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ABSTRACT 

 

 Several structural components of power plants, chemical reactors and turbines 

are subjected to relevant stress states and high temperatures. These particular 

conditions, i.e. creep conditions, have to be accounted for the design of these high-

temperature components. Under these circumstances, an assessment of time-

dependent creep deformations is needed. It may happen that, at the end of the 

predicted creep rupture life, a crack nucleates at a high-stress site and propagates 

until failure occurs. Considering that the “flaw-free” condition is only a theoretical 

assumption, failure is most likely due to the propagation of a pre-existing defect. 

In this case, the entire life of the component is spent in crack propagation. For this 

reason, it is important to achieve an accurate knowledge about the crack growth 

under creep conditions, in order to provide a prediction of the creep life.  

 This work is organized to comprehensively deal with the fundamental aspects 

of creep behaviour, regarding materials operating under the above described 

conditions. After a general introduction of the phenomenon, the first part provides 

an overview of the experimental work reported in literature. In particular, the 

influence of several parameters on the creep crack growth rate (CCGR) are 

extensively analysed.  

 The second part deals with scaling effects governing creep, both for smooth 

and notched specimens, by analogy with fatigue phenomenon. Particular attention 

will be paid on the specimen size effect on creep rupture time, and on the crack 

size effect on CCGR. Although a voluminous scientific literature can be found 

regarding the creep phenomenon, only a few research works focused on such 
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scaling effects. In this work, these effects will be approached by means of the 

dimensional analysis, where the emerging self-similarity will be interpreted also in 

the framework of fractal geometry. These findings are enriched by considering the 

material nonlinearity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

 1.REVIEW OF PREVIOUS EXPERIMENTAL WORKS 

 

1.1 Introduction 

 

 An extensive description of the life of engineering components subjected to 

creep conditions is provided. In the past years, researchers deal with the problem 

of creep life prediction following two basic approaches. The first approach is more 

traditional and applies to unnotched, nominally flaw-free, specimens to determine 

the time to failure, related to imposed values of stress and temperature. In this 

context, creep life predictions can be carried out at fixed temperature and 

geometry, by plotting experimental data of applied stress vs time to rupture.  

A more recent approach, based on time-dependent fracture mechanics (TDFM), 

has been developed to characterize the creep crack growth rate, da/dt, as a function 

of a controlling parameter, which is to be determined. In this case, creep life 

assessment can be obtained by evaluating the growth of a pre-existing crack, until 

its “critical” value causing material fracture is reached. As the first approach is 

more easily applicable for life prediction purposes, it has received more attention. 

Conversely, the second approach is more refined and allows more accurate 

predictions, though it can be troublesome at the early stages of crack growth. A 

review of the existing experimental work based on these approaches is provided in 

this chapter. 

 In the second section a description of creep behaviour for smooth specimen is 

provided, assuming “flaw-free” condition. On the other hand, in the third section 

the applicability of Fracture Mechanics concepts for predicting creep crack growth 
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rate (CCGR) in notched specimens is discussed in the framework of TDFM. It will 

be highlighted how useful are the analogies between TDFM and Elastic-plastic 

fracture mechanics (EPFM) to extend the fracture mechanics concepts to 

conditions of time-dependent creep deformations. A wide range of experimental 

works is considered. In the concluding section Q* parameter, more recently 

proposed in literature, is presented. Assuming that creep crack growth is a 

thermally activated process, this parameter has been derived by the analysis of 

numerous experimental tests. 

 

1.2   Creep behaviour of smooth specimens 

  

 Creep (sometimes called cold flow or fluage) is the tendency of solid 

materials to deform slowly and permanently under the action of mechanical loads. 

More precisely, a material is said to creep when time-dependent deformations are 

observed as a result of long-term exposure to relatively high constant stress levels 

that are still below the yield strength of the material. The creep phenomenon 

occurs when the temperature is relatively high, falling in a range which depends on 

the material. It is found that creep effects start to be noticeable at about 40% of the 

absolute melting temperature of material. The ratio between actual and absolute 

melting temperatures of the tested material is also called “homologous” 

temperature. 

 It is possible to grasp the main features of the phenomenon by the simple 

observation of a typical creep curve. This curve, shown schematically in fig. 1.1, 

represents the relationship between creep deformation and time. 
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 Looking at the curve, it seems convenient to separate it into three stages, o 

regions. After an instantaneous deformation, due to elastic and plastic 

contributions, primary creep occurs. As creep proceeds during the test, the strain 

rate decreases with time to a minimum, and becomes near constant as the 

secondary stage starts. The secondary stage, or “steady-state creep”, is 

characterized by a constant value of strain rate. Finally, in the “tertiary creep 

region”, strain rate accelerates until material fracture occurs. 

 For several materials primary creep is short-lived or doesn’t exist at all. 

Furthermore, tertiary creep regime is not attractive for design purposes, because it 

must be avoided. These remarks make the steady-state region the most important 

for design purposes, also because the largest part of the creep life is spent in this 

stage. For this reason, later discussion will be focused on the steady-state region. 

Figure 1.1 – Typical creep curve 
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 Creep behaviour is strongly dependent on several factors, such applied stress, 

temperature, specimen size. Generally, we can say that an increase of temperature 

makes creep more severe, raising the level of the creep curve. In this section, only 

the stress influence on minimum strain rate (which refers to the constant rate in the 

secondary stage) and on time rupture will be analysed in detail. Other 

dependencies will be pointed out later, in the second chapter of this work. 

 

(A)Stress dependence of steady-state strain rate 

 Stress dependence of steady-state strain rate can be evaluated by carrying out 

the so called “creep test”, which is conceptually quite simple. A constant load is 

applied to the test specimen maintained at a constant high temperature. 

Measurements of strain are then recorded over the time until failure occurs. As a 

basic result, the “creep curve” shown in fig. 1.1 is obtained. The creep test is 

usually focused on determining the minimum value of the strain rate, i.e. steady-

state strain rate, related to the applied stress at the specific temperature. Repeating 

this procedure for a certain stress range, a relationship between applied stress and 

minimum strain rate at fixed temperature can be found. Data of such deformation 

are needed by engineers for design purposes. As expected, it is found that the 

minimum strain rate increases with increasing applied stress.  

 Reports of experimental results published in Garofalo [8], propose several 

empirical expressions for the steady-state strain rate ε�� as a function of the applied 

stress σ. Data plots are shown in fig. 1.2 

 At low stress levels, the best fit of experimental data is provided by the 

following correlation, also known as Norton’s law: 
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                                                        ��� = ��	                                                           (1.1) 

 

represented by a straight line in a log-log graph. 

 At high stress levels, deviations from linearity are observed, and a better 

correlation is provided by the following equation: 

 

                                                     ��� = ��exp(βσ)                                                   (1.2) 

 

Both behaviours can be described by a unique relationship as follows: 

 

                                                    ��� = �′′(sinh ��)	                                             (1.3)  
 

It can be shown that the expression in Eq. (1.3) reduces to Eq. (1.1) for small 

values of �� and to that in Eq. (1.2) for high values of ��, respectively. The 

fitting parameters A’’, α and n depend on the applied temperature.  

 

 

Figure 1.2 – Norton’s law reported in [15] 
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(B) Stress dependence of rupture time 

 Stress dependence of the rupture time can be found out by carrying out the so 

called “stress rupture test”. This test is practically the same as the creep test, aside 

from the higher stress levels used, but it is focused on determining the rupture 

time. Experimental results for austenitic stainless steel, show a decrease of rupture 

time when higher stress is applied (fig 1.3). 

 

 

  

 

Figure 1.3 - Creep rupture diagrams reported in [15] 



 12

 Several empirical formulae have been proposed in literature to correlate the 

applied stress and the rupture time. Among all of them, the most mentioned in the 

scientific literature is probably a power-law relationship: 

 

                                                      �� = �� !                                                           (1.4)  

 

where tR is the time to rupture, � is the applied stress, B and p are material 

constants. Accordingly to Eq. (1.4), power-law trends are shown in the log-log 

diagram of Fig. 1.3 at different temperatures of interest.  

 The discussion about creep presents considerable analogies with the fatigue 

phenomenon. In both cases an increase of the applied stress results in a reduction 

of the life component. From an analytical point of view, the analogy emerges 

comparing Eq. (1.4) with Eq. (1.5), the Basquin law for fatigue [1]: 

                                             # ≃ %&�'&� (	 = (1 − *)	&�'	&� 	                              (1.5) 

  

 It is worth saying that while the fatigue life is represented by the number of 

cycles to failure, i.e. by the Wöhler’s curve, creep life is described by the rupture 

time. In conclusion, in both cases a power-law relationship between the applied 

stress and the corresponding parameter representing the life component is 

established. 
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1.3 Creep crack growth: A fracture mechanics approach 

 

 With the advent of fracture mechanics, a more ambitious task was undertaken, 

which is understanding the propagation of cracks or flaws in components 

operating in creep conditions. Since the early 70’s, numerous researchers 

contributed immensely to develop approaches and experimental techniques to 

describe the creep deformation kinetics in terms of creep crack growth rate 

(CCGR). At the beginning, several studies focused on finding the appropriate 

fracture mechanics parameter able to characterize CCGR. More precisely, 

numerous researchers argued that CCGR was controlled by the elastic stress 

intensity factor K or by some form of net-section stress. 

 Already in 1970, Siverns and Price [33] published experimental results, 

regarding crack growth under creep conditions. In that case, tests were carried out 

on 2.25%Cr 1%Mo steel at the temperature of 565 °C. Edge-notched rectangular 

cross-section specimens were tested under constant tensile stress, at several stress 

values of interest. Crack length was measured by using the electrical resistance 

method. It was found that all the results obey a relation of the following form: 

                                                                                                                                                                                                      d-d� = ./ 01                                                         (1.6) 

  

where da/dt is the crack growth rate, K is the elastic stress-intensity factor, C0 and 

m are material constants. It was found that m was very close to the stress 

sensitivity of creep n in the Norton’s law of Eq. (1.1), relating the minimum strain 

rate to the applied stress. Correlation between crack growth rate and net section 

stress was also attempted, yielding as a result a bundle of approximately parallel 
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lines, different for each test. In conclusion, results tended to designate the stress 

intensity factor as the best correlating parameter, as confirmed later by the same 

authors in another research work [34]. It must be noticed that eq. (1.6) seems to be 

the creep analogous of the Paris law defined for fatigue.  

