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Abstract

Damage detection and localisation in beam-like structures using mode shape
features is well-established in the research community. It is known that by in-
serting a localised anomaly in a cantilever beam, such as a crack, its mode
shapes diverge from the usual deflection path. These novelties can hence be
detected by a machine-learner trained exclusively on the modal data taken from
the pristine beam. Nevertheless, a major issue in current practices regards
discerning between damage-related outliers and simple noise in observations,
avoiding false alarms.

Extreme functions are here introduced as a viable mean of comparison. By
combining Extreme Value Theory (EVT) and Gaussian Process (GP) Regression,
one can investigate functions as a whole rather than focusing on their con-
stituent data points. Indeed, n discrete observations of a mode shape sampled
at D points can be assumed as 1-dimensional sets of n randomly distributed
observations. From any given point it is then possible to define its Probability
Density Function (PDF) and the Cumulative Density Function (CDF), whose
minima, according to the EVT, belong to one of three feasible extreme distribu-
tions - Weibull, Frechét or Gumbel. Thus, these functions - intended as vectors
of sampled data - can be compared and classified. Anomalous displacement
values that could indicate the presence of a crack are therefore identified and
related to damage.

In this work, the effectiveness of the proposed methodology is verified on
numerically-simulated noisy data, considering several crack locations, levels of
damage severity (i.e., depths of the crack), signal-to-noise ratios and bound-
ary conditions, in order to asses the lowest detectable damage level for non-
differentiated transverse displacements data related to a finite elements mod-
elled vibrating structure.
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Sommario

L’identificazione e la localizzazione del danno in strutture monodimensionali
tramite l’utilizzo delle forme modali è molto diffuso nella comunità dei ricer-
catori. Infatti è ben noto che, inserendo un’anomalia localizzata in un trave
semplicemente incastrata, come ad esempio una frattura, le sue forme modali
divergono dal suo usuale campo deformativo. Questi cambiamenti possono es-
sere quindi rilevati tramite un processo di apprendimento automatico allenato
esclusivamente sulle forme modali appartenenti allo stato integro della trave
stessa. Tuttavia, una delle principali problematiche nella pratica corrente ri-
guarda la corretta distinzione tra valori anomali dovuti alla presenza del danno
e il rumore delle osservazioni effettuate, in modo da evitare falsi allarmi.

In questo studio, il concetto di Funzioni Estreme è introdotto come un mez-
zo di comparazione praticabile. Combinando la Teoria dei Valori Estremi (EVT)
e la Regressione con Processi Gaussiani, è possibile analizzare le funzioni nella
loro interezza invece di concentrare l’attenzione sui dati puntuali che le costi-
tuiscono. Infatti, un campione di misurazioni discrete di lunghezza n riguar-
dante una forma modale campionata in D punti può essere assunto come un
set monodimensionale di n variabili aleatorie distribuite in maniera casuale.
A partire da ogni punto è quindi possibile definire la Funzione di Densità di
Probabilità (PDF) e la Funzione di Ripartizione (CDF), le quali, in accordo con
la EVT, appartengono ad una delle 3 distribuzioni per valori estreme ammissi-
bili – Weibull, Frechèt o Gumbel. Queste funzioni, intese come vettori di dati
campionati, possono essere quindi comparate e classificate. Gli spostamenti
anomali che potrebbero indicare la presenza di una frattura sono quindi rico-
nosciuti e correlati al danno strutturale. In questa tesi, l’efficacia della meto-
dologia proposta è stata verificata tramite dati disturbati simulati numerica-
mente, considerando diverse posizioni del danno, dei livelli di magnitudine del
danno stesso (ad esempio la profondità della frattura), di intensità del rumo-
re (ad esempio tramite il Signal-to-Noise-Ratio) e configurazioni di vincolo, al
fine di poter determinare il più basso livello di danno riconoscibile per spo-
stamenti trasversali non differenziati derivanti dal modello agli elementi finiti
della struttura in esame.
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Chapter 1

Structural Health Monitoring

1.1 Introduction

With the continuous advancing in all the fields of science, technology and econ-
omy, the human evolution is increasingly strongly grounded on all the various
systems, mechanical and not, that constitute the fundamental bare bones of
our existence itself. Mankind is able to focus efforts and resources to endeavour
to push forward the limit of our societies, building even more enormous large-
scale constructions and developing growing daring and sophisticated projects.
Imaging nowday a world without infrastructure as bridges, dykes, power sta-
tions, manufacturing plants, airplanes, railways and trains, ... is indeed com-
pletely not feasible. When considering the huge cost in terms of global invest-
ments and human capital of all these achievements is immediately evident how
a continuity with the past is heavily required in order to preserve and further
improve these fundamental assets. Hence, maintenance covers a main role
for several reasons: primary, the standard levels of integrity and serviceability
of the considered system have to respect opportune limits to prevent critical
crisis, such as catastrophic collapses for structures or severe interruptions in
case of essential services and the inevitable consequence of loss of life; besides,
the intrinsic and extrinsic value of strategic structures, infrastructures, machin-
ery and networks for historical and economical motives has reached over the
years an high grade whose are impossible to refrain from and the preservation
of those systems become of central interest jointly with the extension of their
design lifetime.

All these considerations has to be approached taking into account a relevant
aspect of reality: uncertainty, mainly classified as aleatory for random varia-
tions of variables and predictions or epistemic for systemic lack-of-knowledge,

1



CHAPTER 1. STRUCTURAL HEALTH MONITORING 2

pervades in both cases the chosen model for predictions and consequently
the accuracy and the reliability of safety measurement and quality assessment.
Thus, probabilistic and semi-probabilistic approaches based on the assump-
tion that exist statistical distributions of the available experimental data re-
sult the only way to bridge the gap and mediate between the natural variabil-
ity of non-deterministic phenomena and the impossibility to have a complete
knowledge of the analysed case, mostly for practical and economic reasons.

For example, to give some context that helps understanding the importance
of maintenance related to the residential buildings (figure 1.1) and in particu-
lar to the Italian situation, what emerges from the 14th ISTAT General Census of
the population and housing [39] is that on a total of 12,812,528 recorded build-
ing units 19.2% was built before 1919, 12.3% between 1919 and 1945, 50.0%
between 1946 and 1981, 11.5% from 1982 to 1991 and 7.0% after 1991, with an
overall percentage of 81.5% of buildings older than 40 years and close to their
design life. Analogously, in the field of civil construction, one need just to think
that the four-year investment plan 2015-2019 of the Italian Public Road Admin-
istration Authority (ANAS) provides the 40.6% of resources, amounting to 8.2
billion of euro for extraordinary maintenance and safety works [4]. Moreover in
recent years, infrastructure efficiency has been put into crisis by various phe-
nomena such as the increase of traffic loads, increase in travel speed, changes
in the regulations of reference to safety standards. The functionality of road
state of art depends strictly on good inspection activity: in fact the lack of a
correct and timely maintenance involves an increase of the deterioration and
therefore higher repair costs.

Figure 1.1: Maintenance vs Restoration [79]



CHAPTER 1. STRUCTURAL HEALTH MONITORING 3

Unfortunately, it has been reported in recent days the tragic collapse of a
part of the stay-cable A10 Polcevera Viaduct 1.2 in Genoa built (only) in 1967,
also known as Morandi’s Bridge from the name of its designer, during is oper-
ational life causing dozen of deaths and injuries and extremely serious conse-
quences for the mobility, the economy and the safety of the town itself with the
ulterior imminent danger of flood. Although the causes of the cave-in have not
been established yet, the probable failure of a pre-tensed stay and the subse-
quent failure of the pier and the deck of the bridge shall be undoubtedly recog-
nised in a wide deficiency of ordinary and extraordinary maintenance and with
all probability this dramatic epilogue would be avoided with an effective system
of structural health monitoring.

Figure 1.2: Stay-cable Polcevera bridge after collapse, Genoa 2018 [46]

Even though this fatality is the most widely exposed to media attention for
the number of casualties and the strategic importance of the bridge itself, it
is not an isolated incident: in the last years a relevant number of bridges of
different typologies, static schemes and constructive technologies suffered se-
vere structural damages. Some examples are collected in the figures from 1.3 to
1.6 below; however, as told before, the central role of maintenance and health
monitoring is not limited to bridges and civil infrastructures, but it concerns
a broad spectrum of engineering applications, ranging from mechanical and
aerospace systems to offshore oil platforms and seismic building response.
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Figure 1.3: Girder
bridge Viaduct 167,
Ancona 2017 [37]

Collapse caused by pier

settlement

Figure 1.4: Girder
bridge Santa Vittoria
Viaduct, Cuneo 2017
[45]

Failure of the deck un-

der dead load

Figure 1.5: Girder
bridge Viaduct 626,
Agrigento 2014 [38]

Failure of the deck

Figure 1.6: Masonry
arch rail bridge, Cal-
tanissetta 2011 [10]

Fragile failure of the

central span arch
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1.1.1 Originality and Organisation of Work

On the aforementioned basis, last decades have seen an increasing interest in
the health monitoring of structural systems, involving researchers in multi-
disciplinary fields with the aim to develop effective series of procedures and
algorithms able to detect, to characterise and to classify the numerous kinds
of material damage. Obviously, all the efforts are also focused to respect the
implicit economic restrictions, such as for example the type and the number of
used sensors. However, in spite of the numerous works inherent theory and ap-
plications published in recent years, currently there is not an unified ultimate
response to the damage identification and structural monitoring problems and
this lack entails a scarcity of real installed systems, especially related to civil
structures. Following this well-established pattern, the aim of this Master The-
sis work is to study a new methodology that involves genetic optimisation al-
gorithms and machine learning techniques. In particular this study is focused
on:

• the analysis of the transverse mode shapes of a reference structure in order
to establish a lower detectable damage level, according to the hypothe-
ses assumed in the data simulation.

• dealing directly with transverse displacements, the absence of numerical

derivation of data implies the absence of noise amplification, with clear
consequent advantages in speed and accuracy of analysis.

• developing the algorithm on the basis of the Extreme Function Theory

leads to a reduction of false-positive in novelty detection.

• the adoption of genetic algorithm (i.e. SADE) enhances statistical ro-
bustness of the method without requiring a-priori knowledge of the pa-
rameters involved.

This Thesis work is organised as follows: Chapter 1 concerns an introduction
to SHM field and it is aimed to give a general overview and a literature review
of the current state-of-art; Chapter 2 presents a review of the machine learning
techniques adopted here; Chapters 3 and 4 give the theoretical bases of Elastic-
ity, Finite Element and Crack simulation utilised to model the numerical data;
Chapter 5 reports the obtained results of analysed case studies; Chapter 6 con-
tains the conclusions of this work and the further perspectives of research.

Part of this work has been presented at the Modern Practice in Stress and Vi-

bration Analysis Conference (MPSVA 2018) [47], which was held by the Insti-
tute of Physic at Clare College in July 2018 in Cambridge, UK.



CHAPTER 1. STRUCTURAL HEALTH MONITORING 6

1.2 Damage Identification Process

Every system is originally designed and built to satisfy a specific need in a given
environment with a given level of performance for at least a given service life.
Since this strictly defined framework does not correspond exactly to the real-
ity, deeply permeated by uncertainty, in the last 50 years research has been
actively focused to implement accurate damage identification strategies be-
cause of the related economic, technological and safety implications as ex-
posed in the previous introduction. In spite of other widely used monitoring
techniques, based on a local analysis that requires an a-priori knowledge of the
damaged point of the system taken in consideration like Non-Destructive Eval-
uation (NDE), the Structural Health Monitoring approach is primarily oriented
to a global investigation of the structural integrity with the main advantage to
analyse vast part of surfaces on the whole. Consequently, also the definition of

damage itself has to be interpreted from this point of view, moving from a mi-
croscopic investigation to a condition-based one, in order to cover the gap be-
tween theoretic physical failure phenomena and real engineering applications.
According to [24],«...damage will be defined as changes to the material and/or

geometric properties of a structural or mechanical system, including changes to

the boundary conditions and system connectivity, that adversely affect current or

future performance of that system...», as far as the system cannot longer perform
anymore and the failure occurs. There are several damage and failure classifi-
cations based on different criteria, such as effects, severity, detection methods,
failure mechanisms and more. A useful collection and comparison of differ-
ent sources is reported in [65]: particularly suitable for the purposes of this
work, and thus reported here in figure 1.7, is the severity classification of fail-

ure taken from the Offshore Reliability Data (OREDA) programme [52]:

Critical: A failure which is both sudden and causes the item not to function in
one or more essential modes.

Degraded: A failure which is gradual, partial, or both.

Incipient: An imperfection exists that may develop into a degraded or critical
failure if corrective action is not taken.

After have defined the object of the analysis, which is the structural damage
itself, the problem of damage detection is related the fundamental activity of
searching and recognition of patterns in the acquired data. According to [69]

and to the extended version proposed by [83] listed below, it is important to
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Figure 1.7: OREDA Failure mode classification [52]

define the hierarchical structure of the damage identification process, with
mandatory sequential levels that allow to organise the different steps of the in-
vestigation. Indeed, the information of each underlying step is necessary for
the further analyses and all the operations and evaluations have to be properly
organised:

1. Detection: the method gives a qualitative indication that damage might
be present in the structure.

2. Localisation: the method gives information about the probable position
of the damage.

3. Classification: the method gives information about the type of damage.

4. Assessment: the method gives an estimate of the extent of the damage.

5. Prediction: the method offers information about the safety of the struc-
ture, for example it estimates a residual life.

6. (Smart structures: self -detection, -diagnosis and -repair [79])
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1.2.1 Statistical Pattern Recognition

Although pattern recognition is a traditional activity of science and engineering
fields, because of the amount of data taken in consideration and the complex-
ity of the involved calculations, nowday its applications are inseparable from a
machine learning perspective. Machine learning is a wide field of computer sci-
ence with a large number of interdisciplinary applications and all its character-
istics will be discussed in detail in the next chapter 2. For now it is sufficient to

Figure 1.8: Data to Decision (D2D) -
Single sensor Waterfall scheme [88]

give a first definition and, as pro-
posed by [9], pattern recognition

«...is concerned with the automatic

discovery of regularities in data through

the use of computer algorithms and

with the use of these regularities to

take actions such as classifying the

data into different categories...». This
last statement is not exhaustive since
it principally describes a data-driven

approach to the problem, where a
statistical model is built in order to
carry out information from data; oth-
erwise, the inverse problem approach
is likewise relevant in SHM frame-
work and it is mainly based on phys-
ical model of the considered struc-
ture. The work made in this Thesis
refers to the first approach here pre-
sented and thus, the focus is to out-
line the statistical pattern paradigm
as organised in [23]. A simple and
intuitive example of that data-to-
decision process, accurate for a sin-
gle sensor acquisition, is the Water-
fall scheme proposed by [7] in figure 1.8, while a review of other operational
schemes can be found in [88, 8]. According to [23], the entire process can be
generally divided in four main steps and other subroutines that can recur in
different points:

Operational Evaluation :
This stage can be considered as a feasibility phase in which is necessary
to evaluate what kind of damage we are interested to analyse (i.e. the
higher structural risk), the economic, safety, and environmental condi-
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tions in which the monitoring system should operate and its conceptual
and technological design.

