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Abstract

In the last century, researchers and scholars focused on studying dynamic effects on
buildings and machines. This big effort led to a wide variety of analysis methods,
that can be collected in two big categories: Operational and Experimental Modal
Analysis. Nowadays a lot of commercial softwares are equipped with several
different methods in order to give the best results in every situation and the trend
tends to the development of routines that are always more automatic in order to
be simple and quick to use.
In this work a fully automatic EMA method will be developed and tested with
both numerical and real systems. In the last Chapter, a comparison between EMA
and OMA on a real structure has been carried out and commented.
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Nomenclature

ω = general frequency variable (rad/s).
ωr = natural frequency related to the mode r (rad/s).
ωd = damped frequency (rad/s).
ζr = damping ratio related to the mode r.
{ψr} = eigenvector related to the mode r (mode shape vector).
{φr} = modal mass scaled eigenvector related to the mode r.
[Ψ] = modal matrix.
[M ] = mass matrix.
[C]p = proportional damping matrix.
[K] = stiffness matrix.
[M̄ ] = modal mass matrix (diagonal).
[C̄] = modal damping matrix (diagonal).
[K̄] = modal stiffness matrix (diagonal).
fs = sampling frequency (Hz).
[H] = FRF matrix.
λ = eigenvalue.
[Σ] = singular values matrix (diagonal).
[U ] = left singular vector matrix.
[V ] = right singular vector matrix.
[ ]T = transpose of a matrix.
[ ]H = hermitian of a matrix (transpose and complex conjugated).
Ni = number of input channels.
No = number of output channels.
NSV = number of singular values.
K = number of samples in the analysed spectrum.
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Introduction

In the last decades an always greater interest in structural dynamics has grown,
both in Mechanical and Civil Engineering. This happened for several reasons,
like avoiding failures due to fatigue and resonances of structures and rotors or
improving comfort in vehicle cabins (NVH) and so on.
For this reason, through the years, a large number of reaserchers have worked to
develop different methods in order to fit the majority of cases and situations.

The most used approach to dynamic analysis of structures is modal analysis
and its aim is the conversion of a MDOF (Multiple Degrees Of Freedom) system
with n DOFs in n SDOF (Single Degree Of Freedom) ones. In this way the
estimation, or identification, of the modal parameters, that are natural frequencies
ωr, damping ratios ζr and mode shapes {ψr}, becomes possible.
In this context, two main categories of modal analysis were born: the OMA
(Operational Modal Analysis) and the EMA (Experimental Modal Analysis).
The main difference between the two kinds of analysis is the nature of the used
data: in EMA the classic FRFs (Frequency Response Functions) are used, that
carry information about both the input excitation and the measured output re-
sponse, while in OMA only the output response is measured and processed.
This OMA peculiarity makes it especially suitable for the analysis of structures in
their real working conditions, advantage that is very important for big or heavy
structures that can not be brought in a laboratory or in all the situations in which
the input is impossible to measure. In these conditions, the input has to satisfy
some requirements, but basically it has to be a white noise [1]. Besides this, since
the aim is to study structures in their real operating conditions, it is not necessary
to isolate them from external excitations, so a test rig is not required.
On the other hand, in EMA, a test rig is always required and this often carries
improper boundary conditions issues, that, with improper excitation levels have
to be accepted. Last but not least, also shakers and hammers limits have to be
taken into account.
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Actually, this is not the only classification for identification methods.
They can also be subdivided between time domain methods and frequency domain
ones, methods for MDOF systems and methods for SDOF ones. The complete
classification is reported in Figure 1.

Figure 1: Basic representation of identification methods classification.

In Chapter 1 the context in which this work is carried on is explained; in
Chapter 2 the development of a fully automatic EMA method will be described
and some test results are shown; in Chapter 3 a comparison between EMA and
OMA on a practical case will be carried out and commented.
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Chapter 1

State of art

Today a lot of methods for EMA are available, for example the logarithmic decre-
ment method (SDOF, time domain), the Half-Power, or "−3 dB", one (mainly
SDOF, frequency domain), the more sophisticated Kennedy and Pancu method
(SDOF extendible to MDOF, frequency domain) and so on.
The methods above are quite simple to use and usually don’t require a deep
manipulation of the signal, in fact they just use different graphic representations
of the response to extract the modal parameters. As an example, the Half-Power
method uses the classic representation of the FRF in the amplitude-frequency
plane with the first expressend in dB, whereas the Kennedy and Pancu one needs
the FRF to be plotted as a Nyquist plot.

The most modern techniques use different mathematical tools. One of the
most commonly used among them in the last twenty years is the so called CMIF
(Complex Mode Indicator Function) [2]. It is based on the SVD (Singular Values
Decomposition) of the FRF matrix, defined as:

[H(ω)] = [U(ω)] [Σ(ω)] [V (ω)]H (1.1)

where [H] is the FRF matrix, [Σ] is the diagonal singular values matrix (Σ2
k = λk),

[U ] is the left singular vector matrix and [V ] is the right singular vector matrix.
The SVD of the FRF matrix is evaluated at each spectral line and by plotting the
resulting singular values on a linear or logarithmic magnitude scale as a function
of the frequency a CMIF plot is obtained. This curve is proportional to the classic
FRF and brings the same information in terms of frequencies and magnitude: a
peak in the plot indicates the location on the frequency axis that is the nearest to
the frequency of the pole, with an error equal to the frequency resolution. The
detected frequency is the damped frequency ωd of the corresponding mode, defined

3



Chapter 1. State of art

as it follows:
ωd,r = ωr

√
1− ζ2r . (1.2)

The above explained method has some problems when more CMIFs are plotted.
The algorithm, in fact, plots the singular values in decreasing order and in this
way each obtained curve never crosses the others. This problem, known as cross
singular value or eigenvalue effect, can be solved by using the vector tracking.
The easiest implementation consists in evaluating the MAC (Modal Assurance
Criterion) matrix between the singular vectors {U} related to two consecutive
spectral lines from zero to the Nyquist frequency. In this way, by watching the
maximum value of the MAC matrix, it is possible to reconstruct the real CMIF
plot, as shown in Figure 1.1.

Starting from the CMIF plot it is possible to fit a SDOF FRF to each peak,
obtaining the so called eFRFs (enhanced FRFs), but this goes beyond the aims
of this work.

(a) CMIF plot before vector tracking.

(b) The same plot after vector tracking.

Figure 1.1: An example of the cross singular value or eigenvalue effect and the result
after vector tracking on a 15 DOF structure [2].
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Chapter 2

EMA method development

2.1 Software overview

A CMIF based peak-picking identification method, applicable to SDOF and MDOF
systems with any number of inputs and outputs, has been developed in order to be
included in the commercial software ARTeMIS Modal, produced and distributed
by Structural Vibration Solutions A/S (Aalborg, DK).
This software contains several EMA and OMA methods and specifically for the
first category two of them are present: RFP-Z (Rational Fraction Polynomial -Z
domain), that is based on the stabilisation diagram and extracts natural frequencies,
modal damping ratios and mode shapes, and the CMIF one, that extracts damped
frequencies and mode shapes only. For this reason, finding a solution to compute
the damping ratios has been the first goal of this work, in order to give to the
user two alternative ways to identify the modal parameters. ARTeMIS Modal, in
fact, with its Validation module, gives the opportunity to compare results coming
from different methods, so that the user can critically choose the best ones and
know how much reliable they are.

2.2 Computation

The idea behind the developed method is the isolation of the different modes in
order to treat them as several SDOF systems.
A Matlab program has been created. This program is equipped with a GUI
(Graphic User Interface), shown in Figure 2.1, that in first instance allows the
user to load FRF data stored in files with different extensions, like Universal File
Format (*.uff and *.unv) and the Matlab one (*.mat).

5



2.2. Computation Chapter 2. EMA method development

Once the data are loaded, the software automatically recognises the number
of input and output channels (respectively Ni and No) and can carry out different
operations, like merging them to obtain SIMO (Single Input Multiple Output) or
MIMO (Multiple Input Multiple Output) data from SISO (Single Input Single
Output) ones. It is important to remark that in order to extract the left singular
vectors {U} it is necessary to have at least one input and two outputs, obtaining
singular vectors with dimension 2-by-1.

