura.

Figura 95. Modello analitico generato automaticamente – errore collegamento analitico automatico

Il risultato presenta delle criticità: quello che si vuole ottenere è che gli estremi delle travi siano collegate rigidamente al pilastro sottostante, dove di fatto vanno a scaricare i carichi. Il software non è in grado di fare una valutazione di questo genere quindi si è proceduto a controllare manualmente.

In questo caso è necessario cancellare i collegamenti analitici creati e definirne uno nuovo che colleghi gli estremi delle due travi al centro del pilastro del livello inferiore, come mostrato nella seguente figura.

Figura 96. Dettaglio collegamento analitico corretto manualmente

Possono essere impostate delle proprietà ai collegamenti analitici in termini di rigidezza nei confronti della traslazione e della rotazione nelle tre direzioni. Impostando tutti i parametri come fissi, il collegamento analitico viene modellato come se fosse un elemento infinitamente rigido, come mostrato nella seguente figura.

Proprietà ×		×	Proprietà del tipo	×	<
	Collegamento analitico Tipo di collegamento analitic	o 1 🕶	Famiglia: Famiglia di sistema: Collegamento analitico V Tipo: Tipo di collegamento analitico 1 V	Carica Duplica	
Collegamen	ti analitici (1 🗸 🔠 Modifica	tipo		Pinomina	1
Dati identità		*		Killonnina	4
Immagine			Parametri tipo		
Commenti			Parametro Valore	e =	
Contrasseg	10		Dati identità	*	i
Altro		*	Immagine tipo		
Sclerometro	D I		Commenti sul tipo		-
Pacometro			Descrizione		
Edificio	2		Contrassegno tipo		
			Traslazione in	*	i
			Traslazione X Fisso		1
			Traslazione Y Fisso		
			Traslazione Z Fisso		
			Rotazione intorno a	*	í.
			Rotazione X Fisso		1
			Rotazione Y Fisso		
			Rotazione Z Fisso		-
Guida alle pr	roprietà Appli	са	<< Anteprima OK Annulla	Applica	

Figura 97. Proprietà dei collegamenti analitici

A questo punto il modello è pronto per essere esportato sui due software per valutarne l'interoperabilità.

6.3.1. Advance Design **GODESIGN**

Una volta trasferito il modello sul software di calcolo, si nota che i collegamenti analitici creati in Revit non vengono esportati e il pilastro risulta completamente sconnesso dalle travi.

Figura 98. Esportazione telaio in Advance Design

Per risolvere questo problema sono state trovate due possibili soluzioni:

- Soluzione 1: spostare fisicamente l'elemento e modificare l'eccentricità manualmente, andando a creare un'offset architettonico che non influenza il modello analitico, come mostrato nella seguente figura.

Vista L	Sposta		×		Qt 13. Q: 🐏 🚓	Proprietà		ų×
1.10 1						🗐 🚯 📸 Tutte le proprietà		*
	V Traslazione					Generale		^
	Modalità:					- Identificatore	8	
	Vettore:	0.15, -0.23, 0	32	/		- Nome	PO	
	Dist					- Tipo	Trave tozza	
	Distanze.	1				- Stato attivo	Abilitato	
						- Sistemi	3	
	Rotazione	OK.				- Commento		
	Modalità:	6 0				Identificatore GTC	260	
	Origine:	0, 0, 0	5			Materiale		
	Loop.	0.0.1	1.0			Codice	C20/25	
	M336.	0.0.1				Sezione		
	Angolo:	0*	21			- Estremità 1	R60*75	
	- Opziopi			1777		— Estremità 2	R60*75	
		r				Eccentricità		
	Sistema di destinazion	Struttura	<u>×</u>			- Opzione	altro	
	📕 🗖 Modifica l'orientamento	della sezione		K		- y1	-0.15 m	
	Spostamento dei nodi o	con collegamenti				— y2	-0.15 m	
		our conceganional				— z1	0.23 m	
	Anteprima	Sposta Ch	iudi	77		- z2	0.23 m	
				117		Considerato per l'analisi FEM	Abilitato	
-						Tipo d'inerzia del calcestruzzo	Valore imposto	
					4 X	Coefficiente di inerzia sezione	1.00	

Figura 99. Spostamento pilastro e inserimento offset architettonico

 Soluzione 2: creare un elemento rigido fittizio al posto del collegamento analitico che non è stato esportato da Revit, che abbia la funzione di trasferire il momento dalle travi al pilastro. Eseguendo l'analisi però, il momento sull'elemento rigido non risulta costante, quindi questa seconda soluzione non può essere applicata, come mostrato nella seguente figura.

Figura 100. Verifica collegamento rigido

Si utilizza quindi la prima soluzione trovata. Il diagramma di momento ottenuto con la prima soluzione è riportato nella seguente figura.

Figura 101. Diagramma momento soluzione con spostamento pilastro e offset architettonico

6.3.2. Midas Gen 🔀

Si fa riferimento alla tesi di Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". La soluzione adottata a questa problematica è l'utilizzo dei collegamenti analitici generati in Revit ed esportati come elastic link nel software di calcolo.

6.3.3. Incidenza eccentricità

Il caso dell'eccentricità viene quindi analizzato in *Midas Gen* utilizzando una soluzione interoperabile (rendendo i link effettivamente rigidi) mentre in *Advance Design* viene trovata una soluzione alternativa.

È interessante valutare la percentuale di errore nel caso in cui non considerassi l'eccentricità. Viene allora valutato lo stesso portale con il pilastro di sezione maggiore posizionato centrale rispetto all'asse.

In Advance Design

Il diagramma di momento ottenuto nel caso in cui non considerassi l'eccentricità del pilastro è riportato nella figura seguente.

Figura 102. Diagramma momento non considerando l'eccentricità del pilastro

Come è possibile vedere nella tabella seguente, il valore di momento dell'estremo finale del pilastro risulta aumentato notevolmente e di conseguenza l'errore sarebbe molto elevato

PERCENTUALE DI ERRORE [%]								
Casi	M _{pilastro} [kN*m]	Differenze M _{pilastro} [kN*m]	Differenze M _{pilastro} [%]					
Con eccentricità	-1.75	2.00	116.39					
Senza eccentricità	-3.72	2.00	110.28					

Tabella 23. Percentuale di errore – Momento dell'estremo finale del pilastro

Il valore di momento della trave in direzione x non risulta cambiato in maniera significativa, come evidenziato nella seguente tabella.

PERCENTUALE DI ERRORE TRAVE [%]					
Casi	M _{trave dir.x} [kN*m]	Differenze M _{trave dir.x} [kN*m]	Differenze M _{trave dir.x} [%]		
Con eccentricità	-3.55	0.22	()0		
Senza eccentricità	-3.33	0.22	6.20		

Tabella 24. Percentuale di errore – Momento della trave

In Midas Gen

Il seguente capitolo è stato svolto da Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". I risultati da lei ottenuti sono i riportati nella seguente tabella, dove emerge che l'eccentricità incide notevolmente sul valore di momento all'estremità del pilastro.

PERCENTUALE DI ERRORE [%]						
Casi	M _{pilastro} [kN*m]	Differenze M _{pilastro} [kN*m]	Differenze M _{pilastro} [%]			
Con eccentricità	-1.80	1 00	104.44			
Senza eccentricità	-3.68	1.88	104.44			

Tabella 25. Percentuale di errore – Momento dell'estremo finale del pilastro

6.4. Zona rigida nodo trave – pilastro

Le zone di intersezione tra travi e pilastri sono definite nodi; il nodo si comporterà come un unico elemento, soggetto ad uguali sollecitazioni e deformazioni. In questo Paragrafo sono state analizzate le possibili modalità di esportazione di questi nodi a partire da *Revit* e successivamente esplorando le potenzialità dei software di calcolo scelti al fine di adottare una soluzione ottimale al problema.

6.4.1. Individuazione criticità di modellazione

In *Revit* pare non essere contemplato l'inserimento dell'elemento nodo e l'unico tema che si è riusciti ad approfondire in questo senso è quello dei collegamenti analitici. Per gli elementi travi è possibile variare le impostazioni del modello analitico per cercare di ottenere parte della zona rigida.

Figura 103. Impostazioni modello analitico trave

Si riscontra una grossa limitazione invece per gli elementi pilastri: il modello analitico nella direzione verticale (asse z) non può essere modificato in modo utile. Segue sempre la parte fisica superiore del pilastro, quindi per ottenere la parte di zona rigida verticale sarebbe necessario diminuire l'altezza fisica del pilastro.

Figura 104. Impostazioni modello analitico pilastro

Questa soluzione si scontra con il fatto che comunque non sarà possibile ottenere un punto centrale del nodo a cui collegare, per mezzo di collegamenti analitici, tutti gli elementi verticali e orizzontali che vi convergono.

6.4.2. Ricerca soluzioni

L'unica soluzione trovata alle criticità definite è quella di limitare lo studio della zona rigida solo sul piano delle travi (piano assi x e y). La modellazione può essere impostata in due modi:

- Modellazione delle travi da centro a centro pilastro e impostazione del modello analitico in modo tale che tenga conto dei collegamenti analitici (e non converga nel centro del pilastro sempre), come per lo studio dell'eccentricità nel *Capitolo 6.3*;
- Modellazione delle travi da filo a filo pilastro, con le stesse impostazioni definite nel punto precedente sul modello analitico. Viene creato così un collegamento analitico che simula nelle direzioni x e y la zona rigida.

La prima impostazione non è in grado di simulare sempre in entrambe le direzioni l'effetto della zona rigida, quindi viene tenuta in conto la seconda.

È stata rilevata la soluzione maggiormente interoperabile, anche se esistono altre che richiedono l'applicazione di funzioni presenti direttamente sul software di calcolo strutturale.

In Advance Design GODESIGN

La strada percorsa in termini di interoperabilità, è l'utilizzo dei collegamenti creati in Revit ma, poiché Advance Design non importa questo tipo di link rigido, l'elemento strutturale risulterebbe sconnesso dalla struttura.

Per simulare la zona rigida si agisce allora direttamente sul software di calcolo, definendo puntualmente la lunghezza della zona rigida ai due estremi dell'elemento.

Per ottenere questo risultato si parte da un telaio semplice, con la trave e i pilastri di lunghezza 4,00 m e sezioni 30x30 cm; l'unico carico applicato è il peso proprio degli elementi, come mostrato nella seguente figura.

Figura 105. Telaio spaziale in Advance Design

Il diagramma di momento che si ottiene è riportato nella seguente figura.

Figura 106. Diagramma momento flettente applicando il solo peso proprio

È possibile visualizzare il diagramma di momento della trave a partire dal centro del pilastro o da filo pilastro, in quest'ultimo modo viene preso in considerazione la zona rigida. Questa operazione non richiede nessuna impostazione specifica nel software e viene eseguita in maniera automatica.

Figura 107. Diagramma di momento flettente considerando zona rigida

La soluzione trovata risulta accettabile ai fini del calcolo strutturale ma non interoperabile. L'operazione può essere fatta sull'elemento trave ma non sull'elemento pilastro.

In Midas Gen

6.5. Solaio

Il solaio in Revit è un elemento che può essere creato come pavimento architettonico o come pavimento strutturale. A seconda della soluzione adottata si valutano le possibili criticità legate all'esportazione. In particolare si affrontano considerazioni riguardanti le criticità della zona di sovrapposizione trave-solaio arrivando a definire un algoritmo per automatizzare la soluzione sfruttando il BIM.

6.5.1. Individuazione punti di attenzione legati all'esportazione

Sono stati valutati i punti di attenzione legati all'esportazione dei solai, in modo tale da implementare il modello strutturale in modo adeguato.

I punti di attenzione legati all'interoperabilità di questo elemento sono le seguenti:

- Esportazione dell'elemento solaio;
- Definizione orditura solaio e verifica ripartizione carichi su travi principali;
- Verifica zona sovrapposizione trave-solaio

Questi temi sono stati affrontati in entrambi in software.

Esportazione dell'elemento solaio

Il pavimento architettonico non viene esportato nel software di calcolo mentre sono state riscontrate limitazioni per quanto riguarda il pavimento strutturale. All'interno della stratigrafia del solaio è possibile settare un solo materiale come strutturale e nel caso in esame viene scelto il calcestruzzo, come mostrato nella seguente figura.

Fam	iiglia:	Pavimento						
Tipo: Latero Cementizio - 40 cm								
Spe	ssore totale:	: 0.4000 (Default)						
Resi	stenza (R):	0.0000 (m²·K)/W						
Mas	sa termica:	0.00 kJ/K						
St	rati							
	Fu	inzione	Materiale	Spessore	Ripiegature	Materiale strutturale	Variabile	^
1	Finitura 1 [4]	Ceramica bianca	0.0200				
2	Sostrato [2	2]	Sabbia e Calcestruzzo	0.0650				
3	Contorno	del nucleo	Strati sopra ripiegatura	0.0000				
4	Struttura [1]	Calcestruzzo - Calcestr	0.0600				
5	Struttura [1]	Laterizio (3)	0.2400				-
6	Contorno	del nucleo	Strati sotto ripiegatura	0.0000			1	
7	Finitura 2 [5]	<per categoria=""></per>	0.0150				~
_						•	*******	

Figura 108. Stratigrafia solaio: Latero cementizio - 40 cm

Al pavimento strutturale è collegato il modello analitico a cui è associata l'informazione relativa all'orditura del solaio, come elemento monodirezionale o bidimensionale, come mostrato nella seguente figura.

Proprietà		×
Pavim Later	nento o Cementizio - 40 cr	n 👻
Pavimenti (1)	~ 🗄 Modi	fica tipo
Vincoli		^ ^
Livello	Livello 2	
Offset di altezza d	d 0.0000	
Delimita il locale	\checkmark	
Relativo a massa		
Strutturale		*
Strutturale	\checkmark	
Attiva modello ar	n 🗹	
Copriferro armatu	и X0 <15 mm>	
Copriferro armatu	u X0 <15 mm>	
Copriferro armatu	u X0 <15 mm>	
Dimensioni		*
Inclinazione		
Perimetro	16.0000	
Area	16.000 m ²	
Volume	6.400 m³	
Quota altimetrica	4.0000	
Quota altimetrica	3.6000	
Spessore	0.4000	

Figura 109. Orditura solaio strutturale in Revit

Nella seguente figura si riporta il modello analitico ottenuto in Revit.

Proprietà	×
R	-
Pavimenti analitici (1)	✓ I Modifica tipo
Modello analitico	*
Analizza come	Monodirezionale
Verifica del codice	
Proprietà analitiche	*
Tipo di famiglia	Pavimento : Latero C
Materiale fisico	R25
Area	16.000 m ²
Perimetro	16.0000
Allineamento analitico	*
Metodo di allineam	Rilevamento automa
Proiezione Z	Default
Dati identità	\$
Numero superficie	0
Commenti	
Fasi	*
Fase di creazione	Nuova costruzione
Faca di damaliziana	Nessuno

Figura 110. Visualizzazione analitica telaio spaziale in Revit

In Advance Design CADVANCE DESIGN

Esportando il solaio strutturale realizzato in *Revit* si riscontra che c'è un errore, in quanto il software riconosce l'oggetto come una lastra in calcestruzzo dello spessore pari a quello dell'intero solaio e non solo dello strato strutturale, come mostrato nella seguente figura.

Figura 111. Solaio esportato sul software di calcolo come lastra

Inserendo un solaio fittizio su *Revit*, costituito da una sola soletta di calcestruzzo, avente il peso equivalente a quello del solaio reale, il problema permane in quanto l'elemento viene riconosciuto come elemento Shell, come mostrato nella seguente figura.

Figura 112. Mesh del solaio nel software di calcolo

I problemi relativi all'elemento Shell sono:

- Costo computazionale;
- Impossibilità nel definire l'orditura del solaio poiché viene considerato il peso proprio della lastra trasferito tramite i nodi del mesh.

CONCLUSIONE:

A seguito dei test condotti, si valuta di modellare il solaio direttamente nei software di calcolo come area di carico, per avere un risultato più preciso e con maggiore controllo.

Definizione orditura solaio e verifica ripartizione carichi su travi principali

L'obiettivo è impostare un'orditura al solaio e verificare la distribuzione del carico sulle travi principali.

In Advance Design

In questo software è possibile stabilire un'orditura dei solai, essa può essere bidirezionale (xy), monodirezionale (solo x o solo y) oppure impostata manualmente.

L'orditura bidirezionale permette di avere una distribuzione del carico equivalente su tutte e quattro le travi.

Figura 113. Area di carico bidirezionale

Figura 114. Diagramma di momento flettente con carichi orditi in due direzioni

Con la singola orditura si definisce una direzione di carico (solai monodirezionali). I carichi vengono ripartiti come mostrato dal diagramma del momento riferito al solo peso proprio, in particolare il carico viene distribuito per circa il 45% sulle travi principali e circa il 5 % su quelle secondarie.

Figura 115. Area di carico monodirezionale

Figura 116. Diagramma momento flettente con area di carico monodirezionale

🕨 In Midas Gen 🛛 🚺

Il seguente capitolo è stato svolto da Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". Viene verificata la possibilità di definire l'orditura del solai direttamente sul software di calcolo Midas Gen.

6.5.2. Sovrapposizione carichi trave – solaio

Nel momento in cui definiamo l'area di carico del solaio questa viene inserita seguendo la linea analitica della trave. Il problema di questa schematizzazione è che l'area di carico del solaio si potrebbe sovrapporre a metà trave.

Per verificare l'effettiva sovrapposizione si opera ipotizzando di sottrarre la parte del peso proprio della trave. Si prende in esame un portale semplice considerando tre casi di carico singolarmente e in seguito sovrapposti.

I casi singoli sono tre:

- Caso A: solo peso proprio travi;
- Caso B: solo area di carico;
- Caso A': carico lineare equivalente al peso proprio travi.

In Advance Design (

CASO A: SOLO PESO PROPRIO

Si procede con l'analisi FEM considerando il solo peso proprio degli elementi e si ottiene il diagramma di momento flettente riportato nella figura seguente. Si rileva che il momento massimo in campata di: -3,84 kN*m.

Figura 117. Diagramma di momento applicando il solo peso proprio

CASO B: SOLO AREA DI CARICO

Si inserisce l'area di carico con un valore di 10 kN/m². Il diagramma di momento corrispondente è rappresentato nella figura seguente.

Figura 118. Diagramma di momento applicando un carico areale

CASO A': CARICO LINEARE EQUIVALENTE AL PESO PROPRIO

Si determina un carico lineare equivalente al peso proprio da applicare sull'asse della trave, pari a -2,25 kN, come mostrato nella seguente figura.

Figura 119. Inserimento carico lineare equivalente al peso proprio

Si riscontra che i valori di momento flettente sono coerenti a quelli dove viene calcolato in automatico il solo peso proprio, come mostrato nella seguente figura.

Figura 120. Diagramma momento flettente carico lineare equivalente al peso proprio

Si riassumono i risultati nella seguente tabella.

CONFRONTO CASI	Descrizione	M _{max} [kN*m]
А	Solo peso proprio trave	3.84
В	Solo area di carico	30.44
A'	Solo peso proprio equivalente su trave	3.92
A'/2	Solo peso proprio equivalente su metà trave	1.96

Tabella 26. Sintesi momento massimo casi analizzati per la verifica della sovrapposizione trave-solaio

I casi che ci permettono di valutare l'effettiva sovrapposizione trave-solaio sono i seguenti:

- Caso (A'/2) + B
- Caso A+B

CASO (A'/2) + B: caso in cui viene tolto il peso di metà trave.

Il diagramma di momento flettente è mostrato nella seguente figura.

Figura 121. Diagramma di momento applicando pp e carico areale sottratto del peso di metà trave

CASO A+B: caso calcolato automaticamente dal software.

Il diagramma di momento flettente è mostrato nella seguente figura.

Figura 122. Diagramma di momento applicando il peso proprio e il cario areale

Si riassumono i risultati nella seguente tabella.

CONFRONTO COMBINAZIONE CASI	M _{max} [kN*m]	Differenze M _{max} [kN*m]	Differenze M _{max} [%]
A'/2 + B	32.40	2.12	6.54
A+B	34.28	2.12	0.34

Tabella 27.	Verifica	sovrapposizione	trave-solaio
I ubciiu 27.	<i>r crijicu</i>	soviupposizione	nuve-sound

Come si può notare vi è una differenza tra i valori di momento, questo implica che nella zona di sovrapposizione trave-solaio il peso viene conteggiato, erroneamente, sia per la trave che per il solaio.

🕨 In Midas Gen 🛛 🚺

Il seguente capitolo è stato svolto da Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". Viene verificata l'effettiva sovrapposizione trave-solaio.

Confronto software

Nella tabella seguente si riassumono i risultati ottenuti in Midas e Advance Design.

CONFRONTO SOFTWARE	Combinazione casi	M _{max} [kN*m]	Differenze M _{max} [kN*m]	Differenze M _{max} [%]
Advance Design	A'/2 + B	32.4		
	A+B	34.28	2.12	6.54
Midas Gen	A'/2 + B	32.4		
G	A+B	34.35	2.05	6.33

Tabella 28. Tabella conclusiva casi indagati – confronto software

Si conclude che il peso della trave viene conteggiato per intero nel caso di un'area di carico che parte dall'asse della trave, quindi è presente nella zona di sovrapposizione trave-solaio il peso di entrambi gli elementi.

La differenza è dell'ordine del 6% e non è trascurabile. Per la verifica della zona di sovrapposizione è stato eliminato il peso della trave, ma fisicamente andrebbe eliminato il peso del solaio.

6.5.3. Ricerca soluzioni al problema sovrapposizione

Sono state elaborate quattro possibili soluzioni:

- Caso 1: disegnare solaio in Revit con le sue dimensioni reali, ridotte rispetto al solaio di default;
- Caso 2: disegnare solaio come area di carico ridotta direttamente sul software;
- Caso 3: disegnare solaio come area di carico direttamente sul software applicando il carico equivalente.

CASO 1: SOLAIO IN REVIT CON DIMENSIONI RIDOTTE

L'obiettivo è riuscire ad analizzare il solaio senza la sovrapposizione con le travi su cui appoggia. Il primo caso consiste nel modificare la larghezza del solaio in modo che arrivi a filo trave e non sull'asse della trave, come mostrato nella seguente figura.

Figura 123. Modellazione solaio in Revit da filo trave

Il modello analitico è stato definito con linee analitiche delle travi al centro delle travi stesse e linee analitiche del solaio corrispondenti al contorno impostato (allineamento con proiezione), come mostrato nella seguente figura.

Figura 124. Visualizzazione analitica solaio modellato da filo trave

È necessario creare dei collegamenti analitici tra il solaio e la trave, altrimenti il solaio non risulta appoggiato alle travi, come evidenziato nella seguente figura.

Figura 125. Inserimento collegamento analitico

Il collegamento è reso completamente rigido definendo fissi tutti i movimenti, sia di traslazione che di rotazione.

> In Advance Design

Esportando il modello in Advance Design, i collegamenti analitici non vengono mantenuti quindi la soluzione non è funzionale.

🕨 In Midas Gen 🛛 🚺

Il seguente capitolo è stato svolto da Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". La criticità di questa soluzione di questa soluzione è che non è possibile impostare l'orditura del solaio.

CASO 2: SOLAIO DEFINITO COME AREA DI CARICO RIDOTTA SUL SOFTWARE

Il secondo caso prevede di considerare il solaio come area di carico ridotta (quella reale modellata da filo trave) direttamente sul software, partendo dal telaio semplice visto nel caso 1 (larghezze di 4,00m e sezioni 30x30 cm sia per le travi sia per i pilastri).

È stata inserita un'area di carico pari a quella reale del solaio, ovvero non con un'area di 16,00 m² bensì di 13,69 m² (considerando le travi 30x30 cm).