Data acquisition and preprocessing :
The material acquisition of data concerns a series of issues related to
the sensors themselves (i.e sensors location) and the other used tech-
nologies. On the basis of the investigated phenomena (i.e. corrosion,
fatigue,..), and thus the inputs (i.e. vibrational excitations, laser scan-
ning,...) and the outputs (i.e. dynamic response,...) involved, different
operations aimed to improve the quality of the information may be re-
quired depending on the implemented process, such as

• Data Normalisation, to obtain comparable values (i.e. it is required
in case of mode shapes);

• Data Cleansing, aimed to reduce epistemic uncertainty of data;

• Data Compression, with the objective to reduce the dimension of
data and thus the computational effort in storage and calculations;

• Data Fusion, to combine several sources for a more complete infor-
mation

Feature selection and extraction :
As explained in detail in the following paragraphs 1.2.2 and 1.2.3, «.. Sen-
sors cannot measure damage...» and hence, it is necessary to individu-
ate a distinguish feature able to indicate the presence of damage. A this
stage, some operations of aforementioned ones can be required or re-
peated but, more important, this is the application point of all the algo-
rithms and techniques of data mining related to the automatic analysis
of machine learning.

Statistical model development :
The final purpose of the process is the damage identification at differ-
ent levels of the hierarchical structure of analysis as detailed above. To
achieve this through statistical pattern recognition, there are basically
four different principal types of algorithm, classified on the basis of the
available data and the identification goal:

• Classification, attributes defined labels to discrete classes of data;

• Clustering, autonomously individuates the unknown classes of data;

• Regression, evaluates the functional parameters and the evolution
of continuous variables;
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• Novelty detection, detects a change in the variables state, passing
from a "normal" state to an "abnormal" or "damaged" one;

Complementary, another important algorithms distinction is made on the ba-
sis of the kind of the processed data. Basically, if the algorithm extrapolates
all the required initial state information and parameters from the "normal" or
"undamaged" observations only, then it is named as unsupervised learning al-
gorithm since the data have no labels and they are assumed to come from the
pristine state. Otherwise, if the initial multiple data class labels are known, we
refer to it as supervised learning algorithm because of this initial division of
data in different classes [84].

1.2.2 Damage Sensitive Features and Identification Methods

The wide literature available covers a large number of methodologies and ap-
plications developed in last decades. As well, there are several works focused on
summarise and organise the state of art of the structural health monitoring field
in a given period: the review presented here derives from a comparison of dif-
ferent exhaustive resources, such as articles [11, 14, 20, 22, 25, 23, 31, 43, 61, 62,

70, 74, 72, 85], technical reports [21, 75], lectures [79] and books [84, 87]. Al-
though the large variety of typologies of damage investigation methods, recent
researches and applications mostly regards the vibration-based methods since
their intrinsic characteristics that properly fit with the nature of data-driven al-
gorithm approach.

In this paragraph is reported a general first classification of the different types
of utilised features in order to have an overview of strengths and weaknesses
of the various damage identification processes, in particular in civil construc-
tions, while a detailed and referenced review of the adopted metrics can be
found in the next section 1.3.

Natural Frequency :
This is probably the most studied feature in damage diagnostic due to
the direct correlation between the observations in global structural be-
haviour related to stiffness, mass and damping variations and the changes
in the frequency response. A first limitation common to other modal
properties are the restrictions of experimental modal analysis, such as
the requirement of structural linearity, time-invariance and reciprocity
that unlikely fit with real applications. Another important issue in fre-
quency shift methods is to reach a certain level of accuracy in measure-
ment since the chosen feature itself is not very sensitive to damage and
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thus not effective when working with an high level of noise and uncer-
tainty or low level of damage. In spite of this, the ease to measure nat-
ural frequencies and to compare their shifts in order to asses the pres-
ence of damage, mainly for single-crack in simple structures, made this
feature widely used over years providing numerous studies on different
applications. Other attempts to reach level upper than 1 of damage iden-
tifications hierarchical structure, to deal with multiple cracks scenarios
or to extrapolate localised information without involving higher modes
showed to be ineffective.

Mode Shape Dispalcement :
Holding the previous assumptions of experimental modal analysis, mode
shapes presents many advantages and have been widely used in last decades
up to our days: this Thesis, indeed, it is focused on the analysis of the
transverse mode shapes as whole functions. Modal parameters have two
principal strength points: firstly, they provide spatial information of the
structure and thus entail the development of damage localisation method
in addition to damage assessment; in second place, they present the rele-
vant property of orthogonality that results very useful for similarity com-
parison and compression techniques (i.e. MAC, PMAC, COMAC, ...). In
particular, as previously mentioned, data compression is often funda-
mental in order to reduce the dimensionality of analysed data, but on
the other hand this may cause the side effect of loss of information. An-
other adverse aspect is the correlation between damage location and the
effectiveness in its detection: depending on boundary conditions, mode
shapes present zero-displacement points, called stationary points or modal

nodes that result to be less sensitive to damage and consequently affect
the analysis itself. Regarding data noise, instead, it plays a double role:
although it definitively affects the measurement to the point that applica-
tion to real structures is in such way difficult, otherwise modal displace-
ment does not suffer of noise amplification due to numerical manipula-
tion (i.e. derivatives).

Mode Shape Curvature :
Strictly related to the aforementioned parameters, curvature is currently
considered on of the best damage sensitive features for its capability to ef-
ficiently indicate the damage presence together with spatial information
and extension. Numerically and operationally (Operational Deflection
Shapes), it can be derived with good approximation from mode shapes
by numerical backward, forward and central derivation but it is easy to
operate a data cleansing phase in order to reduce the disturbing action
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of noise (i.e. subtracting the baseline of undamaged state) since its varia-
tions is directly related and localised in correspondence of damage. More-
over, its correlation with strain allows several miscellaneous operations
with other features or metrics, such as dynamic flexibility, and strain en-
ergy described below (i.e. Dynamic Flexibility Curvature Method or Fre-
quency Curvature Response).

Dinamycal Flexibility :
Defined as the inverse of the stiffness matrix, the flexibility matrix puts
in direct correlation the displacements and the related d.o.f., showing as
important property an higher sensitiveness to damage effect for lower
modes. Otherwise, this feature still requires a large number of measure-
ment points, weakness in common with the other modal features, while
does not guarantee sufficient accurateness in the estimation of damage
location. As assessed before, there are several metric available in litera-
ture that, involving dynamical flexibility also in combination with other
features, including analysis of changes in flexibility, Stiffness Error Matrix
Method, Residual Flexibility, enhance more robustness in the estimations
in particular related to damage localisation.

Strain Energy :
From elastic theory it is known that stresses in a structural element flow
following the most rigid feasible path; hence, every variation of this state
that might occur in the structure, like a geometrical discontinuity caused
by an edge-crack or the related reduction of the element stiffness, leads
to a different internal stress distribution and consequently it produces a
variation in the strain energy of deformation. Since this change in struc-
tural response is basically localised close to damage location, it is possible
to perform the damage identification up to levels 3 and 4 of the previous
scheme through the definition of opportune damage indexes (i.e. Ele-
mentary Energy Quotient). Past applications of methods based on this
feature showed off as main advantage a better stability when dealing with
data affected by a relevant disturbing noise, while these processes never-
theless present problems to correctly evaluate multiple cracks scenarios
or incomplete modal information.

Time domain methods :
Linear time series methods in the context of diagnosis of vibrating struc-
tures are widely used because they offer numerous advantages. Continu-
ous monitoring measurements directly refer to time domain and thus no
re-elaboration of data that may cause a loss of information are needed. In
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addition to this ease of application, these models are able to correctly pre-
form evaluation of damage detection and qualification based on incom-
plete models and data without requiring physical or numerical simulated
reference models. However, partiality of adopted model has as conse-
quent side-effect a limitation on the extent feasible range of damage in-
vestigation. Time models suits very well with the data analysis approach,
entailing detection of damage from the vibration measurements by the
use of filtering and signal processing techniques like Wavelet signal de-
composition or Auto-Regressive (AR) and the Auto-Regressive-Moving-
Average (ARMA) models and their modified versions.

Frequency domain methods :
Following the development of new algorithms that improve the evalua-
tion of the Fast Fourier Transformation (FFT), frequency-domain-based
methods gain an extensive central role in the damage detection stud-
ies because of their stability and accurateness. As first advantage, algo-
rithms directly based on the Frequency Response Function (FRF) show
off a great capability to deal with incomplete measurements for the in-
trinsic nature of the used function itself, avoiding the necessary manip-
ulation the extrapolate modal data since they are derived from time se-
ries. Moreover, through signal processing it is possible to compensate
biases and errors due to data acquisition and extraction. Furthermore,
by defining opportune indexes to compare frequency responses it possi-
ble to evaluate from the carried information novelty detection, damage
extension and location. On the other hand, effectiveness and accuracy of
the results still depends on the amount of the measurement points and
their position respect to the defect to investigate. Recently, miscellaneous
techniques involving at once time and frequency, such as Wavelet Analy-
sis, Spectral Pattern Methods and H-H Transform, have been shown a lot
of advantages in most of the requirements of the damage identification
process, from data fusion and feature extraction to pattern recognition,
while avoiding the requirement of stationary signals.

Matrix update based methods :
Involving different structural parameters, including the ones listed above,
these methods combine measured and numerical simulated data in an
optimisation process in order to approximate with the best possible ac-
curacy the real structure. Analytical and numerical models constitute the
reference model that is iteratively updated taking into account the actual
measurements data by the imposition of objective functions to be min-
imised, constraints equations and other numerical schemes. Naturally,
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these methods have some limitations due to computational issues like
the accuracy of the initial model and the number of parameters to up-
date. Some of most used approaches are the Matrix-Update Method and
the Eigenstructure Assignment Method (based on residual evaluation),
the Optimal Matrix Method (direct closed-form solution), the Sensitivity
Based Methods (Taylor’s series approximated perturbation), Hybrid Ma-
trix and the Computational Intelligence Method.

Non-linear methods :
Real-world applications are often characterised by a non-linear behaviour
or by a deviation from a linear response when a discontinuity occurs in
the structure. All the aforementioned features and methods hold under
the main assumptions of linearity and this results in a restrictive limita-
tion of applicability. For instance breathing cracks, yielding of metallic
elements with strain hardening property, structural damping, delamina-
tion in composite materials, fatigue phenomena or hysteretic behaviour
are all examples of non-linear-responses. Although is difficult to correctly
implement models capable to take into account all the several possible
non-linearities that behave in different ways, non-linear damage identifi-
cation methods are spreading for their potential and for the vast number
of damage-sensitive features that can be analysed and used as damage
indexes. Main challenges in the evolution of these methods concern the
accurate evaluation of the predominant non-linear behaviour of some
structures in their pristine state and to enhance a more sensitive distinc-
tion for those systems that exhibit linear response under low level of exci-
tations or when affected by small damage. Many of the previous features
are adapt to be studied removing the hypothesis of linearity and in ad-
dition some common non-linear features are the Harmonic Distortion,
the Coherence Function, the Holder Exponent, Non-linear Output Fre-
quency Response Functions (NOFRF) or Modified Local Damage Factor
(MFLD).

Artificial Neural Networks :
Nowday, the increasing interest in the study of human being and hu-
man evolution has met a melting point with other disciplines for the in-
estimable potentiality and complexity of our characteristics. In particu-
lar, from a computational point of view, the ability of our brain to learn,
elaborate and store information is something that the most modern and
powerful computers can only try to imitate. On this basis, Artificial Neu-
ral Network (ANN) algorithms mime the architecture, at different levels
of sophistication, of neurons and neural system and have been applied
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to a large variety of fields originating new paradigms for artificial intelli-
gence (named Deep Learning) not only capable to analyse data, but also
to automatically learn, adapt and evolve in response to the received in-
puts. Regarding the SHM field, ANNs are non-linear functional opera-
tors characterised by the main advantages of learning and memory abili-
ties, adaptivity, robustness, stability and parallel processing. These black-
box, model-free and adaptive tools enhance fine detection, localisation
and sizing of damage also in complex structures, with the major issues of
a huge computational effort and higher entanglement of network mod-
els. Literature related to different networks and their applications is very
wide: however it is not of central interest here and a citation of the most
used algorithms as the Multi-Layer Perceptron (MLP) or the Time Delay
Neural Network (TDNN) is sufficient.

Genetic Algorithm Optimisation methods :
Analogously to previous methods, Genetic Algorithms (GA) are stochastic
search methods based on the Darwin’s theory of evolution of population
and survival of the fittest individual. Basically these methods consist of
three main steps, reproduction, cross-over and mutation aimed to per-
form the optimisation of vectorial data encoded as chromosomes. The
cost of fitting is specified through an objective function that allows to
identify and discard the worst individuals of the random population: op-
timisation does not require any initial guess or other a-priori knowledge,
and the use of the gradient with the numerical implication of derivatives
is avoided. Direct advantages of this approach is the finding of global
optimum simply repeating several times the process, the ease of imple-
mentation of the matching stage and the statistical robustness of estima-
tions, in spite of a possible huge computational effort. In the SHM field
these algorithms are widely used such intermediate optimiser in numer-
ous applications, but often their direct application is minded to compare
the changes in the vibrational measurements before and after damage
to identify the structural damage. Several versions of GA algorithms are
available in literature, such as the Differential Evolution (DE), the Parti-
cle Swarm Optimisation (PSO), the Ant Colony Optimisation (ACO) or the
Firefly Algorithm (FA).



CHAPTER 1. STRUCTURAL HEALTH MONITORING 16

1.2.3 Fundamental Axioms

Only recently research community has established the first cardinal points of
the structural health monitoring field, classifying them as fundamental axioms
as proposed by [86]:

I. All materials have inherent flaws or defects.

II. The assessment of damage requires a comparison between two system
states.

III. Identifying the existence and location of damage can be done in an unsu-
pervised learning mode, but identifying the type of damage present and
the damage severity can generally only be done in a supervised learning
mode.

IV. Sensors cannot measure damage. Feature extraction through signal pro-
cessing and statistical classification is necessary to convert sensor data
into damage information.

V. Without intelligent feature extraction, the more sensitive a measurement
is to damage, the more sensitive is to changing operational and environ-
mental conditions.

VI. The length-scale and the time-scale associated with damage initiation and
evolution dictate the required properties of the SHM sensing system.

VII. There is a trade-off between sensitivity to damage of an algorithm and its
noise rejection capability.

VIII. The size of damage that can be detected from changes in system dynamics
is inversely proportional to the frequency range of excitation.

