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Abstract 

Over the past few decades, mostly in commercial and defence markets, there has been the 

will to implement always new approaches and strategies to carry out prognosis on complex 

systems, in order to achieve benefits in terms of reliability and safety of the product, planning 

maintenance and logistic costs. In this work, a model-based prognostics approach is 

proposed: it has been applied to the study of fault appearance in flight controls moved by an 

electromechanical servosystem (EMA). The faults taken into consideration are friction, 

backlash, short circuit, rotor eccentricity and gain: they are deeply described and 

implemented in two different models. The first model is the high-fidelity one and it represents 

the motor to analyse; the second one is the monitor model, lighter and quicker then the 

previous one, which has to approximate as best as it can the parameters of the first one. To 

simulate the reference model, four different optimization algorithms are applied to the 

monitor: Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm Optimization 

(PSO) and Greywolf Optimization (GWO). Their features and their capability to solve this 

problem are deeply investigated and compared each other; particular attention is paid to 

percentual error between the optimizations and the reference values and to computational 

time. 
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1. Introduction and overview 

 

1.1. Introduction to prognostics 

 

Over the past few decades, mostly in commercial and defence markets, there has been the 

will to implement always new approaches and strategies to carry out prognosis on complex 

systems, in order to achieve benefits in terms of reliability and safety of the product, planning 

maintenance and logistic costs. Prognostics is the discipline which evaluates the current 

state of a system or single component and estimates the Remaining Useful Life (RUL), 

namely how much time will pass until the object of the study will no longer able to operate 

within its stated specification [2]. Prognostics is exploited in a huge range of applications 

including automotive, robotics, automation and naval purposes for its extremely reliable 

behaviour: in this work it’s applied to an electromechanical actuator which commands a 

secondary flight control. This discipline is composed by several mandatory steps: 

1. Data collection: the system or the machinery studied is equipped with sensors which 

acquires the temporary trend of a variable as displacement, speed, torque or current. 

Next, is important to exclude the sensors which gave back unreliable trends caused 

by noise or excessive vibrations. 

2. Clean up of the trends: in every sensor’s records is stored also the noise and 

vibrations which could affect the real behaviour of the system; in this phase, using 

analogic or digital filters, signals are cleaned up. 

3. Thresholds: with a filtered signal, it’s mandatory to determine thresholds directly from 

data already acquired (history) or from requirements.  

4. Prediction of RUL: this is the last phase and the most “aleatoric” one. Taking 

advantage from algorithms, neural networks, mathematical regressions and 

statistics, a prediction of RUL is carried out; in this way it’s possible to plan next 

maintenance stops. This prediction could be made studying the future operating 

working conditions as input commands, environment or loads, analysing the failure 

modes with FMEA or FMECA models, detecting every indication of failure in our 
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system as wear, cracks or aging and correlating them with the experience or 

mathematical expressions.    

The increasing of reliability and safety of the products, and decreasing the logistic time, 

costs and unnecessary services are the main aims of prognostics. This discipline could be 

divided into some different categories [5]: 

➢ Type I, reliability data-based. These models are based on statistical considerations 

and exploit historical fault data to estimate the Remaining Useful Life (RUL) mainly 

for parts used in nominal conditions; 

➢ Type II, stress-based. Learning from accumulated knowledge, here a fault growth 

model considers all the environmental stresses as external loads, temperature, noise, 

vibrations etc;  

➢ Type III, condition-based. These models take care also about specific conditions in 

which a component is working and hence its failure conditions, which can be used to 

plan a maintenance. 

 

Nowadays the implementation of prognostic methods is managed by an approach which 

compares the complexity of the system and the benefits in terms of availability, cost savings, 

maintenance scheduling. For components not essential in the working-life of a machine or 

for the cheapest ones is not convenient to do such a study.  

Prognostics is different from the diagnosis, because the latter indicates the condition of the 

system after a break, it represents something already happened (e.g. a break-down of the 

turning screw); the former is nothing but a prediction of the possible future working behaviour 

of the system based on the actual conditions. 

In this work a model-based prognostics approach is proposed: it will be applied to the study 

of fault appearance in flight controls. These are the most critical system mounted on aircraft, 

so they are usually designed with the “safe life” philosophy: every part or component of these 

systems must be replaced with a new one after a determined amount of flight hours. The 

aim of this thesis is to suggest a reliable option to plan maintenance actions just in the 

moment where the system needs it, comparing some different algorithms and their 

response.  
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1.2. Flight controls 

In last decades, flight control systems have shown a great evolution thanks to improvements 

done in aircraft technologies [4]. In the first planes there was a fly-by-wire technology, in 

which pilot’s commands in the cockpit were connected directly to the control surfaces by 

means of thick wires. This control method remained very used for many years; when the 

technologies was approaching the supersonic region of flight, the necessity of more complex 

and reliable control systems returned back at the top of the designers’ priority list [7]. 

Furthermore, the increasing load capacity of planes makes inadequate a system moved only 

by pilot’s strength: in this period hydraulically-powered and pneumatically-powered 

actuators become widespread. These systems saw a brilliant evolution throughout the 

years, until they become one of the most studied parts of the aircraft; nevertheless, their 

increasing complexity and their interactions during flight may reduce the reliability and 

efficiency of the whole plane.  A small leakage in pneumatic or hydraulic hardware could 

provoke wrong functionality of all networks, causing issues, delays or dramatic 

consequences. This leads to a concept introduced years ago, during World War II: the “all-

electric” aircraft [6].  

In the figure 1.1 below (taken from [21]), the flight controls are represented and named.  

 

 

Figure 1. 1 - Name of the main flight controls 
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All aircrafts, from the simplest to the most complex one, use quite the same principles of 

flight controls. In order to modify its position in the space, an aircraft needs to move some 

specific control surfaces dislocated in different places (wings, fuselage, stabilizers…), which 

allow to exploit the force of the air to make the plane turn around one of its three main axis 

or to modify its altitude. 

All surfaces represented above allow the aircraft to do rotational or translational movements 

around a set of pre-determined axis. To modify the altitude, an aircraft exploits the lift force, 

generated by the air passing through the wings, to overcome the weight of the structure, 

people and cargo; the other translational force (directed in the main direction of the flight) is 

generated by the propulsion system, it’s called thrust and it needs to be greater than the 

drag force, which is simply the resistance of the air acting against the motion of the plane 

[8]. In the figure 1.2 taken from [8] these four forces are clearly shown. 

 

Figure 1. 2 - Forces acting on the plane 

Flight controls could be divided into two categories: primary and secondary flight controls. 
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1.2.1. Primary flight controls 

Primary flight controls are systems which could carry out rotational displacements around 

the three main body axis: the motions are called pitch, roll and yaw, and they are represented 

in figure 1.3 [8]. 

 

Figure 1. 3 - Name of the rotational displacements 

The three surfaces which could execute these manoeuvres are the ailerons (represented in 

the figure 3 in blue), the rudder (shown in red) and the elevators (the green ones). The 

movement of any of these three primary flight control surfaces varies the pressure 

distribution around and over the airfoil. During a normal flight, actuators connected with them 

are continuously powered and checked: these systems are usually full of redundancies and 

high-frequency feedback rings (force feedback is the most common used), in order to have 

always under control their functionality. Furthermore, they need to compensate the external 

disturbances, so their action is vital. 

To modify the aircraft heading and altitude, primary control surfaces generate unbalanced 

torques and forces which are able to modify aircraft position. To change plane’s heading, 

usually the pilot needs to execute a roll modifying the ailerons’ inclination. These surfaces 

are normally two, they are situated at the rear of each wing and work in opposition to each 

other: when one is raised, the other is lowered, in order to decrease the lift force on one 

wing (aileron raised) and increase it on the other (aileron lowered). They are mainly used in 

fixed-wing aircraft to turn.  

The yaw is carried out by the rudder, situated on the tail of the aircraft, precisely on the 

vertical stabilizer. Both roll and yaw allow the aircraft to change heading in the same way: 

the main difference is that the former involves the coordination of two axis whilst the latter 

only one. During the turning operation made by roll, a component of the lift is directed toward 
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the centre of rotation, so the real effect of this force decreases; this situation provokes the 

loss of altitude of the aircraft. The pilot needs to help the ailerons with the rudder, and at the 

same time he needs to raise the nose of the aircraft. To do that, two surfaces called elevators 

are installed at the end of the aircraft, on the horizontal stabilizers. The alteration of their 

angular position acts like a lifter (here is the origin of their name) and allows to increase or 

decrease the altitude of the aircraft. Furthermore, they have also a “support” purpose, 

because usually the cockpit or generally the front side of a plane is heavier than the rest: 

elevators generates a downward force on the tail which compensates this unbalanced 

situation.  

Primary flight controls could be reversible or powered. The former relies on a direct linkage 

made up by rod or steel cables between the movable surfaces and commands in the cockpit, 

hence the pilot need to act on the levers or pedals with a force able to counteract the air 

flow. The latter exploit hydraulic and electric actuation systems to compensate a great 

amount (or, in some cases, almost entire effort) of air force: they are widely used when the 

loads or the speed of the aircraft do not allow the first solution. In this last case, the pilot 

needs only to give the input signal and the command is transferred to the surfaces with a 

fly-by-wire or fly-by-light system.  

Some of the main control parts have been generally described above, but in a flight control 

system there are a lot of more surfaces which enable the pilot to have a suitable control over 

all aircraft, also during landing and take-off. Their design takes care about advanced 

aerodynamics and systems dynamics and it could sharply vary from an aircraft to another, 

depending on the purpose (commercial or military), performance requirements (maximum 

speed and payload, agility, etc.) and dimensions. These other control surfaces are the 

secondary flight controls. 

1.2.2. Secondary flight controls 

Secondary flight controls include several added surfaces to make easier and more efficient 

the control of the aircraft for the pilot. For further clearness, it’s necessary to introduce deeply 

this type of control surfaces. 

Commonly used secondary flight control surfaces are [9]: 
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➢ Flaps, which are the most common lift devices installed on an aircraft: their role is to 

induce drag and lift for any angle of attack of the wing. These surfaces are located 

alongside the wings and could be raised or retracted inside the wing’s structure 

depending on the need. There are four types of flaps, represented in figure 1.4 (in 

grey is the section of the wing, in orange the flap), taken from [9]. 

 

 

Figure 1. 4 - Main types of flaps used nowadays 

Plain flap is the oldest and the simplest between the four shown above: it changes 

the camber of the wing, generating a quick increase of the lift coefficient (usually 

represented with CL notation), and also introduces a drag component and a 

movement of the centre of pressure back towards the tail, which allow the aircraft to 

perform a pitch rotation (nose downward). 

The second type of flap is the split one: it is installed under the wing, allowing a great 

increase of the drag component due to turbulent flow of the air and a slightly lower 

increase of lift compared with the plain flap.  

Surely, the most spread and used secondary flight control surface on aircraft 

nowadays is the slotted flap, which increases the lift coefficient CL sharply and more 

than the previous two types of surfaces discussed. When this flap is lowered, a small 

conduit widens between the flap’s and wing’s edges: this opening admits the passage 

of highly-energized air, which could act on larger surfaces compared with plain and 

split flap, generating a superior lift force. Furthermore, the duct allows the increase of 

drag force reducing strongly the creation of harmful vortices.  

A particular type of slotted flap is the Fowler flap, which does not rotate on a hinge, 

but slides on tracks. This surface has the possibility to generate a very harmful 

pitching moment (nose up or down), which could be counteracted with a trim 

adjustment.  