When more SISO dataset in Matlab file format are loaded is it possible to
obtain a SIMO dataset by selecting them and clicking on “Merge outputs”: in this
way all the data are stored in a matrix in wich each row contains the complex
data coming from one accelerometer, so that the number of rows is equal to the
number of outputs and the number of column is equal to the number of samples
that are present in the analysed spectrum K. Obviously it is strictly necessary
that data come from measurements carried out with the same sampling frequency
and for the same time period in order to be merged.

After loading the data (Figure 2.2) and after building a SIMO dataset (Fig-
ure 2.3), it is possible to perform the SVD of the FRF for each spectral line simply
by clicking on “SVD-FRF”, obtaining a CMIF interactive plot (Figure 2.4) with a
frequency axis that goes from zero to the Nyquist frequency.
On this plot the user can select the peak that he wants to investigate on the curve
by clicking with the left mouse button. A green circle on the peak indicates that
it has been successfully selected.
In order to run the analysis it is sufficient to click with the right mouse button
on the green circle and a red ring around it indicates that the analysis has been
successfully carried out.
From the computational point of view, the calculation can be divided in some
steps:

1) detection of the points of the curve that are affected mainly by the selected
mode;

2) extraction of the corresponding singular values;

3) conversion of the frequency domain signal into a time domain one;

4) computation of the modal damping ratio using the logarithmic decrement
method.

In the following pages, some screenshots of the GUI are reported. The processed
data come from a numerical example, consisting in a 7 DOFs system.

6
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Figure 2.1: The GUI as it appears when opened.

Figure 2.2: The GUI with 7 SISO FRFs loaded.

7



2.2. Computation Chapter 2. EMA method development

Figure 2.3: The GUI with 7 SISO FRFs and the resulting SIMO one.

Figure 2.4: The GUI with the CMIF plot.
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2.2.1 Mode detection and extraction of the singular values

Once a peak has been selected and the analysis is started, the software saves the
corresponding singular value, singular vector and frequency.
Then, from this singular value the algorithm starts moving forward and backward
on the frequency axis comparing, at each iteration, the singular vector correspond-
ing to the selected spectral line with the one of the investigated singular value.
This comparison is based on the calculation of the MAC, defined as follows [3]:

MAC({Ur}, {Us}) =
|{Ur}H{Us}|2

({Ur}H{Ur})({Us}H{Us})
(2.1)

The user can set the minimum admissible MAC and at this point the software
detects the part of the curve that is affected mainly by the mode corresponding to
the selected peak. A graphical output is also provided: all the accepted singular
values are marked with a red dot as shown in Figure 2.5. All the results that will
be shown have been calculated with a minimum admissible MAC equal to 0.8.

Figure 2.5: The GUI at the end of the analysis.

2.2.2 Conversion from frequency to time domain

At this point, the extracted singular values are saved in a vector of the same
length of the FRF, which was initially full of zeros.

9
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In order to obtain the time domain signal, this vector needs some manipulations:
calling n its length, a null vector with length 2(n− 1) is created and the singular
values are inserted in its first n positions. The remaining n− 2 elements should be
complex and conjugated with respect to those from 2 to n− 1, that means that
their real parts should be symmetric with respect to the element in the middle
and the imaginary parts should be symmetric as well but opposite in sign.
The time domain signal is obtained by using the ifft Matlab command, that
performs the Inverse Fast Fourier Transform. This function requires in input a
complex valued vector, while the singular values are real valued. For this reason,
as a first attempt, a phase of zero has been introduced in each point, that is
equivalent to setting a null imaginary part to the singular values.

The obtained time domain signal doesn’t result very clear due to some beat-
ings introduced by the quick jumps of the reconstructed SDOF FRF on both
sides of the selected peak. In order to avoid this problem, before the IFFT, the
peak extracted from the CMIF plot has been linked to the other elements of the
vector, that are equal to zero, with a smooth curve. Such a link is constructed
by computing the ratio between the first two points on the left and the last two
points on the righ that are different from zero and then on both sides other values
are added maintaining the same ratio between two consecutive points. This is not
strictly correct, due to the fact that the curve should have a horizontal asymptote
at low frequencies corresponding to the static compliance (in case the FRF is a
receptance) or an unpredictable behaviour at high frequencies (in case the FRF is
an inertance). Such a kind of information is unknown, so the curves at both sides
of the peak tend to zero.

2.2.3 Computation of the modal damping ratio

With these modifications, the beating in the time domain signal results less
important and a first approximation of the modal damping ratio ζr can be
computed by using the logarithmic decrement method [1].
As already stated, this is a very simple time domain method: it is sufficient to
read on the plot the amplitude of two maxima n periods away one from the other.
Calling x1 the amplitude of the first maximum and xn the one related to the
maximum n periods away on the right, the logarithmic decrement δ is defined as
it follows:

δ = ln
x1
xn

(2.2)

10
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and the modal damping ratio ζr is computable by using the following equation:

ζr =
δ√

4n2π2 + δ2
(2.3)

Since the reconstructed time domain signal is computed from real frequency data,
it is symmetrical with respect to the middle point, so the first half of the curve
decreases with a higher rate with respect to the real one. For this reason the
damping ratio is divided by 2, obtaining the final value.

With ζr it is possible to compute the natural frequency of the mode ωr by
inverting Equation (1.2).

Once a peak has been selected and analysed, a graphical output is available:
the user can see the frequency domain signal before and after the correction of
both the tails, the time domain one and the logarithm of the absolute value of its
first half. Then, in order to apply the logarithmic decrement method, two thresh-
olds are set, the highest one at the 80% of the first local maximum, the lowest
one at its 10%. These thresholds are used to automatically choose the first and
the last maximum to be used for the computation. Both the thresholds and the
chosen maxima are shown in the provided graphical output, as shown in Figure 2.6.

In Figure 2.5 the GUI at the end of the analysis is shown: all the peaks have
been picked and the results are listed in the table.

In Table 2.1 the obtained results are compared to the reference parameters
of the analysed system, that are known. As regards the natural frequencies, the
calculated values can be considered fully acceptable, while some damping ratios
show a non-negligible difference from the reference value.
The damping ratio related to the first mode, for example, shows a difference from
the reference value of 65.3%, that is not so large in an absolute scale, considering
the fact that the value of the damping itself is very small. It can be stated that it
probably occurrs because the first mode is characterised by a very small damping.
For what concerns the fifth mode, one probable reason of error is the fact that it
is not characterised by a big amount of energy, so that the peak is not very high.
Finally, for what concerns the seventh mode, it has been noticed that the error
occurs due to the correction of the frequency domain signal, that causes some
irregularities on both the sides; it is sufficient to change the value of the minimum
admissible MAC in order to obtain a better result.

11
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Figure 2.6: The graphical output: on the first plot the original frequency domain signal
(blue) and the corrected one (orange) are visible; in the remaining plots, the
time domain signal is reported in the two explained ways, with the chosen
maxima, the thresholds and the fitted straight line highlighted.

Since the time domain signal (Figure 2.6) is obtained from real frequency data,
it does not represent the exact time history: it is evident that the signal decreases
and increases again and this is not correct. Besides this, the decreasing part has
not a constant decay rate, so the computed damping ratio is strongly influenced
by the choice of the first maximum and the number of periods n, influenced by
the imposed thresholds.
This effect can be easily noticed by plotting the logarithm of the absolute value of
the first half of the time domain signal and this is the reason why this kind of
plot is provided in the graphical output: the decay should be exponential, so in
this plot the maxima should be linked by a straight line. Figure 2.7 shows that
this does not happen when real data are used to obtain the time domain signal
by analysing a numerical SDOF system as example. On the vertical axis of the
third plot it can be also noticed how the amplitude has been alterated during the
execution of ifft and this can be considered as another warning of the wrong
reconstruction of the signal.