Figure 1.9: Example Ax. II - Comparison of different states of a mode shape
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1.3 State of Art: literature review of mode shape-based

methods

Mode shape data have been largely used since the early stage of research in
damage detection because of the capability of this feature to carry informa-
tion not only of multiple cracks occurrences, but also regarding their locations
and extensions. The ease of data sensing of mode shapes is a strong advan-
tage in using this feature, while experience showed off an higher sensitiveness
compared to frequencies analysis. However, the accuracy of vibrational mea-
surements remains limited by the technological issues of available sensors and
the related integrity of data against the disturbing presence of epistemic noise.
The focal point of the analysis, hence, concerns with the evaluation of one or
more opportune metrics able to return a quantitative characterisation of dam-
age. Moreover, modal data give access through mathematical manipulation,
such as derivatives, to higher order cinematic fields of the studied structure (i.e.
rotations, curvature) that present discontinuities strictly linked with structural
properties variations, like geometry, stiffness, flexibility, ... and more.
Available literature on mode shape methods is very wide: some of most rele-
vant works are presented here following a chronological/thematic order. One
of the first proposed metric is the Modal Assurance Criterion (MAC) [3] (1992)
and the similar modified criteria critically reviewed in [2] (2003). Based on the
orthogonality property of mode shapes φi ,φ j , where φT and φ∗ are the trans-
pose and the conjugate respectively, the MAC returns a real scalar index from 0
to 1 of vectors consistency as,
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(1.1)

Figure 1.10: Diagonal MAC of a 10-d.o.f cantilever beam



CHAPTER 1. STRUCTURAL HEALTH MONITORING 18

Results can be visually interpreted by immediately comparing the level of
consistency of matched mode shapes as showed in figure 1.10 above for a 10-
d.o.f.s cantilever beam with a reduction of elementary stiffness of 15% in each
element of φ j , respectively.
Analogously, combining eigenvectors and eigenfrequencies ω, [92] (1985) pro-
posed the Yuen Function a as a index of distortion of damaged mode shapes
over position,

Yi =
φi

ωi
−
φ j

ω j
(1.2)

Results showed a correlation with position of crack and strain energy of the
studied beam: higher discontinuities were detected close to the clamped end,
while the differences is slightly reduced where strain energy is low.
On the same pattern, [53] (1991) proposed the analysis of curvature κ changes
along position x for the relation with bending moment, deriving it from mode
shape measurements through the central difference approximation with a step
h (while backward and forward rules are used for the extreme elements)

κ(x) =φ
′′
(x) ≈

M(x)

E I

wi th φ
′′
m ≈

φm−1 +2φm +φm+1

h2

(1.3)

and the damage index named Mode Shape Curvature (MSC) is generally de-
fined as,

MSC =∆κ j =
N
X

i=1

¯

¯(φD
i , j )

′′
− (φU

i )
′′¯
¯ (1.4)

The extension of this method was proposed by [64] (1997) using a Laplacian
operator in order to obtain a generalised evaluation of the second difference
suitable also for 2-dimensional problems. Generally, curvature is a good fea-
ture to investigate since its higher order contributes to amplify modal discon-
tinuities; otherwise, this amplification is collaterally reflected on noisy data if
second order derivative is obtained by deriving transverse displacements. An
example of use of squared curvature to index damage is found in [68], while
an experimental verification of several methods can be found in [60] (2009).
Other implementations are the Curvature Damage Factor (CDF) [81] and the
Normalised Curvature Ratio (NCR) [42].
In [40] (1995) the inherent relation between mode shapes and modal strain en-
ergy was used to define new indexes α j describing severity and β j , standard-
ised in the Damage Localisation Indicator Z j , describing location of damage,
over incomplete mode shapes as in equations 1.5, where apexes T and ∗ refer
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to transpose and conjugate respectively, N M to available mode shapes and N E

the number of members, while K is the modal stiffness and C collects the geo-
metric properties. Normalisation, as usual, involves the mean β̄ and standard
deviation σβ and allows the identification of flaws on pattern recognition bases
by accepting or rejecting null and alternate hypotheses. In this method, as the
aforementioned ones, results becomes more significative when the baseline of
normal conditions is subtracted to damaged data and the analysis is focused on
the differences between the two states only (figure 1.11). A comparative study
on the effectiveness of the previous methods can be found in [71] (2000).
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Figure 1.11: Study of I-40 Bridge, damaged element n. 106 [84]

A miscellaneous approach involving a variation of MAC, the multiple dam-
age location assurance criterion (MDLAC) introduced by [48] for frequencies,
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was presented in [73] (2000) for incomplete mode shapes. Partial mode shapes
where combined with the analytical ones to perform localisation of defect by
the evaluation of a MDLAC value for mode shapes,

MDL AC (δD j ) =
|(∆φ)T · (δφδD j )|2

(∆φ)T ·∆φ · (δφδD j )T · (δφδD j )
(1.6)

where ∆φ is the measured, incomplete, discrete mode shape difference vector
and δφ is the analytical mode shape difference at the same d.o.f.s, while δD j is
the size of damage at location j preliminarily estimated. This method showed
off a particular effectiveness in flaws localisation on the basis of partial infor-
mation also for non-linear structures.
A completely different approach was followed by [91] (2001) implementing a
real-number encoded genetic algorithm to directly minimise an objective func-
tion, instead to update a structural model for iterative evaluation of damage
effects. From the different evaluated objective functions, the best results were
obtained with a target J comprehensive of frequencies and modes shapes at the
same time,
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where W are the weights of the cost function, the apexes A and E refer to ana-
lytical and experimental data, D and U to the damaged and undamaged state,
N M and N P to the available modes and the measurement points, α is a stress
reduction factors and 0 refers to the initial value, respectively. The genetic opti-
misation enhances detection, localisation and sizing of damage in an effective
way in 1-d and 2-d structures.
In [1](2002), again an higher order feature of displacement fields was investi-
gated, taking in consideration the changes in rotations. It was carried out that
changes of rotation of mode shapes are robust to localise single and multiple
cracks with different sizes and more sensitive respect to transverse displace-
ments. An alternative damage index is found in [41], where the mode shape
slope at k th coordinate for the i th mode is evaluated with the first derivative
approximation on 5 points as,

∆(φi ,k )
′
≈

φi ,k−2 −4φi ,k−1 +6φi ,k −4φi ,k+1 +φi ,k+2

2h
(1.8)
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and the Mode Shape Slope Damage Factor (MSSDF) is
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Keeping focusing on the discontinuities caused by damage presence, [82] (2007)
and [58] (2008) improved a detection method based on the irregularity profile
of the mode shapes due to damage only by subtracting the normal baseline of
displacements evaluated by filtering to smooth noisy waveforms. The rough-
ness profile R is defined as,

w(x0) =
Z∞

−∞
z(x0 +x)h(x)d x

R(x0) = z(x0)−w(x0)
(1.10)

where z is the height of the mode shape and h(x) is the smoothing function
and w is the waviness of the the mode shape. Results showed an effective re-
sponse for realistic simulations (SN R ≈ 40dB , a

h
≈ 0.3) and low sensors reso-

lution. [34] and [17] followed a probabilistic approach adopting the joint log-

(a) Noisy Roughness profile - 1st mode,
x
L
= 0.3, a

h
= 0.3, SN R = 40dB

(b) Filtered Roughness peaks - 3td
mode, 3 cracks

Figure 1.12: Irregularity method applied to a cantilever beam [82]

arithmic marginal likelihood evaluated on a piecewise kernel as indicator of
damage. The process allow to detect and localise multiple cracks with an ac-
ceptable sensors resolution in an effective manner without requiring differen-
tiation that always results in an amplification of noise [18]. Further improve-
ment of this approach is [15], where Treed Gaussian Processes (TPG) are used
to selectively reduce the possible damaged configurations in order to assess
locations and sizes of possible cracks by a treed convergent iteration over sub-
classes of the characteristic crack parameters.



Chapter 2

Machine Learning and Gaussian

Processes

2.1 Definition of Machine Learning problems

If the latter half of the past century has been strongly characterised by the dig-
ital revolution with the beginning and the technological development of com-
puters, nowday, with the increased computational power and the advancing
in sensor technology, new interdisciplinary paradigms are becoming of central
interest in many scientific fields such as big data analysis, data mining, arti-
ficial intelligence, natural inspired computation or internet of things, to cite
some examples. The IV Industrial Revolution is, indeed, firmly rooted on these
basis with the final aim to develop automatic and highly innovative products,
services and methodologies: a definition that well suits with the purposes of
Structural Health Monitoring, where data analysis, computational and sensing
devices and decision processes are jointly applied to monitor and to predict the
current and the future state of structural elements. In this context, machine

learning covers a prominent transversal position and, recalling the definition
proposed in [49], it is «... the set of methods that can automatically detect pat-

terns in data, and then use the uncovered patterns to predict future data, or to

perform other kinds of decision making under uncertainty...>. As told before,
often these methods are contaminated with natural inspired artificial compu-
tation, that concerns with developing technology to enable computers to solve
problems that commonly could be solved only by humans by taking inspiration
from already existent natural models and solutions. To cite an example of this
approach, the aforementioned Multi-Layer Perceptron (section 1.2.2) mimes
the interaction among several neurons in order to provide outputs from a series
of mapped input features (figure 2.1).

22
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Figure 2.1: Multi-Layer Perceptron net-
work, an example of artificial natural
inspired model

In other words, what experience rep-
resents in the human decision pro-
cess is emulated by the machine in
a probabilistic way on the basis of
the input data sampled in an op-
portune training set. This train-

ing phase is finalised to estimate, by
tuning them through an optimisa-
tion step, the governing parameters
of an adaptive model, which consti-
tutes the reference baseline of knowl-
edge of the algorithm. To ensure
the statistical reliability of the estima-
tions, generally an intermediate vali-

dation phase, performed on a oppor-
tune validation set separated form
the training one, is required. Final
predictions using the already tuned
algorithm, like classification or nov-
elty detection, is the generalisation

phase, where a not-intersecting test
data set is used to match probabilistic
thresholds and in some case reward
criteria to extrapolate generally valid
predictions that fit with the recog-
nised pattern [9]. Typically, learning algorithms are classified by considering
the type of available input data or distinguishing the type of resulting output.
While the second criterion has been already presented in section 1.2.1, in the
first case the three different classes are subdivided as follows,

Supervised Learning :
The algorithm is trained on data from every feasible state and the label
of each case is known (i. e. undamaged/damaged state). Basically this
procedure consists of teaching to the machine how to do something and
then to let it use the model with a general rule that correlates input and
output. The major disadvantage is the requirement of prior knowledge of
all states, which implies an higher cost in the data acquisition phase in
economic and time-consuming terms.

Unsupervised Learning :
Starting from unlabelled data acquired from a single case (i. e. undam-
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aged state), the algorithm learns how to do something, and use this to
discover structure and patterns in data.

Reinforcement Learning :
The adaptive algorithm autonomously interacts with external inputs in
order to pursue a given goal while a supervisor rewards or punishes it
on the basis of the final achievements (success/fail). In this way the al-
gorithm tries to maximise the reward and develops memory from past
experience, improving the quality of further predictions.

2.2 Gaussian Process

Bayesian interpretation of probability concerns with evaluating the confidence
of a given estimation, since its approach is based on the data information rather
than frequency of occurrence of certain event and the probabilistic model pa-
rameters themselves are estimated with a level of uncertainty. As explained in
[63], for the n noisy observations y = f (x)+ε of a 1-dimensional (D) problem,
disturbed by the independent and identically distributed noise ε with stan-
dard deviation σ, the Standard Linear Inference Model can be computed as a
Bayesian parametric regression, where the resulting distribution given the a-

priori knowledge of the phenomena is function of the weights w, following the
Bayes’s rule,

p(w|y,x,σ) =
p(y|x,w,σ)p(w)

p(y|x,σ)
(2.1)

where p(w) is the prior probability Density Function (PDF) that expresses our
initial beliefs on the distribution, p(y|x,w,σ) is the likelihood PDF given the
observations, p(y|x,σ) is the normalising constant named marginal likelihood

and p(w|y,x,σ) is the conditional posterior joint distribution. A key factor in all

Figure 2.2: Gaussian Process Regression scheme [63]
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probabilistic and semi-probabilistic approaches used in sciences and technol-
ogy fields regards the assumptions on the statistical distributions of the avail-
able experimental data. On the basis of the well-known Central Limit Theorem
(CLT), Gaussian or Gaussian-like probability distributions are mostly used. The
noisy observations y, that in this case are the beam transverse displacements at
the node locations x, have a Gaussian joint distribution of the target values f∗

and the function values at the test locations x∗ defined as follows,

p
¡

f∗|x,y,x∗¢

∼N (m∗,K ∗¢

(2.2)

where m∗ is the predictive mean and K ∗ is the predictive covariance matrix,
expressed as,

m∗ = k
¡

x∗,x
¢£

k (x,x)+σ2
n

¤−1
y (2.3)

K ∗ = cov(f∗) = k
¡

x∗,x∗¢

−k
¡

x∗,x
¢¡

k
¡

x,x
¢

+σ2
n

¢−1
k

¡

x,x∗¢

(2.4)

The resulting multivariate Gaussian probability distributions take the form,

p =
1

q

2πD
¯

¯K ∗
¯

¯

exp
h

−
1

2
(f∗−m∗)T K ∗−1(f∗−m∗)

i

(2.5)

The prior information of the process is specified in the covariance matrix K ∗,
in this case assumed as a Squared-Exponential. In the one dimensional case it
can be expressed in the form,

ky (xp , xq ) =σ2
f exp

·

−
1

2l 2
(xp −xq )2

¸

+σ2
nδp,q (2.6)

where δp,q is the Kronecker delta and l ,σ f ,σn are the hyperparameters, whose
optimisation is based on the marginalisation property of the marginal Likeli-

hood (ML). The variables xp and xq are the nodal locations of the training data
data set corresponding to different position indices p, q . The ML is taken in the
negative logarithmic form (NLML), since it is easier to perform a minimisation,
resulting in,

N LML = log p
¡

y|x, l ,σ f ,σn

¢

=
1

2
yT LT

xx\
¡

Lxx\y
¢

+
X

log
³

di ag
¡

Lxx

¢

´

+
n

2
log2π

(2.7)

where Lxx is the lower Cholesky decomposition of the covariance matrix k (x,x)
and the operator "\" indicates the left matrix division, required for a faster com-
putation of the matrix inversion. From 2.7 follows the three partial derivatives



CHAPTER 2. MACHINE LEARNING AND GAUSSIAN PROCESSES 26

constituting the gradient used to optimise it (CGO 2.4.1) evaluated with the
derivation chain rule:

∂N LML

∂l
=−

1

2
tr ace

·

A∗σ2
f exp

Ã

(xp −xq )2

2l 2

!

(xp −xq )2

l 2

¸

∂N LML

∂σ f
=−

1

2
tr ace

·

A∗2σ2
f exp

Ã

(xp −xq )2

2l 2

!