 In the same period, other authors observed different trends about the 

prediction of creep crack growth rate. For instance, Harrison and Sandor [18] 

discussed the results obtained by The General Electric Turbine Department, testing 

centre-notched plate specimens at 1000 F. A correlation of the data was attempted 

both with stress intensity factor and net section stress. Although the correlation 

with K seemed reasonable, when all data points were plotted vs net section stress 

they fell into a very narrow band. Creep crack growth rate was described by the 

equation: 

                                                                 d-d� = #�#3                                                      (1.7) 

 

where da/dt is the crack growth rate, σN is the net section stress, N and q are 

material constants. A similar result was achieved by Nicholson and Formby ([23], 

[24]). In this case authors carried out creep rupture tests on single edge notched 

and notched centre hole specimens of solution treated A.I.S.I. type 316 stainless 

steel. Tests were performed at 740 °C. When CCGR was plotted against stress 

intensity factor, different curves were obtained for each specimen geometry 

considered. Conversely, when net section stress was used all the data fell on one 

curve, regardless of the specimen geometry tested. In conclusion, these 

experimental works supported the observation that the net section stress is a 

successful parameter for CCGR prediction.  
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 Forward in time, other authors [22] followed this kind of approach, making a 

comparison between the suitability of these two parameters. But a unifying 

approach, was still not defined. 

 When substantial creep deformation accompanies fracture, it is expected that 

nonlinear fracture mechanics should be more relevant than linear elastic fracture 

mechanics. For this reason, a basic background regarding nonlinear fracture 

mechanics is now recalled. Later, we will try to extend the concepts of fracture 

mechanics to cracks under creep conditions. 

 The nonlinear behaviour of elastic-plastic materials with power-law hardening 

can be represented by the following relationship between stress and strain, in the 

form proposed by Ramberg and Osgood: 

                                                   � = �56 7 �8 = �9 7 ��/ % ��/(	                                  (1.8) 

 

where ε is the total strain, εel is the elastic strain, εp is the plastic strain, E is the 

Young’s modulus, σ0 is the yield strength, ε0= σ0/E, α and n are regression 

coefficients. Particularly, n is the strain hardening exponent. 

 Rice [28] defined the following line integral, called J-integral, as a parameter 

to characterize nonlinear elastic materials ahead a crack: 

                                                         ; = < => dy − @A %∂CA∂y ( ds                                   (1.9) 

where: 

                                                              = = < �AE dεAEFGH
/                                               (1.10) 
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W is the strain-energy density associated with the point stress �ij and strain �AE, Ti 

is the traction vector defined by the outward normal nj along  an arbitrary contour 

Γ surrounding the crack tip: the integral is evaluated in a counterclockwise sense 

from the lower crack surface and continuing along the path Γ to the upper crack 

surface as shown in Fig. 1.4. 

 The utility of the J-integral rests in its path-independence, demonstrated by 

Rice, which allows a direct evaluation by choosing properly the integration path Γ. 

Exploiting this fundamental property, an energy-rate interpretation of J-integral is 

possible when the yielded zone near the crack tip is small, if compared with the 

representative dimensions of the problem. In fact, both in the case of linear 

elasticity and also in the case of small-scale yielding, the following relation holds: 

                                                                  ; = J = 0K9                                                   (1.11) 

 

 

 

 

Figure 1.4 – Arbitrary line integral contour [21]  
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 Hutchinson, Rice and Rosengren independently proved that the J-integral 

characterizes the crack tip stress-strain field (called HRR field) in nonlinear 

materials as follows:  

 

                                                      �LM = % �/	;��/N	O( P	QP σRST(θ)                                (1.12. a) 

 

                                                   �LM = ��/�/	 % �/	;��/N	O( 		QP εRSW (θ)                             (1.12. b) 

 

where σRST(θ) and εRSW (θ) are angular functions, r is the distance from the crack tip, 

and In is a function of the hardening exponent n of the Ramberg-Osgood 

constitutive law (1.8), on which depends the strength of the singularity. Because of 

the more ductile behaviour due to n > 1, the relief of crack-tip stress singularity is 

observed by comparing HRR −1 (Y 7 1)⁄  and LEFM exponents −1 2⁄ .  

Assuming n=1, (αε//σ/) = 1/E, and J = G as suggested by eq. (1.11), we obtain the 

elastic solution. In this context, elastic situation can be seen as only a particular 

case of a nonlinear elastic material. Therefore, J can be interpreted as the nonlinear 

analog to the stress-intensity factor K of LEFM as well as a strain energy release 

rate. 

 Focusing on the energy-rate interpretation, it may be shown that J represents 

the potential energy release rate per unit area of crack advancement in a through-

thickness cracked body: 

                                                                    ; = − 1� d[d-                                                  (1.13) 

 



 18

where B is the thickness of the body, U is the potential energy and a is the crack 

length. Rice pointed out that the interpretation of the J-integral as energy release 

rate available to crack growth can be extended to plasticity as long seen as 

nonlinear elasticity, i.e. restricting to monotonically increasing loads without 

plastic unloadings. With plasticity included, J still remains a crack tip parameter, 

but it loses its physical meaning as energy potentially available to grow the crack. 

As an energy comparison, J may still be interpreted as potential energy difference 

between two identically loaded bodies with incrementally different crack lengths, 

a and a + da.  

 As just done for nonlinear materials with a constitutive relationship in the 

Ramberg-Osgood form of Eq. (1.8), we will try to extend the fracture mechanics 

concepts to situations where significant creep deformations occur. Particularly, a 

new crack-tip parameter will be discussed, considering the analogies between 

elastic-plastic fracture mechanics (E.P.F.M.) and the so-called time-dependent 

fracture mechanics (T.D.F.M.).  

 Based on the analysis of the behaviour of a material undergoing creep 

deformation, mainly done in the second section of this chapter, the creep 

constitutive law of Eq. (1.1) is assumed everywhere in a cracked body as well: 

                                                                    �� = ��	                                                       (1.14) 

 

where �� is the secondary creep strain rate, σ is the applied stress, n is the stress 

sensitivity and A is a coefficient.  

 Starting from this assumption, it can be observed that eq. (1.14) is in close 

agreement with eq. (1.8) relating the crack-tip stress and strains. More precisely, 
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neglecting the elastic contribution in eq. (1.8), replacing the term ��//�/n by the 

constant A and the strain � by the strain rate ��, eq. (1.14) is obtained. In the case of 

creeping materials, the exponent n gives an indication of the stress sensitivity of 

creep, while in the other case it is defined as the strain hardening exponent. 

Therefore, analogous power-law constitutive relationships can be recognized for 

plasticity and creep. 

 Based on this considerable analogy, independently, Landes and Begley [21] 

and Nikbin, Webster, Turner ([25], [26]) defined a creep-equivalent to the J-

integral in the following manner: 

                                             .∗ = ;� = < =∗> dy − @A %∂CR�∂y ( ds                                (1.15) 

where 

                                                          =∗ = < �AE dF� GH
/ ��AE                                                (1.16) 

 

W* is the strain energy rate density associated with the point stress σij and strain 

rate ��AE,  while Ti and Γ are still the traction vector and path already defined for J- 

integral.  

 This energy rate line integral defined with eq. (1.15) has been called C* by the 

first authors, and ;� by the others because of its physical dimension. In this work, 

the C* notation is preferred, to prevent confusion with dJ/dt. In any case, it 

represents the creep equivalent of the energy line J-integral. In fact, looking at eq. 

(1.15), C* is obtained from J by replacing the strain and displacement quantities 

with their time rates, and stress remains as stress. It can be shown that also C* 
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integral is path independent, and can be computed along arbitrary contours 

surrounding the crack tip. 

 Exploiting the mathematical analogy between J-integral and C*-integral, two 

fundamental consequences drawn in literature will be discussed here below. 

 

(A) Relationship between C*-integral and the crack-tip stress field  

 By analogy with the HRR stress field, previously defined for elastic-plastic 

fracture mechanics, it is found that the C*-integral is able to uniquely characterize 

the magnitude of the stress and strain rate fields at the crack tip: 

 

                                                       �AE = % .∗�N	O( P	QP σRST(θ)                                    (1.17. a) 

 

                                                      �AE = � % .∗�N	O( 		QP εRSW (θ)                                   (1.17. b) 

 

Again, the stress singularity at the crack tip is different from -1/2 (elastic), and in 

this case it depends on the creep stress sensitivity of the material. 

 

(B) Energy rate interpretation of C*-integral 

 An energetic definition of C*-integral is given as follows: 

                                                               .∗ = − 1� d[∗d-                                                  (1.18) 
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where B is the thickness of the body, U* is the potential energy rate and a is the 

crack length. Basically, it can be defined as the rate of decrease of potential energy 

rate with respect to crack length.  

 On the basis of this overview regarding several fracture mechanics 

parameters, it seems reasonable adopting the C*-integral as controlling parameter 

for creep crack growth rate. Landes and Begley [21], published results obtained 

testing a discalloy at 650°C, attempting a correlation between CCGR and the 

energy rate line integral. Two different specimen geometries were tested, a centre 

cracked panel (CCP) and a wedge opening loading specimen (1T-CT). The authors 

made a comparison with other correlating parameter previously used, namely 

stress intensity factor and net section stress. 

 

 

 

 

Figure 1.5 – da/dt–C* correlation [21] 
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 Figure 1.5 shows the results obtained by using the C*-integral as controlling 

parameter, considering both specimens type used. Data points are well correlated 

by a straight line, when CCGR is plotted against C* parameter, in a log-log 

diagram. Therefore, the correlation was provided by the following equation: 

                                                                  d-d�  = /̂.∗_                                                 (1.19) 

 

where da/dt is the CCGR, C* is the controlling parameter, D0 and ϕ are 

coefficients, with ϕ more or less equal to 1.  