A possible way to simplify the problem is the approximation of the curve that
links the maxima that are taken into account for the calculation with a straight

12
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Natural frequency [Hz] Damping ratio [%]
Mode Reference Experimental Reference Experimental ∆ [%]

1 8.09 8.09 0.22 0.36 65.3
2 24.70 24.72 1.44 1.30 9.4
3 35.32 35.32 1.43 1.60 12.0
4 45.03 45.07 1.15 0.95 17.7
5 47.55 47.58 1.38 2.52 82.6
6 53.46 53.26 1.61 1.70 5.8
7 65.99 65.85 1.97 2.77 40.6

Table 2.1: Summary of the results obtained by using the logarithmic decrement method
(SIMO).

line using Matlab Curve Fitting Tool and the calculation of the damping ratio
ζ as the mean value of all the damping ratios obtained with different numbers
of periods n. The fitting has been performed by means of the function fit, that
gives as output the coefficients of the straight line in the form y = mx + q, R2

and other parameters out of the aim of this work. In the third plot of Figure 2.6
the fitted straight line can be slightly seen. In the GUI the result given from this
method is reported as well, with also the value of R2 as a parameter to evaluate
the goodness of the linear regression.
Table 2.2 shows the results of this method.

Natural frequency [Hz] Damping ratio [%]
R2

Mode Reference Experimental Reference Experimental ∆ [%]

1 8.09 8.09 0.22 0.34 55.9 0.986
2 24.70 24.72 1.44 1.28 10.9 0.970
3 35.32 35.32 1.43 1.61 12.3 0.994
4 45.03 45.07 1.15 0.94 18.3 0.991
5 47.55 47.58 1.38 2.47 78.9 0.988
6 53.46 53.26 1.61 1.74 8.1 0.963
7 65.99 65.84 1.97 2.70 36.9 0.978

Table 2.2: Summary of the results obtained by using the linear fitting method (SIMO).

13
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(a) Original time domain signal.

(b) Time domain signal reconstructed from complex data: some numerical
errors can be seen at lower amplitudes.

(c) Time domain signal reconstructed from real data: the orange line is nomore
straight.

Figure 2.7: An example to show that time domain signals reconstructed from real data
don’t have a constant decay rate.
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2.3 PSD fitting

Another method can be used in order to identify the modal parameters. Once
the singular values are extracted according to the MAC value between their left
singular vectors, they can be manipulated as if they were the actual FRF of the
system.
The chosen points are used to fit a SDOF system FRF in order to use it to compute
the damping ratio and the natural frequency with a method that relies on at least
four spectral lines [4]. This method requires the expression of H(ω), that is the
Fourier transform of the impulse response function h(t), in the Z-domain and
afterwards a least square solution is found in order to fit a SDOF system FRF to
the selected points. Some details about the method will be now given.

In the Z-domain, the Fourier transform of the descrete impulse response
function of a MDOF model is:

Hk =
2n∑
r=1

Ar
zk

zk − zr
(2.4)

where zr is related to the system poles sr = −ζrωr ± iωr

√
1− ζ2r . If the modes

are well separated, a SDOF model can be assumed. This is equivalent to assume
n = 1 in Equation (2.4), that becomes:

Hk =
b1zk + b2z

2
k

a0 + a1zk + z2k
(2.5)

where a0, a1, b1 and b2 are real. After some algebraic passages, it is possible to
express:

|Hk|2 =
1 + A cosxk

B + C cosxk +D cos 2xk
(2.6)

with A,B,C and D real coefficients. With the assumption of input with flat
spectrum in the frequency range of interest, it is possible to state that Syy ∝ |Hk|2

and then it is possible to write Equation (2.6) for each spectral line k. Since the
unknowns are just four, it is possible to find a least square solution for A,B,C
and D and from them a0 and a1 can be computed. As last step, ωr and ζr can be
found:

ωr =

√[
fs arccos

(
−1

2

a1√
a0

)]2
+
(fs

2
ln(a0)

)2
(2.7)

ζr =
(
−fs

2
ln(a0)

)
/ωr (2.8)
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Natural frequency [Hz] Damping ratio [%]
Mode Reference Experimental Reference Experimental ∆ [%]

1 8.09 8.09 0.22 0.35 57.6
2 24.70 24.72 1.44 1.49 3.5
3 35.32 - 1.43 - -
4 45.03 - 1.15 - -
5 47.55 47.58 1.38 0.48 65.4
6 53.46 53.26 1.61 1.69 5.0
7 65.99 65.85 1.97 2.20 11.8

Table 2.3: Summary of the results obtained by using the PSD fitting method (SIMO).

In Table 2.3 some results from the same data of the previous Paragraph are
shown.
From modes 2 and 6 it can be noticed that this method gives better results, since
it does not involve the conversion into a time domain signal, that is the part that
introduces errors in the prevoiusly described method. Anyway, for modes 1, 5 and
7, the same errors already explained occur.

Although this method is more accurate, for some numerical issues a failure
of the computation can happen (modes 3 and 4). For this reason, all the results
coming from the three different methods are reported in the GUI (Figure 2.5).

Also in this case, a graphical output is provided: it shows the original curve,
the fitted one and the results of the computation, as shown in Figure 2.8.

Figure 2.8: PSD fitting graphical output: in black the original curve and in red the
fitted one. In this case (mode 1) they are almost superimposed.
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2.4 MIMO systems

As already stated, a SIMO dataset can be obtained from more SISO ones by
clicking on the button “Merge outputs”. It is also possible to obtain a MIMO
dataset from more SIMO ones and this can be done by clicking on the button
“Combine”. In this way the data are stored in a 3-D matrix, where the first
dimension coincides with the number of outputs No, the second one with the
number of inputs Ni and the third one with the number of samples of the analysed
spectrum K, as shown in Figure 2.9.

Figure 2.9: A simplified scheme of the 3D matrix.

Once a MIMO dataset is obtained, it is possible to click on “SVD-FRF” in
order to perform the SVD and obtain the CMIF plot. The singular values are in
this way saved in a matrix with NSV rows and K columns.
In this case, on the plot more curves are present, as shown in Figure 2.10: they
represent the different singular values obtained at each spectral line. This is
exactly the case described in Chapter 1 and the cross singular value or eigenvalue
effect may be noticed. For this reason the implementation of vector tracking is
necessary: by following the highest singular value only, some points of the FRF
may be neglected even if the MAC between the corresponding singular vector and
the singular vector related to the singular value on the peak is higher than the
minimum admissible MAC.

2.4.1 Vector tracking

Vector tracking starts when the analysis is started by clicking with the right mouse
button.
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Figure 2.10: The GUI with the CMIF plot of a MIMO system.

First of all, the left singular vectors are stored in a matrix with (NSV xNo) rows
and K columns, as shown in Figure 2.11, then the algorithm compares by means
of Equation (2.1) the singular vector related to the picked singular value with all
the singular vectors related to each the spectral line on both sides of the peak.
This means that, at each iteration, NSV MAC values are computed. The obtained
MAC values are stored in a column of a matrix with NSV rows and K column.
At each iteration the maximum MAC is found among the last NSV computed
values and its row index is saved. The procedure goes on until all the last NSV

MAC values – that are related to a single spectral line – become lower than the
minimum admissble MAC. This check can be easily implemented by verifyng that
the saved maximum MAC of the last iteration is lower than the threshold: if this
is the case, also the other NSV − 1 values will be lower than the minimum MAC,
so the cycle is stopped, otherwise the next spectral line is considered.

Once the cycle is over on both sides of the peak, since the row indices of the
maximum MAC values is saved, it is possible to pick the tracked singular values
from the matrix that contains them all: at each spectral line, that corresponds
to a column, the index of the maximum MAC indicates the row of the singular
value that has to be chosen. The picked values are stored in a null vector with
K elements and at this point the procedure is the equal to the one described in
Paragraphs 2.2.2 and 2.2.3.

18



2.5. Symmetric structures Chapter 2. EMA method development

Figure 2.11: A simplified scheme of the matrix containing the singular vectors.