¸

∂N LML

∂σn
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1

2
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£

A∗2σ2
n

¤

wi th

A =
µ

³

LT
xx\

³

Lxx\y
´´³

LT
xx\

³

Lxx\y
´´T

−KX X I

¶

(2.8)

At the end of the iterative minimisation process, when the difference in likeli-
hood value is smaller than a given tolerance, the obtained hyperparameters are
the best ones fitting the covariance function on the training data considered.
In figure 2.3 is showed and example of regression, where 3 random posterior
are inferred on 5 observations with a confidence interval represented in grey.

Figure 2.3: Example of Regression [63]
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2.3 Extreme Function Theory

Extreme Value Statistics (EVS), based on Extreme Value Theory (EVT) [26], has
been established specifically to handle the values of the independent random
variables failing in the tails of the distribution of interest [13, 32, 44]. This is
particularly interesting in the field of Structural Health Monitoring (SHM). In-
deed, most widely used damage detection techniques revolve around outlier
detection (see, e.g., [89] and [90]), which in turn needs, in some sense, a sort
of "thresholding" between data taken from damaged and undamaged condi-
tions. This is due to the assumption that some features in the output recorded
from the structure in an abnormal situation will be above the so-determined
threshold. Extreme Values Theory is an ideal statistical framework for evaluat-
ing the significance of extreme values departing from the normality model and
the concept has already been exploited in this sense [67].
It must be remarked that normality, or normal condition, refers here to the
pristine state of the structure; Gaussian is used instead to indicate the normal
probability distribution function (PDF), to avoid any confusion. Nevertheless,
when dealing with extreme deviations from the mean, hypothesising Gaussian-
ity may misguide.
EVT is by definition a point-wise approach, generally applied to univariate data
or extended to other low-dimensional spaces. It can be adapted for functional
applications adopting the Extreme Function Theory (EFT) [16] to identify ex-

treme functions from a given n-dimensional multivariate Gaussian distribu-
tion; in the case proposed here, the functions are the mode shapes of the struc-
ture, interpolated from n discrete observations. Hence, defining a single value
of PDF (equation 2.5) for each tested function as z = fn(f∗) and taking the Gaus-
sian probability z in its logarithmic form (l z = log (z)) allows a better distinction
between the more extreme normal functions (undamaged mode shapes) from
the abnormal ones (damaged mode shapes) resulting in a reduction of wrong
identifications.

As known form the EVT the Generalised Extreme Value (GEV) distribution for
minima (L),

L(l z,µ,σ,γ) = 1−exp

(

−
·

1+γ

µ

µ− l z

σ

¶¸− 1
γ

)

(2.9)

where µ, σ, and γ denote, respectively location, scale, and shape of the GEV
distribution. The GEV distribution combines ones in a unique model the three
feasible limit distributions for the minima values, Gumbel (G), Frechét (F) and
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Weibull (W) (equation 2.10) [26],[90],

GU MBEL : LG (l z,λ,δ,β) = 1−exp

·

−exp

µ

l z −λ

δ

¶¸

wi th −∞< l z <+∞, δ> 0

F REC HÉT : LF (l z,λ,δ,β) =







1−exp

·

−
³

δ
l z−λ

´β
¸

i f l p ≤λ

1 i f l z >λ

W E I BU LL : LW (l z,λ,δ,β) =







0 i f l z ≤λ

1−exp

·

−
³

l z−λ
δ

´β
¸

i f l z >λ

(2.10)

where the parameters λ,δ and β represent, respectively, the location, the scale
and shape of the model distribution. A direct correlation with the parameters
of the 3 feasible limit minima distributions is reported in [55],

GU MBEL : i f γ→ 0, LG (l z,λ,δ,β)

µ=λ, σ= δ

W E I BU LL : i f γ< 0, LW (l z,λ,δ,β)

µ=λ+δ, σ=
δ

β
, γ=−

1

β

F REC HET : i f γ> 0, LF (l z,λ,δ,β)

µ=λ−δ, σ=
δ

β
, γ=

1

β

(2.11)

To individuate the anomalous mode shapes that could indicate the presence of
a damage in the beam structure, it is necessary to discern them from the mode
shapes that fall in a normal range. After reconstructing the CDF it is possible to
define a threshold l zl i m in correspondence of a given quantile α, in this case set
to the lower 1%. For the test data set, a new logarithmic posterior probability
l ztest is now calculated from equation (2.5) for each tested mode shapes. When
a logarithmic probability falls in a quantile α

′
beyond the defined limit α, the

value is recorded as an outlier and the entire mode shape identified as taken
from a damaged structure.
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2.4 Optimisation Methods

The search of the optimum model solution for a given problem with unknown
parameters requires an iterative process where a defined target or objective

function needs to be maximised (or minimised) to reach the related best func-
tion values fitting the input information (equation 2.12). The fundamental paradigm
of an optimisation algorithm must ensures, according to [50], three main prop-
erties:

• Robustness, performing well on a wide variety of problems in their class.

• Efficiency, not requiring too much computer time or storage.

• Accuracy, able to identify a solution with precision, without being overly
sensitive to errors in the data or to the arithmetic rounding errors that
occur when the algorithm is implemented on a computer.

Computational issues, instead, limit the theoretical feasible process, impos-
ing a trade-off among convergence rate, storage requirements, robustness and
speed. Usually, a further requirement is to find the global optimum of the do-
main among the possible local optima, because of the latter implies a lack of
knowledge on the problem that misguides the final estimation with strong bi-
ases and errors. If the domain is unbounded the optimisation is defined as
unconstrained; otherwise, if restrictions are imposed on the variables space as
scalar or functions, the objective function is evaluated on a specified range of
values and the optimisation is called constrained. Moreover, to be statically
reliable, an optimisation algorithm should prevent under- and over-fitting (fig-
ures 2.4), namely the inadequate or the excessive and wrong adaptability of the
model to a given analysed sample of values in fulfilment of the Occam’s razor

principle.

(a) Under-fitting (b) Good fitting (c) Over-fitting

Figure 2.4: Flexibility in fitting of a model
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An ulterior distinction depends on the type of used approach in the chose
of the model: if it is fully specified and a rule to define the initial condition is
assigned it is called deterministic (2.4.1), while «...stochastic optimisation algo-
rithms (2.4.2) use the quantifications of the uncertainty to produce solutions
that optimise the expected performance of the model...»[50].

In mathematical notation the minimisation problem (and analogously the max-
imization) over an arbitrary real set X of a continuous objective function f :
X →R is [36]:

mi nx∈X f (x) (2.12)

where if X = Rn the problem is defined unconstrained, otherwise constrained.
Operatively, the formulation of the optimisation process can be resumed in the
following steps:

• Individuation and definition of variables

• Chose of the solution representation

• Definition of the solution space definition

• Definition of the objective function

• Definition of solution quality measure criteria

• Constraints explication

In the context of this Thesis work, in the next two paragraphs are outlined the
working principles of the optimisation algorithms involved in the development
of the process.

2.4.1 Gradient Methods

Line-search methods are powerful deterministic algorithms widely used to per-
form unconstrained optimisation. The basic working principle is the descent

method, which is the search for the faster direction pk that ensures a decrease
of the objective function f . The problem formulation is restated as,

xk+1 = xk +αk pk (2.13)

where the positive scalar α is called the step length. The simplest application is
the Steepest Descent (SD) which performs minimisation in the direction of the
negative gradient, but it is often inefficient because the orthogonality of search-
ing directions does not ensure the fastest convergence. To overcome this limit
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an inexact line search is required in order to iteratively estimate the best step
length and the resulting more rapid descend search direction. The Conjugate

Gradient Optimisation (CGO), introduced by [35] in the linear formulation and
modified for non-linear problems by [27], is one of the most used algorithm
based on the adaptive line search strategy because it approximates quadrati-
cally the estimation without requiring Hessian matrix evaluations or large stor-
age and computational effort in matrix inversion (figure 2.5). Line search starts
by choosing as initial guess the steepest descent direction pk and an appropri-
ate step length αk is now calculated as

αk+1 = mi n f (xk +αk pk ) (2.14)

The new search direction is evaluated by combining the steepest descent gi

direction at the new iterate of equation 2.13

gi =∇ f (xk+1) (2.15)

with the previous search direction expressed as,

pk+1 =−gi +βpk (2.16)

where β is a real scalar value depending on the gradient gi defined accord-
ing different formulations, such as the Fletcher-Reeves or Polak-Ribière-Polyak
conditions. The variation of the step lengthα, instead, is subjected to the Wolfe-
Armijo or Wolfe-Powell conditions. Finally, the iterative loop ends returning the
global minima estimated with a given approximation [50].

Figure 2.5: Conjugate Gradient Optimisation scheme
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2.4.2 Genetic Algorithms

Genetic Algorithms (GA) are random heuristic optimisation method based on
the evolution process of DNA structure, where the optima estimations are reached
through a phase of intensification in which the solution is locally perturbed to
fast look for the best fitting and a phase of diversification in which a greater part
of solution is changed to avoid local minima. Generally, according to [30], GA
present the following properties:

• works with a coding of the parameters set

• searches from a populations of points

• uses objective function instead of gradient

• uses probabilistic rules

• has memory of previous search results

In the paradigm introduced by [76] for Differential Evolution (DE) algorithm, an
initial random population of n individuals is encoded in a chromosome struc-
ture, where each individual represents a gene of the genetic heritage to prop-
agate during the reproduction phase. The reproduction probability to trans-
mit the favourable or disadvantageous attributes depends on the fitting cost
to minimise that each case have when matched with the objective function. A
child chromosome is created starting from two random selected parents vec-
tors of the population: to avoid any bias the child vector is processed through
a mutation phase (intensification) in which it is scaled and perturbed in or-
der to obtain an new element. A successive cross-over step (diversification)
combines the child vector with an independent one to obtain the trial vector of
parameters used to fit the objective function. On the basis of the Mean Squared
Error (MSE) of fitting cost the gene would be transmitted or not to the next
population by a binomial matching. A schematic overview of the algorithms
is showed in figure 2.6. Simply repeating the process different times, genetic
algorithms of DE type enhance robustness in the estimation while avoiding lo-
cal minima, without requiring any a-priori knowledge on the defined range of
parameters. The self-adaptive (SADE) modified version of the genetic differen-
tial algorithm proposed by [59] has been applied to perform fitting, where the
adaptive feature of the optimisation does not require the specification of the
initial parameters, such as the scaling factor or the crossover ratio that are iter-
atively estimated.
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Figure 2.6: Flow chart of Differential Evolution Genetic Algorithm [90]



Chapter 3

Beam Elastic Model

3.1 Introduction

The model of a beam-like structure, with one main longitudinal dimension
along the beam axis, is often adopted as reference model for more complex
analysis because it is simple to describe directly its behaviour. In the simula-
tions considered in the next chapters the interest is focused on evaluating the
displacements of a vibrating cantilever beam in the undamaged and damaged
states, with the main assumption of linearity in both of them. These assump-
tions of linearity present obvious advantages in mathematical dissertation al-
though the model remains still capable to approximate in an effective way the
structural behaviour in most of the practical cases: common materials such as
steel, concrete or reinforced concrete can be modelled as linear or can be lin-
earised to equivalent sections since their global properties can be assumed as
elastic, homogeneous and isotropic.

The sections below present a review of some theoretical aspects regarding
the deformation process of a deformable elastic beam modelled according to
the mono-dimensional Euler-Bernoulli theory in the static and dynamic con-
figurations. The further implementation in MatLab® of the undamaged and
the damaged models is formulated using the Finite Element Methods (FEM), a
numerical and computational method widely used to approximate continuous
problems, so also a review of this calculus approach is given, focusing on the
aspects applied to the related analysis.

34
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3.2 Static Deflection of Continuous Beam

A general description of the deflection behaviour of a beam was given by Tim-
oshenko [78] taking into account the effects of shear, particularly relevant when
dealing with thick beams, where rotational inertia contributes significantly with
the rigidity of the beam. Although formulated some centuries before, the clas-
sical Euler-Bernoulli beam theory represents a particular and simplified case
of the Timoshenko’s one and its validity holds under certain main restrictions.
The two fundamentals hypothesis are :

• Conservation of plane sections - The cross sections of the beam in the
undeformed state are plane and remain plane during the deformation
process and thus, the centroidal axis is a longitudinal symmetry axis.

• Orthonormality - The plane cross sections originally orthogonal to the
centroidal axis remain orthogonal to the deformed centroidal axis during
the deformation process, implying the isotropy property.

From the previous kinematic hypotheses follows that the shear strains are null
and consequently the shear stresses as well (beam infinitely rigid in shear). This
condition suites only with the behaviour of slender beams where the order of
thickness is smaller than the length one and the contributes of shear strain and
rotational inertia can be ignored if compared with the effects of bending [5].
Furthermore, other simplifying hypotheses are made in the analysis:

• All the displacements are considered small and they can be evaluated
with a first order approximation.

• The equilibrium of the structure is considered in an undeformed state.

• The constitutive behaviour of the structure is linear elastic.

• The Poisson’s effect is neglected.

• The longitudinal axis of the beam is straight.

• The cross section A is prismatic (rectangular) and remains constant along
the span.

• The mass distribution remains constant along the span (constant volu-
metric density ρ).

The linearisation of the describing equations of the elastic equilibrium due to
the assumption of small displacements and the linear elastic behaviour have
the main consequence of the applicability of the principle of superposition of
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effects. The global solution can obtained summing the solutions of the single
response for a given action and the use of all linear operators is allowed. This
last property will results relevant in next chapters when the simulated data will
be processed as Gaussian distributed. In spite of this, the assumed linearity
issues some limitations such as in the case of non-linear constitutive behaviour
or when geometric non-linearities are present.