 It can be seen that figure 1.5 provides a scatter in growth rate about a factor of 

5, for a given value of C*. Conversely,  when CCGR was plotted agains stress 

intensity factor, or net section stress, the scatterband was larger, about a factor of 

30. Furthermore, in the latter case, the range of the controlling parameter 

providing a given value of growth, was completely different between the two 

specimen geometry tested. Therefore, the correlation can be retained successful, 

especially if compared with that obtained by using stress intensity factor, or net 

section stress. Nevertheless, looking at fig 1.5 a certain deviation from the straight 

line was observed for the slowest tests, i.e. a tail part of the curve. For this reason, 

the authors raised an important question about the existence of a threshold value of 

C*, below which cracks don’t propagate under creep conditions. The threshold 

parameter would be in agreement with the threshold value of ΔK, defined for 

fatigue. 

 Later, Harper and Ellison [17] found a similar correlation between creep crack 

growth rate and the C*-integral. The authors conducted an experimental 

programme on a 1Cr Mo V steel, tested in air at 565 °C. Tests were carried out on 
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SEN (single edge notch) and CT (compact tension) specimens. Experimental 

results are shown in fig. 1.7 and 1.8 for SEN and CT specimens, respectively. 

 

 

 

 

 

 

 

Figure 1.6 – Test specimens geometry [17] 

Figure 1.7 - da/dt–C* correlation for SEN specimen [17] 
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 As it can be seen, the overall agreement is very good. Once more, in 

according to the results of Landes and Begley, deviations at low crack growth rates 

can be observed, providing a change in slope. About this, the authors noticed a 

certain relationship between the change in slope in the da/dt vs C* diagram and the 

change in slope in the displacement rate vs time diagram. However, a clear 

explanation of the nosing behaviour was not provided. 

 In this context, we should also mention the pioneering work done by Saxena. 

In Saxena [29], the C*-integral method has been used to characterize creep crack 

growth rate of 304 stainless steel, at 594 °C. Centre crack tension (CCT) and 

compact type (CT) specimens were used. The da/dt vs C* correlation is plotted in 

fig.  1.9, showing an approximate linear relationship, in according to eq. (1.19).  

 

Figure 1.8 - da/dt–C* correlation for CT specimen [17] 
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All the data lie within a narrow scatterband, in fact the scatter in growth rates was 

about a factor of 1.4. So, the influence of the specimen geometry was not 

remarkable. The author states C*-integral as a promising candidate parameter for 

characterizing creep crack growth rate. 

 In Saxena [31] a contrasting result was obtained by the author, carrying out 

creep crack growth tests on SEN specimens of 316 stainless steel, at temperature 

of 594 °C. Experimental results showed no correlation of CCGR with the C*-

integral, but with the J-integral.  This latter parameter was calculated taking into 

account both the elastic and plastic contribution. In that case, a correlation between 

da/dt and J was noticed, very similar to that characterizing stress corrosion 

cracking.  

 Nonetheless, the latter could be considered as an isolate one. In the following 

years, the same author made a lot of efforts to understand creep behaviour for a 

Figure 1.9 - da/dt–C* correlation [29]  
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wide range of creep conditions, from small scale creep (SSC) to extensive steady-

state creep (EC). Following this purpose, Saxena [30] proposed a new crack tip 

parameter, namely the Ct parameter, for characterizing CCGR. Although some 

interesting results and observations, the use of the classical C*-integral has been 

confirmed. 

 At this point, after this overview about several fracture mechanics parameter 

proposed, some conclusions can be drawn. As previously discussed, either the 

stress intensity factor, or the net section stress, is able to characterize uniquely 

creep crack growth rate. Generally, it is observed that for relatively “creep brittle” 

materials, the stress intensity factor K provides a better correlation. On the other 

hand, when large creep deformation occurs, namely for materials very sensitive to 

creep, net section stress σN seems to be the best correlating parameter. Then, we 

can conclude that the controlling parameter should be defined in according to the 

creep sensitivity (ductility) of the tested material. This is not surprising as creep 

sensitivity affects the amount of redistribution of the initial elastic stresses at the 

crack tip.  

 In the “brittle case”, when stress redistribution is not so pronounced, the stress 

intensity factor is still able to describe the stress concentration at the crack tip 

embedded in an elastic body. For this reason, it correlates well with CCGR. In the 

other extreme, in the “ductile case”, stress redistribution is so relevant that the 

stress intensity factor is not appropriate in describing the stress field at the crack 

tip. For sufficient creep ductility, and high value of n, stresses at the crack tip will 

approach the net section stress (or reference stress), implying a net section rupture 

rather than a crack propagation problem. In this case, CCGR seems to be well 

correlated by the net section stress. 
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 Nevertheless, these can be considered only as two extreme conditions. It is 

necessary a new approach, able to encompass all the “creep ductility conditions”, 

taking into account the pronounced time-dependent nature of the phenomenon. 

When creep deformation becomes large, neither K or J is able to take into account 

time-dependent creep deformation, because it is not included in their formulation. 

The previous crack-tip parameters lose its significance, pointing out the 

inapplicability of Linear Elastic Fracture Mechanics (L.E.F.M.) and Elastic Plastic 

Fracture mechanics (E.P.F.M.) to predict crack growth rate. 

 Following this purpose, a new crack tip parameter has been introduced, which 

is the energy rate line C*-integral. With this parameter, a new branch of fracture 

mechanics, i.e. Time Dependent Fracture Mechanics (T.D.F.M.), has been 

identified. In this section, the main concepts of this new branch (stress-fiend and 

energy interpretation) have been discussed, considering the strong mathematical 

analogy between T.D.F.M. and E.P.F.M. 

 Considering the theoretical framework supporting this parameter, several 

authors attempted to use it as controlling parameter for creep crack growth rate. 

The correlation has been successful, as it can be seen.   

 Particularly, an attraction of the C*-integral method is that it seems consistent 

with the K approach for “creep brittle” circumstances and with the net section 

stress approach when creep strain governs the problem. As observed by Smith and 

Webster [35], it seems able to characterize crack growth rate encompassing all the 

creep ductility conditions. 
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1.4  Creep as a thermally activated process: Derivation of the Q* parameter 

 

 Also in Japan, during the end of the last century, several studies have been 

made in order to provide a characterization of creep crack growth rate at high 

temperatures. At the beginning, several attempts have been made using a fracture 

mechanics approach, as described in the previous section of this work. One of the 

first work about this issue has been done by Koterazawa and Iwata [19]. They 

conducted a fracture mechanics study on creep crack propagation of a 304 

stainless steel under constant tensile stress at a temperature of 650 °C. In detail, 

two specimen geometries (circumferentially notched round bar and double edge 

notched plate) were tested in air, to define the fracture mechanics parameter 

controlling CCGR. Crack propagation rates (calculated graphically from crack 

length versus net time curves) were plotted as a function of net section stress σN 

and stress intensity factor K. Experimental results showed that a better correlation 

was achieved adopting the stress intensity factor K as controlling parameter. 

 Immediately after, Koterazawa and Mori [20] published another work about 

this issue. In this article, the authors dealt a more complete discussion about the 

applicability of several fracture mechanics parameters characterizing creep crack 

growth, including the modified J-integral (or C*-integral) previously introduced. 

Base Material tested was still the same, 304 stainless steel, but in this case three 

different heats were provided giving different mechanical properties. With respect 

to the preceding work, a wider range of specimen geometries was used (three 

types of double edge notched specimens of different size, a type of centre notched 

specimen, two types of single edge notched specimens). Tests were conducted in 
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air at the temperature of 650 °C. Again, crack growth rates were plotted against its 

controlling parameter, respectively net section stress  σN, stress intensity factor K 

and C*-integral. It is shown that C*-integral gave the best correlation including in 

a narrow band all the data points related to each specimen geometry. Also in this 

case, as discussed in the previous section for C*-integral, when this parameter has 

been correlated with crack growth rate, the experimental curve revealed a nose 

part. In subsequent years, a more extensive investigation has been carried out 

considering additional experimental data. Yokobori T. and Sakata ([40], [41], 

[42]) conducted an experimental work regarding the behaviour of 304 stainless 

steel (double edge notched specimen) under creep, fatigue and creep-fatigue 

interaction conditions at high temperature, in vacuum.  

 Crack growth rate on a time basis was plotted against stress intensity factor as 

controlling parameter. It was pointed out that the relation between logarithm of 

crack growth rate and logarithm of stress intensity factor may be divided in three 

regions, both for creep and fatigue. Then the authors noticed that these curves 

deviate in some systematic trend by varying gross stress, holding time and 

temperature.  

 Focusing our attention on creep results, we will discuss only the effect of 

gross stress and temperature. In detail, considering the region II of the curve, it 

was shown that creep crack growth rate increases with increase of gross section 

stress and temperature (fig. 1.10).  Plotting creep crack growth rate against net 

section stress, the authors noticed the same deviations. So, the conclusion of this 

experimental work was that creep crack growth rate could not be described 

uniquely in terms of stress intensity factor K or net section stress σN with respect 
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to fracture mechanics parameter. It was necessary to find a unifying approach, in 

order to include dependencies of creep crack growth rate on gross section stress σg 

and absolute temperature T. 

 

 

 

  

 Assuming this as starting point, a more detailed analysis can be found in [42]. 

