

POLITECNICO DI TORINO

Corso di Laurea Magistrale

 in Ingegneria Meccanica

Tesi di Laurea Magistrale

Development and comparison of prognostic
methodologies applied to electromechanical
servosystems (EMA) for aerospace purposes

Relatori

prof. Paolo Maggiore

Ing. Matteo Davide Lorenzo Dalla Vedova

Candidato

Stefano Re

Ottobre 2018

Thanks to…

Desidero ringraziare tutti coloro che mi hanno aiutato nella stesura della tesi con

suggerimenti, critiche ed osservazioni: a loro va la mia gratitudine, anche se a me spetta la

responsabilità per ogni errore od imprecisione contenuto in questa tesi.

Anzitutto ringrazio sentitamente l’ing. Dalla Vedova e il prof. Maggiore, relatori, i quali hanno

mi hanno guidato con esperienza e simpatia lungo il tortuoso percorso di ricerca e speso

parte del loro tempo a revisionare le bozze: senza il loro supporto e la loro guida questa tesi

non avrebbe visto la luce.

Ringrazio anche Pier Carlo Berri per il supporto che mi ha dato con Matlab e per gli

innumerevoli consigli di cui spero di aver fatto tesoro in modo efficace.

Vorrei dedicare questo lavoro ad alcune persone a me molto care:

A papà Alberto e mamma Giovanna, i cui sacrifici spero di aver ripagato nel modo migliore

possibile, sempre pronti a sostenermi nei momenti complicati.

A tutti gli amici, vicini e lontani, nuovi o di lunga data, che in questi anni mi hanno dimostrato

il loro affetto. In particolare, ci tengo a ringraziare Andrea e Lorenzo, fantastici compagni di

avventura e amici leali con i quali ho diviso esperienze fantastiche, e Giorgia, il cui affetto

mi ha permesso di superare le avversità dell’esperienza torinese.

Ma soprattutto dedico questo lavoro a me stesso, che ho lavorato duramente per ottenere

ciò che mi ero prefissato, senza cercare scusanti ai fallimenti che ottenevo.

Abstract

Over the past few decades, mostly in commercial and defence markets, there has been the

will to implement always new approaches and strategies to carry out prognosis on complex

systems, in order to achieve benefits in terms of reliability and safety of the product, planning

maintenance and logistic costs. In this work, a model-based prognostics approach is

proposed: it has been applied to the study of fault appearance in flight controls moved by an

electromechanical servosystem (EMA). The faults taken into consideration are friction,

backlash, short circuit, rotor eccentricity and gain: they are deeply described and

implemented in two different models. The first model is the high-fidelity one and it represents

the motor to analyse; the second one is the monitor model, lighter and quicker then the

previous one, which has to approximate as best as it can the parameters of the first one. To

simulate the reference model, four different optimization algorithms are applied to the

monitor: Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm Optimization

(PSO) and Greywolf Optimization (GWO). Their features and their capability to solve this

problem are deeply investigated and compared each other; particular attention is paid to

percentual error between the optimizations and the reference values and to computational

time.

1

CONTENTS

CONTENTS ... 1

1. Introduction and overview ... 5

1.1. Introduction to prognostics .. 5

1.2. Flight controls ... 7

1.2.1. Primary flight controls ... 9

1.2.2. Secondary flight controls .. 10

1.3. Actuation systems ... 13

1.3.1. Hydromechanical actuation .. 13

1.3.2. Electrohydraulic actuation .. 14

1.3.3. Electro-hydrostatic actuation (EHA) ... 15

1.3.4. Electromechanical actuation .. 17

2. Brushless Motor .. 20

2.1. Stator .. 21

2.2. Rotor ... 22

2.3. Working principle .. 23

2.4. Torque and efficiency ... 28

2.5. Control .. 31

3. Electro-mechanical actuator models ... 35

3.1. Reference model .. 35

3.1.1. Com block .. 37

3.1.2. BLDC Motor Controller Model block ... 38

3.1.3. BLDC Motor ElectroMechanical Model block ... 39

3.1.4. BLDC Motor Dynamic Model block .. 45

3.2. Monitor Model ... 49

3.2.1. Controller subsystem ... 50

2

3.2.2. Electromechanical model ... 50

3.2.3. Mechanical part .. 52

4. Faults analysis and their implementation .. 53

4.1. Introduction to faults ... 53

4.2. Dry Friction ... 57

4.2.1. Description ... 57

4.2.2. Implementation ... 57

4.2.3. Dynamic Response to a step command ... 58

4.2.4. Dynamic Response to a chirp command .. 61

4.3. Backlash ... 64

4.3.1. Description ... 64

4.3.2. Implementation ... 65

4.3.3. Dynamic Response to a step command ... 66

4.3.4. Dynamic Response to a chirp command .. 67

4.4. Short circuit ... 70

4.4.1. Description ... 70

4.4.2. Implementation ... 71

4.4.3. Dynamic Response to a step command ... 75

4.4.4. Dynamic Response to a chirp command .. 77

4.5. Eccentricity ... 79

4.5.1. Description ... 79

4.5.2. Implementation ... 82

4.5.3. Dynamic Response to a step command ... 84

4.5.4. Dynamic Response to a chirp command .. 85

4.6. Proportional gain ... 88

4.6.1. Description ... 88

4.6.2. Implementation ... 88

3

4.6.3. Dynamic Response to a step command ... 89

4.6.4. Dynamic Response to a chirp command .. 90

4.7. Noise .. 93

4.7.1. Description ... 93

4.7.2. Implementation ... 95

4.7.3. Dynamic response ... 96

5. Optimization algorithms .. 97

5.1. Introduction to problem solving algorithms ... 97

5.2. Genetic Algorithm (GA) ... 100

5.3. Differential Evolution (DE) .. 103

5.4. Particle Swarm Optimization (PSO) .. 106

5.5. Greywolf Optimization (GWO) .. 108

6. Failure detection and calibration ... 112

6.1. Faults implementation ... 113

6.2. Fitness function ... 114

6.3. Command choice and calibration.. 118

7. Results .. 120

7.1. Optimization parameters ... 120

7.2. Faults detection .. 124

7.2.1. Single fault detection – Friction .. 125

7.2.2. Single fault detection – Backlash ... 128

7.2.3. Single fault detection – Short Circuit .. 131

7.2.4. Single fault detection – Eccentricity .. 134

7.2.5. Single fault detection – Gain .. 137

7.2.6. Multiple fault detection ... 140

7.3. Comparison of the results ... 143

8. Conclusions and future perspectives .. 149

4

Appendix A .. 151

Appendix B .. 154

Appendix C .. 157

5

1. Introduction and overview

1.1. Introduction to prognostics

Over the past few decades, mostly in commercial and defence markets, there has been the

will to implement always new approaches and strategies to carry out prognosis on complex

systems, in order to achieve benefits in terms of reliability and safety of the product, planning

maintenance and logistic costs. Prognostics is the discipline which evaluates the current

state of a system or single component and estimates the Remaining Useful Life (RUL),

namely how much time will pass until the object of the study will no longer able to operate

within its stated specification [2]. Prognostics is exploited in a huge range of applications

including automotive, robotics, automation and naval purposes for its extremely reliable

behaviour: in this work it’s applied to an electromechanical actuator which commands a

secondary flight control. This discipline is composed by several mandatory steps:

1. Data collection: the system or the machinery studied is equipped with sensors which

acquires the temporary trend of a variable as displacement, speed, torque or current.

Next, is important to exclude the sensors which gave back unreliable trends caused

by noise or excessive vibrations.

2. Clean up of the trends: in every sensor’s records is stored also the noise and

vibrations which could affect the real behaviour of the system; in this phase, using

analogic or digital filters, signals are cleaned up.

3. Thresholds: with a filtered signal, it’s mandatory to determine thresholds directly from

data already acquired (history) or from requirements.

4. Prediction of RUL: this is the last phase and the most “aleatoric” one. Taking

advantage from algorithms, neural networks, mathematical regressions and

statistics, a prediction of RUL is carried out; in this way it’s possible to plan next

maintenance stops. This prediction could be made studying the future operating

working conditions as input commands, environment or loads, analysing the failure

modes with FMEA or FMECA models, detecting every indication of failure in our

6

system as wear, cracks or aging and correlating them with the experience or

mathematical expressions.

The increasing of reliability and safety of the products, and decreasing the logistic time,

costs and unnecessary services are the main aims of prognostics. This discipline could be

divided into some different categories [5]:

➢ Type I, reliability data-based. These models are based on statistical considerations

and exploit historical fault data to estimate the Remaining Useful Life (RUL) mainly

for parts used in nominal conditions;

➢ Type II, stress-based. Learning from accumulated knowledge, here a fault growth

model considers all the environmental stresses as external loads, temperature, noise,

vibrations etc;

➢ Type III, condition-based. These models take care also about specific conditions in

which a component is working and hence its failure conditions, which can be used to

plan a maintenance.

Nowadays the implementation of prognostic methods is managed by an approach which

compares the complexity of the system and the benefits in terms of availability, cost savings,

maintenance scheduling. For components not essential in the working-life of a machine or

for the cheapest ones is not convenient to do such a study.

Prognostics is different from the diagnosis, because the latter indicates the condition of the

system after a break, it represents something already happened (e.g. a break-down of the

turning screw); the former is nothing but a prediction of the possible future working behaviour

of the system based on the actual conditions.

In this work a model-based prognostics approach is proposed: it will be applied to the study

of fault appearance in flight controls. These are the most critical system mounted on aircraft,

so they are usually designed with the “safe life” philosophy: every part or component of these

systems must be replaced with a new one after a determined amount of flight hours. The

aim of this thesis is to suggest a reliable option to plan maintenance actions just in the

moment where the system needs it, comparing some different algorithms and their

response.

7

1.2. Flight controls

In last decades, flight control systems have shown a great evolution thanks to improvements

done in aircraft technologies [4]. In the first planes there was a fly-by-wire technology, in

which pilot’s commands in the cockpit were connected directly to the control surfaces by

means of thick wires. This control method remained very used for many years; when the

technologies was approaching the supersonic region of flight, the necessity of more complex

and reliable control systems returned back at the top of the designers’ priority list [7].

Furthermore, the increasing load capacity of planes makes inadequate a system moved only

by pilot’s strength: in this period hydraulically-powered and pneumatically-powered

actuators become widespread. These systems saw a brilliant evolution throughout the

years, until they become one of the most studied parts of the aircraft; nevertheless, their

increasing complexity and their interactions during flight may reduce the reliability and

efficiency of the whole plane. A small leakage in pneumatic or hydraulic hardware could

provoke wrong functionality of all networks, causing issues, delays or dramatic

consequences. This leads to a concept introduced years ago, during World War II: the “all-

electric” aircraft [6].

In the figure 1.1 below (taken from [21]), the flight controls are represented and named.

Figure 1. 1 - Name of the main flight controls

8

All aircrafts, from the simplest to the most complex one, use quite the same principles of

flight controls. In order to modify its position in the space, an aircraft needs to move some

specific control surfaces dislocated in different places (wings, fuselage, stabilizers…), which

allow to exploit the force of the air to make the plane turn around one of its three main axis

or to modify its altitude.

All surfaces represented above allow the aircraft to do rotational or translational movements

around a set of pre-determined axis. To modify the altitude, an aircraft exploits the lift force,

generated by the air passing through the wings, to overcome the weight of the structure,

people and cargo; the other translational force (directed in the main direction of the flight) is

generated by the propulsion system, it’s called thrust and it needs to be greater than the

drag force, which is simply the resistance of the air acting against the motion of the plane

[8]. In the figure 1.2 taken from [8] these four forces are clearly shown.

Figure 1. 2 - Forces acting on the plane

Flight controls could be divided into two categories: primary and secondary flight controls.

9

1.2.1. Primary flight controls

Primary flight controls are systems which could carry out rotational displacements around

the three main body axis: the motions are called pitch, roll and yaw, and they are represented

in figure 1.3 [8].

Figure 1. 3 - Name of the rotational displacements

The three surfaces which could execute these manoeuvres are the ailerons (represented in

the figure 3 in blue), the rudder (shown in red) and the elevators (the green ones). The

movement of any of these three primary flight control surfaces varies the pressure

distribution around and over the airfoil. During a normal flight, actuators connected with them

are continuously powered and checked: these systems are usually full of redundancies and

high-frequency feedback rings (force feedback is the most common used), in order to have

always under control their functionality. Furthermore, they need to compensate the external

disturbances, so their action is vital.

To modify the aircraft heading and altitude, primary control surfaces generate unbalanced

torques and forces which are able to modify aircraft position. To change plane’s heading,

usually the pilot needs to execute a roll modifying the ailerons’ inclination. These surfaces

are normally two, they are situated at the rear of each wing and work in opposition to each

other: when one is raised, the other is lowered, in order to decrease the lift force on one

wing (aileron raised) and increase it on the other (aileron lowered). They are mainly used in

fixed-wing aircraft to turn.

The yaw is carried out by the rudder, situated on the tail of the aircraft, precisely on the

vertical stabilizer. Both roll and yaw allow the aircraft to change heading in the same way:

the main difference is that the former involves the coordination of two axis whilst the latter

only one. During the turning operation made by roll, a component of the lift is directed toward

10

the centre of rotation, so the real effect of this force decreases; this situation provokes the

loss of altitude of the aircraft. The pilot needs to help the ailerons with the rudder, and at the

same time he needs to raise the nose of the aircraft. To do that, two surfaces called elevators

are installed at the end of the aircraft, on the horizontal stabilizers. The alteration of their

angular position acts like a lifter (here is the origin of their name) and allows to increase or

decrease the altitude of the aircraft. Furthermore, they have also a “support” purpose,

because usually the cockpit or generally the front side of a plane is heavier than the rest:

elevators generates a downward force on the tail which compensates this unbalanced

situation.

Primary flight controls could be reversible or powered. The former relies on a direct linkage

made up by rod or steel cables between the movable surfaces and commands in the cockpit,

hence the pilot need to act on the levers or pedals with a force able to counteract the air

flow. The latter exploit hydraulic and electric actuation systems to compensate a great

amount (or, in some cases, almost entire effort) of air force: they are widely used when the

loads or the speed of the aircraft do not allow the first solution. In this last case, the pilot

needs only to give the input signal and the command is transferred to the surfaces with a

fly-by-wire or fly-by-light system.

Some of the main control parts have been generally described above, but in a flight control

system there are a lot of more surfaces which enable the pilot to have a suitable control over

all aircraft, also during landing and take-off. Their design takes care about advanced

aerodynamics and systems dynamics and it could sharply vary from an aircraft to another,

depending on the purpose (commercial or military), performance requirements (maximum

speed and payload, agility, etc.) and dimensions. These other control surfaces are the

secondary flight controls.

1.2.2. Secondary flight controls

Secondary flight controls include several added surfaces to make easier and more efficient

the control of the aircraft for the pilot. For further clearness, it’s necessary to introduce deeply

this type of control surfaces.

Commonly used secondary flight control surfaces are [9]:

11

➢ Flaps, which are the most common lift devices installed on an aircraft: their role is to

induce drag and lift for any angle of attack of the wing. These surfaces are located

alongside the wings and could be raised or retracted inside the wing’s structure

depending on the need. There are four types of flaps, represented in figure 1.4 (in

grey is the section of the wing, in orange the flap), taken from [9].

Figure 1. 4 - Main types of flaps used nowadays

Plain flap is the oldest and the simplest between the four shown above: it changes

the camber of the wing, generating a quick increase of the lift coefficient (usually

represented with CL notation), and also introduces a drag component and a

movement of the centre of pressure back towards the tail, which allow the aircraft to

perform a pitch rotation (nose downward).

The second type of flap is the split one: it is installed under the wing, allowing a great

increase of the drag component due to turbulent flow of the air and a slightly lower

increase of lift compared with the plain flap.

Surely, the most spread and used secondary flight control surface on aircraft

nowadays is the slotted flap, which increases the lift coefficient CL sharply and more

than the previous two types of surfaces discussed. When this flap is lowered, a small

conduit widens between the flap’s and wing’s edges: this opening admits the passage

of highly-energized air, which could act on larger surfaces compared with plain and

split flap, generating a superior lift force. Furthermore, the duct allows the increase of

drag force reducing strongly the creation of harmful vortices.

A particular type of slotted flap is the Fowler flap, which does not rotate on a hinge,

but slides on tracks. This surface has the possibility to generate a very harmful

pitching moment (nose up or down), which could be counteracted with a trim

adjustment.

➢ Slats are the leading-edge device located on the front side of each wing. They could

be classified as fixed slots, movable slats, leading-edge flaps and leading-edge cuffs.

12

Figure 1. 5 - Types of slats

The main aim of these surfaces is to delay stall until the wing reaches a right angle

of attack: directing the airflow to the upper wing surface, the separation of the airflow

is strongly retarded. Usually these devices are pilot-operated and can be used at any

angle of attack.

Fixed and movable slots are very similar, but formers are usually hinged and cannot

be dismounted, latters move on tracks and could be replaced.

Leading edge flaps are commonly used with flaps because they can counteract the

nose-down pitching moment generated those surfaces. A small rising movement of

leading edge flaps increases sharply the lift force applied to the aircraft; when this

device is extended, drag component become bigger quicker than the lift.

Leading edge cuffs increase the maximum value of the lift coefficient CL like leading

edge flaps, but the formers are a fixed device. These surfaces could move forward

and down the leading edge, decreasing aircraft’s stall speed (airflow could adhere

better to the upper surface of the wing).

➢ Other control surfaces are the spoilers, whose aim is to decrease lift and to increase

drag force. They are located alongside the wing like the flaps, but have a different

use: they allow the pilot to have a perfect control over the aircraft during landing.

Special application of the spoiler could be in roll manoeuvre to counteract the adverse

yaw torque. Deploying the entire spoiler structures permits to decrease altitude

without gaining speed.

With flaps, slats and spoilers, other types of secondary flight control surfaces are trim

systems, balance tabs, ground adjustable tabs, servo and anti-servo tabs and adjustable

stabilizers.

An ON/OFF actuator usually powers secondary flight surfaces, and their control law does

not require an excessively high frequency rate: a position or at least a speed control ring are

installed. Actuators are located in the centre of the plane and the motion is transmitted to

13

the surfaces in order to achieve the best symmetry possible; only devices which could work

asymmetrically are spoilers.

1.3. Actuation systems

To drive the control surfaces, usually several servomechanisms are exploited. They receive

the input commands from the cockpit, compare them with the actual situation of the system

(position, speed, force, torque, temperature, pressure or electrical magnitude) and

consequently act. Actuators requirements are robustness, reliability and safety and main

solutions are described below.

1.3.1. Hydromechanical actuation

The simplest hydromechanical system is composed by a reservoir, a pump, a filter to

maintain the fluid clean, a selector valve to control the direction of the flow, an actuator and

a relief valve to drain the excessive pressure in the circuit. They could be classified [11]:

➢ Position hydraulic servo-system (with or without mechanical feedback)

➢ Speed hydraulic servo-system

➢ Force hydraulic servo-system

Figure 1. 6 - Typical hydromechanical actuator

14

An effective type of hydromechanical actuator with mechanical feedback is shown in figure

1.6. This system is composed by a hydraulic cylinder and a proportional control valve. A

perturbation on the three-pivot control lever xset causes the movement of the valve’s spool:

in this way one chamber of the cylinder and a tank (or generically the supplier) are

connected. Fluid flows in the superior chamber of the cylinder, moving downwards the

actuator’s shaft and generating the displacement xout. This solution is reversible: changing

the direction of the input, hence the direction of the spool motion, actuator’s shaft will move

upwards. At the initial and final position, when the input and output variable are steady, the

valve closes all possible holes and maintains blocked the servosystem.

A system is really reliable if is also insensible to an eventual disturbance; for a position

control the disturbance is represented by a force. Hence, if the shaft has to sustain a heavier

load, the valve’s spool opens a duct and supplies the needed pressurized flow to bear it: in

this way the system has also a disturbance rejection.

This type of servomechanism is widely used due to its simplicity and reliability, it can be

found on several operational aircraft such as F-15 Eagle of Boeing 737.

1.3.2. Electrohydraulic actuation

Nowadays, the most used actuation system on aircraft is the electrohydraulic one. It’s very

similar to hydromechanical, but the mechanical feedback is replaced by a fly-by-wire

structure. Here the simple valve shown in figure 1.6 is replaced by a more complex

servovalve: this could be flapper-nozzle type (figure 1.7) or jet pipe type (figure 1.8).

Figure 1. 7 - Flapper-nozzle servovalve

15

Figure 1. 8 - Jet-pipe servovalve

A servovalve is different from the proportional valve seen before because in this case there

is an electrical component, called torque motor, which transmits the command instead of a

mechanical lever. In the flapper-nozzle servovalve the torque motor induces a magnetic field

that could rotate a “T” shaped component, bonded at the end of the long shaft to the valve’s

spool. Hence this structure approaches a nozzle and leaves from the other: in this way the

amount of fluid that flows from the ducts, so also the pressure, changes. In the jet-pipe

servovalve the functioning is the same, but here the torque motor modifies the heading of

an elastic spout from which the pressurized fluid flows [11].

In these two types of electrohydraulic systems there is not a direct feedback between the

control valve and the actuator: the absolute position of the piston is surveyed by a Linear

Variable Differential Transducer (LVDT) and sent to the control electronics.

1.3.3. Electro-hydrostatic actuation (EHA)

In recent years, the will to make flights cheaper and greener have driven the aerospace

industry to develop more electrical actuation system to implement in Power-by-wire

networks. Two examples of this philosophy are electro-hydrostatic (EHAs) and

electromechanical actuators (EMAs). Nowadays, in civil transportation, EHAs are widely

used by Airbus (A380/A400M/A350 mainly), while EMAs are more utilized by Boeing (B787),

both for first and secondary control systems.

16

Electro-hydrostatic actuators [12] are a power-by-wire type of motors that execute the

movement of the control surfaces exploiting a localized hydraulic power obtained by the

electrical power. These actuators could be divided in several groups according to their

difference in control modes:

➢ Fixed Pump displacement and Variable Motor speed EHA (FPVM-EHA);

➢ Variable Pump displacement and Fixed Motor speed EHA (VPFM-EHA);

➢ Variable Pump displacement and Variable Motor speed EHA (VPVM-EHA).

In this paragraph are described only the FPVM-EHA because are the most popular thanks

to their structural simplicity and high efficiency. A typical structure is shown in figure 1.9.

Figure 1. 9 - Typical FPVM-EHA simplified structure

A servomotor controlled by electronics drives a bi-directional pump with variable speed. The

fluid in the circuit is stored in a proper reservoir, composed by a low-pressure tank and two

check valves able to maintain the minimum pressure required by the system. Close to

reservoir there is a bypass valve electronically controlled and two relief valves arranged for

safety of the system. The pressurized oil in the circuit it’s not provided by the on-board main

17

hydraulic system, but the pump takes the needed fluid from the tank. For this type of actuator

too, the feedback ring needs a position sensor placed on the shaft.

This is not the best structure if the aim is to decrease aircraft’s weight, but it’s very effective

to reduce the critical issue related to a centralized hydraulic system. Furthermore, it allows

maintenance and fuel cost savings while it assures the same precision and reliability of a

traditional hydraulic system. The main issue of this solution is the low frequency width (about

5 Hz) which makes EHA not suitable for military purposes.

1.3.4. Electromechanical actuation

Electromechanical actuation (EMA) moves aircraft design toward the philosophy of “More

Electric Aircraft”, with great level of safety, efficiency, cost saving and a strong reduction of

pollution. In EMAs the hydraulic circuit is entirely replaced by mechanical solutions, usually

reducers (both gearbox or nut-screw types), which exclude the possibility of leakages: those

issues are often difficult to detect and hard to fix due the complexity and the scarce

accessibility of the fluid circuit.

A possible simplified EMA structure for aerospace purposes is represented in the figure

below.

Figure 1. 10 - Essential scheme of EMA structure

The Actuator Control Electronics (ACE) is the main controller of the system and executes

all calculations needed to maintain the error closest to zero; in this device arrive all the

18

feedbacks collected by the sensors. Once calculated the current state of the end-effector

through position and speed loops, ACE sends the reference position to the Power Drive

Electronics (PDE). PDE it’s usually composed by a three-phases inverter bridge and its goal

is to provide the correct power flow to electric motor in order to reach the reference position.

The motor is usually a BLDC motor (Brushless powered by Direct Current): it transforms

electrical input into mechanical rotational output for the reducer’s gears. For this task, in

EMAs structure motors are usually very small, to reduce overall weight, and quick. To

increase the torque and to reduce the speed transmitted a gears reducer is used, followed

pretty always by a ball or roller screw (figure 1.11) which are able to transform a rotary

motion into a translational one.

Figure 1. 11 - Ball screw (left) and roller screw (right)

These devices are composed by a rolling body (spheres for the ball screw and shaped

cylinders for the roller screw) located between the rotating shaft and a nut. The friction is

clearly very small, the loads could be very heavy, and it has a great resistance to wear;

however there are some issues regarding the plays. The translation of these mechanisms

allows the movement of the end-effector: in this simple example it is represented by a flight

control surface on which is applied an aerodynamical effort. Another important part of the

system are sensors: they are mandatory to detect the actual state of the system (position,

speed, torque, force etc.).

Nowadays, electromechanical actuators are already used in military aircraft or in secondary

flight controls; their application to primary flight control needs the improvement of some

critical issues. Firstly, they have a very complex structure, which requires a deep study of

kinematics and redundancy design; furthermore, to increase efficiency and avoid jam

problems, a different BLDC motor is required for every surface, but in this way the possibility

to cause a critical failure is increased. Another important problem is the possibility to

19

maintain a determined position after the application of a heavier load: if the motor’s speed

is near to zero and the torque is high, all the current given to stator is dissipated by joule

effect. This issue could be overcome with an irreversible transmission.

20

2. Brushless Motor

Brushless Direct Current motors (also called BLDC motor or synchronous DC motors) are

synchronous, direct current-powered and electronically-commutated actuators [14]. This

type of motor is gaining popularity very quickly; nowadays is used in a wide range of

applications such as automotive, aerospace, medical and industrial automation. In

electromechanical system are the most used due to their long list of positive characteristics.

BLDC motors, as the name suggest, do not exploit the brushes to control the current inside,

but they are electronically controlled. This feature allows these actuators to not suffer from

wearing and particle inclusions issues; furthermore, during the normal activity the noise is

strongly reduced. Other advantages over the brushed DC motor are the higher dynamic

response and efficiency, longer operating life, superior speed and better ratio between the

torque and the weight of the system: this last characteristic made BLDC motor very suitable

for application in which space and weight are critical issues. This type of actuator is shown

in figure 2.1.

Figure 2. 1 - Cross section of a BLDC motor

Generally, brushless direct current motors are composed of an external stator in which is

wounded a number of winding equal to the motor phases and an internal permanent magnet

rotor; usually, the number of phases is three and the windings are star-connected. This type

of actuator is synchronous, which means that the rotation frequency of the magnetic field of

the stator and of the rotor is the same.

21

2.1. Stator

BLDC motor stator is made out of laminated steel stacked up to carry the windings and

traditionally it resembles that of an induction AC motor; however, the distribution and the

position of the windings in these two motors are different. Phase windings in a stator could

be arranged in two different ways, star pattern (Y) or delta pattern (Δ): the main difference

between these two configurations is the phase voltage. In fact, in delta configuration the

phase voltage is equal to the line voltage, in star configuration is equal to 1
√3

 of the line

voltage. Hence, it’s clear that when the same voltage is applied, the delta pattern sees a

higher current flow thus the torque (directly dependant to the current) is higher. However, in

delta pattern all the windings must be always powered and the commutation order is

different; for this reason, this last solution is used only in special applications.

Figure 2. 2 - Δ configuration (at the right) and Y configuration (at the left)

Steel shape of the stator can be slotted or slotless as shown in figure 2.3. A slotless core

has lower inductance, so it can rotate at very high speeds. Thanks to the absence of teeth

in the lamination stack, requirements for the cogging torque also decrease, thus they are a

suitable solution for low speeds too. The cogging torques are caused in slotted stator by the

interactions between the stator teeth and the magnetic rotor: the difference of the air gap

causes a variable reluctance, so it provokes ripples when the rotating speed is low. The

main disadvantage of a slotless stator is a higher cost because it requires more copper

winding to compensate the larger air gap.

22

Figure 2. 3 - Slotted stator (at the left) and slotless stator (at the right)

To achieve the best motor performance the choice of the steel used for the stator is a critical

issue: an inappropriate selection could cause problems during the normal working activity.

2.2. Rotor

The rotor is the rotating part of the motor and it’s made by permanent magnets, which could

be arranged in different ways (in figure 2.4 some BLDC-motor rotor configurations are

shown).

Figure 2. 4 - Rotor magnet cross section

If the magnets are located outside the central cylinder, the rotor is called isotropic (the first

example on the left in figure 2.4); if the magnet are in the internal part of the central cylinder

the rotor is called anisotropic. In both configurations, particular attention must be given to

the attachment between the rotor and magnets: during nominal working they rotate at

23

several thousand of RPM, causing a strong centrifugal stress which could provoke the

detachment of these two parts.

Depending on the application requirements, the number of poles and the materials of

magnets may vary. Increasing the number of poles-pairs of the motor it’s possible to achieve

a smoother torque delivery, but such a system could reach lower speeds due to maximum

frequency of current commutation provided by the electronic control. The materials of the

rotor magnets could be different depending on the magnetic field density required.

Historically the first permanent magnets were made by ferrite but, as technology goes

further, rare earth alloy magnets become more important and widely used thanks to their

higher magnetic flux density for a given volume. Furthermore, this type of magnets improves

the size-to-weight ratio: in this way it’s possible to provide a higher torque for the same size

motor using ferrite magnets. Typical examples of rare earth alloy for magnets are

Neodymium (Nd), Samarium Cobalt (SmCo) and Neodymium-Ferrite-Boron (NdFeB).

Figure 2. 5 - Isotropic (a) and anisotropic (b) rotors

2.3. Working principle

A brushless motor can be controlled by a square wave (brushless DC motor) or by a sine

wave (brushless AC synchronous motor) depending on the waveform of the current provided

by the controller and the back electromotive force trend given by the stator coil and rotor

magnet disposition and shape. This work will focus on brushless DC motor which are the

most used thanks to their control simplicity.

24

The torque on BLDC motors is provided by the interaction between the magnetic field

generated by the current in the windings and the permanent magnet on the rotor. The

highest torque is achieved ideally when this two field are at 90°: in order to keep the actuator

rotating, the magnetic field produced by stator windings should shift from one winding to

another, to allow the rotor field to follow it. In a three phases motor, each commutation

sequence has one winding powered by an incoming current, one non-energized winding

and one from which the current goes out (positive, neutral and negative power).

The commutation of a BLDC motor is electronically commanded, as already said. It implies

that controller needs to know the position of the rotor to shift the power from one winding to

another. Rotor position is obtained by sensors located all around the rotating body and they

can catch its precise position time by time. These sensors exploit the Hall effect (they are

also called Hall sensors): if a conductor which carries current is immersed in a magnetic

field, this one applies a transverse force on the moving charges, generating a voltage in the

conductor (figure 2.6).