In Tables 2.4, 2.5 and 2.6 some experimental results are shown: they come
from an impact test of an aluminium plate with 7 outputs and 12 impact points.
The reference values have been computed with the RFP-Z method implemented
in ARTeMIS Modal.

Natural frequency [Hz] Damping ratio [%]
Mode Reference Experimental Reference Experimental ∆ [%]

1 66.97 69.67 8.414 5.908 29.78
2 349.06 348.96 0.599 0.567 5.33
3 483.22 483.17 0.572 0.554 3.23
4 704.10 704.02 0.629 0.633 0.56
5 851.36 851.64 0.386 0.398 3.03
6 945.62 945.60 0.475 0.499 5.09
7 1396.02 1395.8 0.667 0.588 11.89
8 1612.78 1611.9 1.058 1.411 33.40
9 1689.60 1688.7 0.677 0.736 8.74
10 1893.76 1893.6 1.354 0.619 54.28
11 2183.07 2185.3 1.590 0.851 46.46

Table 2.4: Summary of the results obtained by using the logarithmic decrement method
(MIMO).

2.5 Symmetric structures

In presence of symmetric structures, it is very common to have resonance peaks
also on the second singular value, at a frequency that is very close to one peak

19



2.5. Symmetric structures Chapter 2. EMA method development

Natural frequency [Hz] Damping ratio [%]
R2

Mode Reference Experimental Reference Experimental ∆ [%]

1 66.97 69.75 8.414 6.242 25.81 0.980
2 349.06 348.96 0.599 0.550 8.25 0.972
3 483.22 483.17 0.572 0.539 5.73 0.967
4 704.10 704.02 0.629 0.598 4.86 0.962
5 851.36 851.64 0.386 0.374 3.03 0.961
6 945.62 945.60 0.475 0.481 1.26 0.954
7 1396.02 1395.8 0.667 0.639 4.21 0.919
8 1612.78 1611.8 1.058 1.302 23.07 0.907
9 1689.60 1688.7 0.677 0.695 2.69 0.824
10 1893.76 1893.8 1.354 1.372 1.30 0.834
11 2183.07 2185.4 1.590 2.096 31.82 0.789

Table 2.5: Summary of the results obtained by using the linear fitting method (MIMO).

Natural frequency [Hz] Damping ratio [%]
Mode Reference Experimental Reference Experimental ∆ [%]

1 66.97 69.81 8.414 8.682 3.18
2 349.06 348.96 0.599 0.600 0.12
3 483.22 483.17 0.572 0.571 0.16
4 704.10 704.02 0.629 0.642 1.99
5 851.36 851.64 0.386 0.400 3.58
6 945.62 945.60 0.475 0.516 8.72
7 1396.02 1395.8 0.667 0.670 0.49
8 1612.78 1611.9 1.058 1.096 3.56
9 1689.60 1688.7 0.677 0.720 6.37
10 1893.76 1893.8 1.354 1.433 5.83
11 2183.07 2185.5 1.590 1.684 5.29

Table 2.6: Summary of the results obtained by using the PSD fitting method (MIMO).

on the first singualr value. In these cases, theoretically speaking, the two modes
should be characterised by the same natural frequency and damping ratio, with
equal mode shapes but 90° rotated. In practice, this condition is not so common,
due to little asymmetries of the stucture, that, for small and light structures,
can be also caused by the accelerometers, that may not be placed in symmetric
positions.
For this reason, the code has been modified in order to be able to pick also points
on the second singular value.
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2.6 C++ implementation

The written Matlab code can not be directly included in ARTeMIS Modal, since
the latter is written in C++ language.
For this reason, a new GUI-free script has been written: it receives as input the
results of the SVD (already present in ARTeMIS Modal), asks the user to indicate
the index of the point that corresponds to the peak to be investigated and the
number of the singular value that peaks (just in case of more than one SV).

As output, it provides the damped frequency, the three different values of the
damping ratios, the values of R2 and the three values of the natural frequencies.
For simple structures, such as beams or plates, the mode shape is also plotted on
a static figure and in an animation.

The only difference from the GUI-based script is that a different graphical
output is provided, in order to easily read the indices of the points. It consists of
two CMIF plots: the fist one has the frequency and the second one has the index
on the horizontal axis, as shown in Figure 2.12.

Since this script is much simpler than the previous one, it represent the
starting point for the C++ implementation, performed by the Structural Vibration
Solutions A/S staff.

Figure 2.12: On the dotted plot Matlab datatips can be used in order to read the index
of the chosen point.
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2.7 Automation of the procedure

In order to simplify the use of this program, a fully automatic version has been
developed.
An automatic program is very covenient, especially for companies with inexpe-
rienced staff. In fact, with this kind of program it is sufficient to load the data
obtained from the SVD, that is already implemented in ARTeMIS Modal, and
start the computation: it gives as an output the results without any further
intervention by the user.

Essentially, an automatic research of the peaks has been implemented and,
once they are picked, the already explained computation starts, in order to obtain
the damping ratios ζr and the damped frequencies ωd,r.
This search can be divided in different steps:

1) the Modal Coherence function is computed;

2) a threshold T is set in oder to find the spectral lines where the peaks may
be located and first check on them;

3) in each interval of spectral lines where a single mode is dominant, the
maximum is found in the first singular value;

4) a second check is performed in order to discard maxima that don’t correspond
to a peak;

5) in the remaining intervals, the peaks in the second singular value are found;

6) the same check as before is performed in order to discard maxima that don’t
correspond to a peak in the second singular value;

7) further checks based on the MAC.

2.7.1 In-depth analysis

Modal Coherence

The so-called Modal Coherence is a function that will be close to one in the regions
where a specific mode is dominating, which is around the resonance peaks, and
will drop significantly between them, since the modes are mixed. Since it is a
function of the frequency, it has as many points as the CMIF. For this reason it is
particularly useful to plot it on the CMIF plot in order to visually recognise the
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frequency intervals where the peaks are located.
It is computed in the following way: for each spectral line k, the function is
computed by using the first left singular vectors by means of the equation below:

Ck =
1

2K

K∑
i=−K
i 6=0

{U}Hk−i{U}k (2.9)

where K is the number of the considered spectral lines on each side of the spectral
line k. The function becomes smoother and smoother by increasing K [5].

Threshold setting

In order to identify the frequency intervals where the peaks may be located, a
threshold T is set, at 0.8 for example. In this way, it has been possible to save the
indices of the limits of the intervals where C > T , that may contain a resonance
peak. Before the peaks research, intervals containing a few elements are discarded;
the minimum number of elements is chosen by the user. This parameter can not
be constant because, due to the obtained frequency resolution ∆f , it is difficult
to set a universally acceptable parameter.

Peaks search

In each remaining interval, the index of the local maximum of the first singular
value is saved: it may correspond to a resonance peak.

Once a local maximum has been found in each interval, a check is needed in order
to establish if that maximum is a peak or not.
For this reason, the routine checks that the maximum is at least higher than the
interval limits plus a certain percentage, that can be adjusted in order to obtain
good results. If this is not true, the interval and the maximum are discarded.
After this step, every frequency interval contains a resonance peak.

Second singular value

In this condition it is useful to check if the second singular value contains any
peak, which is very common with symmetrical structures, as already explained.
Since every possible peak in the second singular value appears below those of the
first singular value, the previously detected intervals are used.
Again, in each interval the local maximum is found and it is checked that it is
higher than the interval limits plus a certain percentage.
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Further checks

Once all the actual resonance peaks have been found on both singular values, two
MAC-based checks are performed. For both of them, the left singular vectors {U}
are used. The SVD produces, for each spectral line, a left singular vector for each
singular value: by using the same indices that point to the resonace peaks, it is
possible to associate a singular vector to each mode.

The first one concerns the couples of sibling modes that occurr on the two
singular values at the same frequency: the MAC between them is calculated and
if it is higher than 0.3 the mode on the second singular value is discarded. It’s
important to remark that the frequencies of two sibling modes may be slightly
different due to small asymmetries of the structure and that, for small and light
structures, these asymmetries may be also caused by the accelerometers, if they
are not placed in symmetric positions.