Based on a series of previous experimental data, the authors attempt to relate 

creep crack growth rate da/dt to the stress intensity factor (calculated considering 

Figure 1.9 – Tests results reported in [40]  
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an effective crack length aeff), applied gross stress and temperature. They firstly 

explored the relation between crack growth rate and fracture mechanics parameter 

at specified temperature. For the material subject of study, 304 stainless steel, it 

was found: 

 

                                       d-d�  = 8.55 × 10 KK�ab.cdeαg-5hh  �aij.K/                    (1.20) 

 

The temperature dependence of creep crack growth rate is studied plotting the 

logarithm of da/dt vs the logarithm of αg-5hh�a with temperature as 

independent parameter at a specified value of gross section stress. An “Arrhenius 

type” equation hold: 

 

                                                    d-d�  = �∗ exp %− ΔlmR@ (                                           (1.21) 

 

A* is a constant dependent on σg, R is the gas constant, T is the absolute 

temperature and ΔHg is the apparent activation energy for crack extension. The 

last is expressed as follow: 

  

                                          Δlm = ΔoP − ΔoK ln qαg-5hh �aJ√b s                                (1.22) 

where G is the modulus of rigidity, b the Burgers vector, Δf1 and Δf2 are material 

constants. 
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 To conclude, considering equations (1.20), (1.21) and (1.22), creep crack 

growth rate for a 304 stainless steel was characterized by the following 

expression: 

 

d-d� = 0.00299 �ab.cd exp
⎝
⎜⎛− 7.82 × 10d − 1.68 × 10d ln qαg-5hh  �aJ√b sR@ ⎠

⎟⎞ (1.23) 

or by taking logarithm of both sides: 

 

             log d-d� = 3.48 7 8.48 × 10|@ log qαg-5hh  �a4.66 × 10Ks 7 5.64 log  �a            (1.24) 

 

Assuming now: 

 

                              } = 8.48 × 10|@ log qαg-5hh �a4.66 × 10Ks 7 5.64 log  �a                  (1.25) 

 

as characterizing parameter, it is established a linear relationship between the 

logarithm of CCGR and P. It is shown that the parameter here proposed correlates 

fairly well with experimental data. In that work, a correlation similar of eq. (1.23) 

was obtained also for the mechanisms of fatigue and creep-fatigue interaction.    

 In the subsequent years, a further assessment was done by A.T. Yokobori and 

co-workers [39] about CCGR representation. In the work in question, the authors 
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derived a similar parametric representation of creep crack growth rate, by using 

the same data reduction scheme. Differently from the previous study, in this case 

stress intensity factor is evaluated considering an equivalent crack length equal to 

the sum of the pre-notch length and the actual crack length. By proceeding in this 

way, CCGR was predicted by the following equation: 

 

d-d�  = 1.81 × 10 d�ad.Pd exp
⎝
⎜⎛− 3.59 × 10b − 7.25 × 10d ln qα√- �aJ√b sR@ ⎠

⎟⎞ (1.26) 

 Then, as done for the P parameter, Q parameter was defined as: 

 

                            ~ = 8.74 × 10|@ log % 01.94 × 10K( 7 4.14 log  �a                    (1.27) 

 

In contrast to the P parameter (1.25), in Q parameter (1.27) the stress intensity 

factor K appears as classically defined. As observed for the P parameter, the Q 

parameter is able to fit the experimental data very accurately (fig. 1.10). 
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 Until that moment, any consideration about specimen size was done, so size 

effect was still not included. Further investigations, lead on the revision of the Q 

parameter, such way to include specimen width effect. Particularly, in [38] the 

authors pointed out the dependence of  creep crack growh rate on the specimen 

size. For a 304 stainless steel, the following relation is proved to be held: 

 

   d-d� = 652 % ==/( K.b� �ad.Pd exp
⎝
⎜⎛− 3.59 × 10b − 7.25 × 10d ln qα√- �aJ√b sR@ ⎠

⎟⎞      (1.28) 

Figure 1.10 – da/dt – Q correlation reported in [39]  
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Now, writing eq. (1.29) as: 

 

                                                                 d-d� = 652 × 10�∗                                        (1.29) 

 

and making a comparison between eq. (1.28) and eq. (1.29), the Q* parameter for 

a 304 stainless steel is defined as follow: 

 

     ~∗ = 8.74 × 10|@ log % 01.94 × 10K( 7 4.14 log  �a − 2.58 log % ==/(         (1.30) 

 

By taking logarithm of both sides of eq. (1.29) again a linear relationship between 

the logarithm of CCGR and the controlling parameter is obtained (fig. 1.11). But 

in this case, the Q* parameter includes specimen size effect, so it is more suitable 

for predicting creep crack growth rate. 

 

 

Figure 1.11 - da/dt – Q* correlation reported in [38] 
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 The approach just described can be seen as an innovative one. In fact, eq. 

(1.28) can be written in a more general form as follow:  

 

                       d-d� =  � % ==/( �  �a� exp �− �∆lh − M ln % 0J√b(�R@ �                 (1.31) 

or, in the same way: 

 

                                d-d� = � % ==/( � �a� % 0J√b( ��� exp %− ∆lhR@ (                        (1.32) 

 

where K is the elastic stress intensity factor, σg is the applied gross stress, T the 

absolute temperature, W the specimen width, W0 the reference specimen width, R 

is the gas constant, G is the modulus of rigidity, b the Burgers vector while B, l, 

m, M = α1-α2T, and ∆lh can be considered material constants. Particularly, in eq. 

(1.32) it is clearly underlined the power-law dependence of the creep crack growth 

rate on the applied gross stress and stress intensity factor.  

 It must be noticed that (1.32) can be also written as: 

 

                                                                d-d�  = ./01                                                   (1.33) 
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where C0 is a constant dependent of σg, specimen width W, absolute temperature T 

and n is the inclination of the straight line obtained plotting logarithm of both 

sides. It’s remarkable that Eq. (1.33) resembles the Paris' law equation.  

 Rewriting eq. (1.32) in a simpler form: 

 

                                                               dadt = B exp(Q∗)                                            (1.34) 

 

a typical thermally activated equation is found, in which the Q* parameter is the 

index of the exponential in the equation of the thermally activated process. In this 

way, the theoretical meaning of this approach proposed by A.T. Yokobori and 

colleagues ([37], [38]) is explained. It comes from the assumption that creep crack 

growth is a thermally activated process.  

Then, the final proposed parameter is defined as: 

 

                           ~∗ =  − ∆lh − Mln % 0J√b (R@ 7 m log �a 7 l log ==/                  (1.35) 

or:  

                                                                                                    

                                  ~∗ =  M log 00�R@ 7 m log �a 7 l log ==/                                   (1.36) 

where: 
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                                        0� = J√b exp �∆��� �                                                    (1.37)  
 

As it can be seen, the controlling parameter Q* is defined in terms of independent 

variables including stress intensity factor K, applied gross stress σg, absolute 

temperature T and the specimen width W.  

 To conclude, this newly proposed parameter seems to provide a better 

correlation with crack growth rate, with respect to other fracture mechanics 

parameter discussed in the former section (net section stress σN, stress intensity 

factor K, C*-integral). More precisely, results derived by this empirically-derived 

correlation, show that crack growth rate is correlated by a simple monotonically 

increasing linear function of Q*. The authors showed that all the collected data 

collapse into a single curve, within a very narrow band. By making a comparison 

with the C* representation on a bi-logarithmic scale, no tail part of the curve is 

revealed at early stage of crack growth, although a threshold value of Q* could be 

determined. So, for this reason, Q* parameter seems to more efficient for 

predicting creep crack growth rate at high temperatures. 
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2. SCALING LAWS IN CREEP  

 

2.1  Introduction 

  

 As shown in a variety of studies, the structural behaviour and rupture 

properties of full-scale elements under different loading conditions are mainly 

extrapolated from laboratory tests carried out on small-scale specimens. In this 

perspective, creep rupture properties will be studied focusing on the so-called size 

and scale effects. More precisely, we will deal with the specimen-size dependence 

of the rupture time for smooth specimens. Afterwards, the crack-size effect on the 

da/dt vs. C* relationship will be discussed for notched specimens. 

 Several physical phenomena, referring to very different application fields, are 

affected by scaling effects. For instance, anything like that occurs in Fluid 

Mechanics, where the transition from laminar to turbulent flow is ruled by a 

dimensionless parameter, the Reynolds number, which predicts scale effects in 

geometrically similar but different-sized flow situations. Essentially, for given 

velocity, viscosity and geometry, the same fluid undergoes laminar-to-turbulent 

transition, by exceeding a certain characteristic linear dimension of the flow, e.g., 

the pipe diameter in case of pipe flows. 

 In Solid Mechanics, analogous transition occurs when the structural size is 

increased. In this case, the transition from plastic flow (ductile) collapse to fracture 

collapse (separation) is governed by the brittleness number s, introduced by 

Carpinteri [3] in the framework of Dimensional Analysis. More precisely, a 
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progressive embrittlement of the structural collapse occurs by increasing the 

structural size, even if fracture insensitive, or ductile, materials are considered. 

 Still in the context of scale effects on structural collapse, noticeable advances 

were made at the end of the last century. On the basis of several experimental 

evidences, Carpinteri ([5]-[9]) proposed the use of a fractal geometry approach to 

Fracture Mechanics, where the resisting cross section and the fracture surface at 

final rupture are modelled as fractal sets with anomalous (non-integer) physical 

dimensions, instead of considering them as Euclidean surfaces. Following the so-

called renormalization procedure, the author introduced new mechanical properties 

with non-integer dimensions, the renormalized fracture energy GF* and the 

renormalized tensile strength σu*, that are invariant with respect to a characteristic 

length scale of the fracture phenomenon, i.e. the specimen size or the crack size. 

The fractal dimensions of such scale-invariant material constants come from the 

scaling (power-law) behaviour of the corresponding nominal quantities GF and σu. 

 Subsequently, all these concepts have been applied to fatigue. Experimental 

observations have shown that fatigue phenomenon is affected by scaling effects, 

both for uncracked (nominally flaw-free) specimens and cracked specimens. These 

effects have been tackled by means of a dimensional analysis approach by 

Carpinteri et al. ([10], [11], [14]), providing a generalization of fatigue laws, both 

for smooth specimens (Wöhler law), and for cracked specimens (Paris law). A 

more detailed analysis of these effects has been carried out using fractal geometry 

tools, as previously discussed ([12], [13], [27]). In the latter case, fractal geometry 

provided a better interpretation of the anomalous behaviour of fatigue-crack 

growth rates of short cracks.  
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 In the following sections, we will deal with size effects in the creep behaviour 

of smooth and notched specimens. Firstly, size effects of smooth, i.e. nominally 

flaw-free, specimens will be analysed. Afterwards, crack size effects on creep 

crack growth will be discussed. In both cases, we will work on the basis of 

appropriate experimental evidences, although direct studies in this context are very 

few. As done for fatigue, a consistent theoretical framework will be proposed, by 

means of Buckingham’s theorem and fractal geometry. Although their underlying 

theoretical framework is very different, these two approaches will be able to 

highlight scale effects in the creep phenomenon.  