Figure 2. 6 - Hall effect

25

Most BLDC motors have three Hall sensors displaced at 120°, with 60° of resolution,

embedded into the stator. Whenever one of the rotor poles pass near the sensor, it provides

an electric signal positive (indicating the N pole) or negative (S pole). Combining the signals

of the three Hall sensors the rotor position could be evaluated. Usually, embedding the

sensor in the stator is a very difficult task because also small angular displacement could

cause problem to the controller: often, near the Hall sensor, a Hall sensor magnet is placed,

which is only a scaled replica of the rotor. When the permanent magnets turn, its effect is

replicated by this device, allowing a right acquiring campaign.

The commutation sequence in one mechanical counterclockwise revolution is represented

in figure 2.7. Hall sensors are indicated with H1, H2 and H3 and are displaced 120° one to

another. In figure 2.7a, H1 and H3 see one S pole, so they provide a positive signal, while

H2 detect a N pole. In this configuration, phase B (in red) is powered positively to attract the

closest north pole, phase A (in black) is zero and phase C is connected to ground. When

the north pole is approximately aligned with the phase B, sensor H3 turn off the signal,

indicating that a shift of alimentation is needed. Hence, the controller reverses the power to

phase A and C: at the former a current is subtracted, the latter is turned off. The next step

(120° electrical degree) is shown in figure 2.7c, where H1 and H2 sensor provide a positive

signal, therefore the electronic controller allows the current flow to pass in the phase C and

turn off the phase B. In figure 2.7d is represented the situation at 180° electrical degree (the

electrical angle is the mechanical one multiplied for the number of pole pairs), in which only

the sensor H2 provide a tension signal, causing the shutdown of the phase A and the

connection to the ground of the phase B (phase C remained powered positively). The cycle

continues in the last two images (2.7e and 2.7f) in the same way described above.

26

Figure 2. 7 - Commutation sequence in a three-phases two-pole pairs BLDC motor

It’s clear that this type of motor, powering only two phases each time, allows the cooling of

the unpowered coil, but provides a smaller torque compared with sinusoidal AC induction

motors. Furthermore, the continue commutation of the phases provokes a slight ripple in the

speed, as shown in figure 2.8 (here, the speed error after the transient is due to the necessity

of saturation of the controller, as discussed in next chapters).

27

Figure 2. 8 - Speed ripple in a BLDC motor with step command

For a better explanation of the commutation sequence, in figure 2.9 is represented the three-

phase inverter which controls the commutation of the motor phases thanks to a logic circuit

acting on six power transistors; in table 1 the status of the sensor and motor phases for

every degree are summarized.

Figure 2. 9 - Electical scheme of the static inverter

28

Table 1 - Switching sequence

Electrical position 0<θe<60° 60°<θe<120° 120°<θe<180° 180°<θe<240° 240°<θe<300° 300°<θe<360°

Hall sensors
H1 1 1 1 0 0 0
H2 0 0 1 1 1 0
H3 1 0 0 0 1 1

Motor phases
A off ground ground off supply supply
B supply supply off ground ground off
C ground off supply supply off ground

2.4. Torque and efficiency

Torque on a BLDC motor is provided by the interactions between the stator windings and

the rotor permanent magnets. Generically, for a coil in which the current pass through and

immersed in a magnetic field (figure 2.10), the Lorentz law says that:

�⃗� = 𝑖�⃗⃗�𝑥𝑙

Where �⃗⃗� is the magnetic induction vector (expressed in Wb/m2), i is the current, and l is the

length of the coil.

Figure 2. 10 - The coil in which pass the current (in green) immersed in a magnetic field (in blue) generates a force (in
red)

Knowing that the motor torque could be expressed as:

 𝐶𝑚 = 𝐹 ∙ 𝑟 (2.1)

29

where r is the radius of the rotation of the coil (in the figure represented by a black dashed

line), substituting the expression of the Lorentz law when the angle between magnetic

induction and the direction of the coil is 90°, we could obtain:

𝐶𝑚 = 𝑖𝐵𝑙𝑟 = 𝑖

𝜙

𝐴
𝑙𝑟

𝐴 =
2𝜋𝑟𝑙

𝑝

(2.2)

(2.3)

where 𝜙 is the intensity of the magnetic flux (expressed in [Wb]) and A the area interested

by the magnetic flux: the rotation of the motor modifies the magnetic flux crossing each coil

in stator windings according to Faraday’s law, so a counterelectromotive force is applied at

each phase. To find the expression of the torque is required to combine the expressions

(2.2) and (2.3), finding:

 𝐶𝑚 = 𝑘𝑐𝑖

𝑘𝑐 =
𝜙𝑝

2𝜋

(2.4)

(2.5)

where kc is the torque constant.

The total torque could be calculated adding the contributions of the three phases of the

actuator. This value is maximum when the magnetic field generated by the permanent

magnet of the rotor and by the stator are perpendicular: the control logic tries to maintain

the phases closest to π/2.

Using the expressions listed above, the torque could be simply expressed as a function of

speed. Knowing that a BLDC motor could be modelled with:

 𝑉𝑚 = 𝑅𝑖 + 𝑘𝑐𝜔 (2.6)

isolating the current and remembering the equation (2.4), the torque is:

𝐶𝑚 = 𝑘𝑐𝑖 =

𝑉𝑚𝑘𝑐
𝑅

−
𝑘𝑐
2

𝑅
𝜔 (2.7)

30

In the same way, we could also express the power of the actuator as:

𝑃𝑜𝑢𝑡 = 𝐶𝑚𝜔 =

𝑉𝑚𝑘𝑐
𝑅

𝜔 −
𝑘𝑐
2

𝑅
𝜔2 (2.8)

It’s important to underline the speed dependency from the torque and the power: the former

is a linear function, the latter is a parabola. These two relations could be represented in a

graph (figure 2.11).

Figure 2. 11 - Torque and power trend in a BLDC motor

During nominal operations, the motor can be loaded up to the rated torque (this value is

reported in the motor’s datasheet). Up to the rated speed, the torque in a BLDC motor

remains steady. Once arrived at the rated speed, this one could be further increased until

the 150% of the nominal speed, but the torque drops down. In applications which require

frequent start-and-stop operations, there is the necessity of a torque superior to the rated

one (frictions and inertia must be overwhelmed). The actuator can provide a higher torque

for a brief period, but the rotational speed is low, and the dissipations become very important.

In fact, in the graph it’s possible to see that the maximum power is obtainable at the rated

31

speed with the rated torque; every other position in the graph implies a reduction of the

available power due to dissipations.

Efficiency of the system is defined as the ratio between the output power and the provided

power. The friction and viscous effect are neglected in this explanation because are small

compared with the Joule effect dissipations. Hence:

𝜂 =

𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

 (2.9)

Knowing the expression of the 𝑃𝑖𝑛, it’s possible to write that:

 𝑃𝑖𝑛 = 𝑉𝑖

𝜂 =
𝐶𝑚𝜔

𝑉𝑖
=
𝑘𝑐𝜔

𝑉

(2.10)

(2.11)

2.5. Control

The comprehension of the main features of a BLDC motor allow the description of its control,

which ensure reliable and safe operations. There are several different control modes,

depending mainly on the purpose of the application.

The most used is the speed control, employed in systems which receive an on/off command

such hydraulic valves or reservoir or compressors. In BLDC motor speed control, the actual

speed is compared with the commanded one and the error is sent a P.I.D. controller

(Proportional – Integrative – Derivative). This device calculates if the error lays inside a two-

line limit zone, which represent the acceptable error of the system. If the speed is higher

than the upper limit or lower than the lower limit, the control logic gives a step command to

the motor to accelerate. This acceleration is achieved modifying the voltage which powers

the actuator: usually a constant DC voltage is source is available. When the Pulse Width

Modulation (PWM) signal is 1, the motor is forced to accelerate due to the positive voltage,

when the duty cycle is 0 the applied voltage is 0. The frequency of the PWM signal is

proportional to the analogic signal wanted. A simple example of this method is shown in

figure 2.12.

32

Figure 2. 12 - PWM control logic

The speed is evaluated using the signals of the Hall sensor or an encoder located properly

on the moving shaft. The frequency of the PWM signal is given by the P.I.D. controller

proportionally to the trend of the error: if this one is high, the signal will be 1 for a longer time

than the case in which the error is small. A block diagram of a speed control loop is

represented in figure 2.13.

Figure 2. 13 - Block diagram for a speed control loop

33

Another type of control loop is the torque control, which allows the actuator to have always

the same output torque regardless the external load, the position or the speed. It’s already

been said in paragraph 2.4. that the torque depends on the magnetic flux on the phase

windings, but it also depends on the current through the torque constant kc. Hence, it’s

possible to control the torque modifying the current which flows in the phase windings. This

control is widely used also as inner loop in system controlled by a speed loop logic. The

block diagram for this type of control is shown in figure 2.14.

Figure 2. 14 - Block diagram for a torque control loop

In a motor control design, it’s important to take care of the safety and reliability of the

actuator: in order to do this, motor protection control logic has been developed. A simple

example could be the rotor stuck: in this case the current increases strongly, overheating

the windings and possibly burning the power electronic devices driving the motor. This

system takes care about:

➢ Peak current: the maximum instantaneous current allowed to flow in phase windings.

This condition may occur when the windings cause a short circuit: in this case the

control turn off the PWM signal in order to interrupt the power to the windings;

➢ Maximum working current: the extreme value of the output current when the motor

needs to bear an overload. The implementation of this logic is similar to a torque

control;

34

➢ Under voltage: If the system is powered with battery, it’s important to turn off the

actuator when the voltage drop off a lower limit;

➢ Hall sensor failure: position and speed are determined using the signals provided by

Hall sensors. If one of these devices break down, the commutation sequence will

interrupt, and it can cause the rotor gets stuck or the growing of too high currents.

The sensor failure could be detached via firmware, which controls if the logic of the

sensor changes during the normal working activities.

35

3. Electro-mechanical actuator models

The aim of this work is to simply detect some types of progressive fault affecting electro-

mechanical actuators, in order to make maintenance planning more efficient and the

reliability of the system higher. To simulate the real behaviour of an EMA a reference model

has been developed in Simulink environment. This is a high-fidelity model which provides

the working outputs such as position, speed and absorbed current coming from the normal

activities of the actuator. Once obtained these values, a simplified EMA monitor model

needs to detect as best as it can the faults which have been introduced in the reference

model. Below there is a deeper description of these two actuator models.

3.1. Reference model

The aim of the reference model, as already said, is to simulate the real working behaviour

of an electromechanical system, avoiding the necessity to have a real and expensive test

bench. This model is developed and implemented in a Matlab-Simulink environment and

represents a flap control, which has a dynamic response in an intermediate range between

a primary and a secondary flight control.

This model simulates the first 0.5 seconds of the behaviour of the electromechanical system.

The simulation is very complex and computationally expensive, so a Euler first-order fixed-

step resolution method, which is the simplest and most controllable possible, is employed.

The time step between an evaluation and the next is set at 1∙10-6 s, at least two order less

than every system in the model, in order to take care about the dynamics of all devices. It’s

impossible to use second order methods as Runge-Kutta or Dormand-Price, because during

the simulation they will interpolate data during the recursive evaluation of the error, causing

the non-linearity of the convergence of the problem.

The main features and parameters of the reference model are listed in table 2 below.

36

Table 2 - Main parameters of the EMA system

Parameter Symbol Value Measure Unit
Error proportional gain 𝐺𝑝𝑟𝑜𝑝 105 -

PID controller: proportional gain GAP 0.05
𝑁𝑚𝑠

𝑟𝑎𝑑

PID controller: integrative gain GAI 0
𝑁𝑚

𝑟𝑎𝑑

PID controller: derivative gain GAD 0 𝑁𝑚𝑠2

𝑟𝑎𝑑

Maximum power supply voltage 𝑉𝑚𝑎𝑥 48 V

Maximum current 𝐼𝑚𝑎𝑥 22.5 A

Maximum motor torque 𝑇𝑚,𝑚𝑎𝑥 1.689 Nm

Torque constant 𝑘𝑡 0.0752
𝑁𝑚

𝐴

Back-EMF constant 𝑘𝑒 0.0752
𝑉𝑠

𝑟𝑎𝑑

Phase-to-phase resistance 𝑅𝑠 2.13 Ω

Phase-to-phase inductance 𝐿𝑠 7.2∙10-4 𝐻

RL time constant of BLDC motor 𝜏𝑅𝐿𝑠
𝑅𝑠
𝐿𝑠

 𝑠

Polar expansions per phase 2P 4

Number of polepairs per phase P 2

Current hysteresis band width hb 0.5 A

Inertial Torque of the motor 𝐽𝑚 1.3∙10-5 𝑘𝑔 ∙ 𝑚2

Viscous damping coefficient of the motor 𝐶𝑚 30

π
∙ 10−6

𝑁𝑚𝑠

𝑟𝑎𝑑

Inertial Torque of the user 𝐽𝑢 1.2∙10-5 𝑘𝑔 ∙ 𝑚2

Viscous damping coefficient of the user 𝐶𝑢 4.5∙10-7
𝑁𝑚𝑠

𝑟𝑎𝑑

Static friction torque of the motor 𝑓𝑠𝑚 0.06∙𝑇𝑚,𝑚𝑎𝑥 Nm

Dynamic friction torque of the motor 𝑓𝑑𝑚 𝑓𝑠𝑚
2

 Nm

Static friction torque of the user 𝑓𝑠𝑢 0.04∙𝑇𝑚,𝑚𝑎𝑥 Nm

Dynamic friction torque of the user 𝑓𝑑𝑢 𝑓𝑠𝑢
2

 Nm

Nominal backlash BLK 5∙10-3 rad

37

Schematically, the reference model is divided into four main blocks, as shown in figure 3.1.

Figure 3. 1 - Reference model

Com block represent the command given to the actuator; the output signal is an angle and

it’s sent to BLDC Motor Controller Model. It compares the commanded signal with the speed

and position feedbacks (DThM and ThM) and provide the reference current to give to the

BLDC motor. This parameter enters in the BLDC motor electromechanical model, which

evaluates the torque developed by the actuator. The BLDC Dynamic Model, comparing the

torque of the motor and the resistant torque of the system is able to calculate the actual

speed and position of the rotor, in order to close the two control rings. Speed, position and

a lot of intermediate parameters are also sent to Matlab workspace, to make the post-

processing activities easier. In the next paragraphs all blocks are deeply described and

commented.

3.1.1. Com block

Figure 3. 2 - Com block

38

From the Com block, is possible to set the type of command given to the system. User could

choose a step, ramp, sine wave, chirp command or a custom time history. The parameters

named “Com” followed by a number are used to select from the Matlab workspace the

command; their amplitudes are set from a Simulink’s dialogue window. It’s important to

underline that the chirp command could be obtained in two different ways, selectable from

the small green square close to the command square: one uses the parameters coming

from the Simulink’s dialogue window, the other employs a handmade function which

decreases from 1 to 0.

Figure 3. 3 - Chirp command in the Com block

3.1.2. BLDC Motor Controller Model block

Figure 3. 4 - BLDC Motor Control Model block

This block allows the control of the entire EMA system. It compares the position command

and the position feedback, providing the position error; this is suitably transformed in a speed

signal by the Gprop block and then limited by a saturation block, which maximum and

minimum values are equal to ±8000 rpm. The reference speed is subsequently compared

39

with the feedback one and the error is sent into the PID controller: here the input signal is

transformed in a reference torque. The division for the torque constant allows to find the

reference current: this parameter needs to be saturated at the maximum current (22.5 A) to

avoid breakages or faulty conditions of the motor. It’s important to highlight that the reference

current is a parameter which have only a control meaning, and it’s not related with the real

current in the stator coils. Before the real calculation of the reference current is possible to

add a white-noise disturbance block, which generates normally distributed random numbers

that are suitable for use in continuous or hybrid systems. These number are obviously

multiplied by 10-6 in order to make the two signals comparable. In our work, the noise gain

(Knoise) is set to 0, because is proved that its effect on the system is negligible.

3.1.3. BLDC Motor ElectroMechanical Model block

Figure 3. 5 - BLDC Motor Electromechanical Model block

This subsystem is maybe the most complex of the reference model because it takes care

about a lot of phenomena acting on the EMA. Its aims are mainly to distribute the reference

current calculated by the control electronics on the three phases of the motor depending on

40

the actual current of each phase and to evaluate the motor torque. This block is composed

by several subsystems:

➢ Reference current subsystem has as input the reference current previously evaluated

and the actual position of the rotor. In this block are evaluated the three phase

currents, using a lookup table block to model the three functions of the phases (as

shown in figure 3.6).

Figure 3. 6 - Evaluating of the three phase currents

The rotor angle is split in three different functions (which values could be only 1, 0

and -1), which take care about the characteristics of the trapezoidal BLDC motor: one

phase is powered positively (current in, signal 1), another is turned off (signal 0) and

the third is powered negatively (current out, signal -1). These signals are then

multiplied by the value of reference current to obtain the time trend of three phase

currents.

➢ The PWM block (represented in figure 3.7) receives as input the three-phase

reference currents just evaluated and compares every row with the actual current

circulating in the stator windings. If the difference is a value greater or lower than a

hysteretic value, set as hb=0.5 A, the output is a Boolean positive value (qa, qb or qc).

This signal is useful for the motor control.

➢ In the Inverter block (figure 3.8) every Boolean signal coming from PWM block is

negated and then the six signals are sent to a H-bridge with six power transistors

controlled by the electronics of the system. It’s important to highlight that the H-bridge

41

provides as output the time-trend of the voltages of three phases of the motor, which

will be used later to calculate the effective phase currents.

Figure 3. 7 - PWM block

Figure 3. 8 - Inverter block

➢ Exploiting the rotor angular position for the three phases, into the Normalized F_CEM

block (figure 3.9) the counter-electromotive force is evaluated. It’s possible to write:

 𝐹𝑐𝑒𝑚 = 𝑘𝑓𝑐𝑒𝑚 ∙ 𝜔𝑚

(3.1)

42

𝐹𝑛𝑓𝑐𝑒𝑚 = 𝑘𝑓𝑐𝑒𝑚 =
𝐹𝑐𝑒𝑚
𝜔𝑚

(3.2)

where 𝐹𝑛𝑓𝑐𝑒𝑚 is the normalized counter-electromotive force. For a system with a

number of pole-pairs greater than one, the evaluation of the 𝑘𝑓𝑐𝑒𝑚 is strictly

dependent from the rotor angle:

𝑘𝑓𝑐𝑒𝑚 = 𝑘𝑒(𝜃𝑚) ∙ (1 + 𝜁 cos (𝜃𝑚 +

2 ∙ (𝑖 − 1)

3
𝜋))

(3.3)

where 𝑘𝑒(𝜃𝑚) is the trapezoidal wave-shaped normalized counter-electromotive force

of the i-th phase of the non-faulty motor and 𝜁 = 𝑥0

𝑔0
 is the ratio between the

misalignment of rotor and stator axis (𝑥0) and the nominal value of the gap between

rotor and stator.

Figure 3. 9 - The evaluation of the normalized CEMF for the three motor phases

These equations allow to implement two possible faulty conditions of the motor: the

eccentricity of the motor and the possible overheat, which could modify the value of

the normalized CEMF.

The outputs of this block are then multiplied for the angular speed of the actuator

according to equation (3.1) in order to find the real counter-electromotive force of

each phase, as shown in figure 3.10. These parameters are useful to calculate the

effective phase current and the torque generated by the motor.

43

Figure 3. 10 - The product between the speed and the normalized CEMF

➢ The Phase current calculation block receives as inputs the phase voltages and the

counter-electromotive forces to find the effective phase currents.

Figure 3. 11 - Phase current calculation subsystem

44

This subsystem is a multi-domain because Simulink was not able to manage the

portion of the model which describes the physics of the stator circuit. Indeed, the

stator phases could be described as three solenoids linked in star-pattern with floating

centre: this configuration is not conceived by Simulink, which could only design

symmetric star-pattern circuits. The voltage in the star centre is simply evaluated as

the average of the voltages on the three branches, but with the introduction of

possible overheat, overcurrent and eccentricity conditions this calculation is not right

anymore. Hence, on the left of the figure 3.11, it’s possible to notice a SIM Power

System (it is a Simulink tool) configuration, which takes care about the real behaviour

of the stator windings and about the counter-electromotive force previously

calculated. In this way, the Simulink model is able to evaluate time by time the current

circulating in the windings and find the tension on the star centre (highlighted in the

figure 3.11 with a thick red square).

In the upper part of the subsystem, phase currents are suitably processed in order to

obtain a parameter usable in the simplified monitor model, called I3 equiv, which has

the same sign of the torque acting on the rotor and it is the equivalent single-phase

current.

➢ The last subsystem of BLDC Motor Electromechanical Model is the Torque

computation block.

Figure 3. 12 - Torque computation block

45

In this block the torque is not calculated with the equation (3.4) displayed below,

because when the motor stops, the torque should diverge to infinite.

𝑇𝑚 =

𝑃

𝜔𝑚
 (3.4)

From literature, is known that the torque could be also calculated with:

𝑇𝑚 =∑𝐹𝑛𝑓𝑐𝑒𝑚𝑖

∙ 𝐼𝑖

3

𝑖=1

(3.5)

where 𝐼𝑖 is the current of the i-th phase. In this subsystem is also necessary the

saturation block, to avoid the possibility of a torque superior than the maximum

admitted by the structure of the motor.

3.1.4. BLDC Motor Dynamic Model block

In this block is computed the dynamic of the actuator using a mechanical device: in our case

is a nut-screw system which moves the end-effector surface.

Figure 3. 13 - Dynamic subsystem

46

As shown in figure 3.13, the motor and the resistant torques are the input of a second order

dynamic system, which provides as outputs the position and the speed of the user. These

parameters are then manipulated to achieve the angular position of the rotor and of the

motor, the real position of the user which takes care about the backlash of the nut-screw

system and the speed of the motor.

The second order system is represented in figure 3.14.

Figure 3. 14 - Second order dynamic model

The actual value of the net driving torque T_Act (calculated as the algebraic sum of the

motor torque TM, resistant torque TR and friction torque) is then processed by a control

subsystem apt to simulate the effect of the SM mechanical hard-stops. Subsequently, it is

divided by total inertia (which is the sum of the motor and user inertias) and subsequently is

twice integrated to find speed and position. Once reached the SM physical limit (i.e. its

mechanical end-strokes), the system sets the output position to 0, but needs to stop to iterate

the speed and the torque: from the second integrator (now in the saturation condition) it is

possible to notice that an arrow come back to a saturation port located in the control block

(shown in figure 3.15 below).

47

Figure 3. 15 - Limit-control block

The saturation port simulates the three conditions detachable in a mechanical system:

➢ the end-effector is not at one of its limits;

➢ the end effector is at one of its limits and it is applying a force directed toward the

limit;

➢ the end effector is at one of its limits and it is applying a force directed opposite the

limit.

The values of the saturation port could be 0 if the end-effector is not at its limit and ±1

depending on the limit reached. If the product between the saturation port and the sign of

the active theoretic force (it does not take care about the limit) is greater than 0.5 (it could

be only 1, 0 or -1), the acceleration is 0. If the saturation port is 0 (limit not reached yet), the

theoretic force pass through the switch and becomes the real torque needed.

Concerning the first integrator, which stops the calculation if receives as external reset a

rising number, is controlled by an OR block. It takes care about the conditions:

1. The end-effector is at one of its limits, so the saturation port returns a value equal to

±1. With the absolute-value block, the integrator will see a 0→1 commutation and will

stop its work;

2. When the speed is close to 0 due to the friction, the Simulink model is not able to

evaluate time by time the sign of the force, so the Stribeck effect could take place. In

this case, the mass which should stop is moving in the opposite direction due to

friction force, which acts as an active strength. This is a physics absurd, so a reset of

48

the first integration is required when the speed decreases more than a pre-fixed

value.

Also the Borello Friction Model block (represented in figure 3.16), like the limit-control block,

exploits a switch to pass from two conditions: in this case are the static and the dynamic

friction conditions. During the evaluation of the speed, the middle purple line with the hit

crossing block verifies if the speed maintains the same sign between two consequent

instants. If this condition is true, the total friction is evaluated with the red part of the

subsystem, which represents the dynamic friction; else the blue lines, which correspond of

the static friction condition, are used. The static friction can be found relating to the motive

force: until the body is still, the friction and the motive force are the same. When the first

separation takes place, the value of the static friction force has been determined and

remains constant. A deeper mathematical discussion is reported at chapter 4.2.

Figure 3. 16 - Borello Friction Model

49

3.2. Monitor Model

Figure 3. 17 - Monitor model developed in Simulink enviroment

A simplified monitor model is required to approximate as best possible the high-fidelity one,

in order to be used for monitoring tasks. The aim is to use this Simulink file to detect the

state of a real actuator compiling time by time the error between the currents required by

the windings. The aforementioned reference model, into the Phase current calculation

subsystem, evaluate the equivalent current I3equiv for an equivalent single-phase actuator:

this parameter is then compared with the current of the monitor model, because it simulates

the behaviour of a single-phase actuator. In this way it is possible to relate the real actuator’s

parameters with the monitor ones, finding the fault issues.

It’s composed by some parts, deepened below.

50

3.2.1. Controller subsystem

Figure 3. 18 - Controller subsystem of the monitor model

This subsystem receives as inputs the command given to the actuator (Com), the actual

position (ThM) and the speed feedback (DThM). After the comparison between the

commanded and the real position of the motor, with the GAPm1 gain (set as 105) the signal

is transformed in a speed and enters in a saturation block, which limits this value between

its maximum and minimum. Once the reference speed is compared with the actual one, with

a GAPm2 gain -which substitutes a PID controller- and the division for the torque constant,

it’s possible to obtain the reference current. It’s important to underline the strong similarity

with the BLDC Motor controller block of the reference model: the only difference is that here

the noise is not complained.

3.2.2. Electromechanical model

Figure 3. 19 – Schematic of the numerical algorithm implementing the simplified BLDC motor electromechanical model

51

In the monitor model, the transformation between reference current and reference torque

executed by the actuator, is modelled with a simple structure into the main Simulink system.

The motor modelled is an equivalent single-phase in which the tension could only be up or

down (if up, it can be positive or negative, depending on the rotation direction). The control

is current feedback-based: the error between the two electric parameters is sent into a sign

block, which identifies if the actuator requires a positive (output equal to 1), negative (output

equal to -1) or neutral (output equal to 0) tension. To obtain the effective tension acting on

the motor rotor, the output value is multiplied for the nominal inverter tension value (48 V)

and then cleaned by that part dissipated due to faulty conditions: the main causes of power

loss are the short-circuit of the stator windings and rotor eccentricity.

The effective tension is the input of the motor, represented by the first order transfer function:

𝑇𝐹 =

1
𝑅𝑚

𝜏𝑅𝐿𝑚 + 1
 (3.6)

where 𝑅𝑚 is the resistance of the windings expressed in [Ω] and 𝜏𝑅𝐿𝑚 is the ratio between

𝑅𝑚 and the inductance 𝐿𝑚, representing the time constant of the system. The output current

takes care again of the short-circuit with a division for the percentage of the non-faulty coils

because the absorbed current, if 𝑅𝑚 and 𝐿𝑚 decrease after a small winding short-circuit,

must be greater than the nominal condition. The torque of the monitor model is subsequently

obtained after the multiplication for the torque gain (GM=0.07322 𝑁𝑚
𝐴

) and the limitation

between the maximum and the minimum value with the saturation block.

52

3.2.3. Mechanical part

Figure 3. 20 - Mechanical section of the monitor model

The mechanical part of the model does not require any further explanation because is the

same of the high-fidelity model.

53

4. Faults analysis and their implementation

In next paragraphs, after a brief introduction to the main types of progressive failures

affecting EMAs, all faults considered are deeply discussed and their consequences to the

system analysed. The dynamic response of faulty motor is described for a step and a chirp

command: the first represents the open-loop response of the system, the second simulates

the behaviour of the actuator in closed-loop (there are a lot of direction changes and the

feedback becomes very important). The features of these two commands are summarized

in the table below:

Table 3 - Step and chirp command features

Step command
Initial amplitude 0 rad
Final amplitude 1 rad
Application time 0.01 s

Chirp command
Initial amplitude 0.005 rad
Initial frequency 0 Hz
Final frequency 15 Hz

4.1. Introduction to faults

The precise definition of fault has been made by Isermann and Ballè [19]: “A fault is an

unpermitted deviation of at least one characteristic property or parameter of the system from

the acceptable/usual/ standard condition”. Depending on the seriousness of the fault impact,

the system could be affected by a small reduction in efficiency to an overall failure.

Concerning the description of the fault modes on electromechanical actuators, the main

issue is the lack of reliable statistic data, because the study of their behaviour in aerospace

purposes is relatively new and not large enough to accumulate adequate informations.

A great number of aircraft used for the transportation still employs hydraulic actuation for

primary and secondary flight controls, leaving to EMAs less important tasks, such as trim

tabs actuation and speed break deployment. However, some recently-designed aircraft like

Boeing 787 and Airbus 380 exploits EMAs in roles traditionally assigned to hydraulic or

hydrostatic commands. In military field the situation is similar, but there are strong efforts to

deploy electromechanical actuators in utility roles, such as landing gears, aerial refuelling

doors and weapon bay doors. Concerning space vehicles, only few electromechanical

actuators are used for small tasks such the motion of little robotic arms or the calibration of

54

the antennas position. Hence, it’s important to study their response when they are affected

by some types of faults, in order to maintain pre-determined levels of reliability and safety of

the system.

Faults in EMAs are categorized into four groups, according to their location of occurrence in

the system:

➢ Mechanical or structural faults are the main issue in electromechanical actuators.

They are mainly caused by excessive loads, lubrification problems, unfriendly

environmental condition and manufacturing defects. They mostly affect gear reducers

and transmission.

➢ Motor faults are the next most important category of EMA faults. The high rotational

rates at which a motor could rotate, may cause a temperature increasing leading to

mechanical stress due to materials expansion. The main faults are windings short-

circuit and rotor shaft eccentricity. In this work connection faults like cut or burned

wiring and the presence of a foreign body in the actuator are not considered.

➢ Electrical/Electronic faults in the power and control systems are similar to the same

type of faults in other aerospace systems. The main causes of their appearance are

overheating, overcurrents, particle contamination responsible to short-circuit,

vibrations and wear.

➢ Sensor faults could provoke the incorrect signal measurement, causing errors during

the evaluation of the control law. Sensor faults could be also divided in total and

partial: former type provides some informations not correlated with the physical value

they are monitoring (e.g. lost contact with the surface or between wires), latter type

produces signals still cleanable to obtain reliable data. The most widespread sensor

faults are bias, scaling, drift, noise and intermittent dropout.

In tables below, are summarized the main fault modes described above with the relative

probability and criticality depending on the component considered.