Considering an infinitesimal element of a beam subjected to simple bend-
ing (figure 3.2), thus to bending moment Mz and shear force Vy , and ignoring
the displacements in lateral direction z caused by the Poisson’s effect, the dis-
placements field

©

u
ª

=
©

u v ϕx

ªT
(3.1)

is determined by 2 independent displacement components u(x, y) v(x, y) and
the related rotation ϕx = ϕ(x). The hypothesis of plane section normal to the
longitudinal axis implies big curvature radius r and consequently small curva-
ture κ, while considering only transverse forces the uncoupled axial displace-
ment u(x) results null. The elementary rotation (figure 3.1) can be expressed
as:

ϕ (x) ≈ t an
¡

ϕx

¢

=
d v

d x
(3.2)

with the approximation of the tangent based on the small displacements as-
sumption. Consequently, the curvature is:

κ=
1

r
=

dϕx

d x
(3.3)

Figure 3.1: Elementary rotation of an infinitesimal element

Since axial translation and shear deformation are neglected, the increment
of transverse displacement due to bending moment is:

d v =ϕxd x (3.4)
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and thus, the relation between the transverse displacement and the curvature
is represented by the second order derivative:

κ=
d 2v

d x2
(3.5)

The stress-strain De Saint-Venant relations allow to express the curvature in
function of the bending moment Mz for an arbitrary material point distant y

from the centroidal axis and for a given section A. Defining:

- from the kinematic relations, the longitudinal elastic axial strain εx

εx =
∂u

∂x
=−y

dϕx

d x
=−y

d 2v

d x2
(3.6)

- from the Hooke’s constitutive relations, the corresponding elastic axial stress
σx

σx = Eεx =−E y
d 2v

d x2
(3.7)

- the moment of inertia Iz , or rather the second moment of area A along the
z-axis

Iz =
Z

A
y2d A (3.8)

and combining the previous equations 3.6, 3.7, 3.8 with the De Saint-Venant

formulation of the characteristic external forces, the resulting in-plane bending
moment Mz [78] is expressed as

Mz =
Z

A
σx yd A =−E Iz

d 2v

d x2
= E Izκ(x) (3.9)

where the product E Iz is the flexural rigidity. This differential expression 3.9 is
the equation of linear elasticity and represents the governing equation for the
inflected beam in function of the bending moment Mz . Alternatively, it is pos-
sible to formulate the differential equation 3.9 taking in consideration directly
the applied orthogonal external load instead of the end forces. Expressing the
shear Vy as the variation along the x-axis of the bending moment Mz

d Mz

d x
+Vy = 0 (3.10)

The equilibrium of the infinitesimal beam element subjected to a transverse
distributed load p(x) represented in figure 3.2 resulting from equation 3.10 is:

d 2Mz

d x2
=−p(x) (3.11)
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Figure 3.2: Equilibrium of the infinitesimal beam element

Thus, the governing equation of linear elasticity can be rewritten as a differ-
ential equation of the fourth order (the second member is valid for a constant
elastic modulus and constant cross section):

d 2

d x2

µ

E Iz
d 2v

d x2

¶

= E Iz
d 4v

d x4
= p(x) (3.12)

With a null external load p(x) = 0, the general exact solution for the trans-
verse displacement is a third order polynomial in the form:

v(x) =
ax3

6
+

bx2

2
+ cx +d (3.13)

and can be solved in closed form by finding the 4 integration constants with
the definition of 4 Dirichlet’s boundary conditions, with the sign convention of
figure 3.3:

v(0) = v1

v(l ) = v2

d v

d x

¯

¯

¯

¯

x=0
=ϕ1

d v

d x

¯

¯

¯

¯

x=l

=ϕ2

(3.14)
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Figure 3.3: Sign convention for the Euler beam element

The final expression of the differential equation 3.13 after the determination
of the constants gives the expression of the transverse displacement for a beam
subjected to a translation in node 1 v1, null transverse displacement v2 in node
2 and zero rotations ϕ1, ϕ2 in node 1 and in node 2:

v(x) =
·

1−3

µ

3x2

l 2

¶

+2

µ

x3

l 3

¶¸

v1 (3.15)

Solving the equation 3.12 in an analogous way for the other cases (all the trans-
verse displacements and rotations), the displacements field is fully determined
and consequently, from the principle of strength of materials, it is possible to
evaluate the element end member forces vector
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ª

=
©

Vy1 Mz1 Vy2 Mz2
ªT

(3.16)

This yields to the definition of the elastic stiffness matrix in local coordinate

system Ke, in which each column represents the response due to the uncou-
pled action of transverse displacement v1, rotation ϕ1, applied in node 1, and
displacement v2, rotation ϕ2 applied in node 2, respectively :




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(3.17)

Or rewritten in compact matrix notation:
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(3.18)
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3.3 Undamped Free Vibrations of Continuous Beam

The dynamic analysis of the continuous beam is based on the mono dimen-
sional wave theory formulated by D’Alembert, in which is expressed the de-
pendency of wave propagation on space and time. Also in this case, a more
general solution comprehensive of the effects of rotational inertia and longitu-
dinal forces is obtained from the Rayleigh [66] and Timoshenko [77] theories
and a comparison among the different models can be found in [33]. Instead,
holding all the hypotheses assumed in the previous section 3.2, the free flexural
(small) vibrations for the particular case of the Euler-Bernoulli can be described
taking into account the effects of transverse inertial forces, in the form:

p I (x, t ) =−ρA
d 2v

d t 2
(3.19)

A main simplification respect to the real behaviour of structure is not consid-
ering the viscous damping among the internal forces. The element, in fact, is
considered purely elastic and consequently its response is conservative. This
assumptions holds the linearity property of elastic solids, that as told before, is
basic for the further elaboration of vibrations as Gaussian process. The trans-
verse displacement of a vibrating beam due only to inertial forces are expressed
rewriting the equation of linear elasticity 3.12 as:

d 4v

d x4
=−

ρA

E Iz

d 2v

d t 2
(3.20)

The previous equation is a partial differential equation with separable variables
and the solution can be obtained by applying the Fourier method:

v(x, t ) =φ(x) f (t ) (3.21)

hence the equation of motion 3.20 results:

d 4φ(x)

d x4
f (t )+

E Iz

ρA
φ(x)

d 4 f (t )

d t 2
= 0 (3.22)

which can be separated in two uncoupled ordinary differential equations (ODE):

d 2 f (t )

d t 2
+ω2 f (t ) = 0

d 4φ(x)

d x4
−
ρAω2

E Iz
φ(x) = 0

(3.23)



CHAPTER 3. BEAM ELASTIC MODEL 41

The first of 3.23 depends only on time variable and is a second order linear
homogeneous ODE, which has the characteristic equation in the form:

ÿ +ω2 = 0 (3.24)

and hence admits the different characteristics roots:

y =±iω (3.25)

that give the general solution:

f (t ) =C1e iωt +C2e−iωt (3.26)

or rewriting it using the Euler-Cotes relation the previous equation becomes:

f (t ) = A sin(ωt )+B cos(ωt ) (3.27)

that is the equation of motion of the elementary harmonic oscillator with un-
damped free-vibrations, where the constant ω has the physical meaning of the
angular frequency of the system, related to the period T of 1 cycle of the system:

ω=
2π

T
(3.28)

The particular solution of 3.27 depends on the coefficients A and B that can be
determined by imposing the Cauchy boundary conditions, such as the initial
position f0 and initial velocity ḟ0 at t = 0, while the frequency ω depends on the
Dirichlet’s boundary conditions defined by the imposed restraints. Since ω is
also the eigenvalue of the problem and the structure is in this case studied as
a continuous system, there will be an infinite number of eigenfunctions fi (t )
and related eigenfrequencies ωi , one for each of the infinite degree of freedom,
also called natural frequencies. In correspondence of these values, indeed, as
the evaluated roots of the differential equation are not identical, the solution
presents mathematical resonance traduced physically with an amplification of
the motion of the system subjected to a periodical external excitation force act-
ing at a nearly frequency. The first natural frequency is defined fundamental

because all the other natural frequencies are proportional to this one (eq. 3.29):

ωi = (ki l )2

s

ρA

E Iz l 4
(3.29)

where l s the length of the element, and it is related to the less rigid vibra-
tional configuration of the system, which consequently presents the largest dis-
placements. The constant ki , that corresponds also to the multiplying factor
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(ρAω2)·(E Iz)−1 in the second equation of 3.23, is called wavenumber k and de-
pends on the geometry and on the boundary conditions of the structure. This
can be explicated in function of ω through the dispersion relation:

k4 =
ω2ρA

E Iz
(3.30)

Thus, the eigenfunction φ(x) depends only on space variable and can be solved
as a fourth order homogeneous equation, with characteristic equation:

y IV −k4 = 0 (3.31)

and the four different characteristics roots:

y =±k; ±i k (3.32)

leading to the general solution:

φ(x) =C3ekx +C4e i kx +C5e−kx +C6e−i kx (3.33)

or in the alternative Euler-Cotes formulation [80]:

φ(x) =β1 [cos(kx)+cosh(kx)]+β2 [cos(kx)−cosh(kx)]+
+β3 [sin(kx)+ sinh(kx)]+β4 [sin(kx)− sinh(kx)]

(3.34)

that for the arbitrariness of constants βi yields to:

φ(x) =C sin(kx)+D cos(kx)+E sinh(kx)+F cosh(kx) (3.35)

where the constants depend on the Dirichlet’s boundary conditions defined by
the imposed restraints. Similarly to the time case, the system considered con-
tinuous is described by an infinite number of eigenfunctionsφi (x), one for each
of the infinite degree of freedom, and the generic structural deformation v(x, t )
is the results of a linear combination of all these vibrational functions (with a
more relevant influence coefficient for the first lower shapes). Otherwise, the
previous statement implies that each natural mode shape is linearly indepen-
dent and can not be obtained from a linear combination of other modes. In-
deed, the eigenfunctions φi (x) present the mathematical property of orthogo-
nality respect to the mass and to the stiffness of the structural element assumed
of length l :

Zl

0
φiφ j d x = 0, i f i 6= j (3.36)

This relevant characteristic is widely used in several aspects of modes shape
functions analysis, as the decoupling of equations of motion in space and time
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or modal analysis. Moreover, it is used to normalize the mode shapes to the
maximum displacement (taken equal to 1) or to normalize with regard to the
mass distribution (taken unitary) related to each degree of freedom considered
(principal components). Finally, a general expression of the harmonic motion
for the natural modes of vibrations taking into account equation 3.21 can be
given in the form:

v(x, t ) =
∞
X

i=1
φi (x) · [Ai cos(ωi t )+Bi sin(ωi t )] (3.37)

The constants Ai and Bi are defined through the imposition of the initial condi-
tions, showing the dependence of the free vibration on the initial displacement
and the initial velocity. For each i th mode it is possible to identify an increasing
(finite) number of points of maximum deflection, called nodes, and points with
null displacement, called antinodes.
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3.4 Transverse Vibration of a Continuous Cantilever

Beam

For simple boundary conditions setup it is possible to analytically evaluate the
component functions of the equation of motion 3.37, obtaining the related
space and time varying eigenvectors. Instead, for more complex systems, it
is definitely more convenient in terms of computational effort to use a numer-
ical approach. In this case, the focus is on the cantilever beam configuration
and the analytic solution is presented below, while a Finite Element approach
will be presented in section 4.1. For the fixed-free beam of length l in figure 3.4
the clamp restraint implies null displacement and null rotations in x = 0, while
the free end at x = l has unconstrained vibrations and thus null shear and null
bending moment (eq. 3.38). The 4 Dirichlet’s boundary conditions apply to the
eigenfunctions φ(x) (eq. 3.35)

Figure 3.4: Boundary conditions of a cantilever beam

v(0, t ) = φ(0) = 0

d v

d x

¯

¯

¯

¯
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¯

¯

¯

¯
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d x2

¯

¯

¯

¯

x=l
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d x2

¯

¯

¯

¯

x=l

= 0

d 3v

d x3

¯

¯

¯

¯

x=l

= Vy (l , t ) =
d 3φ

d x3

¯

¯

¯

¯

x=l
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(3.38)

And thus, results a system of 4 unknowns constants:










0 1 0 1
1 0 1 0

−sin(ki l ) −cos(ki l ) sinh(ki l ) cosh(ki l )
−cos(ki l ) sin(ki l ) cosh(ki l ) sinh(ki l )





















C

D

E

F











=











0
0
0
0











(3.39)
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The trivial solution with the determinant not null is not admitted here since it
corresponds to the free body rigid motion. Thus the non-trivial solution, with
the null determinant, gives the transcendent spectrum equation of all possible
frequencies:

cos(ki l )−cosh(ki l )+1 = 0 (3.40)

which yields to the characteristic equation [80]:

φi (x) = cosh(ki x)−cos(ki x)−
cos(ki l )+cosh(ki l )

sin(ki l )+ sinh(ki l
[sinh(ki x)− sin(ki x)] (3.41)

The characteristic vibration is in the form of equation 3.37, where the constant
Ai and Bi depend on the initial conditions at t = 0 and are determined using
the orthogonality property, resulting:

Ai =
2

l

Zl

0
v(x,0)φi (x)d x

Bi =
2

lωi

Zl

0

d v(x,0)

d t
φi (x)d x

(3.42)

Solving numerically equation 3.40, the roots ki l allow to evaluate the corre-
spondent eigenfrequencies ωi (eq. 3.29) and the beam vibration in space and
time through equations 3.41, 3.42 and 3.37. In the figure 3.5 below, the first 5
solutions for the cantilever beam and related mode shapes are presented, with
the positions of the i nodes and i antinodes for each i th mode.

Figure 3.5: First 5 roots and mode shapes for a cantilever beam [80].
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3.5 Undamped Free Vibration of Discrete Beam

As introduced before in previous section 3.4, the analytic solution of the dy-
namic vibrational problem is hardly obtainable for geometrical heterogeneous
structure setup since the resolution of the equation of motion 3.37 increases
considerably and may require a consistent computational effort. To overcome
this problem, in practice the real continuous elements characterized by an in-
finite number of degrees of freedom (one of each material point) can be con-
sidered as discrete and the description of the continuous geometry is reduced
to a N finite number punctual masses. The Finite Element Analysis discussed
more in detail in section 4.1 is one common example of numerical discretiza-
tion method: splitting the problem in an adequate N finite number of smaller
subsets the governing differential equations describing the physical behaviour
can be approximated to algebraic equations with an accuracy in the approx-

imation related to the number of elements involved (mesh). This aspects is
of fundamental relevance for automatic calculus, since the computer are ba-
sically able to operate with addiction and subtraction, resulting in easier and
faster implementation. Moreover, the dynamic problem considered so far has
been assumed linear and this enhance the use of the principle of superposition

of effects: the multiple degrees of freedom system (MDOF) can be studied as
the sum of N decoupled responses of each oscillating mass (single degree of
freedom (SDOF)).

There are various ways to formulate the discrete mechanical dynamic prob-
lem like through the application of the Virtual Work Principle, the Lagrangian

equations or the Principle of D’Alembert. On the same line of section 3.3 this
last alternative is chosen, which actually consist in an extension of the Virtual
Work Principle. According to the D’Alembert Theorem formulation:

The motion of a vibrating mechanical system can be considered in each moment

t as a static equilibrium of all the time dependent internal p i nt (t ) and external

pext (t ) acting forces and the inertial forces p I (t ).

X

h

p i nt (t )+pext (t )+p I (t )
i

= 0 ,∀t ≥ 0 (3.43)

Consider the i th general structural element of mass mi represented in figure
3.6, where ki is the stiffness of the spring, ci is the viscous coefficient of the
dashpot, pi (t ) is the time dependent force of volume, ui (t ) = ui is the time
dependent displacement, u̇i and üi are respectively the velocity and the accel-
eration and e j is the generic versor.
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Figure 3.6: Dynamic equilibrium of the i th interconnected element with elastic
springs and viscous dampers [56].