 Therefore, the aim of this work is to shed light on several aspects about 

scaling effects noticeable for creep behaviour, for which a clear theoretical 

framework is still lacking. Currently, we are not aware about any systematic 

studies on size effects pro creep phenomenon, so it seems worthwhile to continue 

research work in this field.    

 This work will be concluded suggesting several considerations about the 

influence of material nonlinearity and microstructural disorder on the stress field at 

the crack tip, and the consequent collapse mechanism. It will be shown that 

increasing the non-linearity of the material, a transition from brittle-to-ductile 

failure similar to that obtained by reducing the structural size could be noticed. 

 

2.2  Interpretation of specimen-size effects on σ-tR curves according to           

dimensional analysis  

  

As we said before, an interpretation of size effects on creep rupture will be 

provided on the basis of previous experimental campaigns. Following this purpose, 
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experimental results published by Goldhoff [16] will be considered. The aim of 

that work was to discuss both stress concentration and size effects, on creep 

rupture. Cylindrical specimens of Cr-Mo-V steel were tested in uniaxial tension at 

very high temperatures, ranging from 482 °C to 593 °C, i.e. under creep 

conditions. Although the base material was the same, several test specimens with 

small variations in chemical composition, different heat treatment and mechanical 

properties have been used. More detailed information are given by the author in 

his work.  

 About size effects for smooth specimens, the author tested steel no.2 and steel 

no.3, as reported in his paper. Steel no.2 was tested at temperature of   482 °C, 538 

°C and 593 °C, while steel no. 3 at 538 °C and 593 °C. For each steel, a wide 

range of specimen size has been investigated, providing a consistent evaluation of 

size effects. More precisely, round bar specimens of  0.160, 0.253, 0.505 and 

1.128 in. have been used for smooth testing, exploring a specimen size variation of 

about one order of magnitude.  

 Experimental results are shown in Fig. 2.1, where the σ-tR curve is represented 

as a function of temperature and bar size, for both steel no.2 and steel no. 3. Small, 

but systematic variation of these curves can be observed, by varying the 

characteristic specimen size, i.e. the specimen diameter.   

 Looking in detail at fig. 2.1, for steel no.2 a reduction of the creep strength is 

noticed when the specimen size increases. Considering results for steel no.2 at 538 

°C, the author reported a linear dependence between rupture strength at 1000 h and 

the reciprocal of bar diameter. This result is in accordance with the pioneering 

work mostly done at the end of this century, mentioned in the previous section 2.1. 
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 It also to be noted the behaviour of steel no. 3 at 538 °C, with an increase of 

creep strength by increasing specimen size, apparently inconsistent with numerous 

experimental findings of size effects on nominal tensile strength. However, this 

result cannot be ignored, making further experimental studies on creep size effects 

much-needed to validate the theoretical framework presented here. 

 

 

 

 

 Based on these evidences, in this section we will try to tackle these effects, by 

means of dimensional approach already used for fatigue rupture. In this sense, the 

first step is to identify a functional dependence between the output parameter 

characterizing the phenomenon, and input parameters able to describe completely 

the phenomenon under observation. For the case of creep rupture of uncracked 

Figure 2.1 – Creep rupture results for smooth specimens [16] 
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specimens, the output parameter is the rupture time tR, and the following 

functional dependence can be stated: 

                                 �� =  Ψ  (�, @;  �� , ��� , 0� , �, @�; �)                            (2.1) 

 

where the governing variables into round brackets are summarized in Tab. 2.1, 

with their physical dimensions expressed in the Force-Length-Time-Temperature 

system. 

 

Variable Definition Dimensions 

σ Applied Stress [F][L]-2 

T Temperature [θ] 

σu Ultimate tensile strength [F][L]-2 

σth Creep threshold [F][L]-2 

KC Fracture toughness [F][L]-3/2 

χ Thermal diffusivity [L]2[T]-1 

TM Melting Temperature [θ] 

b Specimen size [L] 

 

 

 Looking at the whole set of dependent variables, we can identify three kind of 

parameters. Two of them, σ and T, can be considered as “loading” parameters, 

because they depend on the testing conditions. Others, as ��, ��� , 0� , � and TM can 

Table 2.1 – Input parameters and physical dimensions 
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be considered as “material properties”. Finally we find the characteristic specimen 

size b, on which we focus our attention.  

 In order to apply Buckingham’s Π  Theorem, it is necessary to define an 

adequate subset of independent variables, in according to the number of basic 

dimensions which describe the phenomenon. As for Fluid Dynamics, in the case of 

creep four basic dimensions are used, usually taken to be Force F, length l, time t 

and temperature T. The following four independent variables are considered, 0� , ��, χ and TM, along with their respective physical dimension expressed in Tab. 

2.1.    

 For sake of completeness, the independence of these variables is proved as 

follow. Firstly, it has to be noticed that only the variable TM contains the basic 

dimension θ, so TM is certainly independent on the other three variables. For this 

reason, the independence of the remaining variables 0� , ��, χ is proved by 

providing that their combination cannot give a dimensionless group. More 

precisely:  

 �K ¡¢�σ£¡¤��¡¥ = e�F¡�L¡ |/Ki¢(�F¡�L¡ K)¤(�L¡K�T¡ P)¥ =                     �F¡/�L¡/�T¡/ = �0¡                                                                                     (2.2) 

 

Equating the exponent of each basic dimension, it is obtained: 

Force:                                          α 7    β              =  0                                        (2.3. a) 

Length:                                  − |K α −   2β 7  2γ  =  0                                        (2.3. b) 

Time:                                                              – γ  =  0                                        (2.3. c) 

 The set of Eq. (2.3.a), (2.3.b), (2.3.c) represents a homogeneous system of 

three linear equations with three unknows (α, β and γ), which solution is given by 



 46

Rouche’-Capelli theorem. Following this route, the only nontrivial solution is 

obtained only if:  

 

                                       det�A¡ = det ® 1 1 0−3/2 −2 20 0 −1¯ ≠ 0                                (2.4) 

 

By calculating, we obtain det[A] = 1/2, therefore the independence is proved. We 

can conclude that the choice of  0� , ��,  χ as independent variables is suitable. 

 Going back to eq. (2.1) and by applying Buckingham’s Π  Theorem, a 

dimensionless relationship can be established between the governing variables: 

                           �� =  1� %0���(d  ΨP   q ���  , �����  , @@�  , %��0� (K �s                     (2.5) 

 

Each dimensional variable has been made dimensionless, by using an appropriate 

combination of power law of the four independent variable, providing also that Eq. 

(2.5) is dimensionally homogeneous, having both sides the dimension of a time. 

Making a comparison between eq. (2.1) and eq. (2.5), it can be noticed that by 

applying Buckingham’s Theorem, the involved parameters are reduced by 4, the 

number of basic dimensions previously discussed. 

 Looking for a further reduction of the involved parameters in this generalized 

law, we should deal a discussion about complete or incomplete self-similarity. As 

noticed by Barenblatt [2], and then applied by Carpinteri et al. ([10], [11], [14]), 

for fatigue, we speak about complete self-similarity in a generic parameter, when a 

finite non-zero limit of the function Ψ exists, for very large or very small values of 

the corresponding parameter. In this case, the parameter is considered as non-
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essential, and can be removed from the analysis. Conversely, when the limit of the 

function Ψ tends to zero or infinity, a power-law relationship can be hold, 

describing the central regime between two limit asymptotic representation. In this 

case we talk about incomplete self-similarity.  

 Following this route, we obtain: 

              �� =  1� %0���(d  ΨK % �����  , @@� ( q%��0� (K � s±² % ���(±³ =   ��±³             (2.6) 

 

It has to be noticed that assuming incomplete self-similarity, allow to make 

explicit the power law dependence of the rupture time tR on the applied stress σ, in 

the same form of eq. (1.4). In this sense, it can be said that Buckingham’s 

Theorem lead to a generalized law for creep rupture. The additional information is 

that the “constant” B depends on the characteristic specimen size b, other than 

material properties. 

 With regards to experimental results previously shown for steel no.2, they can 

be easily tackled, on the condition that the exponent α2 is negative. More precisely, 

looking at eq. (2.6), the scaling effect is ruled by the dimensionless group: 

                                                         %��0� (K � = 1́K ≃ �-/                                                (2.7) 

 

where s is the brittleness number introduced by Carpinteri [3] which rules the 

transition from plastic collapse through instable crack propagation, and a0 is the 

characteristic length defined in according to Griffith energetic approach. 

Introducing eq. (2.7) in eq. (2.6): 
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                        �� =  1� %0���(d  ΨK % �����  , @@� ( % �-/ (±² % ���(±³ =   ��±³               (2.8) 

 

 In terms of scaling effect, this result is basically the same of that obtained for 

fatigue, since we are dealing creep in the context of L.E.F.M. In fact, it comes 

from the assumption of the stress intensity factor K as a controlling parameter, 

which is an elastic crack-tip parameter. Things will change when dimensional 

analysis will be applied in the context of Time Dependent Fracture Mechanics 

(T.D.F.M.), i.e. assuming the C*-integral as governing parameter for creep 

phenomenon. 