Table 4 - Mechanical and structural fault modes

Component Fault Failure
Relative
probability (1-
10, low to high)

Relative
criticality (1-10,
low to high)

Screw Spalling Severe vibrations, metal
flakes separating 5 3

Wear/backlash Severe backlash 7 3

Nut Spalling (mild) Severe vibrations, metal
flakes separating 5 3

55

Backlash Severe backlash 7 3
Degraded operation Seizure/disintegration 3 5

Nut Binding/sticking Seizure/disintegration 3 3
Bent/dented/warped Seizure/disintegration 1 5

Ball returns Jam Seizure/disintegration 5 8

Bearings

Spalling Severe vibrations, metal
flakes separating 5 3

Binding/sticking Seizure/disintegration 2 4

Corroded
Severe vibrations, metal
flakes separating,
seizure/disintegration

2 5

Backlash Severe backlash,
vibrations, disintegration 7 3

Piston Crak(s), slop/play Structural failure 1 10

Dynamic seals Wear Structural failure 4 6
Structural failure Structural failure 3 8

Static seals Structural failure Structural failure 2 8

Balls Spalling/deformation Severe vibrations, metal
flakes separating 5 3

Excessive wear Backlash 7 5
Mountings Crack(s), slop/play Complete failure 1 7

Lubricant
Contamination Seizure/disintegration 8 5
Chemical breakdown Seizure/disintegration 4 5
Run-dry Seizure/disintegration 3 10

Table 5 - Motor fault modes

Component Fault Failure
Relative
probability (1-
10, low to high)

Relative
criticality (1-10,
low to high)

Connectors
Degraded operation
(increase of resistance) Disconnect 5 6

Intermittent contact Disconnect 3 7

Stator

Stator coil fails open
(results in degraded
EMA performance)

Opening failure 4 4

Insulation
deterioration/wire
chafing (reduced or
intermittent current
through stator coil or
intermittent short

Short-circuit 5 5

Resolver

Coil fails open (can
result in inaccurate
position reports)

Opening failure 4 10

Intermittent coil failures Permanent coil
failure 5 7

Insulation
deterioration/wire
chafing

Short-circuit 5 7

Rotor and
magnets

Rotor-magnets chemical
bond deterioration

Complete magnet
separation, likely
leading to motor
failure

2 10

Rotor eccentricity Bearing support
failure 3 6

56

Table 6 - Electrical/Electronic faults

Component Fault Failure
Relative
probability (1-
10, low to high)

Relative
criticality (1-10,
low to high)

Power supply

Short-circuit Short-circuit 5 10
Open circuit Open circuit 5 10

Intermittent performance Short-circuit or open
circuit 5 8

Thermal runaway

Dielectric breakdown
of components,
leading to open or
short-circuit

6 10

Controller
capacitors Dielectric breakdown Short-circuit or open

circuit 4 8

Controller
transistors Dielectric breakdown Short-circuit or open

circuit 4 8

Wiring

Short-circuit Short-circuit 5 10
Open circuit Open circuit 5 10
Insulation
deterioration/wire
chafing

Short-circuit or open
circuit 5 8

Solder joints Intermittent contact Disconnect 5 8

Concerning the implementation in a model, faults could be classified as additive or

multiplicative, as depicted in figure 4.1 taken from [19]. Normally, additive faults describe

better components’ breakout, while actuator and sensor faults are best represented by a

multiplicative action.

Figure 4. 1 - Additive and multiplicative fault

Furthermore, another important classification of faults could be made due to the type of

appearance:

➢ Abrupt faults, which could have the most severe consequences, appear

instantaneously without any pre-alert signal. If they affect the control or motor

components, it could be very harmful;

➢ Incipient faults provoke slow changes in dynamic response’s characteristic and they

are less dangerous than the previous ones;

➢ Intermittent faults appear and disappear during normal life cycle and may be caused

by partially-damaged components.

57

A possible example of their time trend is shown in figure 4.2 (taken from [19]).

Figure 4. 2 - Different types of faults

4.2. Dry Friction

4.2.1. Description

The dry friction acting between mechanical components in relative motion can be

schematically described as a dissipative force which opposes the motion and which varies

according to the physical characteristics of the considered system (materials, type of

connection, lubrications, etc) and to the forces exchanged between its moving parts. If

friction fault is neglected, a jamming or break-down events could possibly take place on the

actuator, with catastrophic consequences. During normal working activities, the Coulomb

friction -employed in this model- states that in standstill conditions the friction force is lower

or equal (in module) to the static friction value and that, otherwise, the force module has a

constant value equal to the dynamic friction value.

4.2.2. Implementation

As aforesaid, in the Borello block described in chapter 3.1.4. and used in this work, a linear

Coulomb friction has been developed and implemented. The nature of this phenomenon

does not allow an entirely linear description, but the complexity of a non-linear model and

the consequent long computational time suggests the utilization of numerical method in the

time domain; howsoever, these numerical solutions are affected by shortcomings due to

math models. The Borello friction model block [17]:

58

➢ Selects the correct sign for the friction torque identifying the direction of rotation;

➢ Evaluates the torque taking care about the load acting on the mechanical part;

➢ Selects the static condition or the dynamic one depending on the load;

➢ Verifies the undesired stop of the mechanical element;

➢ Calculates the eventual break away of the previously standstill mechanical element;

➢ Is able to simulate the dynamic of both reversible or irreversible actuators.

The corresponding mathematical model is entirely equal to the Coulomb one:

where 𝐹𝑓 is the evaluated friction force, 𝐹𝑎𝑐𝑡 is the active force applied to the system, 𝐹𝑠𝑗 the

friction force in stick condition and 𝐹𝑑𝑗 the friction force in dynamic conditions.

4.2.3. Dynamic Response to a step command

Introducing in the reference model the friction fault, clearly the position, speed and

equivalent current trends change. In figures from 4.3 to 4.5 these trends are depicted for the

nominal conditions and for a friction fault growing from 1 to 3 times the nominal behaviour.

Figure 4. 3 - User position for a step command with a friction fault from 1 to 3 times the nominal conditions

𝐹𝑓 = {

𝐹𝑎𝑐𝑡, �̇� = 0 ∩ |𝐹𝑎𝑐𝑡| ≤ 𝐹𝑠𝑗

𝐹𝑑𝑗 ∙ 𝑠𝑖𝑔𝑛(𝐹𝑎𝑐𝑡), �̇� = 0 ∩ |𝐹𝑎𝑐𝑡| > 𝐹𝑠𝑗

𝐹𝑑𝑗 ∙ 𝑠𝑖𝑔𝑛(�̇�), �̇� ≠ 0

(4.1)

59

Figure 4. 4 – Motor speed for a step command with a friction fault from 1 to 3 times the nominal conditions

Figure 4. 5 – Equivalent single-phase current for a step command with a friction fault from 1 to 3 times the nominal
conditions

The step command creates an open-loop situation, in which the controller is saturated and

the error between set and feedback is null. Increasing the value of the friction from 1 to 3

times the nominal condition, it’s possible to see in the box in figure 4.3 that the user position

60

increases more slowly, because the motor has a higher resistant torque to overcome and

because the dynamic friction coefficient (which is half of the static one) becomes higher. For

this reason, also the maximum speed reachable by the motor decreases and the time

constant of the equivalent first-order model increases if the friction grows up. The equivalent

single-phase current reflects also that fact: the motor needs to be powered stronger to reach

and maintain the maximum rotational speed. It’s clear that this condition is undesirable,

because the power loss by Joule effect are very important and the temperature may cause

problems of material expansion and then of jamming.

In figure 4.6 below, it’s possible to observe a comparison between the absorbed equivalent

current in the reference and in the monitor models for the Nominal Friction condition (NF)

and for a double value of friction. Even if the reference and monitor trends look pretty equal,

a deeper inspection carried out by the box in the figure suggests that there is a little deviation

between the two curves, with a percentual error from 2% to 12%. This fact is due to the

calibration made for the optimization algorithms: only for the chirp command these two

trends are very stackable. In next chapters, reliability of the monitor model is evaluated only

for the chirp command for the reason just explained.

Figure 4. 6 - Current absorbed by the motor in the reference and the monitor models

61

4.2.4. Dynamic Response to a chirp command

For the chirp command is plotted the effect of the friction too: in this case a closed-loop

situation is simulated, because the inversion of the sense of rotation requires to analyse the

error between the set command and the feedback coming from sensors.

Figure 4. 7 - User position for a chirp command with a friction fault from 1 to 3 times the nominal conditions

Figure 4. 8 - Motor speed for a chirp command with a friction fault from 1 to 3 times the nominal conditions

62

As it’s possible to see in figure 4.7, the user position is not affected by the friction fault,

because the absolute displacement is very small, and the current could deliver the power

needed. There is obviously a difference between the commanded position and the real one:

the delay is due to the controller evaluation time, the dynamic of all the components and

backlashes. The effect of the friction could be seen when the motor speed is close to zero

(box on the left of the graph 4.8): increasing the friction means that the static-friction

coefficient grows up, so when the direction of the speed changes, the motor takes more time

to overwhelm that fault and provides the required power.

Concerning the absorbed current, it’s clear from figure 4.9 that to maintain the same

displacement and speed, the current required to overcome the superior torque needs to be

higher. Increasing the command frequency, the curves tend to become more similar, but the

vertical parts corresponding to static friction situation – in the point of change sense of

rotation - are always very different, meaning that the rotor has a higher difficulty to move in

when the fault has a great value (it confirms what has been already stated from the speed

graph).

Figure 4. 9 - Absorbed current for a chirp command with a friction fault from 1 to 3 times the nominal condition

63

The figure 4.10 below indicates the difference between reference and monitor model in

nominal and faulty condition. The two models are clearly very similar in both conditions,

especially when the frequency grows up, indeed the error is contained between 1% and 6%.

This fact is due to the aforementioned calibration: the chirp command will be used in the

optimization algorithm as command, so the monitor has to approximate as best as it can the

behaviour of the high-fidelity model for this type of command.

Figure 4. 10 - Equivalent single-phase current of reference and monitor model in nominal and faulty conditions

64

4.3. Backlash

4.3.1. Description

Usually the rotor shaft on electromechanical actuator systems is linked with the user shaft

with a mechanical component. This device, during the normal working activities, is subject

of mechanical wear which could cause severe problems on the system, such as the

aforementioned friction, lubrification problems or backlash issue. These phenomena

provoke firstly a superior power consumption, which leads to jamming or premature break-

down of the motor if the problem is not fixed steadily.

The backlash is the mechanical play between two movable parts; in our case is the axial

distance between the surface of the motor and user shafts, neglecting elasticity and Hertz

theory. Often, the contact between the two power shafts is assured by a ball-screw system,

in order to transform a rotating movement into a translational one. Ball-screws (represented

in figure 1.11) are widely used thanks to the high efficiency -superior to 90%- but they need

a severe design to avoid delays in motion transmission and to determine the correct pre-

load [11]. During normal working activities, the wear increases the axial play between the

two parts: in this way, backlash is a powerful indicator of the actual state of a system and

eventually it suggests the substitution of a damaged ball-screw system.

Figure 4. 11 - Backlash representation

65

4.3.2. Implementation

Figure 4. 12 - Backlash block in the reference model

Figure 4. 13 – Backlash block in the monitor model

66

Both in reference and monitor models, backlash is introduced with a suitable block, which

simulates the behaviour of a system with a determined mechanical play. Into the BLDC

Motor Dynamic Model block in the high-fidelity model and in the main system of the monitor

model it’s possible to observe a block represented in figure 4.12 and 4.13, which introduces

a dead-band on the fast shaft (before the multiplication for the τ). In this way it affects only

the position feedback and maintains unchanged the speed feedback and, consequently, the

control law of the system.

4.3.3. Dynamic Response to a step command

To study the effect of the backlash into the dynamic response of the EMA, the user position,

motor speed and equivalent single-phase current are evaluated for the nominal backlash

condition (equal to 0.005 rad) and for a backlash 2, 10, 50 and 100 times higher.

Figure 4. 14 – User position for a step command with a backlash fault from 1 to 100 times the nominal condition

Looking the figure above, it’s possible to affirm that also a one-hundred bigger backlash fault

than nominal condition does not change sharply the trend of the user position with a step

command. There is only a slight delay at the start of the motion, observable by the box in

figure 4.14. This event is coherent with the fact that there are not inversions of rotation

sense, so the backlash acts only at the start of the rotation.

67

Figure 4. 15 – Rotational speed and absorbed current for a step command with a backlash fault from 1 to 100 times the
nominal condition

The figure 4.15 confirms what has been already stated: the play between the two shafts acts

only on the position feedback, allowing to maintain unchanged the speed and current trends

due to the saturated controller. The conclusion is that a step command is not useful to isolate

and study the backlash fault.

4.3.4. Dynamic Response to a chirp command

On the other hand, the chirp command has been very effective to investigate the mechanical

play fault. The user position shown in figure 4.16 reveals what could be imaginable: when

there is an inversion in the rotational sense, a system with a greater backlash have a

superior delay. A high backlash fault delays the start of the motion until about the 275%: in

a non-faulty system, the motor inverts the motion after about 8∙10-3 s, in a one-hundred times

bigger backlash-affected system, the switch of the sense takes place after 22∙10-3 s

approximately. By increasing the chirp frequency, the aforementioned percentage

decreases.

The speed trend follows the same line of reasoning, because when the motor is not able to

invert the sense of motion, the error between commanded position and feedback rises up,

increasing consequently the speed in absolute value. When the motor manages to switch

68

rotational sense, the positions of non-faulty and faulty systems become overlapped, thanks

to the superior speed of the latter.

Figure 4. 16 - User position for a chirp command with a backlash fault from 1 to 100 times the nominal condition

Figure 4. 17 – Motor speed for a chirp command with a backlash fault from 1 to 100 times the nominal condition

69

Figure 4. 18 – Equivalent single-phase current for a chirp command with a backlash fault from 1 to 100 times the nominal
condition

To increase the speed when the motor needs it, the equivalent single-phase current grows

up sharply and quickly. The current percentage increase from the nominal condition to one-

hundred times bigger backlash is between 70% to 100%, causing overtemperature problems

in the motor. After the initial peak, the current (in absolute value) drops because the speed

able to move the system is higher than the nominal one, so the system needs to slow down.

Increasing the command frequency, the current variation is always quicker and sharper.

From the figure in the next page, it’s possible to state that the monitor model approximates

in a very good manner the parameters of the high-fidelity one, both in faulty (50 times the

nominal backlash) and non-faulty cases.

70

Figure 4. 19 - Equivalent single-phase current of reference and monitor models in nominal and faulty conditions

4.4. Short circuit

4.4.1. Description

During the normal working activities of a motor, repeated overcurrents and the subsequent

overtemperatures could lead to a degradation of the polymeric insulating parts. If this event

takes place in the stator close to the copper windings, possibly the phase coils come in direct

contact, allowing the current to bypass a part of the winding. In this case, the resistance and

the inductance of the coil decreases, so with the same tension acting on the winding, the

current which pass through is higher. If the motor absorbs a greater value of current, this

phenomenon tends to propagate by itself, increasing Joule effect and then leading to a

complete failure of the system.

There are three possible short circuit modes:

➢ Between windings of the same phase (coil-coil)

➢ Between windings of a different phase (phase-phase)

➢ Between a winding and the iron of the stator core (phase-ground).

71

Usually a short circuit fault starts in the first mode, then it propagates and could possibly

become the second or the third type. The last two types are not progressive: once they

appear usually there is the sudden breakdown of the actuator caused by damaged internal

parts. Hence, in this work only the predictable coil-coil short circuit is investigated.

4.4.2. Implementation

The implementation of the short circuit in the reference model can rely on the deeply detailed

three-phase modelled actuator. From the workspace, it’s possible to introduce the

percentage bypassed windings per each phase (0% means that there is not short circuit,

100% means that an entire phase is bypassed, with a possible breakdown). The values of

Na, Nb and Nc are used in the calculation of the normalized counterelectromotive gain,

because if the inductance decreases, also this force will become lower. In first

approximation, we could state that:

𝑘𝑓𝑐𝑒𝑚 = 𝐺𝑀 =

𝜕Φ

𝜕𝜃𝑚
= 𝑁𝐴

𝜕 (∫ 𝐵 ∙ �̅�𝑑𝑆
𝐴

)

𝜕𝜃𝑚

(4.1)

where A is the area of a winding, N the number of coils composing a winding and B the

magnetic flux density of the rotor.

Hence, the Ni (percentage of short-circuit windings of the i-th phase) affects the calculation

of:

 𝐾𝑒𝑖 = 𝑘𝑒 ∙ 𝑁𝑖 (4.2)

𝑅𝑖𝑗 =

𝑅𝑠
2 ∙ (𝑁𝑖 + 𝑁𝑗)

 (4.3)

𝐿𝑖𝑗 =

𝐿𝑠

2 ∙ (𝑁𝑖
2 + 𝑁𝑗

2)
 (4.4)

𝑅𝑖 =

𝑅𝑠
2 ∙ 𝑁𝑖

 (4.5)

𝐿𝑖 =

𝐿𝑠

2 ∙ 𝑁𝑖
2 (4.6)

where:

➢ 𝐾𝑒𝑖 is the counter electromotive coefficient used in the calculation of the counter

electromotive force (see figure 3.9);

72

➢ 𝑅𝑠 and 𝐿𝑠 are the phase-phase resistance and inductance of the non-faulty motor;

➢ 𝑅𝑖𝑗 and 𝐿𝑖𝑗 are the phase-phase resistance and inductance of the faulty motor;

➢ 𝑅𝑖 and 𝐿𝑖 are the coil-coil resistance and inductance of the faulty motor.

When the model runs in nominal conditions (𝑁𝑎, 𝑁𝑏 and 𝑁𝑐 equal to 1), 𝑅𝑖 =
𝑅𝑠

2
 and 𝐿𝑖 =

𝐿𝑠

2
.

The implementation in the monitor model is slightly different due to an issue of recognition:

the monitor model simulates the behaviour of a single-phase equivalent motor, but from the

reference model it’s impossible to distinguish which phase is in short circuit, because the

three currents are evaluated for a single-phase equivalent actuator. Hence, in first

approximation, for the monitor model the percentage of short circuit is the average between

the three reference coefficients:

𝑁𝑒𝑞𝑢𝑖𝑣 =

𝑁𝑎 + 𝑁𝑏 + 𝑁𝑐
3

 (4.7)

The electrical parameters are now calculated as:

 𝑅𝑒𝑞𝑢𝑖𝑣 = 𝑅𝑒𝑞𝑢𝑖𝑣𝑁𝐶 ∙ 𝑁𝑒𝑞𝑢𝑖𝑣 (4.8)

 𝐿𝑒𝑞𝑢𝑖𝑣 = 𝐿𝑒𝑞𝑢𝑖𝑣𝑁𝐶 ∙ 𝑁𝑒𝑞𝑢𝑖𝑣
2 (4.9)

 𝑘𝑓𝑐𝑒𝑚 = 𝑘𝑓𝑐𝑒𝑚𝑁𝐶 ∙ 𝑁𝑒𝑞𝑢𝑖𝑣 (4.10)

 𝐺𝑀𝑒𝑞𝑢𝑖𝑣 = 𝐺𝑀𝑒𝑞𝑢𝑖𝑣𝑁𝐶 ∙ 𝑁𝑒𝑞𝑢𝑖𝑣 (4.11)

Where the subscript NC refers to nominal conditions.

With this design, when both short circuit and eccentricity are introduced in the reference

model, the dynamic response can be wrong because of the current modulation. Both of them

have the carrier frequency of 2𝜔𝑚𝑃, where P is the number of pole-pairs. To overpass this

problem, the rotor angular position is used to modulate the electrical characteristic of the

motor. The modulating function is:

𝑓(𝜃𝑚) =

{

𝑁𝑏 + 𝑁𝑐

2
,

𝑁𝑎 + 𝑁𝑏
2

𝑁𝑎 + 𝑁𝑐
2

,

,

if − 𝜋

6
< 𝜃𝑒 <

𝜋

6

if 𝜋
6
< 𝜃𝑒 <

𝜋

2

if 𝜋
2
< 𝜃𝑒 <

5𝜋

6

(4.12)

73

where 𝜃𝑒 = 𝑃𝜃𝑚 is the normalized electrical rotor angle, contained in a 𝜋 range. The

equation 4.12 allows to consider only two phase each time, when they are positive (24V) or

negative (-24V). To implement it in the Simulink monitor model, the construction shown in

figure 4.20 has been used.

Figure 4. 20 - Simulink model of the modulating function

The rotor position is the input of the active phase computation block, which provides as

output a value equal to 1, 2 or 3 depending on the active phases evaluating the expression:

𝑓(𝑢) = 𝑓𝑙𝑜𝑜𝑟 [3 ∗ (

𝑃𝑢

𝜋
+
1

6
) − 3 ∙ 𝑓𝑙𝑜𝑜𝑟 (

𝑃𝑢

𝜋
+
1

6
)] (4.13)

where 𝑢 = 𝜃𝑚 is the input of the block. Depending on the value given, the subsequent switch

chooses the correct output to take care about the short circuit.

As it’s possible to note in figure 4.21, the product of the short circuit correction block just

described acts in three different points of the monitor model. Initially it modifies the counter

electromotive coefficient as already stated in expression 4.10 (with the eccentricity fault, see

paragraph 4.5), then multiplies the equivalent resistance 𝑅𝑒𝑞𝑢𝑖𝑣 as described in equation 4.7

and finally decrease the torque gain 𝐺𝑀𝑒𝑞𝑢𝑖𝑣. The first order transfer function used in the

monitor model (equation 3.6 chapter 3) does not allow the multiplication of the equivalent

inductance 𝐿𝑒𝑞𝑢𝑖𝑣, which is contained in the characteristic time coefficient 𝜏𝑒𝑞𝑢𝑖𝑣 in the

denominator of the transfer function. In first approximation, the equivalent inductance is

74

evaluated as the average of the inductances of the three phases: this simplification does not

affect results of the model, because the first order transfer function has a fast dynamic

response. The implementation described, allows the monitor model to approximate in a

better way the high-fidelity one: furthermore, it’s possible to identify the faulty phase, but it

has not a high importance for maintenance purposes.

Figure 4. 21 - Correction of the short circuit in the monitor model

75

4.4.3. Dynamic Response to a step command

Figure 4. 22 - User position for a step command with a short circuit fault from 0% to 100% of coils bypassed

Figure 4. 23 - Motor speed for a step command with a short circuit fault from 0% to 100% of coils bypassed

76

Figure 4. 24 - Equivalent single-phase current for a step command with a short circuit fault from 0% to 100% of coils
bypassed

In the three figures above, the dynamic behaviour of the reference system powered by a

step command is described. As already said in the Description paragraph, when a coil-coil

short circuit takes place, the resistance and the inductance decrease, allowing the flow of a

higher amount of current. The magnetic flux of the faulty phase is less than the others

(because is directly proportional to the number of windings), therefore a motion anomaly

takes place, both in the current and, consequently, in the torque. This irregularity is also fed

by an event which occurs also in the nominal rotational behaviour, indeed when there is the

commutation between two phases, the third current trend shows a local drop-off (two-phase-

on, represented in figure 4.25).

Figure 4. 25 - Two-phase-on phenomenon

77

Introducing the short circuit fault, this behaviour is worsened, and the motion becomes

strongly intermittent, as represented in graph 4.23. At the beginning of the motion the faulty

motor is slightly less performant, but at the steady state the speed is greater, even if very

intermittent. The current depicted in 4.24 confirms what just explained: it becomes

inconstant if the fault value grows up.

It’s important to underline that it’s impossible to obtain a short circuit of 100% with the

reference model: the position, speed and current trend are evaluated for a number of non-

faulty windings equal to 10-16 (the smallest number recognizable by Matlab).

4.4.4. Dynamic Response to a chirp command

Figure 4. 26 - User position for a chirp command with a short circuit fault from 0% to 100% of coils bypassed

With a chirp command, the position and the speed graphs are not influenced by the faulty

condition; the unique consideration is that there is a little delay on the speed when it changes

sign, as already seen in friction fault.

The current reflects the treatise just exposed: when the faulty phase is fed (for 2/3 of the

total simulation time) there is a current increase, when the other two phases are powered,

the conditions are the same as the nominal ones.

78

Figure 4. 27 - Rotor speed for a chirp command with a short circuit fault from 0% to 100% of coils bypassed

Figure 4. 28 - Equivalent single-phase current for a chirp command with a short circuit fault from 0% to 100% of coils
bypassed

It has been also proved that the monitor model approximate in a very satisfying way the

high-fidelity one, both in nominal and faulty conditions. The figure 4.29 shows the nominal

equivalent current and the 25% of short circuit-faulty one: this value has been chosen

79

because it’s the most probable to meet between all the values analysed before in an

electromechanical actuator (with a greater fault usually the motor is substituted).

Figure 4. 29 - Equivalent single-phase current of reference and monitor models in nominal and faulty conditions

4.5. Eccentricity

4.5.1. Description

Bearings degradation, manufacturing tolerances, load unbalanced, improper mounting, bent

rotor shaft and the mechanical wear which occurs during normal working life of actuator are

the main causes of the eccentricity fault [24]. It could be static or dynamic (see figure 4.30):

the former is the misalignment between the rotation axis and the stator axis of symmetry,

the latter is the misalignment between the rotation axis and the rotor axis of symmetry. Static

eccentricity causes a modification of the air gap between the stator and the rotor, dynamic

eccentricity provokes harmful vibrations due to non-symmetrical distribution of rotating

masses; both types of eccentricity add torque pulsations to rotational movement. In this

work, only the static eccentricity is analysed, because is the only one that can be evaluated

with the current and speed trends; for the survey of dynamic eccentricity an in-depth

Simulink vibration model or a real test benchmark are required.

80

Figure 4. 30 - Concentric configuration (a), static (b) and dynamic (c) eccentricity

Considering the stator and the rotor as perfectly rigid bodies, the system under analysis is

depicted in figure 4.31. The expressions of the two circumferences are:

 𝑥2 + 𝑦2 = 𝑅𝑟
2 (4.14)

 (𝑥 − 𝑥0)
2 + 𝑦2 = 𝑅𝑠

2 (4.15)
Combining the (4.14) and (4.15) and introducing the polar coordinates:

 𝜌 = 𝑅𝑟 (4.16)

 {
𝑥 = 𝜌cos (𝜃𝑟)

𝑦 = 𝜌 sin(𝜃𝑟)
 (4.17)

It’s possible to obtain (4.18):

 𝜌2 − 2𝜌𝑥0 cos(𝜃𝑟) + 𝑥0
2 − 𝑅𝑠

2 = 0 (4.18)

Figure 4. 31 - Rotor reference system for air gap definition

81

The air gap 𝑔 can be measured from the centre of the reference system and, approximating

a square root with its Taylor series at second order, it’s possible to write:

 𝑔 ≅ 𝑥0 cos(𝜃𝑟) + 𝑔0 (4.19)
 𝑔 ≅ 𝑔0 ∙ (1 + 𝜁 cos(𝜃𝑟)) (4.20)

where 𝑔0 = 𝑅𝑠 − 𝑅𝑟 is the air gap in non-faulty conditions and 𝜁 = 𝑥0

𝑔0
 the ratio between the

misalignment and the 𝑔0. Looking deeper in the situation, the magnetic flux can be written

with the Hopkinson’s law:

 𝐹𝑚𝑚 = Φℜ (4.21)
where

ℜ =

𝑙

𝜇0𝜇𝑅𝑆
 (4.22)

is the reluctance of the system, 𝐹𝑚𝑚 is the magnetomotive force and S the surface of the

rotor interested by the magnetic flux. In our case, depicted in figure 4.32 (taken from [3]),

the magnetic flux through the air gap, using (4.22) and (4.23), is:

Φ =

𝐹𝑚𝑚

𝑔(𝜃1)
𝜇0𝑆

+
𝑔 (𝜃1 +

𝜋
𝑃)

𝜇0𝑆

=
𝐹𝑚𝑚𝜇0𝑆

𝑔(𝜃1) + 𝑔 (𝜃1 +
𝜋
𝑃)

(4.22)

Figure 4. 32 - Magnetic circuit through the air gap

82

It’s important to underline that, given the 2𝜋 periodicity for the air gap, it affects the magnetic

flux only if the motor has a number of pole-pairs greater than one.

When an eccentricity fault takes place, unbalanced magnetic forces are created, because

the permanent magnets are closer to windings, generating an attractive force acting on the

rotor. When eccentricity becomes too large, the resultant of the aforementioned forces could

cause the stator-to-rotor rub, causing possible harmful damages. [24]

4.5.2. Implementation

In the reference model the implementation of the eccentricity fault is carried out in the BLDC

Motor Electro-Mechanical Model block, with the calculation of the counter electromotive

force already expressed in equation (3.3) and reported below:

𝑘𝑓𝑐𝑒𝑚 = 𝑘𝑒(𝜃𝑚) ∙ (1 + 𝜁 cos (𝜃𝑚 +

2 ∙ (𝑖 − 1)

3
𝜋)) (3.3)

The eccentricity fault, modifying the air gap between the stator and the rotor, changes the

magnetic coupling between these two parts: in this way, the counter electromotive force gain

and the torque gain are directly dependant from the angular position. As shown in [22], this

is a suitable method to avoid the implementation of complex and heavy FEM analysis.

The eccentricity has a light effect on the response of the actuator (see next paragraph): the

torque and the counter electromotive force coefficients increase and decrease depending

on the angular position, but in a 360° angle the average disturbance value is null.

In the monitor model, 𝜁 is not used and it is replaced by the coefficient Z: the value of the

fault (Z) is limited from 0 to 0.42, corresponding to a 0-1 values of 𝜁, thanks to the relations

below taken from [3]:

 𝑍 = 0.42𝜁 (4.23)

 𝐾𝑓𝑐𝑒𝑚
′ = 𝐾𝑓𝑐𝑒𝑚(1 − 𝑍(cos(𝑃𝜃𝑚 + 𝜙) + 𝑠𝑎𝑤𝑡𝑜𝑜𝑡ℎ(6𝑃𝜃𝑚 − 𝜋) sin(𝑃𝜃𝑚 − 𝜋))) (4.24)

Simulink environment does not allow the implementation of the 𝑠𝑎𝑤𝑡𝑜𝑜𝑡ℎ function, so it has

been replaced with:

𝑠𝑎𝑤𝑡𝑜𝑜𝑡ℎ(𝑥) = 2(

𝑥

2𝜋
− 𝑓𝑙𝑜𝑜𝑟 (

𝑥

2𝜋
)) (4.25)

83

The relationship (4.24) with the correction explained in (4.25) is introduced in the monitor

model combined with the short circuit fault, as shown in figure (4.33) and (4.34).

Figure 4. 33 - Implementation of the eccentricity fault in the monitor model

Figure 4. 34 - Eccentricity modification block

84

4.5.3. Dynamic Response to a step command

Also for this fault, an investigation regarding the dynamic response has been carried out for

values of 𝜁 from 0 to 1, equal to a situation in which rotor and stator touch each other.

Figure 4. 35 - User position for a step command with an eccentricity fault from 0% to 100%

Figure 4. 36 - Motor speed for a step command with an eccentricity fault from 0% to 100%

85

The dynamic response of the speed to a step command (open-loop response) is

represented in graph 4.36. It’s possible to see that is similar to the response of the short

circuit fault, but with the characteristic time of the mechanical system longer: indeed, the

inertia of the motor acts like a low-pass filter, damping the high-frequency peaks of the speed

trend. Another little difference is in the value of the maximum speed, lower than the short

circuit fault.

Figure 4. 37 – Equivalent single-phase current for a step command with an eccentricity fault from 0% to 100%

As already said, the counter electromotive force and torque gains modify their value

depending on the angular position. In figure 4.37 is depicted the equivalent single-phase

current in nominal and faulty conditions: it’s important to underline that the average value of

the oscillations is the same of the nominal condition, and the ripple is more accentuated than

the short circuit fault. Concerning the peak current, a faultier motor requires a higher and

higher value.