In Advance Desing

Il modello del telaio semplice definito in Revit nel caso 1 viene esportato sul software. Il carico effettivo di 10 kN/m² è applicato nella sotto-area centrale della superficie di 13,69 m².

Affinché il carico venga applicato sulle travi è necessario inserire una lastra di peso proprio nullo che trasmetta il carico sulle travi, come mostrato nella seguente figura.

Figura 126. Inserimento solaio ridotto direttamente sul software di calcolo

Il risultato in termini di diagramma di momento è riportato nella seguente figura.

Figura 127. Diagramma momento flettente segmentato

Conclusioni:

- Diagramma di momento discretizzato a causa della mesh della lastra;
- Impossibilità di definire un'orditura.

Anche questa soluzione non è quindi considerata soddisfacente per la risoluzione del problema.

🕨 In Midas Gen 🛛 🚺

Il seguente capitolo è stato svolto da Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". La distribuzione del diagramma di momento negli appoggi non risulta attendibile.

CASO 3: SOLAIO DEFINITO COME AREA DI CARICO EQUIVALENTE SUL SOFTWARE

Si è verificato che modellare il peso del solaio con la giusta area di carico risulta avere delle criticità, quindi si procede ad una soluzione che utilizza le dimensioni di default seguendo le linee analitiche delle travi e inserire un carico equivalente che tenga conto del fatto che il carico applicato è distribuito su un'area più grande. Viene applicata la soluzione ad un telaio semplice con travi e pilastri di sezione 30x30 cm.

Figura 128. Individuazione area di carico reale

Attraverso una proporzione si ridistribuisce il carico del solaio:

$$A_1 = 16 \text{ m}^2 \rightarrow q_1 = x$$
$$A_2 = 13,69 \text{ m}^2 \rightarrow q_2 = 10 \frac{KN}{m^2}$$

Il carico equivalente sarà:

$$q_1 = 13,69 * \frac{10}{16} = 8,56 \frac{KN}{m^2}$$

Si confrontano i due casi

- Telaio spaziale con applicazione del carico totale;
- Telaio spaziale con applicazione di un carico equivalente.

In Advance Design CADVANCE DESIGN

Viene applicato al modello prima il carico totale e poi il carico ridotto calcolato per confrontarne i risultati. Si effettua l'analisi e i risultati sono riportate nelle seguenti figure.

Figura 129. Diagramma di momento telaio con carico totale

Figura 130. Diagramma di momento telaio con carico equivalente reale

Dai calcoli emerge che il fatto di non aver considerato il carico equivalente porta ad un errore di circa il 15%.

VALORI DI CARICO [kN/m ²]	Area [m ²]	M _{max} campata [kN*m]	Differenza M _{max} campata [kN*m]	Errore [%]
8.56	16.00	-22.22	2.21	14.00
10.00	16.00	-25.53	3.31	14.90

Tabella 29. Errore sovrapposizione trave solaio – Advance Design

In Midas Gen

Il seguente capitolo è stato svolto da Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". Dai calcoli emerge che l'errore commesso per non aver considerato il carico equivalente è di circa il 15%.

6.5.4. Implementazione soluzione adottata

Il caso 3 precedentemente descritto consiste nel mantenere inalterato il solaio ed applicare un carico equivalente minore in modo da tener conto che il solaio reale (con un'area inferiore) distribuisce il suo peso su un solaio di area maggiore. L'obiettivo è quello di trovare un modo per automatizzare il calcolo di un coefficiente di ripartizione dei carichi che tenga conto della geometria reale sfruttando il BIM.

L'algoritmo si basa su questa formula:

$$L_2 = L_1 - \frac{C_1 + C_2}{2}$$

Dove:

- C: larghezza travi intersecate;
- L₁: lunghezza analitica della trave;
- L₂: distanza interna tra travi opposte.

Le lunghezze sono riportate nella seguente figura.

Figura 131. Lunghezze caratteristiche per definizione algoritmo

Una volta individuati L_1 e L_2 per due lati consecutivi allora è possibile trovare l'area reale A_2 del solaio, come mostrato in *Figura 206*.

Attraverso una semplice proporzione si ridistribuisce il carico del solaio:

A₁ = 16 mq
$$\rightarrow$$
 q₁ = x
A₂ = 13,69 mq \rightarrow q₂ = 10 $\frac{KN}{m^2}$

Il carico equivalente sarà:

$$q_1 = 13,69 * \frac{10}{16} = 8,56 \frac{KN}{m^2}$$

Per trovare il carico equivalente, o meglio il coefficiente di ripartizione del carico, in maniera automatica, viene utilizzato un algoritmo che si basa sull'utilizzo di diversi programmi:

- <u>Autodesk Revit 2018</u>: vengono disegnate le travi partendo da filo pilastro e non dal centro per non avere problemi di intersezione solaio travi.
- Dynamo:
 - Intersezione tra ogni solaio con le travi corrispondenti;
 - Calcolo lunghezza della trave analitica (L1) come distanza tra i due pilastri che interseca;
 - Esportazione dati grezzi su Excel:
 - Travi con le rispettive lunghezze e larghezze;
 - Solaio con le rispettive travi intersecate;
 - Travi con i rispettivi pilastri intersecati.
- <u>Visual Basic</u>: le operazioni per individuare L₁ e L₂ vengono eseguite tramite questo linguaggio di programmazione associato a Excel, per poi calcolare coefficiente di ripartizione dei carichi da associare ad ogni solaio.

In sintesi si ha come input il piano di cui si vuole eseguire il calcolo e come output un elenco di tutti i solai con i corrispettivi coefficienti di ripartizione, si riporta nella seguente figura un workflow del processo.

Figura 132. Workflow algoritmo

L'intera trattazione è stata verificata a partire da casi semplici fino ad arrivare a casi progressivamente più complicati, nel corso della trattazione è stato spiegato in maniera più dettagliata il caso più completo. Inizialmente è stato verificato un algoritmo, solo per alcuni casi semplici. In casi più complessi è stato necessario implementare il codice di calcolo arrivando a definire un ulteriore algoritmo.

L'algoritmo iniziale è stato articolato nel seguente modo:

- Travi modellate dal centro al centro del pilastro;
- Intersezioni considerate:
 - Solaio travi;
 - Trave trave.

I casi riferiti a questo algoritmo sono i seguenti:

- Telaio spaziale semplice;
- Telaio spaziale semplice a due piani;
- Telaio spaziale a due campate.

L'algoritmo finale invece è articolato nel seguente modo:

- Travi modellate da filo pilastro a filo pilastro;
- Intersezioni considerate:
 - o Solaio travi;
 - o Travi pilastri.

I casi riferiti a questo algoritmo sono i seguenti:

- Telaio spaziale a due campate;
- Telaio spaziale a 4 campate;
- Telaio spaziale a 4 campate e due piani;
- Telaio spaziale a 8 campate e due piani.

<u>Algoritmo iniziale</u>

L'algoritmo utilizzato consiste nell'intersecare tramite la funzione "All intersecting bounding box" il solaio con le 4 travi corrispondenti, che restituisce una lista con 4 elementi.

Figura 133. Intersezione travi solaio - Dynamo

A partire dalle travi intersecate ottenute si esegue un ulteriore intersezione con le travi dello stesso solaio, in questo modo per ogni trave ottengo al massimo 2 trave intersecate.

Figura 134. Intersezione trave trave - Dynamo

Ottenuta questa lista si ricava il parametro "C" e la larghezza della trave, vengono sommati i due valori relativi alle due travi intersecate e si divide per due, il tutto per ottenere la parte di formula soprastante $\frac{(C1+C2)}{2}$.

Figura 135. Calcolo semilarghezza trave - Dynamo

Si individua il parametro L₁ interrogando il parametro "Lunghezza" della trave.

Figura 136. Lunghezza trave - Dynamo

Figura 137. Operazione per ottenere lunghezza trave effettiva

Si ottengono 4 valori, che possono essere:

- 4 valori uguali: $A_2 = lato x lato;$
- 4 valori diversi: $A_2 =$ prodotto due lati diversi.

L'obiettivo è proprio calcolare A₂ per ridistribuire il carico applicato su A₂ tramite un carico equivalente su A₁.

Questo script di Dynamo risulta verificato per i primi due casi di telaio spaziale ad un piano e a due piani nella seguente figura, mentre per il terzo caso nella seguente figura in basso riferito ad un telaio a due campate si hanno dei problemi.

Figura 138. Telaio una campata, un piano – Telaio una campata, due piani

Figura 139. Telaio due campate, un piano

L'intersezione tra solaio e trave non viene calcolata perfettamente ed è presente in entrambi i solai una trave di troppo.

Figura 140. Doppia intersezione travi

Per capire quale trave si sovrappone nei solai si sono verificati gli ID per ogni trave e le travi realmente intersecate da Dynamo, come mostrato nella seguente figura.

Figura 141. Schematizzazione telaio associando il codice identificativo per ogni trave

Solaio 1:

- 190;
- 064;
- 432: ERRORE;
- 451;
- 487.

Solaio 2:

- 210;
- 064;
- 432;
- 487: ERRORE;
- 508.

Solaio 2	Solaio 1

Per evitare questo errore è stata valutata la modellazione delle travi da filo pilastro a filo pilastro e quindi è necessario reimpostare parzialmente l'algoritmo.

Algoritmo finale

Il seguente algoritmo è stato perfezionato in funzione di telai più complessi e risulta verificato per i seguenti casi:

- Telaio spaziale a 2 campate;
- Telaio spaziale a 4 campate;
- Telaio spaziale a 4 campate e 2 piani;
- Telaio spaziale a 8 campate e 2 piani.

Figura 142. Telaio spaziale a due campate e Telaio spaziale a 4 campate

Figura 143. Telaio spaziale a 4 campate e due piani

Figura 144. Telaio spaziale a 8 campate e due piani

L'algoritmo finale in Dynamo viene descritto in vari step, esaminando nel dettaglio i singoli nodi (o blocchi).

<u>Step 1:</u>

Inizialmente vengono selezionate tutti gli elementi travi e solai. I nodi utilizzati in questo primo step sono i seguenti:

- Categories: viene selezionata la categoria;
- All elements of Category: vengono selezionati tutti gli elementi di quella categoria.

Figura 145. Selezione travi e solai

Step 2: vengono filtrati gli elementi riferiti ad un livello definito.

Figura 146. Selezione livello specifico travi

Figura 147. Selezione livello specifico solai

Figura 148. INPUT – selezione livello da analizzare

I nodi utilizzati in questo step sono le seguenti:

- Element.GetParameterValueByName: ottiene i valori di uno dei parametri dell'elemento;
- Levels: viene selezionato il livello;
- Equals: determina se due istanze di oggetto sono uguali, nel nostro caso se il parametro "Livello" sia uguale al "Levels" selezionato;
- List.FilterByBoolMask: applica un filtro ad una sequenza sulla base di indici corrispondenti in un elenco di valori booleani separato;
- Watch: viene stampato a video il risultato ottenuto.

Questo filtraggio avviene nel seguente modo:

 Viene selezionato il livello di riferimento tramite la funzione "Element.GetParameterValueByName" per ogni elemento della lista. Il livello di riferimento è il nome di un parametro che cambia a seconda dell'elemento in Revit considerato, ad esempio per i solai è "livello" mentre per le travi è "livello di riferimento";

 Viene impostato un filtro dove la condizione che deve essere verificata affinché l'elemento passi il filtro è che il livello dell'elemento deve essere uguale al livello selezionato.

Step 3: creazione di una lista con l'ID e una lista con l'area dei solai.

I nodi utilizzati sono "Paramter.Id", che ottiene l'ID dell'elemento e "Element.GetParameterValueByName", che prende il valore del parametro voluto.

	Element.GetParan	neterValue	ByName
	element	>	var[][]
	parameterName	>	
String			1
	•		
Area >			
Area >	•	1	•
Area >	•		•
Area	•		•
Area	•		
Area	·		
Area	Parameter.Id		

Figura 149. Informazioni solai

<u>Step 4</u>: viene individuata per ogni trave la larghezza corrispondente tramite il parametro "C" precedentemente creato e si esegue la divisione per due per considerare la semi-larghezza della trave.

Figura 150. Semilarghezza travi

Step 5: intersezione dei solai con le travi corrispondenti.

Figura 151.Intersezione travi - solai

Il nodo utilizzato è "All intersecting element of category by boundingbox", che trova tutti gli elementi che intersecato una bounding box di un elemento dato.

Questa nodo si può trovare nel pacchetto *Clockwork* scaricabile in *Dynamo*. Esso contiene al suo interno un altro piccolo algoritmo e si basa sostanzialmente su uno script scritto nel linguaggio di programmazione *Pyton*, come visto nel *Capitolo 5*.

Step 6

La trave viene modellata da filo pilastro a filo pilastro, in questo modo la lunghezza della trave non risulta più L_1 bensì L_2 , quindi per ricavare L_1 bisogna cercare un modo alternativo. Ogni trave si appoggia su due pilastri, ovvero si interseca con due pilastri.

L'idea è ottenere L₁ come distanza tra i due pilastri che la trave interseca.

The state of the s	Elements Of	f Category By BoundingBox	Watch
element	>	intersectingElements	
tolerance	>	7-	
Category	>		
threeDview	>	±./∸	E Family-308 x 300mm, Typo-30
		1 × =	In Farily-300 x 300mr, Type-30
	-4-		I III Family-300 x 300mm, Type-30
	2-	4+-7-7	JList
7			Family-300 x 300mm, Type+30
Cat	egories		/ I Family-308 x 300mm, Type-30
Pilastri struttu	rali v Cater	1000	Family-300 x 300mm, Type-30
	cates		Family=300 x 300mm, Typo+36
10			_/ 2 List
2			
		/	Family-308 x 300mm, Type-30
		/	Family-308 x 300mm, Type-
	/		

Figura 152. Intersezione travi - pilastri

<u>Step 7</u>

Poiché l'intersezione necessita dell'inserimento in input della categoria viene prima effettuata l'intersezione dei pilastri con le travi e solo successivamente viene applicato il filtro relativo al livello considerato, stampando infine l'ID degli elementi delle travi con i corrispettivi pilastri che ognuno interseca.

Figura 153. Selezione livello specifico

<u>Step 8</u>

Per trovare la lunghezza delle travi (informazione persa perché sono state disegnate da filo pilastro) si ricorre al seguente algoritmo:

Figura 154. Distanza tra il centro dei pilastri intersecati dalla trave

- Vengono individuate le intersezioni travi pilastro:

			k
List			1
-B 1143			ш
目標E Tattily=382 × 1	588mm, 1	ypa: 328	Ш
IIII family-200 a	100mm, 7	ppe-328	H
wi i int			
1000 Tantly 100 x	380m, 7	1000-000	
IEI 7amily 1380 x 1	300mt, T	05E - 40ty	
72 1142			
fill Cently 128 at	Shine, 1	3pe-122	
s SSErvilles Table 1	100mm, 1	yps-328	
+511st			
SBE Fast Jy MR. 8	100mm, 7	ype-322	
HE Tantiprion x	stam, 1	1001100	
+Flint			
Hill Fartily=500 a :	MDet, 7	ype: 100	
1000 F	and the second		

Figura 155. Individuazione pilastri che intersecano le travi

- Viene disegnato su Dynamo il centroide del pilastro schematizzato con un punto tramite i nodi:
 - Geometry.BoundingBox: ottiene il boundingbox contenente l'elemento di geometria dato;
 - o BoundingBox.Properties: ricava il centroide, spessore, altezza, profondità.

Figura 156. Disegno centroide pilastri intersecati

- Si calcola la distanza tra i due pilastri con cui la trave si interseca, che corrisponde alla lunghezza della trave, tramite la funzione PointSequence.AccumunatedDistance, la quale ricava la distanza tra due punti.

Figura 157. Distanza pilastri intersecati

Alla fine dell'algoritmo in Dynamo, i valori che vengono stampati in un foglio Excel sono i seguenti:

- ID solai e area di ogni solaio;
- Elenco di travi con i corrispettivi:
 - o ID;
 - Lunghezze calcolate come distanza pilastro-pilastro;
 - Semi larghezza;
- Elenco intersezione solai con le rispettive travi;
- Elenco intersezione travi con i rispettivi pilastri su cui poggiano.

Esportati questi dati grezzi in Excel, tramite l'ausilio di Visual Basic, vengono eseguite le seguenti operazioni:

- Individuare all'interno di un solaio quali sono le travi opposte e quelle adiacenti;
- Una volta individuate le travi opposte e quelle adiacenti calcolare L_1 e L_2 come differenza tra la lunghezza di un lato meno la semi-larghezza delle due travi adiacenti.

I passaggi su Visual basic si articolano in 5 blocchi di codice, presenti nell'Allegato B.

Gli output ottenuti su Excel a calcolo concluso sono i seguenti:

- Elenco intersezioni solaio – trave:

ELENCO	ELENCO INTERSEZIONI SOLAIO - TRAVE				
Solaio	Trave 1	Trave 2	Trave 3	Trave 4	
385622	384539	385270	385348		
385657	385224	385270	385407	391911	
385920	384394	384539	385474	385887	
385954	384396	385224	385516	385887	
389562	389261	391961			
389571	391911	391961	392013	392079	
389637	389197	389294	389429		
389646	389195	389429	391569	392013	

Tabella 30. Elenco intersezione solaio trave

- ID solaio e area:

SOLAI		
ID Solaio	Area grande [m ²]	
385622	16	
385657	16	
385920	20	
385954	20	
389562	16	

389571	16
389637	16
389646	16

Tabella 31. Informazioni solai

- ID travi, lunghezza travi, semi - larghezza travi:

CARATTERISTICHE TRAVE			
ID Trave	Semi- larghezze [m]	Lunghezze [m]	
384394	0.15	4	
384396	0.15	4	
384539	0.15	4	
385224	0.15	4	
385270	0.15	4	
385348	0.15	4	
385407	0.15	4	
385474	0.15	5	
385516	0.15	5	
385887	0.15	5	
389195	0.15	4	
389197	0.15	4	
389261	0.15	4	
389294	0.15	4	
389429	0.15	4	
391569	0.15	4	
391911	0.15	4	
391961	0.15	4	
392013	0.15	4	
392079	0.15	4	

Tabella 32. Informazioni travi

Intersezioni trave-pilastri e individuazione travi opposte:

-

	INTERS	EZIONE	TRAVI	- PILASTRI
Solaio	Pilastro 1	Pilastro 2	Trave	Prima coppia disgiunta
385622	390716	390724	384539	
385622	390716	390720	385270	Х
385622	390724	390726	385348	Х
385657	390716	390718	385224	Х
385657	390716	390720	385270	
385657	390718	390722	385407	
385657	390720	390722	391911	Х
385920	390732	390736	384394	Х
385920	390716	390724	384539	Х
385920	390724	390736	385474	
385920	390716	390732	385887	
385954	390732	390734	384396	Х
385954	390716	390718	385224	Х
385954	390718	390734	385516	

385954	390716	390732	385887	
389562	390726	390822	389261	Х
389562	390720	390818	391961	Х
389571	390720	390722	391911	Х
389571	390720	43107	391961	
389571	390818	390820	392013	Х
389571	390722	390820	392079	
389637	390824	390828	389197	
389637	390822	390828	389294	Х
389637	390818	390824	389429	Х
389646	390824	390826	389195	Х
389646	390818	390824	389429	
389646	390820	390826	391569	
389646	390818	390820	392013	Х

Tabella 33. Intersezione travi-pilastri e individuazione travi opposte

- Tabella riassuntiva e definizione del coefficiente di ripartizione:

			COEF	FICIENTE I	DI RIPARTI	ZIONE	
Solaio	L ₁ [m]	L ₂ [m]	Area reale [m ²]	Area grande [m ²]	Carico [kN/m ²]	Carico equiv. [kN/m ²]	Coeff. Ripartizione [-]
385622	3.85	3.70	14.25	16.00	10.00	8.90	0.89
385657	3.70	3.70	13.69	16.00	10.00	8.56	0.86
385920	3.70	4.70	17.39	20.00	10.00	8.70	0.87
385954	3.70	4.70	17.39	20.00	10.00	8.70	0.87
389562	4.00	3.70	14.80	16.00	10.00	9.25	0.93
389571	3.70	3.70	13.69	16.00	10.00	8.56	0.86
389637	3.85	3.70	14.25	16.00	10.00	8.90	0.89
389646	3.70	3.70	13.69	16.00	10.00	8.56	0.86

Tabella 34. Calcolo coefficiente di ripartizione per ogni solaio

Excel fornisce come output un elenco di solai con i corrispettivi carichi equivalenti da applicare. È possibile inoltre:

- Creare per ogni solaio un materiale diverso avente un peso specifico che mi permetta di ottenere quel carico equivalente trovato ma, nel momento in cui faccio l'esportazione, non riuscirei a dare un'orditura al mio solaio poiché viene esportato come elemento di tipo lastra;
- Associare il carico equivalente relativo ad ogni solaio come un carico distribuito direttamente su Revit ma, nel momento in cui lo porto sul software di calcolo questo carico distribuito non viene visto come area di carico o floor load su cui posso definire un'orditura e quindi non è una soluzione plausibile.
- Applicare il carico equivalente direttamente sul software di calcolo: questa è la soluzione ottimale che si sceglie di adottare.

6.5.5. Verifica incidenza soluzione adottata

La verifica dell'incidenza del carico equivalente viene effettuata secondo i seguenti criteri:

- Considerare travi a spessore di solaio larghe, dove si presume che l'incidenza sia maggiore;
- Un lato del solaio rimane inalterato e viene modificato l'altro.

Si studiano i seguenti casi:

- Solaio 4x4 m:
 - Trave 60 cm;
 - Trave 80 cm.
- Solaio 4,5x4 m:
 - Trave 60 cm;
 - Trave 80 cm.
- Solaio 5x4 m:
 - Trave 60 cm;
 - Trave 80 cm.
- Trave 80 cm:
 - Solaio 5x4 m;
 - Solaio 6x4 m;
 - o Solaio 7x4 m.
- Trave 30 cm:
 - Solaio 4x4 m;
 - o Solaio 4x7 m.

Tramite l'algoritmo definito precedentemente vengono calcolati i coefficienti di ripartizione dei carichi e vengono esportati nella tabella seguente. Considerando che il carico del solaio è dato dalla somma del peso proprio, permanente e variabile si utilizza verosimilmente un carico di 10 kN/m^2 .

Si riporta nella figura seguente la legenda dei colori utilizzati per le differenti dimensioni dei solai.

Figura 158. Legenda colori tipologia dimensioni solai

			COEI	FFICIENTE 1	DI RIPARTI	ZIONE	
Solaio	L ₁ [m]	L ₂ [m]	Area reale [m ²]	Area grande [m ²]	Carico [kN/m ²]	Carico equiv. [kN/m ²]	Coeff. Ripartizione [-]
364571	4.2	3.2	13.44	20.00	10.00	6.72	0.6720
364622	4.4	3.4	14.96	20.00	10.00	7.48	0.7480
364673	3.9	3.4	13.26	18.00	10.00	7.37	0.7367
364724	3.4	3.4	11.56	16.00	10.00	7.23	0.7225
364827	5.2	3.2	16.64	24.00	10.00	6.93	0.6933
364850	4.2	3.2	13.44	20.00	10.00	6.72	0.6720
364873	3.7	3.2	11.84	18.00	10.00	6.58	0.6578
364896	3.2	3.2	10.24	16.00	10.00	6.40	0.6400
365883	6.2	3.2	19.84	28.00	10.00	7.09	0.7086

Tabella 35. Calcolo coefficiente ripartizione casi indagati

Si estrapola una tabella con i coefficienti di ripartizione relativi ad ogni caso:

COEF	FICIENTE DI	[RIPA]	RTIZIO	NE [-]
Calaia	Dim. Fissa [m]	Dim.	Variabil	e [m]
Solato	4 x	4	4.5	5
T	60 cm	0.7225	0.7367	0.7480
Trave	80 cm	0.6400	0.6578	0.6720

COEF	FICIENTE DI	[RIPA]	RTIZIO	DNE [-]		
Calaia	Dim. Fissa [m]	ı [m] Dim. Variabile [m				
Solato	4x	5	6	7		
Trave	80 cm	0.6720	0.6933	0.7086		

Tabella 36. Coefficiente di ripartizione per ogni caso indagato

Si diagrammano i risultati nella seguente figura.