The second one is based on the MAC matrix and so the matrix needs to be
built.
At first, all the detected mode indices are stored in a vector and sorted in increas-
ing order, then a vector with the same length is build and each of its elements
indicates if the corresponding mode belongs to the first or the second singular
value: if the element is equal to 0, the mode belongs to the first singular value and
if it is equal to 1 the mode belongs to the second one. This step is fundamental in
order to pick the right singular vector for each mode.
Once this information is known, the MAC matrix can be built. The expected
result is a matrix containing values close to 1 (or anyway grater than 0.9) on the
main diagonal and values close to 0 (or anyway lower than 0.3) out of it. For
different reasons, especially with close-spaced modes, it can happen that high
MAC values appear on the first diagonals above and below the main one, due
to some similarities between the two modes. In this cases, one of the two modes
often shows a higher complexity than the other one.
In order to solve this problem, the two modes are further investigated: the elements
of the two corresponding rows are summed up in order to understand which mode
is more correlated to all the others. Then, the mode that has this characteristic is
eliminated and all the vectors containing the intervals limits and the indices of
the resonance peaks are updated. A new MAC matrix is also built.
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Damping computation

At this point, all the indices of the resonance peaks are given as input to the
previously described routine in order to compute the damping ratios ζr and the
damped frequencies ωd,r.

Graphical output

With this automatic procedure, the graphical output shown in Figure 2.12 is
nomore useful and for this reason is not provided. At its place, besides the plots
shown in Figures 2.6 and 2.8, three additional grahical outputs are provided: the
CMIF plot with the Modal Coherence function superimposed, the MAC matrix
and the updated MAC matrix after the correction, if necessary.
Figures 2.13 and 2.14 have been obtained by analysing the rectangular aluminium
plate with 7 output channels and 12 impact points with a sampling frequency
fs = 5000Hz.

Figure 2.13: CMIF plot with Modal Coherence: threshold, intervals limits and peaks
are highlighted.
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Figure 2.14: MAC matrix of the aluminium plate with 12 input and 7 output channels.

2.7.2 Mode shapes plots

In this script, a graphical visualisation of the mode shapes is also provided for
simple structures, such as beams and plates. They are plotted in a static picture
and in a video animation.
In order to plot the mode shapes, the response coming from all the points of the
grid are necessary and it is sufficient to excite the structure just by means of a
couple of impact points. After building the MIMO dataset and the CMIF plot,
the mode shapes can be plotted.

It is important to remark that the mode shapes {ψr} are estimated by the left
singular vectors {Uk}, where k corresponds to the index of the spectral line that
coincides with the peak of mode r. Since the vectors {Uk} are usually complex, it
has been necessary to compute the correspondent real vectors by means of the
following equation, applied to each component:

ψr,i = |Uk,i| cos
[
∠(Uk,i)

]
(2.10)

This operation is necessary because in complex mode shapes the absolute value of
each component gives the maximum displacement amplitude of the correspondent
DOF and their phases give the delay between the moments in which the different
DOFs reach the maximum displacement.
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2.8 Testing

The method has been verified with different structures and conditions, in order to
define the limits of its reliability, with both numerical and experimental tests.
The numerical tests have been carried out on a lumped parameters model and a
continuous one, built by using a FE (Finite Element) approach, that gives the
opportunity of building a large variety of different structures. In order to build
the FE model, ANSYS Mechanical APDL has been used.
Before running the analysis of the numerical lumped parameters systems, three
Matlab scripts have been used: the first one builds the mass [M ], the damping
[C] and the stiffness [K] matrices of the system [2], the second one computes the
FRFs with the hypothesis of proportional viscous damping [6] and the third one is
the GUI-based one described in the first part of this Chapter, that builds a MIMO
dataset from many SISO ones and computes the CMIF. Some random noise has
been added to the FRFs in order to get a little closer to a real experiment. The
same workflow has been followed for the FE model, even if the second script has
been slightly modificated in order to select the right DOF of the system.

The script used in order to compute the SISO FRFs of the numerical systems
computes the receptance αpq between the input point q and the output point p in
the form:

αpq(ω) =
n∑

r=1

φprφqr

ω2
r − ω2 + i(2ζrωr)

(2.11)

where {φr} is the modal mass scaled eigenvector:

{φr} =
{ψr}√
mr

(2.12)

It’s important to remark that this scaling operation is not necessary in Matlab,
since the command [phi,lam]=eig(K,M) produces modal mass scaled eigenvectors.
Once the receptance is computed, the inertance H(ω) is calculate by multiplying it by
−ω2:

Hpq(ω) = −ω2 · αpq(ω) (2.13)

The real system is a rectangular steel plate, tested with different numbers of input
and output channels by using the Data Acquisition module available in ARTeMIS Modal.

The experimental hardware is composed by:

1) 1 National Instruments model NI cDAQ-9172 chassis;

2) 2 National Instruments model NI 9233 input modules with the following charac-
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teristics:

• 4 simultaneous analog input channels;

• 24-bits Delta - Sigma ADC;

• ±5V input range.

3) 1 PCB Piezotronics model PCB 086C01 Modally Tuned impact hammer;

4) 7 Brüel & Kjær monoaxial accelerometers.

The results of all the tests show that the method is more accurate when many output
channels are used (the number of impact points also affects the results, but this is true
for every method; for this reason this number is usually large). This behaviour was
predictable: in both the automatic search of peaks and in the definition of the frequency
intervals where a mode is dominant, the Modal Assurance Criterion is widely used. It
involves the left singular vectors {Uk}, so, in order to have many components, it is
convenient to have many accelerometers. In fact, the number of components of the left
singular vectors is always equal to the number of output channels.

For the sake of completeness some results are shown.

2.8.1 Lumped parameters numerical system

The 15 degrees of freedom lumped parameters numerical system in Figure 2.15 has been
generated. The FRF have been computed for different cases:

1) 15 impact points and 15 output channels (in this way the whole FRF matrix is
obtained);

2) 15 impact points and 8 output channels (DOFs 1, 3, 5, 7, 9, 11, 13 and 15);

3) 15 impact points and 4 output channels (DOFs 1, 2, 3 and 4);

4) 15 impact points and 2 output channels (DOFs 1 and 7).

By reducing the number of output channels, the results became less clear and less
complete: in a structure like this 15 modes should be found, but even the first case,
that is the ideal situation, only 12 of them appear. This happens because, in the
automatic procedure, only the first and the second singular values are investigated and
the last three modes are located on singular values lower than the second. The choise of
investigating just the first two singular values comes from the fact that in real cases it is
quite uncommon to have peaks on lower ones. Anyway, it is always possible to analyse
the last 3 modes by using the manual procedure.
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Figure 2.15: 15 DOFs numerical system scheme [2].

Case 1) In this case, all the DOFs are excited and measured, so 225 SISO FRFs
have been generated. Then, they have been collected in groups of 15 in order to obtain
15 SIMO dataset with 1 input and 15 output channels. After that, they have been
combined in order to obtain a MIMO dataset with 15 input and output channels.
In Table 2.7 the results coming from the PSD fitting method are shown. The reference
data are the exact ones, since the system is numerical. As regards the damping ratios,
except for mode 1, all the values have a relative error lower than 3%, that is a very good
result; ζ1 shows an error equal to almost 55%, but it can be justified by the low value of
the damping ratio itself and of the natural frequency: it is quite normal, in fact, to have
some bad data at low frequencies. As regards the natural frequencies, the results are
practically exact, thanks to the high number of singular values and to the good obtained
damping ratios.
Figures 2.16 and 2.17 show the graphical outputs coming from the same computation.
In the first one the 12 automatically detected modes can be appreciated. They come
from both the singular values and, as it can be noticed, all the false peaks generated
by the crossing singluar value or eigenvalue effect are not taken into account. In the
second one the MAC matrix shows that the results are acceptable, since there isn’t any
high value out of the main diagonal, especially in the diagonals above and below the
main one.