➢ Slats are the leading-edge device located on the front side of each wing. They could 

be classified as fixed slots, movable slats, leading-edge flaps and leading-edge cuffs. 
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Figure 1. 5 - Types of slats 

 

The main aim of these surfaces is to delay stall until the wing reaches a right angle 

of attack: directing the airflow to the upper wing surface, the separation of the airflow 

is strongly retarded. Usually these devices are pilot-operated and can be used at any 

angle of attack.  

Fixed and movable slots are very similar, but formers are usually hinged and cannot 

be dismounted, latters move on tracks and could be replaced. 

Leading edge flaps are commonly used with flaps because they can counteract the 

nose-down pitching moment generated those surfaces. A small rising movement of 

leading edge flaps increases sharply the lift force applied to the aircraft; when this 

device is extended, drag component become bigger quicker than the lift.  

Leading edge cuffs increase the maximum value of the lift coefficient CL like leading 

edge flaps, but the formers are a fixed device. These surfaces could move forward 

and down the leading edge, decreasing aircraft’s stall speed (airflow could adhere 

better to the upper surface of the wing).  

➢ Other control surfaces are the spoilers, whose aim is to decrease lift and to increase 

drag force. They are located alongside the wing like the flaps, but have a different 

use: they allow the pilot to have a perfect control over the aircraft during landing. 

Special application of the spoiler could be in roll manoeuvre to counteract the adverse 

yaw torque. Deploying the entire spoiler structures permits to decrease altitude 

without gaining speed.  

With flaps, slats and spoilers, other types of secondary flight control surfaces are trim 

systems, balance tabs, ground adjustable tabs, servo and anti-servo tabs and adjustable 

stabilizers. 

An ON/OFF actuator usually powers secondary flight surfaces, and their control law does 

not require an excessively high frequency rate: a position or at least a speed control ring are 

installed. Actuators are located in the centre of the plane and the motion is transmitted to 
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the surfaces in order to achieve the best symmetry possible; only devices which could work 

asymmetrically are spoilers.  

1.3. Actuation systems 

To drive the control surfaces, usually several servomechanisms are exploited. They receive 

the input commands from the cockpit, compare them with the actual situation of the system 

(position, speed, force, torque, temperature, pressure or electrical magnitude) and 

consequently act. Actuators requirements are robustness, reliability and safety and main 

solutions are described below. 

1.3.1.  Hydromechanical actuation 

The simplest hydromechanical system is composed by a reservoir, a pump, a filter to 

maintain the fluid clean, a selector valve to control the direction of the flow, an actuator and 

a relief valve to drain the excessive pressure in the circuit. They could be classified [11]: 

➢ Position hydraulic servo-system (with or without mechanical feedback) 

➢ Speed hydraulic servo-system 

➢ Force hydraulic servo-system 

 

Figure 1. 6 - Typical hydromechanical actuator 
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An effective type of hydromechanical actuator with mechanical feedback is shown in figure 

1.6. This system is composed by a hydraulic cylinder and a proportional control valve. A 

perturbation on the three-pivot control lever xset causes the movement of the valve’s spool: 

in this way one chamber of the cylinder and a tank (or generically the supplier) are 

connected. Fluid flows in the superior chamber of the cylinder, moving downwards the 

actuator’s shaft and generating the displacement xout. This solution is reversible: changing 

the direction of the input, hence the direction of the spool motion, actuator’s shaft will move 

upwards. At the initial and final position, when the input and output variable are steady, the 

valve closes all possible holes and maintains blocked the servosystem.  

A system is really reliable if is also insensible to an eventual disturbance; for a position 

control the disturbance is represented by a force. Hence, if the shaft has to sustain a heavier 

load, the valve’s spool opens a duct and supplies the needed pressurized flow to bear it: in 

this way the system has also a disturbance rejection.  

This type of servomechanism is widely used due to its simplicity and reliability, it can be 

found on several operational aircraft such as F-15 Eagle of Boeing 737.  

1.3.2.  Electrohydraulic actuation 

Nowadays, the most used actuation system on aircraft is the electrohydraulic one. It’s very 

similar to hydromechanical, but the mechanical feedback is replaced by a fly-by-wire 

structure. Here the simple valve shown in figure 1.6 is replaced by a more complex 

servovalve: this could be flapper-nozzle type (figure 1.7) or jet pipe type (figure 1.8). 

 

Figure 1. 7 - Flapper-nozzle servovalve 
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Figure 1. 8 - Jet-pipe servovalve 

A servovalve is different from the proportional valve seen before because in this case there 

is an electrical component, called torque motor, which transmits the command instead of a 

mechanical lever. In the flapper-nozzle servovalve the torque motor induces a magnetic field 

that could rotate a “T” shaped component, bonded at the end of the long shaft to the valve’s 

spool. Hence this structure approaches a nozzle and leaves from the other: in this way the 

amount of fluid that flows from the ducts, so also the pressure, changes. In the jet-pipe 

servovalve the functioning is the same, but here the torque motor modifies the heading of 

an elastic spout from which the pressurized fluid flows [11]. 

In these two types of electrohydraulic systems there is not a direct feedback between the 

control valve and the actuator: the absolute position of the piston is surveyed by a Linear 

Variable Differential Transducer (LVDT) and sent to the control electronics.  

1.3.3. Electro-hydrostatic actuation (EHA) 

In recent years, the will to make flights cheaper and greener have driven the aerospace 

industry to develop more electrical actuation system to implement in Power-by-wire 

networks. Two examples of this philosophy are electro-hydrostatic (EHAs) and 

electromechanical actuators (EMAs). Nowadays, in civil transportation, EHAs are widely 

used by Airbus (A380/A400M/A350 mainly), while EMAs are more utilized by Boeing (B787), 

both for first and secondary control systems.   
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Electro-hydrostatic actuators [12] are a power-by-wire type of motors that execute the 

movement of the control surfaces exploiting a localized hydraulic power obtained by the 

electrical power. These actuators could be divided in several groups according to their 

difference in control modes: 

➢ Fixed Pump displacement and Variable Motor speed EHA (FPVM-EHA); 

➢ Variable Pump displacement and Fixed Motor speed EHA (VPFM-EHA); 

➢ Variable Pump displacement and Variable Motor speed EHA (VPVM-EHA). 

In this paragraph are described only the FPVM-EHA because are the most popular thanks 

to their structural simplicity and high efficiency. A typical structure is shown in figure 1.9. 

 

Figure 1. 9 - Typical FPVM-EHA simplified structure 

A servomotor controlled by electronics drives a bi-directional pump with variable speed. The 

fluid in the circuit is stored in a proper reservoir, composed by a low-pressure tank and two 

check valves able to maintain the minimum pressure required by the system. Close to 

reservoir there is a bypass valve electronically controlled and two relief valves arranged for 

safety of the system. The pressurized oil in the circuit it’s not provided by the on-board main 
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hydraulic system, but the pump takes the needed fluid from the tank. For this type of actuator 

too, the feedback ring needs a position sensor placed on the shaft.  

This is not the best structure if the aim is to decrease aircraft’s weight, but it’s very effective 

to reduce the critical issue related to a centralized hydraulic system. Furthermore, it allows 

maintenance and fuel cost savings while it assures the same precision and reliability of a 

traditional hydraulic system. The main issue of this solution is the low frequency width (about 

5 Hz) which makes EHA not suitable for military purposes.  

1.3.4. Electromechanical actuation 

Electromechanical actuation (EMA) moves aircraft design toward the philosophy of “More 

Electric Aircraft”, with great level of safety, efficiency, cost saving and a strong reduction of 

pollution.  In EMAs the hydraulic circuit is entirely replaced by mechanical solutions, usually 

reducers (both gearbox or nut-screw types), which exclude the possibility of leakages: those 

issues are often difficult to detect and hard to fix due the complexity and the scarce 

accessibility of the fluid circuit.  

A possible simplified EMA structure for aerospace purposes is represented in the figure 

below. 

 

Figure 1. 10 - Essential scheme of EMA structure 

The Actuator Control Electronics (ACE) is the main controller of the system and executes 

all calculations needed to maintain the error closest to zero; in this device arrive all the 
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feedbacks collected by the sensors. Once calculated the current state of the end-effector 

through position and speed loops, ACE sends the reference position to the Power Drive 

Electronics (PDE). PDE it’s usually composed by a three-phases inverter bridge and its goal 

is to provide the correct power flow to electric motor in order to reach the reference position. 

The motor is usually a BLDC motor (Brushless powered by Direct Current): it transforms 

electrical input into mechanical rotational output for the reducer’s gears. For this task, in 

EMAs structure motors are usually very small, to reduce overall weight, and quick. To 

increase the torque and to reduce the speed transmitted a gears reducer is used, followed 

pretty always by a ball or roller screw (figure 1.11) which are able to transform a rotary 

motion into a translational one. 

 

Figure 1. 11 - Ball screw (left) and roller screw (right) 

These devices are composed by a rolling body (spheres for the ball screw and shaped 

cylinders for the roller screw) located between the rotating shaft and a nut. The friction is 

clearly very small, the loads could be very heavy, and it has a great resistance to wear; 

however there are some issues regarding the plays. The translation of these mechanisms 

allows the movement of the end-effector: in this simple example it is represented by a flight 

control surface on which is applied an aerodynamical effort. Another important part of the 

system are sensors: they are mandatory to detect the actual state of the system (position, 

speed, torque, force etc.). 

Nowadays, electromechanical actuators are already used in military aircraft or in secondary 

flight controls; their application to primary flight control needs the improvement of some 

critical issues. Firstly, they have a very complex structure, which requires a deep study of 

kinematics and redundancy design; furthermore, to increase efficiency and avoid jam 

problems, a different BLDC motor is required for every surface, but in this way the possibility 

to cause a critical failure is increased. Another important problem is the possibility to 
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maintain a determined position after the application of a heavier load: if the motor’s speed 

is near to zero and the torque is high, all the current given to stator is dissipated by joule 

effect. This issue could be overcome with an irreversible transmission.  
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2. Brushless Motor 

Brushless Direct Current motors (also called BLDC motor or synchronous DC motors) are 

synchronous, direct current-powered and electronically-commutated actuators [14]. This 

type of motor is gaining popularity very quickly; nowadays is used in a wide range of 

applications such as automotive, aerospace, medical and industrial automation. In 

electromechanical system are the most used due to their long list of positive characteristics.  

BLDC motors, as the name suggest, do not exploit the brushes to control the current inside, 

but they are electronically controlled. This feature allows these actuators to not suffer from 

wearing and particle inclusions issues; furthermore, during the normal activity the noise is 

strongly reduced. Other advantages over the brushed DC motor are the higher dynamic 

response and efficiency, longer operating life, superior speed and better ratio between the 

torque and the weight of the system: this last characteristic made BLDC motor very suitable 

for application in which space and weight are critical issues. This type of actuator is shown 

in figure 2.1. 

 

Figure 2. 1 - Cross section of a BLDC motor 

Generally, brushless direct current motors are composed of an external stator in which is 

wounded a number of winding equal to the motor phases and an internal permanent magnet 

rotor; usually, the number of phases is three and the windings are star-connected. This type 

of actuator is synchronous, which means that the rotation frequency of the magnetic field of 

the stator and of the rotor is the same. 
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2.1. Stator 

BLDC motor stator is made out of laminated steel stacked up to carry the windings and 

traditionally it resembles that of an induction AC motor; however, the distribution and the 

position of the windings in these two motors are different. Phase windings in a stator could 

be arranged in two different ways, star pattern (Y) or delta pattern (Δ): the main difference 

between these two configurations is the phase voltage. In fact, in delta configuration the 

phase voltage is equal to the line voltage, in star configuration is equal to 1
√3

 of the line 

voltage. Hence, it’s clear that when the same voltage is applied, the delta pattern sees a 

higher current flow thus the torque (directly dependant to the current) is higher. However, in 

delta pattern all the windings must be always powered and the commutation order is 

different; for this reason, this last solution is used only in special applications. 