Figura 159. Diagramma incidenza del coefficiente di ripartizione dei casi indagati – trave 60 cm e 80 cm

Figura 160. Diagramma incidenza del coefficiente di ripartizione dei casi indagati – trave 80 cm

Si riassumono i risultati riferiti ai vari casi con la trave da 80 cm. La linea di tendenza della curva ottenuta è un'equazione di secondo grado.

I carichi equivalenti applicati ad ogni solaio riferiti a un carico di 10 kN/m² sono riportati nella seguente tabella.

	CARICHI EQUIVALENTI [kN/m ²]								
C 1 1	Dim. Fissa [m]	Dim. Variabile [m]							
Solaio	4 x	4	4.5	5					
Traces	60 cm	7.23	7.37	7.48					
Trave	80 cm	6.40	6.58	6.72					

	CARICHI EQUIVALENTI [kN/m ²]							
Calaia	Dim. Fissa [m]	Dim. Variabile [m]						
Solalo	4x	5	6	7				
Trave	80 cm	6.72	6.93	7.09				

Tabella 37. Carico equivalente calcolato per i casi indagati

Per verificare l'incidenza del coefficiente di ripartizione sul valore del momento flettente, si esporta il file *Revit* sul software di calcolo *Advance Design*. Si inserisce un'area di carico impostando un'orditura monodirezionale in modo tale che i carichi siano distribuiti correttamente sulle 2 travi principali.

Figura 161. Esportazione modello in Advance Design e definizione orditura monodirezionale

Vengono eseguiti i calcoli considerando inizialmente il carico di 10 kN/m² e poi considerando tutti i rispettivi carichi equivalenti calcolati precedentemente. I risultati fanno riferimento al valore di momento in appoggio e in campata.

	VALORE CARICO 10 kN/m ²											
	M _{max} campa	M _{max} campata [kN*m] Momento appoggio [kN*m]										
G . 1	Dim. Fissa [m]	Dim.	Variabil	le [m]	Calaia	Dim. Fissa [m]	Dim.	Variabi	le [m]			
501210	4 x	4	4.5	5	501210	4 x	4	4.5	5			
T	60 cm	-33.59	-41.30	-49.65	T	60 cm	15.24	20.50	26.65			
Trave	80 cm	-38.04	-46.90	-56.51	Trave	80 cm	13.73	18.62	24.39			

	VALORE CARICO 10 kN/m ²											
	M _{max} campata [kN*m] Momento appoggio [kN*m]											
G . 1	Dim. Fissa [m]	Dim. Variabile [m]			Q alaia	Dim. Fissa [m]	Dim.	Variabi	le [m]			
Solato	4x	5	6	7	Solato	4x	5	6	7			
Trave	80 cm	-56.51	-77.84	-101.89	Trave	80 cm	24.39	38.65	56.66			

Tabella 38. Tabella 39. Calcolo Momento flettente ottenuto con l'applicazione del carico iniziale

	VALORE CARICO EQUIVALENTE												
M _{max} campata [kN*m]					Momento appoggio [kN*m]								
Solaio	Dim. Fissa [m]	Dim.	Variabil	le [m]	Calaia	Dim. Fissa [m]	Dim.	Variabi	le [m]				
	4 x	4	4.5	5	Solato	4 x	4	4.5	5				
Turne	60 cm	-25.97	-32.40	-39.40	Tassas	60 cm	11.78	16.09	21.15				
Trave	80 cm	-27.46	-34.51	-42.18	Trave	80 cm	9.91	13.70	18.21				

Tabella 40 Calcolo Momento flettente ottenuto con l'applicazione del carico equivalente - – trave 60 cm e 80 cm

	VALORE CARICO EQUIVALENTE											
M _{max} campata [kN*m] Momento appoggio							ggio [k]	N*m]				
G 1 ¹	Dim. Fissa [m]	Dim.	Variabil	le [m]	Calaia	Dim. Fissa [m]	Dim.	Variabi	le [m]			
Solalo	4x	5	6	7	Solato	4x	5	6	7			
Trave	80 cm	-42.18	-59.38	-78.98	Trave	80 cm	18.21	29.48	43.92			

Tabella 41. Calcolo Momento flettente ottenuto con l'applicazione del carico equivalente - – trave 80 cm

I diagrammi riferiti al carico equivalente sono riportati nella seguente figura.

Figura 162. Diagramma di momento flettente con l'applicazione dei carichi equivalenti

L'obiettivo è standardizzare i risultati ottenuti, calcolando una percentuale di errore nella seguente tabella e diagrammandola come mostrato nella seguente figura.

		PE	RCEN	TUAL	E DI E	CRRORE			
	M _{max} campat	a [kN*i	m]			Momento appo	ggio [k]	N*m]	
Calaia	Dim. Fissa [m]	Dim.	Variabi	le [m]	Calaia	Dim. Fissa [m]	Dim.	Variabi	le [m]
501210	4 x	4	4.5	5	501810	4 x	4	4.5	5
Tuesse	60 cm	29.34	27.47	26.02	Талана	60 cm	29.37	27.41	26.00
Trave	80 cm	38.53	35.90	33.97	Trave	80 cm	38.55	35.91	33.94

		PE	RCEN	TUAL	E DI F	CRRORE			
	M _{max} campat	a [kN*ı	m]			Momento appog	ggio [k]	N*m]	
C . L	Dim. Fissa [m]	Dim.	Variabi	le [m]	G . 1	Dim. Fissa [m]	Dim.	Variabi	le [m]
501810	4x	5	6	7	501810	4x	5	6	7
Trave	80 cm	33.97	31.09	29.01	Trave	80 cm	33.94	31.11	29.01

Tabella 42. Percentuale errore commesso senza l'applicazione del carico equivalente

Figura 163. Diagramma errore commesso senza l'applicazione del carico equivalente

Possiamo notare che la linea di tendenza ha un andamento logaritmico, quindi più sono ridotte le dimensioni del solaio maggiore è l'incidenza.

Per trovare un estremo inferiore nella percentuale di errore ci si pone in un caso dove l'incidenza dovrebbe essere minima.

- Trave 30 cm:
 - o Solaio 4x4 m;
 - o Solaio 4x7 m.

Si riportano i risultati ottenuti nella seguente tabella.

		Μ	_{max} camp	ata [kN	*m]		
	Carico 10	kN/m ²		(Carico equivalent	te 8.85 kN/	m^2
C a la la	Dim. Fissa [m]	Dim. Var	iabile [m]	C a la la	Dim. Fissa [m]	Dim. Var	iabile [m]
501210	4x	4	7	501810	4x	4	7
Trave	80 cm	-25.53	-42.78	Trave	80 cm	-22.22	-38.15

Tabella 43. Calcolo momento flettente con trave di larghezza 30 cm

Errore [%]
4x4	4x7
14.9	12.14

Tabella 44. Percentuale errore ottenuta

Vengono diagrammati nella seguente figura i risultati ottenuti con quelli precedentemente trovati.

Figura 164. Diagramma errore commesso senza l'applicazione del carico equivalente per i vari casi

Nel diagramma emergono due casi presumibilmente limite:

- 38.53%: nel caso di un Solaio 4x4m con travi da 80 cm di larghezza;
- 12.14%: nel caso di un Solaio 4x7m con travi di 30 cm di larghezza.

Considerando l'estremo superiore troppo irrealistico si stima che l'errore sia circa 12%÷30%.

6.6. Applicazione dei carichi

I carichi e le combinazioni di carico possono essere inseriti direttamente in *Revit*. Si vuole valutare se queste informazioni vengono esportate in modo corretto.

La finestra dalla quale è possibile inserire sia i carichi che le combinazioni di carico è riportata in figura. Si può notare come siano presenti tutte le tipologie di carichi da inserire. Per semplicità verranno esportati solo 3 condizioni di carico, come mostrato nella seguente figura.

oni di carico					
Nome	Numero condizione	Natura	Categoria	^	Aggiungi
DL1	1	Proprio	Carichi propri		arts 1
LL1	2	Di esercizio	Carichi di esercizio		Elimina
WIND1	3	Vento	Carichi vento		
SNOW1	4	Neve	Carichi neve		
LR1	5	Di esercizio del tetto	Carichi di esercizio del tett		
ACC1	6	Accidentale	Carichi accidentali		
TEMP1	7	Temperatura	Carichi temperatura		
SEIS1	8	Sismico	Carichi sismici		
carichi		Nome		^	Acciunci
Proprio		Nome			Aggiongi
Di esercizio					Elimina
Vento					
Neve					
Di esercizio del tetto					
Accidentale					
Temperatura					
Sismico					
1				V	
	vi di carico Nome DL1 LL1 KWND1 SNOVI KND1 SNOVI KR1 ACC1 TEMP1 SEIS1 2arich Proprio Di esercizio Vento Di esercizio del tetto Accidentale Temperatura Stamico	Nome Numero condizione DL1 1 LL1 2 WND1 3 SNOW1 4 LR1 5 ACC1 6 TRMP1 7 SEIS1 8 Direserctio 1 Proprio 0 Direserctio del tetto Accidentale Temperatura 5	Nome Numero condizione Natura DL1 1 Proprio LL1 2 Di esercizio WIND1 3 Vento SNOVI1 4 Neve LR1 5 Di esercizio del tetto ACC1 6 Accidentale TRMP1 7 Temperatura SEIS1 8 Sismico Di esercizio Sismico Di esercizio del tetto Accidentale Nove Di esercizio del tetto Accidentale Temperatura Stamico Sismico	ni di carico Nome Numero condizione Natura Categoria DL1 1 Proprio Carichi propri LL1 2 Di esercicio Carichi propri LL1 2 Di esercicio Carichi propri LL1 2 Di esercicio Carichi propri JUI 3 Vento Carichi di esercicio del tetto SNOVI 4 Nore Carichi vento SNOVI 4 Nore Carichi desercicio del tetto ACC1 6 Accidentale Carichi desercicio del tetto ACC1 6 Accidentale Carichi interpretura SIST 8 Sismico Carichi isomici SIST 8 Sismico Carichi isomici Proprio Di esercicio Vento Nome Di esercicio Vento Nore Oi esercicio del tetto Accidentale Temperatura Sismico Sismico	Nome Numero condizione Natura Categoria DL1 1 Proprio Carichi propri LL1 2 Di esercizio Carichi propri VND1 3 Vento Carichi neve SNOV1 4 Nore Carichi neve LR1 5 Di esercizio del tetto Carichi esercizio del tetto ACC1 6 Accidentale Carichi reperatura SEIS1 8 Sismico Carichi sismici

Figura 165. Definizione carichi in Revit

È possibile inserire anche le combinazioni di carico. Questa operazione deve essere eseguita manualmente in quanto non ci sono dei generatori automatici. Ne consegue che è più agevole inserire queste informazioni direttamente in un qualsiasi software di calcolo.

Per valutare l'interoperabilità si fa riferimento ad una sola combinazione di carico, mostrata nella seguente figura.

	soni rappre	sentazione simpolica Con	dizioni di ca	nco Combinazi	oni di canchi 1	mpostazioni modello analitici	o rub	ostazioni vincoli esteri
imbi	inazione di	carichi				Ť.	-	
L	Nome	e Formula		Tipo	Stato	Utilizzo	^	Aggiungi
L		(tutto)	~	(tutto) 🗸	(tutto) 🗸	(tutto)		Flimina
	Nuova			Combinazion	stato di errici			
	Mgst	ra combinazioni di carichi g selezionata	enerate da	terze parti	Litikzzo	combinazione di carichi	>	
П	Fattore	Caso o combinazione		Acciunci		Mome	0	Seleziona hutto
	1.500000	DL1		1.0234041034	10	Nuovo utilizzo 1		ociegiona tatto
H				Eli <u>m</u> ina	- H*	-		Deseleziona tutto
								Aggiungi
								Eļimina
Ш			~				~	

Figura 166.Definizione combinazione dei carichi in Revit

Si inseriscono i carichi direttamente su un telaio tridimensionale e si visualizzano sia graficamente che nell'abaco corrispondente, dove possiamo visualizzare in forma tabellare tutte le informazioni inserite.

<	Abaco carico	area>
Α	B	C
Area	Natura	Fz 1
5 m²	Proprio	-3.00 kN/m ²
6 m²	Di esercizio	-4.00 kN/m ²
16 m ²	Accidentale	-2.00 kN/m ²

Figura 167. Applicazione dei carichi e visualizzazione tramite abaco carichi

6.6.1. Advance Design

Tramite BIM Connect si esporta il modello sul software e viene visualizzato come nella seguente figura.

Figura 168. Esportazione carichi areali da Revit ad Advance Design

I carichi esportati sono areali, ed è necessario indicare in che modo devono essere distribuiti sugli elementi interessati. Senza questa informazione non è possibile far partire l'analisi agli elementi finiti.

Devono essere quindi collegati ad opportune aree di carico, definite al Paragrafo 6.5.3.

Questo processo è utile per l'applicazione dei carichi sui solai. Come definito al *Capitolo 6.5* l'esportazione del solaio come pavimento strutturale non è funzionale, in quanto viene mappato come elemento piastra a cui non è possibile associare un'orditura.

Soluzione alternativa ed interoperabile è l'applicazione dei carichi relativi all'elemento solaio (carichi di peso proprio e carichi accidentali) in *Revit*. Collegando poi sul software questi carichi alle relative aree, viene definita la modalità di distribuzione (orditura monodirezionale o bidirezionale), come mostrato nella seguente figura.

Vista UTENTE -6.25 m 1.19 m 4.00 m	Q1 13. Q 🛫 🐣	Proprietà		ų×
		🐻 📴 🚡 Tutte le proprietà		*
		Generale		^
		- Identificatore	1	
		- Nome	Area di carico	
		- Sistemi	3	
		- Commento		
		Identificatore GTC	0	
		Distribuzione carico		
		 Direzione portanza 	x	
		- Portanza	Impostazione	
		Comportamento Meccanico		
		— Piano rigido	Disabilitato	
qui		 Peso proprio auto 	Disabilitato	
		- Materiale	S235	
1997		- Spessore	1.00 cm	
		Neve		
7777		- Neve	Abilitato	
7		Neve accidentale	Impostazione	
Y -X		E Vento		
AND AND		- Vento	Abilitato	
		— Tipo	Edificio	
		- Apertura	Nessuno	
	4 X	Esposizione X+		
	^	Esposizione X-		
	×	Esposizione Y+		~

Figura 169. Definizione area di carico monodirezionale

A titolo di esempio, viene impostata un'orditura monodirezionale (carichi ripartiti su due travi principali). Il diagramma di momento ottenuto è riporato nella seguente figura.

Figura 170. Diagramma di momento flettente con carico areale applicato

Anche le combinazioni dei carichi vengono esportate correttamente, come possiamo riscontrare nella seguente figura.

inazion	i Calce	estruzzo	Accia	io Leg	no																
Caso	Caso	Coeff	Caso	Coeff	Caso	Coeff	Caso	Coeff	Caso	Coeff	Caso	Coeff	Caso	Coeff	Caso	Coeff	Caso	Coeff	Caso	Coeff	Cas
101	1	1.50	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0

Figura 171. Combinazione dei carichi esportata

Sul software di calcolo è possibile generare automaticamente le combinazioni dei carichi. Si conclude che l'applicazione dei carichi in Revit sia una soluzione efficiente ed interoperabile, mentre definire le combinazioni di carico risulta interoperabile ma poco funzionale per le operazioni successive.
6.6.2. Midas Gen

Si fa riferimento alla tesi di Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". I carichi non sono esportabili da Revit e vengono inseriti direttamente nel software di calcolo Midas Gen.

Capitolo 7 - Modellazione e analisi strutturale su software di calcolo

Nel presente capitolo sono state affrontate le operazioni che portano all'analisi e alle verifiche strutturali.

Il modello esportato da Revit deve essere controllato nel dettaglio per ottenere un'adeguata esportazione, con particolare riguardo a nodi e collegamenti analitici. Una volta esportato come controllo preliminare viene calcolato il peso degli elementi esportati per poi proseguire con le operazioni necessarie ad avviare l'analisi e il calcolo delle sollecitazioni.

Sono state eseguite delle verifiche strutturali su alcuni elementi, per dare un'idea globale di tutto il percorso necessario alla valutazione della sicurezza di un edificio esistente.

7.1. Check modello ed esportazione su software di calcolo

Il modello realizzato in Revit deve essere controllato nel dettaglio prima di procedere con l'esportazione, per evitare errori grossolani.

Il controllo è stato concentrato sul modello analitico e sul peso degli elementi strutturali.

Per verificare che il modello analitico sia corretto, viene lanciata una prima analisi sui software di calcolo con il solo peso proprio degli elementi. Tramite l'analisi della deformata sono individuate le possibili criticità.

Il controllo sul peso degli elementi viene svolto sul software di modellazione e su quello di calcolo: in questo modo si verifica che il peso totale considerato sia lo stesso. Nella seguente figura si riporta il diagramma di flusso del check eseguito sul modello.

Figura 172. Diagramma di flusso check del modello

7.1.1. Controllo analitico

Prima di procedere all'esportazione del modello nei software di calcolo si effettua un check analitico controllando i seguenti aspetti:

- Le travi devono confluire in un solo nodo;
- Correzione di errori macroscopici di modellazione;
- Controllo dei collegamenti analitici creati da Revit automaticamente in modo che i carichi vengano trasferiti in modo adeguato.

Le operazioni di controllo sono state applicate al solo edificio 2.

Dopo una prima revisione, è stato fatto un primo tentativo di esportazione ai due software di calcolo ed è stata avviata l'analisi tenendo conto del solo peso proprio degli elementi per controllare che non ci fossero errori macroscopici di modellazione.

Una criticità ricorrente si presenta quando una trave appoggia su due pilastri alle estremità ed un pilastro centrale, come il caso delle travi su cui appoggia la copertura, come mostrato nella seguente figura.

<u>Criticità in Revit:</u> la trave del tetto si appoggia sul pilastro centrale ma l'intersezione non è perfetta, sembra che essa non si appoggi perfettamente al pilastro centrale.

Figura 173. Individuazione criticità in Revit

In Midas Gen

Si fa riferimento alla tesi di Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas".

In Advance Design GODESIGN

A seguito dell'esportazione del modello in Advance Design si è riscontrato questo risultato, come mostrato nella seguente figura.

Figura 174. Individuazione criticità apparente

Criticità apparente:

Dal modello analitico in Advance Design risulta che la trave non è perfettamente connessa al pilastro. Nonostante questo apparente problema la deformata risulta essere corretta come possiamo notare nella seguente figura, perché il pilastro e la trave nel nodo critico si abbassano in modo coerente, come se la trave fosse connessa al pilastro.

Figura 175. Verifica criticità apparente

7.1.2. Controllo peso degli elementi strutturali

Un ulteriore controllo per verificare che l'esportazione sia andata effettivamente a buon fine è quello del peso degli elementi considerati. Partendo dal modello in *Revit*, definiamo il peso totale come somma del peso dei vari tipi di elementi strutturali presenti: muri controterra, travi e pilastri.

Per differenziare gli elementi strutturali dell'edificio 2 rispetto a quelli degli altri edifici, è necessario introdurre un parametro. Viene creato il parametro condiviso "Edificio" in un nuovo gruppo "Check peso elementi" all'interno del file denominato "Check.txt".

Questo parametro viene creato con le caratteristiche di Disciplina Comune e tipo di parametro Testo ed è inserito all'interno del modello come parametro di progetto collegato alle categorie di pilastri strutturali, telaio strutturale, e muri, come mostrato nella seguente figura.

Modifica parametri condivisi		× Proprietà parametro ×
File parametri condivisi:		Nome:
C:\Users\Utente\Desktop\Check.txt	Sfoglia Crea	. Edificio
Gruppo di parametri:		Disciplina:
Check peso elementi	~	Comune
		Tipo di parametro:
rarametri:	Parametri	Testo
Area phose Contractore	Nuovo	Descrizione comandi:
Euncio	Proprietà.	Nessuna descrizione comando. Modificare il parametro pe
	Sposta a	
	Elimina	OK Annulla
	Gruppi	
	Nuovo	
	Rinomina.	
	Elimina	
or	Annulla 2	

Figura 176. Inserimento parametro "Edificio"

Si compila il parametro "Edificio" con il valore "2". In questo modo possiamo differenziare nell'abaco di ogni tipologia di elemento strutturale solo gli elementi di interesse, impostando un filtro sul parametro, come mostrato nella seguente figura.

Proprietà abac	:0	×
Campi Filtro	Ordinamento/Raggruppamento Formattazione Aspetto	
Filtra per:	Edificio ~ uguale ~ 2	\times
E:	(nessuno) ~	~

Figura 177. Filtraggio rispetto al parametro edificio 2

Vengono a questo punto esportati i tre abachi di interesse (muri, pilastri strutturali e telaio strutturale) in un unico file Excel (un foglio Excel per ogni abaco) attraverso il modulo aggiuntivo *BIM One*.

Per i vari elementi sono stati valutati parametri diversi: il volume per i muri controterra, l'area per i pilastri e le travi. Questo passaggio è stato necessario a causa di una criticità riscontrata con il parametro "Volume" nel momento in cui pilastri e travi si intersecano con i muri controterra.

Per quanto riguarda i muri controterra, dopo l'esportazione del file viene moltiplicato il valore del volume per il peso unitario (25 kN/m³) per ogni riga e viene calcolata infine la somma ottenendo il peso totale.

MURI CONTROT	ERRA E	DIFICIO 2 IN	REVIT	
Famiglia e tipo	Edificio	Lunghezza [m]	Volume [m ³]	Peso [kN]
Muro di base: EXT_25 cm fondazione	2	31.52	10.72	268.06
Muro di base: EXT_25 cm fondazione	2	25.16	8.49	212.29
Muro di base: EXT_25 cm fondazione	2	31.52	10.64	265.95
Muro di base: EXT_25 cm fondazione	2	25.16	8.41	210.18
TOT	ΓALE			956.48

Tabella 45. Muri controterra edificio 2 in Revit

Per quanto riguarda il peso delle travi e dei pilastri, sono stati definiti due nuovi parametri "Area pilastro" e "Area trave" come parametri condivisi nel gruppo "Check peso elementi" all'interno del file denominato "Check.txt".

Questi parametri vengono creati con le caratteristiche di Disciplina Comune e tipo di parametro "Area" e sono inseriti all'interno del modello come parametri di progetto collegati alle categorie di pilastri strutturali per il parametro "Area pilastro", e di telaio strutturale per il parametro "Area trave".

Devono essere associati direttamente alle proprietà della famiglia corrispondente, per farlo si entra all'interno della famiglia trave e della famiglia pilastro strutturale e si inseriscono i parametri "Area trave" e "Area pilastro", impostando che dovranno essere calcolati come prodotto di base ed altezza della sezione. Vengono aggiunti ai due abachi i parametri e possono essere esportati per il calcolo del peso.

Nella tabella seguente viene riportato il valore del peso totale per ogni tipologia di elemento.

TOTALE PESO F	ELEMENTI REVIT
Elementi	Peso [kN]
Pilastri	1564.92
Travi	6381.83
Muri	956.48
Totale	8903.23

Tabella 46. Tabella conclusiva del peso dei singoli elementi strutturali

In Midas Gen

Si fa riferimento alla tesi di Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". I risultati da lei ottenuti per questa tematica sono riportati nella seguente tabella.