Case 4) In this case 15 DOFs are excited but just two of them are measured (DOFs
1 and 7): from Figure 2.19 it can be easily noticed that the results are much more
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Natural frequency [Hz] Damping ratio [%]
Mode Reference Experimental ∆ [%] Reference Experimental ∆ [%]

1 15.99 15.98 0.04 1.004 0.455 54.70
2 30.86 30.85 0.06 1.937 1.974 1.90
3 43.61 43.62 0.02 2.734 2.746 0.43
4 46.47 46.50 0.07 2.913 2.923 0.35
5 53.36 53.34 0.03 3.339 3.390 1.51
6 53.42 53.46 0.07 3.345 3.332 0.39
7 59.46 59.41 0.10 3.716 3.811 2.54
8 61.65 61.67 0.02 3.855 3.838 0.44
9 68.89 68.87 0.02 4.301 4.311 0.24
10 73.73 73.66 0.09 4.596 4.646 1.09
11 143.54 143.65 0.08 2.278 2.271 0.31
12 143.68 143.79 0.08 2.296 2.277 0.81
13 143.88 144.01 0.09 2.324 2.311 0.54
14 144.11 144.25 0.10 2.357 2.336 0.93
15 144.30 144.43 0.09 2.386 2.360 1.08

Table 2.7: 15 DOFs system results with 15 input and output channels.

Figure 2.16: CMIF plot with Modal Coherence of the 15 DOFs system with 15 input
and output channels.
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Figure 2.17: MAC matrix of the 15 DOFs system with 15 input and output channels.

confused.
In first instance, all the information are carried by two singular values instead of fifteen
and this brings to a bad CMIF plot, that leads to a bad identification of modal parameters.
Then, the left singular vectors are made by just two components and this brings to a
worse Modal Coherence function and to a bad MAC matrix. Due to this last issue, as it
can be noticed from Figures 2.18 and 2.19, mode 2 is discarded because it appears to be
highly correlated to mode 1. In case 1), when this issue does not occurr, modes 1 and 2
don’t seem to be correlated at all.

(a) The couple (1, 2) shows a high MAC
value.

(b) Mode 2 has been discarded (see Fig-
ure 2.19).

Figure 2.18: MAC matrix before and after the last check.
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Figure 2.19: CMIF plot with Modal Coherence of the 15 DOFs system with 15 input
channels and 2 output channels: only 4 out of 15 modes have been detected.

2.8.2 Continuous numerical system

As already explained, a continuous numerical system has been analysed as well.
By using ANSYS Mechanical APDL a free-free steel plate with the same dimentions as
the real one that will be analysed in Paragraph 2.8.3 has been generated.
It has been subdivided in 24 elements, in accordance with the grid used in the test on
the real plate. The model has been constructed by using solid elements (SOLID45) with
8 nodes per element. Each node has three DOFs, ux, uy and uz, so, having 70 nodes,
the whole model has 210 DOFs. It is shown in Figure 2.20.

After building the model, the modal analysis has been performed. It’s important to
remark that ANSYS gives the opportunity to choose how many modes have to be taken
into account during the computation. In this case, since the model is little and simple,
50 modes have been considered.
In order to extract the mass [M ] and the stiffness [K] matrices of the system, all the
considered modes must be expanded through the MXPAND command.
ANSYS gives also the opportunity to choose the type of mass matrix to use for the
analysis (lumped or consistent): a consistent mass matrix has been used.
The results, like natural frequencies and modal participation factors for the three direc-
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Figure 2.20: FE model with node numbers.

tions, have been saved in a *.txt file, that cointains also all the characteristics of the model.

After the analysis, the matrices have been exported, in addition to a mapping file
which will be useful later. The ANSYS command used to perform these operations is
HBMAT, available in the /AUX2 post processor, that gives the opportunity to read the
automatically generated *.full file and to export in two different ASCII files (*.matrix)
the mass and the stiffness matrix.
These two files have been imported in Matlab by using a script provided by Structutal
Vibration Solutions A/S staff, that reads the *.matrix files and saves the data in two
sparse matrices in Matlab workspace.

Known [M ] and [K], it is possible to build a proportional viscous damping matrix:

[C]p = α[M ] + β[K] (2.14)

The same matrix can also be built within ANSYS, by setting the coefficients α and
β as material properties with the command MP, just like the Young modulus E, and
by exporting it with the HBMAT command, but this method has not been used because
it is much quicker to change the coefficients in Matlab without importing the three
matrices every time a modification of the parameters is required.
Since, as already said, the model has 210 DOFs, the three matrices have 210 rows and
columns.

Once all the matrices are available, the modal approach can be used to decouple the
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210 equations: using the Matlab command eig, it is possible to compute eigenvalues
and eigenvectors. By using the well known relations below, it is possible to obtain the
natural frequencies and the diagonal modal matrices:

fr =

√
λr

2π
(2.15)

[M̄ ] = [Ψr]
T [M ][Ψr]

[C̄] = [Ψr]
T [C]p[Ψr]

[K̄] = [Ψr]
T [K][Ψr]

At this point, in order to check that all the process has been carried out properly, first of
all it has been noticed that the first six natural frequencies are null, since they correspond
to the six rigid body motions, and then the computed natural frequencies have been com-
pared to those contained in the results file generated in ANSYS: the outcome was positive.

Known all the modal damping terms cr, that can be read on the main diagonal of
[C̄], it is possible to compute the modal damping ratio associated to each mode:

ζr =
cr

2
√
krmr

(2.16)

These damping ratios, in addition to the natural frequencies computed by means of
Equation (2.15), have been considered as reference parameters for the computation.

As already said, some operations have been necessary in order to refer to the right
DOF of the FE model. It is necessary to use the mapping file: in the matrices exported
from ANSYS, the order of the rows does not follow the order of the nodes. For example,
it is not necessarily true that rows from 1 to 3 and from 4 to 6 refer to ux, uy and uz
related to node 1 and 2 and so on. The mapping file contains the relation between rows,
nodes and DOFs, so it can be used in order to automatically convert the node number
into the row number, specifying which DOF has to be taken into account. An extract of
this file is shown:

Matrix Eqn Node DOF

1 5 UX

2 5 UY

3 5 UZ

4 31 UX

5 31 UY

6 31 UZ
...

...
...
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Then, the FRFs can be plotted if needed, saved and loaded in the GUI-based program
described in the first Paragraphs of this Chapter in order to compute the CMIFs.
Once the CMIFs are computed and saved, the automatic program can be run.
The FE model has been tested in different conditions:

1) low damping (α = 10−4, β = 10−6);

2) medium damping (α = 2 · 10−4, β = 8 · 10−6);

3) high damping (α = 4 · 10−4, β = 1.6 · 10−5);

In this case, all the tests have been carried out using 35 impact points and 7 output
channels. Even in this case, some random noise has been added in order to simulate a
more realistic situation.

Case 1) Table 2.8 shows the results coming from the PSD fitting method.
The computed values for the natural frequencies and for the damping ratios can be
considered fully acceptable. As regards mode 5, it has been detected by the automatic
procedure, but then it has been discarded because it appears to be highly correlated
to mode 6, as it can be seen in Figure 2.22. This is actually wrong, because these two
modes have not close natural frequencies and have different mode shapes (Figures 2.28
form (a) to (d)). This error can be probably avoided by using more output channels.
As regards mode 7, it has not been detected by the automatic procedure because it
is very close to mode 8 and this causes problems in the Modal Coherence. For these
reasons, both modes 5 and 7 have been picked manually. Figures 2.21 and 2.22 show
respectively the resulting CMIF plot and the MAC matrix.