 In fact, applying the same approach in the framework of T.D.F.M., we can 

write: 

                                  �� =  Ψ  (�, @;  ��, ��� , .�∗, �, @�; �)                           (2.9) 

 

Making a comparison with eq. (2.1), one can see that the critical parameter is now .�∗ instead of K, showing that we are operating in the context of Nonlinear Fracture 

Mechanics. Further, it is to note that the thermal diffusivity χ is replaced by A, 

constitutive parameter for creep, which appears in Norton’s law (eq. 1.1). Physical 

dimension of each parameter in eq. (2.9) can be found in Tab. 2.2. 
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Variable Definition Dimensions 

σ Applied Stress [F][L]-2 

T Temperature [θ] 

σu Ultimate tensile strength [F][L]-2 

σth Creep threshold [F][L]-2 .�∗ Critical C* integral [F][L]-1[T]-1 

A Thermal diffusivity [F]-n[L]2n[T]-1 

TM Melting Temperature [θ] 

b Specimen size [L] 

 

  

 Again, by applying Buckingham’s Π  Theorem, eq. (2.9) can be transformed 

in a new dimensionless relationship between all the parameters mentioned, 

providing also a reduction by 4 of the all parameters involved: 

                            �� =  1���	  ΨP   q ���  , �µ6��  , @@�  , ���	QP.�∗ �s                   (2.10)   
 

Similarly to the previous case, the parameters ��, .�∗, � and TM have been used as 

independent variables. It can be shown that these 4 parameters are independent. 

 Assuming incomplete self similarity:  

                �� =  1���	 ΨK % �µ6��  , @@� ( q���	QP.�∗ � s±² % ���(±³ =  �∗�±³            (2.11) 

 

Table 2.2 - – Input parameters and physical dimensions 
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the power law dependence of the phenomenon is stressed again, as in eq. (2.6) 

 Again, we found a constant B which depends on the specimen size b. In this 

case, the scaling effect is governed by the following dimensionless group: 

                                                                 ���	QP.�∗ �                                                        (2.12) 

 

providing the desired effect, when α2 is negative. 

 In other words, we defined a new “characteristic length” which rules the size 

effects for creep. Although in Eq. (2.12) different terms appear with respect to Eq. 

(2.7), one can see that these two dimensionless groups are comparable. 

Considering the well-known Irwin’s relationship, Eq. (2.12) can be expressed in 

the following form: 

                                                            %��0� (K � = ��KJ�9 �                                              (2.13) 

 

Now, making a comparison between Eq. (2.7) and (2.13), it can be seen that they 

are conceptually the same. In both cases, the critical value of the controlling 

energetic parameter appears at the denominator. Further, the same dependence on 

the ultimate tensile strength is obtained if n=1. Finally, it has to be noticed that the 

constitutive parameter A plays the same role of 1/E in the constitutive laws. 

Therefore, we can state the suitability of the dimensionless group defined in eq. 

(2.13), governing creep phenomenon.  

 Concluding this section, we can say that also for creep dimensional analysis 

approach enables one to tackle size effects, making predictable the behaviour of a 
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full-scale system by testing a geometrically similar small-scale model, i.e. 

laboratory scale specimen. Although these scaling effects on the specimen size are 

not clear, as confirm by experimental tests previously discussed, the dimensional 

analysis approach seems to be a suitable tool for their prediction.  

 

2.3  Interpretation of  specimen-size effects on σ-tR curve according to 

fractal geometry 

 

 In this section, we will try to interpret specimen size effects on rupture time, 

by means of fractal geometry concepts. In other words, the aim remains the same 

of the previous section, but a different theoretical approach will be used. These 

concepts have been applied in solid mechanics, providing a better understanding of 

critical phenomena in this field. More precisely, the approach is based on the 

definition of new critical mechanical parameters, with non-integer physical 

dimensions, as a scale invariant property of the material. This procedure, i.e. 

Renormalization Group Theory, already used for fatigue, will be adjusted for 

creep. Cause of the lack of experimental data, only monofractal scaling laws will 

be proposed. 

 Firstly, the following law describing creep rupture is assumed: 

                                                                 �� = �/ %�/� (8                                               (2.14) 

 

This relationship is equal to eq. (1.4), but the constant B is assumed equal to �/�/!, to make explicit the intercept of the σ-tR curve, conceptually represented in 

fig. (2.2).  
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 As it can be seen, in Fig. 2.2, two deviations from the central part of the curve, 

have been introduced. At high stress level, approaching the yielding stress, a first 

deviation from the power law regime is represented, also in according to 

observation reported by Garofalo [15]. Further, at low stress level, another 

deviation occurs, providing longer rupture time tR, when the applied stress σ 

becomes lower and lower. In this perspective, we put forward the existence of a 

threshold stress for creep, below which creep phenomenon doesn’t occur. 

Threshold stress for creep would be the analogous of the fatigue limit Δσfl for 

fatigue, about which the scientific debate is still open. This proposal seems 

consistent with several experimental results recently carried out. 

 A straightforward application of the Renormalization Group procedure, 

permits to derive a scaling law for nominal creep strength. In detail, modelling the 

Figure 2.2 -  Schematic creep rupture curve 
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reacting cross-section how a lacunar fractal set of dimension smaller than 2 

(Euclidean measure), we can write: 

                                                                 �/ =  �/∗  � ¶�                                                (2.15) 

 

where �/∗  is the fractal creep strength, which has the anomalous physical 

dimensions of �F¡�L¡ (K ·σ) and dσ is the fractal dimension reduction. 

Then, by replacing eq. (2.15) in eq. (2.14): 

                                                    �� = �/ %�/� (8 = �/ q�/∗  � ¶�� s8                          (2.16) 

 

and after some adjustments: 

                                                       � = �/∗  � ¶�  (�/)P8(��) P8                                    (2.17) 

 

By taking logarithm of both sides: 

                                   log � = log �/∗ − ¸�  log � 7 1¹ log �/ − 1¹ log ��                (2.18) 

 

In eq. (2.18) the dependence of the rupture stress on the specimen size is pointed 

out, providing a reduction of the nominal applied stress for larger structures, for a 

given value of rupture time tR. 

 Adopting the same concepts, for the generic stress rupture, we can write: 
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                                                               � =  �∗ � ¶�                                                   (2.19) 

 

Then, inserting eq. (2.15) and (2.19) in eq. (2.14), we can obtain the following 

fractal law for creep rupture: 

                                   �� = �/ %�/� (8 = �/ q �/∗  � ¶�   �∗ � ¶� s8 = �/ %�/∗�∗(8                 (2.20) 

 

Eq. (2.20) describes the fractal law for creep rupture, which is size-independent. 

As it can be seen, it is written in the same form of eq. (2.14), but in this case 

fractal creep properties are involved, instead of the corresponding nominal 

quantities.  

 On the other hand, we can suppose the same scaling effect on the creep 

threshold, we can write: 

                                                               ��� =  ���∗  � ¶�                                               (2.21) 

 

 Following this route, when the nominal creep strength σ is plotted against the 

rupture time tR, a downward translation of the curves is expected due to the 

increasing specimen size, as schematically represented in fig. 2.3. The amount of 

the expected translation, described by Eq. (2.15), (2.19) and (2.21), it is 

independent on the stress level, but it depends on  ¸�, which measure the disorder 

influence. As shown in fig. 2.3, the translation involves all the three regions, 

including the deviation branches, cause of the fractal quantities defined in Eq. 

(2.15) and (2.21).  
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 Conversely, when fractal properties are considered, it is expected that all the 

data should collapse into a single curve, regardless of the specimen size (fig. 2.4). 

 

Figure 2.3 -  Nominal diagram for creep rupture  
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 As it can be seen, the procedure is in close agreement with that defined for 

fatigue in previous works. In this case the specimen life is described by the rupture 

time, which is not dimensionless if compared with the number of cycles to rupture. 

Nevertheless, by applying fractal geometry concepts, it has been shown that no 

complications occur.   

 

2.4  Interpretation of crack-size effects on creep crack growth according to 

dimensional analysis 

 

 In this section, and the following, special attention will be given to the crack-

size effects on creep crack growth, by means of dimensional analysis approach and 

fractal geometry concepts, adopting a similar procedure already used for specimen 

size effects.  

Figure 2.4 – Fractal diagram for creep rupture  
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 As done for specimen size effects, our considerations will be based on 

previous experimental works reported in literature.  In this context, the 

experimental work carried out by Tabuchi et al. [36] will be taken as benchmark. 

In order to study specimen size effect on creep crack growth rate, the authors 

conducted creep crack growth tests using CT specimens of various size.  

 More precisely, they used Standard CT specimens and ultra-large CT 

specimens, characterized by different width and thickness, reported in fig. 2.5. As 

it can be seen that, the specimen width is five times bigger for ultra-large 

specimens, while the thickness varies between 6.35 and 63.5 mm. It has to be 

noted that, by varying the specimen width of a scaling factor of five, also the 

initial crack length ain scaled of the same ratio, keeping constant the ratio between 

ain and W. 

 

 

 

 

Figure 2.5 – Test specimens  [36] 



 58

 Carrying out creep tests, the authors attempted both the characterization of 

correlation creep crack growth rate (CCGR) in terms of the elastic stress intensity 

factor K and the C*-integral.  

 About da/dt-K correlation, experimental results are shown in fig. 2.6. As also 

reported in the paper, specimen thickness doesn’t provide a clear effect on CGCR, 

when it is correlated with K. Conversely, a pronounced rightward translation of 

CCGR curves. The authors stated that for a given value of K, da/dt for ultra-large 

specimens was about 1000 times lower than that for standard specimens. 

 Since increasing specimen width implies larger crack length, this significant 

translation could be interpreted as a crack-size effect on creep crack growth, very 

similar to that observed for fatigue crack growth. In other words, this result lead to 

the assumption that shorter cracks have a faster propagation under creep 

conditions.  
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 Considering the same tests, when CCGR is correlated with the C*-integral as 

controlling parameter, conclusions are opposite. Looking at fig. 2.7, it can be 

noticed that specimen thickness has a noticeable effect, providing an increase of 

CCGR, for a given value of the controlling parameter. Strangely, the authors 

didn’t notice any specimen width, or crack length, effect on CCGR, in contrast to 

Figure 2.6 – da/dt-K correlation reported in [36] 
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the correlation with K (fig. 2.6). This result appears curious, since the Ultra-large 

specimen width was five times larger than that related of standard CT- specimens.  

 

 

 

 

 Later, these findings have been confirmed in other experimental works 

conducted by Tabuchi M. and Yagi K. in cooperation with Yokobori A.T. et al. 