4.5.4. Dynamic Response to a chirp command

The figures in the next page describe the dynamic response of the electromechanical

actuator to a chirp command. Comparing them with the graphs coming from the short circuit

fault, it’s possible to state that user position and rotor speed are very similar, because the

controller is able to compensate the unbalancing magnetic forces and it is capable to

86

maintain the nominal position and speed (with a slight delay at the moment of inversion of

the speed).

Figure 4. 38 – User position and motor speed for a chirp command with an eccentricity fault from 0% to 100%

Figure 4. 39 -– Equivalent single-phase current for a chirp command with an eccentricity fault from 0% to 100%

87

Concerning the current, figure 4.39 highlights the increase of ripples when the motor is

afflicted by a superior value of fault. This fact could be explained as an overlap of effect:

there is a sine wave with the same frequency of the rotational movement coming from the

variation of the air gap, and the high-frequency sawtooth ripple generated by the activation

and deactivation of the motor phases.

From the figure below the capability of the monitor model to approximate the high-fidelity

one is described both in nominal and faulty conditions. In the left part of the graph, at the

start of motion, the approximation is good but not optimal (the percentual error is about 7%),

after 0.1 s the percentual error become approximately the 2%, confirming the validity of the

previous treatise.

Figure 4. 40 - Equivalent single-phase current of reference and monitor models in nominal and faulty conditions

88

4.6. Proportional gain

4.6.1. Description

Electronic components are assuming an increasingly critical role in a lot of different fields,

such as on-board function, communications and autonomous functions. All these new

functionalities, together with the growth of lead-free electronics and microelectronic devices,

could increase the number of electronic faults and maybe result in unknown behaviours.

Hence, to assure a high reliability and safety of the flight control system, is mandatory to

provide a system health awareness. [25]

Electronic faults can be categorized for example by type of component afflicted, as already

described in table 6. Main issues with the control electronics may take place in the capacitors

or in the transistor, with a possible open or short circuit failure, which can lead to an entire

break-down of the system. Other types of electronic failures can be found in wiring

connection due to an overheating, or in the power supply with the intermittent performance

or thermal runaway. [16]

Usually, a great part of electronic faults arise without any pre-alerting signals, so they are

very difficult to implement in a prognostic study. The main solution to fix this problem is the

implementation of multiple redundancies, in order to substitute the broken controller as soon

as possible without interrupting the normal working activities of the system.

4.6.2. Implementation

In this work a generic progressive electronic fault is implemented with a variation of the

proportional gain applied by the control electronics: in this way it’s possible to see the

modification of the dynamic response of the models.

The practical implementation is quite simple: the proportional gain into the reference and

the monitor model (both represented in a light-blue square respectively in figures 4.41 and

4.42) is multiplied for a suitable value which can vary in the range 0.5-1.5: in this way the

nominal proportional gain 105 [s-1] can assume values between 5∙104 [s-1] and 1.5∙105 [s-1].

89

Figure 4. 41 - Proportional gain implemented in the reference model

Figure 4. 42 - Proportional gain implemented in the monitor model

4.6.3. Dynamic Response to a step command

In this paragraph the open-loop dynamic response to a step command is investigated. The

user position, motor speed and equivalent single-phase current are not affected by the

modification of the proportional gain fault parameter from 50% to 150% and they are

perfectly overlapped to nominal condition trends. Indeed, when the proportional gain is half

of the nominal conditions, the error evaluated by the controller is high enough to require the

maximum current available.

90

Figure 4. 43 - User position, motor speed and equivalent single-phase current for a proportional gain fault from 0.5 to 1.5

4.6.4. Dynamic Response to a chirp command

Figure 4. 44 – Rotor position for a chirp command with gain fault from 50% to 150% of nominal conditions

91

Figure 4. 45 - Motor speed for a chirp command with gain fault from 50% to 150% of nominal conditions

Figure 4. 46 – Equivalent single-phase current for a chirp command with gain fault from 50% to 150% of nominal
conditions

From the figures above, it’s possible to understand the effect of a proportional gain fault in

the controller. Assuming as nominal conditions (NC) the orange curve, a decrease of

proportional gain (yellow and purple trends) leads to a decline of the readiness of the motor,

92

causing a delay in the current calculation by the control law and therefore in the velocity and

position of the motor. In particular, if the acceleration acts on the motor in delay, the

maximum speed reached by the rotor is less than the case with a superior gain, because

the command forces the current to decrease before the achievement of the maximum speed

allowed. The characteristic time of the system increase if the gain rises up: the light-blue

trend, corresponding to a gain equal to 1.5∙105, represents the most similar curve to the

command (in blue).

Figure 4.47 represents the non-faulty and faulty condition for reference and monitor models.

The proportional gain does not affect the reliability of the approximation capabilities of the

monitor model, which overlaps in long part the high-fidelity trend.

Figure 4. 47 - Equivalent single-phase current of reference and monitor models in nominal and faulty conditions

93

4.7. Noise

4.7.1. Description

Noise is any unwanted signal which interferes with the measurement or communication of

another signal: it conveys information regarding the sources of noise and the environment

in which it propagates. Noise is present in almost all environments in the form of different

disturbances such as cellular mobile communication, speech recognition, image processing,

medical signal processing, radar and sonar acquisition data. In general, noise and distortion

are the main factors which limit the capacity of signal transmission and the precision of the

results coming from measurement; if the disturbances are too high relating to the signals

acquired, they can cause transmission errors, until even disrupt the communication process.

Their removal is a critical issue, deeply studied in a lot of disciplines. [26]

In literature there are a lot of different classification of the noise; in this paragraph, the main

two are described.

Depending on its source and physics, a noise can be described as [26]:

➢ Acoustic disturbances, which include the noise, wrong feedbacks and echoes. The

noise emanates from the movement, vibrations, weather conditions (rain, wind, et c.)

or from the utilization of everyday stuff such as air-conditioners, vehicles or fans; the

feedbacks and echoes coming from the reflection of the sound carried out by walls,

especially if they are made with particular materials;

➢ Electronic device noise, which could further be divided into thermal noise, shot noise,

flicker noise and burst noise;

o Thermal noise is created by the movement of thermally energised particles in

an electric/electronic conductor;

o Shot noise represents the random fluctuation of electric current due to its

nature, indeed the electrons are discrete charges with different arrival time;

o Flicker noise is caused by the inclusions in the conductive channel and

recombination of noise carried out by the transistors;

o Burst noise composed by step transitions of several hundred millivolts, at

random time and durations.

94

➢ Electromagnetic noise, particularly critical at radio frequencies (kHz to GHz range),

is the combination of natural and man-made sources;

➢ Electrostatic noise, generated by the voltage with or without current flow;

➢ Channel distortions, multipath, echo and fading, created by the non-ideal conditions

and characteristic of communication channels, which are very sensitive to

environment, multipath effect and fading of signals;

➢ Co-Channel interference appears when two different radio transmitters are on the

same channel frequency: the effect is a sort of crosstalk;

➢ Missing samples, several part of the signal could lack due to packet loss in

communication systems;

➢ Processing noise, related to the analogic and digital signal acquisition noise.

Depending on its frequency spectrum or time characteristics, a noise process can be also

divided into [26]:

➢ White noise, purely random noise, theoretically contains all frequencies in equal

power;

➢ Band-limited white noise, characterized by a flat power spectrum and a limited

bandwidth;

➢ Narrowband noise, limited between 50 and 60 Hz;

➢ Coloured noise, whose spectrum has a non-flat trend;

➢ Impulsive noise, a short duration pulses of random amplitude;

➢ Transient noise pulses, long duration noise pulses such as clicks or burst noise.

Relating to this work, a white noise is implemented in the reference model, to simulate in a

realistic way the test benchmark in which the monitor model has to work. White noise is

theoretically defined as an uncorrelated random noise process with equal power to all

frequencies: this fact leads to the concept that it requires to have infinite power and a flat

power spectral density. In reality, physical systems are never affected by white noise, but it

is only a useful approximation when the real disturbance has only a slight correlation with

the trend analysed. Figure 4.48 represents a possible white noise time trend to a flat type

acquisition:

95

Figure 4. 48 - White noise time trend

4.7.2. Implementation

The implementation of the noise disturbance in reference system is carried out by a suitable

Simulink white noise block, represented in the figure below, which generates a normally-

distributed random numbers suitable for hybrid systems.

Figure 4. 49 – Implementation of the noise in the reference system

This block allows the scaling of the covariance of the noise from a continuous power spectral

density to a discrete one, in order to obtain the correct intensity of the noise [15]. The noise

signal coming from that block goes into a rate transition block, which transform the

disturbance frequency into the frequency of the system, to have the same rate of simulation.

The monitor model does not simulate the noise, because it will extend the computational

time without adding any improvement to the algorithms’ precision.

96

4.7.3. Dynamic response

The response of the system to different values of noise coefficient are investigated only for

a chirp command: this decision has been made due to the small influence of that disturbance

of the system and because, during the optimization paths, the noise has not been

introduced.

The Simulink block receive as input a noise coefficient, Knoise, which is suitably multiplied by

10-6, in order to make the values of disturbance and current of the same order. Increasing

the values of Knoise from 1 to 100, the system clearly becomes always more unstable,

showing a more indented trend.

Figure 4. 50 - Effect of the growing noise on the equivalent single-phase current

97

5. Optimization algorithms

As already said in the “Introduction” chapter, Prognostics is the discipline which evaluates

the current state of a system or single component and estimates the Remaining Useful Life

(RUL), namely how much time will pass until the object of the study will no longer able to

operate within its stated specification [2]. In this work a model-based prognostics approach

is proposed: it will be applied to the study of fault appearance in flight controls.

Optimization algorithms are used for the monitor model to approximate in the best way

possible the parameters of the reference model. Indeed, design optimization is an important

part of every design problem in engineering and industry: it focuses on finding the optimal

and practical solution to complex problems, also under non-linear constraints.

The first step is to launch the reference model in which a pre-determined fault is

implemented. In this way with the simulation it’s possible to obtain as outputs all signals of

position, speed, torque and current in faulty condition. The second step is the simulation of

the monitor model: it is required to approximate as best as it can the parameters of the

reference, in order to detect the fault introduced. To achieve that goal, the monitor needs to

run a lot of times with different parameters, choosing as best those closest to reference

model: these variations of the main characteristics of the monitor model at each simulation

are made by suitable optimization algorithms.

In this work, four different algorithms have been evaluted to solve the problem and compared

each other: Genetic Algorithm (GA) and Differential Evolution (DE) as Evolutionary

Algorithms, Particle Swarm Optimization (PSO) and Greywolf Optimization (GWO) as

Swarm Intelligence. In this chapter, after a brief introduction to different types of optimization

patterns, they are deeply described.

5.1. Introduction to problem solving algorithms

Optimization problems are wide ranging and numerous, hence also methods for solving

them need to be an active research topic [27]. Classical problem-solving methodologies

could be easily divided into two branches: deterministic or stochastic. The former are the

exact methods, as logical or mathematical formulas, which solves a problem with a pre-

determined sequence of search points, obtaining a solution very close to the global

98

minimum. However, they require huge computational efforts to achieve the solution, and if

the problem’s size grows up this is not an accessible path anymore. This is the reason of

the development of stochastic and heuristic methods: these rely on the iterative

improvement of a population of solutions created with a randomization. For this reason,

different runs of the same algorithm applied to the same problem lead to different results

due to the random nature of the solutions.

Development of stochastic and meta-heuristic nature-inspired algorithms started from 1973

with the publication by Holland [29] of the first Genetic Algorithm based on Darwin’s principle

of development of the species. Since then, with the growing interest in these new

approaches also Ant Colony Optimization (ACO), Simulated Annealing (SA) and Particle

Swarm Optimization (PSO) have been introduced. Their generality, facility and convergence

attributions allowed their fast development and application to an enormous range of different

applications [28]. On the other hand, also deterministic methods met a remarkable growing

through the past years, developing Direct search, branch and bound, clustering and

tunneling methods. In this work only stochastic algorithms are described and investigated.

A first classification of metaheuristic algorithms is performed on the basis of the number of

initial attempts: single-solution-based (e.g. Simulated Annealing) the optimization process

starts with a single solution tried which is improved iteration after iteration, population-based

exploit a set of search agent which work contemporary to find a greater number of suitable

solutions.

Heuristic methods can be further divided into Evolutionary Algorithms (EA), based on the

natural evolution, and Swarm-based Algorithms (SI), which rely on collective behaviour of a

group of animals.

➢ Evolutionary algorithms are a particular application of artificial intelligence, which

exploit the iterative progress of a population: birth, growth, development,

reproduction, selection and survival. These methodologies are the most well-known,

used and established among the nature-inspired algorithms. The exploited generic

process starts with the creation of random search points, whose deviation have a

poor suitability with the objective function carried out by a selection mechanism, and

the subsequent variation of the points left to reach different solutions in the function

domain. The most famous algorithms are: Genetic Algorithm (GA), Genetic

99

Programming (GP), Differential Evolution (DE), Evolutionary strategies (ES) and

Paddy Field Algorithm (PF).

➢ Swarm intelligence (SI) concept has been introduced in 1993 [37] and takes

inspiration from colonies, flocks, packs, herds and schools present in nature. It is a

recent and emerging path of problem resolution: it efficiently finds suitable solutions

to intractable and complex optimization problems exploiting the social behaviour of

group of organisms. The word “swarm” comes from the movement of particular

agents in the problem’s domain and it is defined as “any loosely structured collection

of agents that interact among each other” [30]. Every agent of the swarm is required

to evaluate the objective function a lot of times, so a parallelization is very easy to

implement in order to reduce computational time and to obtain more reliable results.

Furthermore, SI usually has less parameter to adjust and a lower number of operators

in comparison with Evolutionary Algorithms. The most used swarm-based

methodologies are Ant Colony Optimization, Particle Swarm Optimization and

Artificial Bee Colony, but in last years a huge number of nature-inspired algorithms

has been developed.

It's important to underline that not all the algorithms behave in the same way. Indeed, the

No Free Lunch Theorem (NFL, [38]) states that if an algorithm works particularly well on a

class of problems, it will show poor performances on other sets of problems. In particular, if

an algorithm performs better than a random search in a determined class of problem, in

other types of problem it will behave worse than the random search. Summarizing, it means

that a perfect heuristic algorithm able to solve all optimization problems does not exist.

100

5.2. Genetic Algorithm (GA)

Genetic algorithms are a class of Evolutionary-based self-adaptive stochastic optimization

algorithms with a global search potential proposed by Holland in 1973 [29] and based on

the Charles Darwin’s theory of the survival of the fittest.

Initially, this algorithm creates randomly possible solutions of the problem, called initial

population. In its most common representation, a population is composed by a variable

number of individuals (a binary string, called chromosome), thinkable as group of different

genotypes (the 1 and 0). Genotypes represents the characteristic of a solution, e.g. the

parameter of an electric motor for an electrical optimization purpose. The three main

operations carried out by the GA are selection, crossover and mutation.

In figure 5.1, taken from [31], is represented first steps of genetic algorithm path.

Figure 5. 1 - Representation of first steps of Genetic Algorithm path

101

Exploiting a suitable fitness function which changes depending on the type of the problem,

each string of population is evaluated to discover its effectiveness, which could be seen as

the capability of each individual to adapt at the environment. Near every “population”

column, in figure 5.1 there are several numbers varying from 0 to 1: these are the values of

effectiveness of that agent to solve the problem. Once evaluated this coefficient, the

algorithm ranks the most effective solutions from the best to the worst.

The second step is the cross-over. Between the best solutions there is a recombination of

portion of strings carried out by random points. They divide the individuals in several parts

and mix each other in the “mating pool” to obtain new possible solutions, called off-springs.

It’s possible to classify the cross-over in “N-points cross-over” where N is the number of

cutting points. The second generation of population is not only the result of the cross-over,

but also of the mutation. This phenomenon consists in the introduction of discarded

individuals or new ones in the population, in order to reintroduce material loss or explore

new possible random solutions. After this action, the effectiveness of every individual of the

new population is evaluated with the help of the fitness function and the cycle restarts.

Figure 5. 2 - Final steps of genetic algorithm path

102

In figure 5.2, also taken from [31], final steps of the genetic algorithm process are depicted.

Continuing this process for more steps, efficiency of solutions rises up, allowing the discover

of higher effectiveness results. It’s possible to put together the algorithm and determined

stopping criteria, such as the maximum number of iterations or the objective function

tolerance between a step and the next.

For further clarity, below the pseudo-code of the genetic algorithm is reported:

𝑡=0;
initialize (randomly) a chromosome population 𝑃(𝑡);
evaluating 𝑃(𝑡) using the fitness function;

while (Stopping criteria not respected)

do

- Select individuals from 𝑃(𝑡);
- Insert them into the mating pool 𝑀𝑃;

- Apply crossover to the individuals of the 𝑀𝑃, forming 𝑃’(𝑡);
- Apply mutation to the individuals of 𝑃’(𝑡) forming 𝑃’’(𝑡);
- Form 𝑃(𝑡+1) by selecting for replacement individuals from

𝑃’’(𝑡) and 𝑃(𝑡);

𝑡=𝑡+1;

End

Genetic Algorithm is useful when [27]:

✓ there is not any mathematical treatise available;

✓ the knowledge of the function domain is poor;

✓ the search space is large, complex and highly constrained;

✓ there is the necessity to parallelize the computation;

✓ traditional search method fails.

As just explained, the genetic algorithm is a very powerful tool to obtain reliable optimized

data, but it has also some drawbacks:

- often it converges to local optima if the objective function is not defined properly;

- the implementation in dynamic set of data is critical;

- for specific problems, some other simpler optimization algorithms could achieve more

precise results.

103

The usage of this algorithm has been carried out using the equivalent command in Matlab

environment [15], ga, together with the modification of some the optimization options. The

syntax of the command is:

x = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options)

where:

➢ fun is the fitness function to be optimized;

➢ nvars is the number of variables which have to be optimized (in our case, the eight

values of the fitness vector: see chapter 7);

➢ A, b, Aeq, beq are the coefficients of the linear equalities and inequalities the fitness

function is subjected (Aeq*x = beq or A*x ≤ b);

➢ lb, ub are the lower and the upper bounds, in our case set to zero and one;

➢ nonlcon introduces non-linear constraints;

➢ options are the possible modifications to implement in the optimization. In our case

the options used are:

o Display set the level of optimization detail returned to the user. In our case I’ve

set ‘iter’ because it’s important how the error behaves iteration after iteration

to see if the code works rightly;

o FitnessLimit has been used to set the maximum objective value to 10-3 during

the multiple optimizations;

o MaxGenerations impose the maximum number of iterations. For all the results

shown in next chapters, this value is set to 200;

o MaxTime is set only once to calibrate the right algorithm’s parameters;

o PopulationSize limits the number of individuals per each generation to the

value set;

o UseParallel exploit the parallelization of the calculations.

5.3. Differential Evolution (DE)

Differential Evolution (DE) is a population-based derivative-free stochastic evolutionary

algorithm, firstly introduced by Storn and Price in 1995 [32], very powerful and efficient in

the continuous search domain. This algorithm is very similar to the GA, since a population

104

of individuals is exploited to find the optima in a fitness function; on the other hand, in the

Differential Evolution the mutation is the result of arithmetic combination of factors and not

the merely randomization of genes as in GA. Furthermore, the fact that it does not exploit

derivative operations makes the DE a suitable path when the gradient is difficult or even

impossible to calculate.

Although slight differences are present between an evolutionary algorithm and another, they

all rely on Darwin’s theory of evolution and exploit the concept that a population of individuals

could find a problem solution with some fixed steps which are repeated cyclically. The steps

involved in the algorithm are barely the same of the Genetic Algorithm: initialization,

mutation, cross-over and selection, as depicted in figure 5.3 taken from [33].

Figure 5. 3 - Working flow chart of the Differential Evolution

The initialization creates a pre-determined number of new individuals (𝑁𝑃) with generic

features according to a normal or uniform distribution.

With the mutation event some new material is implemented in the population by generating

variations to existing individuals. This operation creates at each generation a mutation vector

which could take care about the best solution, the current solution or the difference between

the current and the best solution. In the Matlab code developed for this work, the last type

of mutation vector is exploited (see Appendix A). Usually, the mutation or scaling factor 𝐹𝑖 is

the same for every generation, but it’s common to meet in literature some DE codes which

take advantage of mutation factors different for different generations.

The cross-over action mixes up some informations between different individuals. It forms a

trial vector with the help of the characteristic parameter 𝐶𝑅𝑖 ∈ [0,1]: it is the cross-over ratio,

which represent the average fraction of vector components that are inherited from the

mutation vector [33]. Similarly, also 𝐶𝑅𝑖 as 𝐹𝑖 is often fixed through different generations.

105

After the evaluation of the fitting value carried out by the fitness function, which identifies

how satisfying is the suitable solution, the selection chooses as best solution the trial vector

or the original parent depending on the type of the problem. In our case, we need to find a

minimum of a function, so the best value 𝑥𝑖,𝑔+1 of the second generation (𝑔 + 1) is:

𝑥𝑖,𝑔+1 = {
𝑢𝑖,𝑔, 𝑓(𝑢𝑖,1) < 𝑥𝑖,𝑔
𝑥𝑖,𝑔, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑢𝑖,𝑔 is the i-th components of the trial vector at generation 𝑔 and 𝑥𝑖,𝑔 the start value

of the previous generation (parent). All these operations explained are parts of a loop, until

stopping criteria are fulfilled.

The main advantages of the Differential Evolution are:

✓ ease to implement;

✓ excellent speed of convergence;

✓ perfect for problem which has solution close or even on the boundaries;

✓ it’s widely used thanks to the high reliability and achievable accuracy.

DE algorithms have also some limitations:

- the presence of noise could roughly affect the precision of the results;

- tuning difficulties. The number of individuals (𝑁𝑃), mutation and cross-over ratios (𝐹𝑖

and 𝐶𝑅𝑖) are uneasy to find, because they require to perform time-consuming tries.

Furthermore, in domain space it’s possible to meet several places in which different

optimization parameters work better than others. To fix this problem, in past years

some self-adaptive Differential Evolution algorithms (SaDE) have been developed [e.

g. 34].

The implementation of this algorithm has been made in Matlab environment starting with the

code contained in [33], strongly modified in order to adapt it at our problem (see all the code

in Appendix A). The code developed receives as input the fitness values from the main code

(reported in Appendix C) as the maximum number of iterations, set like GA as 200, the

population size, also set to 50, and the lower and the upper boundaries. After a random

initialization of the positions, the current objective fitness for every individual is evaluated,

stored in a vector and investigated in order to find the minimum of the function.

106

The subsequent part is the mutation, which exploit int8 values and Boolean operations to

become faster. As explained in the description part, this method utilizes only additions,

subtractions and multiplications to introduce a “chaos” component into the code. Once

generated the new individuals from the fittest of the previous generation, a new investigation

finds the best solution through the minimum values and substitutes it in the best-solution

vector. Implementing the stopping criteria, the algorithm stops if requirements are fulfilled

and the output is the last value of the best vector.

5.4. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is an intelligence-oriented, stochastic swarm-based

global optimization technique firstly introduced by Kennedy and Eberhart in 1995 [35]. It was

born from these two authors as lightening research of bird-flocking algorithms already

published, but during some tests the continuous changes made it more powerful than the

previous ones.

The term “particle” in the name of the algorithms indicates the population members which

are mass and volume free, or even characterised by arbitrary small mass and volume. They

represent possible solutions in a high-dimensional space with four vectors: actual position,

best position already found, the position of the neighbourhood and its velocity. Every

iteration, all particles calculate the fitness value of their position exploiting a suitable fitness

function; if it is better than the best position they have already reached, it becomes the new

best position.

Main steps in PSO algorithm represented in figure 5.4 could be summarized as:

➢ initialization of the particle swarm composed by the pre-determined number of

individuals. Every agent takes a random position in the space and, in minima

research problems, its best value is set as first approximation to a high value, in order

to be eliminated immediately;

➢ for each particle, it’s evaluated the fitness value with a suitable objective function

(evaluation). It’s clear that in first iteration whatever is the position in the space of the

particle, it has to eliminate the set best position;

107

➢ in the loop iteration, the position evaluated is compared with the best position for each

particle. As already said, if the former’s fitness value is better – in our case smaller –

than the latter’s, current position becomes the new best position.

➢ The algorithm subsequently finds the best absolute position of the entire swarm and

saves it as the actual best solution found;

➢ Particles update their speeds and positions according to their best position and best

position of the neighbourhood. These steps continue until stopping criteria are

fulfilled.

Figure 5. 4 - Conceptul flow chart of the Particle Swarm Optimization

As it’s possible to discuss, Particle Swarm Optimization is similar to generic Evolutionary

Algorithms, because it also has initialized solutions which update themselves during iterative

paths. The strong difference is the type of updating: Swarm Intelligence algorithms such as

PSO exploit solution already found by agents to improve the precision of the final result,

Evolutionary algorithms introduce different amounts of chaos with the randomization of

mutation vectors.

Main advantages of PSO over other types of optimization are:

✓ marked ease to be implemented in a lot of different kinds of problems;

✓ simple concept;

✓ complete absence of parameters tuning except for the swarm size;

108

✓ more effective memory capability in comparison with GAs;

✓ this algorithm is able to maintain the diversity of the particles thanks to the updating

method: in this way it’s possible to explore a greater part of the solutions’ domain.

This method is implemented exploiting the right command of Matlab and setting the

optimization options as already done for the Genetic Algorithm. The implementation is

similar, the syntax is:

x = particleswarm(fun,nvars,lb,ub,options)

where the parameters are the same already described for the GA in some paragraphs

before. The settings are coherent with the analysis carried out: population size of 50

individuals and 200 iteration as maximum. The only difference is the expression of the

maximum objective value, here recalled by the option ObjectiveLimit.

5.5. Greywolf Optimization (GWO)

This algorithm is the newest between those already described and it mimics the hierarch

behaviour of grey wolves in nature. They have a strict hierarchy:

- the leaders are the alphas, usually a male and a female, which have the task to make

decision and lead the group in everyday activities. However, there is also a sort of

democracy in the pack concerning the less important decisions;

- the betas are the second hierarchic level and help the alpha to make decisions. When

an alpha becomes old or dies, one of the betas take his/her position as leader;

- lowest rank is occupied by the omegas. They are the “scapegoat” of the pack and are

dominated by all other wolves of the pack;

- wolves which are not alpha, beta and omega are deltas. Usually they are sentinels,

scouts, hunters and caretakers.

The algorithm [36] faithfully reproduces the hunting activity of a pack: the prey is the best

value of the function to obtain and the wolves are the search agents. Mathematically, alphas

(α) are the fittest solution, the second and the third best solution are betas (β) and deltas (δ)

respectively, the other solutions are categorised as omegas (ω).

109

A grey wolves hunt is composed by some moments: first there is the tracking and the

approaching the prey, in a second moment the wolves encircle and harass the prey until it

is jaded and stops to move and then they attack. In a 2-D domain, the situation could be

represented as depicted in figure 5.5, taken from [36].

Figure 5. 5 - Encircling action of grey wolf in a 2-D domain

In an abstract search space, we do not know where the optimum value is (in other words,

where is the prey), but in nature the hunt is led by the alphas who see the prey;

mathematically this fact has been introduced by the recombination moment. Indeed, βs’ and

δs’ positions at the time (t+1) are evaluated introducing random movement around the

position of the αs at the time (t+1), calculated as the barycenter between the positions of the

three search agents at the time (t). The position of the ωs is random and around the

estimated position of the prey: in every instant of simulation the algorithm evaluates the

fitting values for the wolves exploited and it assigns the label α, β, δ or ω depending on the

objective function (e.g. for a minima research, αs are the wolves with the lower fitting values).

110

Figure 5. 6 - Update of the wolves' position time by time (taken from [36])

Also the exploration of the function domain is a priority for this method: usually wolves

diverge from each other to search new preys and converge to attack a prey.

For further clarity, below the pseudo-code is reported.

Initialize the grey wolf population Xi (i = 1, 2, ..., n)

Initialize exploration and exploitation parameters

Calculate the fitness of each search agent

Xα=the best search agent

Xβ=the second best search agent

Xδ=the third best search agent

while (t < Max number of iterations)

for each search agent

Update the position of the current search agent

end for

Update exploration and exploitation parameters

Calculate the fitness of all search agents

Update Xα, Xβ, and Xδ

t=t+1

end while

return Xα

Concerning the description of the algorithm’s parameters, three of them are particularly

important:

111

- 𝑎 is the controller of the behaviour of the pack and it decreases gradually from 2 to

0. It is used in the settings of

- 𝐴 which represents the ratio between an exploration and exploitation behaviour;

- 𝐶 ∈ [0,2] is the randomization member of the algorithm and it is used in the evaluation

of the new position of every wolf.

This algorithm is implemented in Matlab environment as a code written starting from whose

already present in [36], but suitably modified (see Appendix B). Particularly difficult has been

the implementation of the parallelization: GWO does not support the split of the calculations.

It receives as input the initial positions of the search wolves from an external supporting

code; then starts the definition of the optimized fitness vectors and best values for alphas,

betas and gammas wolves, represented respectively by their positions and closeness to a

prey. In an inner for loop, the best values for the random positions are evaluated taking care

of the boundaries provided by the main code and subsequently the best vectors are

assigned to alphas, betas and deltas. The recombination is carried out with six different

random vectors in order to achieve the best exploration of the function domain possible.

After the storage of the best values in a suitable variable, the loop restarts with a movement

of the wolves starting from their previous position.

112

6. Failure detection and calibration

The algorithms just described in the previous chapter need a suitable fitness function in

order to detect precisely faults growth in the electromechanical system. The definition of the

fitness function is a quite critical issue, because from that depends most of the features and

behaviours of optimization algorithms. It’s important to use as objective function an easy-to-

measure quantity, maybe without adding new sensors to the system: in fact, increasing its

complexity means introducing new components liable to damages, so a possible reason of

fault or breakdown (and so, reducing the system reliability).

The three main parameters measured in the considered EMA system under studies are the

user position, the rotor speed and phase current, as already explained in chapter 4. Speed

signal could be a great parameter to detect failures, but the necessity to generalize the

treatise for different systems, maybe devoid of speed feedback ring, suggest to not use this

value. The user position is useful for prognostics, because a controller can compensate the

early phases of progressive damages. Hence, the current signal is exploited as failure

detection parameter.

The current is evaluated in different ways in the reference and monitor model: the former

calculates the three phase currents of the star-pattern circuit and then assesses the

equivalent one, the latter uses the equivalent single-phase current (𝐼𝑚(𝑡)). In the high-fidelity

model, contained in the BLDC Motor ElectroMechanical Model, is implemented the

evaluation of the equivalent single phase, as depicted in the figure 5.7.

Figure 6. 1 - Evaluation of the equivalent single-phase current

113

Following the Kirchoff’s laws, in the BLDC motor the sum of the three phase currents is

always null, because two has the same value and a different sign, the third is null. Hence,

the equivalent single-phase current (𝐼3𝑒𝑞𝑢𝑖𝑣(𝑡)) is evaluated as the sum of the modules of

the three currents, subsequently divided by 2 (only two are the active phases) and then

multiplied for the sign of the torque: in this way it’s possible to obtain the envelope of the

three phases. In order to use a simpler signal, and to not analyse too high frequencies, a

filter composed by a series of three first-order transfer functions with a time constant of 10-5

s is exploited. The application of this filter generates an unavoidable delay in the signal

response, so the same filter is applied to the monitor model: the two signals are thereby

comparable.