CONFRONT	FO PESO EI	LEMENTI [kN]
Elementi	Revit	Midas Gen
Pilastri	1564.92	1564.92
Travi	6381.83	6381.79
Muri	956.48	956.48
Totale	8903.23	8903.18

Tabella 47. Confronto peso elementi Revit – Midas Gen

> In Advance Design

È possibile esportare un report con tutte le informazioni relative al peso dei singoli elementi raggruppati per lunghezza. Non è possibile ottenere due tabelle distinte per travi e pilastro, ma è possibile isolare i pilastri facilmente poiché sono elementi lineare con lunghezze ben definite e pari all'altezza dei vari piani.

I risultati ottenuti sono riassunti nella seguente tabella.

CONFROM	NTO PESC) ELEMENTI [kN]
Elementi	Revit	Advance Design
Pilastri	1564.92	1564.50
Travi	6381.83	6392.75
Muri	956.48	956.50
Totale	8903.23	8913.80

Tabella 48. Confronto peso elementi Revit – Advance Design

La differenza è relativa al peso delle travi, con una differenza di 10 kN. Si è indagato sul motivo di questa differenze, una conclusione plausibile trovata è che in *Revit* si ha una precisione fino alla terza cifra decimale mentre il software si ferma solo fino alla seconda. Come si può notare la differenza maggiore è riscontrata per le travi, quindi si sono indagate tutte le travi e sono stati trovati alcuni elementi nei quali sul software è stato eseguito un arrotondamento per eccesso sul valore del volume come evidenziato nella seguente tabella.

Advance	Design	Rev	vit
Lunghezza [m]	Volume [m ³]	Lunghezza [m]	Volume [m ³]
2.340	0.970	2.342	0.966
3.940	17.060	3.940	17.056
3.980	14.010	3.980	14.006
5.80	0.920	5.801	0.919

Tabella 49. Individuazione possibile criticità

Questo arrotondamento eseguito per tanti elementi ha portato ad una differenza di volume di circa 0,437 m³ ma che, moltiplicata per la densità del materiale, ha portato ad un errore di circa 10 kN, come evidenziato nella seguente tabella.

Advance	Design	Revit		
Volume totale [m ³]	Peso totale [kN]	Volume totale [m ³]	Peso totale [kN]	
255.71	6392.75	255.273	6381.829	

Tabella 50. Confronto differenza volume e peso

7.2. Operazioni post – esportazione

Concluso il controllo preliminare si può procedere all'esportazione nei software di calcolo. Come detto precedentemente le analisi sono state fatte per l'edificio 2 su entrambi i software di calcolo strutturale.

7.2.1. Advance Design

Di seguito si riporta nella seguente figura il modello analitico dopo l'esportazione da Revit dell'edificio 2.

Figura 178. Esportazione modello nel software di calcolo Advance Design

Operazioni da eseguire, prima di passare all'applicazione dei carichi ed all'avvio delle analisi, sono le seguenti, schematizzate nel diagramma di flusso nella seguente figura.

Figura 179. Operazioni post- esportazione

A. Verifica collegamenti analitici:

I collegamenti analitici non vengono esportati, quindi gli elementi risultano completamente sconnessi tra loro. La soluzione adottata a questo problema è quella di spostare fisicamente la linea analitica dell'elemento e impostare manualmente l'eccentricità originaria.

Vista L						G. Q 🛫 🖶	Proprietà		무 >
	Sposta						🗐 🚉 🚡 Tutte le proprie	età	
	Tradesian						E Generale		/
	Madalah						 Identificatore 	20	
	Moudila.	· · · ·					- Nome	PO	
	Vettore:	0, 0.15, 0					— Tipo	Trave tozza	
	Distanze						 Stato attivo 	Abilitato	
	o rotarico	1					— Sistemi	30	
	8 Botazione		II				- Commento		
2	Modalità	Or,					Identificatore GTC	1956	
	modalid.	0 0	[[Materiale		
	Origine:	0, 0, 0	217				Codice	C25/30	
	Asse:	0, 0, 1			T T		E Sezione		
		0.0					— Estremità 1	R30*60	
	Angolo:	10					— Estremità 2	R30*60	
	Onzioni			3			Eccentricità		
	E Sistema di destinazion	[ci					- Opzione	altro	
) Sistema di destinazion	Struttura					— y1	0.00 m	
Mar.	Modifica l'orientamento	della sezione					— y2	0.00 m	
	Spostamento dei nodi c	on collegamenti					— z1	0.15 m	
					F		— z2	0.15 m	
	Anteprima	Sposta	Chiudi				Considerato per l'anal	isi FEM 🗹 Abilitato	
1					-		- Tipo d'inerzia del calcest	truzzo Valore imposto	
						4 X	Coefficiente di inerzia se	zion 1.00	

Figura 180. Correzione elementi eccentrici

B. Verifica livelli:

I livelli vengono esportati direttamente e vengono organizzati nel sistema a finestre indicato nella seguente figura. Talvolta bisogna verificare che gli elementi siano effettivamente sul livello corretto e se non lo sono basta semplicemente trascinare la cartella degli elementi nel livello corretto.

Figura 181. Verifica livelli

C. Definizione dei vincoli:

Plinti vengono schematizzati come incastri, mentre la fondazione continua viene schematizzata come un vincolo lineare. Si riporta nella seguente figura una visualizzazione dei vincoli presenti.

Figura 182. Verifica vincoli esportati

D. Assegnare il materiale

Il materiale viene mappato nel momento in cui viene esportato il. È possibile scegliere il materiale di *Revit* corrispondente nel software con la relativa normativa di riferimento, come mostrato nella seguente figura.

Assegna un Assegnare a tipologia:	materiale esistente tutti i materiali di questa		🗌 Crea un nuovo materiale	e dai dati esistenti
Solamente	per la sessione corrente		Per tutti i materiali so	onosciuti
				× Assegna
				• / doogne
Libreria	Data) Gratica) Advance I	Design\ 20	19\ Passumas\Catalogs\M	
Libreria I C:\Program Famiglia Calc	iData \Graitec \Advance estruzzo 💽 S	Design\20 Standard	18\Resources\Catalogs\Ma	
Libreria TC:\Program Famiglia Calc C12/15_IT C12/15_IT	1Data\Graitec\Advance I estruzzo C55/67_IT	Design\20 Standard	18\Resources\Catalogs\Ma NTC2008	
Libreria Famiglia Calc C12/15_IT C16/20_IT C20/25_IT	Data\Graitec\Advance I struzzo ✓ S C55/67_IT C60/75_IT C70/85_IT	Design \20 Standard	18\Resources\Catalogs\Ma NTC2008	
Libreria Famiglia Calc C12/15_IT C16/20_IT C20/25_IT C25/30_IT	Data\Graitec\Advance I struzzo C55/67_IT C60/75_IT C70/85_IT C70/85_IT	Design \20 Standard	18\Resources\Catalogs\Ma NTC2008	
Libreria Famiglia Calc C12/15_IT C16/20_IT C20/25_IT C28/35_IT C32/40_IT	Data \Graitec \Advance I estruzzo	Design \20 Standard	118\Resources\Catalogs\Ma NTC2008	
Libreria Famiglia Calc C12/15_IT C16/20_IT C20/25_IT C28/35_IT C32/40_IT C32/40_IT C35/45_IT	Data\Grattec\Advance estruzzo	Design \20 Standard	118\Resources\Catalogs\Ma NTC2008	

Figura 183. Verifica materiali esportati

E. Verificare centroide sezione:

In *Revit* la trave viene esportata con la linea analitica posizionata alla sommità dell'elemento fisico. Poiché si vogliono eseguire i calcoli considerando il centro dell'elemento e non la sommità superiore allora si deve deselezionare la casella "Considerato per l'analisi FEM", in questo modo l'ingombro rimarrà inalterato e solo nell'analisi verra considerato il centro della trave. Questa operazione si esegue andando a selezionare tutte le travi e applicando questa correzione, come evidenziato nella seguente figura.

E Sezione	
— Estremità 1	R30*90
— Estremità 2	R30*90
Eccentricità	
- Opzione	(0,z-)
	0.00 m
- y2	0.00 m
- z1	0.00 m
- z2	0.00 m
Considerato per l'analisi FEM	Disabilitato
 Tipo d'inerzia del calcestruzzo 	Valore imposto
Coefficiente di inerzia sezione f	1.00

Figura 184. Verifica centroide sezione

F. Controllo mesh muri controterra

I muri controterra vengono meshati correttamente e la deformazione è coerente, come possiamo riscontrare nella seguente figura.

Figura 185. Verifica mesh muri controterra

7.2.2. Midas Gen 🖸

Il seguente capitolo è stato svolto da Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". Le operazioni sono riassunte nell'immagine seguente.

Figura 186. Operazioni post-esportazione

7.3. Applicazione carichi e calcolo sollecitazioni

All'interno del capitolo vengono definiti i carichi agenti sulla struttura e la loro intensità in base alla normativa di riferimento ed ai dati raccolti. Queste azioni vengono poi combinate allo Stato Limite Ultimo (SLU): si potranno allora valutare i risultati ottenuti in termini di deformata e momento flettente.

La procedura viene fatta per il solo edificio 2 su entrambi i software.

7.3.1. Cenni teorici

La classificazione delle azioni secondo la variazione della loro intensità nel tempo è definita al *Capitolo 2.5* del D.M. 14 Gennaio 2008 "Norme tecniche per le costruzioni" ed individua:

- Azioni permanenti (G): agiscono durante tutta la vita nominale di progetto della costruzione, la cui variazione di intensità nel tempo è molto lenta. In questa categoria sono presenti:
 - Peso proprio di tutti gli elementi strutturali (G₁): le azioni permanenti gravitazionali associate ai pesi propri dei materiali strutturali sono derivate dalle dimensioni geometriche e dai pesi dell'unità di volume dei materiali con cui sono realizzate le parti strutturali della costruzione;

- Peso proprio di tutti gli elementi non strutturali (G2).
- Azioni variabili (Q): agiscono con valori istantanei che possono risultare sensibilmente diversi fra loro nel corso della vita nominale della struttura. Possono essere:
 - o Sovraccarichi;
 - o Azione del vento;
 - Azione della neve;
 - Azione della temperatura.
- Azioni eccezionali (A): si verificano solo eccezionalmente nel corso della vita nominale della struttura. Possono essere:
 - o Incendi;
 - Urti ed impatti.
- Azioni sismiche (E): derivanti dai terremoti.

Nel dettaglio, le azioni variabili devono essere definite seguendo il *Capitolo 3* del D.M. 14 Gennaio 2008 "Norme tecniche per le costruzioni".

Azioni variabili (Q)

Sovraccarichi: comprendono i carichi legati alla destinazione d'uso dell'opera e possono essere:

- Carichi verticali uniformemente distribuiti (qk);
- Carichi verticali concentrati (Qk);
- Carichi orizzontali lineari (H_k).

I valori nominali e/o caratteristici sono riportati nella *Tab. 3.1.II* al *Capitolo 3.1.4* del D.M. 14 gennaio 2008 "Aggiornamento delle Norme tecniche per le costruzioni". Ne viene riportata una parte in *Figura 107*.

Ambienti	q _k [kN/m ²]	Qk [kN]	H _k [kN/m]
Ambienti ad uso residenziale. Sono compresi in questa categoria i locali di abitazione e relativi servizi, gli alberghi. (ad esclusione delle aree suscettibili di affollamento)	2,00	2,00	1,00
Uffici. Cat. B1 Uffici non aperti al pubblico Cat. B2 Uffici aperti al pubblico	2,00	2,00	1,00
 Ambienti suscettibili di affollamento Cat. C1 Ospedali, ristoranti, caffe, banche, scuole Cat. C2 Balconi, ballatoi e scale comuni, sale convegni, cinema, teatri, chiese, tribune con posti fissi Cat. C3 Ambienti privi di ostacoli per il libero movimento delle persone, quali musei, sale per esposizioni, stazioni ferroviarie, sale da ballo, palestre, tribune libere, edifici per eventi pubblici, sale da concerto, palazzetti per lo sport e relative tribune 	3,00 4,00 5,00	2,00 4,00 5,00	1,00 2,00 3,00
Ambienti ad uso commerciale. Cat. D1 Negozi Cat. D2 Centri commerciali, mercati, grandi magazzini, librerie	4,00 5,00	4,00 5,00	2,00 2,00
Biblioteche, archivi, magazzini e ambienti ad uso industriale. Cat. E1 Biblioteche, archivi, magazzini, depositi, laboratori manifatturieri Cat. E2 Ambienti ad uso industriale, da valutarsi caso per caso	≥ 6,00 	6,00	1,00* —
Rimesse e parcheggi. Cat. F Rimesse e parcheggi per il transito di automezzi di peso a pieno carico fino a 30 kN Cat. G Rimesse e parcheggi per transito di automezzi di peso a pieno carico superiore a 30 kN: da valutarsi caso per caso	2,50	2 x 10,00	1,0 <mark>0</mark> **
Coperture e sottotetti Cat. H1 Coperture e sottotetti accessibili per sola manutenzione Cat. H2 Coperture praticabili Cat. H3 Coperture speciali (impianti, eliporti, altri) da valutarsi caso per caso	0,50 secondo c	1,20 ategoria di ap	1,00 partenenz
	Ambienti Ambienti ad uso residenziale. Sono compresi in questa categoria i locali di abitazione e relativi servizi, gli alberghi. (ad esclusione delle aree suscettibili di affollamento) Uffici. Cat. B1 Uffici non aperti al pubblico Cat. B2 Uffici aperti al pubblico Cat. C1 Ospedali, ristoranti, caffe, banche, scuole Cat. C2 Balconi, ballatoi e scale comuni, sale convegni, cinema, teatri, chiese, tribune con posti fissi Cat. C3 Ambienti privi di ostacoli per il libero movimento delle persone, quali musei, sale per esposizioni, stazioni ferroviarie, sale da ballo, palestre, tribune libere, edifici per eventi pubblici, sale da concerto, palazzetti per lo sport e relative tribune Ambienti ad uso commerciale. Cat. D1 Negozi Cat. E1 Biblioteche, archivi, magazzini e ambienti ad uso industriale. Cat. E1 Biblioteche, archivi, magazzini, depositi, laboratori manifatturieri Cat. E2 Ambienti ad uso industriale, da valutarsi caso per caso Rimesse e parcheggi per il transito di automezzi di peso a pieno carico fino a 30 kN Cat. G Rimesse e parcheggi per tansito di automezzi di peso a pieno carico superiore a 30 kN: da valutarsi caso per caso Coperture e sottoetti Cat. H1 Coperture praticabili Cat. H1 Coperture speciabili cimpianti, eliporti, altri) da valutarsi caso per caso	Ambienti ^{4k} [kN/m ²] Ambienti ad uso residenziale. Sono compresi in questa categoria i locali di abitazione e relativi servizi, gli alberghi. (ad esclusione delle aree suscettibili di affollamento) 2,00 Uffici. Cat. B1 Uffici non aperti al pubblico 2,00 Cat. B2 Uffici aperti al pubblico 2,00 Cat. C1 Ospedali, ristoranti, caffe, banche, scuole 3,00 Cat. C2 Balconi, ballatoi e scale comuni, sale convegni, cinema, teatri, chiese, tribune con posti fissi 3,00 Cat. C3 Ambienti privi di ostacoli per il libero movimento delle persone, quali musei, sale per esposizioni, stazioni ferroviarie, sale da ballo, palestre, tribune libere, edifici per eventi pubblici, sale da concerto, palazzetti per lo sport e relative tribune 4,00 Ambienti ad uso commerciale. 4,00 5,00 Cat. D1 Negozi 4,00 5,00 Cat. E1 Biblioteche, archivi, magazzini e ambienti ad uso industriale. 5,00 Cat. E1 Biblioteche, archivi, magazzini, laboratori manifatturieri 26,00 Cat. E2 Ambienti ad uso industriale, da valutarsi caso per caso - Rimesse e parcheggi. 2,50 - Cat. F Rimesse e parcheggi per il transito di automezzi di peso a pieno carico fino a 30 kN: da valutarsi caso per caso 2,50 Coperture e sottotetti cat. H1 Co	Ambienti $\frac{\Psi_{k}}{ kN/m^2 }$ $\frac{\Psi_{k}}{ kN/m^2 }}$ $\frac{\Psi_{k}}{ kN/m^2 }$ $\frac{\Psi_{k}}{$

Figura 187. Tabella 3.1.II al Capitolo 3.1.4 del D.M. 14 gennaio 2008

<u>Azione del vento</u>: esercita sulle costruzioni azioni che variano nel tempo e nello spazio provocando, in generale, effetti dinamici. Per le costruzioni usuali tali azioni sono convenzionalmente ricondotte alle azioni statiche equivalenti.

Parametri utili alla definizione della pressione cinetica di riferimento sono i seguenti:

- *Velocità base di riferimento:* in mancanza di adeguate indagini statistiche, questo parametro si ricava dalla seguente espressione:

$$v_b = v_{b,0}$$
 per $a_s \le a_0$
 $v_b = v_{b,0} + k_a * (a_s - a_0)$ per $a_0 < a_s \le 1500 m$

Dove:

vb0, a0 e ka sono parametri legati alla regione in cui sorge la costruzione in esame;

as è l'altitudine della costruzione in esame.

I abella	3.3.1 - Valori ael parametri V _{b,0} , a ₀ , k _a	1	N	
Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della provincia di Trieste)	25	1000	0,010
2	Emilia Romagna	25	750	0,015
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,020
4	Sicilia e provincia di Reggio Calabria	28	500	0,020
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,015
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,020
7	Liguria	28	1000	0,015
8	Provincia di Trieste	30	1500	0,010
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,020
		_		-

Figura 188. Tabella 3.3.I al Capitolo 3.1.4 del D.M. 14 gennaio 2008

In mancanza di analisi statistiche specifiche la velocità base di riferimento può essere considerata uguale alla velocità di riferimento v_r .

- Pressione cinetica di riferimento:

$$q_r = \frac{1}{2} * \rho * v_r^2 \ [kN/m^2]$$

 ρ è la densità dell'aria assunta convenzionalmente costante e pari a 1,25 kg/m³ mentre v_r rappresenta la velocità di riferimento.

- Pressione del vento:

$$p = q_r * c_e * c_p * c_d$$

Dove: q_r = pressione cinetica di riferimento calcolata;

c_e = coefficiente di esposizione;

c_p= coefficiente di pressione;

c_d= coefficiente dinamico: non avendo dati specifici, si considera unitario.

- Coefficiente di esposizione:

$$c_e(z) = k_r^2 * c_t * \ln\left(\frac{z}{z_0}\right) * \left[7 + c_t * \ln\left(\frac{z}{z_0}\right)\right] \quad per \ z \ge z_{min}$$
$$c_e(z) = c_e(z_{min}) \qquad per \ z < z_{min}$$

Con c_t = coefficiente di topografia

Questi parametri sono definiti in base alla categoria di esposizione del sito, che dipende dalla classe di rugosità del terreno e dall'altitudine.

Capitolo 7 – Modellazione e analisi strutturale su software di calcolo

Categoria di esposizione del sito	k _r	Z ₀ [m]	Z _{min} [m]
I	<mark>0,1</mark> 7	0,01	2
п	0,19	0,05	4
ш	0,20	0,10	5
IV	0,22	0,30	8
V	0,23	0,70	12

Figura 189	. Tabella 3.3.II a	l Capitolo 3.1.4	del D.M. 14	gennaio 2008
------------	--------------------	------------------	-------------	--------------

Classe di rugosità del terreno	Descrizione
А	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15m
В	Aree urbane (non di classe A), suburbane, industriali e boschive
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D
D	Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,)
L'assegnazione della classe di rug una costruzione possa dirsi ubica permanga intorno alla costruzione Laddove sussistano dubbi sulla sce sfavorevole.	osità non dipende dalla conformazione orografica e topografica del terreno. Affinché tta in classe A o B è necessario che la situazione che contraddistingue la classe per non meno di 1 km e comunque non meno di 20 volte l'altezza della costruzione. elta della classe di rugosità, a meno di analisi dettagliate, verrà assegnata la classe più

Figura 191. Definizione classe di rugosità del terreno da D.M. 14 gennaio 2008

Coefficiente di pressione: si seguono le indicazioni presenti nella "Circolare Allegata n. 617 del 2 Febbraio 2009". Le indicazioni sono riassunte nell'immagine seguente.

Figura 192. Coefficiente di pressione da "Circolare Allegata n. 617 del 2 Febbraio 2009

<u>Azione della neve</u>: il carico provocato dalla neve sulle coperture è calcolato dalla seguente espressione:

$$q_s = q_{sk} * \mu_i * C_E * C_t$$

Dove:

- q_{sk}: valore di riferimento del carico di neve al suolo;

Figura 193. Zona di carico da neve da D.M. 14 gennaio 2008

- µ_i: coefficiente di forma della copertura, dipendente dalla pendenza della copertura.

Tabella 3.4.II – Valori del coeffici	ente di forma		
Coefficiente di forma	$0^{\circ} \le \alpha \le 30^{\circ}$	$30^\circ < \alpha < 60^\circ$	$\alpha \ge 60^{\circ}$
μ1	0,8	$0.8 \cdot \frac{(60-\alpha)}{30}$	0,0

Figura 194. Coefficiente di forma - Tabella 3.4.II da D.M. 14 gennaio 2008

- CE: coefficiente di esposizione, definito da tabella.

Topografia	Descrizione	CE
Battuta dai venti	Aree pianeggianti non ostruite esposte su tutti i lati, senza costruzioni o alberi più alti.	0,9
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi.	1,0
Riparata	Aree in cui la costruzione considerata è sensibilmente più bassa del circostante terreno o circondata da costruzioni o alberi più alti	1,1

Figura 195. Coefficiente di esposizione - Tabella 3.4.1 da D.M. 14 gennaio 2008

- Ct: coefficiente termico, in assenza di studi specifici si assume valore unitario.

Definite le azioni, esse devono essere combinate utilizzando la Combinazione fondamentale agli SLU, fornita al *Capitolo 2.5.3* del D.M. 14 Gennaio 2008 "Norme tecniche per le costruzioni":

$$\gamma_{G1} * G_1 + \gamma_{G2} * G_2 + \gamma_P * P + \gamma_{Q1} * Q_{k1} + \gamma_{Q2} * \Psi_{02} * Q_{k2} + \gamma_{Q3} * \Psi_{03} * Q_{k3} + \dots$$

I coefficienti parziali di sicurezza γ sono riassunti nella tabella seguente.

		Coefficiente YF	EQU	A1	A2
C	Favorevoli	0,9	1,0	1,0	
Cariciu permanenti Gi	Sfavorevoli	YGI	1,1	1,3	1,0
C	Favorevoli	γ _{G2}	0,8	0,8	0,8
Carichi permanenti non strutturali G2(1)	Sfavorevoli		1,5	1,5	1,3
	Favorevoli	100	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	YQi	1,5	1,5	1,3
⁽¹⁾ Nel caso in cui l'intensità dei carichi perman manenti portati) sia ben definita in fase di pro adottare gli stessi coefficienti parziali validi per	enti non struttura getto, per detti ca : le azioni permar	ali o di una parte arichi o per la par nenti.	di essi (a te di essi	d es. car nota si p	ichi po otran

Figura 196. Coefficienti parziali per le azioni - Tabella 2.6.I da D.M. 14 gennaio 2008

I coefficienti di combinazione sono invece riassunti nella tabella seguente: per la combinazione agli SLU è necessario tenere conto dei valori definiti nella prima colonna, valore di combinazione tale che la probabilità di superamento degli effetti causati dalla

concomitanza con altre azioni sia circa la stessa di quella associata al valore caratteristico di una singola azione.

Categoria/Azione variabile	Ψoj	Ψıj	Ψ _{2j}
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota \leq 1000 m s.1.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.1.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Figura 197. Valori dei coefficienti di combinazione- Tabella 2.5.1 da D.M. 14 gennaio 2008

7.3.2. Calcolo carichi agenti

I carichi agenti sulla struttura vengono calcolati seguendo le indicazioni riportate al *Capitolo* 7.3.1.