The internal forces p i nt
i

(t ) are divided in two classes: the conservative force
due to elastic spring pEL

i
= ki ui (t ) dependent on the displacement and the non-

conservative force due to viscous damper pNC
i

= ci u̇i (t ) dependent on the ve-
locity. The external forces pext

i
(t ), instead, can act punctually, on surface or on

the entire volume of the element, but in this case only the last force pi (t ) is con-
sidered. The fictitious inertial force is defined as the product between the mass
and the acceleration p I

i
= mi üi . The equilibrium of equation 3.43 becomes:

N
X

i=1

£

pEL
i (t )+pNC

i (t )+p I
i (t )

¤

=
N
X

i=1

£

pi (t )
¤

(3.44)

that can be rewritten as [56]:

N
X

i=1

£

mi üi (t )e j − ci u̇(t )i−1e j + (ci + ci+1)u̇i (t )e j − ci+1 ˙ui+1(t )e j+

−ki ui−1(t )e j + (ki +ki+1)ui (t )e j −ki+1ui+1(t )e j −pi (t )
¤

= 0

(3.45)

and in compact matrix notation, avoiding to report the time dependence is:

[M ] {ü}+ [C ] {u̇}+ [K ] {u} =
©

p
ª

(3.46)

where all the matrices are of dimension N×N. When the structure is assumed
linear with constant [M ] and [K ], the damping is neglected [C ] = 0 and the in
absence of external forces

©

p
ª

, the equation 3.46 describes the undamped free-
vibrations:

[M ] {ü}+ [K ] {u} = {0} (3.47)

The mass matrix [M] is real, diagonal (symmetric) and positive defined for ob-
vious physical reasons. The stiffness matrix, instead, is real, tridiagonal (sym-
metric) and non-negative defined, because is not necessary that the system is
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bounded and a null value corresponds to a rigid motion of the degree of free-
dom. These attributed properties have the physical meaning of proportional
relations between the stiffness matrix and the elastic energy and between the
mass matrix and the kinetic energy of the considered body. Thus, the coeffi-
cients of each matrix represent respectively the mass and the stiffness influence
on the motion for each element with regard to the related degree of freedom.
Similarly to the continuous case of equation 3.21, the motion can be expressed
as the product of two vectors:

u(t ) =
N
X

i=1
φi fi (t ) (3.48)

where the vector {φ} is a constant vector of displacements and { f }(t ) is the har-
monic scalar time varying vector expressed as:

fi = Ai sin(ωi t −α) (3.49)

in which Ai are the amplitudes and α the phase of the oscillations dependent
on the initial conditions. The harmonic solution means that all the degrees of
freedom move in phase, reaching the zero and the max amplitude at the same
instant (synchronous motion). Introducing equation 3.49 in equation 3.47 and
pre-multiplying for {φ}T :

{φ}T [M ]{φ}{ f̈ }+ {φ}T [K ]{φ}{ f } = {0} (3.50)

Splitting the scalar products analogously to continuous equation 3.23 the 2 left
members result equal to a non negative constant vector {ω}:

{ f̈ }

{ f }
=−

{φ}T [K ]{φ}

{φ}T [M ]{φ}
=−{ω2} (3.51)

Leading to the differential homogeneous equation in the form:

f̈ +ω2 f = 0 (3.52)

From the previous equation results the governing system of linear algebraic
equations:

¡

−ω2[M ]+ [K ]
¢

{φ} = {0} (3.53)

That represents a linear algebraic eigenproblem in the canonical form:

[K ]{φ} =ω2[M ]{φ} (3.54)
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The trivial solution {φ} = 0 correspond to a system in its state of rest, while the
non trivial solution is obtained only if the determinant is null and implies the
linear independence of the equations 3.53:

det
¡

−ω2[M ]+ [K ]
¢

= 0 (3.55)

Which is the polynomial characteristic equation of order N and so admits N
eigenfrequencies ωi (square roots of the N roots of the polynomial) that for
the properties of the matrices involved enunciated before are real and non-
negative eigenvalues. Relevant is that the eigenfrequencies are also the square
root of the ratio between the stiffness and the mass of the i th element:

ωi =

s

Ki

Mi
(3.56)

At each of these solutions corresponds one of the N eigenvectors φi that ex-
press the geometrical natural mode shapes of vibration of the system and, be-
ing defined trough the ratio of equation 3.51, are uniquely associated to the
correspondent eigenvalue except for an arbitrary constant non-zero scale fac-
tor. Moreover, the eigenvectors are orthogonal respect to the mass and stiffness
matrices. For two different mode shapes {φ}p and {φ}q holds:

{φ}T
p [M ]{φ}q = 0 i f

{φ}T
p [K ]{φ}q = 0 p 6= q

(3.57)

In order to have comparable values of the mode shapes (since they are defined
with the exception of the arbitrary constant) it is usual to normalize them. Two
of the more common normalisation procedures are the unitary scaling, divid-
ing each value for the largest absolute component of the mode itself, or using
the orthogonal condition 3.57 to the unitary mass obtaining:

{φ}T [M ]{φ} = [I ]

{φ}T [K ]{φ} = [Λ]
(3.58)

where [I ] is the identity matrix and [Λ] = di ag (ω2
i
).



Chapter 4

Finite Element Analysis

4.1 Finite Element Method

Instead of using the exact solution of the continuous static (3.12) and dynamic
(3.22) equations, the Finite Element Method (FEM) is a discrete method based
on an approximated formulation that evaluates the displacements of a count-
able number of points called nodes and connects them interpolating with ap-
propriate functions. Thus, all the components of the structural model, such as
the geometrical description, the mathematical governing laws, the materials’
properties and the acting loads have to be formulated in their discrete forms
and the precision of the results depend on the density of elements employed
to describe the model (mesh). Obviously, the finite elements used have same
spatial dimensions of the analysed system: a beam is split in linear segments, a
surface is generally modelled with two-dimensional elements such as triangles
and rectangles, continuous volumes are described through cubic elements. All
the assumed approximations are held by Virtual Work Principle (VWP):

Considering a statically admissible system of external forces (volumetric forces

{P A} and surface forces {sA}) and internal stresses {σA}) and a kinematically ad-

missible system of strains {εB } and displacements {δuB }, a necessary and suffi-

cient condition for the equilibrium is that, for any given (virtual) displacement

field δu, the virtual work δWext of external loads of system A applied to the dis-

placements of system B is equal to the internal work δWi nt of internal stresses of

system A applied to the strains of system B (eq. 4.1).

δWi nt = δWext
Z

Ω

{σA}T {εB }dΩ=
Z

Ω

{P A}T {δuB }dΩ+
Z

Γ

{sA}T {δuB }dΓ
(4.1)

50
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The previous expression is called "weak formulation" because is obtained by
partial integration through the application of the extended Green’s Theorem.
Moreover, the VWP is directly related with the Principle of D’Alembert and has a
general validity independently of the constitutive law of the material: actually,
the FEM can be applied to a large variety of physical problems, making of this
method a powerful analysis tool to solve, i.e., variational problems or equations
that do not present a closed analytic solution. The interpolation functions for
nodal displacements, also referred to as shape functions, are often polynomials
where their degree is determined by the number of d.o.f and their accuracy de-
pend on the number of interpolation points. For example, splitting the element
with two internal nodes (figure 4.1) and using the cubic polynomial results:

Figure 4.1: Element nodes for cubic interpolation

The standard procedure, for a linear element subjected only to a longitu-
dinal displacements, consists to approximate the displacement field û (where
the hat denotes the approximation) with a system of d (correspondent to the
number of d.o.f.) 3th degree polynomials: [19]:

û(x) =α1 +α2x +α3x2 +α4x3 =
£

1 x x2 x3 ¤











α1

α2

α3

α4











=
©

P
ª©

α
ª

(4.2)

Substituting the point wise values of the xi nodal positions and the nodal dis-
placements ûi , the system of equations 4.2 becomes:











û(x1)
û(x2)
û(x3)
û(x4)











=











1 x1 x2
1 x3

1 x3
1

1 x2 x2
2 x3

2 x3
2

1 x3 x2
3 x3

3 x3
3

1 x4 x2
4 x3

4 x3
4





















α1

α2

α3

α4











(4.3)

Expressing the previous equation in compact notation, the resulting expression
of the unknown linear coefficient {α} is:

©

û
ª

=
£

C
¤©

α
ª

→
©

α
ª

=
£

C
¤−1©

û
ª

(4.4)
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Thus, combining the previous relation with equation 4.2, the longitudinal dis-
placement approximation is:

û(x) =
©

P
ª£

C
¤−1©

û
ª

=
£

N e
1 N e

2 N e
3 N e

4

¤











û(x1)
û(x2)
û(x3)
û(x4)











(4.5)

The interpolating shape functions {[P }[C ]−1 collect the terms of the correspond-
ing linear combination related to the nodal displacements:

Ne =
£

N e
1 N e

2 N e
3 N e

4

¤

=
£

1 x x2 x3 ¤











1 x1 x2
1 x3

1 x3
1

1 x2 x2
2 x3

2 x3
2

1 x3 x2
3 x3

3 x3
3

1 x4 x2
4 x3

4 x3
4











−1

(4.6)

The main problems in the evaluation of shape functions is that the inverse of
matrix [C ] may do not exist, be ill-conditioned or hard to express in a gen-
eral form. In this exemplification case of a linear one dimensional element the
shape functions are required to be continuous and so to have only C

0 continu-
ity, while in the case of the Euler-Bernoulli beam they have to have C

1 continu-
ity in order to integrate the second order derivatives due to he presence of rota-
tions. To overcome these issues it is useful to adopt directly interpolating func-
tions as Splines, Fourier functions, Exponential functions, Hermitian poly-

nomial or Lagrange polynomial. Commonly these functions are conveniently
expressed in terms of local dimensionless coordinates ξ obtained normalizing
the global coordinates x (isoparametric element) [19](figure 4.2):

ξ= 2
x − x̄i ,i+1

Lel
(4.7)

Figure 4.2: Normalized local coordinate system

In the considered case of a cubic interpolation, the third order Lagrangian
polynomial for the isoparametric element has to be of the form:

L
p

i
(ξ) =

p+1
Y

j=1, j 6=i

(ξ−ξ j )

(ξi −ξ j )
(4.8)
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Hence, the 4 resulting shape functions are evaluated in 4.9 and showed graphi-
cally in figure 4.3:
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Figure 4.3: Isoparametric Lagrange cubic polynomial interpolation.
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Introducing now the time dependence of displacements for the dynamic
analysis purpose, similarly to equation 4.5, the displacements field can be ex-
pressed as:

{û}(x,t ) = [N ](x){û0}(t ) (4.10)

where {û0}(t ) are the time dependent nodal displacements. Recalling from the
linear elasticity theory [12] the stress-strain relations, in discrete form results:

{ε̂}(x,t ) = [∂]{û}(x,t ) = [∂][N ](x){u0}(t ) = [B ](x){u0}(t )

{σ̂}(x,t ) = [E ][∂][N ](x){u0}(t ) = [E ][B ](x){u0}(t )
(4.11)

where the [B ](x) is the deformation matrix. Introducing the previous equation
4.11 in the equation of V.W.P. 4.1, since the virtual displacements are arbitrary
[28] [29], is possible to obtain the discrete formulations of the other mathemat-
ical terms of the static and dynamic governing equations 3.18, 3.43 and 3.47 as:
- the elastic element stiffness matrix [K e ]

[K e ] =
ZLel

0
[B ]T

(x)E Iz[B ](x)d x =
Z+1

−1
[B ]T

(x)E Iz[B ](x)
Lel

2
dξ (4.12)

- the consistent element mass matrix [M ]e

[M e ] =
ZLel

0
ρA[N ]T

(x)[N ](x)d x =
Z+1

−1
ρA[N ]T

(x)[N ](x)
Lel

2
dξ (4.13)

- the generalized load vector of volumetric external forces {p}ext

{p}ext
(t ) =

ZLel

0
[N ]T

(x){Fv }(x,t )d x =
Z+1

−1
[N ]T

(x){Fv }(x,t )
Lel

2
dξ (4.14)

- the inertial mass forces vector {p}I

{p}I
(t ) =−

Ã

ZLel

0
ρA[N ]T

(x)[N ](x)d x

!

{ü0}(t ) =−[M ]{ü0}(t ) (4.15)

The previous equations represent the structural model of one single element.
The whole structure is considered as the aggregation of Ne disjointed elements
and the full global mass [M ] and stiffness [K ] matrices are built by directly as-
sembling the Ne sub-matrices (Direct Stiffness Method), overlapping them at
the coincident nodes and taking into account the opportune boundary condi-
tions and internal restraints. These will lead to the implementation of matrices
of dimension D ×D , where D is the product between the number of elements
and the number of considered d.o.f.

[K ] =
Ne
X

e=1
[K e ] D ×D

[M ] =
Ne
X

e=1
[M e ] D ×D

(4.16)
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4.2 Euler-Bernoulli Elastic Cantilever Beam

Consider the Euler-Bernoulli cantilever beam of figure 3.4, subjected to bend-
ing moment Mz and shear force Vy under the hypotheses of chapter 3. Since the
structure is linear and straight with a constant section, it can be modelled with
enough accuracy as beam finite element with only two end nodes n and thus
two degrees of freedom d for each node. The resulting transverse displacement
field and the external load vector are, respectively:

{v}(x) =
©

v1 ϕ1 v2 ϕ2
ªT

(4.17)

©

P
ª

=
©

Vy1 Mz1 Vy2 Mz2
ªT

(4.18)

Since the beam homogeneous differential equation is 3.12, the displacement
field 4.17 can approximated with a polynomial at least of order n ×d −1 = 2×
2−1 = 3 :

v̂i (x) =α1 +α2xi +α3x2
i +α4x3

i (4.19)

Following the standard procedure, equation 4.4 becomes:

{v̂}(x) =
©

Nv1 (x) Nϕ1 (x) Nv2 (x) Nϕ2 (x)
ª















v̂1

ϕ̂1

v̂2

ϕ̂2















(4.20)

where the matrix [C ] resulting in equation 4.22 is evaluated directly from the
interpolating polynomial, by imposing 4 boundary conditions (eq. 4.21). The
solution for the cantilever beam case is obtained imposing the restraints con-
ditions at the fixed end, thus v̂1 = 0 and ϕ̂1 = 0 in node 1.

v̂(0) = v̂1 =α1 v̂(l ) = v̂2 =α1 +α2l +α4l 3 +α3l 2

d v̂

d x

¯

¯

¯

¯

x=0
= ϕ̂1 =α2

d v̂

d x

¯

¯

¯

¯

x=l

= ϕ̂2 =α2 +2α3l +3α4l 2

(4.21)

[C ] =











1 0 0 0
0 1 0 0
1 l l 2 l 3

0 1 2l 3l 2











(4.22)

The four shape functions of equation 4.20 after the definition of the constants
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can be calculated in global coordinate:

Nv1 (x) = 1−3
x2

l 2
+2

x3

l 3
Nϕ1 (x) = x −2

x2

l
+

x3

l 2

Nv2 (x) = 3
x2

l 2
−2

x3

l 3
Nϕ2 (x) =−

x2

l
+

x3

l 2

(4.23)

Alternatively, the parametric formulation can be used and recalling the normal-
ized coordinate conversion 4.7 the previous equations 4.23 can be expressed as
the Lagrangian Polynomial or related to the Hermitian Polynomial [6]:

Nv1 (ξ) =
1

4
(1−ξ)2(2+ξ) Nϕ1 (ξ) =

l

8
(1−ξ)2(1+ξ)

Nv2 (ξ) =
1

4
(1+ξ)2(2−ξ) Nϕ2 (ξ) =

l

8
(1+ξ)2(ξ−1)

(4.24)

Analogously to the transverse displacement, it is also possible to approximate
the expression for curvature κ (eq. 3.5) simply deriving with respect to x the
shape functions expressions, implying the requirement of the C

1 continuity
condition due to the presence of the second order derivatives of transverse dis-
placement field. This leads, according with equation 3.9, to the definition of the
deformation matrix [B ], which collects the shape functions second derivatives:

[B ] =−
n

d 2Nv1
d x2

d 2Nϕ1
d x2

d 2Nv2
d x2

d 2Nϕ2
d x2

o

(4.25)

Adopting the interpolating shape function expression in global coordinates, re-
calling the equations 4.12 and 4.13, the discrete form of the stiffness matrix [K ]
and the consistent mass matrix [M ] 4.26. Since for a prismatic member with
constant cross-section the displacement field interpolated from the nodal val-
ues concurs with the exact solution obtained from the equation of elasticity
3.12, the resulting matrix is the same for the exact solution 3.17 and for the ap-
proximated one.