[43] and Saxena [32].  

 Since in literature experimental results proving a counter-example are not 

founded, the existence of these effects, even if small, cannot be excluded.   

 In this section we will show that crack size effects on CCGR could be 

predictable, in the framework of dimensional analysis, even if they have not been 

Figure 2.7 - da/dt-C* correlation reported in [36]  
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emphasised during the previous experimental campaigns. Again, two controlling 

parameters will be assumed, namely the elastic stress intensity factor K and the 

C*-integral.  

 In the context of L.E.F.M., the following functional dependence can be stated: 

                  d-d� =  Φ  (�, 0» , @;  �� , 0»� , 0�� , �, @�; -)                                 (2.22) 

 

Physical dimensions of each parameter are already known, looking at tab. 2.1. In 

this case, as we said before, the scale effect under observation regards the crack 

length, instead of the specimen size considered for smooth specimens.   

 By applying Buckingham’s Π  Theorem (�� , 0»� , �, @� used as independent 

variables) we can obtain the following dimensionless relationship: 

                       d-d� =  %��0»�(K � ΦP q ��� , 0»0»�  , 0��0»�  , @@�  , %��0»�(K - s                   (2.23)  
 

 The next step is assuming incomplete self similarity for certain dimensionless 

group. As results: 

       d-d� =  � %��0»�(K  ΦK % ��� , 0��0»�  , @@�( q%��0»�(K - s±² % 0»0»�(±³  ≡ ./ 0»±³     (2.24) 

 

where C0 is a constant that depends on the crack length a. 

 As already discussed for smooth specimens, acting in the field of L.E.F.M., 

we find that scaling effects is governed by the characteristic length a0, which can 

be considered a material property. 
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 Following this route, we can tackle the pronounced decrease of CCGR related 

to Ultra-large CT specimens, observed when CCGR was correlated to the elastic 

stress intensity factor K. We will see in the next section that by means of fractal 

geometry concepts, more detailed considerations can be done about the translation 

of this curve, when Ultra-large specimens are tested. 

 On the other hand, repeating the same procedure for C*-integral: 

                           d-d� =  Φ  (.∗, @; ��, .�∗, .��∗ , �, @�; -)                              (2.25) 

 

 The application of Buckingham’s Π theorem provides: 

                                   d-d� =  .�∗��  ΦP   q  .∗.�∗  , .��∗.�∗  , @@�  , ���	QP.�∗ - s                       (2.26) 

 

Again, the scale effect is governed by the same characteristic length defined, and 

previously discussed, for creep rupture.  

 Then, we have to apply incomplete self similarity for creep crack growth, on 

the basis of previous experimental work. As regard the parameter C*, i.e. Π1 

dimensionless group, it has been reported from several authors as the controlling 

parameter for creep crack growth rate. As discussed in the previous section of this 

work, several experimental results lead to a power-law relationship between da/dt 

and C*, with its exponent very close to 1. Furthermore, since the strong 

dependence on this parameter by crack growth, complete self-similarity cannot be 

assumed. So, the assumption of incomplete self-similarity in the Π1 group, seems 

to be appropriate. About the dependence on the crack length, i.e. Π4 dimensionless 
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group, not much can be said in according to previous work. As discussed before, 

researchers have not focused their attention about crack size effects on CCGR. In 

this sense, we put forward the assumption of incomplete self-similarity in Π4, just 

supposing an analogy between creep and fatigue. We will see that dependence of 

CCGR on the crack length could be explained also in the framework of fractal 

geometry. Proceeding in this way, we can obtain: 

                   d-d� =  .�∗��   ΦK q .��∗.�∗  , @@�s q���	QP.�∗ - s±² q.∗.�∗s±³  ≡ ^/.∗±³        (2.27)  
 

Imposing α1=ϕ, a perfect correspondence exists between eq. (2.27) and eq. (1.19), 

but in the latter case it is pointed out that D0 depends on several parameters, 

including the crack length a. 

  

2.5  Interpretation of crack-size effects on creep crack growth according to 

fractal geometry 

 

 A better interpretation of crack size effects on CCGR could be provided, when 

fractal crack-tip parameters are defined as controlling parameters. 

 Assuming K as controlling parameter for creep crack growth, let’s start from 

the relationship involving nominal quantities: 

                                                                 d-d�  = ./0»1                                                  (2.28) 

 



 64

which is schematically respresented in fig. 2.8. In the figure is also represented the 

translation of these curves by varying crack length, consistently with experimental 

results previously discussed.  

 

 

  

 

 Eq. (2.28) resembles the well-known Paris law defined for fatigue. Therefore, 

as done for fatigue by Carpinteri et al. ([12], [13], [27]), the following power-law 

dependencies can be used: 

                                                               0» = 0»∗-¶½/K                                                   (2.29) 

                                                                  -∗ ≃ -PQ¶½                                                     (2.30) 

 

obtaining the following fractal law for creep crack propagation: 

Figure 2.8 – Schematic representation of da/dt-K diagram  
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                                                                d-∗d�  = ./∗ 0»∗1                                               (2.31) 

 

where: 

                                                        ./∗ = (1 7 ¸¾) ./ -¶½(PQ1/K)                             (2.32) 

 

Inverting eq. (2.32), the nominal constant C0 can be expressed as follow: 

                                                          ./  = ./∗(1 7 ¸¾) - ¶½(PQ1/K)                              (2.33) 

 

pointing out the negative scaling on the crack length.  

 In close agreement to what done for fatigue, the existence of several fractal 

quantities is put forward, regarding some key points describing the CCGR curve in 

fig. 2.8.  More precisely, the fractal fatigue threshold is introduced: 

                                                                0�� = 0��∗  -¶½/K                                             (2.34) 

 

Analogous considerations about fractal speed propagation, ¿��∗  and ¿µ�∗  , lead to the 

following power law relationship: 

                                                                ¿�� = ¿��∗1 7 ¸¾ - ¶½                                         (2.35) 

                                                                 ¿µ� = ¿µ�∗1 7 ¸¾ - ¶½                                         (2.36) 
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Scaling laws described in eq. (2.35) and (2.36) are obtained by analogy of a 

generic speed propagation, starting from eq. (2.30) and by applying a chain 

derivation rule.  

 As for smooth specimens, creep crack growth curves are represented in a 

fractal referring system in fig. 2.9. When fractal quantities are involved, it is 

expected that all data should collapse into a single curve, crack-size independent. 

 

 

 

 

 As already noticed by applying dimensional analysis approach, when creep 

phenomenon is discussed in the framework of L.E.F.M., theoretical result is in 

close agreement with that achieved for fatigue. This is confirmed also when fractal 

concepts are used, for predicting creep crack growth rate. 

  

Figure 2.9 – Schematic representation of da/dt-K* diagram 
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 As said before, the Renormalization Group Theory has been applied in solid 

mechanics, in the context of Linear Elastic Fracture Mechanics. An extension of 

these concepts to nonlinear fracture mechanics, is now provided. More precisely, 

for T.D.F.M. the existence of the fractal C*-integral will be putted forward, taking 

into account the dependence of C* by the crack length. 

Then, considering the work U* dissipated during creep rupture, per unit time, 

as a macroscopic parameter, a straightforward application of the Renormalization 

Group Theory lead to: 

                           [∗ = ./∗�/ = .P∗�P = ⋯ = .	∗�	 = ⋯  = .Á∗ �Á                      (2.37) 

  

where the first scale of observation could be the macroscopic one, with ./∗�/ = .�∗� , A being the cross-sectional area, and the asymptotic scale of observation 

could be the microscopic one, with .Á∗ �Á = .∗∗�∗, A* being the measure of the 

fractal set representing the irregular fracture surface. Following this route, the 

renormalized C*-integral has been introduced, C**, with anomalous physical 

dimensions �F¡�L¡ (PQ·½). By some calculations, considering a through-thickness 

cracked body, the following power law relationship can be obtained: 

                                                                  .∗ = .∗∗-¶½                                                   (2.38) 

 

The crack size dependence of C* is the same obtained in the elastic case for the 

nominal fracture energy GF. 

 As in the previous case, starting from the relationship including nominal 

quantities: 
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                                                                  d-d�  = /̂.∗_                                                 (2.39) 

 

And by using the following power-law dependencies: 

                                                                .∗ = .∗∗-¶½                                                     (2.40) 

                                                                  -∗ ≃ -PQ¶½                                                     (2.41) 

 

we can obtain the following fractal law for creep crack propagation: 

                                                                d-∗d�  = /̂∗ .∗∗_                                               (2.42) 

 

where: 

                                                           /̂∗ = (1 7 ¸¾) /̂-¶½(PQ_)                               (2.43) 

 

Inverting eq. (2.43), the nominal constant D0 can be expressed as follow: 

                                                             /̂  = /̂∗(1 7 ¸¾) - ¶½(PQ_)                              (2.44) 

 

pointing out the negative scaling on the crack length. In close agreement to what 

done for fatigue, the existence of the fractal C* threshold is put forward: 
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                                                             .��∗ = .��∗∗ -¶½                                                    (2.45) 

 

 Exploiting fractal speed propagation, ¿��∗  and ¿µ�∗ , defined in Eq. (2.35) and 

(2.36), again a translation of CCGR curves can be tacked, if represented in the 

nominal referring system, as in fig. 2.10.  

 

 

 

 

Conversely, when renormalized quantities are involved, it is expected that all data 

should collapse upon a crack-size independent curve. 

  

Figure 2.10 – Schematic representation of da/dt-C* diagram 

diagram 
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 Therefore, also in the context of T.D.F.M, crack size effects find a theoretical 

reason, even if they seem not clear by previous experimental tests. Hence, it seems 

worthwhile to carry out other creep crack growth tests, exploring a wide range of 

specimen sizes, paying special attention to these effects, unclear until now. 