Azioni permanenti (G)

Questi carichi sono noti dalle tavole di carpenteria provenienti dalla documentazione reperita in archivio. Non è presente la carpenteria del piano secondo di tutti gli edifici e quindi i carichi vengono ipotizzati uguali a quelli del piano primo.

EDIFICIO 2								
Analisi dei carichi	Piano terra	Piano primo	Piano secondo	Piano sottotetto	Piano copertura			
Peso proprio elementi strutturali G ₁ [kN/m ²]	2.65	3.10	3.10	2.50	2.50			
Peso proprio elementi non strutturali G ₂ [kN/m ²]	1.50	1.50	1.50	3.00 - 0.80	0.80			

Tabella 51. Carichi G₁ e G₂ noti dalle carpenterie

Azioni variabili (Q)

Sovraccarichi: comprendono i carichi legati alla destinazione d'uso dell'opera.

La struttura in esame è classificata nella categoria C1, il valore di sovraccarico da normativa è $3,00 \text{ kN/m}^2$. Nella documentazione reperita in archivio è però presente il valore specifico $3,5 \text{ kN/m}^2$.

L'aula magna è invece classificata nella categoria C2, con valore di sovraccarico 4,00 kN/m². Da carpenteria si nota invece che questo valore, presente al piano terra, sia impostato a 5,00 kN/m^2 .

Il piano sottotetto e il piano copertura rientrano nella categoria H, con valore di sovraccarico di $0,50 \text{ kN/m^2}$. Sulle carpenterie questo valore è più alto, come si vede nella tabella soprastante. Nella pratica questo valore non viene considerato in quanto è difficile che si verifichi la contemporaneità delle azioni massime di vento e neve con la presenza di personale per la manutenzione sulla copertura.

Sono state introdotte allora due configurazioni di carico: una con i carichi da carpenteria, una con i valori minimi dati da normativa.

Si utilizza la sola configurazione di carichi data da normativa come riportato nelle seguenti tabelle.

CARICHI DA CARPENTERIA							
Analisi dei carichi	Piano terra	Piano primo	Piano secondo	Piano sottotetto	Piano copertura		
Accidentali [kN/m ²]	3.50 - 5.00	3.5	3.5	1.50 - 1.00	1.5		

Tabella 52. Tabella carichi accidentali noti da carpenteria

CARICHI DA NORMATIVA – CONFIGURAZIONE UTILIZZATA							
Analisi dei carichi	Piano terra	Piano primo	Piano secondo	Piano sottotetto	Piano copertura		
Accidentali [kN/m ²]	3.00 - 4.00	3.0	3.0	0.50	-		

Tabella 53. Tabella carichi accidentali da normativa

Azione del vento: si considera la direzione y, in cui la struttura non presenta edifici adiacenti.

Parametri utili alla definizione della pressione cinetica di riferimento sono i seguenti:

- *Velocità base di riferimento:* in mancanza di adeguate indagini statistiche, questo parametro si ricava dalla seguente espressione:

$$v_b = 25 m/s$$

Il sito rientra nella classe 1: viene utilizzata la prima espressione definita nei *Cenni teorici*, in quanto l'altitudine di Torino è sotto al valore di a₀ (1000 m).

La velocità base di riferimento viene considerata uguale alla velocità di riferimento v_r.

- Coefficiente di esposizione:

La classe di rugosità del sito in esame è la A, e tenendo conto che l'altitudine della zona è circa 200 m, la classe di esposizione è la V.

È necessario applicare la relazione relativa alla condizione $z \ge z_{min}$ indicata nei *Cenni teorici*, dato che l'altezza dell'edificio è maggiore di 12 m:

$$c_e(z) = 0.23^2 * 1 * \ln\left(\frac{12.57}{0.70}\right) * \left[7 + 1 * \ln\left(\frac{12.57}{0.70}\right)\right] = 1.511$$

Coefficiente di pressione: si assume c_{pe}=0,8 e c_{pi}=0,2; il coefficiente di pressione sarà la differenza tra i due: c_p=0,8 – 0,2 = 0,6 [-]

Da queste informazione viene calcolata la pressione cinetica di riferimento e successivamente la pressione del vento.

Le caratteristiche del vento vengono riassunte nella seguente tabella.

Caratteristiche vento				
Direzione	dir. Y			
Velocità di riferimento del vento	25,00 m/s			
Pressione cinetica di riferimento	0,39 kN/m ²			
Coefficiente di pressione	0,60			
Coefficiente di esposizione	1,51			
Pressione del vento	0,35 kN/m ²			

Tabella 54. Tabella riassuntiva caratteristiche del vento

<u>Azione della neve</u>: il carico provocato dalla neve sulle coperture è calcolato dalla seguente espressione:

$$q_s = 1,50 \frac{kN}{m^2} * 0,80 * 1 * 1 = 1,20 \frac{kN}{m^2}$$

Dove:

- Il sito si trova all'interno della zona I (Alpina) con altitudine minore o uguale a 200 m: $q_{sk} = 1,50 \text{ kN/m}^2.$
- μ_i: coefficiente di forma della copertura, con una pendenza della copertura fino a 30° si assume uguale a 0,8;
- C_E: coefficiente di esposizione, si assume valore unitario;
- Ct: coefficiente termico, in assenza di studi specifici si assume valore unitario.

Definite le azioni, esse devono essere combinate utilizzando la Combinazione fondamentale agli SLU, definita nei *Cenni teorici*.

I coefficienti parziali da utilizzare sono:

- $\gamma_{G1}=1,3$ coefficiente parziale dei carichi permanenti;
- $\gamma_{G2}=1,5$ coefficiente parziale dei carichi permanenti non strutturali;
- $\gamma_{Qi}=1,5$ coefficiente parziale delle azioni variabili.

I coefficienti di combinazione da utilizzare sono:

- $\Psi_{0i, \text{ sovraccarico}} = 0,7$ coefficiente di combinazione in caso di sovraccarico;
- $\Psi_{0i, neve} = 0.5$ coefficiente di combinazione in caso di neve;
- $\Psi_{0i, vento} = 0,6$ coefficiente di combinazione in caso di vento;

Possono essere definite tre combinazioni fondamentali, variando l'azione principale variabile tra le tre presenti (sovraccarico, vento, neve):

- Combinazione 1: applicazione del carico variabile principale sovraccarico e come altri carichi in contemporanea neve e vento;
- Combinazione 2: applicazione del carico variabile principale neve e come altri carichi in contemporanea vento e sovraccarico;
- Combinazione 3: applicazione del carico variabile principale vento e come altri carichi in contemporanea neve e sovraccarico.

Malla coguenta	toballo ci	datinicaana	nal dattaglia	la tra aar	nhinozioni
Nena seguente	tabena si	denniscono	nei dellagno		пошалот.

Combinazione azioni fondamentale per gli SLU							
Combinationa		Coefficienti di combinazione	Azioni				
	Comoinazione	Coefficienti di combinazione	G	G ₁	\mathbf{Q}_1	Q2	Q3
		<u>γ</u> G1	1.30	-	-	-	-
	Variabile	γ_{G2}	-	1.50			
1	principale	γ_{Q1} Sovraccarico	-	-	1.50	-	-
	Sovraccarico	$\gamma_{\rm Q2}$ * $\Psi_{\rm 02 \ Neve}$	-	-	-	0.75	-
		$\gamma_{\rm Q3}$ * $\Psi_{\rm 03 \ Vento}$	-	-	-	-	0.90
		γ_{G1}	1.30	-	-	-	1
	Variabile	γ_{G2}	-	1.50			
2 principa Neve	principale	$\gamma_{ m Q1}$ Neve	-	-	1.50	-	-
	Neve	$\gamma_{Q2} * \Psi_{02 \text{ Sovraccarico}}$	-	-	-	1.05	1
		$\gamma_{Q3} * \Psi_{03 \text{ Vento}}$	-	-	-	-	0.90
	$\gamma_{ m G1}$	1.30	-	-	-	-	
	Variabile	γ_{G2}	-	1.50			
3	principale	γ_{Q1} Vento	-	-	1.50	1	1
	Vento	$\gamma_{Q2} * \Psi_{02 \text{ Sovraccarico}}$	-	-	-	1.05	-
		$\gamma_{\rm Q3}$ * $\Psi_{\rm 03 \ Neve}$	-	-	-	-	0.75

Tabella 55. Definizione coefficienti delle tre combinazioni

7.3.3. Advance Design

1. Casi di carico:

Sul software deve essere definito il nome del caso di carico e il tipo; sulla base delle considerazioni fatte ai *Paragrafi 7.3.1* e *7.3.2* vengono definiti i seguenti casi di carico come mostrato nella seguente figura.

Figura 198. Casi di carico

I carichi permanenti vengono suddivisi in peso proprio degli elementi strutturali e in peso proprio degli elementi non strutturali al fine di definire due coefficienti di sicurezza diversi nella successiva combinazione dei carichi.

2. <u>Peso proprio elementi strutturali travi, pilastri e muri controterra:</u>

Il peso proprio viene applicato per tutti gli elementi, impostando solo la direzione della forza di gravità.

Caso di carico permanente	
- Titolo	
- Nome	G1
- Nr.	1
- Codice	ECG
Peso proprio	
- Selezione	Tutto
- Elenco	
🗖 Campo di gravità	
— x	0
- Y	0
z	-1

Figura 199. Applicazione peso proprio

Viene assegnato al caso di carico G1, corrispondente al peso proprio degli elementi strutturali.

3. <u>Azioni permanenti (G1 e G2) e azioni variabili (Q e N) sui solai:</u>

I solai, come definito al *Paragrafo 6.5*, non possono essere esportati come elementi direttamente da *Revit*. Deve essere utilizzata una soluzione non interoperabile, le aree di carico.

Per applicare i carichi è necessario:

- Creare i casi di carico, o esportarli direttamente da Revit;
- Selezionare e applicare sulle aree di carico (tramite l'ausilio della finestra pilota sulla sinistra) il caso di carico con il valore desiderato.

Figura 200. Applicazione carichi sulle aree di carico

4. Azione del vento (V_y) :

L'azione del vento viene applicata sempre tramite l'area di carico ma definendo come direzione locale l'asse y, come mostrato in nella seguente figura.

- Titolo	Vento Y+ Sovrapressione
- Nome	VY+S
— Nr.	7
- Codice	ECV
Tipo di vento	
 Direzione vento 	Y+
 Pressione interna 	Nessuno
— Tipo di vento	Normale
Combinazioni	
— Effetto	Dominante
 Coefficiente γ EQU 	1.50
 Coefficiente γ STR 	1.50
 Coefficiente y GEO 	1.30
— Coefficiente Ψ0	0.60
 Coefficiente Ψ1 	0.20
 Coefficiente Ψ2 	0.00

Figura 201. Applicazione Vento direzione Y+

5. <u>Combinazione delle azioni:</u>

Le combinazioni delle azioni possono essere definite manualmente, inserendo per la combinazione da creare i vari casi di carico e il coefficiente parziale di sicurezza collegato, oppure in modo automatico.

In modo automatico vengono create molteplici combinazioni di carico, può essere generata una combinazionse semplificata impostando le verifiche che si intendono eseguire oppure andare a combinare manualmente i singoli parametri, come mostrato nella seguente figura.

Figura 202. Parametri per la combinazione dei carichi

6. <u>Sollecitazioni ottenute per la struttura:</u>

Sono state effettuate delle verifiche strutturali su alcuni elementi tenendo conto della combinazione che ha portato alle massime sollecitazioni, come mostrato nella seguente figura.

Figura 203. Combinazione dei carichi utilizzata

Vengono a questo punto visualizzati i diagrammi di sollecitazione e spostamenti relativi alla struttura analizzata.

Figura 204. Diagramma My riferita alla combinazione di carico utilizzata

Figura 205. Deformata riferita alla combinazione di carico utilizzata

Il seguente capitolo è stato svolto da Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". Si descrive nel dettaglio la procedura e le criticità riscontrate nell'applicazione dei carichi.

7.4. Verifica di alcuni elementi strutturali

Prima di eseguire le verifiche strutturali è necessario fare una premessa. Durante le verifiche strutturali e la realizzazione del modello nel software di calcolo sono state fatte delle assunzioni a scopo didattico e quindi le verifiche non possono avere valenza ufficiale.

Per la verifica degli elementi sono state utilizzate le informazioni provenienti dal rilievo strutturale e quelle relative alle carpenterie. Sono stati analizzati due travi e due pilastri eseguendo una verifica allo SLU.

7.4.1. Cenni teorici

Per la verifica allo stato limite ultimo si fa riferimento alla normativa NTC 2008 *Capitolo* 4.1.2 relativo alla verifica agli stati limite.

La verifica di resistenza allo Stato limite ultimo su una sezione pressoinflessa si esegue controllando che:

$$M_{Rd} = M_{Rd} (N_{Ed}) \geq M_{Ed}$$

Dove:

MRd è il valore di calcolo del momento resistente corrispondente a NEd;

NEd è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

MEd è il valore di calcolo della componente flettente dell'azione.

Nel caso di pilastri soggetti a pressoflessione deviata la verifica della sezione può essere posta tramite la seguente formula:

$$\left(\frac{M_{E_{yd}}}{M_{R_{yd}}}\right)^{\alpha} + \left(\frac{M_{E_{zd}}}{M_{R_{zd}}}\right)^{\alpha} \le 1$$

Dove

 M_{Eyd} e M_{Ezd} : sono i valori di calcolo delle componenti di flessione retta dell'azione intorno gli assi z e y;

 M_{Ryd} e M_{Rzd} : sono valori di calcolo dei momenti resistenti di pressoflessione retta corrispondenti a N_{Ed} valutati separatamente intorno gli assi z e y.

L'esponente α può dipende dalla geometria della sezione e dei parametri ma in mancanza di informazioni si può porre in maniera cautelativa $\alpha = 1$.

Per ogni posizione notevole dell'asse neutro, il luogo dei punti di coordinate (Nrd, Mrd) formerà, sul piano N-M, una curva chiusa che prende il nome di dominio di resistenza della sezione.

La frontiera di rottura dipende da:

- Caratteristiche geometriche della sezione di calcestruzzo;
- Quantitativo di armature presenti;
- Caratteristiche meccaniche del calcestruzzo e dell'acciaio.

La verifica a pressoflessione risulta graficamente soddisfatta se il punto di coordinate (Nsd,Msd) è interno al dominio di resistenza.

Resistenza nei confronti di sollecitazioni taglianti di elementi con armature trasversali resistenti al taglio

La resistenza a taglio *V_{Rd}* di elementi strutturali dotati di armatura a taglio deve essere valutata facendo riferimento ad una schematizzazione a traliccio.

Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i seguenti limiti:

 $1 \leq ctg \vartheta \leq 2,5$

L'elemento risulta verificato allo SLU nel momento in cui si verifica:

 $V_{Rd} \geq V_{Ed}$

dove VEd è il valore di calcolo dello sforzo di taglio agente.

La resistenza di calcolo a "taglio trazione" con riferimento all'armatura trasversale si calcola con la seguente formula:

 $V_{Rds} = 0.9 \cdot d \cdot \frac{A_{SW}}{s} \cdot f_{yd} \cdot (ctg \ \alpha + ctg \ \vartheta) \cdot sin\alpha$

La resistenza di calcolo a "taglio compressione" con riferimento al calcestruzzo d'anima si calcola con la seguente formula:

$$V_{Rcd} = 0.9 \cdot d \cdot b_{W} \cdot \alpha_{c} \cdot f'_{cd} \cdot \frac{(ctg \, \alpha + ctg \, \vartheta)}{(1 + ctg^{2} \vartheta)}$$

La resistenza al taglio della trave è la minore tra le due precedentemente definite:

$$V_{Rd} = min(V_{Rsd}, V_{Rcd})$$

Si è posto:

- d è l'altezza utile della sezione (in mm);
- $\sigma_{cp} = \frac{N_{Ed}}{A_c}$ è la tensione media di compressione nella sezione ($\leq 0,2$ fcd);
- b_w è la larghezza minima della sezione (in mm).
- *A_{sw}* : area dell'armatura trasversale;
- s: interasse tra due armature trasversali consecutive;
- α : angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave;
- f'cd: resistenza a compressione ridotta del calcestruzzo d'anima ($f'_{cd} = 0.5 \cdot f_{cd}$);
- α_c: coefficiente maggiorativo pari a:
 - o 1 per membrature non compresse

$$\circ \quad 1 + rac{\sigma_{cp}}{f_{cd}} per \ 0 \leq \sigma_{cp} < \ 0,25 \ f_{cd}$$

 $\circ \quad 1,25 \text{ per } 0,25 \text{ fcd} \leq \sigma_{cp} \leq 0,5 \text{ fcd}$

$$\circ \quad 2,5(1 - \frac{\sigma_{cp}}{f_{cd}}) \text{ per } 0,5 \text{ fcd} < \sigma_{cp} < \text{fcd}$$

7.4.2. Advance Design *G*

Per le verifiche strutturali è stato usato il software *BIM Designers* che ottimizza i processi di lavoro e inoltre per le verifiche strutturali è stata utilizzata la modalità stand - alone esportando l'elemento singolo.

ELEMENTI INDAGATI

Sono stati verificati i seguenti elementi:

- 1. Pilastro 24 Piano terra;
- 2. Pilastro 5 PT Piano terra;
- 3. Trave 102 Piano primo;
- 4. Trave 118 Piano primo.

Si utilizzano i dati ricavati dal rilievo strutturale e dalle carpenterie nel dettaglio.

1) Pilastro 24 Piano terra

Per verificare questo pilastro sono state utilizzate le informazioni proveniente dal rilevo strutturale e quelle relative alle carpenterie.

- Informazioni dal rilievo strutturale:

EDIFICIO 2							
Num.	Livello di riferimento	Numero barre	c' medio barra	c' medio staffa	s medio barra	s medio staffa	
24	PT ED2	6	37.0 mm	35.0 mm	240.0 mm	117.0 mm	

Tabella 56. Dati ottenuti dal rilievo strutturale in situ per il pilastro 24 PT ED2

Per quanto riguarda il c' medio, poiché sui software si andrà a inserire un unico valore, si è fatta una media. Per cui il c' medio è uguale a 36 mm.

- Informazioni dalle carpenterie

Figura 206. Armatura da carpenteria per il pilastro 24 PT ED2

La disposizione delle armature è la stessa riscontrata in situ. Le informazioni che non sono state ottenute dal rilievo strutturale sono state completate dai dati nelle carpenterie. Si sceglie quindi di utilizzare barre longitudinali $\phi 16$ e staffe $\phi 6$.

2) Pilastro 5 Piano terra

Per verificare questo pilastro sono state utilizzate le informazioni proveniente dal rilevo strutturale e quelle relative alle carpenterie.

- Informazioni dal rilievo strutturale:

EDIFICIO 2							
Num.	Livello di riferimento	Numero barre	c' medio barra	c' medio staffa	s medio barra	s medio staffa	
5	PT ED2	8	30.0 mm	33.0 mm	115.0 mm	143.0 mm	

Tabella 57. Dati ottenuti dal rilievo strutturale in situ per pilastro 5 PT ED2

Per quanto riguarda il c' medio, poiché sui software si inserisce un unico valore, si è fatta una media. Per cui il c' medio è uguale a 31.5 mm.

- Informazioni dalle carpenterie

Figura 207. Armature da carpenteria per il pilastro 5 PT ED2

Su questo pilastro è stata riscontrata una discordanza tra le carpenterie e il rilievo in situ tramite la prova pacometrica per quanto riguarda la diposizione delle armature, come mostrato nella seguente figura.

Figura 208. Scheda rilievo pilastro 5 PT ED2in situ

Si è scelto infine di disporre le armature longitudinali come rilevato con la prova pacometrica inserendo 3 barre longitudinali su ogni lato per un totale di 8 barre. Le informazioni che non sono state ottenute dal rilievo strutturale sono state completate dai dati nelle carpenterie. Si sceglie quindi di utilizzare barre longitudinali ϕ 16 e staffe ϕ 6.

3) Trave 102 Piano primo

Le travi non sono state rilevate in situ dal rilievo strutturale, pertanto si utilizzeranno solo le informazioni provenienti dalle carpenterie rinvenute in archivio.

Armatura longitudinale:

Figura 209. Armatura longitudinale da carpenteria trave 102 Piano primo edificio 2

Staffe:

		5	
	-		
16			25
/	56		
6	-1\$6/18 L=10.	5	

Figura 210. Armatura trasversale da carpenteria trave 102 Piano primo edificio 2

Non avendo informazioni sul copriferro si è utilizzato quello minimo da normativa di 35 mm.

4) Trave 118 Piano primo

Le travi non sono state rilevate in situ dal rilievo strutturale, pertanto si utilizzeranno solo le informazioni provenienti dalle carpenterie rinvenute in archivio.

Armatura longitudinale:

Figura 211. Armatura longitudinale da carpenteria trave 118 Piano primo edificio 2

Staffe:

Figura 212. Armatura trasversale da carpenteria trave 118 Piano primo edificio 2

Non avendo informazioni sul copriferro si è utilizzato quello minimo da normativa di 35mm.

IPOTESI INIZIALI:

Prima di eseguire le verifiche si devono impostare delle ipotesi iniziali sui materiali, sul copriferro, sulle analisi da eseguire e le relative combinazioni di carico da utilizzare.

Nella trave, in mancanza di dati, il copriferro è stato calcolato direttamente dal software tramite una verifica del copriferro minimo, inserendo un valore di 35mm.

Capitolo 7 – Modellazione e analisi strutturale su software di calcolo

Copriferro - lato superiore	(T): 35 mm	
Copriferro – faccia inferiore	(B): 35 mm	÷т
Copriferro – facce laterali	(L): 35 mm	
Copriferro in calcestruzzo minim	10	
Verifica copriferro minimo		L L
ΔC _{dev}	10 mm	
ΔC dur,y	0 mm	
∆C dur,st	0 mm	e
∆C dur,add	0 mm	‡ B
Classe di consistenza	54 •	
Dimensione Aggregati 15 mm		

Figura 213. Ipotesi copriferro travi verificate

Per quanto riguarda il pilastro invece si è inserito il valore rilevato in situ manualmente, come mostrato in figura.

Copriferri		
copilieno		
Copriferro	(L): 31.5 mm	
Copriferro minimo		
Verifica copriferro minii	no	
∆C _{dev}	10 mm	
ΔC _{dur.γ}	0 mm	
ΔC _{dur,st}	0 mm	
ΔC _{dur,add}	0 mm	
Classe di consistenza	S4 ▼	
	Ok	Applica

Figura 214. Ipotesi copriferro pilastro 5 PT ED2

Le impostazioni iniziali riguardanti i materiali sono le seguenti:

- Calcestruzzo C25/35;
- Acciaio B450C;
- Classe di esposizione XC2.

Calcestruzzo			Fessurazione	
Classe calcestruzzo	C25/30_IT	•	Classe d'esposizione	XC2
Calcestruzzo f ck	25 MPa		W max	0.3 mm
P	2500 kg/m ³		Durata d'applicazione dei	carichi
Calcestruzzo con fui	mi di silice		U Breve termine	
Calcestruzzo con fui	mi di silice		Calcestruzzo confinato	
Calcestruzzo con fui Acciaio Acciaio f yk	mi di silice 450 MPa		Calcestruzzo confinato	
Calcestruzzo con fui Acciaio Acciaio f yk Acciaio f ywk	450 MPa 450 MPa		Calcestruzzo confinato	0 MPa
Calcestruzzo con fui Acciaio Acciaio f yk Acciaio f ywk Tolleranza	450 MPa 450 MPa 0 %		breve termine Calcestruzzo confinato Confinato Confinato Tensione di confinamento	0 MPa

Figura 215. Ipotesi materiali utilizzati

C'è la possibilità di impostare i diametri che si vogliono utilizzare in modo che i calcoli vengano fatti utilizzando solo le barre selezionate. In particolare, nel nostro caso le armature longitudinali sono solo ϕ 16 mentre per quelle trasversali ϕ 6, come mostrato nella seguente figura..