Natural frequency [Hz] Damping ratio [%]
Mode Reference Computed ∆ [%] Reference Computed ∆ [%]

1 367.34 367.50 0.04 0.115 0.120 3.64
2 485.20 485.00 0.04 0.152 0.156 2.46
3 779.41 779.50 0.01 0.245 0.253 3.45
4 1027.47 1027.51 0.00 0.323 0.327 1.20
5 1201.04 1201.01 0.00 0.377 0.407 7.93
6 1586.39 1586.52 0.01 0.498 0.519 4.14
7 2398.67 2398.57 0.00 0.754 0.758 0.61
8 2430.80 2431.06 0.01 0.764 0.700 8.37

Table 2.8: FE model (low damping) results.
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Figure 2.21: CMIF plot with Modal Coherence of the FE model (low damping): 6 out
of 8 modes have been automatically detected.

(a) Modes 5 and 6 are highly correlated. (b) Mode 5 has been discarded (see Fig-
ure 2.21).

Figure 2.22: MAC matrix before and after the last check.

Case 2) Table 2.9 shows the results coming from the PSD fitting method.
Also in this case, the computed values for the natural frequencies and for the damping
ratios can be considered fully acceptable. As regards mode 5, all the considerations
made in Case 1) are still valid, so it has been picked manually. Figures 2.23 and 2.24
show respectively the resulting CMIF plot and the MAC matrix.
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Figure 2.23 shows also that modes 7 and 8 are practically absent due to the higher
damping value and for these reason they can not be detected nor manually picked.

Natural frequency [Hz] Damping ratio [%]
Mode Reference Computed ∆ [%] Reference Computed ∆ [%]

1 367.34 367.52 0.05 0.923 0.961 3.64
2 485.20 485.54 0.07 1.219 1.253 2.46
3 779.41 779.66 0.03 1.959 2.034 3.45
4 1027.47 1028.35 0.09 2.582 2.620 1.20
5 1201.04 1201.18 0.01 3.019 3.366 7.93
6 1586.39 1589.40 0.19 3.987 4.194 4.14
7 2398.67 - - 6.029 - 0.61
8 2430.80 - - 6.109 - 8.37

Table 2.9: FE model (medium damping) results.

Figure 2.23: CMIF plot with Modal Coherence of the FE model (medium damping): 6
out of 8 modes have been automatically detected.
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(a) Modes 5 and 6 are highly correlated. (b) Mode 5 has been discarded (see Fig-
ure 2.23).

Figure 2.24: MAC matrix before and after the last check.

Case 3) Table 2.10 shows the results coming from the PSD fitting method.
The computed values for the natural frequencies and for the damping ratios can be
considered fully acceptable, except for mode 5, that has been picked manually. Such a
big error in mode 5 occurs because the peak is very low and smooth due to damping
and because it is very close to an intersection between the first and the second singular
values, that causes low values of the Modal Coherence function, as it can be seen in
Figure 2.25. The low amplitude of the peak caused also a failure of the PSD fitting
method and for this reason the reported value comes from the logarithmic decrement
one. In the same Figure, it can be noticed that modes 7 and 8 are practically absent
due to damping, like Case 2). Figure 2.26 shows the resulting MAC matrix.

Natural frequency [Hz] Damping ratio [%]
Mode Reference Computed ∆ [%] Reference Computed ∆ [%]

1 367.34 367.57 0.06 1.846 1.926 4.30
2 485.20 485.65 0.09 2.439 2.511 2.96
3 779.41 780.65 0.16 3.918 4.094 4.49
4 1027.47 1032.43 0.48 5.165 5.265 1.95
5 1201.04 1204.26 0.27 6.037 2.070 65.71
6 1586.39 1599.90 0.85 7.974 8.579 7.59
7 2398.67 - - 12.057 - -
8 2430.80 - - 12.219 - -

Table 2.10: FE model (high damping) results.
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Figure 2.25: CMIF plot with Modal Coherence of the FE model (high damping): 5 out
of 8 modes have been automatically detected.

Figure 2.26: MAC matrix .

Mode shapes

When a modal analysis is performed in ANSYS, in addition to the natural frequencies
and the modal participation factors, the mode shapes are available. For this reason
a comparison between these mode shapes and those estimated in Matlab has been
carried out.
As already explained, in order to plot the mode shapes, all the points of the grid have
to be measured. In this way the left singular vectors {Uk} have 35 components. Once
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the peaks have been detected, these components have been stored in a 7-by-5 matrix, in
order to reconstruct the grid and easily plot the mode shapes.

The mode shapes coming from ANSYS and Matlab are here showed.

(a) ANSYS (b) Matlab

(c) ANSYS (d) Matlab

(e) ANSYS (f) Matlab

(g) ANSYS (h) Matlab

Figure 2.27: Modes 1 to 4.
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(a) ANSYS (b) Matlab

(c) ANSYS (d) Matlab

(e) ANSYS (f) Matlab

(g) ANSYS (h) Matlab

Figure 2.28: Modes 5 to 8.

41



2.8. Testing Chapter 2. EMA method development

Comments

Since the method involves graphical procedures, it can be heavily affected by the amount
of damping: the peaks can become very low and wide with high damping values and
this makes their detection difficult.
For this reason, the method appears to be suitable for lightly damped structures, like
steel or aluminium ones, since the damping contribution carried by these materials is
usually quite low.

2.8.3 Steel plate

A 300 x 250mm2 steel plate has been divided 24 (50 x 50mm2) squares. In this way 35
points have been defined. These locations are used as input/output points, but, when
the accelerometers are placed in points that don’t belong to the grid, additional input
points are defined.
The plate has been tested with different setups:

1) 40 impact points and 7 output channels;

2) 35 impact points and 2 output channels.

It is important to remark that it is practically impossible to measure the whole FRF
matrix. When a hammer test is performed, it is common practice to use many impact
points, but using many accelerometers would be very difficult, due to the presence of a
lot of wires and the difficulty to hit the plate without touching any accelerometer.
Even in this case, the reference values have been calculated with the RFP-Z method
already present in ARTeMIS Modal.

Case 1) Figure 2.29 shows the test setup used for this analysis. Table 2.11 shows
the results of the computation coming from the PSD fitting method. Modes 1, 2, 10
and 11 have not been detected by the automatic procedure, but they have been picked
manually, so they do not appear as picked in the CMIF plot in Figure 2.31 and, as a
consequence, in the MAC matrix in Figure 2.30. Besides this, the results related to
mode 1 come from the logarithmic decrement metod, because mode 1 and 2 are close
and a few points represent the first mode: this causes a PSD fitting method failure.

As regards mode 3, it has been automatically found by ARTeMIS Modal, but, by
looking at the provided MAC matrix, it appears to be highly correlated to mode 2; this
is clear also by watching their mode shapes, that look very similar. For this reason,
since it has a higher complexity, it has been manually eliminated and doesn’t appear
in Table 2.11. This same issues happens for modes 4, 5 and 7, that come always in
couples in ARTeMIS Modal : for each couple, the mode with higher complexity has been
manually eliminated; it important to notice that, for each couple, the developed method
automatically detects just one mode.
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Figure 2.29: Test setup with 40 impact points and 7 output channels.

As regards mode 13, it has been labeled by ARTeMIS Modal as a noise mode, due to its
high complexity; since the developed method does not perform any check on complexity,
the mode has been detected.

In general, the results can be considered acceptable for almost every mode.

Natural frequency [Hz] Damping ratio [%]
Mode Reference Experimental ∆ [%] Reference Experimental ∆ [%]

1 69.85 72.34 3.57 5.878 5.945 1.14
2 88.46 88.50 0.05 6.298 2.157 65.75
3 - 123.90 - - 7.360 -
4 360.41 360.53 0.03 0.451 0.452 0.15
5 466.76 466.81 0.01 0.334 0.335 0.25
6 699.05 698.69 0.05 0.330 0.332 0.65
7 846.94 846.66 0.03 0.152 0.170 12.08
8 968.98 968.70 0.03 0.127 0.142 11.54
9 1316.39 1316.01 0.03 0.163 0.197 20.98
10 1639.55 1638.90 0.04 0.206 0.210 1.94
11 1649.21 1649.08 0.01 0.214 0.217 1.40
12 1876.79 1876.38 0.02 0.198 0.196 1.24
13 - 2013.17 - - 0.272 -

Table 2.11: Steel plate results with 40 impact points and 7 output channels.
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Figure 2.30: MAC matrix of the steel plate with 40 impact points and 7 output channels.