 

Figure 2. 2 - Δ configuration (at the right) and Y configuration (at the left) 

Steel shape of the stator can be slotted or slotless as shown in figure 2.3. A slotless core 

has lower inductance, so it can rotate at very high speeds.  Thanks to the absence of teeth 

in the lamination stack, requirements for the cogging torque also decrease, thus they are a 

suitable solution for low speeds too. The cogging torques are caused in slotted stator by the 

interactions between the stator teeth and the magnetic rotor: the difference of the air gap 

causes a variable reluctance, so it provokes ripples when the rotating speed is low. The 

main disadvantage of a slotless stator is a higher cost because it requires more copper 

winding to compensate the larger air gap. 



 
22 

 

 

Figure 2. 3 - Slotted stator (at the left) and slotless stator (at the right) 

To achieve the best motor performance the choice of the steel used for the stator is a critical 

issue: an inappropriate selection could cause problems during the normal working activity.  

2.2. Rotor 

The rotor is the rotating part of the motor and it’s made by permanent magnets, which could 

be arranged in different ways (in figure 2.4 some BLDC-motor rotor configurations are 

shown).  

 

Figure 2. 4 - Rotor magnet cross section 

If the magnets are located outside the central cylinder, the rotor is called isotropic (the first 

example on the left in figure 2.4); if the magnet are in the internal part of the central cylinder 

the rotor is called anisotropic. In both configurations, particular attention must be given to 

the attachment between the rotor and magnets: during nominal working they rotate at 
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several thousand of RPM, causing a strong centrifugal stress which could provoke the 

detachment of these two parts.  

Depending on the application requirements, the number of poles and the materials of 

magnets may vary. Increasing the number of poles-pairs of the motor it’s possible to achieve 

a smoother torque delivery, but such a system could reach lower speeds due to maximum 

frequency of current commutation provided by the electronic control. The materials of the 

rotor magnets could be different depending on the magnetic field density required. 

Historically the first permanent magnets were made by ferrite but, as technology goes 

further, rare earth alloy magnets become more important and widely used thanks to their 

higher magnetic flux density for a given volume. Furthermore, this type of magnets improves 

the size-to-weight ratio: in this way it’s possible to provide a higher torque for the same size 

motor using ferrite magnets. Typical examples of rare earth alloy for magnets are 

Neodymium (Nd), Samarium Cobalt (SmCo) and Neodymium-Ferrite-Boron (NdFeB). 

 

Figure 2. 5 - Isotropic (a) and anisotropic (b) rotors 

 

2.3. Working principle 

A brushless motor can be controlled by a square wave (brushless DC motor) or by a sine 

wave (brushless AC synchronous motor) depending on the waveform of the current provided 

by the controller and the back electromotive force trend given by the stator coil and rotor 

magnet disposition and shape. This work will focus on brushless DC motor which are the 

most used thanks to their control simplicity.  
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The torque on BLDC motors is provided by the interaction between the magnetic field 

generated by the current in the windings and the permanent magnet on the rotor. The 

highest torque is achieved ideally when this two field are at 90°: in order to keep the actuator 

rotating, the magnetic field produced by stator windings should shift from one winding to 

another, to allow the rotor field to follow it.  In a three phases motor, each commutation 

sequence has one winding powered by an incoming current, one non-energized winding 

and one from which the current goes out (positive, neutral and negative power).  

The commutation of a BLDC motor is electronically commanded, as already said. It implies 

that controller needs to know the position of the rotor to shift the power from one winding to 

another. Rotor position is obtained by sensors located all around the rotating body and they 

can catch its precise position time by time. These sensors exploit the Hall effect (they are 

also called Hall sensors): if a conductor which carries current is immersed in a magnetic 

field, this one applies a transverse force on the moving charges, generating a voltage in the 

conductor (figure 2.6). 

 

Figure 2. 6 - Hall effect 
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Most BLDC motors have three Hall sensors displaced at 120°, with 60° of resolution, 

embedded into the stator. Whenever one of the rotor poles pass near the sensor, it provides 

an electric signal positive (indicating the N pole) or negative (S pole). Combining the signals 

of the three Hall sensors the rotor position could be evaluated.  Usually, embedding the 

sensor in the stator is a very difficult task because also small angular displacement could 

cause problem to the controller: often, near the Hall sensor, a Hall sensor magnet is placed, 

which is only a scaled replica of the rotor. When the permanent magnets turn, its effect is 

replicated by this device, allowing a right acquiring campaign.  

The commutation sequence in one mechanical counterclockwise revolution is represented 

in figure 2.7. Hall sensors are indicated with H1, H2 and H3 and are displaced 120° one to 

another. In figure 2.7a, H1 and H3 see one S pole, so they provide a positive signal, while 

H2 detect a N pole. In this configuration, phase B (in red) is powered positively to attract the 

closest north pole, phase A (in black) is zero and phase C is connected to ground. When 

the north pole is approximately aligned with the phase B, sensor H3 turn off the signal, 

indicating that a shift of alimentation is needed. Hence, the controller reverses the power to 

phase A and C: at the former a current is subtracted, the latter is turned off. The next step 

(120° electrical degree) is shown in figure 2.7c, where H1 and H2 sensor provide a positive 

signal, therefore the electronic controller allows the current flow to pass in the phase C and 

turn off the phase B. In figure 2.7d is represented the situation at 180° electrical degree (the 

electrical angle is the mechanical one multiplied for the number of pole pairs), in which only 

the sensor H2 provide a tension signal, causing the shutdown of the phase A and the 

connection to the ground of the phase B (phase C remained powered positively). The cycle 

continues in the last two images (2.7e and 2.7f) in the same way described above.  
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Figure 2. 7 - Commutation sequence in a three-phases two-pole pairs BLDC motor 

 

It’s clear that this type of motor, powering only two phases each time, allows the cooling of 

the unpowered coil, but provides a smaller torque compared with sinusoidal AC induction 

motors. Furthermore, the continue commutation of the phases provokes a slight ripple in the 

speed, as shown in figure 2.8 (here, the speed error after the transient is due to the necessity 

of saturation of the controller, as discussed in next chapters).  
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Figure 2. 8 - Speed ripple in a BLDC motor with step command 

For a better explanation of the commutation sequence, in figure 2.9 is represented the three-

phase inverter which controls the commutation of the motor phases thanks to a logic circuit 

acting on six power transistors; in table 1 the status of the sensor and motor phases for 

every degree are summarized. 

 

Figure 2. 9 - Electical scheme of the static inverter 
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Table 1 - Switching sequence 

Electrical position 0<θe<60° 60°<θe<120° 120°<θe<180° 180°<θe<240° 240°<θe<300° 300°<θe<360° 

Hall sensors 
H1 1 1 1 0 0 0 
H2 0 0 1 1 1 0 
H3 1 0 0 0 1 1 

Motor phases 
A off ground ground off supply supply 
B supply supply off ground ground off 
C ground off supply supply off ground 

 

2.4. Torque and efficiency 

Torque on a BLDC motor is provided by the interactions between the stator windings and 

the rotor permanent magnets. Generically, for a coil in which the current pass through and 

immersed in a magnetic field (figure 2.10), the Lorentz law says that: 

�⃗� = 𝑖�⃗⃗�𝑥𝑙 

Where �⃗⃗� is the magnetic induction vector (expressed in Wb/m2), i is the current, and l is the 

length of the coil. 

 

Figure 2. 10 - The coil in which pass the current (in green) immersed in a magnetic field (in blue) generates a force (in 
red) 

Knowing that the motor torque could be expressed as: 

 𝐶𝑚 = 𝐹 ∙ 𝑟 (2.1) 
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where r is the radius of the rotation of the coil (in the figure represented by a black dashed 

line), substituting the expression of the Lorentz law when the angle between magnetic 

induction and the direction of the coil is 90°, we could obtain: 

 
𝐶𝑚 = 𝑖𝐵𝑙𝑟 = 𝑖

𝜙

𝐴
𝑙𝑟 

𝐴 =
2𝜋𝑟𝑙

𝑝
 

(2.2) 

 

(2.3) 

 

where 𝜙 is the intensity of the magnetic flux (expressed in [Wb]) and A the area interested 

by the magnetic flux: the rotation of the motor modifies the magnetic flux crossing each coil 

in stator windings according to Faraday’s law, so a counterelectromotive force is applied at 

each phase. To find the expression of the torque is required to combine the expressions 

(2.2) and (2.3), finding: 

 𝐶𝑚 = 𝑘𝑐𝑖 

𝑘𝑐 =
𝜙𝑝

2𝜋
 

(2.4) 

 

(2.5) 

where kc is the torque constant.  

The total torque could be calculated adding the contributions of the three phases of the 

actuator. This value is maximum when the magnetic field generated by the permanent 

magnet of the rotor and by the stator are perpendicular: the control logic tries to maintain 

the phases closest to π/2.  

Using the expressions listed above, the torque could be simply expressed as a function of 

speed. Knowing that a BLDC motor could be modelled with: 

 𝑉𝑚 = 𝑅𝑖 + 𝑘𝑐𝜔 (2.6) 

 

isolating the current and remembering the equation (2.4), the torque is: 

 
𝐶𝑚 = 𝑘𝑐𝑖 =

𝑉𝑚𝑘𝑐
𝑅

−
𝑘𝑐
2

𝑅
𝜔 (2.7) 
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In the same way, we could also express the power of the actuator as: 

 
𝑃𝑜𝑢𝑡 = 𝐶𝑚𝜔 =

𝑉𝑚𝑘𝑐
𝑅

𝜔 −
𝑘𝑐
2

𝑅
𝜔2 (2.8) 

 

It’s important to underline the speed dependency from the torque and the power: the former 

is a linear function, the latter is a parabola. These two relations could be represented in a 

graph (figure 2.11). 

 

Figure 2. 11 - Torque and power trend in a BLDC motor 

During nominal operations, the motor can be loaded up to the rated torque (this value is 

reported in the motor’s datasheet). Up to the rated speed, the torque in a BLDC motor 

remains steady. Once arrived at the rated speed, this one could be further increased until 

the 150% of the nominal speed, but the torque drops down. In applications which require 

frequent start-and-stop operations, there is the necessity of a torque superior to the rated 

one (frictions and inertia must be overwhelmed). The actuator can provide a higher torque 

for a brief period, but the rotational speed is low, and the dissipations become very important. 

In fact, in the graph it’s possible to see that the maximum power is obtainable at the rated 
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speed with the rated torque; every other position in the graph implies a reduction of the 

available power due to dissipations.  

Efficiency of the system is defined as the ratio between the output power and the provided 

power. The friction and viscous effect are neglected in this explanation because are small 

compared with the Joule effect dissipations. Hence: 

 
𝜂 =

𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

 (2.9) 

Knowing the expression of the 𝑃𝑖𝑛, it’s possible to write that: 

 𝑃𝑖𝑛 = 𝑉𝑖 

 

𝜂 =
𝐶𝑚𝜔

𝑉𝑖
=
𝑘𝑐𝜔

𝑉
 

(2.10) 

 

(2.11) 

 

 

2.5. Control 

The comprehension of the main features of a BLDC motor allow the description of its control, 

which ensure reliable and safe operations. There are several different control modes, 

depending mainly on the purpose of the application.  