[K ] =

























12E Iz

l 3
6E Iz

l 2 −12E Iz

l 3
6E Iz

l 2

4E Iz

l
−6E Iz
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2E Iz

l

Sym
12E Iz

l 3 −6E Iz
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4E Iz

l




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












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[M ] =
ρA
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
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(4.26)
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4.3 F. E. Model of a Cracked Cantilever Beam

The analytic solution of cracked structure is not simple since the presence of
the localized discontinuity causes non-linear variations in the stress, strain and
displacement fields. However, it is much easier to model the system with a F.E.
approach because according to De Saint-Venant, the effects of the crack pres-
ence can be limited in the neighbourhood of the damaged region and thus only
the damaged element formulation need to be modified. The solution reported
in this section is the one proposed by [57] where the the stiffness matrix for the
damaged element [K d ] is derived through the definition of the stress intensity

factors. Considering the cantilever beam with a cracked section in figure 4.4:

Figure 4.4: Convention for a beam with crack

Neglecting the shear deformation, the strain energy for the damaged ele-
ment is:

W =W E +W D (4.27)

where the elastic component W E , common for all the undamaged elements, is:

W E =
1

2E Iz

Zl

0
(M +V x)2d x =

1

2E Iz
(M 2l +MV l 2 +V 2l 3) (4.28)

and the additional strain energy due to crack W D is:

W D = b

Za

0

Ã¡

K 2
I +K 2

I I

¢

E ′ +
(1−ν)K 2

I I I

E
d a

!

(4.29)

The K coefficients are, respectively, the stress intensity factors, for the opening,
in-plane sliding and out-of-plane sliding mechanisms (figures 4.5).
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(a) KI Opening (b) KII In-plane slide (c) KIII out-of-plane slide

Figure 4.5: Types of cracking

The elastic modulus E ′, instead, for plane strain conditions is defined in
function of the Poisson’s coefficient ν as:

E ′ =
E

1+ν
(4.30)

Taking in to account only the transverse bending displacements, equation 4.29
becomes:

W D
M =

Za

0

(K I M +K IV )2 +K 2
I IV

E ′ d a (4.31)

with the three stress intensity factors for the opening due to bending moment
K I M and shear K IV and for in-plane sliding due to shear K I IV :

K I M =
µ

6M

bh3

¶p
πaFI (

a

h
)

K IV =
µ

3V l

bh2

¶p
πaFI (

a

h
)

K I IV =
µ

V

bh

¶p
πaFI I (

a

h
)

(4.32)
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where the empirical factors FI and FI I are:

FI =

v

u

u

t

µ

2

π a
h

tan

µ

π a
h

2

¶¶0.923+0.199
³

1− sin
³

π a
h

2

´´4

cos
³

π a
h

2

´

FI I =
µ

3
a

h
−2

³ a

h

´2
¶

1.122−0.561 a
h
+0.085

¡

a
h

¢2 +0.18
¡

a
h

¢3

q

1− a
h

(4.33)

Remembering that the flexibility matrix [C ] is the inverse of the stiffness matrix
[K ] (eq. 4.34), the coefficients for the elastic (undamaged elements) are defined
as in equation 4.35

[C ] = [K ]−1 (4.34)

cE
11 =

∂2W E

∂V 2

cE
22 =

∂2W E

∂M 2

cE
12 =

∂2W E

∂V ∂M
= cE

21

(4.35)

The additional flexibility terms due to crack cD
i j

can be computed analogously

to equation 4.34 by substituting the energy W D and the total flexibility for the
damaged element is:

ci j = cE
i j + cD

i j (4.36)

The equilibrium of the cracked element is showed in figure 4.6 and results (eq.
4.37);















Vi

Mi

Vi+1

Mi+1















T

= [T ]

½

Vi+1

Mi+1

¾T

(4.37)

where

[T ] =











−1 0
−l −1
+1 0
0 +1











(4.38)
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Figure 4.6: Equilibrium of the cracked element

From the V.W.P., the expression for the stiffness matrix of the damaged ele-
ment [K D ] is:

£

K D
¤

= [T ] [C ]−1 [T ]T (4.39)

and the global stiffness matrix [K] for the Ne elements

[K ] =
Ne
X

e=1















[K E
e ] i f und amag ed element (eq.4.12)

[K D
e ] i f d amag ed element (eq.4.39)

(4.40)



Chapter 5

Novelty Detection in Cracked

Structures

5.1 Methodology

The methodology adopted in this study follows the path initiated by [16, 54] in
order to asses if a given simulated noisy mode shape is damaged or not. More-
over, the rate of success in correct classification is reported since is of primary
interest to determine the effectiveness of the used metric, in this particular case
the transverse displacement of the cantilever beam. First of all, two large sets
of data are simulated with the Finite Element Method, the first one collecting
the noisy undamaged transverse modes (UND), while the second one collects
the noisy damaged transverse modes (DAM). This step is functional to obtain
a robust statistical pool of data from which different subsets will be randomly
sampled later, avoiding intersections among them. Since the theoretical mode
shapes simulated using the dynamic elastic theory reviewed in previous chap-
ters 3 and 4 are noise-free, the Gaussian i.i.d. noise has been added (at different
levels) trough the specification of the Signal to Noise Ratio (SNR) (equation 5.3).

Then three subsets of data are randomly sampled for each analysed mode from
the parent sets UND and DAM:

• Training set (TR): composed only by the undamaged data.

• Validation set (VA): composed only by the undamaged data

• Test set (TS): composed by the undamaged and the damaged data.

The training set TR is used to train the Gaussian Process, fitting the parameters
of the multivariate distribution through the optimisation of the predictive joint

61
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conditional Marginal Likelihood by minimising its negative logarithmic form
with the Conjugate Gradient Method [63]. Combining the current parameters
estimation with the validation set VA leads to the generation of the standard-
ised logarithmic Probability Density Function (PDF).

To individuate the anomalous high displacement values that could indicate the
presence of a crack in a structure, it is necessary to discern them among all the
nodal displacements that fall in a normal range. To do this, from the logarith-
mic values of PDF is indeed possible to calculate the correspondent Cumulative
Distribution Function (CDF) that, as know from the Extreme Functions Theory

(EFT), belongs to one of the three feasible extreme distributions [26]. In this
case, the interest is focused on the minima distributions, since one could ex-
pect few occurrences of the anomalous values respect to the normal ones. The
defining parameters of the three CDFs are estimated with a Genetic Differen-
tial Evolution algorithm, in particular the Self-Adaptive Differential Evolution
(SADE) algorithm, because it enhances a better and more stable convergence,
avoiding the local minima without requiring an initial guess [90]. It is impor-
tant to note that mode shapes are treated as whole function instead that point-
wise, enhancing a reduction in false positives. Finally, a threshold defined to
be the 99% confidence interval allows to distinguish if the tested mode shapes
data belong to the normal undamaged condition or if they lay in the outer 1%
quantile, detecting in this case the presence of the damage. The parameters
studied in the different simulations, such as the depth of the crack, the location
of the crack and the level of added noise, were varied in order to establish the ef-
fectiveness of the used metric and to ensure statistically significative results in
the evaluation of the algorithm rate of success, the procedure was repeated sev-
eral times for each case. A graphical overview of the entire process is showed
in figure 5.1, which reports the key steps of the algorithm: the blue coloured
initial part is referred to data generation or acquisition, the yellow one is the
the training process of the model, the red one are the steps followed to vali-
date the model and, finally, the green part resumes the test and detection steps
for damage assessment; red text annotations, instead, reports the main input
parameters required that are been varied in the different simulations.
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Figure 5.1: Flow Chart: Damage detection algorithm for a edge-cracked can-
tilever beam using Gaussian process regression with eigenmode displace-
ments.

5.2 Description of the Mode Shapes Data

Starting from the Euler-Bernoulli theory enunciated previously in chapter 3, the
undamaged slender cantilever beam used as reference structure has been mod-
elled using the Finite Element Method (chapter 4). The chosen interpolating
shape functions are the cubic Hermitian polynomials that, after re-converting
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the normalised coordinate, leads to the element Stiffness matrix [K e ] 5.1 and
to the consistent Mass matrix [M e ] 5.2 approximation. The properties adopted
simulate an idealised concrete beam with all the assumptions of the simplified
case, such as the absence of shear strains, irrelevance of Poisson’s effect, purely
elastic material behaviour and the linearisation of crack mechanic. All the pa-
rameters are resumed in table 5.1.

[K e ] = Eu Iz
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(5.2)

Section base b 0.05 [m]
Section height h 0.05 [m]
Section area A 2.5 e-3

£

m4
¤

Moment of inertia Iz 5.21 e-7
£

m4
¤

Beam length L 1 [m]
Elements number Ne 50 [m]
Element length l 0.02 [m]

Elastic modulus (UND) Eu 7.00 e10
h

N
m2

i

Density ρ 2700
h

kg

m3

i

Poisson’s coefficient ν 0.3 [-]

Table 5.1: E.B. cantilever beam F.E.M. parameters
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After defining the mass and stiffness matrices is straightforward to calcu-
late the natural frequencies and the related natural mode shapes of the system.
The eigenmodes calculated consist of two degrees of freedom (transverse dis-
placement and rotation): after selecting the d.o.f of interest these values have
been normalised scaling them to the maximum displacement and copied sev-
eral times to generate the base of the data set UND.

The data simulated so far are noise-free since they derive directly from the the-
oretical F. E. model. To give them the aleatory behaviour that they would have
in reality is necessary the addition of the Gaussian white noise, specifying its
level by the definition of the Signal to Noise Ratio (SNR), expressed in Decibel
[Db]:

SN R = 20log10

µ

Asi g nal

Anoi se

¶

(5.3)

where Asi g nal is the noise-free signal amplitude and Anoi se is the amplitude of
the added noise.

As known from the Fracture Mechanics (ch. 4), the crack behaviour implies
a non-linearity in the dynamic response of considered structure. It is primar-
ily due to the localised geometrical discontinuity in the continuous, but also it
activates an opening and closing mechanism, which dissipates energy during
the motion. Neglecting this last factor, the governing equation of motion can
be linearised operating a transformation in the stiffness matrix [K e ] in order to
obtain an equivalent linear stiffness matrix [Ke

EQ
] capable to take into account

the effects of crack presence through the stress intensification factors, as the
solution proposed by [57]. Consequently, the main parameters influencing the
stiffness of the structure will result the normalised crack depth a[m] and the
normalised crack location xc [m]: the first one is limited from the Griffith’s ener-
getic fracture failure criteria to be smaller then 50% of the height of the section,
while the second one is not allowed at the edge of the structure has it has been
modelled according to the De Saint-Venant theory. The mass matrix, instead, is
assumed to remain constant in the cracked structure. Again, after the F.E. cal-
culation and the normalisation, the Gaussian noise is added following the pro-
cedures of the undamaged state (equation 5.3) to build the damaged data set
(DAM). Under these hypotheses, figure 5.2 below shows the comparison be-
tween undamaged and damaged states of the first theoretical mode shape of
vibration and the related natural frequencies, where for representational clear-
ness the crack aperture is taken a = 40% of height section h and xc = 10% of
beam length L:
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Figure 5.2: F.E. Mode 1: damage location 10% of length, crack depth 40% of
section.

After the noise addition, instead, the available modal information coming
from the relative displacements of the two compared beams results dependent
on the magnitude of the noise itself. Figures 5.3, 5.4 and 5.5 show the compar-
ison of a single copy of the Ne undamaged and damaged displacements of the
first three modes, where in case I) SNR=20 dB the noise covers most of the in-
formation, while in case II) where SNR=50 dB is a more clear case. Finally, the
2 parent data sets UND and DAM and the randomly sampled TR, VA and TS
sets are created with the following number of aleatory copies 5.2. Remember-
ing that each mode is composed by Ne values, the final dimensions are:

SET Name Copies Dimension

Undamaged UND 2000 60000
Damaged DAM 2000 60000
Training TR 30 900
Validation (U30) V A1 200 4500
Validation (U50) V A2 90 4500
Test T S1 100 3000
Test T S2 100 5000

Table 5.2: Dimensions of data sets
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Figure 5.3: Noisy data Mode 1 - I)SNR=20 II)SNR=50 || a=40% || xc = 30%

Figure 5.4: Noisy data Mode 2 - I)SNR=20 II)SNR=50 || a=40% || xc = 20%

Figure 5.5: Noisy data Mode 3 - I)SNR=20 II)SNR=50 || a=40% || xc = 20%
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5.3 Training of the Gaussian Process

The mode shape displacements simulated so far, holding their main property of
linearity, can be assumed as a 1-dimensional (D) set of n Gaussian distributed
aleatory observations y dependent on the node locations x. Recalling the prob-
ability theory of section 2.2, the Gaussian Process interpolates the transverse
displacement data through the application of a Bayesian linear regression in
order to reconstruct the generating continuous function. The training phase of
the process consists in the estimation of the hyperparameters of equation 2.6
on the bases of the data coming form the training data set TR. After that opti-
misation is performed, the posterior mean and covariance (equations 2.3, 2.4)
allow to obtain the inferred function values over the tested input points. Fig-
ures below show different cases of noisy measurements fitting (SNR=20 dB) of
the second mode shapes of a simply supported beam: while case 5.6 is referred
to a sensors network of 11 equispaced elements, case 5.7a consists of only 4
random measurements points and case 5.7b is instead evaluated on the con-
tinuous input space.