6.1. Faults implementation

Every sample time, the equivalent current of the monitor model 𝐼𝑚(𝑡) is evaluated and then

compared with the single-phase current of the reference model 𝐼3𝑒𝑞𝑢𝑖𝑣(𝑡): the error is stored,

some parameters of the monitoring changes and then a new current calculation starts. Not

all monitor parameters change, but the fault ones, introduced as variables in the Simulink

environment.

Faults described in chapter 4 are introduced in the reference and monitor model as an eight-

columns normalized row vector. The normalization has been carried out because

Evolutionary Algorithms showed a faster convergence if the objective value is contained

between 0 and 1 [3]. The aforementioned vector is:

 𝑘 = [𝑘(1), 𝑘(2), 𝑘(3), 𝑘(4), 𝑘(5), 𝑘(6), 𝑘(7), 𝑘(8)] (6.1)

where:

➢ 𝑘(1) ∈ [0,1] represents the normalized friction fault: 𝑘(1) = 0 describes nominal

conditions, 𝑘(1) = 1 introduces a friction fault equal to 300% nominal conditions.

➢ 𝑘(2) ∈ [0,1] introduces the normalized backlash fault: 𝑘(2) = 0 means nominal

backlash, equal to 0.005 rad (≅0.29 degrees), 𝑘(2) = 1 represents a backlash equal

to 100 times nominal conditions (0.5 rad ≅ 29 degrees). It’s important to underline

that such backlash needs to be multiplied for the gear ratio in order to find the user

play.

114

➢ 𝑘(3), 𝑘(4), 𝑘(5) ∈ [0,1] are the short circuit parameters for the phase A, phase B and

phase C respectively. 𝑘(𝑖) = 0 means that the i-th phase is correctly working (the

current flow through the 100% of the copper coil), 𝑘(𝑖) = 1 means that the i-th phase

is in a complete short-circuit situation. In the simulation, the maximum of the short

circuit parameter is set to 0.99, because if two phases are in short circuit at the same

time, the current will diverge to infinite. The complete short circuit situation is not very

interesting for prognostics purposes, because the motor results entirely broken.

➢ 𝑘(6), 𝑘(7) ∈ [0,1] describes the normalized eccentricity fault. In particular, 𝑘(6) is the

rotor eccentricity ratio 𝜁 = 𝑥0

𝑔0
 and if it equal to 0 means that there is not static

eccentricity, if it is equal to 1 the rotor touches the stator because the air gap is

decreased to zero. On the other hand, 𝑘(7) represents the phase of the rotor

eccentricity: 𝑘(7) = 0 implies a φ=-π, 𝑘(7) = 1 is the same of an angle φ=π. This last

parameter, during the evaluation the function error, is suitably treated, because if the

eccentricity is null, the eccentricity phase can assume all values between -π and π.

➢ 𝑘(8) ∈ [0,1] represents the gain fault. Nominal conditions are equal to 𝑘(8) = 0.5;

𝑘(8) = 0 means that the gain is decreased of the 50%, 𝑘(8) = 1 means that gain is

increased of the 150%.

Hence, in nominal conditions the fault vector is:

 𝑘 = [0, 0, 0, 0, 0, 0, 0.5, 0.5] (6.2)

When the reference model runs, one or more faults are implemented exploiting this vector:

all the parameters coming out from the simulation are those related to the conditions of the

faulty motor. Launching the optimization algorithm, its task is to continuously runs the

monitor model in order to find the right values of these eight fault parameters previously

implemented in the reference model. To achieve this goal, the algorithm has to compare the

equivalent single-phase current trends of the two models.

6.2. Fitness function

The objective function to be optimized is known as fitness function: it expresses how the

monitor model is approximated in a satisfying way the high fidelity one. When, every sample

time, the algorithm runs the monitor model with a determined fault vector 𝑘, the single-phase

115

current is stored in a suitable variable in Matlab’s workspace. Then, this value is compared

with the reference equivalent current evaluated as described at the start of chapter 6 in order

to calculate the error between the two parameters. The comparison, in first approximation,

were carried out exploiting the least squares method:

𝑒𝑟𝑟 =∑(𝐼3𝑒𝑞𝑢𝑖𝑣(𝑡0) − 𝐼𝑚(𝑡0))

2

𝑡

 (6.3)

where 𝑡0 is a generic instant contained in the simulated time. With the (6.3), the two current

trends are compared finding the minimum of the parabola described, which means that the

error must remain as close possible to zero. With a deeper inspection, it should be noted

that equation (6.3) resulted to be unable to recognize very small differences between the

behaviour of the reference and monitor model, which could generate phase displacement in

the rotor angular position measured between the two models. This inaccuracy is particularly

accentuated in case of abrupt change of the commanded current.

To avoid this problem, it’s possible to implement an error value calculated with the total least

squares method (TLSM): it takes care for the error evaluation not only of the dependent

variable, but also of the independent one. It was firstly introduced by Golub and Van Loan

as a solution to the problem 𝐴𝑋 ≅ 𝐵 and it is particularly useful when data stored in 𝐴 and 𝐵

are disturbed by a noise or generally perturbed [39]. Least-squares method and total least-

squares method assess the precision of the fitting in different ways: former minimizes the

sum of the squared vertical distances from the acquired data to the fitting line, latter takes

care about the squared perpendicular distance from the data to the fitting curve. The figure

6.2, taken from [39] and slightly modified, shows efficiently this difference:

Figure 6. 2 - Differences between least-squares method and total least-squares method

116

The circles are the acquired data, probably coming from a sensor test campaign, the dashed

lines are the distances used in the evaluation of the error and the solid black line is the

approximation trend optimized.

Concerning our problem, the acquired data are the output of the reference model and the

approximation is carried out by the optimization algorithms and the monitor model. Applying

the TLSM, the assessment of the error is possible only evaluating the normal distance

between a fit curve and a data trend (see figure 6.3).

Figure 6. 3 - Total least squares method representation

Assuming 𝑦1 = 𝐼3𝑒𝑞𝑢𝑖𝑣(𝑡) and 𝑦2 = 𝐼𝑚(𝑡), and considering that the distance 𝐵𝐶̅̅ ̅̅ is small

enough to approximate the curve with the segment, the length of the horizontal line could

be evaluated as:

 𝐴𝐶̅̅ ̅̅ =
𝑦1 − 𝑦2
𝑑𝑦1
𝑑𝑡

 (6.4)

Knowing that 𝐴𝐻̅̅ ̅̅ is the height of the hypotenuse, for every time instant it’s possible to state

that:

117

𝐴𝐻̅̅ ̅̅ =
𝐴𝐵̅̅ ̅̅ ∙ 𝐴𝐶̅̅ ̅̅

𝐵𝐶̅̅ ̅̅
=

(𝑦1 − 𝑦2) ∙
𝑦1 − 𝑦2
𝑑𝑦1
𝑑𝑡

√(𝑦1 − 𝑦2)2 + (
𝑦1 − 𝑦2
𝑑𝑦1
𝑑𝑡

)

2
=
(𝑦1 − 𝑦2)

√𝑑𝑦1
𝑑𝑡

2

+ 1

(6.5)

Hence, the error with the total least-squares method can be evaluated as:

𝑒𝑟𝑟 =∑

(𝑦1(𝑡0) − 𝑦2(𝑡0))
2

√𝑑𝑦1(𝑡0)
𝑑𝑡

2

+ 1𝑡

=∑
(𝐼3𝑒𝑞𝑢𝑖𝑣(𝑡0) − 𝐼𝑚(𝑡0))

2

√𝑑𝐼3𝑒𝑞𝑢𝑖𝑣(𝑡0)
𝑑𝑡

2

+ 1
𝑡

(6.6)

The total error, eventually, is then multiplied for the sampling time in order to avoid its

dependence from the compiling time.

A critical issue in the definition of the error is the measure unit: total least squares method

uses the Pythagoras’ theorem to sum two values with different measure unit. Indeed, the

first member (𝑦1 − 𝑦2) is a distance between values with the same measure unit, the second

member (𝑦1−𝑦2𝑑𝑦1
𝑑𝑡

) introduces the derivative at the denominator. To fix this problem, in

literature are findable some solutions. The first is the variables normalization carried out by

the analysis of the precision measurement, the second is the substitution of the normal

distance with the horizontal and vertical distances’ residuals. Both these solutions are

affected by criticalities: precision measurement is not simple to obtain because time by time

the error is forced to be equal to 0 in nominal conditions, and the second underestimates

the error when the curve derivative is too small. The strategy thought is the substitution of

the derivative at the denominator with its root mean square value: thereby the current has

unitary average derivative.

The root mean square (RMS) value has been assessed using the suitable Matlab command

“rms”; the value of the derivative can be evaluated in two different ways with the “diff” or

“gradient” Matlab commands. Trying these two solutions, the results were the same, so the

“diff” command has been chosen thanks to its slightly higher computational speed.

118

6.3. Command choice and calibration

In the next chapter, the results coming from the optimization paths are reported. All data

contained in those tables represents the fault parameters resulting from a chirp command

in the Simulink models. The command time history strongly affects the reliability and

precision of the data, since it can change the behaviour and the dynamic response of the

two models, as already seen in chapter 4.

The chirp is a signal in which frequency linearly varies (can both increase or decrease) and

particularly applies to laser, radar and sonar purposes. This command has been chosen for

our problem due to multiple reasons: firstly, it’s important to see the evaluation of the

position, speed and current errors in the closed-loop response, in which the controller

iterates time by time the difference between sets and feedbacks, in a second time this

command give the possibility to analyse the changes in the motor characteristic which follow

the inversion of rotation sense. With only a sense of rotation, for example in open-loop

condition as carried out by the step command, some faults are not recognizable (see, for

example, the dynamic response to a step command of the proportional gain fault, chapter

4.6.3). The parameters used for the chirp command during optimization process are

summarized in table below.

Table 7 - Chirp parameters used in optimization process

Initial amplitude of the signal 0.005 [rad]
Initial frequency 0 [Hz]
Target frequency 15 [Hz]
Time in which the target frequency is achieved 0.5 [s]

The chirp command, due to the multiple simplifications of the monitor model, introduces a

slightly different behaviour between the currents of the high-fidelity and monitor models.

Figure 6.4 depicts the trend of the current coming from the two simulations in nominal

conditions.

119

Figure 6. 4 - Comparison between nominal conditions in monitor and reference models

This static error is required to be null in nominal conditions, in order to realize the simulations

of the two models from same starting trends. To achieve this goal, a static calibration has

been carried out: in Matlab environment the difference between the two aforementioned

trends is evaluated point by point and stored in a suitable external file as a row vector. In

the fitness function, this error is recalled every iteration to evaluate the right monitor model’s

current.

120

7. Results

This chapter focuses on the optimization results obtained by the simulations performed in

Matlab-Simulink environment. Matlab is the R2018a version, Simulink is the 1.61 version,

calculations are managed by an Intel®Core™ i5-6200U with a CPU @2.3-2.4 GHz and 8

GB of Random Access Memory (RAM), using Window 10 Pro 64 bit.

7.1. Optimization parameters

Once the writing of the algorithms was completed, there was the necessity to find the rightest

optimization parameters possible. The aim was to obtain reliable data, characterised by a

high precision, in a short amount of time. To achieve this goal, a long calibration has been

carried out to choose the common main parameters: the population size (number of search

agents), the number of generations, the function tolerance and the parallelization.

➢ Population size is the number of individuals of each generation in Genetic Algorithm

and Differential Evolution (in Particle Swarm Optimization is called the “swarm size”,

in Grey wolf Optimization is the “number of search agents”). Increasing this parameter

allows to achieve a better precision and a reliable data, but the time is unacceptable

longer.

➢ Number of generations is the maximum number of different iterations. In every

generation the best individuals are chosen as a temporary solution to the problem: if

one of these solutions meets the stopping criteria, the algorithm stops its work. In

PSO and GWO this parameter is called “number of iterations”, because these two

algorithms do not exploit the evolution strategies of species. Increase the number of

generations, produce the same results given by the population size increase, i.e. a

better quality of the solutions, but an incredibly longer computational time.

➢ Function tolerance is the average relative change in the best fitness function value.

Imposing this number, the algorithm stops iterating if the relative change between the

best value of a generation and that of the next is less than the value set. It’s important

to set a number which allows the right stop: if an iteration recalls as best value the

individual of the previous generation (as DE algorithm does), whichever number has

been set the iteration will stop. In this case it’s important to add another stopping

criterium.

121

➢ Parallelization is the choice to split or not the computational efforts over different

cores. Do not parallelize means that the evaluation is carried out in a serial mode, so

the algorithm calls the fitness function on only one individual at a time; using parallel

computation means that the algorithm calls multiple individuals at the same time

(depending on the number of core processor) and evaluates their fitness with the

objective. In our case, two individuals are investigated at the same time, thanks to

the Dual Core processor. The computational time, with the parallelization on, is less

than the serial process, but it requires strong modifications to DE and GWO codes in

order to implement this feature.

In table 8 is reported an example of the calibration process, in this case applied to the

Genetic Algorithm. The name on the left are highlighted in red if the parameters chosen do

not have achieved satisfying results, in yellow if the parameters was right but the

computational time or the precision can be improved, in green the optimal combination.

Table 8 – Calibration process for Genetic Algorithm

Population StoppingCrit UseParallel
Rif #Iterations OptTime FAILURE PopType PopSize Gen TimeLim FuncTol
GA001 >2400 Na DV 200 def def def FALSE
GA002 11 540 Na DV 100 def def def FALSE
GA003 43 >2400 Na DV 100 def def def FALSE
GA004 68 >2400 Na DV 100 def def def FALSE
GA005 46 2400 Na DV 100 300 2400 1E-05 FALSE
GA006 46 2400 Na DV 100 300 2400 1E-05 FALSE
GA007 200 2091 Na DV 20 200 def 1E-09 FALSE
GA008 200 1388 Bklsh DV 20 200 def 1E-09 FALSE
GA009 200 2738 Bklsh DV 40 200 def 1E-09 FALSE
GA010 200 970 Bklsh DV 20 200 def 1E-09 TRUE
GA011 143 1097 Na DV 20 200 def 1E-09 TRUE
GA012 200 2175 Gain DV 50 200 def 1E-09 TRUE

Yellow cells are the modified parameters: the aim of each try is to test the effectiveness of

the modification implemented. The “def” label indicates Matlab’s default values:

➢ number of generations is set to 100∙(variables number=8). These number is

constantly decreased to drop the optimization time;

➢ limit of time is set to default as infinite: I’ve introduced it only twice to see how many

optimizations the algorithm could complete in 40 minutes.

122

➢ Function tolerance is set to 10-6 (1E-06), and after some tries it has been set to 10-9.

It’s important to underline that after the sixth attempt (GA006), due to the small number of

iterations carried out in a long time, I’ve suitably modified the fitness function, getting rid of

all code rows which only introduce additional computational time and do not provide

essential outputs. It’s possible to see how the number of iterations per minute moves from

1.15 of GA006 to 5.74 of GA007.

After calibration process, the population size is set to 50, the maximum number of

generations is set to 200, the function tolerance is set to 10-9 for GA and PSO, 10-12 for DE

and 10-16 for GWO, and the parallelization is set to true. The stopping criterium has been

developed taking care of the number of the actual iteration, the value of the objective function

(in our case the error) and the difference between the error of one iteration and the same

value in the previous iteration. The code developed could be summarized with the pseudo-

code below:

if (Iteration number > 20 && Error value < 10-3)

criterium=error value(previous iteration)-error value(current

iteration)

if criterium < Function tolerance

break (stop the algorithm’s for loop)

end if

end if

The iteration number and the error value used in the first if have been chosen after some

attempts. Using the “display” option of the algorithms, with which it’s possible to see the

objective function evaluated for each iteration, it was clear that from the thirtieth generation

the value of the error slightly changes, arriving around 5∙10-4. Setting this value as error goal

in the first if, the iterations never stop, because only in some random conditions the

algorithm reaches this level of precision. The value 10-3 is the result of a compromise,

because if the fault is high (> 0.7) the optimization makes a greater effort than if the fault is

low (< 0.25), because it starts from nominal condition (usually 0). The 10-3 value allows to

stop pretty always the low fault detection and sometimes the high fault detection.

Differential Evolution is a particular case, because all other algorithms has implemented

determined mutation coefficient or random number in order to explore all function domain,

123

DE instead requires the setting of the mutation factor 𝐹 and cross-over ratio 𝐶𝑅. In literature,

it’s possible to find some papers oriented to the research on the optimal combination of

these two parameters. Using the suggestions coming from [40], in first approximation the

mutation factor 𝐹 = 0.5 and cross-over ratio 𝐶𝑅 = 0.9 are set. With these values, ten different

optimizations are carried out, in order to find the mean percentual error (see next paragraph

for the definition of the error) and the average computational time. After some attempts in

which 15 different combination are tested (so the overall number of optimizations has been

150), the chosen parameters are 𝐹 = 0.9 and 𝐶𝑅 = 0.95. In tables below the differences

concerning the precision and the computational time between two set of coefficients are

reported. It’s clear that both in terms of average percentual error and compiling time, the

second combination of options is strongly better than the first, in which in only one case the

error is less than the 2%. The computational time strongly drop from the first case and the

second because the parallelization has been implemented. It’s important to underline that in

both optimizations shown below, the stopping criterium was not implemented yet.

Table 9 - Low friction fault detection with DE optimization (F=0.5 and CR=0.9)

Obj. 0,25 0 0 0 0 0 0,5 0,5 Time % Error Generations

DE
Friction

Low fault

F=0.5
CR=0.9

1 0,2181 0,0041 0,0147 0,0653 0,0051 0,0324 0,5214 0,4327 3793 10,545 200 Avg % error

2 0,2450 0,0030 0,0006 0,0004 0,0024 0,0061 0,0464 0,4804 3753 2,166 200

9,12
3 0,2472 0,0010 0,0002 0,0000 0,0007 0,0027 0,9856 0,4910 3749 0,997 200

4 0,2269 0,0120 0,0165 0,0007 0,0142 0,0455 0,0775 0,4226 3760 9,789 200

5 0,2320 0,0009 0,0030 0,0442 0,0005 0,0220 0,5757 0,4798 3771 5,641 200

6 0,1420 0,0117 0,1368 0,0519 0,0135 0,0212 0,5405 0,2631 3782 29,994 200 Avg comp. Time

7 0,2263 0,0061 0,0216 0,0075 0,0168 0,0094 0,5385 0,4538 3779 6,022 200

3773
8 0,2374 0,0072 0,0001 0,0198 0,0021 0,0056 0,9733 0,4702 3793 3,916 200

9 0,2398 0,0038 0,0001 0,0000 0,0151 0,0027 0,3701 0,4761 3768 3,042 200

10 0,1870 0,0061 0,0779 0,0344 0,0452 0,1032 0,4411 0,3892 3787 19,043 200

Table 10 - Low friction fault detection with DE optimization (F=0.9 and CR=0.95)

Obj. 0,25 0 0 0 0 0 0,5 0,5 Time % Error Generations

DE
Friction

Low fault

F=0.9
CR=0.95

1 0,2462 0,0020 0,0001 0,0000 0,0007 0,0026 0,1874 0,4888 2692 1,232 200 Avg % error

2 0,2477 0,0003 0,0000 0,0004 0,0002 0,0028 0,1403 0,4929 2582 0,805 200

1,12
3 0,2459 0,0026 0,0002 0,0001 0,0005 0,0055 0,0513 0,4885 2621 1,387 200

4 0,2479 0,0011 0,0000 0,0002 0,0000 0,0023 0,9437 0,4880 2418 1,246 200

5 0,2473 0,0004 0,0001 0,0000 0,0000 0,0023 0,1536 0,4932 2472 0,772 200

6 0,2461 0,0012 0,0002 0,0005 0,0006 0,0031 0,0698 0,4892 2472 1,203 200 Avg comp. Time

7 0,2464 0,0017 0,0001 0,0007 0,0000 0,0009 0,1437 0,4882 2458 1,254 200

2511
8 0,2461 0,0025 0,0001 0,0000 0,0001 0,0055 0,0675 0,4872 2479 1,490 200

9 0,2475 0,0017 0,0001 0,0006 0,0002 0,0037 0,1537 0,4930 2488 0,861 200

10 0,2471 0,0012 0,0001 0,0002 0,0001 0,0023 0,9857 0,4915 2430 0,939 200

124

7.2. Faults detection

As already explained, the reference current is generated by injecting a fault vector k in the

high-fidelity model; then faults detection is carried out by the different algorithms, which,

using the monitor model, try to approximate as best as they can the values of each fault

coefficient matching the equivalent current trend. All results obtained will be displayed as

table 9 and 10: for each objective function, reported in light blue in the first row, ten different

optimizations are evaluated and listed below. In each row, the percentual error is calculated

with the relation above:

𝐸𝑟𝑟% = 100 ∙ √∑(𝑘𝑖 − 𝑘�̂�)
2
+ 𝑘6̂ ∙ (𝑘7 − 𝑘7̂)

2
+ (𝑘8 − 𝑘8̂)

2
6

𝑖=1

 (7.1)

where �̂� = [𝑘1̂, 𝑘2̂, 𝑘3̂, 𝑘4̂, 𝑘5̂, 𝑘6̂, 𝑘7̂, 𝑘8̂] are the values of the reference model’s fault vector.

The aforementioned relation is entirely equal to a mean square error, with a slight difference

in the definition of the eccentricity phase error 𝑘7, because when the eccentricity coefficient

ζ is zero, the phase eccentricity can be whatever value.

For every fault, two different objective functions are investigated: the low fault detection (with

𝑘�̂� ≤ 0.25) and the high fault detection (𝑘�̂� ≥ 0.7), indicated with a bold font in the first row.

Every objective function is obviously approximated by all the four optimization algorithms.

The optimization has been carried out not only for the single fault implementation, but also

for the multiple fault implementation. To simulate in a more accurate way the real behaviour

of an electromechanical actuator, in which faults are usually small due to the planned

maintenance of the system, the multiple fault is implemented with this pseudo-code (special

thanks to Pier Carlo Berri for the suggestion):

RandomFaultParams=rand(1,8);
RandomFaultParams(:,1:6)=RandomFaultParams(:,1:6).^7;
RandomFaultParams(:,8)=((RandomFaultParams(:,8)*2-1).^7+1)/2;

It defines the fault parameters randomly and then raises to exponent equal to 7 to decrease

their absolute values (they are normalized); for the eccentricity and gain faults, which

125

nominal condition are 𝑘𝑖 = 0.5, the definition of the parameter is slightly different, but follows

the same reasoning.

7.2.1. Single fault detection – Friction

The results for a low friction fault are now reported.

Table 11 - Low friction fault detection with Genetic Algorithm

Obj. 0,25 0 0 0 0 0 0,5 0,5 Time % Error Generations

GA_001
Friction

Low fault

1 0,2446 0,0009 0,0030 0,0023 0,0003 0,0015 0,7045 0,4851 2622 1,64 200 Avg % error

2 0,2378 0,0033 0,0099 0,0059 0,0060 0,0095 0,3734 0,4685 2557 3,76 200

2,09
3 0,2443 0,0032 0,0012 0,0010 0,0019 0,0058 0,8864 0,4818 2560 2,05 200

4 0,2439 0,0004 0,0038 0,0025 0,0014 0,0015 0,6673 0,4838 2556 1,80 200

5 0,2460 0,0005 0,0004 0,0009 0,0024 0,0019 0,3378 0,4861 2560 1,48 200

6 0,2419 0,0043 0,0002 0,0048 0,0054 0,0007 0,5121 0,4830 2562 2,06 200 Avg comp. Time

7 0,2443 0,0024 0,0012 0,0003 0,0010 0,0075 0,9905 0,4829 2571 2,01 200

2633
8 0,2445 0,0001 0,0010 0,0100 0,0003 0,0135 0,6144 0,4889 2568 2,10 200

9 0,2456 0,0038 0,0001 0,0024 0,0002 0,0053 0,0766 0,4838 2719 1,83 200

10 0,2418 0,0014 0,0034 0,0081 0,0024 0,0064 0,5147 0,4829 3055 2,20 200

Table 12 - Low friction fault detection with Particle Swarm Optimization

Obj. 0,25 0 0 0 0 0 0,5 0,5 Time % Error Generations

PSO_001
Friction

Low fault

1 0,2478 0,0001 0,0000 0,0002 0,0001 0,0015 0,9263 0,4946 1953 0,60 152 Avg % error

2 0,2478 0,0016 0,0000 0,0000 0,0000 0,0004 0,1100 0,4912 2565 0,92 200

0,93
3 0,2481 0,0000 0,0000 0,0001 0,0000 0,0000 0,7033 0,4914 966 0,89 75

4 0,2481 0,0017 0,0000 0,0000 0,0000 0,0001 0,3409 0,4869 1159 1,33 91

5 0,2487 0,0008 0,0000 0,0000 0,0000 0,0005 0,8649 0,4961 1820 0,43 140

6 0,2481 0,0002 0,0000 0,0001 0,0000 0,0004 0,9995 0,4912 1171 0,91 92 Avg comp. Time

7 0,2479 0,0013 0,0000 0,0000 0,0000 0,0000 0,6329 0,4912 2175 0,92 169

1662
8 0,2476 0,0000 0,0000 0,0000 0,0000 0,0042 0,1160 0,4912 896 1,02 69

9 0,2479 0,0015 0,0000 0,0001 0,0000 0,0019 0,9266 0,4879 2006 1,26 156

10 0,2478 0,0010 0,0000 0,0001 0,0000 0,0002 0,0677 0,4899 1911 1,03 148

Table 13 - Low friction fault detection with Differential Evolution

Obj. 0,25 0 0 0 0 0 0,5 0,5 Time % Error Generations

DE_001
Friction

Low fault

1 0,2420 0,0080 0,0033 0,0019 0,0122 0,0052 0,0630 0,4908 414 2,03 26 Avg % error

2 0,2428 0,0040 0,0008 0,0070 0,0024 0,0064 0,6693 0,4843 577 2,03 45

2,50
3 0,2409 0,0036 0,0062 0,0106 0,0049 0,0051 0,2256 0,4743 363 3,10 28

4 0,2395 0,0027 0,0038 0,0010 0,0091 0,0062 0,2565 0,4864 420 2,10 33

5 0,2362 0,0011 0,0011 0,0102 0,0026 0,0006 0,8173 0,4758 444 2,98 35

6 0,2536 0,0039 0,0013 0,0040 0,0001 0,0002 0,2549 0,4831 293 1,82 22 Avg comp. Time

7 0,2487 0,0044 0,0007 0,0006 0,0082 0,0113 0,1880 0,4783 339 2,65 27

393
8 0,2418 0,0031 0,0044 0,0089 0,0008 0,0058 0,7012 0,4770 345 2,72 27

9 0,2459 0,0025 0,0003 0,0128 0,0058 0,0046 0,7530 0,4857 408 2,11 32

10 0,2454 0,0079 0,0014 0,0047 0,0016 0,0047 0,9569 0,4675 335 3,45 27

126

Table 14 - Low friction fault detection with Grey Wolf Optimization

Obj. 0,25 0 0 0 0 0 0,5 0,5 Time % Error Generations

GWO_001
Friction

Low fault

1 0,2453 0,0117 0,0000 0,0000 0,0000 0,0000 0,0013 0,4867 1478 1,83 112 Avg % error

2 0,2489 0,0091 0,0000 0,0005 0,0000 0,0000 0,0000 0,4931 327 1,15 26

1,56
3 0,2477 0,0000 0,0000 0,0000 0,0000 0,0000 0,0001 0,5103 564 1,06 45

4 0,2437 0,0033 0,0000 0,0000 0,0000 0,0000 0,0000 0,4994 262 0,72 21

5 0,2416 0,0001 0,0000 0,0007 0,0000 0,0019 0,0002 0,4635 349 3,76 28

6 0,2534 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,4954 592 0,57 47 Avg comp. Time

7 0,2501 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,5153 267 1,53 21

484
8 0,2500 0,0000 0,0003 0,0000 0,0000 0,0000 0,0000 0,4788 269 2,12 21

9 0,2484 0,0000 0,0002 0,0000 0,0000 0,0000 0,0000 0,4878 264 1,23 21

10 0,2393 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,4873 475 1,66 38

The results coming from a high friction fault are now reported.