Nome	Armatura longitudinale	Armatura trasversale	Diametro nominale	Diametro reale	Sezione	Diametro mandrino armatura longitudinale	Diametro mandrino armatura trasversale	Diametro mandrino verso l'alto
6		 Image: A start of the start of	6 mm	7 mm	0.28 cm ²	24 mm	24 mm	24 mm
18			8 mm	10 mm	0.5 cm ²	32 mm	32 mm	32 mm
\$10			10 mm	12 mm	0.79 cm ²	40 mm	40 mm	40 mm
s 1 2			12 mm	15 mm	1.13 cm ²	48 mm	48 mm	48 mm
\$14			14 mm	17 mm	1.54 cm ²	56 mm	56 mm	56 mm
s 1 6	v		16 mm	19 mm	2.01 cm ²	64 mm	64 mm	64 mm
\$20			20 mm	24 mm	3.14 cm ²	140 mm	140 mm	140 mm
\$25			25 mm	30 mm	4.91 cm ²	175 mm	175 mm	175 mm
\$32			32 mm	38 mm	8.04 cm ²	224 mm	224 mm	224 mm
s40			40 mm	47.5 mm	12.57 cm ²	280 mm	280 mm	280 mm
Riprist	ina i valori predefiniti							

Figura 216. Ipotesi barre di armature utilizzate

Sul software BIM Designers bisogna reinserire le combinazioni di carico anche se questa operazione era già stata fatta in Advance Design. Quindi si individua la stessa combinazione delle azioni precedentemente scelta con i rispettivi coefficienti.

G	Definizione del cas	o di carico			
Id	Titolo	Тіро	Codice	Effetto Azione	Categoria
1	G1	Carichi permanenti	ECG	Favorevole o sfavorevole	
2	Q	Carichi variabili	ECQ	Dominante o contemporaneo	Categoria C: Ambienti su
3	VY+S	Carichi vento	ECV	Dominante	
4	NN	Carichi neve	ECN	Dominante	Altri Stati membri CEN s
5	G2	Carichi permanenti - Carichi permanenti n	CAS	Favorevole o sfavorevole	

Figura 217. Definizione dei carichi

VERIFICA ELEMENTO

È stata eseguita una verifica SLU per le travi e pilastri selezionati. Per quanto riguarda i pilastri si riportano le seguenti informazioni:

- La descrizione della geometria;
- Armatura longitudinale;
- Armatura trasversale;
- Curve di interazioni M-N e M_x-M_y;
- Verifica a taglio.

Mentre per le travi si riportano le seguenti informazioni:

- Descrizione geometria;
- Armatura longitudinale;
- Armatura trasversale;
- Verifica *Mrd* > *Med*;
- Verifica a taglio.

1) Pilastro 5 Piano terra

- Visualizzazione della geometria tramite 3 viste:
 - Elemento in 3D
 - Vista nel piano Z-X;
 - Vista nel piano Y-X

Figura 218. Visualizzazione della geometria pilastro 5 PT ED2

- Armatura longitudinale inserita:

Armatura reale longitudinale			
Posizione	Armatura		
Zona corrente	$4 x \Phi 16 + 4 x \Phi 16$		

Tabella 58. Armatura longitudinale pilastro 5 PT ED2

- Armatura trasversale inserita:

Armatura reale trasversale			
Posizione	Armatura		
Pacchetto 1	22 x Φ 6 / 180 mm		

 Tabella 59. Armatura trasversale pilastro 5 PT ED2

- Curve di interazione

Figura 219. Curve di interazione pilastro 5 PT ED2

Come possiamo notare il punto cade dentro al dominio e quindi la sezione risulta verificata.

- Verifica a taglio

Verifica a taglio			
V _{ed}	V _{rd, max}	Lavoro	
kN	kN	Tasso	
153.21	865.79	17.73%	

Tabella 60. Verifica a taglio pilastro 5 PT ED2

- 2) Pilastro 24 Piano terra
- Visualizzazione della geometria tramite 3 viste:

- Elemento in 3D;
- Vista nel piano Z-X;
- Vista nel piano Y-X.

Figura 220. Visualizzazione della geometria pilastro 24 PT ED2

- Armatura longitudinale inserita

Armatura reale longitudinale		
Posizione	Armatura	
Zona corrente	6x Φ 16	

Tabella 61. Armatura longitudinale pilastro 24 PT ED2

- Armatura trasversale inserita

Armatura reale trasversale			
Posizione	Armatura		
Pacchetto 1	22 Φ 6 / 180 mm		

 Tabella 62. Armatura trasversale pilastro 24 PT ED2

- Curve di interazione

Figura 221. Curve di interazione pilastro 24 PT ED2

Come possiamo notare il punto cade dentro al dominio e quindi la sezione risulta verificata.

- Verifica a taglio

Verifica a taglio		
V_{ed}	V _{rd, max}	Lavoro
kN	kN	Tasso
87.83	631.13	15.13%

Tabella 63. Verifica a taglio pilastro 24 PT ED2

- 3) Trave 102 Piano primo
- Visualizzazione della geometria tramite 3 viste:
 - Elemento in 3D;
 - Vista nel piano Z-X;
 - Vista nel piano Y-X.

Figura 222. Visualizzazione della geometria trave 102 piano primo edificio 2

- Armatura longitudinale

Armatura reale longitudinale				
Campate	Posizione	Armatura		
1	Inferiore	$2x \Phi 10 + 2x \Phi 12$		
1	Superiore	2x Φ 6		

Armatura reale longitudinale sugli appoggi			
Appoggio	Armatura		
1	1x Φ 12		
2	1x Φ 12		

Tabella 64. Armatura longitudinale trave 102 piano primo edificio 2

- Armatura trasversale

Armatura reale trasversale			
Posizione	Armatura		
Pacchetto 1	20 φ6 / 180 mm		

Tabella 65. Armatura trasversale trave 102 piano primo edificio 2

- Verifica *Mrd* > *Med*

Verifica a flessione						
Campata - sezione	Tasso lavoro					
Appoggio sinistro	0	-21.4	-52.9	40.47%		
Appoggio destro	3520	-50.8	-55.94	90.8%		
Mezzeria	1513.6	36.17	123.73	29.23%		

Tabella 66. Verifica SLU momento resistente trave 102 piano primo edificio 2

Figura 223. Diagramma momento flettente/momento resistente trave 102 piano primo edificio 2

Verifica a taglio						
Campata - sezione	Ascissa [mm]	Ved [kN]	Vrd,c [kN]	Vrd,s [kN]	Vrd,max [kN]	Verifica
Appoggio sinistro	0	72.22	77.36	94.1	770.59	OK
Appoggio destro	3520	89.14	77.36	94.1	770.59	NO
Mezzeria	1513.6	9.54	77.36	93.38	770.59	OK

Verifica	Vrd	>	Ved
vennea	v i u	/	v eu

_

Tabella 67. Verifica a taglio trave 102 piano primo edificio 2

- 4) Trave 118 Piano primo
- Visualizzazione della geometria tramite 3 viste:
 - Elemento in 3D;
 - Vista nel piano Z-X;
 - Vista nel piano Y-X.

Figura 224. Visualizzazione della geometria trave 118 piano primo edificio 2

- Armatura longitudinale

Armatura reale longitudinale					
Campate Posizione Armatura					
1	Inferiore	$3x \Phi 14 + 1x \Phi 16$			
1	Superiore	2x Φ 6			

Armatura reale longitudinale sugli appoggi				
Appoggio	Armatura			
1	2x Φ 16			
2	2x Φ 14			

Tabella 68. Armatura longitudinale trave 118 piano primo edificio 2

- Armatura trasversale

Armatura reale trasversale				
Posizione	Armatura			
Pacchetto 1	31 Φ 6 / 180 mm			

Tabella 69. Armatura trasversale trave 118 piano primo edificio 2

- Verifica *Mrd* > *Med*

Verifica a flessione						
Campata - sezione	Ascissa [mm]	Med [kN*m]	Mrd [kN*m]	Tasso lavoro		
App sinistro	0	-10.47	-119.71	8.75%		
app destro	5900	-8.49	-116.62	7.28%		
Mezzeria	2950	34.34	211.38	16.25%		

Tabella 70. Verifica SLU momento resistente trave 118 piano primo edificio 2

Figura 225. Diagramma momento flettente/momento resistente trave 118 piano primo edificio 2

Verifica a taglio						
Campata - sezioneAscissa [mm]Ved [kN]Vrd,c [kN]Vrd,s [kN]Vrd,max [kN]Verifica						
App sinistro	0	29.83	77.26	187.75	769.76	OK
App destro	5900	28.75	77.26	187.98	769.76	OK
Mezzeria	2950	0.59	77.26	186.77	769.76	OK

Verifica Vrd > Ved

_

Tabella 71. Verifica a taglio trave 118 piano primo edificio 2

7.4.3. Midas Gen 🚺

Il seguente capitolo è stato svolto da Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". I risultati da lei ottenuti sono la verifica

Mrd > *Med* e *Vrd* > *Ved* allo SLU dei seguenti elementi;

- Pilastro 22 Piano terra;
- Pilastro 23 Piano terra;
- Trave 110 Piano primo;
- Trave 111 Piano primo.

Capitolo 8 - Risultati

8.1. Modellazione strutturale BIM

Il modello BIM è stato realizzato in due fasi successive, partendo dalla modellazione architettonica e proseguendo con quella strutturale. Il modello è stato implementato con informazioni strutturali grazie alle tavole di carpenteria rilevate in archivio e un rilievo in situ.

Figura 226. Modello strutturale sul software di modellazione

Il software di modellazione ha permesso di ottimizzare l'inserimento degli elementi strutturali tramite l'ausilio di livelli e griglie. Gli elementi fanno parte di tipologie di famiglie, questo permette di fare modifiche in serie in maniera agevole. La possibilità di gestire la modellazione sulla vista tridimensionale è un ottimo supporto. Infine le informazioni relative agli elementi possono essere gestite tramite abachi.

Alla fine del processo sono state individuate delle accortezze per ridurre i tempi di controllo successivi sul modello analitico in Revit:

- Utilizzare le griglie in maniera scrupolosa per l'inserimento di travi e pilastri. In un edificio esistente, a seguito di un rilievo architettonico e strutturale, è possibile che due pilastri non appartengano alla stessa griglia per pochi centimetri. Dove è presente questa problematica è necessario procedere all'infittimento delle griglie in modo che ogni pilastro sia perfettamente centrato alla propria griglia di riferimento.
- Lavorare in Revit utilizzando una doppia finestra di visualizzazione, in particolare vista del modello tridimensionale analitico e vista della pianta architettonica del piano di riferimento, nel momento in cui si modellano le seguenti zone critiche:

- Zone con presenza di elementi eccentrici;
- Punti di intersezione di più travi in un solo nodo.

8.2. Prove strutturali in situ

Sono state eseguite due prove strutturali non invasive, la prova sclerometrica e quella pacometrica. A supporto del rilievo strutturale eseguito è stato importante aver adottato una metodologia BIM.

Dall'analisi dei dati raccolti e la documentazione ottenuta dall'analisi storico critica si è potuto assumere un livello di conoscenza adeguata (LC2). Per questo livello di conoscenza è necessario applicare un coefficiente di confidenza pari ad 1,20 sulle caratteristiche meccaniche dei materiali.

Il valore medio di resistenza che si ottiene dalle prove sclerometriche eseguite è 26,2 MPa, ma non può essere considerato rappresentativo dell'intera struttura, quindi nelle analisi successive è utilizzato un calcestruzzo di classe C25/30, come da progetto originario.

Tramite il plug-in *BIM Designers* è stato possibile inserire l'armatura rilevata direttamente in *Revit*. L'inserimento è avvenuto parametricamente in maniera speditiva e precisa.

Questa operazione presenta i seguenti vantaggi:

- Archiviazione informazioni in modo diretto e graficamente facili da leggere;
- Possibilità di estrarre delle tavole in ambiente *Revit*, con tutti i vantaggi che ne conseguono;
- Possibilità di estrarre computi metrici precisi e dettagliati.

8.3. Interoperabilità con il software di calcolo

È riportata nella tabella seguente una linea guida di modellazione dei vari punti di attenzione considerati nello studio dell'interoperabilità.

Punti di attenzione	Advance Design	Midas Gen
Eccentricità	Spostare l'elemento físico e imporre un offset architettonico	Utilizzare collegamenti analitici esportati come link elastici
Nodi di intersezione	Interrompere diagrammi di sollecitazione	Utilizzare "Beam End Offset" sui
travi-pilastro	travi a filo pilastro automaticamente	singoli elementi
Solaio	Applicazione aree di carico direttamente sul software di calcolo	Applicazione aree di carico direttamente sul software di calcolo
Applicazione carichi	Esportazione completa	Applicazione direttamente sul software

Tabella 72. Linea guida modellazione punti di attenzione interoperabilità

Le conclusioni relative alle singole tematiche sono le seguenti.

- Eccentricità:

In *Revit* l'eccentricità degli elementi viene considerata tramite dei collegamenti analitici. Sono stati eseguiti dei test di esportazione di un pilastro eccentrico su casi semplici. Le situazioni riscontrate sono due:

- Utilizzo dei collegamenti analitici esportati come link rigidi che, in chiave interoperabilità, sembrerebbero funzionare meglio anche se si riscontrano una serie di problematiche successive;
- Spostamento fisico dell'elemento direttamente sul software di calcolo e inserimento di un offset architettonico che tenga conto dell'ingombro reale dell'elemento.

Il software *Midas Gen* contempla entrambe le soluzioni mentre il software *Advance Design* solo la seconda.

Viene utilizzata allora la prima soluzione sul software *Midas Gen*, la seconda soluzione sul software *Advance Design*.

La seconda soluzione può essere resa interoperabile, ad esempio introducendo la possibilità di inserire un offset strutturale in modo da poter distinguere l'ingombro reale con l'elemento analitico che lo schematizza.

- Nodi di intersezione trave-pilastro:

Questa tematica è stata affrontata valutando se la strada interoperabile trovata, tramite collegamenti analitici in Revit, possa simulare in modo funzionale l'effetto della zona rigida all'intersezione trave – pilastro.

Essa risulta poco efficiente, in quanto dalle reazioni vincolari si verifica che il peso nella zona di sovrapposizione non viene considerata, situazione a sfavore di sicurezza.

Sono state ricercate soluzioni differenti direttamente sui software di calcolo.

Sul software Midas Gen viene validato il comando Beam End Offset, con cui si può inserire in modo puntuale la lunghezza del tratto rigido agli estremi degli elementi Beam.

Sul software Advance Design si tiene in conto della zona rigida solo per la trave, considerando automaticamente la lunghezza del tratto rigido, i valori di momento vengono semplicemente interrotti a filo pilastro.

Per quanto riguarda questa tematica, si potrebbe implementare l'utilizzo dei link rigidi in *Revit* per la definizione della zona rigida direttamente sul software BIM in modo tale che venga considerato in qualche modo il peso.

- <u>Solaio</u>

Sono stati evidenziati i limiti dell'esportazione di questo elemento strutturale perché nei software di calcolo esso viene riconosciuto semplicemente come una piastra senza la possibilità di definire un'orditura.

Per questo si è adottata la soluzione di inserire il carico del solaio direttamente sui software di calcolo come area di carico.

È stata poi verificata e approfondita la zona di sovrapposizione trave-solaio nella quale viene conteggiato erroneamente anche il peso del solaio. Viene eseguita una ricerca della soluzione ottimale a questo problema e, una volta trovata, è stata implementata sfruttando il BIM tramite l'utilizzo di *Dynamo*, *Excel* e *Visual Basic*.

La soluzione (testata e validata sulle casistiche trattate) prevede di individuare un coefficiente di ripartizione del carico per ogni solaio in maniera automatizzata, inserendo come input il piano di riferimento e ottenendo come output una tabella con il coefficiente di ripartizione del carico associato ad ogni solaio, di seguito si riporta il workflow dell'algoritmo spiegato nel *Capitolo 6.5.4*.

Infine, si valuta l'incidenza di tale problema diagrammando l'errore percentuale commesso al variare delle dimensioni delle travi e del solaio.

- Applicazione carichi

In Revit possono essere inseriti sia i carichi che le combinazioni di carico.

I carichi vengono esportati perfettamente in *Advance Design* e, inserendo un'area di carico con una precisa orditura, si ripartisce il carico come se fosse applicato su un solaio. Sul software *Midas Gen* non è invece possibile dare un'orditura alle tipologie di carico esportate.

Per quanto riguarda la combinazione dei carichi invece, si può inserire manualmente in *Revit* ma, non potendo essere generata automaticamente è più semplice inserirla direttamente sul software di calcolo. In realtà il fatto che *Revit* non gestisca in maniera ottimizzata le combinazioni di carico non è un fatto negativo.

I software di calcolo hanno un loro pacchetto che gestisce le combinazioni di carico, secondo le varie normative dove pero si possono impostare le modalità di come questi carichi vengono combinati; è in quel momento che entra in gioco l'ingegnere, intervenendo materialmente. Questo intervento è ovviamente essenziale.

8.4. Definizione tempi operativi

La totalità delle operazioni eseguite per arrivare ad avere la struttura esportata correttamente nel software di calcolo porta ad un certo dispendio di tempo. L'obiettivo è determinare, in funzione degli elementi presenti nella struttura, l'ordine di grandezza del tempo necessario per ottenere una buona esportazione, limitando le operazioni.

Si parte dal modello analitico in *Revit* dell'edificio 2, modellato con entrambi i software di calcolo. Selezionando tutto l'edificio è possibile ottenere il numero esatto di tutti gli elementi analitici presenti.

Figura 227. Elementi analitici edificio 2

EDIFICIO 2				
Elementi	Numero			
Nodi analitici	311			
Collegamenti analitici	92			
Travi	291			
Fondazioni strutturali	38			
Plinti analitici	34			
Pilastri	208			
Muri	4			
Cordoli analitici	4			
Piani	3			

Questi elementi vengono schematizzati nella seguente tabella.

Tabella 73. Elementi analitici edificio 2

Pre-esportazione

Prima di esportare il modello sono necessarie alcune operazioni di controllo in *Revit*. Durante questo controllo si stima che sono stati modificati circa il 50% degli elementi.

In Advance Design

Il check dei collegamenti analitici sul software non è necessario perché non vengono esportati i collegamenti analitici. Anche il check analitico non è necessario che si effettui con un altissimo precisione perché il software ha una certa tolleranza e le intersezioni tra gli elementi nonostante non siano perfette vengono corrette in modo automatico. Nella seguente tabella si riportano i risultati ottenuti nel pre-esportazione.

	PRE- ESPORTAZIONE					
Operazioni	Percentuale elementi modificati	Tot elementi	Totale tempo impiegato [minuti]	Minuti/Elemento		
Check analitico	50.00%	155.5	200	0.64		
Verifica collegamenti analitici	0	0	0	-		
	TOTALE		200	-		

Tabella 74. Operazioni pre – esportazione

In questo modo si ricava un coefficiente minuti/elemento che, al variare degli elementi presenti nel modello, si stima il tempo necessario per eseguire quell'operazione in Revit.

In Midas Gen

Si fa riferimento alla tesi di Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". I risultati da lei ottenuti sono riportati nella seguente tabella.

PRE- ESPORTAZIONE					
Operazioni	Percentuale elementi modificati	Tot elementi	Totale tempo impiegato [minuti]	Minuti/Elemento	
Check analitico	50.00%	155.5	240	0.77	
Verifica collegamenti analitici	50.00%	46	30	0.33	
TOTALE			271	-	

Tabella 75. Operazioni pre - esportazione

Post-esportazione

Una volta esportato l'edificio corretto nei software di calcolo si mettono a confronto le operazioni eseguite per arrivare ad avere il modello pronto per l'analisi dei carichi e quindi effettuare i calcoli.

Le operazioni che dobbiamo eseguire su ogni software dipendono agli elementi che abbiamo esportato. Di seguito si riporta nella seguente tabella la totalità delle operazioni eseguite e gli elementi che le influenzano.

Operazioni	Elementi riferimento
Spostare elementi eccentrici	Collegamenti analitici
Verifica livelli	Piani
Aggiungere vincoli	Fondazioni strutturali
Aggiungere carichi	Peso proprio
Creare elementi fittizi	Collegamenti analitici
Dividere elementi	Collegamenti analitici
Rimodellare mesh muri contro terra	Muri
Assegnare materiale	Materiali
Verificare centroide sezione elementi	Travi
Applicazione carichi	Solai

Tabella 76. Operazioni post – esportazione

Si riassumono le operazioni eseguite da entrambi i software con i seguenti obiettivi:

- Eseguire un confronto tra il numero di operazione e il tempo necessario per eseguirle;
- Ottenere il coefficiente Minuti/elemento per le operazioni effettuate.
- In Advance Design

Nella seguente tabella si riporta l'elenco delle operazioni post-esportazione e viene calcolato per ognuna di esse un coefficiente Minuti/elemento.

POST ESPORTAZIONE				
Operazioni	Elementi riferimento	Numero elementi modificati	Totale tempo impiegato [minuti]	Minuti/Elemento
Spostare elementi eccentrici	Collegamenti analitici	92	30	0.33
Verifica livelli	Piani	3	5	1.67
Aggiungere vincoli	Fondazioni strutturali	0	0	0.00
Creare elementi fittizi	Collegamenti analitici	0	0	0.00
Dividere elementi	Collegamenti analitici	0	0	0.00
Rimodellare mesh muri controterra	Muri	0	0	0.00
Assegnare materiale	Materiali	0	0	0.00
Verificare centroide sezione elementi	Travi	291	5	0.02
Applicazione carichi	Solai	79	15	0.19
	TOTALE	•	55	-

Tabella 77. Tempo impiegato per operazioni post - esportazione

Si riporta nella seguente figura il tempo impiegato per compiere le operazioni, tramite questa rappresentazione è possibile leggere nella casella dell'operazione i minuti impiegati, ma è possibile anche constatare l'incidenza che hanno le operazioni.

Figura 228. Tempo impiegato operazioni post-esportazione in Advance Design

I collegamenti analitici creati in Revit non vengono esportati. Per tenere conto dell'eccentricità di alcuni elementi si deve quindi spostare l'elemento analitico e assegnargli un'eccentricità architettonica, facendo variare solo l'ingombro, come spiegato precedentemente.

Questa operazione si esegue per tutta la struttura infatti il tempo impiegato è di appena 30 minuti.

In Midas Gen

G

Si fa riferimento alla tesi di Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". I risultati da lei ottenuti sono riportati nella seguente tabella.

POST ESPORTAZIONE					
Operazioni	Elementi riferimento	Numero elementi modificati	Totale tempo impiegato [minuti]	Minuti/Elemento	
Spostare elementi eccentrici	Collegamenti analitici	0	0	0.00	
Verifica livelli	Piani	1	1	1.00	
Aggiungere vincoli	Fondazioni strutturali	38	1	0.03	
Creare elementi fittizi	Collegamenti analitici	92	30	0.33	

Dividere elementi	Collegamenti analitici	92	20	0.22
Rimodellare mesh muri controterra	Muri	4	10	2.50
Assegnare materiale	Materiali	1	1	1.00
Verificare centroide sezione elementi	Travi	291	10	0.03
Applicazione carichi	Solai	79	20	0.25
	TOTALE		93	-

Tabella 78. Tempo impiegato per operazioni post – esportazione, Midas Gen

Confronto software

Si riassume nella seguente tabella ogni elemento modellato analiticamente in *Revit* con il proprio indice a seconda del tempo impiegato per la sua modellazione nei confronti dei due software. Se gli elementi di *Revit* influenzano più operazioni, come nel caso dei collegamenti analitici, gli indici si sommano.