The most used is the speed control, employed in systems which receive an on/off command 

such hydraulic valves or reservoir or compressors. In BLDC motor speed control, the actual 

speed is compared with the commanded one and the error is sent a P.I.D. controller 

(Proportional – Integrative – Derivative). This device calculates if the error lays inside a two-

line limit zone, which represent the acceptable error of the system. If the speed is higher 

than the upper limit or lower than the lower limit, the control logic gives a step command to 

the motor to accelerate. This acceleration is achieved modifying the voltage which powers 

the actuator: usually a constant DC voltage is source is available. When the Pulse Width 

Modulation (PWM) signal is 1, the motor is forced to accelerate due to the positive voltage, 

when the duty cycle is 0 the applied voltage is 0. The frequency of the PWM signal is 

proportional to the analogic signal wanted. A simple example of this method is shown in 

figure 2.12. 
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Figure 2. 12 - PWM control logic 

The speed is evaluated using the signals of the Hall sensor or an encoder located properly 

on the moving shaft. The frequency of the PWM signal is given by the P.I.D. controller 

proportionally to the trend of the error: if this one is high, the signal will be 1 for a longer time 

than the case in which the error is small. A block diagram of a speed control loop is 

represented in figure 2.13. 

 

Figure 2. 13 - Block diagram for a speed control loop 
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Another type of control loop is the torque control, which allows the actuator to have always 

the same output torque regardless the external load, the position or the speed. It’s already 

been said in paragraph 2.4. that the torque depends on the magnetic flux on the phase 

windings, but it also depends on the current through the torque constant kc. Hence, it’s 

possible to control the torque modifying the current which flows in the phase windings. This 

control is widely used also as inner loop in system controlled by a speed loop logic. The 

block diagram for this type of control is shown in figure 2.14. 

 

Figure 2. 14 - Block diagram for a torque control loop 

In a motor control design, it’s important to take care of the safety and reliability of the 

actuator: in order to do this, motor protection control logic has been developed. A simple 

example could be the rotor stuck: in this case the current increases strongly, overheating 

the windings and possibly burning the power electronic devices driving the motor. This 

system takes care about: 

➢ Peak current: the maximum instantaneous current allowed to flow in phase windings. 

This condition may occur when the windings cause a short circuit: in this case the 

control turn off the PWM signal in order to interrupt the power to the windings; 

➢ Maximum working current: the extreme value of the output current when the motor 

needs to bear an overload. The implementation of this logic is similar to a torque 

control; 
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➢ Under voltage: If the system is powered with battery, it’s important to turn off the 

actuator when the voltage drop off a lower limit; 

➢ Hall sensor failure: position and speed are determined using the signals provided by 

Hall sensors. If one of these devices break down, the commutation sequence will 

interrupt, and it can cause the rotor gets stuck or the growing of too high currents. 

The sensor failure could be detached via firmware, which controls if the logic of the 

sensor changes during the normal working activities.  
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3. Electro-mechanical actuator models 

The aim of this work is to simply detect some types of progressive fault affecting electro-

mechanical actuators, in order to make maintenance planning more efficient and the 

reliability of the system higher. To simulate the real behaviour of an EMA a reference model 

has been developed in Simulink environment. This is a high-fidelity model which provides 

the working outputs such as position, speed and absorbed current coming from the normal 

activities of the actuator. Once obtained these values, a simplified EMA monitor model 

needs to detect as best as it can the faults which have been introduced in the reference 

model. Below there is a deeper description of these two actuator models. 

3.1. Reference model 

The aim of the reference model, as already said, is to simulate the real working behaviour 

of an electromechanical system, avoiding the necessity to have a real and expensive test 

bench. This model is developed and implemented in a Matlab-Simulink environment and 

represents a flap control, which has a dynamic response in an intermediate range between 

a primary and a secondary flight control.  

This model simulates the first 0.5 seconds of the behaviour of the electromechanical system. 

The simulation is very complex and computationally expensive, so a Euler first-order fixed-

step resolution method, which is the simplest and most controllable possible, is employed. 

The time step between an evaluation and the next is set at 1∙10-6 s, at least two order less 

than every system in the model, in order to take care about the dynamics of all devices. It’s 

impossible to use second order methods as Runge-Kutta or Dormand-Price, because during 

the simulation they will interpolate data during the recursive evaluation of the error, causing 

the non-linearity of the convergence of the problem. 

The main features and parameters of the reference model are listed in table 2 below. 
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Table 2 - Main parameters of the EMA system 

Parameter Symbol Value Measure Unit 
Error proportional gain 𝐺𝑝𝑟𝑜𝑝 105 - 

PID controller: proportional gain GAP 0.05 
𝑁𝑚𝑠

𝑟𝑎𝑑
 

PID controller: integrative gain GAI 0 
𝑁𝑚

𝑟𝑎𝑑
 

PID controller: derivative gain GAD 0 𝑁𝑚𝑠2

𝑟𝑎𝑑
 

Maximum power supply voltage 𝑉𝑚𝑎𝑥 48 V 

Maximum current 𝐼𝑚𝑎𝑥  22.5 A 

Maximum motor torque 𝑇𝑚,𝑚𝑎𝑥 1.689 Nm 

Torque constant 𝑘𝑡 0.0752 
𝑁𝑚

𝐴
 

Back-EMF constant 𝑘𝑒 0.0752 
𝑉𝑠

𝑟𝑎𝑑
 

Phase-to-phase resistance 𝑅𝑠 2.13 Ω 

Phase-to-phase inductance 𝐿𝑠 7.2∙10-4 𝐻 

RL time constant of BLDC motor 𝜏𝑅𝐿𝑠 
𝑅𝑠
𝐿𝑠

 𝑠 

Polar expansions per phase 2P 4  

Number of polepairs per phase P 2  

Current hysteresis band width hb 0.5 A 

Inertial Torque of the motor 𝐽𝑚 1.3∙10-5 𝑘𝑔 ∙ 𝑚2 

Viscous damping coefficient of the motor 𝐶𝑚 30

π
∙ 10−6 

𝑁𝑚𝑠

𝑟𝑎𝑑
 

Inertial Torque of the user 𝐽𝑢 1.2∙10-5 𝑘𝑔 ∙ 𝑚2 

Viscous damping coefficient of the user 𝐶𝑢 4.5∙10-7 
𝑁𝑚𝑠

𝑟𝑎𝑑
 

Static friction torque of the motor 𝑓𝑠𝑚 0.06∙𝑇𝑚,𝑚𝑎𝑥 Nm 

Dynamic friction torque of the motor 𝑓𝑑𝑚 𝑓𝑠𝑚
2

 Nm 

Static friction torque of the user 𝑓𝑠𝑢 0.04∙𝑇𝑚,𝑚𝑎𝑥 Nm 

Dynamic friction torque of the user 𝑓𝑑𝑢 𝑓𝑠𝑢
2

 Nm 

Nominal backlash BLK 5∙10-3 rad 
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Schematically, the reference model is divided into four main blocks, as shown in figure 3.1. 

 

Figure 3. 1 - Reference model 

Com block represent the command given to the actuator; the output signal is an angle and 

it’s sent to BLDC Motor Controller Model. It compares the commanded signal with the speed 

and position feedbacks (DThM and ThM) and provide the reference current to give to the 

BLDC motor. This parameter enters in the BLDC motor electromechanical model, which 

evaluates the torque developed by the actuator. The BLDC Dynamic Model, comparing the 

torque of the motor and the resistant torque of the system is able to calculate the actual 

speed and position of the rotor, in order to close the two control rings. Speed, position and 

a lot of intermediate parameters are also sent to Matlab workspace, to make the post-

processing activities easier. In the next paragraphs all blocks are deeply described and 

commented.  

3.1.1. Com block 

 

Figure 3. 2 - Com block 
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From the Com block, is possible to set the type of command given to the system. User could 

choose a step, ramp, sine wave, chirp command or a custom time history. The parameters 

named “Com” followed by a number are used to select from the Matlab workspace the 

command; their amplitudes are set from a Simulink’s dialogue window. It’s important to 

underline that the chirp command could be obtained in two different ways, selectable from 

the small green square close to the command square: one uses the parameters coming 

from the Simulink’s dialogue window, the other employs a handmade function which 

decreases from 1 to 0. 

 

Figure 3. 3 - Chirp command in the Com block 

3.1.2. BLDC Motor Controller Model block 

 

Figure 3. 4 - BLDC Motor Control Model block 

This block allows the control of the entire EMA system. It compares the position command 

and the position feedback, providing the position error; this is suitably transformed in a speed 

signal by the Gprop block and then limited by a saturation block, which maximum and 

minimum values are equal to ±8000 rpm. The reference speed is subsequently compared 
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with the feedback one and the error is sent into the PID controller: here the input signal is 

transformed in a reference torque. The division for the torque constant allows to find the 

reference current: this parameter needs to be saturated at the maximum current (22.5 A) to 

avoid breakages or faulty conditions of the motor. It’s important to highlight that the reference 

current is a parameter which have only a control meaning, and it’s not related with the real 

current in the stator coils. Before the real calculation of the reference current is possible to 

add a white-noise disturbance block, which generates normally distributed random numbers 

that are suitable for use in continuous or hybrid systems. These number are obviously 

multiplied by 10-6 in order to make the two signals comparable. In our work, the noise gain 

(Knoise) is set to 0, because is proved that its effect on the system is negligible.  

3.1.3. BLDC Motor ElectroMechanical Model block 

 

Figure 3. 5 - BLDC Motor Electromechanical Model block 

This subsystem is maybe the most complex of the reference model because it takes care 

about a lot of phenomena acting on the EMA. Its aims are mainly to distribute the reference 

current calculated by the control electronics on the three phases of the motor depending on 
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the actual current of each phase and to evaluate the motor torque. This block is composed 

by several subsystems: 

➢ Reference current subsystem has as input the reference current previously evaluated 

and the actual position of the rotor. In this block are evaluated the three phase 

currents, using a lookup table block to model the three functions of the phases (as 

shown in figure 3.6). 

 

Figure 3. 6 - Evaluating of the three phase currents 

The rotor angle is split in three different functions (which values could be only 1, 0 

and -1), which take care about the characteristics of the trapezoidal BLDC motor: one 

phase is powered positively (current in, signal 1), another is turned off (signal 0) and 

the third is powered negatively (current out, signal -1). These signals are then 

multiplied by the value of reference current to obtain the time trend of three phase 

currents.  

➢ The PWM block (represented in figure 3.7) receives as input the three-phase 

reference currents just evaluated and compares every row with the actual current 

circulating in the stator windings. If the difference is a value greater or lower than a 

hysteretic value, set as hb=0.5 A, the output is a Boolean positive value (qa, qb or qc). 

This signal is useful for the motor control. 

➢ In the Inverter block (figure 3.8) every Boolean signal coming from PWM block is 

negated and then the six signals are sent to a H-bridge with six power transistors 

controlled by the electronics of the system. It’s important to highlight that the H-bridge 
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provides as output the time-trend of the voltages of three phases of the motor, which 

will be used later to calculate the effective phase currents.  