Figure 2.31: CMIF plot with Modal Coherence of the steel plate with 40 impact points
and 7 output channels.

Case 2) Figure 2.32 shows the test setup used for this analysis. It is important to
notice that the accelerometers are placed in symmetrical positions on the edges of the
plate. Table 2.12 shows the results of the computation coming from the PSD fitting
method. Modes 4, 5, 7, 9 and 11 have not been detected by the automatic procedure,
but they have been picked manually, so they do not appear as picked in the CMIF plot
in Figure 2.34 and, as a consequence, in the MAC matrix in Figure 2.33.
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In ARTeMIS Modal, modes 4 and 6 come in couples: for each couple the mode with
higher complexity has been manually eliminated; it is important to notice that, also in
this case, for each couple, the developed method automatically detects just one mode.

Figure 2.32: Test setup with 35 impact points and 2 output channels.

By observing the MAC matrices in Figure 2.33 it is clear that the results are
completely unuseful and not reliable, since there are a lot of high values out of the
main diagonal. Since one possible reason could be the symmetrical positions of the
accelerometers, a test has been performed with different sensor positions: 7 modes have
been automatically detected instead of 5, but even in that case the MAC matrix is way
far from being diagonal. For this reason, it is possible to state that the only reason for
such bad results is the lack of output channels.
Also the results of the computation, that have been obtained with the PSD fitting
method, appear confused: some of them are close to the reference values, some other are
very far from them.

(a) Modes 2 and 3 are the only
highly correlated neighbors.

(b) Mode 2 has been discarded (see
Figure 2.34).

Figure 2.33: MAC matrix before and after the last check.
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Figure 2.34: CMIF plot with Modal Coherence of the steel plate with 35 impact points
and 2 output channels.

Natural frequency [Hz] Damping ratio [%]
Mode Reference Experimental ∆ [%] Reference Experimental ∆ [%]

1 68.13 72.38 6.25 6.734 5.197 22.83
2 - - - - - -
3 - - - - - -
4 359.83 360.02 0.06 0.449 0.446 0.58
5 468.19 467.98 0.04 0.299 0.327 9.33
6 697.77 697.51 0.04 0.296 0.311 4.92
7 848.81 848.65 0.02 0.164 0.149 8.90
8 964.68 964.59 0.03 0.207 0.136 34.12
9 1320.76 1320.39 0.03 0.213 0.228 7.23
10 1640.98 1640.51 0.03 0.144 0.175 21.40
11 1650.04 1645.69 0.26 0.254 0.442 74.10
12 1874.40 1874.27 0.01 0.210 0.187 11.03
13 - - - - - -

Table 2.12: Steel plate results with 35 impact points and 2 output channels.
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Chapter 3

EMA and OMA comparison

3.1 Basic concepts

As already explained, there are two big families of workflows in modal analysis: EMA
and OMA. The main difference between them is the nature of the processed data: in
EMA the classic FRFs are used, that carry information about both the input excitation
and the measured output response, while in OMA only the output response is measured
and processed.
This peculiarity makes OMA especially suitable for the analysis of structures in their
real working conditions, advantage that is very important for big or heavy structures
that can not be brought in a laboratory or in all the situations in which the input is
not measurable. In these conditions, the input has to satisfy some requirements, but
basically it has to be a white noise [1].
Theoretically speaking, EMA and OMA should give the same results but in practice
this is almost never true. In EMA, the input is considered, so if it contains components
with high energy at a certain frequency, their effect is reflected on the output. When
the FRFs are computed, this effect disappears, since the FRFs are basically the ratio
between the output and the input.
In OMA, instead, this effected can not be eliminated, since the input is not measured;
for this reason, the input should be a white noise, that has a flat spectrum. Anyway,
since this method is used to investigate structures in their real working conditions,
some external influences can be present in the output, such as rotating machinery.
These energetic components can be easily confused with resonance peaks, so commercial
OMA softwares are often equipped with harmonics detection tools. Nevertheless, user’s
experience is obviously very important.
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Figure 3.1: ARTeMIS Modal screenshot showing the geometry and the channels in the
EMA measurement: the green arrows represent the impact points and the
blue ones the positions and the directions of the two accelerometers.

3.2 Description of the comparison

In this part of the work, a comparison between EMA and OMA is carried out.
Measurements have been performed on a rectangular steel plate. The EMA ones have
been performed, as already said, with 2 accelerometes (outputs) and 35 impact points
(inputs), as shown in Figure 3.1. The impacts are generated by hitting the plate by
means of an instrumented hammer, in order to measure the input.
The OMA has been performed using two different setups: in both of them two out of
eigth accelerometers are placed in the same positions in order to use them as reference
channels and the other six have been placed in symmetrical positions with respect to
one of the symmetry axes of the plate, as shown in Figure 3.2.

The compared methods are RFP-Z for EMA, and EFDD (Enhanced Frequency
Domain Decompostion) and SSI-UPCX (Stochastic Subspace Identification-EXtended
Unweighted Principal Component) for OMA.

3.3 Results

From Tables 3.1 and 3.2 it can be noticed that the natural frequencies are usually very
similar between EMA and OMA, except the fist one. A possible reason for such a
big difference can be the fact that it is much lower than the Nyquist frequency, that
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(a) Test Setup 1.

(b) Test Setup 2.

Figure 3.2: ARTeMIS Modal screenshots showing the geometry and the channels in the
OMA measurements.

corresponds to fs/2 = 2500Hz. As already explained, in fact, it is quite common to
have bad data at low frequencies, also due to noise. As regards the damping ratios, the
relative differences are always quite big and this is probably caused by the fact that all
of them are quite small. By comparing the results coming from EFDD and SSI-UPCX
between them, in fact, the relative differences between the natural frequencies are always
lower than 1% while those between the damping ratios are of the same magnitude order
as those shown in Tables 3.1 and 3.2. In this way is possible to conclude that the big
differences between EMA and OMA results for what concerns the damping ratios do not
depend on the analysis type.
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Natural frequency [Hz] Damping ratio [%]
Mode RFP-Z EFDD ∆ [%] RFP-Z EFDD ∆ [%]

1 82.22 61.21 25.56 5.529 6.235 12.77
2 359.60 356.73 0.80 0.483 0.501 3.73
3 470.65 465.95 1.00 0.464 0.455 1.94
4 701.25 692.71 1.22 0.366 0.345 5.74
5 850.15 839.61 1.24 0.217 0.233 7.37
6 970.70 957.35 1.38 0.201 0.232 15.42
7 1319.43 1304.93 1.10 0.216 0.297 37.5
8 1644.05 1624.02 1.22 0.166 0.091 45.18
9 1652.50 1631.88 1.25 0.176 0.199 13.07
10 1881.77 1868.83 0.69 0.158 0.636 302.53
11 2158.66 2136.45 1.03 0.179 0.326 82.12

Table 3.1: Comparison between RFP-Z and EFDD.

Natural frequency [Hz] Damping ratio [%]
Mode RFP-Z SSI-UPCX ∆ [%] RFP-Z SSI-UPCX ∆ [%]

1 82.22 61.74 24.91 5.529 21.662 291.79
2 359.60 356.87 0.76 0.483 0.317 34.37
3 470.65 465.08 0.97 0.464 0.322 30.60
4 701.25 692.79 1.21 0.366 0.244 33.33
5 850.15 839.57 1.25 0.217 0.14 35.48
6 970.70 957.08 1.40 0.201 0.174 13.43
7 1319.43 1304.88 1.10 0.216 0.239 10.65
8 1644.05 1624.41 1.56 0.166 0.46 177.11
9 1652.50 1631.05 1.24 0.176 0.32 81.82
10 1881.77 1868.68 0.64 0.158 0.544 244.30
11 2158.66 2136.65 0.93 0.179 0.499 178.77

Table 3.2: Comparison between RFP-Z and SSI-UPCX.
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