	EDIFICIO 2					
Elementi	Numero elementi	Indice elemento Advance Design	Indice elemento Midas	Tempo impiegato Advance Desig	Tempo impiegato Midas	
Nodi analitici	311	0.77	0.77	240	240	
Collegamenti analitici	92	0.33	0.87	30	80	
Travi	291	0.02	0.03	5	10	
Fondazioni strutturali	38	0	0	0	0	
Plinti analitici	34	0	0	0	0	
Pilastri	208	0	0	0	0	
Muri	4	0	2.50	0	10	
Cordoli analitici	4	0.00	0	0	0	
Piani	3	1.67	0	5	0	
			Totale	280	340	

Tabella 79. Confronto software tempi impiegati

In questo modo tramite il modello *Revit* si ha la percezione del tempo che si impiega per arrivare ad esportare il modello nei due software.

8.5. Valutazione vantaggi metodologia BIM

All'interno della tesi è stata valutata l'interoperabilità per diversi aspetti.

In questo capitolo conclusivo si vuole dare un'idea di quanto sia vantaggioso utilizzare la metodologia BIM, e di conseguenza viene quantificato il lavoro risparmiato. Inizialmente si valuta l'incidenza delle singole operazioni da effettuare direttamente sul software di calcolo per poi standardizzare la percentuale di esportazione pesata per ogni singola operazione, come mostrato nella seguente tabella.

Operazioni	Incidenza percentuale
Modellazione geometrica	50
Definizione sezioni	20
Materiali	1
Livelli	5
Vincoli	1
Eccentricità	5
Solaio	5
Zona rigida	3
Applicazione carichi	10

Tabella 80. Incidenza percentuale operazioni

Figura 229. Diagramma incidenza percentuale operazioni sul software di calcolo

8.5.1. Advance Design

Vengono riassunti nella seguente tabella le operazioni macroscopiche che riguardano l'interoperabilità. Si valuta una percentuale per quantificare il vantaggio con l'utilizzo della modellazione BIM in riferimento all'operazione considerata.

Operazioni	Incidenza percentuale operazione	Revit - Software [%]	Revit – Software [% pesata]
Modellazione geometrica	50	80	40
Definizione sezioni	20	100	20
Materiali	1	100	1
Livelli	5	95	4.75
Vincoli	1	100	1
Eccentricità	5	0	0
Solaio	5	0	0
Zona rigida	3	0	0
Applicazione carichi	10	100	10
	TOTALE		76.75

Tabella 81. Percentuale vantaggio utilizzo metodologia BIM

Si spiegano nel dettaglio tutte le percentuali utilizzate per valutare il passaggio *Revit-Advance Design:*

- Geometria: tutti gli elementi vengono esportati completamente solo che, poiché in *Revit* è stata considerata l'eccentricità tramite dei collegamenti analitici che non vengono esportati nel software, si ha la necessità di spostare fisicamente gli elementi eccentrici per poi successivamente modificarne l'eccentricità manualmente;
- Sezioni: tutte le informazioni collegate vengono esportate correttamente;
- Materiali: le informazioni relative ai materiali vengono esportate perfettamente attraverso la possibilità di una mappatura dettagliata;
- Livelli: vengono esportati quasi perfettamente, bisogna eseguire un piccolo check per verificarne la reale appartenenza al livello giusto;
- Vincoli: vengono esportati correttamente;
- Eccentricità: viene tenuta conto andando a spostare l'elemento fisico e successivamente imporre un offset architettonico manualmente, correggendo l'ingombro reale dell'elemento;
- Solaio: l'elemento solaio strutturale viene esportato come piastra ma non è possibile definirne un'orditura. Tuttavia, è possibile applicare i carichi direttamente in *Revit*,

esportare il modello in *Advance Design*, inserire delle aree di carico con una precisa orditura direttamente sul software che ripartiranno quei carichi nell'orditura scelta;

- Zona rigida: gli estremi rigidi vengono riconosciuti solo per la trave, questo avviene per tutti gli elementi in fase di verifica ma dipende solo dal software di calcolo, non dipende dall'interoperabilità;
- Armatura: è possibile modellare l'armatura nei minimi dettagli in *Revit* e successivamente esportar¹o su coftware di calcolo.

8.5.2. Midas Gen

Il seguente capitolo è stato svolto da Laura Muratore nella sua tesi "BIM e interoperabilità con il software di calcolo strutturale Midas". I risultati ottenuti sono riportati nella seguente tabella.

G

Operazioni	Incidenza percentuale operazione	Revit - Software [%]	Revit – Software [% pesata]
Modellazione geometrica	50	90	45
Definizione sezioni	20	100	20
Materiali	1	100	1
Livelli	5	100	5
Vincoli	1	0	0
Eccentricità	5	90	4.5
Solaio	5	0	0
Zona rigida	3	0	0
Applicazione carichi	10	0	0
	TOTALE		75.50

Tabella 82. Percentuale vantaggio utilizzo metodologia BIM

Capitolo 9 – Conclusioni

L'obiettivo della tesi è stato quello di ispezionare e mappare l'interoperabilità tra il software BIM e i software di calcolo per quanto riguarda aspetti strutturali di un edificio esistente.

Per arrivare ad ottenere un modello BIM da esportare sui software di calcolo sono stati eseguiti tutti i passaggi in chiave BIM, standardizzando al massimo operazioni, dati e rilievi. In questo modo è stata definita una metodologia di lavoro che consente di gestire in maniera più diretta e completa rispetto ad una metodologia tradizionale una grossa mole di informazioni.

Sono stati valutati alcuni aspetti dell'interoperabilità, e per ognuno si valuta la soluzione di modellazione migliore considerando sia la massima interoperabilità possibile sia l'efficienza dell'operazione.

È stata condotta una mappatura di tutto il processo, che ha permesso di trarre delle conclusioni in termini di tempi operativi necessari per l'utilizzo della metodologia BIM anziché quella tradizionale. Dai dati emerge che, nonostante l'interoperabilità sia migliorabile, i benefici superano gli aspetti negativi.

Al momento quindi lo stato dell'interoperabilità nel campo strutturale sembra essere in una fase embrionale, dove si intravedono i presupposti per un'esportazione del modello sul software di calcolo in modo tale da limitare al minimo le operazioni nella fase di post-esportazione. Sono presenti ancora dei limiti, che potrebbero essere risolti con l'implementazione di alcune funzionalità dei software BIM e dei software di calcolo strutturale.

Nonostante le varie criticità riscontrate, le potenzialità del BIM in ambito strutturale sono molteplici, come ad esempio l'utilizzo del modello BIM come archivio di informazioni provenienti da rilievi strutturali. Inoltre, l'efficacia è presente già nella semplice esportazione degli elementi strutturali (geometrie e materiali), che riduce di fatto una grossa parte del lavoro che verrebbe modellato completamente da zero sui software di calcolo.

Non si può pensare infatti che il software BIM possa automatizzare completamente tutte le operazioni, altrimenti verrebbe tolto il controllo delle decisioni prese all'interno del software dall'ingegnere.

Allegato A – Relazione specialistica rilievo strutturale

Progetto della campagna di indagini strutturali in situ

Relazione Specialistica

1. INTRODUZIONE

La presente relazione ha lo scopo di definire la progettazione di una campagna di indagini strutturali conoscitive da eseguirsi sulla struttura del fabbricato adibito ad attività scolastiche sito in Via Cecchi n.16-18, a supporto ed integrazione delle informazioni reperite precedentemente all'archivio comunale. Questo al fine di definire il livello di conoscenza del complesso, come previsto dalla procedura di valutazione della sicurezza secondo il D.M. 14/1/2008 "Norme Tecniche per le Costruzioni" e Circolare esplicativa.

2. NORMATIVA DI RIFERIMENTO

Per il progetto delle prove sulla struttura esistente si fa riferimento alle Norme Tecniche delle Costruzioni del 2008 e la circolare allegata (n.617 del 02 febbraio 2009) per quanto riguarda la procedura per la valutazione della sicurezza delle strutture esistenti. Si fa inoltre riferimento alle normative relative alle prove, in particolare a quelle non distruttive, UNI EN 12504-2, UNI EN 12504-3, UNI EN 12504-4.

3. LIVELLI DI CONOSCENZA

Si distinguono tre livelli di conoscenza:

- LC1: Conoscenza Limitata;
- LC2: Conoscenza Adeguata;
- LC3: Conoscenza Accurata.

Gli aspetti che definiscono i livelli di conoscenza sono:

- Geometria, ossia le caratteristiche geometriche degli elementi strutturali,
- Dettagli strutturali, ossia la quantità e disposizione delle armature, compreso il passo delle staffe e la loro chiusura, per il c.a., i collegamenti per l'acciaio, i collegamenti tra elementi strutturali diversi, la consistenza degli elementi non strutturali collaboranti;
- Materiali, ossia le proprietà meccaniche dei materiali.

Livello di Conoscenza	Geometria (carpenterie)	Dettagli strutturali	Proprietà dei materiali	Metodi di analisi	FC
LC1		Progetto simulato in accordo alle norme dell'epoca e <i>limitate</i> verifiche in- situ	Valori usuali per la pratica costruttiva dell'epoca e <i>limitate</i> prove in-situ	Analisi lineare statica o dinamica	1.35
LC2	Da disegni di carpenteria originali con rilievo visivo a campione oppure rilievo ex-novo	Disegni costruttivi incompleti con limitate verifiche in situ oppure estese verifiche in- situ	Dalle specifiche originali di progetto o dai certificati di prova originali con limitate prove in-situ oppure estese prove in-situ	Tutti	1.20
LC3	completo	Disegni costruttivi completi con limitate verifiche in situ oppure esaustive verifiche in-situ	Dai certificati di prova originali o dalle specifiche originali di progetto con estese prove in situ oppure esaustive prove in-situ	Tutti	1.00

Tabella 83. Allegato A – Livelli di conoscenza per edifici in c.a. o in acciaio

Le tipologie di verifiche definite nella tabella soprastante sono dettagliate nella seguente tabella.

Tabella C8A.1.3a -	Definizione orientativa dei livelli di rilievo	e prove per edifici in c.a.	
	Rilievo (dei dettagli costruttivi)(a)	Prove (sui materiali) ^{(b})(c)	
	Per ogni tipo di elemento "primario" (trave, pilastro)		
Verifiche limitate	La quantità e disposizione dell'armatura è verificata per almeno il 15% degli elementi	1 provino di cls. per 300 m2 di piano dell'edificio, 1 campione di armatura per piano dell'edificio	
Verifiche estese	La quantità e disposizione dell'armatura è verificata per almeno il 35% degli elementi	2 provini di cls. per 300 m2 di piano dell'edificio, 2 campioni di armatura per piano dell'edificio	
Verifiche esaustive	La quantità e disposizione dell'armatura è verificata per almeno il 50% degli elementi	3 provini di cls. per 300 m2 di piano dell'edificio, 3 campioni di armatura per piano dell'edificio	

Tabella 84. Allegato A - Livelli di rilievo e prove per edifici in c.a.

Fonte: Estratto da Circolare n. 617 del 02 Febbraio 2009

Verrà individuato il livello di conoscenza dopo la campagna di indagini.

4. TIPOLOGIE DI PROVE ESEGUITE

Le prove possono essere distruttive o non distruttive, in questo caso si utilizzeranno quelle non distruttive. Le prove non distruttive utilizzate sono le prove sclerometriche e pacometriche.

5. PIANO DELLE INDAGINI

Le verifiche in-situ sono effettuate su un'opportuna percentuale degli elementi strutturali primari per ciascuna tipologia di elemento (travi, pilastri, pareti...) privilegiando comunque gli elementi che svolgono un ruolo più critico nella struttura, quali generalmente i pilastri.

Le prove dovranno essere svolte su un numero di elementi tale da verificare le prescrizioni definite nella tabella precedente. Nella struttura in oggetto saranno indagati solo gli elementi pilastri strutturali.

È possibile indagare, per quanto riguarda la mappatura della posizione delle armature mediante rilievo pacometrico:

- 19 elementi nell'edificio 1 (9% valutati);
- 18 elementi nell'edifico 2 (9% valutati);
- 24 elementi nell'edificio 3 (9% valutati).

EDIFICIO 1							
Num.	Contrassegno di posizione pilastroLivello di baseLivello superiore		Pacometro				
1	40-52	PT	01	Si			
2	41-47	PT	01	Si			
3	41-47	01	02	Si			
4	41-47	02	03	Si			
5	41-49	PT	01	Si			
6	41-49	01	02	Si			
7	41-50	01	02	Si			
8	41-50	02	03	Si			
9	42-49	PT	01	Si			
10	43-47	PT	01	Si			
11	43-47	01	02	Si			
12	43-47	02	03	Si			
13	43-49	01	02	Si			
14	43-50	01	02	Si			
15	45-49	01	02	Si			
16	45-49	02	03	Si			
17	45-50	PT	01	Si			
18	45-50	01	02	Si			
19	45-50	02	03	Si			
	TOTALE	VALUTATI IN	%	9			

Tabella 85. Allegato A - Pilastri indagati edificio 1 prova pacometrica

	EDIFICIO 2							
Num.	Contrassegno di posizione pilastro	Livello di base Livello superiore		Pacometro				
1	55-66	L_3.68_01_Ed2	L_7.18_02_Ed2	Si				
2	57-63	L0.32_PT_Ed2	L_3.68_01_Ed2	Si				
3	57-65	L0.32_PT_Ed2	L_3.68_01_Ed2	Si				
4	57-65	L_3.68_01_Ed2	L_7.18_02_Ed2	Si				
5	57-66	L_3.68_01_Ed2	L_7.18_02_Ed2	Si				
6	57-66	L_7.18_02_Ed2	L_10.28_03_Ed2	Si				
7	58-63	L0.32_PT_Ed2	L_3.68_01_Ed2	Si				
8	58-65	L0.32_PT_Ed2	L_3.68_01_Ed2	Si				
9	58-65	L_3.68_01_Ed2	L_7.18_02_Ed2	Si				
10	58-65	L_7.18_02_Ed2	L_10.28_03_Ed2	Si				
11	59-63	L0.32_PT_Ed2	L_3.68_01_Ed2	Si				
12	59-65	L0.32_PT_Ed2	L_3.68_01_Ed2	Si				
13	59-65	L_3.68_01_Ed2	L_7.18_02_Ed2	Si				
14	59-66	L_3.68_01_Ed2	L_7.18_02_Ed2	Si				
15	59-66	L_7.18_02_Ed2	L_10.28_03_Ed2	Si				
16	61-65	L0.32_PT_Ed2	L_3.68_01_Ed2	Si				
17	61-65	L_3.68_01_Ed2	L_7.18_02_Ed2	Si				
18	61-65	L_7.18_02_Ed2	L_10.28_03_Ed2	Si				
	TOTALE VALUTATI IN %							

Tabella 86. Allegato A - Pilastri indagati edificio 2 prova pacometrica

EDIFICIO 3							
Num.	Contrassegno di posizione pilastro	Livello di base Livello superiore		Pacometro			
1	82-91	L_7.18_02_Ed2	L_10.28_03_Ed2	Si			
2	82-91	L0.32_PT_Ed2	L_3.68_01_Ed2	Si			
3	82-91	L_3.68_01_Ed2	L_7.18_02_Ed2	Si			
4	83-89	L0.69_PT_Ed3	L_3.68_01_Ed2	Si			
5	83-91	L_3.68_01_Ed2	L_7.18_02_Ed2	Si			
6	83-91	L_7.18_02_Ed2	L_10.28_03_Ed2	Si			
7	83-92	L_3.68_01_Ed2	L_7.18_02_Ed2	Si			
8	83-92	L_7.18_02_Ed2	L_10.28_03_Ed2	Si			
9	84-89	L0.69_PT_Ed3	L_3.68_01_Ed2	Si			
10	84-91	L_3.68_01_Ed2	L_7.18_02_Ed2	Si			
11	84-91	L_7.18_02_Ed2	L_10.28_03_Ed2	Si			
12	85-89	L0.69_PT_Ed3	L_3.68_01_Ed2	Si			
13	85-90	S 1	L0.32_PT_Ed2	Si			
14	85-91	L_3.68_01_Ed2	L_7.18_02_Ed2	Si			

15	85-91	L_7.18_02_Ed2	L_10.28_03_Ed2	Si	
16	85-92	L_3.68_01_Ed2	L_7.18_02_Ed2	Si	
17	85-92	S1	L0.32_PT_Ed2	Si	
18	85-93	S1	L0.32_PT_Ed2	Si	
19	86-90	S1	L0.32_PT_Ed2	Si	
20	86-94	S1	L0.32_PT_Ed2	Si	
21	86-95	S1	L0.32_PT_Ed2	Si	
22	87-91	L0.32_PT_Ed2	L_3.68_01_Ed2	Si	
23	87-92	L_7.18_02_Ed2	L_10.28_03_Ed2	Si	
24	88-91	S1	L0.32_PT_Ed2	Si	
TOTALE VALUTATI IN %					

Tabella 87. Allegato A – Pilastri indagati edificio 3 prova pacometrica

È possibile indagare, per quanto riguarda la prova sclerometrica: 7 elementi nell'edificio 3 (3% valutati).

	EDIFICIO 3								
Num.	Contrassegno di posizione pilastro	Livello di base	Livello superiore	Sclerometro					
1	85-90	S1	L0.32_PT_Ed2	Si					
2	85-92	S1	L0.32_PT_Ed2	Si					
3	85-93	S1	L0.32_PT_Ed2	Si					
4	86-90	S1	L0.32_PT_Ed2	Si					
5	86-94	S1	L0.32_PT_Ed2	Si					
6	86-95	S1	L0.32_PT_Ed2	Si					
7	88-91	S1	L0.32_PT_Ed2	Si					
	3								

Tabella 88. Allegato A – Pilastri indagati edificio 3 prova sclerometrica

La posizione degli elementi indagati è definita nelle tavole presenti in conclusione alla presente relazione.

6. RISULTATI PROVE SCLEROMETRICHE

Per quanto riguarda la prova sclerometrica, è stato possibile analizzare 7 pilastri non intonacati al piano seminterrato dell'edificio 3. Agli altri piani dell'edificio 3 e degli altri edifici non sono state eseguite prove sclerometriche a causa della presenza dell'intonaco.

Dall'indice di rimbalzo medio si ottiene la resistenza a compressione cubica media del calcestruzzo. Da quest'ultimo vengono ricavati la resistenza a compressione cilindrica media e il modulo elastico, attraverso le formule fornite nel Capitolo 11 delle NTC 2008 (uguali a quelle riportate sulle NTC 2018).

CARATTERISTICHE MECCANICHE								
Num.	$R_{cm} [N/mm^2]$	f_{cm} [N/mm ²]	$E_{cm} [N/mm^2]$					
27	45.3	37.6	32735					
42	39.7	33.0	31468					
33	41.2	34.2	31825					
А	35.6	29.6	30455					
11	32.5	27.0	29638					
14	33.1	27.5	29785					
18	38.0	31.6	31060					

L'elemento pilastro con contrassegno 27 è stato oggetto di indagini precedenti, i cui risultati sono: **25,9 N/mm²** (prova eseguita in data 14/09/2012).

Altro elemento di confronto è la carpenteria, da cui risulta una resistenza pari a 25,00 N/mm².

I valori ottenuti sono maggiori rispetto a quelli ricavati da prove fatte precedentemente e dalle tavole di carpenterie, si ritengono quindi verificate le proprietà del materiale.

7. RISULTATI PROVE PACOMETRICHE

Sono stati confrontati gli schemi di armatura rilevati in sito con i disegni di carpenteria reperiti in archivio.

Nelle tabelle si identificano:

- In verde chiaro i parametri coerenti con la carpenteria;
- In verde scuro i parametri che non sono coerenti con la carpenteria ma sono a favore di sicurezza;
- In rosso chiaro i parametri che non sono coerenti con la carpenteria e non sono a favore di sicurezza.

L'inserimento in una di queste tre categorie segue le seguenti tolleranze:

TOLLERANZA COPRIFERRO STAFFE	±15 mm
TOLLERANZA COPRIFERRO BARRE	±20 mm
TOLLERANZA INTERASSE BARRE	±50 mm
TOLLERANZA INTERASSE STAFFE	±50 mm

Tabella 90. Allegato A – Tolleranza per l'analisi dei dati prova pacometrica

Tabella 89. Allegato A – Caratteristiche meccaniche da analisi dei dati prova sclerometrica

Valori coerenti con la carpenteria

Valori non coerenti con la carpenteria ma a favore di sicurezza

Valori non coerenti con la carpenteria e a sfavore di sicurezza

EDIFICIO 1							
Contrassegno	Livello di riferimento	Numero barre	c' medio barra	c' medio staffa	s medio barra	s medio staffa	
35	PT ED1	4	40.0 mm	40.0 mm	200.0 mm	145.0 mm	
4	PT ED1	4	27.0 mm	26.0 mm	200.0 mm	170.0 mm	
17	PT ED1	4	33.0 mm	32.0 mm	200.0 mm	145.0 mm	
22	PT ED1	4	34.0 mm	26.5 mm	180.0 mm	190.0 mm	
23	PT ED1	4	28.0 mm	29.0 mm	210.0 mm	165.0 mm	
6	PT ED1	4	30.0 mm	24.0 mm	230.0 mm	165.0 mm	
6	01 ED1	4	48.0 mm	38.0 mm	210.0 mm	155.0 mm	
4	01 ED1	4	39.0 mm	35.0 mm	190.0 mm	140.0 mm	
35	01 ED1	4	46.5 mm	41.0 mm	200.0 mm	175.0 mm	
33	01 ED1	4	31.0 mm	24.5 mm	230.0 mm	190.0 mm	
31	01 ED1	4	46.5 mm	37.0 mm	200.0 mm	155.0 mm	
26	01 ED1	1/125mm	53.0 mm	50.0 mm	125.0 mm	180.0 mm	
4	02 ED1	4	36.0 mm	29.0 mm	210.0 mm	170.0 mm	
6	02 ED1	4	36.0 mm	29.0 mm	210.0 mm	140.0 mm	
31	02 ED1	4	38.0 mm	42.0 mm	200.0 mm	150.0 mm	
35	02 ED1	4	29.5 mm	21.5 mm	200.0 mm	150.0 mm	
26	02 ED1	1/185mm	37.0 mm	41.0 mm	185.0 mm	175.0 mm	
22	01 ED1	6	31.0 mm	29.0 mm	105.0 mm	140.0 mm	
24	01 ED1	4	35.0 mm	34.0 mm	200.0 mm	135.0 mm	
TOTAL	E VALUTA	TI E VER	IFICATI CON	CARPENTER	IA IN %	9	

Figura 230. Allegato A – Legenda risultati prova pacometrica

Tabella 91. Allegato A – Risultati prova pacometrica edificio 1

EDIFICIO 2								
Contrassegno	Livello di riferimento	Numero barre	c' medio barra	c' medio staffa	s medio barra	s medio staffa		
4	PT ED2	6	35.0 mm	38.0 mm	110.0 mm	94.0 mm		
5	PT ED2	9	30.0 mm	33.0 mm	115.0 mm	143.0 mm		
6	PT ED2	6	26.8 mm	34.5 mm	110.0 mm	155.0 mm		
26	PT ED2	4	34.0 mm	39.0 mm	220.0 mm	150.0 mm		
24	PT ED2	6	37.0 mm	35.0 mm	240.0 mm	117.0 mm		
23	PT ED2	10	39.0 mm	32.0 mm	120.0 mm	127.0 mm		
22	PT ED2	8	28.0 mm	22.0 mm	155.0 mm	170.0 mm		