 

Figure 3. 7 - PWM block 

  

 

Figure 3. 8 - Inverter block 

 

➢ Exploiting the rotor angular position for the three phases, into the Normalized F_CEM 

block (figure 3.9) the counter-electromotive force is evaluated. It’s possible to write: 

 𝐹𝑐𝑒𝑚 = 𝑘𝑓𝑐𝑒𝑚 ∙ 𝜔𝑚 

 

(3.1) 
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𝐹𝑛𝑓𝑐𝑒𝑚 = 𝑘𝑓𝑐𝑒𝑚 =
𝐹𝑐𝑒𝑚
𝜔𝑚

  

(3.2) 

where 𝐹𝑛𝑓𝑐𝑒𝑚 is the normalized counter-electromotive force. For a system with a 

number of pole-pairs greater than one, the evaluation of the 𝑘𝑓𝑐𝑒𝑚 is strictly 

dependent from the rotor angle: 

 
𝑘𝑓𝑐𝑒𝑚 = 𝑘𝑒(𝜃𝑚) ∙ (1 + 𝜁 cos (𝜃𝑚 +

2 ∙ (𝑖 − 1)

3
𝜋)) 

(3.3) 

 

where 𝑘𝑒(𝜃𝑚) is the trapezoidal wave-shaped normalized counter-electromotive force 

of the i-th phase of the non-faulty motor and 𝜁 = 𝑥0

𝑔0
 is the ratio between the 

misalignment of rotor and stator axis (𝑥0) and the nominal value of the gap between 

rotor and stator.  

 

 

Figure 3. 9 - The evaluation of the normalized CEMF for the three motor phases 

 

These equations allow to implement two possible faulty conditions of the motor: the 

eccentricity of the motor and the possible overheat, which could modify the value of 

the normalized CEMF. 

The outputs of this block are then multiplied for the angular speed of the actuator 

according to equation (3.1) in order to find the real counter-electromotive force of 

each phase, as shown in figure 3.10. These parameters are useful to calculate the 

effective phase current and the torque generated by the motor. 
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Figure 3. 10 - The product between the speed and the normalized CEMF 

 

➢ The Phase current calculation block receives as inputs the phase voltages and the 

counter-electromotive forces to find the effective phase currents. 

 

 

Figure 3. 11 - Phase current calculation subsystem 
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This subsystem is a multi-domain because Simulink was not able to manage the 

portion of the model which describes the physics of the stator circuit. Indeed, the 

stator phases could be described as three solenoids linked in star-pattern with floating 

centre: this configuration is not conceived by Simulink, which could only design 

symmetric star-pattern circuits. The voltage in the star centre is simply evaluated as 

the average of the voltages on the three branches, but with the introduction of 

possible overheat, overcurrent and eccentricity conditions this calculation is not right 

anymore. Hence, on the left of the figure 3.11, it’s possible to notice a SIM Power 

System (it is a Simulink tool) configuration, which takes care about the real behaviour 

of the stator windings and about the counter-electromotive force previously 

calculated. In this way, the Simulink model is able to evaluate time by time the current 

circulating in the windings and find the tension on the star centre (highlighted in the 

figure 3.11 with a thick red square).  

In the upper part of the subsystem, phase currents are suitably processed in order to 

obtain a parameter usable in the simplified monitor model, called I3 equiv, which has 

the same sign of the torque acting on the rotor and it is the equivalent single-phase 

current. 

➢ The last subsystem of BLDC Motor Electromechanical Model is the Torque 

computation block. 

 

Figure 3. 12 - Torque computation block 
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In this block the torque is not calculated with the equation (3.4) displayed below, 

because when the motor stops, the torque should diverge to infinite.  

 
𝑇𝑚 =

𝑃

𝜔𝑚
 (3.4) 

From literature, is known that the torque could be also calculated with: 

 
𝑇𝑚 =∑𝐹𝑛𝑓𝑐𝑒𝑚𝑖

∙ 𝐼𝑖

3

𝑖=1

 
(3.5) 

where 𝐼𝑖 is the current of the i-th phase. In this subsystem is also necessary the 

saturation block, to avoid the possibility of a torque superior than the maximum 

admitted by the structure of the motor.  

3.1.4. BLDC Motor Dynamic Model block 

In this block is computed the dynamic of the actuator using a mechanical device: in our case 

is a nut-screw system which moves the end-effector surface.  

 

Figure 3. 13 - Dynamic subsystem 
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As shown in figure 3.13, the motor and the resistant torques are the input of a second order 

dynamic system, which provides as outputs the position and the speed of the user. These 

parameters are then manipulated to achieve the angular position of the rotor and of the 

motor, the real position of the user which takes care about the backlash of the nut-screw 

system and the speed of the motor.  

The second order system is represented in figure 3.14. 

 

Figure 3. 14 - Second order dynamic model 

The actual value of the net driving torque T_Act (calculated as the algebraic sum of the 

motor torque TM, resistant torque TR and friction torque) is then processed by a control 

subsystem apt to simulate the effect of the SM mechanical hard-stops. Subsequently, it is 

divided by total inertia (which is the sum of the motor and user inertias) and subsequently is 

twice integrated to find speed and position. Once reached the SM physical limit (i.e. its 

mechanical end-strokes), the system sets the output position to 0, but needs to stop to iterate 

the speed and the torque: from the second integrator (now in the saturation condition) it is 

possible to notice that an arrow come back to a saturation port located in the control block 

(shown in figure 3.15 below). 
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Figure 3. 15 - Limit-control block 

The saturation port simulates the three conditions detachable in a mechanical system:  

➢ the end-effector is not at one of its limits; 

➢ the end effector is at one of its limits and it is applying a force directed toward the 

limit; 

➢ the end effector is at one of its limits and it is applying a force directed opposite the 

limit. 

The values of the saturation port could be 0 if the end-effector is not at its limit and ±1 

depending on the limit reached. If the product between the saturation port and the sign of 

the active theoretic force (it does not take care about the limit) is greater than 0.5 (it could 

be only 1, 0 or -1), the acceleration is 0. If the saturation port is 0 (limit not reached yet), the 

theoretic force pass through the switch and becomes the real torque needed.  

Concerning the first integrator, which stops the calculation if receives as external reset a 

rising number, is controlled by an OR block. It takes care about the conditions: 

1. The end-effector is at one of its limits, so the saturation port returns a value equal to 

±1. With the absolute-value block, the integrator will see a 0→1 commutation and will 

stop its work; 

2. When the speed is close to 0 due to the friction, the Simulink model is not able to 

evaluate time by time the sign of the force, so the Stribeck effect could take place. In 

this case, the mass which should stop is moving in the opposite direction due to 

friction force, which acts as an active strength. This is a physics absurd, so a reset of 
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the first integration is required when the speed decreases more than a pre-fixed 

value. 

Also the Borello Friction Model block (represented in figure 3.16), like the limit-control block, 

exploits a switch to pass from two conditions: in this case are the static and the dynamic 

friction conditions. During the evaluation of the speed, the middle purple line with the hit 

crossing block verifies if the speed maintains the same sign between two consequent 

instants. If this condition is true, the total friction is evaluated with the red part of the 

subsystem, which represents the dynamic friction; else the blue lines, which correspond of 

the static friction condition, are used. The static friction can be found relating to the motive 

force: until the body is still, the friction and the motive force are the same. When the first 

separation takes place, the value of the static friction force has been determined and 

remains constant. A deeper mathematical discussion is reported at chapter 4.2. 

 

Figure 3. 16 - Borello Friction Model 
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3.2. Monitor Model 

 

Figure 3. 17 - Monitor model developed in Simulink enviroment 

A simplified monitor model is required to approximate as best possible the high-fidelity one, 

in order to be used for monitoring tasks. The aim is to use this Simulink file to detect the 

state of a real actuator compiling time by time the error between the currents required by 

the windings. The aforementioned reference model, into the Phase current calculation 

subsystem, evaluate the equivalent current I3equiv for an equivalent single-phase actuator: 

this parameter is then compared with the current of the monitor model, because it simulates 

the behaviour of a single-phase actuator. In this way it is possible to relate the real actuator’s 

parameters with the monitor ones, finding the fault issues.  

It’s composed by some parts, deepened below. 
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3.2.1. Controller subsystem 

 

Figure 3. 18 - Controller subsystem of the monitor model 

This subsystem receives as inputs the command given to the actuator (Com), the actual 

position (ThM) and the speed feedback (DThM). After the comparison between the 

commanded and the real position of the motor, with the GAPm1 gain (set as 105) the signal 

is transformed in a speed and enters in a saturation block, which limits this value between 

its maximum and minimum. Once the reference speed is compared with the actual one, with 

a GAPm2 gain -which substitutes a PID controller- and the division for the torque constant, 

it’s possible to obtain the reference current. It’s important to underline the strong similarity 

with the BLDC Motor controller block of the reference model: the only difference is that here 

the noise is not complained.  

3.2.2. Electromechanical model 

 

Figure 3. 19 – Schematic of the numerical algorithm implementing the simplified BLDC motor electromechanical model 
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In the monitor model, the transformation between reference current and reference torque 

executed by the actuator, is modelled with a simple structure into the main Simulink system.  

The motor modelled is an equivalent single-phase in which the tension could only be up or 

down (if up, it can be positive or negative, depending on the rotation direction). The control 

is current feedback-based: the error between the two electric parameters is sent into a sign 

block, which identifies if the actuator requires a positive (output equal to 1), negative (output 

equal to -1) or neutral (output equal to 0) tension. To obtain the effective tension acting on 

the motor rotor, the output value is multiplied for the nominal inverter tension value (48 V) 

and then cleaned by that part dissipated due to faulty conditions: the main causes of power 

loss are the short-circuit of the stator windings and rotor eccentricity.  

The effective tension is the input of the motor, represented by the first order transfer function: 

 
𝑇𝐹 =

1
𝑅𝑚

𝜏𝑅𝐿𝑚 + 1
 (3.6) 

 

where 𝑅𝑚 is the resistance of the windings expressed in [Ω] and 𝜏𝑅𝐿𝑚 is the ratio between 

𝑅𝑚 and the inductance 𝐿𝑚, representing the time constant of the system. The output current 

takes care again of the short-circuit with a division for the percentage of the non-faulty coils 

because the absorbed current, if 𝑅𝑚 and 𝐿𝑚 decrease after a small winding short-circuit, 

must be greater than the nominal condition. The torque of the monitor model is subsequently 

obtained after the multiplication for the torque gain (GM=0.07322 𝑁𝑚
𝐴

) and the limitation 

between the maximum and the minimum value with the saturation block.  
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3.2.3. Mechanical part 

 

Figure 3. 20 - Mechanical section of the monitor model 

The mechanical part of the model does not require any further explanation because is the 

same of the high-fidelity model.  
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4. Faults analysis and their implementation 

In next paragraphs, after a brief introduction to the main types of progressive failures 

affecting EMAs, all faults considered are deeply discussed and their consequences to the 

system analysed. The dynamic response of faulty motor is described for a step and a chirp 

command: the first represents the open-loop response of the system, the second simulates 

the behaviour of the actuator in closed-loop (there are a lot of direction changes and the 

feedback becomes very important). The features of these two commands are summarized 

in the table below: 

Table 3 - Step and chirp command features 

Step command 
Initial amplitude 0 rad 
Final amplitude 1 rad 
Application time 0.01 s 

Chirp command 
Initial amplitude 0.005 rad 
Initial frequency 0 Hz 
Final frequency 15 Hz 

4.1. Introduction to faults 

The precise definition of fault has been made by Isermann and Ballè [19]: “A fault is an 

unpermitted deviation of at least one characteristic property or parameter of the system from 

the acceptable/usual/ standard condition”. Depending on the seriousness of the fault impact, 

the system could be affected by a small reduction in efficiency to an overall failure.   