 

2.6  Concluding remarks 

 

 In this final section, intriguing effects and implications that nonlinearity and 

disorder have on the stress field in the tip region of a cracked body, will be 

highlighted. On the basis of the previous discussion, the stress field at the crack-

tip, presented in the introductive part within the framework of Fracture Mechanics, 

is referred to herein below for convenience: 

 

Figure 2.11 - Schematic representation of da/dt-C** diagram 
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                                                        �AE = 0 O PK σRST(θ)                                            (2.46. a) 

 

                                               �AE = % ;�/N	( P	ÂQP O P	ÂQP σRST(θ)                            (2.46. b) 

 

                                                 �AE = % .∗�N	( P	QP O P	QP σRST (θ)                                (2.46. c) 

 

Comparing eq. (2.46.a), (2.46.b) and (2.46.c), it is shown that the order of 

magnitude of the stress field is uniquely described by a crack-tip parameter, which 

is K for L.E.F.M, J for E.P.F.M., C* for T.D.F.M. A stress singularity at the crack-

tip always occurs, but in the last two cases, generally nonlinear fracture 

mechanics, it is weaker than for L.E.F.M. It can vary between ½ and 0, 

accordingly to the exponent n0 and n, which describe the appropriate constitutive 

law. In order to prevent confusion, we called n0 the hardening exponent in 

E.P.F.M., while in T.D.F.M. the exponent n relates to the creep stress sensitivity of 

the material (Norton’s law).  

 Looking at eq. (2.46.b) and (2.46.c), the stress-field can be expressed in the 

same form of eq. (2.46.a), valid for the elastic case. In fact, if we define the 

following generalized stress intensity factors:  

 

                                                              0Ã! = % ;�/N	( P	ÂQP                                            (2.47) 

 

                                                              0Ã� = % .∗�N	( P	QP                                                (2.48) 
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the stress field at the crack-tip can be defined inserting eq. (2.47) and (2.48), 

respectively in eq. (2.46.b) and (2.46.c). Then, we obtain: 

                                                        �LM = 0Ã! O P	ÂQP σRST(Ä)                                    (2.49. a) 

                                                        �LM = 0Ã�  O P	QP σRST (Ä)                                     (2.49. b) 

 

It has to be noticed that the generalized “plastic” S.I.F 0Ã! , and the generalized 

S.I.F. for creep 0Ã� , have anomalous physical dimensions, depending upon n0 and 

n. More precisely:  

                                                           �KÃÅ ¡ = �F¡�L¡ K	ÂQP	ÂQP                                       (2.50. a) 

                                                          �KÃ  ¡ = �F¡�L¡ K	QP	QP                                         (2.50. b) 

 

It is interested that, also for creep, the respective controlling parameter 0Ã�  doesn’t 

contain time in its physical dimensions, contrary to C*-integral. Furthermore, 0Ã� 

has the same physical dimensions of 0Ã!  when n0 and n have the same value, 

although the different physical meaning of the exponents. This lead to the 

observation that, in the framework of fracture mechanics, creep phenomenon can 

be studied as a generic nonlinear problem. 

 Focusing on creep mechanism, and considering the two limit cases: 

                            For Y = 1        →         �KÃ  ¡ = �F¡�L¡ |K                                    (2.51. a) 
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                           For Y → ∞      →         �KÃ  ¡ = �F¡�L¡ K                                    (2.51. b) 

 

When n=1 (linear case), the generalized stress intensity factor assumes its classical 

physical dimensions [F][L]-3/2. Stress concentration around the crack tip occurs, 

since stress singularity is equal to 1/2. On the other hand, increasing n, i.e. 

increasing creep stress sensitivity, the generalized S.I.F. tends to assume the 

physical dimensions of a stress [F][L]-2. Under these circumstances, also the stress 

singularity tends to disappear, implying an almost constant stress distribution near 

the crack-tip. In conclusion, as already noticed by Carpinteri [4] for power-

hardening material, also for creep a transition from creep crack propagation 

(brittle) to plastic flow (ductile) collapse is evident, when material nonlinearity 

increases. Particularly, when n → ∞, it seems that the model cannot predict 

another crisis different from the plastic collapse. 

 In this perspective, this conclusion is in close agreement with experimental 

results previously discussed. In the first part, we said that several authors founded 

that the suitable controlling parameter must be defined in according to creep 

ductility conditions.   

 Extending fractal concepts to nonlinear fracture mechanics, both E.P.F.M. and 

T.D.F.M., we can write: 

                                                                  ; = ;∗-¶½                                                        (2.52) 

                                                                .∗ = .∗∗-¶½                                                     (2.53) 
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where J* and C** are the fractal controlling parameters, defined respectively for 

E.P.F.M. and T.D.F.M. 

 Inserting eq. (2.52) and (2.53), in eq. (2.47) and (2.48) respectively, we can 

write: 

 

                          0Ã! = q;∗-¶½�/N	 s P	ÂQP = % ;∗�/N	( P	ÂQP  - ¶½	ÂQP = 0Ã!∗ - ¶½	ÂQP               (2.54) 

 

                           0Ã� = q.∗∗-¶½�N	 s P	QP = %.∗∗�N	( P	QP - ¶½	QP = 0Ã�∗ - ¶½	QP                     (2.55) 

 

Eq. (2.54) and (2.55) describe the power-law dependence of the nominal 

generalized stress intensity factors, on the crack length a. It is interesting to note 

that, for nonlinear fracture mechanics, the crack-size dependence is described both 

by ¸¾ , which is a measure of the microstructural disorder, and by n (n0), which 

describes the material nonlinearity.  

 As it has done for L.E.F.M., in this work we introduce the fractal generalized 

stress intensity factors, both for E.P.F.M. and T.D.F.M., which are crack-size 

independent.  

 

                                                          0Ã!∗ =  % ;∗�/N	( P	ÂQP                                             (2.56) 

 

                                                          0Ã�∗ =  %.∗∗�N	( P	QP                                                 (2.57) 
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with their anomalous physical dimensions: 

                                                       ÉKÃÅ∗Ê = �F¡�L¡ K	ÂQPQ¶½	ÂQP                                   (2.58. a) 

                                                       ÉKÃ ∗Ê = �F¡�L¡ K	QPQ¶½	QP                                     (2.58. b) 

 

In contrast to K* defined for L.E.F.M., for nonlinear fracture mechanics (E.P.F.M. 

and T.D.F.M.) physical dimensions of 0Ã!∗
and 0Ã�∗

 depend upon dG and the 

material nonlinearity, described respectively by the exponents n0 and n.  

 As previously done by Carpinteri and Chiaia [8] in the context of L.E.F.M., a 

generalization of the stress field at the crack-tip can be provided as follows for 

E.P.F.M. and T.D.F.M.:  

                                                      �LM = 0Ã!∗O P ¶½	ÂQP  σRST(Ä)                                     (2.59. a) 

                                                      �LM = 0Ã� ∗ O P ¶½	QP  σRST (Ä)                                   (2.59. b) 

 

With eq. (2.59.a) and (2.59.b) a very important generalization is obtained, since 

they can describe the stress field at the crack-tip in the most general condition, 

considering a nonlinear (power-law hardening) material, which is also disordered. 

Fractal nonlinear crack-tip parameters are used, in order to consider both 

nonlinearity and disorder. Consequently, an attenuation of the stress singularity at 

the crack-tip is noticed, affected by n0 (n) and ¸¾ .  

 Focusing on creep, and considering that n generally varies between 1 and ∞, ¸¾  between 0 and 1, the following limit cases can be identified:  
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    For Y = 1         ⇒           ÉKÃ ∗Ê = �F¡�L¡ |Q¶½K  ;        �AE α  O P ¶½K                (2.60. a) 

    For Y → ∞       ⇒           ÉKÃ ∗Ê = �F¡�L¡ K ;               �AE α  O/                       (2.60. b) 

    For ¸¾ = 0       ⇒           ÉKÃ ∗Ê = �F¡�L¡ K	QP	QP  ;       �AE α  O P	QP                  (2.60. c) 

    For ¸¾ = 1      ⇒            ÉKÃ ∗Ê = �F¡�L¡ K ;               �AE α  O/                      (2.60. d) 

 

 When n=1, and no restrictions are imposed about ¸¾ , the same result achieved 

by Carpinteri and Chiaia [8] is obtained, which emphasises only the influence of dÌ (eq. 2.60.a). Conversely, when n → ∞, we find the limit situation previously 

discussed for highly nonlinear materials, with the stress field predicting a ductile 

(plastic flow) collapse. Considering the variation of ¸¾ , when it tends to vanish, 

the stress field is described as for the case of a generic power-law hardening 

material. In this case, only the nonlinearity material affects the stress field, with no 

influence of disorder. When ¸¾  approaches the unity, giving evidence of the 

extreme disorder of the material, again the fractal generalized S.I.F. for creep 

assumes the physical dimensions of a stress, and the stress singularity disappears. 

Shortly, the result is equivalent to that obtained for highly nonlinear materials      

(n → ∞,), when nominal quantities were employed. 

 Concluding, we can say that highly nonlinearity or extreme disorder play a 

main role in the definition of the stress field near the crack-tip, and then in the 

description of the kind of collapse. More precisely, when nonlinearity, or similarly 

the disorder, approach their upper bound values, the ductile collapse seems to be 
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the unique failure predictable. This is the same limit condition that occurs when 

sufficient small specimens are tested. 

 From this standpoint, a more extensive interpretation of experimental results 

previously mentioned, can be provided. This remark agrees with the fact that 

several authors, found a very good correlation of CCGR with the net section stress, 

as previously described, for very ductile creep materials.  

 An important question remains still open: What is the actual contribution of 

material nonlinearity and material disorder providing the resulting ductile 

collapse? At the moment, it seems that there is no way to answer, although some 

theoretical evidences have been pointed out in this section. 

 It could be interesting carry out specific experimental tests providing a better 

understanding of size effects related for creep mechanics, both on smooth 

specimens and cracked specimens. Testing specimens of different size, for 

instance ranging one order of magnitude in the characteristic dimension, could be 

sufficient to confirm the theoretical results stressed in this work. In addition, 

experimental campaign could emphasise the transition from a brittle to a ductile 

collapse, decreasing structural size with geometrical similitude. Although, at the 

moment, it seems not clear the effective contribution of nonlinearity and disorder 

providing the ductile collapse.  
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