Figure 5.6: G.P. Regression of a mode shape

In case of figure 5.6 above, the 95% confidence interval represented in pale
orange remains almost constant, since the chose of equispaced measurement
points implies a constant knowledge over the considered system. The discrete
prediction represented with a piecewise blue line fit properly with the contin-
uous regression (black dashed line) of the mode shape (figure 5.7b). Otherwise
figure 5.7a shows off how the sensing settlement is not sufficient to correctly es-
timate the transverse displacements and it results in a coarser approximation:
in particular the characteristic horizontal length scale l , which represents the
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distance of uncorrelation of the data in the input space, is reduced of 3 times re-
spect to the other cases and thus it means that the processed data have a more
uncorrelated trend.

(a) (b)

Figure 5.7: Comparison with different cases of regression

5.4 Validation and C.D.F. Fitting

A first posterior probability (equation 2.5) is calculated conditioning the Val-
idation data set VA on the Training data set TR, in order to make statistically
relevant the further results coming form this data combination and indepen-
dent from the Test data TS. The Gaussian probability is taken in its logarithmic
form and processed through a genetic Differential Evolution algorithm to es-
timate the related Cumulative Distribution Function (CDF) of the minima ex-
treme distributions. It is important to remark that the mode shapes data are
treated as a whole function rather than pointwise measurements, since the aim
is to obtain a single value of probability expressing the level of similarity be-
tween the compared mode shapes. Moreover, it should be remarked that CDF
has to be fit in its lower tail (≈ 10%) because of the low occurrence frequency
of extreme events like damage that deviates from the normal condition of the
pristine state.

As known form the Extreme Function Theory reviewed in section 2.3, for the
minima values there are three parametric feasible limit distributions (Gumbel,
Weibull, Frechét) plus the Generalised Extreme Values distribution, where the
parameters of scale, shape and location are unknown. Adopting the DE non-
linear optimisation method, the empirical CDF is set to be the target function
of the algorithm [90] while the best parameters are selected on the base of the
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minimum fitting cost computed as Normalised Mean Squared Error (NMSE)
after around 1000 evaluations. Having no clue on the possible range of param-
eters, D.E. algorithm enhances robustness in the estimation without any ini-
tial guess and avoids the local minima due to its heuristic approach of trying
different random possible solutions and the multiple repetitions of the entire
process. Since the limit distribution of the considered transverse mode shapes
is unknown, all the three possibility are investigated and compared with to
correspondent results obtained with the GEV. The used initial parameters for
the DE algorithm are resumed in the table below 5.3: when the variant of Self-
Adaptive Differential Evolution is applied, the specification of the scale factor
and the crossover ratio become useless and these parameters are iteratively es-
timated by the algorithm itself. The empirical CDF (F ), as well known, is ob-
tained through the assignment of a family of distributions to a given data set by
defining the plotting position and is generally expressed in the form:

F =
i −α

n +1+2α
(5.4)

where α is a coefficient varying between 0 and 1. Numerous different plotting
position were proposed over the years and a review is found in [51]. In the
context of the analysed cases the Hazen plotting position is adopted, since it is
a distribution dependent position suitable for all the EV distributions.

Range used data 10%

Plotting position Hazen

Population size 30

Number of runs 10

Number of generations 100

Scale factor 0.9

Crossover factor 0.5

Table 5.3: Differential Evolution input parameters

Along the different simulations, the data do not show a clear convergence
to a single distribution, but the CDF varies mainly between the Gumbel and the
Frechét distributions, while the Weibull one occurs in a lower number of esti-
mations, independently from the crack location, the damage level, the added
noise or the mode considered.

An example of the resulting count of estimated distributions for the first mode
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of a cantilever beam with SN R = 65dB is reported in figure 5.8, while in table
5.4 are showed the average estimated parameters over 1000 repetitions.

Figures from 5.9 to 5.11 show the reconstructed CDF (a), the logarithmic NMSE
fitting cost (b) and the probability plot (c) of a single case for each distribution,
using only the lower 10% of the available validation data set V A1. The range
was chosen to ensure enough data to analyse while remaining in the lower tail.
From the probability plot 5.10c it is clear how the the attraction domain is in-
correct since there is not any recognisable linear trend in spite of the other 2
cases.

(a) Estimation on 10% of validation data (b) Estimation on 5% of validation data

Figure 5.8: Comparison of estimated CDFs

Average Gumbel Frechét Average GEV

β 0 5.2779 γ 0.1068

δ 1.6366 5.0831 σ 1.3213

λ 69.4483 73.2554 µ 68.9589

NMSE 1.4351 1.4490 NMSE 1.1118

Table 5.4: CDF average parameters over 1000 repetitions
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(a) Reconstructed Gumbel C.D.F. using 10% of V A1 data set

(b) Evolution of logarithmic fitting cost - Gumbel C.D.F.

(c) Probability Plot - Gumbel C.D.F.

Figure 5.9: Example of Gumbel C.D.F. estimation
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(a) Reconstructed Weibull C.D.F. using 10% of V A1 data set

(b) Evolution of logarithmic fitting cost - Weibull CD.F.

(c) Probability Plot - Weibull C.D.F.

Figure 5.10: Example of Weibull C.D.F. estimation
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(a) Reconstructed Frechét C.D.F. using 10% of V A1 data set

(b) Evolution of logarithmic fitting cost - Frechét C.D.F.

(c) Probability Plot - Frechét C.D.F.

Figure 5.11: Example of Frechét C.D.F. estimation
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5.5 Threshold Definition and Damage Detection

After reconstructing the Cumulative Distribution Function it is possible to de-
fine a threshold in correspondence of a given quantile α, simply inverting the
equations of feasible limit distributions 2.10. In this case, the quantile is set to
be the lower 1% and the this leads to the three limit logarithmic probabilities
l zl i m = log (zlim) for each minima extreme distribution:

GU MBEL : l zl i m =
h

l og
¡

− log(1−α)
¢

i

∗δ+λ

F REC HÉT : l zl i m =−
½

h

¡

− log (1−α)
¢ 1
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i−1
∗δ−λ

¾

W E I BU LL : l zl i m =
h

¡
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¢ 1
β

i

δ+λ

(5.5)

and for the Generalised Extreme Value distribution is,

l zl i m =−






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σ∗
h

¡

−log (1−α)
¢−γ−1

i
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(5.6)

For the Test data set TS is now calculated a new logarithmic posterior prob-
ability l ztest from the equation 2.5 and confronted with the limit for each anal-
ysed transverse displacement. When a value is found beyond the limit, so:

l ztest ≤ l zl i m (5.7)

that value is recorded as an outlier and the mode is identified as damaged.
Since the TS data set contains undamaged and damaged mode shapes, when
an undamaged mode shape is detected as damaged it is recorded as "false pos-
itive" and, the other way, when a damaged mode shape is not recognised a mis-
classification as "false negative" is reported.
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5.6 Results

The details of the obtained results and the theoretical proof for different case
studies of a reference cantilever beam are showed in the following figures from
5.12 to 5.17. The results are displayed as comprehensive graphics where the
x-axis and y-axis represent the crack location and the crack depth, respectively,
while the coloured cells are the percentage of successful identifications of dam-
aged modes. The effectiveness of the employed algorithm in detecting a change
in the behaviour of the structure when a simulated damage is present is studied
by several simulations with a non-optimised Matlab ® code to investigate the
influence of the different parameters. In particular the varied parameters are:

• Crack location, between 1% and 99% of the beam length

• Crack magnitude, between 5% and 40 % of the beam height section

• Noise Level (SNR), between 40 and 80 dB

• Number of sensors

Initially, the different simulations were elaborated taking into account all the
FE nodes as sensor locations in order to assess the correctness of the method.
Successively, the number of input was reduced to verify the performance of
the algorithm when dealing with fewer measurement points. The implemented
damage detection algorithm is primary applied to a reference cantilever beam
and successively it has been extended to other boundary conditions.

Moreover, a comparison with the pointwise approach of the Extreme Value Statis-

tics is done in order to asses the advantages and the disadvantages of the Ex-

treme Function Theory approach and to evaluate the accuracy of the proposed
method.
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5.6.1 Damage Detection in a Cantilever Beam

As one would expect, peaks of error occur near the free end, since the crack in-
fluence decreases moving away from the clamped end, and in correspondence
of the null-displacement points (i.e. modal nodes) (see figure 3.5). Analogously,
the same trend is found analysing the crack depth, since a more damaged sec-
tion obviously implies bigger displacements and thus a higher deviation with
respect to the normal behaviour of the beam: this basically leads to more dis-
placement data points that are recognised in the process as falling beyond the
acceptable limit deriving from the definition of the 99% quantile confidence in-
terval. Less intuitive is the peak of error located around the 20% of beam length
for the first mode of the particular boundary conditions of the cantilever beam:
when a crack occurs in this location, the Euclidean distance between damaged
and undamaged mode shapes is very small thus a correct detection result is
difficult.

Figure 5.12: Rate of Successful detections Cantilever Beam (CB) - Mode Shape
(MS) 1 with SNR=80 dB

Figure 5.13 shows the changes in relative difference of normalised absolute
transverse displacements between the undamaged and the damaged state of a
cantilever beam when a single edge crack is placed in different location along
the beam. The resulting Euclidean distance is showed in figure 5.14, while
the correspondence between peaks of the error in detection and peaks in the
curve representing the complementary normalised Euclidean distance is evi-



CHAPTER 5. NOVELTY DETECTION IN CRACKED STRUCTURES 78

dent from the figures 5.12 and 5.15.
The Euclidean distance between the pristine transverse mode shape P = (p1, p2, ...pn)
and the damage one Q = (q1, q2, ...qn) has been evaluated for the n-dimensional
space as,

q

(p1 −q1)2 + (p2 −q2)2 + ...+ (pn −qn)2 =

s

n
X

k=1
(pk −qk )2 (5.8)

Figure 5.13: CB - MS 1, Relative difference in absolute transverse displacements

Figure 5.14: CB - MS 1, normalised Euclidean distance
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Figure 5.15: CB - MS 1, complementary normalised Euclidean distance

Moreover, the rate of correct detections increases while decreasing the dis-
turbing presence of the noise: if figure 5.12 with a noise correspondent to SN R =
80 dB shows a rate of successful identifications of ≈ 100% in most of the anal-
ysed cases detecting also the small cracks, in figure 5.16, instead, the successes
decrease significantly and much less no damaged mode shapes are correctly
identified.

Figure 5.16: Rate of Successful detections CB - MS 1, SNR=50 dB
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The effect of FE discretisation seems to be negligible and there are not rel-
evant differences between a coarser but acceptable mesh and a more refined
one. More relevant is, instead, the number of nodes considered as sensor loca-
tions and thus involved in the formation of datasets: figure 5.17a it is evaluated
with a coarser discretisation of 30 elements (instead of 50) and taking into ac-
count all of them as sensor locations while figure 5.17b, instead, considers 11
sensors among the 31 nodes.

(a) Rate of Successful detections CB - MS 1, considering 30 sensors.

(b) Rate of Successful detections CB - MS 1, considering 11 sensors.

Figure 5.17: Results CB - MS 1 SNR=65 dB
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Finally, a last observation regards the false identifications: the rate of false
identifications remains almost constant in all the simulations and can be re-
lated to the intrinsic statistical uncertainty of the model. However, switching
approach from EFT to EVT it is possible to note how the number of "false posi-
tives", that are undamaged modes identified as damaged decreases; otherwise,
the number of "false negative", that are not detected damaged mode shapes
increases as results from the comparison between figures 5.16 in 5.18a. This is
due to the total number of available outliers (figure 5.18b) that the algorithm
can process to make a prediction on the state of the tested mode shapes and,
hence, a trade-off is necessary to balance both situations.
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Figure 5.18: Results pointwise approach CB - MS 1 SNR=50 dB
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5.6.2 Higher Modes and other Boundary Conditions

Cantilever Beam (CB) - SNR 80 dB

Figure 5.19: CB-MS 2, Rate of success (sx), compl. Euclidean distance (dx)

Figure 5.20: CB-MS 3, Rate of success (sx), compl. Euclidean distance (dx)

Figure 5.21: CB-MS 4, Rate of success (sx), compl. Euclidean distance (dx)
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Hinge/Hinge (HH) - SNR 65 dB

Figure 5.22: HH-MS 1, Rate of success (sx), compl. Euclidean distance (dx)

Figure 5.23: HH-MS 2, Rate of success (sx), compl. Euclidean distance (dx)

Figure 5.24: HH-MS 3, Rate of success (sx), compl. Euclidean distance (dx)
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Hinge/Vertical Slider (HSv) - SNR 65 dB

Figure 5.25: HSv-MS 1, Rate of success (sx), compl. Euclidean distance (dx)

Figure 5.26: HSv-MS 2, Rate of success (sx), compl. Euclidean distance (dx)

Figure 5.27: HSv-MS 3, Rate of success (sx), compl. Euclidean distance (dx)



Chapter 6

Conclusions and Further

Perspectives

The method proposed here shows some advantages, but also some weak points.
A first point of interest surely is the capability to work without differentiating
transverse displacement data, which always involves a manipulation of values
that leads to an amplification of noise. Moreover, from a computational point
of view, the algorithm elaborates sufficiently accurate results starting from a
reduced number of input data or without a dense discretisation of the struc-
ture, remaining able to collect all the available information in the posterior
probability in a few seconds per whole cycle with a non-optimised Matlab ®
code running on a mid-power personal computer (4 GB RAM, octa-core 2.6
GHz processor). When working with a reduced number of sensors, the "false
positive" occurrences decrease significantly because of the diminution of pos-
sible false outliers, which is a characteristic of primary importance in the SHM
field since it directly influences the cost of the inspection procedures. In spite
of this, the presence of less sensitive points such as the modal nodes or crack
position corresponding to a minimum Euclidean distance between damaged
and undamaged mode shapes locally reduces the effectiveness of the method.
Another issue regards the accuracy of the sensors used: the current available
measurement technology, state-of-art devices able to consider the vast num-
ber of output channels considered in the case here reported, like laser sensors
or high resolution cameras, allow to measure transverse displacements with a
noise around 3% of the maximum displacement involved, which approximately
corresponds to an additive noise level of SNR = 40 dB.

Further improvements of this work can be the extension of the proposed method
to multidimensional problems, such as the bi-dimensional case of plates or 2-
d frame structures or to multiple crack scenarios. Moreover, the obtained re-

85
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sults encourage the development of a damage localisation procedure, but in
this case a pointwise approach should be adopted in order to preserve all the
nodal information coming from observations. Finally, experimental verifica-
tions can validate the damage assessment algorithm and test its susceptibility
for real applications.
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