26	01 ED2	4	39.0 mm	48.0 mm	210.0 mm	150.0 mm
33	01 ED2	4	45.5 mm	47.0 mm	190.0 mm	120.0 mm
31	01 ED2	4	48.0 mm	48.0 mm	190.0 mm	155.0 mm
29	01 ED2	4	42.0 mm	41.0 mm	175.0 mm	127.0 mm
24	01 ED2	4	40.0 mm	41.0 mm	190.0 mm	150.0 mm
23	01 ED2	4	43.0 mm	40.0 mm	190.0 mm	160.0 mm
22	01 ED2	4	48.5 mm	53.5 mm	200.0 mm	160.0 mm
33	02 ED2	4	40.0 mm	40.0 mm	220.0 mm	150.0 mm
31	02 ED2	4	40.0 mm	46.0 mm	200.0 mm	150.0 mm
23	02 ED2	4	41.0 mm	38.0 mm	200.0 mm	160.0 mm
26	02 ED2	4	40.0 mm	40.0 mm	210.0 mm	150.0 mm
ΤΟΤΑ	9					

Tabella 92. Allegato A – Risultati prova pacometrica edificio 2

EDIFICIO 3								
Contrassegno	Livello di riferimento	Numero barre	c' medio barra	c' medio staffa	s medio barra	s medio staffa		
60	PT ED3	1/200mm	45.0 mm	39.0 mm	200.0 mm	170.0 mm		
4	PT ED3	4	34.4 mm	42.0 mm	160.0 mm	80.0 mm		
5	PT ED3	4	29.0 mm	32.0 mm	225.0 mm	140.0 mm		
6	PT ED3	4	50.5 mm	47.0 mm	220.0 mm	160.0 mm		
26	PT ED3	4	46.0 mm	52.0 mm	190.0 mm	190.0 mm		
33	01 ED3	8	35.0 mm	42.0 mm	116.0 mm	80.0 mm		
31	01 ED3	16	39.0 mm	32.0 mm	58.0 mm	30.0 mm		
22	01 ED3	12	43.0 mm	42.0 mm	42.0 mm	80.0 mm		
23	01 ED3	8	45.0 mm	37.0 mm	45.0 mm	35.0 mm		
24	01 ED3	4	42.0 mm	56.0 mm	200.0 mm	40.0 mm		
60	01 ED3	1/200mm	49.0 mm	33.0 mm	200.0 mm	200.0 mm		
35	02 ED3	4	24.0 mm	18.0 mm	160.0 mm	140.0 mm		
22	02 ED3	8	41.0 mm	40.0 mm	80.0 mm	97.0 mm		
23	02 ED3	8	25.0 mm	31.0 mm	70.0 mm	80.0 mm		
24	02 ED3	8	39.0 mm	42.0 mm	60.0 mm	60.0 mm		
60	02 ED3	1/100mm	39.0 mm	30.0 mm	100.0 mm	150.0 mm		
27	S1 ED3	6	44.0 mm	41.0 mm	160.0 mm	150.0 mm		
18	S1 ED3	9	44.0 mm	39.0 mm	110.0 mm	180.0 mm		
14	S1 ED3	15	43.0 mm	38.0 mm	124.0 mm	150.0 mm		
11	S1 ED3	9	40.0 mm	54.0 mm	105.0 mm	130.0 mm		

TOTALE	9					
42	S1 ED3	6	37.0 mm	24.0 mm	165.0 mm	150.0 mm
33	S1 ED3	4	37.0 mm	29.0 mm	260.0 mm	170.0 mm
А	S1 ED3	9	38.0 mm	38.0 mm	106.0 mm	160.0 mm

Tabella 93. Allegato A – Risultati prova pacometrica edificio 3

Le percentuali di pilastri verificati sono le stesse di quelle dei pilastri indagabili, ipotizzando verificato l'elemento che presenta un numero di barre uguale o superiore al valore da carpenteria.

8. CONCLUSIONI

Nel caso in esame possono essere svolte solo prove strutturali sui pilastri. Le percentuali di elementi indagati e verificati sono:

PROVA PACOMETRICA				
EDIFICI	Elementi indagati e verificati [%]	Elementi da indagare per normativa [%]		
Edificio 1	9	15		
Edificio 2	9	15		
Edificio 3	9	15		

Tabella 94. Allegato A – Elementi indagati e verificati in percentuale per la prova pacometrica

PROVA SCLEROMETRICA				
EDIFICI	Elementi indagati e verificati [%]	Elementi da indagare per normativa [%]		
Edificio 1	0	15		
Edificio 2	0	15		
Edificio 3	3	15		

Tabella 95. Allegato A – Elementi indagati e verificati in percentuale per la prova sclerometrica

Non viene raggiunta la percentuale di elementi indagati, ma comunque tutti gli elementi che è stato possibile indagare risultano verificati.

Si ipotizza quindi di rientrare nel Livello di Conoscenza Adeguata (LC2) effettuando limitate verifiche in situ.

Il Livello di conoscenza Adeguata presenta le seguenti caratteristiche (citate direttamente dalla "*Circolare n. 617 del 02 Febbraio 2009*"):

"Geometria: la geometria della struttura è nota o in base a un rilievo o dai disegni originali. In quest'ultimo caso viene effettuato un rilievo visivo a campione per verificare l'effettiva corrispondenza del costruito ai disegni. I dati raccolti sulle dimensioni degli elementi strutturali, insieme a quelli riguardanti i dettagli strutturali, saranno tali da consentire la messa a punto di un modello strutturale idoneo ad un'analisi lineare o non lineare.

Dettagli costruttivi: i dettagli sono noti da un'estesa verifica in-situ oppure parzialmente noti dai disegni costruttivi originali incompleti. In quest'ultimo caso viene effettuata una limitata verifica in situ delle armature e dei collegamenti presenti negli elementi più importanti. I dati raccolti saranno tali da consentire, nel caso si esegua un'analisi lineare, verifiche locali di resistenza, oppure la messa a punto di un modello strutturale non lineare.

Proprietà dei materiali: informazioni sulle caratteristiche meccaniche dei materiali sono disponibili in base ai disegni costruttivi o ai certificati originali di prova, o da estese verifiche in-situ. Nel primo caso sono anche eseguite limitate prove in-situ; se i valori ottenuti dalle prove in-situ sono minori di quelli disponibili dai disegni o dai certificati originali, sono eseguite estese prove in-situ. I dati raccolti saranno tali da consentire, nel caso si esegua un'analisi lineare, verifiche locali di resistenza, oppure la messa a punto di un modello strutturale non lineare.

La valutazione della sicurezza nel caso di conoscenza adeguata è eseguita mediante metodi di analisi lineare o non lineare, statici o dinamici."

Il Fattore di Confidenza legato al livello di conoscenza raggiunto è 1,20. Le resistenze medie, ottenute dalle prove in situ e dalle informazioni aggiuntive, sono divise per i Fattori di Confidenza.

CARATTERISTICHE MECCANICHE MEDIE					
Num.	$R_{cm} [N/mm^2]$	f _{cm} [N/mm ²]	$E_{cm} [N/mm^2]$		
27	45.3	37.6	32735		
42	39.7	33.0	31468		
33	41.2	34.2	31825		
А	35.6	29.6	30455		
11	32.5	27.0	29638		
14	33.1	27.5	29785		
18	38.0	31.6	31060		

 Tabella 96. Allegato A - Caratteristiche meccaniche ottenute dalla prova sclerometrica
CARATTERISTICHE MECCANICHE			
Num.	$R_{cm} [N/mm^2]$	$f_{cm} [N/mm^2]$	$E_{cm} [N/mm^2]$
27	37.8	31.3	30993
42	33.1	27.5	29793
33	34.4	28.5	30131
А	29.7	24.6	28834
11	27.1	22.5	28060
14	27.6	22.9	28199
18	31.7	26.3	29406

Tabella 97. Allegato A - Calcolo delle caratteristiche meccaniche medie divise per i fattori di confidenza

Riducendo i valori delle resistenze medie si ottengono dei valori comunque superiori a quelli del progetto originale, con un valore medio pari a **26,2 MPa**.

I valori non risultano rappresentativi dell'intera struttura, si ipotizza quindi di utilizzare i valori di progetto (**25 MPa**) come caratteristiche meccaniche dei materiali.

Allegato B – Script Visual Basic

1) Main:

```
Attribute VB Name = "M00 MAIN"
•_____
' Title : MAIN
' Author : Cristiano Rizzo
•_____
Option Explicit
'Dichiara variabili publiche
Public num solai As Integer
Public num travi As Integer
Public num_travi_solaio() As Long
Public travi_solaio() As String
Public solaio() As String
Public input path As String
Public input fn As String
Public output_path As String
Public output fn As String
Public template path As String
Public template fn As String
Public input file As Workbook
Public template As Workbook
Public macro As Workbook
' Dichiara costanti
Public Const start As String = "B2"
Public Const solai As String = "SOLAI"
Public Const risultati As String = "RISULTATI"
Public Const intersezioni As String = "INTERSEZIONI"
Public Const misure As String = "MISURE"
Public Const travi As String = "ELENCO_TRAVI"
Public Const s_larg As String = "SEMI-LARGHEZZE"
Public Const lung As String = "LUNGHEZZE"
Public Const area As String = "AREA GRANDE"
Public Const cover As String = "COVER"
Public Const id_solai As String = "ID_SOLAI"
Sub main()
'inizializza variabili workbook
'macro
Set macro = ActiveWorkbook
'input file
input path = macro.Sheets(cover).Range("B3").Value
input fn = macro.Sheets(cover).Range("B4").Value
Call open workbook(input path, input fn)
Set input file = Workbooks(input fn)
'template file
template path = macro.Sheets(cover).Range("B7").Value
```

template_fn = macro.Sheets(cover).Range("B8").Value

```
Call open_workbook(template_path, template_fn)
Set template = Workbooks(template_fn)
'output file
output path = macro.Sheets(cover).Range("B11").Value
output_fn = macro.Sheets(cover).Range("B12").Value
'copia incolla dati da input file [M10_SUB]
Call pre_processing
'inizializza vettori [M10_SUB]
Call inizializza_vettori
'trova travi disgiunte e ordina in scheda ristati
Call processa_travi
'crea tabella misure
Call crea_tabella_misure
'calcola_lati
Call calcola_lati
'calcola area piccola
Call area_piccola
'stampa area grande su scheda risultati
Call area_grande
'chiudi input file
input_file.Activate
input_file.Close
'salva risultati
template.Activate
template.SaveAs Filename:=output path & output fn
MsgBox "Processing Completo"
```

End Sub

2) POST-PROCESSING

```
Attribute VB_Name = "M10_PRE_PROC"
```

```
'
'Title : PRE-PROCESSING
'Author : Cristiano Rizzo
```

Option Explicit

```
'¦X¦ COPIA/INCOLLA DATI NEL TEMPLATE
Sub pre_processing()
```

template.Activate
input_file.Sheets(intersezioni).UsedRange.Copy
template.Sheets(intersezioni).Range("B2").PasteSpecial xlValues

```
input_file.Sheets(solai).UsedRange.Copy
template.Sheets(solai).Range("B2").PasteSpecial xlValues
```

```
input file.Sheets(area).UsedRange.Copy
template.Sheets(area).Range("B2").PasteSpecial xlValues
Intersect(input file.Sheets(id solai).UsedRange,
input file.Sheets(id solai).Range("B:B")).Copy
template.Sheets(solai).Range("A2").PasteSpecial xlValues
template.Sheets(area).Range("A2").PasteSpecial xlValues
End Sub
'¦X¦ INIZIALIZZA VETTORI CON DATI
Sub inizializza vettori()
Dim i As Long
Dim j As Long
template.Activate
template.Sheets(solai).Select
'rileva numero totale di solai
num_solai = Sheets(solai).Range(start).End(xlDown).Row - 1
'assegna dimensione al vettore dinamico solaio()
ReDim solaio(1 To num_solai)
'inizializza vettore con nomi solai
For i = 1 To num_solai
  solaio(i) = ActiveWorkbook.ActiveSheet.Range("A1").Offset(i, 0).Value
Next i
'Assegna dimensione al vettore dinamico num travi solaio
ReDim num_travi_solaio(1 To num_solai)
'rileva numero totale di travi per ogni solaio
For i = 1 To num solai
  num travi solaio(i)
                       = ActiveWorkbook.Sheets(solai).Range(start).Offset(i - 1,
0).End(xlToRight).Column - 1
Next i
'Inizializza vettore con nomi delle travi per ogni solaio
ReDim travi solaio(1 To num solai, 1 To WorksheetFunction.Max(num travi solaio))
For i = 1 To num solai
  For j = 1 To num travi solaio(i)
    travi_solaio(i, j) = ActiveWorkbook.ActiveSheet.Range(start).Offset(i - 1, j -
1).Value
  Next j
Next i
End Sub
```

3) TRAVI

Option Explicit

'¦X¦ TROVA DISGIUNTE E ORDINA IN RISULTATI
Sub processa_travi()

```
Dim i As Long
Dim j As Long
Dim k As Long
Dim h As Long
Dim temp As Range
Dim cell As Range
Dim cell_addr As String
Dim trave base As Range
Dim trave comp As Range
Dim eq As Boolean
Dim found As Boolean
template.Sheets(intersezioni).Select
Range("A2").Offset(-1, 0).Select
'stampa nomi solai e travi
For i = 1 To num_solai
  For j = 1 To num_travi_solaio(i)
  'solai
  ActiveCell.Offset(1, 0).Select
  ActiveCell.Value = solaio(i)
  'travi
  ActiveCell.Offset(0, 3).Value = travi_solaio(i, j)
  Next j
Next i
Range(start).Offset(-1, 0).Select
'ciclo per ogni solaio
For i = 1 To num_solai
  'stampa etichette solai
  template.Sheets(risultati).Cells(i + 1, 1).Value = solaio(i)
  'scorri tutte le travi per ogni solaio (trave base)
  For j = 1 To num travi solaio(i)
    ActiveCell.Offset(1, 0).Select
    Set trave_base = Range(Cells(ActiveCell.Row, ActiveCell.Column), _
                       Cells(ActiveCell.Row, ActiveCell.Column + 1))
    'scorri travi da confrontare
    For k = 1 To num travi solaio(i) - 1
      'scorri elementi successivi
      If j + k > num_travi_solaio(i) Then
        Set temp = trave_base.Offset(-1 * sum_mod(j, k, num_travi_solaio(i)), 0)
        Set
              trave_comp
                          =
                               Range(Cells(temp.Row,
                                                        temp.Column),
                                                                        Cells(temp.Row,
temp.Column + 1))
        'confronta travi per trovare coppia disgiunta
        For Each cell In trave comp
          If Application.WorksheetFunction.CountIf(trave_base, cell) > 0 Then
            eq = True
          End If
        Next cell
        'se trova disgiunta
        If eq = False And found = False Then
```

```
Range("E" & trave base.Row).Value = "x"
          Range("E" & trave_comp.Row).Value = "x"
          'stampa nome travi nella scheda risultati
          template.Sheets(risultati).Select
          ActiveSheet.Range("A1").Select
          'stampa travi in ordine
          ActiveCell.Offset(i, 1).Value = travi_solaio(i, j)
          If j + k > num travi solaio(i) Then
            ActiveCell.Offset(i, 2).Value = travi_solaio(i, j - sum_mod(j, k,
num_travi_solaio(i)))
          Else
            ActiveCell.Offset(i, 2).Value = travi_solaio(i, j + k)
          End If
          Sheets(intersezioni).Select
          ActiveSheet.Range("B" & trave_base.Row).Select
          Sheets(intersezioni).Select
          ActiveSheet.Range("B" & trave_base.Row).Select
          'Segna coppia disgiunta trovata
          found = True
        End If
      'scorri elementi precendenti
      Else
        Set temp = trave_base.Offset(k, 0)
                               Range(Cells(temp.Row, temp.Column),
        Set
             trave_comp
                         =
                                                                       Cells(temp.Row,
temp.Column + 1))
         'confronta travi per trovare coppia disgiunta
        For Each cell In trave comp
          If Application.WorksheetFunction.CountIf(trave base, cell) > 0 Then
            eq = True
          End If
        Next cell
        'se trova disgiunta
        If eq = False And found = False Then
          Range("E" & trave base.Row).Value = "x"
          Range("E" & trave comp.Row).Value = "x"
          'stampa nome travi nella scheda risultati
          template.Sheets(risultati).Select
          ActiveSheet.Range("A1").Select
          'stampa travi in ordine
          ActiveCell.Offset(i, 1).Value = travi_solaio(i, j)
          If j + k > num_travi_solaio(i) Then
            ActiveCell.Offset(i, 2).Value = travi_solaio(i, j - sum_mod(j,
                                                                                    k,
num_travi_solaio(i)))
          Else
            ActiveCell.Offset(i, 2).Value = travi solaio(i, j + k)
          End If
```

```
Sheets(intersezioni).Select
         ActiveSheet.Range("B" & trave_base.Row).Select
         'Segna coppia disgiunta trovata
         found = True
       End If
     End If
    'se trovi una trave disgiunta esci dal ciclo
     If eq = False Then Exit For
   'resetta eq per ogni ciclo di confronto
     eq = False
   Next k
   'resetta eq per ogni trave in solaio
   eq = False
   'stampa travi restanti
   If IsEmpty(Range("E" & trave_base.Row)) Then
     template.Sheets(risultati).Select
      ActiveSheet.Range("A1").Select
     For h = 3 To num_travi_solaio(i)
       If IsEmpty(ActiveCell.Offset(i, h)) Then
         ActiveCell.Offset(i, h).Value = travi_solaio(i, j)
         Exit For
       End If
     Next h
     Sheets(intersezioni).Select
     ActiveSheet.Range("B" & trave_base.Row).Select
   End If
 Next j
  'resetta found
 found = False
Next i
End Sub
   4) MISURE
Attribute VB_Name = "M30_MISURE"
_____
' Title : MISURE
' Author : Cristiano Rizzo
'_____
Option Explicit
'X CREA TABELLA CON TRAVI E MISURE
Sub crea_tabella_misure()
'crea lookup table
 input_file.Activate
 Sheets(travi).UsedRange.Copy
 template.Activate
 Sheets(misure).Range("A2").PasteSpecial xlPasteValues
 input file.Activate
 Sheets(s_larg).UsedRange.Copy
 template.Activate
 Sheets(misure).Range("B2").PasteSpecial xlPasteValues
```

```
input file.Activate
  Sheets(lung).UsedRange.Copy
  template.Activate
  Sheets(misure).Range("C2").PasteSpecial xlPasteValues
End Sub
'¦X¦ CALCOLA LATI
Sub calcola lati()
Dim lookup misure As Range
Dim lookup area As Range
Dim i As Long
Dim temp As Double
Const L1Col As String = "F"
Const L2Col As String = "G"
'assegna tabella lookup misure
Set lookup_misure = template.Sheets(misure).UsedRange
'assegna tabella lookup area
Set lookup_area = template.Sheets(area).UsedRange
'seleziona prima cella
template.Activate
template.Sheets(risultati).Select
template.Sheets(risultati).Range("A1").Select
For i = 1 To num_solai
  'calcolo per solaio a due travi
  If num_travi_solaio(i) = 2 Then
  On Error GoTo err
    'L1
    ActiveSheet.Range(L1Col & i + 1).Value =
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 1), lookup misure, 3,
False)
    'L2
    ActiveSheet.Range(L2Col & i + 1).Value =
      (Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 0), lookup area, 2,
False) /
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 1), lookup_misure, 3,
False)) -
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 1), lookup_misure, 2,
False) -
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 2), lookup misure, 2,
False)
  On Error GoTo 0
  'calcolo solaio a tre travi
  ElseIf num_travi_solaio(i) = 3 Then
  On Error GoTo err
    '11
    ActiveSheet.Range(L1Col & i + 1).Value =
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 1), lookup_misure, 3,
False) -
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 3), lookup_misure, 2,
False)
    'L2
    ActiveSheet.Range(L2Col & i + 1).Value = _
```

```
Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 3), lookup_misure, 3,
False)
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 1), lookup misure, 2,
False)
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 2), lookup misure, 2,
False)
  On Error GoTo 0
  'calcolo per 4 travi
  ElseIf num_travi_solaio(i) = 4 Then
  On Error GoTo err
    'L1
    ActiveSheet.Range(L1Col & i + 1).Value =
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 1), lookup_misure, 3,
False)
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 4), lookup_misure, 2,
False)
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 3), lookup_misure, 2,
False)
    'L2
    ActiveSheet.Range(L2Col & i + 1).Value = _
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 4), lookup_misure, 3,
False) -
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 1), lookup_misure, 2,
False) -
      Application.WorksheetFunction.VLookup(ActiveCell.Offset(i, 3), lookup_misure, 2,
False)
  On Error GoTo 0
  End If
Next i
Exit Sub
'error handler in caso mancano delle travi nella tabella lookup
err:
MsgBox "ERROR: Dati mancanti per solaio " & solaio(i)
ActiveSheet.Range(L1Col & i + 1).Value = "0"
ActiveSheet.Range(L2Col & i + 1).Value = "0"
End Sub
'¦X¦ CALCOLA AREA PICCOLA
Sub area piccola()
Dim i As Long
Const area_piccola As String = "H1"
template.Activate
template.Sheets(risultati).Select
For i = 1 To num solai
  Range(area_piccola).Offset(i, 0).Value = (Range(area_piccola).Offset(i, -1).Value *
                                            Range(area_piccola).Offset(i, -2).Value)
Next i
End Sub
'¦X¦ STAMPA AREA GRANDE SU SCHEDA RISULTATI
Sub area_grande()
Dim lookup_area As Range
Dim i As Long
Const area_grande As String = "I1"
```

=

```
Set lookup_area = template.Sheets(area).UsedRange
template.Activate
template.Sheets(risultati).Select
On Error Resume Next
For i = 1 To num_solai
    Range(area_grande).Offset(i, 0).Value
Application.WorksheetFunction.VLookup(Cells(i + 1, 1), lookup_area, 2, False)
Next i
```

On Error GoTo 0

```
End Sub
```

5) UTILITIES

```
Attribute VB_Name = "M40_UTILITIES"
•------
' Title : UTILITIES
' Author : Cristiano Rizzo
•_____
Option Explicit
'U1' OPEN WORKBOOK ONLY IF NOT OPEN ALREADY
Sub open_workbook(ByVal path As String, ByVal wb As String)
   Application.ScreenUpdating = False
   On Error Resume Next
   Workbooks(wb).Activate
   If err.Number <> 0 Then
       err.Clear
      Workbooks.Open path & wb
   Else
      ThisWorkbook.Activate
   End If
   On Error GoTo 0
   Application.ScreenUpdating = True
End Sub
'funzione per calcolare somma modulo x
Static Function sum_mod(add1 As Long, add2 As Long, module As Long) As Long
Dim temp As Long
temp = add1 + add2
Do Until temp <= module</pre>
 temp = temp - module
Loop
sum mod = temp
End Function
```

Bibliografia

"BIM verso il catasto del futuro" di Osello A. e Ugliotti F. "IL BIM STRUTTURALE. LINK REVIT-MIDAS" di CSPFea, Orienta e Trium "Norme tecniche per le costruzioni" D.M. 14 Gennaio 2008 "Circolare Allegata n. 617 del 2 Febbraio 2009" Allegato alle Norme Tecniche per le costruzioni

Sitografia

https://know	ledge.autodesk.con	n/it/

- http://www.ingenio-web.it/3370-il-bim-per-il-calcolo-strutturale---parte-1
- https://www.bimportale.com/giovani-esperti-di-bim-crescono-al-politecnico-di-torino/
- https://www.bimportale.com/software/strutture/
- http://www.travilog.it/
- http://www.stadata.com/?area=Software&table=AxisVM Introduzione&mnu=249
- http://www.csi-italia.eu/software/sap2000/

https://it.graitec.com/advance-design/

http://www.cspfea.net/portfolio_page/midas-gen-fx/

https://www.youtube.com/watch?v=NLEeyUjm14I&feature=youtu.be