Concerning the description of the fault modes on electromechanical actuators, the main 

issue is the lack of reliable statistic data, because the study of their behaviour in aerospace 

purposes is relatively new and not large enough to accumulate adequate informations. 

A great number of aircraft used for the transportation still employs hydraulic actuation for 

primary and secondary flight controls, leaving to EMAs less important tasks, such as trim 

tabs actuation and speed break deployment. However, some recently-designed aircraft like 

Boeing 787 and Airbus 380 exploits EMAs in roles traditionally assigned to hydraulic or 

hydrostatic commands. In military field the situation is similar, but there are strong efforts to 

deploy electromechanical actuators in utility roles, such as landing gears, aerial refuelling 

doors and weapon bay doors. Concerning space vehicles, only few electromechanical 

actuators are used for small tasks such the motion of little robotic arms or the calibration of 
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the antennas position. Hence, it’s important to study their response when they are affected 

by some types of faults, in order to maintain pre-determined levels of reliability and safety of 

the system. 

Faults in EMAs are categorized into four groups, according to their location of occurrence in 

the system: 

➢ Mechanical or structural faults are the main issue in electromechanical actuators. 

They are mainly caused by excessive loads, lubrification problems, unfriendly 

environmental condition and manufacturing defects. They mostly affect gear reducers 

and transmission.  

➢ Motor faults are the next most important category of EMA faults. The high rotational 

rates at which a motor could rotate, may cause a temperature increasing leading to 

mechanical stress due to materials expansion. The main faults are windings short-

circuit and rotor shaft eccentricity. In this work connection faults like cut or burned 

wiring and the presence of a foreign body in the actuator are not considered.  

➢ Electrical/Electronic faults in the power and control systems are similar to the same 

type of faults in other aerospace systems. The main causes of their appearance are 

overheating, overcurrents, particle contamination responsible to short-circuit, 

vibrations and wear. 

➢ Sensor faults could provoke the incorrect signal measurement, causing errors during 

the evaluation of the control law. Sensor faults could be also divided in total and 

partial: former type provides some informations not correlated with the physical value 

they are monitoring (e.g. lost contact with the surface or between wires), latter type 

produces signals still cleanable to obtain reliable data. The most widespread sensor 

faults are bias, scaling, drift, noise and intermittent dropout.  

In tables below, are summarized the main fault modes described above with the relative 

probability and criticality depending on the component considered.  

Table 4 - Mechanical and structural fault modes 

Component Fault Failure 
Relative 
probability (1-
10, low to high) 

Relative 
criticality (1-10, 
low to high) 

Screw  Spalling Severe vibrations, metal 
flakes separating 5 3 

Wear/backlash Severe backlash 7 3 

Nut  Spalling (mild) Severe vibrations, metal 
flakes separating 5 3 
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Backlash Severe backlash 7 3 
Degraded operation Seizure/disintegration 3 5 

Nut Binding/sticking Seizure/disintegration 3 3 
Bent/dented/warped Seizure/disintegration 1 5 

Ball returns Jam Seizure/disintegration 5 8 

Bearings 

Spalling Severe vibrations, metal 
flakes separating 5 3 

Binding/sticking Seizure/disintegration 2 4 

Corroded 
Severe vibrations, metal 
flakes separating, 
seizure/disintegration 

2 5 

Backlash Severe backlash, 
vibrations, disintegration 7 3 

Piston Crak(s), slop/play Structural failure 1 10 

Dynamic seals Wear  Structural failure 4 6 
Structural failure Structural failure 3 8 

Static seals Structural failure Structural failure 2 8 

Balls Spalling/deformation Severe vibrations, metal 
flakes separating  5 3 

Excessive wear Backlash 7 5 
Mountings Crack(s), slop/play Complete failure 1 7 

Lubricant 
Contamination Seizure/disintegration 8 5 
Chemical breakdown Seizure/disintegration 4 5 
Run-dry Seizure/disintegration 3 10 

 

Table 5 - Motor fault modes 

Component Fault Failure 
Relative 
probability (1-
10, low to high) 

Relative 
criticality (1-10, 
low to high) 

Connectors 
Degraded operation 
(increase of resistance) Disconnect 5 6 

Intermittent contact Disconnect 3 7 

Stator 

Stator coil fails open 
(results in degraded 
EMA performance) 

Opening failure 4 4 

Insulation 
deterioration/wire 
chafing (reduced or 
intermittent current 
through stator coil or 
intermittent short 

Short-circuit 5 5 

Resolver 

Coil fails open (can 
result in inaccurate 
position reports) 

Opening failure 4 10 

Intermittent coil failures Permanent coil 
failure 5 7 

Insulation 
deterioration/wire 
chafing 

Short-circuit 5 7 

Rotor and 
magnets 

Rotor-magnets chemical 
bond deterioration 

Complete magnet 
separation, likely 
leading to motor 
failure 

2 10 

Rotor eccentricity Bearing support 
failure  3 6 
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Table 6 - Electrical/Electronic faults 

Component Fault Failure 
Relative 
probability (1-
10, low to high) 

Relative 
criticality (1-10, 
low to high) 

Power supply 

Short-circuit Short-circuit 5 10 
Open circuit Open circuit 5 10 

Intermittent performance Short-circuit or open 
circuit 5 8 

Thermal runaway 

Dielectric breakdown 
of components, 
leading to open or 
short-circuit 

6 10 

Controller 
capacitors Dielectric breakdown Short-circuit or open 

circuit 4 8 

Controller 
transistors Dielectric breakdown Short-circuit or open 

circuit 4 8 

Wiring 

Short-circuit Short-circuit 5 10 
Open circuit Open circuit 5 10 
Insulation 
deterioration/wire 
chafing 

Short-circuit or open 
circuit 5 8 

Solder joints Intermittent contact Disconnect 5 8 
 

Concerning the implementation in a model, faults could be classified as additive or 

multiplicative, as depicted in figure 4.1 taken from [19]. Normally, additive faults describe 

better components’ breakout, while actuator and sensor faults are best represented by a 

multiplicative action. 

 

Figure 4. 1 - Additive and multiplicative fault 

Furthermore, another important classification of faults could be made due to the type of 

appearance:  

➢ Abrupt faults, which could have the most severe consequences, appear 

instantaneously without any pre-alert signal. If they affect the control or motor 

components, it could be very harmful; 

➢ Incipient faults provoke slow changes in dynamic response’s characteristic and they 

are less dangerous than the previous ones; 

➢ Intermittent faults appear and disappear during normal life cycle and may be caused 

by partially-damaged components.  
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A possible example of their time trend is shown in figure 4.2 (taken from [19]). 

 

Figure 4. 2 - Different types of faults 

 

 

4.2. Dry Friction 

4.2.1. Description 

The dry friction acting between mechanical components in relative motion can be 

schematically described as a dissipative force which opposes the motion and which varies 

according to the physical characteristics of the considered system (materials, type of 

connection, lubrications, etc) and to the forces exchanged between its moving parts. If 

friction fault is neglected, a jamming or break-down events could possibly take place on the 

actuator, with catastrophic consequences. During normal working activities, the Coulomb 

friction -employed in this model- states that in standstill conditions the friction force is lower 

or equal (in module) to the static friction value and that, otherwise, the force module has a 

constant value equal to the dynamic friction value. 

4.2.2. Implementation 

As aforesaid, in the Borello block described in chapter 3.1.4. and used in this work, a linear 

Coulomb friction has been developed and implemented. The nature of this phenomenon 

does not allow an entirely linear description, but the complexity of a non-linear model and 

the consequent long computational time suggests the utilization of numerical method in the 

time domain; howsoever, these numerical solutions are affected by shortcomings due to 

math models. The Borello friction model block [17]: 
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➢ Selects the correct sign for the friction torque identifying the direction of rotation; 

➢ Evaluates the torque taking care about the load acting on the mechanical part; 

➢ Selects the static condition or the dynamic one depending on the load; 

➢ Verifies the undesired stop of the mechanical element; 

➢ Calculates the eventual break away of the previously standstill mechanical element; 

➢ Is able to simulate the dynamic of both reversible or irreversible actuators. 

The corresponding mathematical model is entirely equal to the Coulomb one: 

where 𝐹𝑓 is the evaluated friction force, 𝐹𝑎𝑐𝑡 is the active force applied to the system, 𝐹𝑠𝑗 the 

friction force in stick condition and 𝐹𝑑𝑗 the friction force in dynamic conditions. 

4.2.3. Dynamic Response to a step command 

Introducing in the reference model the friction fault, clearly the position, speed and 

equivalent current trends change. In figures from 4.3 to 4.5 these trends are depicted for the 

nominal conditions and for a friction fault growing from 1 to 3 times the nominal behaviour. 

 

Figure 4. 3 - User position for a step command with a friction fault from 1 to 3 times the nominal conditions 

 
𝐹𝑓 = {

𝐹𝑎𝑐𝑡,                                              �̇� = 0 ∩ |𝐹𝑎𝑐𝑡| ≤ 𝐹𝑠𝑗    

𝐹𝑑𝑗 ∙ 𝑠𝑖𝑔𝑛(𝐹𝑎𝑐𝑡),                        �̇� = 0 ∩ |𝐹𝑎𝑐𝑡| > 𝐹𝑠𝑗    

𝐹𝑑𝑗 ∙ 𝑠𝑖𝑔𝑛(�̇�),                             �̇� ≠ 0                              

 
(4.1) 
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Figure 4. 4 – Motor speed for a step command with a friction fault from 1 to 3 times the nominal conditions 

 

Figure 4. 5 – Equivalent single-phase current for a step command with a friction fault from 1 to 3 times the nominal 
conditions 

 

The step command creates an open-loop situation, in which the controller is saturated and 

the error between set and feedback is null. Increasing the value of the friction from 1 to 3 

times the nominal condition, it’s possible to see in the box in figure 4.3 that the user position 
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increases more slowly, because the motor has a higher resistant torque to overcome and 

because the dynamic friction coefficient (which is half of the static one) becomes higher. For 

this reason, also the maximum speed reachable by the motor decreases and the time 

constant of the equivalent first-order model increases if the friction grows up. The equivalent 

single-phase current reflects also that fact: the motor needs to be powered stronger to reach 

and maintain the maximum rotational speed. It’s clear that this condition is undesirable, 

because the power loss by Joule effect are very important and the temperature may cause 

problems of material expansion and then of jamming.  

In figure 4.6 below, it’s possible to observe a comparison between the absorbed equivalent 

current in the reference and in the monitor models for the Nominal Friction condition (NF) 

and for a double value of friction. Even if the reference and monitor trends look pretty equal, 

a deeper inspection carried out by the box in the figure suggests that there is a little deviation 

between the two curves, with a percentual error from 2% to 12%. This fact is due to the 

calibration made for the optimization algorithms: only for the chirp command these two 

trends are very stackable. In next chapters, reliability of the monitor model is evaluated only 

for the chirp command for the reason just explained. 

 

 

Figure 4. 6 - Current absorbed by the motor in the reference and the monitor models 
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4.2.4. Dynamic Response to a chirp command 

For the chirp command is plotted the effect of the friction too: in this case a closed-loop 

situation is simulated, because the inversion of the sense of rotation requires to analyse the 

error between the set command and the feedback coming from sensors.  