Table 15 - High friction fault detection with Genetic Algorithm

Obj. 0,75 0 0 0 0 0 0,5 0,5 Time % Error Generations

GA_002
Friction

High fault

1 0,7307 0,0051 0,0000 0,0040 0,0024 0,0055 0,9739 0,4665 2589 3,98 200 Avg % error

2 0,7337 0,0053 0,0017 0,0010 0,0019 0,0002 0,4181 0,4717 2494 3,32 200

4,49
3 0,7337 0,0012 0,0003 0,0009 0,0022 0,0081 0,2181 0,4641 2495 4,03 200

4 0,7327 0,0037 0,0021 0,0005 0,0012 0,0019 0,6858 0,4643 2491 3,99 200

5 0,7205 0,0146 0,0195 0,0012 0,0119 0,0094 0,2609 0,4490 2491 6,55 200

6 0,7359 0,0045 0,0016 0,0003 0,0031 0,0032 0,9954 0,4655 2490 3,79 200 Avg comp. Time

7 0,7350 0,0037 0,0006 0,0029 0,0019 0,0019 0,9808 0,4650 2491 3,84 200

2501
8 0,7228 0,0104 0,0123 0,0169 0,0097 0,0071 0,4346 0,4740 2490 4,58 200

9 0,7083 0,0141 0,0061 0,0179 0,0298 0,0109 0,3478 0,4428 2489 8,11 200

10 0,7365 0,0039 0,0003 0,0005 0,0012 0,0001 0,4713 0,4768 2489 2,71 200

Table 16 - High friction fault detection with Particle Swarm Optimization

Obj. 0,75 0 0 0 0 0 0,5 0,5 Time % Error Generations

PSO_002
Friction

High fault

1 0,7386 0,0000 0,0000 0,0000 0,0000 0,0028 0,1419 0,4767 969 2,61 77 Avg % error

2 0,7376 0,0000 0,0000 0,0000 0,0000 0,0001 0,2152 0,4754 2173 2,75 174

2,77
3 0,7393 0,0001 0,0000 0,0000 0,0000 0,0020 0,1293 0,4795 2038 2,32 163

4 0,7388 0,0001 0,0000 0,0000 0,0000 0,0000 0,5592 0,4780 2491 2,47 200

5 0,7369 0,0031 0,0000 0,0000 0,0000 0,0082 0,0350 0,4734 1725 3,12 138

6 0,7380 0,0018 0,0001 0,0000 0,0000 0,0000 0,3575 0,4754 2495 2,74 200 Avg comp. Time

7 0,7391 0,0020 0,0000 0,0000 0,0000 0,0022 0,0322 0,4756 2094 2,69 168

1875
8 0,7389 0,0012 0,0001 0,0003 0,0000 0,0049 0,2341 0,4776 918 2,55 73

9 0,7368 0,0021 0,0000 0,0000 0,0001 0,0076 0,0402 0,4700 1994 3,38 160

10 0,7361 0,0002 0,0000 0,0002 0,0000 0,0049 0,9970 0,4732 1853 3,07 148

127

Table 17 - High friction fault detection with Differential Evolution

Obj. 0,75 0 0 0 0 0 0,5 0,5 Time % Error Generations

DE_002
Friction

High fault

1 0,7366 0,0034 0,0000 0,0000 0,0002 0,0064 0,0910 0,4732 2730 3,09 200 Avg % error

2 0,7368 0,0045 0,0001 0,0000 0,0000 0,0091 0,1242 0,4702 2675 3,43 200

3,20
3 0,7353 0,0025 0,0004 0,0001 0,0002 0,0040 0,0070 0,4705 2733 3,34 200

4 0,7356 0,0042 0,0001 0,0002 0,0001 0,0082 0,0495 0,4740 2654 3,13 200

5 0,7351 0,0023 0,0001 0,0002 0,0000 0,0045 0,9983 0,4702 2518 3,37 200

6 0,7363 0,0013 0,0001 0,0003 0,0001 0,0056 0,0431 0,4737 2683 3,03 200 Avg comp. Time

7 0,7368 0,0031 0,0007 0,0006 0,0001 0,0073 0,0844 0,4736 2632 3,08 200

2649
8 0,7366 0,0026 0,0008 0,0004 0,0002 0,0067 0,0393 0,4735 2648 3,07 200

9 0,7369 0,0042 0,0000 0,0002 0,0000 0,0088 0,1282 0,4705 2648 3,39 200

10 0,7362 0,0039 0,0000 0,0001 0,0004 0,0046 0,9955 0,4734 2573 3,07 200

Table 18 - High friction fault detection with Grey Wolf Optimization

Obj. 0,75 0 0 0 0 0 0,5 0,5 Time % Error Generations

GWO_002
Friction

High fault

1 0,7319 0,0218 0,0071 0,0000 0,0000 0,0000 0,0000 0,4551 2649 5,35 200 Avg % error

2 0,7334 0,0000 0,0000 0,0000 0,0000 0,0089 0,0350 0,4737 2704 3,26 200

3,49
3 0,7345 0,0000 0,0000 0,0000 0,0000 0,0083 0,0310 0,4662 2598 3,83 200

4 0,7357 0,0000 0,0000 0,0000 0,0000 0,0058 0,0271 0,4709 2601 3,31 200

5 0,7346 0,0000 0,0000 0,0000 0,0000 0,0058 0,0270 0,4733 2582 3,15 200

6 0,7365 0,0000 0,0000 0,0000 0,0000 0,0072 0,0290 0,4705 2578 3,34 200 Avg comp. Time

7 0,7366 0,0000 0,0000 0,0000 0,0000 0,0072 0,0200 0,4713 2537 3,27 200

2585
8 0,7362 0,0000 0,0000 0,0000 0,0000 0,0072 0,0195 0,4702 2531 3,38 200

9 0,7373 0,0000 0,0000 0,0000 0,0000 0,0073 0,0192 0,4743 2534 2,98 200

10 0,7365 0,0000 0,0000 0,0000 0,0000 0,0076 0,0194 0,4735 2534 3,09 200

Summarizing the average values of data obtained in table 19, it’s clear that a low value of

friction fault is simpler to recognize and optimize than a high fault: indeed, both compiling

time and percentual error are quite the half. This is due the nature of the optimizations,

because all iterations start from nominal conditions, and the friction in a non-faulty motor is

equal to 0. The quickest algorithm for low fault detection has been Differential Evolution,

with around 6 minutes and half, but the best precision is achieved with Particle Swarm

Optimization (less than 1%); for the high fault the best algorithm both for speed and precision

has been the Particle Swarm Optimization (table 16).

Table 19 - Summary of friction fault average values

Friction

Type Avg Comp. Time (s) % error

Low fault 1293 1,77

High Fault 2403 3,49

128

7.2.2. Single fault detection – Backlash

As already done for the friction fault, now the results of optimization of backlash fault are

listed below.

Table 20 - Low backlash fault detection with Genetic Algorithm

Obj. 0 0,0909 0 0 0 0 0,5 0,5 Time % Error Generations

GA_003
Backlash
Low fault

1 0,0022 0,0881 0,0008 0,0023 0,0034 0,0147 0,4823 0,5094 2552 1,83 200 Avg % error

2 0,0012 0,0860 0,0006 0,0012 0,0004 0,0076 0,4937 0,5063 2316 1,12 200

1,68
3 0,0024 0,0887 0,0028 0,0049 0,0024 0,0097 0,4559 0,5067 2058 1,37 178

4 0,0008 0,0891 0,0006 0,0028 0,0027 0,0114 0,5152 0,5122 2315 1,73 200

5 0,0006 0,0866 0,0011 0,0019 0,0007 0,0067 0,5189 0,5064 2440 1,05 200

6 0,0042 0,0875 0,0002 0,0084 0,0007 0,0110 0,4524 0,5267 2400 3,06 196 Avg comp. Time

7 0,0002 0,0872 0,0017 0,0026 0,0075 0,0092 0,4447 0,5049 2445 1,38 200

2336
8 0,0000 0,0871 0,0036 0,0078 0,0018 0,0140 0,4908 0,5026 1919 1,71 157

9 0,0010 0,0870 0,0026 0,0038 0,0015 0,0063 0,4864 0,5066 2452 1,11 200

10 0,0000 0,0873 0,0001 0,0090 0,0062 0,0186 0,5073 0,5104 2467 2,42 200

Table 21 - Low backlash fault detection with Particle Swarm Optimization

Obj. 0 0,0909 0 0 0 0 0,5 0,5 Time % Error Generations

PSO_003
Backlash
Low fault

1 0,0000 0,0881 0,0000 0,0001 0,0001 0,0009 0,3684 0,5004 1376 0,30 118 Avg % error

2 0,0000 0,0880 0,0000 0,0000 0,0000 0,0000 0,0234 0,5006 726 0,30 62

0,29
3 0,0000 0,0885 0,0001 0,0002 0,0001 0,0000 0,9767 0,4999 1125 0,25 97

4 0,0000 0,0879 0,0009 0,0000 0,0000 0,0015 0,5617 0,5003 1185 0,35 102

5 0,0001 0,0880 0,0001 0,0002 0,0000 0,0007 0,1135 0,5006 1221 0,30 99

6 0,0000 0,0884 0,0002 0,0000 0,0000 0,0001 0,9311 0,5015 1178 0,29 96 Avg comp. Time

7 0,0000 0,0885 0,0001 0,0000 0,0003 0,0000 0,9999 0,4998 1104 0,24 90

1242
8 0,0002 0,0877 0,0008 0,0000 0,0001 0,0020 0,4326 0,5005 1981 0,39 162

9 0,0000 0,0885 0,0002 0,0001 0,0000 0,0004 0,3193 0,5001 1109 0,25 90

10 0,0000 0,0883 0,0000 0,0000 0,0000 0,0005 0,0847 0,5006 1413 0,27 114

Table 22 - Low backlash fault detection with Differential Evolution

Obj. 0 0,0909 0 0 0 0 0,5 0,5 Time % Error Generations

DE_003
Backlash
Low fault

1 0,0072 0,0956 0,0003 0,0044 0,0052 0,0071 0,5636 0,4830 407 2,15 26 Avg % error

2 0,0045 0,0730 0,0052 0,0253 0,0113 0,0742 0,5831 0,5176 299 8,36 21

3,93
3 0,0108 0,0826 0,0063 0,0067 0,0215 0,0110 0,3518 0,5068 290 3,01 22

4 0,0006 0,0996 0,0008 0,0030 0,0275 0,0277 0,4377 0,4890 296 4,16 22

5 0,0011 0,0876 0,0051 0,0180 0,0157 0,0451 0,5171 0,5008 290 5,14 21

6 0,0160 0,0925 0,0062 0,0021 0,0086 0,0035 0,3176 0,5163 549 2,55 59 Avg comp. Time

7 0,0113 0,0749 0,0024 0,0160 0,0120 0,0355 0,3931 0,5227 303 5,08 23

334
8 0,0017 0,0729 0,0305 0,0001 0,0083 0,0072 0,8085 0,5173 282 4,10 21

9 0,0029 0,0970 0,0144 0,0050 0,0035 0,0106 0,4829 0,4999 352 2,01 27

10 0,0012 0,1023 0,0089 0,0104 0,0088 0,0036 0,5291 0,5184 268 2,73 21

129

Table 23 - Low backlash fault detection with Grey Wolf Optimization

Obj. 0 0,0909 0 0 0 0 0,5 0,5 Time % Error Generations

GWO_003
Backlash
Low fault

1 0,0000 0,0656 0,0000 0,0000 0,0000 0,0000 0,0000 0,5413 319 4,84 21 Avg % error

2 0,0000 0,1050 0,0000 0,0000 0,0000 0,0000 0,0025 0,4856 283 2,01 21

3,91
3 0,0000 0,0902 0,0000 0,0009 0,0073 0,0000 0,0000 0,4655 310 3,52 21

4 0,0000 0,0822 0,0000 0,0000 0,0000 0,0000 0,0013 0,4524 286 4,84 21

5 0,0000 0,0644 0,0000 0,0000 0,0000 0,0095 0,0000 0,5161 859 3,27 64

6 0,0000 0,0608 0,0000 0,0000 0,0000 0,0018 0,0000 0,4982 311 3,02 24 Avg comp. Time

7 0,0000 0,0881 0,0000 0,0000 0,0000 0,0006 0,0000 0,4865 297 1,38 23

585
8 0,0000 0,0698 0,0000 0,0000 0,0000 0,0004 0,0000 0,5247 284 3,25 21

9 0,0000 0,0201 0,0000 0,0000 0,0000 0,0001 0,0000 0,5171 2610 7,29 200

10 0,0000 0,0659 0,0000 0,0000 0,0000 0,0000 0,0000 0,5515 289 5,72 23

Now results coming from the optimization of the high backlash fault are shown.

Table 24 - High backlash fault detection with Genetic Algorithm

Obj. 0 0,747 0 0 0 0 0,5 0,5 Time % Error Generations

GA_004
Backlash
High fault

1 0,0007 0,7341 0,0026 0,0009 0,0011 0,0026 0,2601 0,4949 2615 1,48 200 Avg % error

2 0,0002 0,7358 0,0014 0,0009 0,0039 0,0111 0,0528 0,4973 2557 1,75 200

2,25
3 0,0018 0,7335 0,0039 0,0012 0,0012 0,0089 0,0979 0,4964 2579 1,79 200

4 0,0005 0,7438 0,0014 0,0076 0,0011 0,0293 0,9921 0,4977 2656 3,39 200

5 0,0004 0,7404 0,0005 0,0072 0,0000 0,0274 0,0351 0,5028 2671 3,20 200

6 0,0014 0,7339 0,0008 0,0007 0,0015 0,0078 0,9651 0,4959 2558 1,67 200 Avg comp. Time

7 0,0018 0,7406 0,0001 0,0004 0,0010 0,0140 0,9946 0,5002 2552 1,72 200

2524
8 0,0018 0,7380 0,0004 0,0011 0,0031 0,0128 1,0000 0,4987 2351 1,76 182

9 0,0009 0,7386 0,0007 0,0028 0,0009 0,0175 0,9984 0,5007 2548 2,17 200

10 0,0002 0,7470 0,0037 0,0002 0,0010 0,0317 0,0156 0,4978 2155 3,55 169

Table 25 - High backlash fault detection with Particle Swarm Optimization

Obj. 0 0,747 0 0 0 0 0,5 0,5 Time % Error Generations

PSO_004
Backlash
High fault

1 0,0000 0,7299 0,0019 0,0000 0,0003 0,0000 0,1664 0,4954 1005 1,82 78 Avg % error

2 0,0002 0,7356 0,0000 0,0000 0,0000 0,0069 0,0560 0,4989 2249 1,40 176

1,63
3 0,0000 0,7298 0,0000 0,0010 0,0010 0,0000 0,6263 0,4954 1963 1,83 153

4 0,0000 0,7317 0,0000 0,0000 0,0000 0,0001 0,9926 0,4973 1211 1,60 88

5 0,0000 0,7332 0,0008 0,0013 0,0000 0,0063 0,0123 0,4982 1981 1,60 155

6 0,0002 0,7331 0,0000 0,0064 0,0001 0,0053 0,9815 0,4963 1673 1,71 131 Avg comp. Time

7 0,0001 0,7326 0,0000 0,0000 0,0000 0,0001 0,3726 0,4975 1419 1,50 111

1634
8 0,0000 0,7330 0,0000 0,0004 0,0005 0,0072 0,0590 0,4970 1562 1,67 122

9 0,0001 0,7326 0,0000 0,0000 0,0000 0,0000 0,9962 0,4976 1728 1,50 135

10 0,0000 0,7325 0,0000 0,0000 0,0010 0,0062 0,0629 0,4977 1547 1,66 121

130

Table 26 - High backlash fault detection with Differential Evolution

Obj. 0 0,747 0 0 0 0 0,5 0,5 Time % Error Generations

DE_004
Backlash
High fault

1 0,0041 0,7264 0,0115 0,0070 0,0054 0,0244 0,3770 0,4914 383 3,67 27 Avg % error

2 0,0005 0,7608 0,0033 0,0247 0,0045 0,0181 0,1349 0,4815 317 3,91 24

3,92
3 0,0064 0,7385 0,0316 0,0110 0,0060 0,0185 0,9579 0,5007 328 4,11 26

4 0,0010 0,7484 0,0122 0,0008 0,0025 0,0473 0,4070 0,4763 335 5,46 26

5 0,0080 0,7603 0,0054 0,0194 0,0067 0,0210 0,9578 0,4864 358 3,74 29

6 0,0052 0,7368 0,0066 0,0220 0,0213 0,0020 0,7914 0,5117 265 3,55 20 Avg comp. Time

7 0,0027 0,7346 0,0056 0,0137 0,0231 0,0164 0,3190 0,4973 297 3,48 24

323
8 0,0123 0,7629 0,0061 0,0043 0,0176 0,0022 0,9359 0,4814 312 3,33 25

9 0,0006 0,7559 0,0058 0,0097 0,0075 0,0160 0,0918 0,5083 350 2,50 29

10 0,0003 0,7281 0,0279 0,0081 0,0314 0,0206 0,0306 0,4854 280 5,42 22

Table 27 - High backlash fault detection with Grey Wolf Optimization

Obj. 0 0,747 0 0 0 0 0,5 0,5 Time % Error Generations

GWO_004
Backlash
High fault

1 0,0039 0,7510 0,0035 0,0192 0,0000 0,0000 0,0208 0,5270 556 3,37 39 Avg % error

2 0,0030 0,7330 0,0020 0,0052 0,0002 0,0004 0,0182 0,4632 279 4,00 23

3,80
3 0,0003 0,7216 0,0055 0,0000 0,0029 0,0000 0,0000 0,5145 265 3,03 21

4 0,0000 0,6857 0,0000 0,0000 0,0002 0,0000 0,0060 0,5104 633 6,25 49

5 0,0003 0,7124 0,0000 0,0000 0,0000 0,0000 0,0000 0,4778 378 4,15 29

6 0,0000 0,6857 0,0000 0,0000 0,0001 0,0030 0,0000 0,4881 671 6,30 53 Avg comp. Time

7 0,0000 0,7142 0,0000 0,0000 0,0000 0,0015 0,0000 0,4856 515 3,62 41

476
8 0,0000 0,7699 0,0000 0,0000 0,0000 0,0014 0,0000 0,4966 330 2,29 26

9 0,0000 0,7322 0,0000 0,0000 0,0000 0,0000 0,0000 0,5283 251 3,21 21

10 0,0009 0,7309 0,0000 0,0000 0,0000 0,0000 0,0000 0,4942 882 1,75 68

As it’s summarised in tables above, backlash is a fault relatively simple to detect. For this

reason, the average computational time is low both for low and high fault, with a value slightly

greater than 1100 s; the average error is comparable too. Concerning the time, the best

choice is Differential Evolution Algorithm, both for low and high fault; speaking about the

precision, Particle Swarm Optimization provides the best performance, with an incredible

0.3% of percentual error in low fault detection.

Table 28 - Summary of backlash fault average values

Backlash

Type Avg Comp. Time (s) % error

Low fault 1124 2,45

High Fault 1239 2,90

131

7.2.3. Single fault detection – Short Circuit

Obviously, the three parameters 𝑘(3), 𝑘(4), 𝑘(5) act in the same way into the model. For this

reason, only the short circuit of the phase A (𝑘(3)) has been tested.

Table 29 - Low short circuit fault detection with Genetic Algorithm

Obj. 0 0 0,2 0 0 0 0,5 0,5 Time % Error Generations

GA_005
Short Circuit

Low fault

1 0,0007 0,0037 0,1875 0,0063 0,0002 0,0092 0,9737 0,5002 1672 1,77 200 Avg % error

2 0,0001 0,0003 0,1722 0,0144 0,0242 0,0076 0,4304 0,5077 1662 4,11 200

5,04
3 0,0073 0,0093 0,1395 0,0251 0,0066 0,0478 0,9482 0,5094 1670 8,55 200

4 0,0025 0,0032 0,1558 0,0097 0,0489 0,0074 0,9703 0,4949 1671 6,75 200

5 0,0002 0,0210 0,1553 0,0040 0,0478 0,0189 0,0894 0,4843 1666 7,35 200

6 0,0000 0,0572 0,1602 0,0128 0,0282 0,0313 0,9619 0,4482 1441 9,84 173 Avg comp. Time

7 0,0020 0,0073 0,1839 0,0003 0,0051 0,0010 0,7861 0,5120 1665 2,21 200

1644
8 0,0019 0,0003 0,1771 0,0126 0,0087 0,0005 0,9637 0,5050 1665 2,81 200

9 0,0001 0,0007 0,1741 0,0285 0,0065 0,0187 0,5177 0,5165 1662 4,63 200

10 0,0009 0,0077 0,1823 0,0034 0,0039 0,0116 0,9997 0,5027 1665 2,40 200

Table 30 - Low short circuit fault detection with Particle Swarm Optimization

Obj. 0 0 0,2 0 0 0 0,5 0,5 Time % Error Generations

PSO_005
Short Circuit

Low fault

1 0,0000 0,0000 0,1960 0,0000 0,0000 0,0031 0,0000 0,4963 1688 0,65 112 Avg % error

2 0,0000 0,0000 0,1917 0,0000 0,0001 0,0060 0,9683 0,4997 1399 1,06 87

0,86
3 0,0000 0,0000 0,1965 0,0000 0,0000 0,0000 0,0348 0,4997 1507 0,35 113

4 0,0000 0,0010 0,1943 0,0001 0,0003 0,0069 0,1069 0,4968 3215 0,99 200

5 0,0000 0,0005 0,1945 0,0000 0,0005 0,0056 0,1125 0,4976 1007 0,86 78

6 0,0000 0,0012 0,1925 0,0000 0,0000 0,0050 0,0206 0,4969 1635 0,99 130 Avg comp. Time

7 0,0000 0,0000 0,1942 0,0000 0,0000 0,0000 0,0000 0,5039 1120 0,70 89

1695
8 0,0000 0,0000 0,1951 0,0000 0,0000 0,0042 0,0470 0,4950 1691 0,84 134

9 0,0000 0,0000 0,1919 0,0000 0,0003 0,0052 0,9578 0,5000 1622 0,99 125

10 0,0000 0,0000 0,1913 0,0000 0,0002 0,0068 0,9583 0,4962 2061 1,21 166

Table 31 - Low short circuit fault detection with Differential Evolution

Obj. 0 0 0,2 0 0 0 0,5 0,5 Time % Error Generations

DE_005
Short Circuit

Low fault

1 0,0026 0,0008 0,1886 0,0016 0,0027 0,0056 0,1016 0,5154 830 2,05 33 Avg % error

2 0,0015 0,0015 0,1789 0,0168 0,0006 0,0123 0,8214 0,5078 768 3,09 36

2,44
3 0,0051 0,0012 0,1768 0,0046 0,0107 0,0015 0,6343 0,5141 577 3,00 28

4 0,0010 0,0026 0,1904 0,0081 0,0065 0,0014 0,7832 0,4929 642 1,62 31

5 0,0015 0,0008 0,1825 0,0012 0,0026 0,0066 0,1345 0,5185 440 2,66 23

6 0,0001 0,0011 0,1991 0,0052 0,0006 0,0032 0,0522 0,4730 428 2,77 26 Avg comp. Time

7 0,0002 0,0052 0,1919 0,0064 0,0019 0,0014 0,1134 0,4978 486 1,20 31

540
8 0,0003 0,0039 0,1921 0,0170 0,0089 0,0030 0,5972 0,5096 346 2,34 21

9 0,0014 0,0010 0,1818 0,0005 0,0043 0,0132 0,9578 0,5008 503 2,38 34

10 0,0005 0,0015 0,1862 0,0014 0,0002 0,0273 0,1351 0,5052 380 3,27 23

132

Table 32 - Low short circuit fault detection with Grey Wolf Optimization

Obj. 0 0 0,2 0 0 0 0,5 0,5 Time % Error Generations

GWO_005
Short Circuit

Low fault

1 0,0000 0,0000 0,1976 0,0000 0,0000 0,0000 0,0000 0,5340 635 3,41 44 Avg % error

2 0,0000 0,0037 0,1793 0,0005 0,0000 0,0168 0,0122 0,5336 455 4,39 35

2,53
3 0,0000 0,0006 0,1828 0,0005 0,0000 0,0131 0,0017 0,5081 324 2,40 25

4 0,0000 0,0000 0,1955 0,0000 0,0000 0,0000 0,0000 0,5126 274 1,34 21

5 0,0000 0,0006 0,1824 0,0000 0,0000 0,0022 0,0000 0,4735 278 3,19 21

6 0,0000 0,0000 0,1776 0,0003 0,0000 0,0000 0,0098 0,5043 472 2,28 36 Avg comp. Time

7 0,0000 0,0000 0,1822 0,0000 0,0000 0,0000 0,0000 0,5064 273 1,90 21

392
8 0,0000 0,0000 0,1837 0,0000 0,0000 0,0000 0,0169 0,4878 285 2,04 22

9 0,0000 0,0000 0,1916 0,0000 0,0000 0,0000 0,0000 0,5282 652 2,94 50

10 0,0000 0,0000 0,2093 0,0000 0,0000 0,0000 0,0000 0,5110 273 1,45 21

The next four tables (32 to 35) summarize the data coming from high fault optimizations.

Table 33 - High short circuit fault detection with Genetic Algorithm

Obj. 0 0 0,7 0 0 0 0,5 0,5 Time % Error Generations

GA_006
Short Circuit

High fault

1 0,0012 0,0051 0,6595 0,0121 0,0175 0,0138 0,9937 0,5045 2638 4,88 200 Avg % error

2 0,0023 0,0020 0,6665 0,0040 0,0084 0,0149 0,1233 0,5170 2675 4,20 200

6,25
3 0,0044 0,0075 0,6453 0,0230 0,0282 0,0220 0,0131 0,5245 2420 7,48 178

4 0,0029 0,0043 0,6419 0,0234 0,0299 0,0198 0,9892 0,5118 2697 7,39 200

5 0,0018 0,0038 0,6624 0,0186 0,0125 0,0063 0,6178 0,5134 2547 4,64 200

6 0,0014 0,0049 0,6444 0,0215 0,0348 0,0146 0,0856 0,5033 2545 7,11 200 Avg comp. Time

7 0,0044 0,0072 0,6476 0,0230 0,0231 0,0169 0,0155 0,5119 2541 6,61 200

2559
8 0,0016 0,0028 0,6606 0,0047 0,0132 0,0094 0,0702 0,5079 2565 4,38 200

9 0,0010 0,0012 0,6435 0,0305 0,0309 0,0022 0,9766 0,5108 2541 7,22 200

10 0,0002 0,0030 0,6340 0,0378 0,0385 0,0077 0,1327 0,5101 2419 8,63 187

Table 34 - High short circuit fault detection with Particle Swarm Optimization

Obj. 0 0 0,7 0 0 0 0,5 0,5 Time % Error Generations

PSO_006
Short Circuit

High fault

1 0,0017 0,0017 0,6745 0,0000 0,0000 0,0077 0,0000 0,5063 1241 2,77 92 Avg % error

2 0,0000 0,0021 0,6760 0,0000 0,0002 0,0082 1,0000 0,5070 2375 2,67 177

2,73
3 0,0000 0,0031 0,6763 0,0001 0,0000 0,0081 0,9990 0,5031 1358 2,58 96

4 0,0000 0,0000 0,6770 0,0006 0,0000 0,0000 0,9831 0,5074 1013 2,41 74

5 0,0002 0,0000 0,6706 0,0022 0,0037 0,0093 0,0510 0,5111 1101 3,33 86

6 0,0001 0,0025 0,6756 0,0014 0,0024 0,0098 0,0369 0,5036 1731 2,71 136 Avg comp. Time

7 0,0021 0,0000 0,6769 0,0000 0,0000 0,0002 0,8760 0,5144 2535 2,73 200

1474
8 0,0000 0,0005 0,6771 0,0001 0,0007 0,0001 0,9982 0,5113 1363 2,56 107

9 0,0000 0,0023 0,6740 0,0048 0,0019 0,0069 1,0000 0,5065 857 2,85 67

10 0,0000 0,0014 0,6763 0,0000 0,0000 0,0092 0,0247 0,5090 1161 2,73 91

133

Table 35 - High short circuit fault detection with Differential Evolution

Obj. 0 0 0,7 0 0 0 0,5 0,5 Time % Error Generations

DE_006
Short Circuit

High fault

1 0,0020 0,0079 0,6565 0,0191 0,0151 0,0135 0,0285 0,5094 590 5,35 34 Avg % error

2 0,0063 0,0041 0,6582 0,0172 0,0197 0,0004 0,8104 0,5281 529 5,73 35

4,78
3 0,0011 0,0024 0,6685 0,0075 0,0044 0,0123 0,0533 0,5139 517 3,81 32

4 0,0018 0,0039 0,6603 0,0099 0,0211 0,0168 0,9897 0,5112 634 5,12 43

5 0,0005 0,0060 0,6734 0,0136 0,0007 0,0057 0,9784 0,4952 552 3,15 35

6 0,0036 0,0054 0,6581 0,0169 0,0026 0,0256 0,9927 0,4964 623 5,40 42 Avg comp. Time

7 0,0007 0,0016 0,6507 0,0176 0,0144 0,0083 0,0262 0,5216 466 5,92 29

534
8 0,0007 0,0072 0,6613 0,0132 0,0159 0,0026 0,2807 0,4916 479 4,53 30

9 0,0019 0,0097 0,6652 0,0140 0,0130 0,0084 0,1137 0,5211 465 4,69 30

10 0,0014 0,0057 0,6658 0,0126 0,0135 0,0017 0,3572 0,4892 482 4,08 32

Table 36 - High short circuit fault detection with Grey Wolf Optimization

Obj. 0 0 0,7 0 0 0 0,5 0,5 Time % Error Generations

GWO_006
Short Circuit

High fault

1 0,0000 0,0000 0,6641 0,0241 0,0000 0,0000 0,0738 0,5168 1800 4,64 124 Avg % error

2 0,0000 0,0000 0,6736 0,0000 0,0000 0,0000 0,0000 0,4812 295 3,24 21

3,49
3 0,0001 0,0039 0,6805 0,0000 0,0000 0,0000 0,0000 0,4936 816 2,10 58

4 0,0000 0,0000 0,6705 0,0000 0,0000 0,0000 0,0000 0,5386 419 4,85 30

5 0,0000 0,0000 0,6722 0,0000 0,0000 0,0327 0,0000 0,5061 293 4,63 21

6 0,0000 0,0031 0,6750 0,0049 0,0000 0,0000 0,0110 0,5250 990 3,58 70 Avg comp. Time

7 0,0008 0,0000 0,6659 0,0000 0,0000 0,0000 0,0000 0,5189 943 3,90 67

655
8 0,0011 0,0000 0,6847 0,0000 0,0000 0,0000 0,0000 0,4824 292 2,33 21

9 0,0000 0,0000 0,6823 0,0000 0,0000 0,0000 0,0430 0,4781 406 2,82 29

10 0,0000 0,0000 0,6821 0,0010 0,0000 0,0000 0,0000 0,5211 299 2,77 21

As it’s possible to observe in tables above and in the summarizing table below, the average

computational time is slightly different, but the percentual error maintains a big gap between

the more precise low fault and the high fault. Particle Swarm Optimization has been the best

algorithm in terms of precision, with a percentual error less than 1% in low fault detection

and 2.7% in high fault detection. The quickest algorithms are Grey Wolf Optimization for low

fault and Differential Evolution for high fault.

Table 37 - Summary of short circuit fault average values

Short circuit

Type Avg Comp. time (s) % error

Low Fault 1068 2,72

High Fault 1305 4,31

134

7.2.4. Single fault detection – Eccentricity

To simulate the eccentricity fault, only 𝑘(6) has been modified, but in the calculation of the

error also 𝑘(7) is taken in care (see the definition of the error in the previous paragraph).