 

Figure 4. 7 - User position for a chirp command with a friction fault from 1 to 3 times the nominal conditions 

 

Figure 4. 8 - Motor speed for a chirp command with a friction fault from 1 to 3 times the nominal conditions 



 
62 

 

As it’s possible to see in figure 4.7, the user position is not affected by the friction fault, 

because the absolute displacement is very small, and the current could deliver the power 

needed. There is obviously a difference between the commanded position and the real one: 

the delay is due to the controller evaluation time, the dynamic of all the components and 

backlashes. The effect of the friction could be seen when the motor speed is close to zero 

(box on the left of the graph 4.8): increasing the friction means that the static-friction 

coefficient grows up, so when the direction of the speed changes, the motor takes more time 

to overwhelm that fault and provides the required power.  

Concerning the absorbed current, it’s clear from figure 4.9 that to maintain the same 

displacement and speed, the current required to overcome the superior torque needs to be 

higher. Increasing the command frequency, the curves tend to become more similar, but the 

vertical parts corresponding to static friction situation – in the point of change sense of 

rotation - are always very different, meaning that the rotor has a higher difficulty to move in 

when the fault has a great value (it confirms what has been already stated from the speed 

graph). 

 

 

Figure 4. 9 - Absorbed current for a chirp command with a friction fault from 1 to 3 times the nominal condition 
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The figure 4.10 below indicates the difference between reference and monitor model in 

nominal and faulty condition. The two models are clearly very similar in both conditions, 

especially when the frequency grows up, indeed the error is contained between 1% and 6%. 

This fact is due to the aforementioned calibration: the chirp command will be used in the 

optimization algorithm as command, so the monitor has to approximate as best as it can the 

behaviour of the high-fidelity model for this type of command.  

 

Figure 4. 10 - Equivalent single-phase current of reference and monitor model in nominal and faulty conditions 
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4.3. Backlash 

4.3.1. Description 

Usually the rotor shaft on electromechanical actuator systems is linked with the user shaft 

with a mechanical component. This device, during the normal working activities, is subject 

of mechanical wear which could cause severe problems on the system, such as the 

aforementioned friction, lubrification problems or backlash issue. These phenomena 

provoke firstly a superior power consumption, which leads to jamming or premature break-

down of the motor if the problem is not fixed steadily.  

The backlash is the mechanical play between two movable parts; in our case is the axial 

distance between the surface of the motor and user shafts, neglecting elasticity and Hertz 

theory. Often, the contact between the two power shafts is assured by a ball-screw system, 

in order to transform a rotating movement into a translational one. Ball-screws (represented 

in figure 1.11) are widely used thanks to the high efficiency -superior to 90%- but they need 

a severe design to avoid delays in motion transmission and to determine the correct pre-

load [11]. During normal working activities, the wear increases the axial play between the 

two parts: in this way, backlash is a powerful indicator of the actual state of a system and 

eventually it suggests the substitution of a damaged ball-screw system.  

 

Figure 4. 11 - Backlash representation 
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4.3.2. Implementation 

 

Figure 4. 12 - Backlash block in the reference model 

 

Figure 4. 13 – Backlash block in the monitor model 
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Both in reference and monitor models, backlash is introduced with a suitable block, which 

simulates the behaviour of a system with a determined mechanical play. Into the BLDC 

Motor Dynamic Model block in the high-fidelity model and in the main system of the monitor 

model it’s possible to observe a block represented in figure 4.12 and 4.13, which introduces 

a dead-band on the fast shaft (before the multiplication for the τ). In this way it affects only 

the position feedback and maintains unchanged the speed feedback and, consequently, the 

control law of the system. 

4.3.3. Dynamic Response to a step command 

To study the effect of the backlash into the dynamic response of the EMA, the user position, 

motor speed and equivalent single-phase current are evaluated for the nominal backlash 

condition (equal to 0.005 rad) and for a backlash 2, 10, 50 and 100 times higher. 

 

Figure 4. 14 – User position for a step command with a backlash fault from 1 to 100 times the nominal condition 

 

Looking the figure above, it’s possible to affirm that also a one-hundred bigger backlash fault 

than nominal condition does not change sharply the trend of the user position with a step 

command. There is only a slight delay at the start of the motion, observable by the box in 

figure 4.14. This event is coherent with the fact that there are not inversions of rotation 

sense, so the backlash acts only at the start of the rotation.  
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Figure 4. 15 – Rotational speed and absorbed current for a step command with a backlash fault from 1 to 100 times the 
nominal condition 

 

The figure 4.15 confirms what has been already stated: the play between the two shafts acts 

only on the position feedback, allowing to maintain unchanged the speed and current trends 

due to the saturated controller. The conclusion is that a step command is not useful to isolate 

and study the backlash fault. 

4.3.4. Dynamic Response to a chirp command 

On the other hand, the chirp command has been very effective to investigate the mechanical 

play fault. The user position shown in figure 4.16 reveals what could be imaginable: when 

there is an inversion in the rotational sense, a system with a greater backlash have a 

superior delay. A high backlash fault delays the start of the motion until about the 275%: in 

a non-faulty system, the motor inverts the motion after about 8∙10-3 s, in a one-hundred times 

bigger backlash-affected system, the switch of the sense takes place after 22∙10-3 s 

approximately. By increasing the chirp frequency, the aforementioned percentage 

decreases. 

The speed trend follows the same line of reasoning, because when the motor is not able to 

invert the sense of motion, the error between commanded position and feedback rises up, 

increasing consequently the speed in absolute value. When the motor manages to switch 
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rotational sense, the positions of non-faulty and faulty systems become overlapped, thanks 

to the superior speed of the latter.  

 

Figure 4. 16 - User position for a chirp command with a backlash fault from 1 to 100 times the nominal condition 

 

 

Figure 4. 17 – Motor speed for a chirp command with a backlash fault from 1 to 100 times the nominal condition 

 



 
69 

 

 

Figure 4. 18 – Equivalent single-phase current for a chirp command with a backlash fault from 1 to 100 times the nominal 
condition 

 

To increase the speed when the motor needs it, the equivalent single-phase current grows 

up sharply and quickly. The current percentage increase from the nominal condition to one-

hundred times bigger backlash is between 70% to 100%, causing overtemperature problems 

in the motor. After the initial peak, the current (in absolute value) drops because the speed 

able to move the system is higher than the nominal one, so the system needs to slow down. 

Increasing the command frequency, the current variation is always quicker and sharper.  

From the figure in the next page, it’s possible to state that the monitor model approximates 

in a very good manner the parameters of the high-fidelity one, both in faulty (50 times the 

nominal backlash) and non-faulty cases.  
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Figure 4. 19 - Equivalent single-phase current of reference and monitor models in nominal and faulty conditions 

 

4.4. Short circuit 

4.4.1. Description 

During the normal working activities of a motor, repeated overcurrents and the subsequent 

overtemperatures could lead to a degradation of the polymeric insulating parts. If this event 

takes place in the stator close to the copper windings, possibly the phase coils come in direct 

contact, allowing the current to bypass a part of the winding. In this case, the resistance and 

the inductance of the coil decreases, so with the same tension acting on the winding, the 

current which pass through is higher. If the motor absorbs a greater value of current, this 

phenomenon tends to propagate by itself, increasing Joule effect and then leading to a 

complete failure of the system.  

There are three possible short circuit modes: 

➢ Between windings of the same phase (coil-coil) 

➢ Between windings of a different phase (phase-phase) 

➢ Between a winding and the iron of the stator core (phase-ground). 
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Usually a short circuit fault starts in the first mode, then it propagates and could possibly 

become the second or the third type. The last two types are not progressive: once they 

appear usually there is the sudden breakdown of the actuator caused by damaged internal 

parts. Hence, in this work only the predictable coil-coil short circuit is investigated. 

4.4.2. Implementation 

The implementation of the short circuit in the reference model can rely on the deeply detailed 

three-phase modelled actuator. From the workspace, it’s possible to introduce the 

percentage bypassed windings per each phase (0% means that there is not short circuit, 

100% means that an entire phase is bypassed, with a possible breakdown). The values of 

Na, Nb and Nc are used in the calculation of the normalized counterelectromotive gain, 

because if the inductance decreases, also this force will become lower. In first 

approximation, we could state that: 

 
𝑘𝑓𝑐𝑒𝑚 = 𝐺𝑀 =

𝜕Φ

𝜕𝜃𝑚
= 𝑁𝐴

𝜕 (∫ 𝐵 ∙ �̅�𝑑𝑆
𝐴

)

𝜕𝜃𝑚
 

(4.1) 

where A is the area of a winding, N the number of coils composing a winding and B the 

magnetic flux density of the rotor. 

Hence, the Ni (percentage of short-circuit windings of the i-th phase) affects the calculation 

of: 

 𝐾𝑒𝑖 = 𝑘𝑒 ∙ 𝑁𝑖 (4.2) 

 
𝑅𝑖𝑗 =

𝑅𝑠
2 ∙ (𝑁𝑖 + 𝑁𝑗)

 (4.3) 

 
𝐿𝑖𝑗 =

𝐿𝑠

2 ∙ (𝑁𝑖
2 + 𝑁𝑗

2)
 (4.4) 

 
𝑅𝑖 =

𝑅𝑠
2 ∙ 𝑁𝑖

 (4.5) 

 
𝐿𝑖 =

𝐿𝑠

2 ∙ 𝑁𝑖
2 (4.6) 

where: 

➢ 𝐾𝑒𝑖 is the counter electromotive coefficient used in the calculation of the counter 

electromotive force (see figure 3.9); 
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➢ 𝑅𝑠 and 𝐿𝑠 are the phase-phase resistance and inductance of the non-faulty motor; 

➢ 𝑅𝑖𝑗 and 𝐿𝑖𝑗 are the phase-phase resistance and inductance of the faulty motor; 

➢ 𝑅𝑖 and 𝐿𝑖 are the coil-coil resistance and inductance of the faulty motor. 

When the model runs in nominal conditions (𝑁𝑎, 𝑁𝑏 and 𝑁𝑐 equal to 1), 𝑅𝑖 =
𝑅𝑠

2
 and 𝐿𝑖 =

𝐿𝑠

2
. 

The implementation in the monitor model is slightly different due to an issue of recognition: 

the monitor model simulates the behaviour of a single-phase equivalent motor, but from the 

reference model it’s impossible to distinguish which phase is in short circuit, because the 

three currents are evaluated for a single-phase equivalent actuator. Hence, in first 

approximation, for the monitor model the percentage of short circuit is the average between 

the three reference coefficients: 

 
𝑁𝑒𝑞𝑢𝑖𝑣 =

𝑁𝑎 + 𝑁𝑏 + 𝑁𝑐
3

 (4.7) 

 

The electrical parameters are now calculated as: 

 𝑅𝑒𝑞𝑢𝑖𝑣 = 𝑅𝑒𝑞𝑢𝑖𝑣𝑁𝐶 ∙ 𝑁𝑒𝑞𝑢𝑖𝑣 (4.8) 

 𝐿𝑒𝑞𝑢𝑖𝑣 = 𝐿𝑒𝑞𝑢𝑖𝑣𝑁𝐶 ∙ 𝑁𝑒𝑞𝑢𝑖𝑣
2  (4.9) 

 𝑘𝑓𝑐𝑒𝑚 = 𝑘𝑓𝑐𝑒𝑚𝑁𝐶 ∙ 𝑁𝑒𝑞𝑢𝑖𝑣 (4.10) 

 𝐺𝑀𝑒𝑞𝑢𝑖𝑣 = 𝐺𝑀𝑒𝑞𝑢𝑖𝑣𝑁𝐶 ∙ 𝑁𝑒𝑞𝑢𝑖𝑣 (4.11) 

 

Where the subscript NC refers to nominal conditions. 