Table 38 - Low eccentricity fault detection with Genetic Algorithm

Obj. 0 0 0 0 0 0,25 0,5 0,5 Time % Error Generations

GA_007
Eccentricity

Low fault

1 0,0008 0,0037 0,0002 0,0026 0,0001 0,2551 0,5002 0,4921 2511 1,05 200 Avg % error

2 0,0001 0,0029 0,0006 0,0038 0,0004 0,2546 0,5028 0,4967 2564 0,75 200

3,32
3 0,0004 0,0030 0,0029 0,0066 0,0016 0,2555 0,5017 0,4953 2742 1,08 178

4 0,0004 0,0291 0,0026 0,0003 0,0000 0,0000 0,0052 0,4578 2461 25,52 200

5 0,0011 0,0018 0,0000 0,0038 0,0029 0,2526 0,4997 0,4952 2615 0,76 200

6 0,0009 0,0018 0,0012 0,0029 0,0016 0,2518 0,5015 0,4969 2625 0,55 196 Avg comp. Time

7 0,0028 0,0041 0,0023 0,0017 0,0001 0,2500 0,4992 0,5030 2624 0,65 200

2502
8 0,0001 0,0012 0,0040 0,0084 0,0010 0,2580 0,4960 0,4893 2210 1,64 157

9 0,0000 0,0019 0,0000 0,0024 0,0001 0,2513 0,5022 0,4957 2004 0,55 200

10 0,0012 0,0014 0,0004 0,0042 0,0033 0,2521 0,4963 0,4967 2666 0,70 200

Table 39 - Low eccentricity fault detection with Particle Swarm Optimization

Obj. 0 0 0 0 0 0,25 0,5 0,5 Time % Error Generations

PSO_007
Eccentricity

Low fault

1 0,0000 0,0011 0,0001 0,0000 0,0014 0,2470 0,5001 0,4932 1976 0,76 118 Avg % error

2 0,0000 0,0009 0,0000 0,0000 0,0000 0,2494 0,4980 0,4987 901 0,18 62

1,01
3 0,0000 0,0008 0,0003 0,0008 0,0018 0,2498 0,4968 0,4989 2201 0,26 97

4 0,0015 0,0027 0,0000 0,0000 0,0000 0,2503 0,4993 0,4966 2108 0,46 102

5 0,0001 0,0025 0,0000 0,0007 0,0000 0,2492 0,4979 0,4977 2460 0,36 99

6 0,0001 0,0299 0,0000 0,0000 0,0000 0,2451 0,4999 0,4463 2614 6,17 96 Avg comp. Time

7 0,0001 0,0002 0,0000 0,0008 0,0000 0,2493 0,4978 0,4991 2615 0,15 90

2099
8 0,0000 0,0001 0,0003 0,0039 0,0003 0,2517 0,4980 0,4989 2055 0,44 162

9 0,0000 0,0027 0,0000 0,0006 0,0027 0,2455 0,4951 0,4935 2615 0,89 90

10 0,0000 0,0000 0,0000 0,0002 0,0035 0,2512 0,4974 0,4973 1442 0,46 114

Table 40 - Low eccentricity fault detection with Differential Evolution

Obj. 0 0 0 0 0 0,25 0,5 0,5 Time % Error Generations

DE_007
Eccentricity

Low fault

1 0,0023 0,0085 0,0022 0,0011 0,0020 0,2515 0,5179 0,4867 412 1,70 27 Avg % error

2 0,0023 0,0017 0,0056 0,0096 0,0115 0,2541 0,5165 0,4720 335 3,29 24

3,62
3 0,0054 0,0104 0,0004 0,0049 0,0180 0,2267 0,4973 0,4783 459 3,87 35

4 0,0138 0,0011 0,0022 0,0104 0,0013 0,2648 0,5047 0,5314 457 3,89 35

5 0,0010 0,0003 0,0055 0,0037 0,0163 0,2991 0,4983 0,5234 305 5,72 23

6 0,0036 0,0041 0,0097 0,0005 0,0252 0,2431 0,4802 0,5224 454 3,65 35 Avg comp. Time

7 0,0021 0,0108 0,0093 0,0015 0,0129 0,2686 0,4949 0,5219 418 3,47 32

401
8 0,0006 0,0139 0,0010 0,0027 0,0245 0,2494 0,4788 0,5031 412 2,90 31

9 0,0002 0,0158 0,0106 0,0065 0,0004 0,2065 0,4950 0,4685 364 5,74 28

10 0,0005 0,0017 0,0179 0,0031 0,0023 0,2544 0,4877 0,4963 390 1,95 30

135

Table 41 - Low eccentricity fault detection with Grey Wolf Optimization

Obj. 0 0 0 0 0 0,25 0,5 0,5 Time % Error Generations

GWO_007
Eccentricity

Low fault

1 0,0000 0,0000 0,0097 0,0000 0,0000 0,1447 0,4994 0,4865 2747 10,66 200 Avg % error

2 0,0000 0,0000 0,0107 0,0000 0,0000 0,2594 0,4812 0,5112 641 1,88 48

13,54
3 0,0000 0,0000 0,0000 0,0000 0,0000 0,2044 0,4825 0,5180 1047 4,92 78

4 0,0000 0,0124 0,0000 0,0000 0,0000 0,2158 0,4858 0,4569 976 5,65 73

5 0,0000 0,0062 0,0000 0,0000 0,0000 0,2067 0,4883 0,4801 806 4,81 60

6 0,0000 0,0000 0,0000 0,0000 0,0000 0,2093 0,4848 0,4827 739 4,43 55 Avg comp. Time

7 0,0000 0,0299 0,0000 0,0000 0,0000 0,0000 0,0000 0,4403 2683 25,88 200

1771
8 0,0000 0,0276 0,0000 0,0000 0,0000 0,0000 0,0000 0,4471 2679 25,70 200

9 0,0000 0,0282 0,0000 0,0000 0,0000 0,0000 0,0000 0,4431 2709 25,79 200

10 0,0000 0,0272 0,0000 0,0000 0,0000 0,0000 0,0000 0,4488 2683 25,66 200

Table 42 - High eccentricity fault detection with Genetic Algorithm

Obj. 0 0 0 0 0 0,75 0,5 0,5 Time % Error Generations

GA_008
Eccentricity
High fault

1 0,0044 0,0038 0,0021 0,0091 0,0069 0,7520 0,5003 0,4954 2690 1,39 200 Avg % error

2 0,0045 0,0052 0,0007 0,0100 0,0056 0,7543 0,5002 0,4887 2117 1,81 167

1,78
3 0,0015 0,0048 0,0001 0,0202 0,0021 0,7544 0,5007 0,4991 2526 2,14 200

4 0,0081 0,0093 0,0009 0,0101 0,0075 0,7415 0,5011 0,4880 2587 2,30 200

5 0,0002 0,0042 0,0030 0,0141 0,0028 0,7578 0,5015 0,4934 2325 1,84 183

6 0,0025 0,0090 0,0003 0,0084 0,0122 0,7497 0,4991 0,4946 2204 1,83 175 Avg comp. Time

7 0,0070 0,0058 0,0026 0,0045 0,0002 0,7419 0,5013 0,4866 2514 1,89 200

2453
8 0,0047 0,0058 0,0003 0,0067 0,0008 0,7505 0,5004 0,4976 2527 1,03 200

9 0,0046 0,0096 0,0037 0,0034 0,0027 0,7561 0,5019 0,4838 2521 2,12 200

10 0,0061 0,0056 0,0024 0,0092 0,0048 0,7485 0,5000 0,4955 2522 1,42 200

Table 43 - High eccentricity fault detection with Particle Swarm Optimization

Obj. 0 0 0 0 0 0,75 0,5 0,5 Time % Error Generations

PSO_008
Eccentricity
High fault

1 0,0030 0,0052 0,0000 0,0140 0,0008 0,7516 0,5008 0,4914 1010 1,76 79 Avg % error

2 0,0038 0,0065 0,0000 0,0062 0,0027 0,7523 0,5004 0,4925 1561 1,28 123

1,44
3 0,0078 0,0019 0,0005 0,0004 0,0001 0,7634 0,4994 0,5022 1495 1,58 118

4 0,0037 0,0000 0,0028 0,0000 0,0004 0,7561 0,5002 0,5012 2520 0,78 200

5 0,0003 0,0049 0,0001 0,0132 0,0019 0,7528 0,5013 0,4957 1780 1,51 141

6 0,0072 0,0018 0,0000 0,0000 0,0013 0,7660 0,5004 0,5024 1468 1,79 116 Avg comp. Time

7 0,0000 0,0042 0,0000 0,0146 0,0010 0,7571 0,5007 0,4957 1340 1,73 106

1506
8 0,0087 0,0015 0,0001 0,0001 0,0002 0,7605 0,5001 0,5027 1563 1,40 124

9 0,0108 0,0000 0,0002 0,0000 0,0016 0,7537 0,4993 0,5071 814 1,36 64

10 0,0078 0,0019 0,0019 0,0030 0,0020 0,7499 0,5091 0,5040 1509 1,20 120

136

Table 44 - High eccentricity fault detection with Differential Evolution

Obj. 0 0 0 0 0 0,75 0,5 0,5 Time % Error Generations

DE_008
Eccentricity
High fault

1 0,0044 0,0066 0,0002 0,0078 0,0008 0,7509 0,5001 0,4918 2889 1,38 200 Avg % error

2 0,0039 0,0046 0,0006 0,0132 0,0001 0,7544 0,5002 0,4947 2810 1,61 200

1,41
3 0,0035 0,0053 0,0001 0,0082 0,0015 0,7541 0,4998 0,4936 2809 1,29 200

4 0,0044 0,0071 0,0004 0,0072 0,0029 0,7515 0,4996 0,4924 2810 1,38 200

5 0,0027 0,0037 0,0002 0,0114 0,0009 0,7564 0,5002 0,4952 2809 1,47 200

6 0,0042 0,0066 0,0002 0,0082 0,0003 0,7511 0,5005 0,4919 2813 1,40 200 Avg comp. Time

7 0,0047 0,0054 0,0001 0,0098 0,0012 0,7534 0,5005 0,4944 2818 1,38 200

2809
8 0,0040 0,0049 0,0000 0,0089 0,0039 0,7528 0,5003 0,4945 2801 1,31 200

9 0,0033 0,0048 0,0002 0,0110 0,0027 0,7549 0,4998 0,4950 2777 1,45 200

10 0,0039 0,0051 0,0007 0,0101 0,0041 0,7533 0,5000 0,4943 2754 1,43 200

Table 45 - High eccentricity fault detection with Grey Wolf Optimization

Obj. 0 0 0 0 0 0,75 0,5 0,5 Time % Error Generations

GWO_008
Eccentricity
High fault

1 0,0335 0,0000 0,0000 0,0000 0,0043 0,7139 0,4971 0,5236 2924 5,48 200 Avg % error

2 0,0328 0,0000 0,0000 0,0000 0,0045 0,7175 0,5011 0,5235 2856 5,20 200

2,30
3 0,0132 0,0000 0,0000 0,0000 0,0042 0,7482 0,4975 0,4953 2858 1,49 200

4 0,0145 0,0000 0,0000 0,0000 0,0038 0,7553 0,4991 0,5001 2862 1,59 200

5 0,0136 0,0000 0,0000 0,0000 0,0035 0,7493 0,4997 0,5029 2859 1,44 200

6 0,0135 0,0000 0,0000 0,0000 0,0036 0,7476 0,5023 0,5062 2855 1,56 200 Avg comp. Time

7 0,0133 0,0000 0,0000 0,0000 0,0034 0,7473 0,5009 0,5068 2856 1,56 200

2866
8 0,0133 0,0000 0,0000 0,0000 0,0035 0,7467 0,5003 0,5070 2855 1,58 200

9 0,0133 0,0000 0,0000 0,0000 0,0035 0,7486 0,5013 0,5066 2865 1,54 200

10 0,0134 0,0000 0,0000 0,0000 0,0034 0,7481 0,5020 0,5072 2867 1,58 200

These data are afflicted by a GWO problem in the detection of low faults, in fact it is possible

to see how the optimizations from the 7th to the 10th have an average percentage error of

about 25%. This fact may be caused by the stabilization of the algorithm into a local minimum

and the inability to overwhelm the boundary of that trend. In table below the average values

are affected by this problem and the high fault detection proves to be more performant in

term of precision than the low fault, but the latter is always quicker. In particular, Differential

Evolution takes only about 400 s (slightly more than 6 minutes and half) to perform 10 low

fault optimizations, against PSO which employs around 25 minutes to approximate the high

fault parameters.

Table 46 - Summary of eccentricity fault average values

Eccentricity

Type Avg Comp. Time (s) % error

Low Fault 1693 5,37

High Fault 2409 1,73

137

7.2.5. Single fault detection – Gain

Table 47 - Low gain fault detection with Genetic Algorithm

Obj. 0 0 0 0 0 0 0,5 0,25 Time % Error Generations

GA_009
Gain

Low fault

1 0,0032 0,0017 0,0031 0,0051 0,0011 0,0139 0,4965 0,2602 2715 1,87 200 Avg % error

2 0,0035 0,0023 0,0073 0,0054 0,0059 0,0241 0,4763 0,2601 2609 2,86 200

1,93
3 0,0001 0,0076 0,0040 0,0008 0,0109 0,0175 0,3904 0,2532 2499 2,26 200

4 0,0011 0,0041 0,0002 0,0105 0,0023 0,0062 0,6193 0,2566 2469 1,47 200

5 0,0024 0,0036 0,0015 0,0010 0,0102 0,0155 0,4190 0,2560 2469 2,01 200

6 0,0019 0,0014 0,0026 0,0023 0,0010 0,0088 0,4568 0,2594 2245 1,36 182 Avg comp. Time

7 0,0028 0,0003 0,0018 0,0025 0,0106 0,0227 0,4936 0,2582 2469 2,67 200

2492
8 0,0018 0,0014 0,0004 0,0047 0,0018 0,0138 0,4714 0,2593 2469 1,76 200

9 0,0031 0,0023 0,0012 0,0037 0,0036 0,0135 0,5350 0,2572 2474 1,66 200

10 0,0015 0,0020 0,0028 0,0020 0,0093 0,0086 0,4446 0,2525 2506 1,36 200

Table 48 - Low gain fault detection with Particle Swarm Optimization

Obj. 0 0 0 0 0 0 0,5 0,25 Time % Error Generations

PSO_009
Gain

Low fault

1 0,0000 0,0000 0,0004 0,0015 0,0000 0,0024 0,8937 0,2527 1944 0,40 147 Avg % error

2 0,0000 0,0021 0,0002 0,0011 0,0001 0,0048 0,9776 0,2499 872 0,58 67

0,45
3 0,0002 0,0022 0,0021 0,0026 0,0009 0,0000 1,0000 0,2503 1435 0,41 116

4 0,0017 0,0001 0,0000 0,0000 0,0000 0,0000 0,1586 0,2525 1006 0,31 81

5 0,0017 0,0000 0,0000 0,0000 0,0000 0,0000 0,5943 0,2525 1297 0,31 105

6 0,0000 0,0026 0,0040 0,0010 0,0001 0,0000 0,7587 0,2503 1239 0,49 100 Avg comp. Time

7 0,0017 0,0000 0,0000 0,0000 0,0001 0,0001 0,9721 0,2525 1905 0,31 1503

1395
8 0,0019 0,0000 0,0007 0,0000 0,0000 0,0000 0,9718 0,2529 944 0,35 76

9 0,0000 0,0005 0,0012 0,0013 0,0001 0,0033 0,7725 0,2525 2499 0,46 200

10 0,0003 0,0000 0,0000 0,0064 0,0000 0,0000 0,0012 0,2563 811 0,90 64

Table 49 - Low gain fault detection with Differential Evolution

Obj. 0 0 0 0 0 0 0,5 0,25 Time % Error Generations

DE_009
Gain

Low fault

1 0,0033 0,0073 0,0020 0,0117 0,0003 0,0003 0,5064 0,2566 456 1,57 29 Avg % error

2 0,0030 0,0060 0,0012 0,0085 0,0011 0,0028 0,1819 0,2609 372 1,57 25

2,52
3 0,0005 0,0017 0,0076 0,0082 0,0017 0,0118 0,3931 0,2511 358 1,65 25

4 0,0024 0,0024 0,0014 0,0141 0,0119 0,0401 0,5881 0,2455 381 4,47 26

5 0,0088 0,0110 0,0054 0,0101 0,0035 0,0093 0,3196 0,2417 309 2,24 21

6 0,0006 0,0049 0,0014 0,0077 0,0071 0,0136 0,8270 0,2446 337 1,92 24 Avg comp. Time

7 0,0029 0,0111 0,0135 0,0021 0,0096 0,0326 0,5224 0,2447 302 3,87 21

355
8 0,0092 0,0028 0,0129 0,0030 0,0075 0,0002 0,2398 0,2697 317 2,67 22

9 0,0018 0,0088 0,0058 0,0148 0,0171 0,0244 0,5640 0,2368 342 3,73 24

10 0,0039 0,0058 0,0076 0,0094 0,0039 0,0041 0,5848 0,2481 371 1,52 26

138

Table 50 - Low gain fault detection with Grey Wolf Optimization

Obj. 0 0 0 0 0 0 0,5 0,25 Time % Error Generations

GWO_009
Gain

Low fault

1 0,0000 0,0000 0,0008 0,0011 0,0000 0,0000 0,3217 0,2475 367 0,29 22 Avg % error

2 0,0000 0,0002 0,0029 0,0000 0,0000 0,0000 0,0002 0,2555 310 0,62 21

0,34
3 0,0000 0,0000 0,0049 0,0001 0,0000 0,0001 0,1831 0,2501 301 0,49 21

4 0,0001 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,2526 301 0,26 21

5 0,0000 0,0000 0,0000 0,0040 0,0000 0,0000 0,0000 0,2521 302 0,45 21

6 0,0000 0,0000 0,0024 0,0000 0,0005 0,0000 0,0009 0,2526 302 0,36 21 Avg comp. Time

7 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,2502 304 0,02 21

312
8 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,2551 301 0,51 21

9 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,2529 300 0,29 21

10 0,0000 0,0000 0,0001 0,0000 0,0000 0,0000 0,0000 0,2487 330 0,13 23

Table 51 - High gain fault detection with Genetic Algorithm

Obj. 0 0 0 0 0 0 0,5 0,75 Time % Error Generations

GA_010
Gain

High fault

1 0,0002 0,0008 0,0010 0,0010 0,0002 0,0055 0,1712 0,7554 2633 0,81 200 Avg % error

2 0,0001 0,0009 0,0013 0,0003 0,0002 0,0053 0,0625 0,7496 2521 0,60 200

0,95
3 0,0011 0,0018 0,0004 0,0010 0,0001 0,0098 0,0133 0,7496 2525 1,11 200

4 0,0006 0,0002 0,0011 0,0005 0,0004 0,0116 0,0980 0,7476 2526 1,28 200

5 0,0001 0,0001 0,0001 0,0013 0,0017 0,0016 0,4625 0,7413 2536 0,91 199

6 0,0004 0,0001 0,0012 0,0010 0,0038 0,0017 0,4765 0,7486 2531 0,47 200 Avg comp. Time

7 0,0006 0,0006 0,0003 0,0001 0,0013 0,0061 0,9995 0,7492 2535 0,71 200

2527
8 0,0016 0,0010 0,0002 0,0000 0,0016 0,0072 0,1098 0,7653 2377 1,73 187

9 0,0001 0,0000 0,0004 0,0011 0,0008 0,0058 0,0581 0,7588 2550 1,10 200

10 0,0008 0,0008 0,0018 0,0001 0,0005 0,0068 0,0732 0,7509 2536 0,77 200

Table 52 - High gain fault detection with Particle Swarm Optimization

Obj. 0 0 0 0 0 0 0,5 0,75 Time % Error Generations

PSO_010
Gain

High fault

1 0,0000 0,0000 0,0000 0,0006 0,0000 0,0000 0,0779 0,7496 602 0,07 47 Avg % error

2 0,0000 0,0000 0,0000 0,0004 0,0000 0,0000 0,6434 0,7486 939 0,14 74

0,21
3 0,0000 0,0000 0,0001 0,0000 0,0000 0,0033 0,0019 0,7513 1190 0,39 89

4 0,0000 0,0000 0,0000 0,0003 0,0001 0,0000 0,9813 0,7487 1041 0,14 82

5 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,7490 566 0,10 44

6 0,0000 0,0000 0,0000 0,0004 0,0000 0,0000 0,6674 0,7480 1423 0,20 112 Avg comp. Time

7 0,0000 0,0000 0,0000 0,0000 0,0000 0,0012 0,4422 0,7491 1020 0,15 80

1078
8 0,0000 0,0000 0,0000 0,0000 0,0000 0,0021 0,0017 0,7498 1373 0,23 108

9 0,0000 0,0000 0,0000 0,0000 0,0000 0,0033 1,0000 0,7511 1656 0,39 130

10 0,0000 0,0000 0,0000 0,0000 0,0000 0,0021 0,0030 0,7498 974 0,23 76

139

Table 53 - High gain fault detection with Differential Evolution

Obj. 0 0 0 0 0 0 0,5 0,75 Time % Error Generations

DE_010
Gain

High fault

1 0,0066 0,0044 0,0036 0,0012 0,0151 0,0194 0,3940 0,7793 436 3,93 31 Avg % error

2 0,0010 0,0017 0,0066 0,0027 0,0065 0,0101 0,9850 0,7410 305 1,74 21

3,31
3 0,0034 0,0002 0,0026 0,0005 0,0124 0,0153 0,5508 0,7378 316 2,36 24

4 0,0013 0,0011 0,0014 0,0027 0,0021 0,0021 0,1979 0,7726 352 2,31 27

5 0,0067 0,0008 0,0004 0,0004 0,0087 0,0084 0,3909 0,7306 310 2,39 24

6 0,0001 0,0092 0,0023 0,0073 0,0205 0,0013 0,3177 0,7724 306 3,26 23 Avg comp. Time

7 0,0046 0,0017 0,0067 0,0014 0,0010 0,0128 0,7895 0,8034 354 5,57 27

332
8 0,0054 0,0047 0,0027 0,0116 0,0100 0,0058 0,9330 0,8082 270 6,10 21

9 0,0047 0,0035 0,0051 0,0142 0,0035 0,0139 0,0301 0,7268 342 3,23 27

10 0,0076 0,0029 0,0052 0,0049 0,0062 0,0149 0,9758 0,7564 329 2,17 27

Table 54 - High gain fault detection with Grey Wolf Optimization

Obj. 0 0 0 0 0 0 0,5 0,75 Time % Error Generations

GWO_010
Gain

High fault

1 0,0104 0,0090 0,0000 0,0079 0,0015 0,0196 0,0000 0,7436 502 2,79 32 Avg % error

2 0,0000 0,0011 0,0000 0,0000 0,0000 0,0021 0,0706 0,7484 301 0,30 21

0,63
3 0,0000 0,0000 0,0000 0,0000 0,0049 0,0000 0,0000 0,7537 293 0,62 21

4 0,0000 0,0000 0,0015 0,0000 0,0000 0,0066 0,0015 0,7498 307 0,75 22

5 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,7486 291 0,14 21

6 0,0000 0,0000 0,0000 0,0002 0,0000 0,0000 0,0000 0,7506 304 0,07 22 Avg comp. Time

7 0,0000 0,0000 0,0000 0,0000 0,0000 0,0014 0,0000 0,7489 291 0,20 21

316
8 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,7490 291 0,10 21

9 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,7388 289 1,12 21

10 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,7479 290 0,21 21

From previous tables it’s possible to see how gain fault is the most detectable failure

between those already studied: only once (Differential Evolution for high fault) the overall

precision exceeds the 3% of average error. The most promising result comes from Particle

Swarm Optimization for high fault, in which the percentage error is about 0.2%. Concerning

the computational time, both low and high fault detections are comparable: this fact is due

to the start point of optimization, because in nominal conditions gain is set to 0.5. The

quickest algorithm both in low and high fault conditions is Grey Wolf Optimization.

Table 55 - Summary of gain fault average values

Gain

Type Avg Comp. Time (s) % error

Low Fault 1138 1,31

High Fault 1063 1,27

140

7.2.6. Multiple fault detection

To test the reliability of the algorithms treated in a real situation, a multiple fault optimization

has been carried out: indeed, a situation in which the electromechanical actuator is slightly

faulty is met easily in usual working behaviour of secondary flight control. This has been

possible thanks to the Matlab code developed, which allows to implement a random fault or

to introduce by yourself the fault parameters. The optimizations have been carried out in a

slightly different way compared to single fault detections. Initially, the stopping criterium

which force the algorithm to do more than 20 iterations has been eliminated, in order to test

the convergence speed of each code (data summarised in table 56): the unique constraint

is to achieve an objective function’s value less or equal than 10-3.

Table 56 - Random fault detection with all algorithms studied to investigate the convergence speed

Obj. 0,0068 0,0000 9,19E-03 0,0013 8,60E-04 0,0111 0,8009 0,3804 Time % Error Generations

GA
Multiple

1 0,0000 0,0000 0,0234 0,0163 0,0304 0,0219 0,5311 0,3518 324 4,816 20 Avg % error

2 0,0000 0,0258 0,0406 0,0000 0,0000 0,0097 0,4491 0,3588 268 4,667 18

5,45
3 0,0077 0,0160 0,0048 0,0199 0,0226 0,0560 0,4328 0,3723 546 6,005 40

4 0,0000 0,0000 0,0000 0,0105 0,0000 0,0000 0,0000 0,4148 108 3,899 7

5 0,0039 0,0251 0,0071 0,0000 0,0029 0,0373 0,0313 0,3537 862 5,364 62

6 0,0140 0,0057 0,0145 0,0423 0,0000 0,0331 0,5437 0,3885 743 4,915 54 Avg comp. Time (s)

7 0,0051 0,0122 0,0047 0,0029 0,0398 0,0507 0,3982 0,3826 852 6,066 59

551
8 0,0028 0,0108 0,0326 0,0137 0,0000 0,0671 0,5262 0,3926 938 6,678 67

9 0,0000 0,0241 0,0217 0,0039 0,0000 0,0039 0,8268 0,3296 294 5,846 20

10 0,0043 0,0063 0,0337 0,0417 0,0000 0,0437 0,5425 0,3586 574 6,285 40

PSO
Multiple

1 0,0000 0,0000 0,0000 0,0000 0,0042 0,0000 0,0000 0,4038 116 2,855 5 Avg % error

2 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,3454 156 3,849 10

3,43
3 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,1339 0,3638 86 2,301 5

4 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,9018 0,3537 80 3,110 5

5 0,0000 0,0057 0,0000 0,0352 0,0000 0,0000 0,9899 0,3519 145 4,740 9

6 0,0000 0,0000 0,0000 0,0000 0,0106 0,0335 0,9659 0,3476 72 4,285 4 Avg comp. Time (s)

7 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,2357 0,4269 54 4,920 3

97
8 0,0180 0,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,3538 67 3,227 4

9 0,0000 0,0000 0,0167 0,0000 0,0000 0,0000 1,0000 0,3619 125 2,389 8

10 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,7979 0,3601 68 2,584 4

DE
Multiple

1 0,0035 0,0057 0,0172 0,0012 0,0027 0,0075 0,1683 0,3790 383 1,215 24 Avg % error

2 0,0012 0,0176 0,0101 0,0106 0,0201 0,0328 0,5752 0,3970 315 4,002 22

3,54
3 0,0031 0,0043 0,0057 0,0373 0,0001 0,0267 0,6549 0,3835 294 4,012 22

4 0,0056 0,0177 0,0031 0,0254 0,0037 0,0009 0,1569 0,3645 369 3,597 27

5 0,0116 0,0015 0,0020 0,0061 0,0049 0,0316 0,2453 0,4136 219 4,419 15

6 0,0054 0,0084 0,0036 0,0072 0,0097 0,0174 0,1430 0,3697 285 2,236 21 Avg comp. Time (s)

7 0,0029 0,0051 0,0025 0,0073 0,0152 0,0228 0,2295 0,4079 251 3,734 18

305
8 0,0121 0,0038 0,0106 0,0368 0,0034 0,0464 0,5970 0,3712 282 5,228 21

9 0,0075 0,0009 0,0201 0,0210 0,0104 0,0420 0,5062 0,3773 285 4,151 20

10 0,0003 0,0061 0,0001 0,0202 0,0088 0,0012 0,3114 0,3693 371 2,837 28

141

GWO
Multiple

1 0,0000 0,0083 0,0000 0,0000 0,0069 0,0059 0,0000 0,3518 86 3,324 4 Avg % error

2 0,0000 0,0000 0,0000 0,0000 0,0000 0,0089 0,0000 0,3738 189 1,520 14

3,49
3 0,0000 0,0000 0,0000 0,0000 0,0000 0,0035 0,0000 0,3613 82 2,372 6

4 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,3315 118 5,142 9

5 0,0000 0,0000 0,0004 0,0000 0,0008 0,0002 0,0001 0,3350 124 4,795 9

6 0,0004 0,0000 0,0000 0,0000 0,0000 0,0025 0,8164 0,3803 181 1,421 11 Avg comp. Time (s)

7 0,0000 0,0000 0,0000 0,0000 0,0335 0,0000 0,4526 0,3318 135 6,068 10

134
8 0,0005 0,0000 0,0000 0,0000 0,0000 0,0004 0,0205 0,3273 277 5,532 18

9 0,0035 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,4017 43 2,596 3

10 0,0000 0,0000 0,0000 0,0000 0,0018 0,0000 0,0000 0,3658 100 2,166 5

In the second table below, the results for the four different algorithms are summarised, taking

care only for the precision of the data and neglecting the computational time. To do that, the

precision constraint has been eliminated and the only one remained is the stall condition

criterium: if the best fault vector is the same for ten consecutive iterations, the algorithm

must stop the evaluation.

Table 57 - Random fault detection with all algorithms studied to investigate the overall precision

Obj. 0,0068 0,0000 9,19E-03 0,0013 8,60E-04 0,0111 0,8009 0,38038 Time % Error Generations

GA
Multiple

1 0,0055 0,0016 0,0083 0,0023 0,0013 0,0000 0,9999 0,3819 2716 1,145 200 Avg % error

2 0,0051 0,0010 0,0093 0,0079 0,0041 0,0125 0,4984 0,3797 2106 0,866 158

1,07
3 0,0048 0,0042 0,0113 0,0093 0,0019 0,0191 0,6194 0,3757 2663 1,380 200

4 0,0073 0,0018 0,0084 0,0057 0,0019 0,0051 0,3723 0,3782 2687 0,840 200

5 0,0084 0,0006 0,0113 0,0015 0,0009 0,0187 0,5266 0,3895 2665 1,319 200

6 0,0051 0,0022 0,0040 0,0061 0,0065 0,0012 0,9920 0,3726 2671 1,574 200 Avg comp. Time

7 0,0084 0,0007 0,0081 0,0038 0,0009 0,0117 0,5038 0,3825 2688 0,524 200

2637
8 0,0072 0,0016 0,0039 0,0049 0,0033 0,0100 0,5457 0,3841 2663 0,845 200

9 0,0049 0,0009 0,0100 0,0008 0,0092 0,0139 0,3982 0,3847 2739 1,155 200

10 0,0065 0,0002 0,0136 0,0006 0,0025 0,0156 0,4796 0,3869 2775 1,050 200

PSO
Multiple

1 0,0078 0,0010 0,0077 0,0003 0,0007 0,0048 0,4782 0,3808 2358 0,690 174 Avg % error

2 0,0090 0,0001 0,0000 0,0045 0,0004 0,0008 0,3616 0,3842 2297 1,485 157

1,06
3 0,0066 0,0021 0,0077 0,0023 0,0000 0,0008 0,4415 0,3769 1696 1,122 127

4 0,0093 0,0001 0,0049 0,0002 0,0000 0,0020 0,0728 0,3818 2761 1,068 200

5 0,0074 0,0015 0,0104 0,0038 0,0000 0,0076 0,4502 0,3784 2021 0,583 152

6 0,0044 0,0016 0,0115 0,0007 0,0021 0,0075 0,3978 0,3762 1400 0,738 105 Avg comp. Time

7 0,0000 0,0000 0,0140 0,0061 0,0000 0,0000 0,3373 0,3687 2664 1,874 200

2292
8 0,0048 0,0000 0,0115 0,0028 0,0025 0,0104 0,4778 0,3773 2659 0,594 200

9 0,0093 0,0000 0,0045 0,0000 0,0000 0,0003 0,2928 0,3821 2653 1,218 200

10 0,0067 0,0004 0,0045 0,0054 0,0002 0,0000 0,9530 0,3796 2409 1,274 181

DE
Multiple

1 0,0079 0,0004 0,0078 0,0006 0,0000 0,0057 0,4455 0,3823 3022 0,640 200 Avg % error

2 0,0072 0,0004 0,0121 0,0008 0,0014 0,0097 0,4660 0,3814 2679 0,475 200

0,58
3 0,0071 0,0003 0,0084 0,0001 0,0015 0,0075 0,4514 0,3812 2656 0,481 200

4 0,0077 0,0004 0,0078 0,0000 0,0000 0,0053 0,4400 0,3823 2832 0,675 200

5 0,0076 0,0005 0,0057 0,0017 0,0008 0,0083 0,4577 0,3832 2631 0,612 200

6 0,0072 0,0002 0,0092 0,0009 0,0000 0,0068 0,4932 0,3810 2653 0,490 200 Avg comp. Time

7 0,0079 0,0000 0,0082 0,0004 0,0007 0,0073 0,4585 0,3822 2684 0,515 200

2840
8 0,0077 0,0002 0,0072 0,0000 0,0003 0,0053 0,4433 0,3822 3741 0,686 200

9 0,0073 0,0002 0,0097 0,0000 0,0001 0,0062 0,4530 0,3800 2824 0,558 200

10 0,0078 0,0006 0,0082 0,0001 0,0000 0,0044 0,4690 0,3807 2678 0,716 200

142

GWO
Multiple

1 0,0047 0,0000 0,0147 0,0000 0,0000 0,0000 0,0000 0,3772 3077 1,302 200 Avg % error

2 0,0087 0,0000 0,0038 0,0000 0,0000 0,0000 0,0000 0,3839 2856 1,305 200

1,21
3 0,0075 0,0000 0,0061 0,0000 0,0000 0,0000 0,0000 0,3834 2825 1,200 200

4 0,0074 0,0000 0,0054 0,0000 0,0000 0,0000 0,0000 0,3838 2879 1,231 200

5 0,0073 0,0000 0,0047 0,0000 0,0000 0,0000 0,0000 0,3813 2677 1,209 200

6 0,0065 0,0000 0,0068 0,0000 0,0000 0,0000 0,0000 0,3810 3043 1,147 200 Avg comp. Time

7 0,0073 0,0000 0,0074 0,0000 0,0000 0,0000 0,0000 0,3803 2678 1,134 200

2898
8 0,0081 0,0000 0,0056 0,0000 0,0000 0,0000 0,0000 0,3850 2988 1,269 200

9 0,0069 0,0000 0,0056 0,0000 0,0000 0,0000 0,0000 0,3800 2930 1,175 200

10 0,0078 0,0000 0,0094 0,0000 0,0002 0,0000 0,0134 0,3798 3022 1,121 200

143

7.3. Comparison of the results

In this paragraph all the results coming from the optimizations reported in the previous pages

are summarized and commented. Initially, speaking about the results for the single fault

detection, the graph depicted in figure 7.1 and summarizing table 58 could be useful to better

understand the error trend. The same types of algorithm are pictured with same colours: low

fault is darker and high fault is lighter.

Figure 7. 1 - Average percentual error for all the algorithms analysed

Table 58 - Average percentual error summarized for all faults analysed

 Friction Backlash Short Circuit Eccentricity Gain Total

 Avg error (%) Avg error (%) Avg error (%) Avg error (%) Avg error (%) Avg error (%) σ

GA - low fault 2,093 1,678 5,042 3,323 1,928 2,813 1,398

GA - high fault 4,491 2,247 6,253 1,778 0,950 3,144 2,177

PSO - low fault 0,930 0,294 0,863 1,013 0,452 0,711 0,318

PSO - high fault 2,773 1,629 2,734 1,465 0,205 1,761 1,060

DE - low fault 2,499 3,930 2,438 3,618 2,522 3,001 0,714

DE - high fault 3,199 3,917 4,778 1,411 3,305 3,322 1,239

GWO - low fault 1,562 3,915 2,532 13,537 0,342 4,378 5,285

GWO - high fault 3,494 3,797 3,486 2,301 0,631 2,742 1,312

Average 2,630 2,676 3,516 3,556 1,292

0

2

4

6

8

10

12

14

Friction fault Backlash fault Short-circuit
fault

Eccentricity fault Gain fault

ER
R

O
R

 (%
)

FAULTS

Average percentual error
GA - low fault GA - high fault PSO - low fault PSO - high fault
DE - low fault DE - high fault GWO - low fault GWO - high fault

144

As it clearly reported above, PSO algorithms offer the best precision in terms of percentual

error, in particular for the detection of low faults. This property is especially shown in

backlash fault and gain fault, where the percentual error is less than 0.5%. The worst

precision is achieved by the Grey Wolf Optimization, with a total average percentual error of

about 3.5%. This bad behaviour is caused by the nature of this algorithm: it encourages the

exploration of the search agents instead exploitation: in this way the precision is badly

affected.

Concerning the stability of the algorithm, the small standard deviation suggests that Particle

Swarm Optimization and Differential Evolution provide percentual error very similar

throughout different fault implemented, in particular for low fault detection.

Most difficult faults to detect are short circuit and eccentricity, with an average percentual

error of about 3.5%: this fact is caused by the relative complexity and the consequences of

these failures, which affect multiple components in both reference and monitor model. The

strong differences between the description of these two dysfunctions could be part of the

detection problem: a possible development of this work is the deeper study of their

implementation in the monitor model. As already said, gain fault is the most detectable fault

with an average percentual error of 1.3%, due to its simplicity of description.

As already done for the average error, also the computational time is investigated. In figure

7.2 the histogram of time trends is depicted; in subsequent table the main values are listed.

Grey Wolf Optimization and Differential Evolution are the computationally fastest algorithms,

especially to carry out the optimization of the low faults. This is clear from the fact that these

two codes have been written by hand and as stopping criteria has an objective function’s

value of 10-3. This value has been set after the observation of the behaviour of the GA and

PSO, which usually arrives at a precision of 10-4. Calibrating this number taking care both

low and high fault detection allow a greater convergence speed for these two solutions. The

high fault convergence speed is comparable between PSO, DE and GWO; Genetic

Algorithm provides a terrible performance, with an average computational time of about 40

minutes.

However, GA applied to a high fault is a very stable method, because it shows a standard

deviation of only 39 s.

145

The time required from each algorithm to reach the precision wanted is pretty comparable,

with a minimum obtained by the gain fault and a maximum by the eccentricity.

Figure 7. 2 - Average computational time for all the algorithms analysed

Table 59 - Average computational time summarized for all faults analysed

 Friction Backlash Short Circuit Eccentricity Gain Total

 Avg comp. Time (s) Avg comp. Time (s) Avg comp. Time (s) Avg comp. Time (s) Avg comp. Time (s) Avg comp. Time (s) σ

GA - low fault 2.633 2.336 1.644 2.502 2.492 2.322 393

GA - high fault 2.501 2.524 2.559 2.453 2.527 2.513 39

PSO - low fault 1.662 1.242 2.152 2.099 1.395 1.710 408

PSO - high fault 1.875 1.634 1.474 1.506 1.078 1.513 290

DE - low fault 394 334 540 401 355 405 81

DE - high fault 2.649 323 534 2.809 332 1.329 1.282

GWO - low fault 485 585 392 1.771 312 709 602

GWO - high fault 2.585 476 655 2.866 316 1.380 1.238

Avg 1.848 1.182 1.244 2.051 1.101

To effectively understand the performance of all optimization algorithm applied to a single

fault detection, a suitable parameter has been introduced, called reliability coefficient. The

average error in table 58 and the average computational time in table 59 need to be the

0

500

1000

1500

2000

2500

3000

3500

Friction fault Backlash fault Short-circuit
fault

Eccentricity
fault

Gain fault

TI
M

E
(S

)

FAULTS

Average computational time
GA - low fault GA - high fault PSO - low fault PSO - high fault
DE - low fault DE - high fault GWO - low fault GWO - high fault

146

lowest possible: the reliability coefficient has to be a percentage which indicates the fitness

power of that algorithm for each fault. The relation thought is:

𝑅𝐶𝑖(%) = 100 ∙ (1 −

𝑡𝑖 ∙ 𝑒𝑟𝑟𝑖(%)

∑ 𝑡𝑖 ∙ 𝑒𝑟𝑟𝑖(%)
4
𝑖=1

) (7.1)

where:

- 𝑅𝐶𝑖 is the reliability coefficient (expressed in %) of the i-th algorithm;

- 𝑡𝑖 is the average computational time of the i-th algorithm;

- 𝑒𝑟𝑟𝑖(%) is the average percentual error of the i-th algorithm.

The division for the sum of the multiplied average values has been carried out in order to

have as output a non-dimensional value; subtracting the resulting value to 1 allows to

overturn the problem, in order to have a bigger reliability coefficient if the suitability is high.

The next multiplication for 100 transforms it in a percentual value. In this way, choosing the

highest reliability coefficient means choosing the best algorithm for that problem.

For every fault, the reliability coefficient has been evaluated, in order to find which algorithm

is better for a determined fault. The results are summarised in table below.

Table 60 - Reliability coefficient for single fault detection

 Friction fault Backlash fault Short-circuit fault Eccentricity fault Gain fault Total

 time*err RC(%) time*err RC(%) time*err RC(%) time*err RC(%) time*err RC(%) time*err RC(%)

GA 8.451 57,62 4.769 49,71 11.867 36,34 6.319 79,58 3.611 30,16 7.199 54,00

PSO 3.275 83,58 1.383 85,42 3.260 82,51 2.233 92,78 407 92,14 1.992 87,27

DE 4.335 78,26 1.287 86,43 1.937 89,61 4.035 86,96 1.000 80,66 2.741 82,49

GWO 3.880 80,54 2.045 78,44 1.576 91,55 18.359 40,67 153 97,05 3.717 76,25

sum 19941 9484 18641 30947 5170 15649

The green values represent the best solution for the detection of that fault. Particle Swarm

results are for twice (friction and eccentricity) the most reliable data, such as Grey Wolf

Optimization, which is the best for short-circuit and proportional gain fault; Differential

Evolution is the most suitable algorithm to detect the backlash. Only in one case (eccentricity

fault) Genetic Algorithm resulted to be appreciable, with a reliability coefficient pretty equal

to 80%. Concerning the overall values, the most reliable algorithm to detect single fault

implementation is Particle Swarm Optimization, with a RC equal to 87%; however also

Differential Evolution provides a great optimization performance, with a RC=82.5%.

147

Concerning the multiple fault detection, from table 56 reported in the previous paragraph,

it’s possible to understand the power of the swarm-based algorithms: indeed, both Particle

Swarm Optimization and Grey Wolf Optimization provide the fastest results. In particular

PSO is the fastest and the most precise between the algorithms tested, because has also a

3.4% of percentual error in only 97 s of average computational time. Concerning the number

of iterations, in ten different tries PSO has an average value equal to 5.7 iterations, GWO of

about 9: that means that the former manages to reach faster the target error’s value. The

iterations do not have the same speed in different algorithms: evaluating the average

number of iterations for the four algorithms tested, using the average computational time,

it’s possible to find that the quickest iterations are those of Genetic Algorithm and Differential

Evolution, with approximately 14 seconds used per each iteration; the o PSO shows the

slowest iterations, with 17 second per iteration. This consideration strengthens the

astounding performance of the Particle Swarm Optimization, because every iteration has an

astonishing optimization power.

The precision, as already said, is not a study object, because it has been set previously to

a determined value, equal for all the optimizations: it’s only possible to comment that every

algorithm is around the 3.5% of error except for Genetic Algorithm, the less reliable one,

which is around the 5.5%.

In the second table the situation is very different: focusing on the overall precision of the

algorithm and neglecting the computational time, it has been possible to investigate which

algorithm allows to obtain the most reliable and data. This simulation is different from the

single fault isolation, because algorithms do not have stopping criteria concerning the

objective value or the maximum computational time, but only the maximum number of stall

iterations, set at 10.

From table 57 it’s possible to see how Differential Evolution provides the best results in term

of precision, with only the 0.58% of average error. It’s important to underline that this

algorithm detects brilliantly also the friction fault, implemented in the objective function with

a very small value, with a percentage error referred to this fault of only 0.07%. The other

algorithms are around the 1% of average error, meaning that in any case they represent a

reliable alternative to the DE.

Another important characteristic is the stability of the algorithms: the standard deviation

provides the information referred to the nominal displacement of output from the average

148

error value. During the usual 10 optimizations, Grey Wolf Optimization appears to be the

most stable, with a σ equal to 0.067; on the other hand, Particle Swarm shows a particularly

big dispersion of the values, with a σ=0.42.

As already done for single faults, also for the multiple fault detection the reliability coefficient

is evaluated. In this case, it assumes the importance of mixing together tables 56 and 57, in

order to find a perfect equilibrium between error value and computational time.

In table 61 𝑅𝐶 is evaluated for all the algorithms.

Table 61 – Reliability coefficient for multiple fault detection

 Average Comp. Time (s) Average % error Time*error 𝑅𝐶𝑖(%)

Genetic Algorithm 551 1,07 589,57 42,84

Particle Swarm Optimization 97 1,06 102,82 90,03

Differential Evolution 305 0,58 176,9 82,85

Grey Wolf Optimization 134 1,21 162,14 84,28

sum(t*err) 1031,43

The best optimization to detect a multiple fault implemented in our models is the Particle

Swarm Optimization, with a brilliant 90% of reliability coefficient. DE and GWO have very

similar behaviours and close to the best, so they are also efficient solutions for this type of

problem. It’s important to underline also the bad behaviour of the Genetic Algorithm, which

provides values with only 42% of reliability coefficient.

149

8. Conclusions and future perspectives

In this work the behaviour of different algorithms to a single fault and multiple fault detection

in an electromechanical actuator (EMA) has been deeply studied.

Firstly, after a theoretical part in which the prognostics concepts, the functioning of BLDC

motor and the structure of the models are described, all the faults are investigated

concerning their effect to the dynamic response of the electromechanical actuator. All the

position, speed and current trends are depicted with a single fault growth, from the nominal

condition to the end of the failure domain. Before the explanation of the parameters used in

optimization process, the four different algorithms studied are described and analysed.

The results chapter highlights the importance of Particle Swarm Optimization both for single

fault and multiple fault detection. Indeed, it shows the best reliability coefficient – a suitable

parameter described in chapter 7 – throughout the ten optimizations carried out for the

multiple random fault and for three different single fault implementations (friction, eccentricity

and gain). Particularly important is also the information coming from one of the two multiple

optimization paths: every iteration has an astonishing optimization power, because in only

3 generations evaluated in 54 seconds, this algorithm is capable to obtain a 5% error, equal

to that coming from the average values of all the 10 genetic algorithm’s optimizations (for

551 s of average computational time).

Differential Evolution provides data with elevated level of reliability, close to the behaviour

of the PSO in the single fault detection: this algorithm is the best for the detection of backlash

fault. It has also a great stability in the provided results, both in terms of computational time

and percentual error.

The results coming from Grey Wolf Optimization have an intermediate level of efficiency,

because they are the best to detect short-circuit faults, but their nature to promote

exploration instead of exploitation do not allow it to have a great overall reliability. In the

detection of multiple faults, it behaves slightly better, providing results comparable to those

coming from Differential Evolution, but in general very similar to PSO. It could be a great

choice if the will is to study the problem with new nature-inspired approaches.

150

In conclusion, it’s important to underline the bad behaviour of the Genetic Algorithm, which

do not have satisfactory results both for single or multiple fault detection. It is badly affected

by the complexity of the problem and the presence of multi-objective target.

This work surely makes room for further developments.

Initially, it’s possible to improve the reliability of the data coming from reference model

implementing a better model for the mechanical transmission of the motion. For example, a

subsystem referred to the mechanical behaviour of the nut-screw device could be studied

and subsequently introduced. In this way, data take care also of the friction and little

malfunctions of the transmission. Another possible development is the implementation of

the temperature effects over the overall working behaviour of the BLDC Motor, in order to

not neglect the viscous effects of the temperature.

In a second time, surely different optimization algorithms could be introduced and studied,

in order to find which is the best compromise to study our problem: indeed, there are a lot

of fast-growing new bio-inspired algorithms which could achieve new optima results. These

algorithms could be also tested on a real situation, maybe exploiting the data coming from

real sensor located on a test benchmark.

Changing the development environment could be useful to accelerate the simulation.

Instead of Matlab, lower level languages can be used as C, C#, C++ or Fortran and maybe

this simulation will be tested also on a flight control computer, in order to approaching always

more the implementation in a real aerospace purpose.

151

Appendix A

Differential Evolution Matlab code (Copyright© Stefano Re – Politecnico di Torino 2018):

%% Function to be minimized

D=8; %number of variables

fobj=@(k) FitnessFunction(k);
% objf=inline('4*x1^2-2.1*x1^4+(x1^6)/3+x1*x2-4*x2^2+4*x2^4','x1','x2');
% objf=vectorize(objf);

%% Initialization of DE parameters

% N=50; %population size (total function evaluations will be itmax*N, must

be>=5)
% itmax=200;
% F=0.5; CR=0.95; %mutation and crossover ratio

%% Problem bounds

% LB=zeros(N,D);
% UB=ones(N,D);

% a(1:N,1)=-1.9; b(1:N,1)=1.9; %bounds on variable x1
% a(1:N,2)=-1.1; b(1:N,2)=1.1; %bounds on variable x2

d=(UB-LB);
basemat=repmat(int8(linspace(1,N,N)),N,1);
basemat2=repmat(int8(linspace(1,D,D)),N,1);

%% Optimization

% numOpt=10;
xbest=zeros(numOpt,8);

for ii=1:numOpt

%Random initialization of positions
tic
x=LB+d.*rand(N,D);

%Evaluate objective for all particles
% fx=objf(x(:,1),x(:,2));

fx=zeros(N,1);

 for i=1:N
 fx(i)=fobj(x(i,:));
 end

%Find best
[fxbest,ixbest]=min(fx);
xbest(ii,:)=x(ixbest,:);
xbestit=repmat(2,itmax,D);

152

%Iterate
 for it=1:itmax
 disp(['Iteration number ',num2str(it),' of the optimization number

',num2str(ii)])

 permat=bsxfun(@(x,y) x(randperm(y(1))),basemat',N(ones(N,1)))';

 %Generate donors by mutation
 v=repmat(xbest(ii,:),N,1)+F*(x(permat(:,1),:)-x(permat(:,2),:));

 %Perform recombination
 r=repmat(randi([1 D],N,1),1,D);
 muv = ((rand(N,D)<CR) + (basemat2==r)) ~= 0;
 mux = 1-muv; %negation of muv

% u(1:N,1:D)=x(1:N,1:D).*mux(1:N,1:D)+v(1:N,1:D).*muv(1:N,1:D);

 u=abs(x.*mux+v.*muv);

 %Greedy selection
 fu=zeros(N,1);

 parfor iii=1:N
 fu(iii)=fobj(u(iii,:));
 end

 idx=fu<fx;
 fx(idx)=fu(idx); %subtitution of the lowest values of obj func in

function fx
 x(idx,:)=u(idx,:); % subtitution of the worst fitting vector with

most fitting vector

 %Find best
 [fxbest(it,1),ixbest]=min(fx);
 xbest(ii,:)=x(ixbest,:);
 xbestit(it,:)=x(ixbest,:);
% disp(xbestit(it,:));

% if it>2
%
% stopCrit=mean(abs(xbestit(it,:)-xbestit(it-1,:)));
% if stopCrit<1e-6
% it=itmax;
% end
%
% end

%% Stopping criteria

 if it>20 && fxbest(it,1)<1e-3
 crit=fxbest(it-1,1)-fxbest(it,1);
 if crit<1e-12
 break
 end
 end

end %end loop on iterations

153

%% Saving results

save('Results_DE','xbest')
% [xbest,fxbest]
toc

end

154

Appendix B

Greywolf Optimization Matlab code (Copyright© Stefano Re – Politecnico di Torino 2018):

%% Parameters from Main script

% SearchAgents_no=50;
% Max_iter=200;
% dim=8;
% lb=zeros(1,dim);
% ub=ones(1,dim);
fobj=@FitnessFunction;

%Initialize the positions of search agents
Positions=GWO_initialization(SearchAgents_no,dim,ub,lb);

%% Main loop

% numOpt=input('How many optimizations do you like to do?');

Z=zeros(numOpt,dim);

for ii=1:numOpt %numero di ottimizzazioni

 tic

 Alpha_pos=zeros(SearchAgents_no,dim);
 Alpha_score=1e6*ones(SearchAgents_no,1); %change this to -inf for

maximization problems

 Beta_pos=zeros(SearchAgents_no,dim);
 Beta_score=1e6*ones(SearchAgents_no,1); %change this to -inf for

maximization problems

 Delta_pos=zeros(SearchAgents_no,dim);
 Delta_score=1e6*ones(SearchAgents_no,1); %change this to -inf for

maximization problems

 Alpha_score_best=1e6*ones(Max_iter,1);
 Alpha_pos_best=repmat(10,Max_iter,dim); %metto 2 così so che sono numeri

impossibili

 for l=1:Max_iter

 disp(['Iteration number ',num2str(l),' of the optimization number

',num2str(ii)])

 parfor i=1:SearchAgents_no

 % Return back the search agents that go beyond the boundaries of

the search space
 Flag4ub=Positions(i,:)>ub;
 Flag4lb=Positions(i,:)<lb;

155

Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag

4ub+lb.*Flag4lb;

 % Calculate objective function for each search agent
 fitness(i,1)=fobj(Positions(i,:));
 end

 parfor i=1:SearchAgents_no
 % Update Alpha, Beta, and Delta
 if fitness(i,1)<Alpha_score(i)
 Alpha_score(i)=fitness(i,1); % Update alpha
 Alpha_pos(i,:)=Positions(i,:);

 elseif fitness(i,1)>Alpha_score(i) && fitness(i,1)<Beta_score(i)
 Beta_score(i)=fitness(i,1); % Update beta
 Beta_pos(i,:)=Positions(i,:);

 elseif fitness(i,1)>Alpha_score(i) && fitness(i,1)>Beta_score(i)

&& fitness(i,1)<Delta_score(i)
 Delta_score(i)=fitness(i,1); % Update delta
 Delta_pos(i,:)=Positions(i,:);
 end
 end

 a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0

 % Update the Position of search agents including omegas
 for i=1:SearchAgents_no
 for j=1:dim

 r1=rand(); % r1 is a random number in [0,1]
 r2=rand(); % r2 is a random number in [0,1]

 A1=2*a*r1-a;)
 C1=2*r2;

 D_alpha=abs(C1*Alpha_pos(i,j)-Positions(i,j));
 X1=Alpha_pos(i,j)-A1*D_alpha;

 r1=rand();
 r2=rand();

 A2=2*a*r1-a;
 C2=2*r2;

 D_beta=abs(C2*Beta_pos(i,j)-Positions(i,j));
 X2=Beta_pos(i,j)-A2*D_beta;

 r1=rand();
 r2=rand();

 A3=2*a*r1-a;
 C3=2*r2;

 D_delta=abs(C3*Delta_pos(i,j)-Positions(i,j));
 X3=Delta_pos(i,j)-A3*D_delta;

156

 Positions(i,j)=(X1+X2+X3)/3;

 end
 end

 [Alpha_score_best(l,1),Best_index]=min(Alpha_score);
 Alpha_pos_best(l,:)=Alpha_pos(Best_index,:);

 %% Stopping criteria
% l>20 &&
% if Alpha_score_best(l,1)<1e-3
% crit=Alpha_score_best(l-1,1)-Alpha_score_best(l,1);
% if crit<1e-16
% break
% end
% end

 end

 [best_solution(ii), indexx]=min(Alpha_score_best);
 Z(ii,:)=Alpha_pos_best(indexx,:);
 save('GWO_Results','Z')

toc

end

157

Appendix C

Main optimization Matlab code (Copyright© Stefano Re – Politecnico di Torino 2018):

%% Introduzione

clear
close all
clc

disp('%%%%%%%%%%%%%%------- Fault parameters optimization for EMA model --

-----%%%%%%%%%%%%%%')
disp(' ')
disp('Script developed by Stefano Re, with Pier Carlo Berri and Matteo Dalla

Vedova (DIMEAS Polito)')
disp(' ')

%% Command choice

% User could choice the type of the command for the EMA. Commands are
% expressed in [rad]:

a=input('Choose the command: (1=step, 2=ramp, 3=sinusoidal, 4=chirp): ');

if a==1
 Com1=1;
 Com2=0; Com3=0; Com4=0; Com5=0; Com6=0;
elseif a==2
 Com2=1;
 Com1=0; Com3=0; Com4=0; Com5=0; Com6=0;
elseif a==3
 Com3=1;
 Com1=0; Com2=0; Com4=0; Com5=0; Com6=0;
elseif a==4
 Com4=1;
 Com1=0; Com2=0; Com3=0; Com5=0; Com6=0;
else
 disp('Do a valid choice!')
 clear
end

%% Optimization choice

OptChoice=input('Would you like to study a single-faulty or a multiple-faulty

BLDC motor? (1=single, 2=multiple): ');
disp(' ');

if OptChoice==1

 %% Fault choice

 disp(' ')
 disp('Choose the fault you would like to introduce:')
 disp('1= Friction fault')
 disp('2= Backlash fault ')

158

 disp('3= Phase A short circuit fault')
 disp('4= Phase B short circuit fault')
 disp('5= Phase C short circuit fault')
 disp('6= Eccentricity parameter fault (zita) ')
 disp('7= Eccentricity phase fault ')
 disp('8= Gain fault ')
 disp(' ')

 b=input('Your choice: ');

 if b==1
 F=input('Give a value for the friction [1 - 3] --> [NC - 3*NC]: ');
 B=1;
 Z=0;
 phi=0;
 G=1;

 if F<1 || F>3
 disp('Do a valid choice!')
 clear
 else
 run('EMA_Re_DAT')
 end
 elseif b==2
 F=1;
 B=input('Give a value for the backlash [1 - 100] --> [NC - 100*NC]: ');
 Z=0;
 phi=0;
 G=1;

 if B<1 || B>100
 disp('Do a valid choice!')
 clear
 else
 run('EMA_Re_DAT')
 end
 elseif b==3
 F=1;
 B=1;
 Na=input('Give a value for the phase A short-circuit [1 - 0] --> [0% -

100%]: ');
 Nb=1;
 Nc=1;
 Z=0;
 phi=0;
 G=1;

 if Na<0 || Na>1
 disp('Do a valid choice!')
 clear
 else
 run('EMA_Re_DAT2')
 end
 elseif b==4
 F=1;
 B=1;
 Na=1;
 Nb=input('Give a value for the phase B short-circuit [1 - 0] --> [0% -

100%]: ');
 Nc=1;

159

 Z=0;
 phi=0;
 G=1;

 if Nb<0 || Nb>1
 disp('Do a valid choice!')
 clear
 else
 run('EMA_Re_DAT2')
 end
 elseif b==5
 F=1;
 B=1;
 Na=1;
 Nb=1;
 Nc=input('Give a value for the phase C short-circuit [1 - 0] --> [0% -

100%]: ');
 Z=0;
 phi=0;
 G=1;

 if Nc<0 || Nc>1
 disp('Do a valid choice!')
 clear
 else
 run('EMA_Re_DAT2')
 end
 elseif b==6
 F=1;
 B=1;
 Z=input('Give a value for the Z [0 - 0.42]: ');
 phi=0;
 G=1;

 if Z<0 || Z>0.42
 disp('Do a valid choice!')
 clear
 else
 run('EMA_Re_DAT')
 end
 elseif b==7
 F=1;
 B=1;
 Z=0;
 phi=input('Give a value for the eccentricity phase [-pi - +pi]: ');
 G=1;

 if phi<-pi || phi>pi
 disp('Do a valid choice!')
 clear
 else
 run('EMA_Re_DAT')
 end
 elseif b==8
 F=1;
 B=1;
 Z=0;
 phi=0;
 G=input('Give a value for the gain [0.5 - 1.5] --> [0.5*NC - 1.5*NC]:

');

160

 if G<0.5 || G>1.5
 disp('Do a valid choice!')
 clear
 else
 run('EMA_Re_DAT')
 end
 else
 disp('Do a valid choice!')
 clear
 end

 % Single fault part termined

elseif OptChoice==2 %% Start multiple fault part
 InputType=input('Would you like to introduce a random multiple fault (choose

1) or write the fault parameters by your own (choose 2)?: ');

 if InputType==1 %% random multiple fault

 RandomFaultParams=rand(1,8);
 RandomFaultParams(:,1:6)=RandomFaultParams(:,1:6).^7;
 RandomFaultParams(:,8)=((RandomFaultParams(:,8)*2-1).^7+1)/2;
 disp(' ')
 disp(['The random fault vector is: ',mat2str(RandomFaultParams(:))])
 save('Random_fault', 'RandomFaultParams')
 disp(' ')

 F=2*(RandomFaultParams(1,1))+1;
 B=99*(RandomFaultParams(1,2))+1;
 Na=1-RandomFaultParams(1,3);
 Nb=1-RandomFaultParams(1,4);
 Nc=1-RandomFaultParams(1,5);
 Z=0.42*(RandomFaultParams(1,6));
 phi=RandomFaultParams(1,7);
 G=RandomFaultParams(1,8)+0.5;

 run('EMA_Re_DAT2');

 elseif InputType==2 %% User-introduced fault

 disp(' ');
 F=2*input('Introduce the friction fault: ')+1;
 B=99*input('Introduce the backlash fault: ')+1;
 Na=1-input('Introduce the phase A short-circuit fault: ');
 Nb=1-input('Introduce the phase B short-circuit fault: ');
 Nc=1-input('Introduce the phase C short-circuit fault: ');
 Z=0.42*input('Introduce the eccentricity fault: ');
 phi=input('Introduce the eccentricity phase fault: ');
 G=input('Introduce the gain fault: ')+0.5;

 run('EMA_Re_DAT2');

 else
 disp('Do a valid choice!')
 clear
 end

161

end

%% Simulation of the reference Model

sim('EMA_Re_EVO');

%% Optimizations

disp(' ')
disp('Choose the optimization algorithm: ')
disp('1= Genetic Algorithm')
disp('2= Particle Swarm Optimization')
disp('3= Differential Evolution')
disp('4= Greywolf Optimization')
disp(' ')
c=input('Your choice: ');
disp(' ')
d=input('Would you like to parallelize the optimization? (1=yes, 2=no)');

%Parallelization of the optimizations

if d==1
 parpool
 Parp=true(1);
else
 Parp=false(1);
end

% For every set of input, I do 10 optimizations (heuristic!=deterministic)
numOpt=input('How many optimizations do you like to do?');

X=zeros(numOpt,8);
Y=zeros(numOpt,8);
popsize=input('Specify the population size: ');
numgen=input('Specify the number of generations: ');

for i=1:numOpt

 if c==1
 LB=zeros(1,8);
 UB=ones(1,8);
 disp(' ')

 tic

opt1=optimoptions(@ga,'Display','iter','PopulationSize',popsize,'Generations',nu

mgen,'FunctionTolerance',1e-12, 'UseParallel',Parp);
% 'FitnessLimit',1e-3
 X(i,:)=ga(@FitnessFunction,8,[],[],[],[],LB,UB,[],[],opt1);
 toc

 save('Results_GA','X')

162

 elseif c==2
 LB=zeros(1,8);
 UB=ones(1,8);
 disp(' ')
 disp(' ')

 tic

opt2=optimoptions(@particleswarm,'Display','iter','SwarmSize',popsize,'MaxIterat

ions',200,'FunctionTolerance',1e-12,'UseParallel',Parp);
% 'ObjectiveLimit',1e-3
 Y(i,:)=particleswarm(@FitnessFunction,8,LB,UB,opt2);
 toc

 save('Results_PSO','Y')

 elseif c==3
 N=input('Specify the population size: ');
 D=8;
 LB=zeros(N,D);
 UB=ones(N,D);

 itmax=input('Specify the maximum number of iterations: ');
 disp(' ');
 disp('CHOICE OF THE D.E. PARAMETERS:');
 F=input('Mutation ratio (F): ');
 CR=input('Crossover ratio (CR): ');

 run('DE_main'); %the "save" command is already inside the script

(xbest)

 break

 elseif c==4
 SearchAgents_no=input('Specify the number of search agents: ');
 Max_iter=input('Specify the maximum number of iterations: ');
 dim=8;
 lb=zeros(1,dim);
 ub=ones(1,dim);

 run('GWO_remix'); %the "save" command is already inside the script (Z)

 break
 else
 disp('Do a valid choice!')
 break
 end

% save('Results','X','Y')
end

disp(' ')
disp('Optimization successfully termined')

		Politecnico di Torino
	2018-10-16T11:59:21+0000
	Politecnico di Torino
	Matteo Davide Lorenzo Dalla Vedova
	S