With this design, when both short circuit and eccentricity are introduced in the reference 

model, the dynamic response can be wrong because of the current modulation. Both of them 

have the carrier frequency of 2𝜔𝑚𝑃, where P is the number of pole-pairs. To overpass this 

problem, the rotor angular position is used to modulate the electrical characteristic of the 

motor. The modulating function is: 

 

𝑓(𝜃𝑚) =

{
 
 

 
 
𝑁𝑏 + 𝑁𝑐

2
,

𝑁𝑎 + 𝑁𝑏
2

𝑁𝑎 + 𝑁𝑐
2

,

, 

if  − 𝜋

6
< 𝜃𝑒 <

𝜋

6
 

if  𝜋
6
< 𝜃𝑒 <

𝜋

2
 

if  𝜋
2
< 𝜃𝑒 <

5𝜋

6
 

 

 

(4.12) 
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where 𝜃𝑒 = 𝑃𝜃𝑚 is the normalized electrical rotor angle, contained in a 𝜋 range. The 

equation 4.12 allows to consider only two phase each time, when they are positive (24V) or 

negative (-24V). To implement it in the Simulink monitor model, the construction shown in 

figure 4.20 has been used. 

 

Figure 4. 20 - Simulink model of the modulating function 

 

The rotor position is the input of the active phase computation block, which provides as 

output a value equal to 1, 2 or 3 depending on the active phases evaluating the expression: 

 
𝑓(𝑢) = 𝑓𝑙𝑜𝑜𝑟 [3 ∗ (

𝑃𝑢

𝜋
+
1

6
) − 3 ∙ 𝑓𝑙𝑜𝑜𝑟 (

𝑃𝑢

𝜋
+
1

6
)] (4.13) 

 

where 𝑢 = 𝜃𝑚 is the input of the block. Depending on the value given, the subsequent switch 

chooses the correct output to take care about the short circuit.  

As it’s possible to note in figure 4.21, the product of the short circuit correction block just 

described acts in three different points of the monitor model. Initially it modifies the counter 

electromotive coefficient as already stated in expression 4.10 (with the eccentricity fault, see 

paragraph 4.5), then multiplies the equivalent resistance 𝑅𝑒𝑞𝑢𝑖𝑣 as described in equation 4.7 

and finally decrease the torque gain 𝐺𝑀𝑒𝑞𝑢𝑖𝑣. The first order transfer function used in the 

monitor model (equation 3.6 chapter 3) does not allow the multiplication of the equivalent 

inductance 𝐿𝑒𝑞𝑢𝑖𝑣, which is contained in the characteristic time coefficient 𝜏𝑒𝑞𝑢𝑖𝑣 in the 

denominator of the transfer function. In first approximation, the equivalent inductance is 
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evaluated as the average of the inductances of the three phases: this simplification does not 

affect results of the model, because the first order transfer function has a fast dynamic 

response. The implementation described, allows the monitor model to approximate in a 

better way the high-fidelity one: furthermore, it’s possible to identify the faulty phase, but it 

has not a high importance for maintenance purposes.  

 

Figure 4. 21 - Correction of the short circuit in the monitor model 
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4.4.3. Dynamic Response to a step command 

 

Figure 4. 22 - User position for a step command with a short circuit fault from 0% to 100% of coils bypassed 

 

 

Figure 4. 23 - Motor speed for a step command with a short circuit fault from 0% to 100% of coils bypassed 
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Figure 4. 24 - Equivalent single-phase current for a step command with a short circuit fault from 0% to 100% of coils 
bypassed 

In the three figures above, the dynamic behaviour of the reference system powered by a 

step command is described. As already said in the Description paragraph, when a coil-coil 

short circuit takes place, the resistance and the inductance decrease, allowing the flow of a 

higher amount of current. The magnetic flux of the faulty phase is less than the others 

(because is directly proportional to the number of windings), therefore a motion anomaly 

takes place, both in the current and, consequently, in the torque. This irregularity is also fed 

by an event which occurs also in the nominal rotational behaviour, indeed when there is the 

commutation between two phases, the third current trend shows a local drop-off (two-phase-

on, represented in figure 4.25).  

 

Figure 4. 25 - Two-phase-on phenomenon 
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Introducing the short circuit fault, this behaviour is worsened, and the motion becomes 

strongly intermittent, as represented in graph 4.23. At the beginning of the motion the faulty 

motor is slightly less performant, but at the steady state the speed is greater, even if very 

intermittent. The current depicted in 4.24 confirms what just explained: it becomes 

inconstant if the fault value grows up.  

It’s important to underline that it’s impossible to obtain a short circuit of 100% with the 

reference model: the position, speed and current trend are evaluated for a number of non-

faulty windings equal to 10-16 (the smallest number recognizable by Matlab). 

4.4.4. Dynamic Response to a chirp command 

 

Figure 4. 26 - User position for a chirp command with a short circuit fault from 0% to 100% of coils bypassed 

 

With a chirp command, the position and the speed graphs are not influenced by the faulty 

condition; the unique consideration is that there is a little delay on the speed when it changes 

sign, as already seen in friction fault.  

The current reflects the treatise just exposed: when the faulty phase is fed (for 2/3 of the 

total simulation time) there is a current increase, when the other two phases are powered, 

the conditions are the same as the nominal ones.  
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Figure 4. 27 - Rotor speed for a chirp command with a short circuit fault from 0% to 100% of coils bypassed 

 

 

Figure 4. 28 - Equivalent single-phase current for a chirp command with a short circuit fault from 0% to 100% of coils 
bypassed 

It has been also proved that the monitor model approximate in a very satisfying way the 

high-fidelity one, both in nominal and faulty conditions. The figure 4.29 shows the nominal 

equivalent current and the 25% of short circuit-faulty one: this value has been chosen 
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because it’s the most probable to meet between all the values analysed before in an 

electromechanical actuator (with a greater fault usually the motor is substituted). 

 

Figure 4. 29 - Equivalent single-phase current of reference and monitor models in nominal and faulty conditions 

 

4.5. Eccentricity 

4.5.1. Description 

Bearings degradation, manufacturing tolerances, load unbalanced, improper mounting, bent 

rotor shaft and the mechanical wear which occurs during normal working life of actuator are 

the main causes of the eccentricity fault [24]. It could be static or dynamic (see figure 4.30): 

the former is the misalignment between the rotation axis and the stator axis of symmetry, 

the latter is the misalignment between the rotation axis and the rotor axis of symmetry. Static 

eccentricity causes a modification of the air gap between the stator and the rotor, dynamic 

eccentricity provokes harmful vibrations due to non-symmetrical distribution of rotating 

masses; both types of eccentricity add torque pulsations to rotational movement. In this 

work, only the static eccentricity is analysed, because is the only one that can be evaluated 

with the current and speed trends; for the survey of dynamic eccentricity an in-depth 

Simulink vibration model or a real test benchmark are required.  
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Figure 4. 30 - Concentric configuration (a), static (b) and dynamic (c) eccentricity 

 

Considering the stator and the rotor as perfectly rigid bodies, the system under analysis is 

depicted in figure 4.31. The expressions of the two circumferences are: 

 𝑥2 + 𝑦2 = 𝑅𝑟
2 (4.14) 

 (𝑥 − 𝑥0)
2 + 𝑦2 = 𝑅𝑠

2 (4.15) 
Combining the (4.14) and (4.15) and introducing the polar coordinates: 

 𝜌 = 𝑅𝑟 (4.16) 

 {
𝑥 = 𝜌cos (𝜃𝑟)

𝑦 = 𝜌 sin(𝜃𝑟)
 (4.17) 

It’s possible to obtain (4.18): 

 𝜌2 − 2𝜌𝑥0 cos(𝜃𝑟) + 𝑥0
2 − 𝑅𝑠

2 = 0 (4.18) 

 

Figure 4. 31 - Rotor reference system for air gap definition 
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The air gap 𝑔 can be measured from the centre of the reference system and, approximating 

a square root with its Taylor series at second order, it’s possible to write:  

 𝑔 ≅ 𝑥0 cos(𝜃𝑟) + 𝑔0 (4.19) 
 𝑔 ≅ 𝑔0 ∙ (1 + 𝜁 cos(𝜃𝑟)) (4.20) 

where 𝑔0 = 𝑅𝑠 − 𝑅𝑟 is the air gap in non-faulty conditions and 𝜁 = 𝑥0

𝑔0
 the ratio between the 

misalignment and the 𝑔0. Looking deeper in the situation, the magnetic flux can be written 

with the Hopkinson’s law: 

 𝐹𝑚𝑚 = Φℜ (4.21) 
where 

 
ℜ =

𝑙

𝜇0𝜇𝑅𝑆
 (4.22) 

is the reluctance of the system, 𝐹𝑚𝑚 is the magnetomotive force and S the surface of the 

rotor interested by the magnetic flux. In our case, depicted in figure 4.32 (taken from [3]), 

the magnetic flux through the air gap, using (4.22) and (4.23), is:  

 
Φ =

𝐹𝑚𝑚

𝑔(𝜃1)
𝜇0𝑆

+
𝑔 (𝜃1 +

𝜋
𝑃)

𝜇0𝑆

=
𝐹𝑚𝑚𝜇0𝑆

𝑔(𝜃1) + 𝑔 (𝜃1 +
𝜋
𝑃)

 
(4.22) 

 

 

Figure 4. 32 - Magnetic circuit through the air gap 
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It’s important to underline that, given the 2𝜋 periodicity for the air gap, it affects the magnetic 

flux only if the motor has a number of pole-pairs greater than one. 

When an eccentricity fault takes place, unbalanced magnetic forces are created, because 

the permanent magnets are closer to windings, generating an attractive force acting on the 

rotor. When eccentricity becomes too large, the resultant of the aforementioned forces could 

cause the stator-to-rotor rub, causing possible harmful damages. [24] 

4.5.2. Implementation 

In the reference model the implementation of the eccentricity fault is carried out in the BLDC 

Motor Electro-Mechanical Model block, with the calculation of the counter electromotive 

force already expressed in equation (3.3) and reported below: 

 
𝑘𝑓𝑐𝑒𝑚 = 𝑘𝑒(𝜃𝑚) ∙ (1 + 𝜁 cos (𝜃𝑚 +

2 ∙ (𝑖 − 1)

3
𝜋)) (3.3) 

The eccentricity fault, modifying the air gap between the stator and the rotor, changes the 

magnetic coupling between these two parts: in this way, the counter electromotive force gain 

and the torque gain are directly dependant from the angular position. As shown in [22], this 

is a suitable method to avoid the implementation of complex and heavy FEM analysis.  

The eccentricity has a light effect on the response of the actuator (see next paragraph): the 

torque and the counter electromotive force coefficients increase and decrease depending 

on the angular position, but in a 360° angle the average disturbance value is null.  

In the monitor model, 𝜁 is not used and it is replaced by the coefficient Z: the value of the 

fault (Z) is limited from 0 to 0.42, corresponding to a 0-1 values of 𝜁, thanks to the relations 

below taken from [3]: 

 𝑍 = 0.42𝜁 (4.23) 

 𝐾𝑓𝑐𝑒𝑚
′ = 𝐾𝑓𝑐𝑒𝑚(1 − 𝑍(cos(𝑃𝜃𝑚 + 𝜙) + 𝑠𝑎𝑤𝑡𝑜𝑜𝑡ℎ(6𝑃𝜃𝑚 − 𝜋) sin(𝑃𝜃𝑚 − 𝜋))) (4.24) 

Simulink environment does not allow the implementation of the 𝑠𝑎𝑤𝑡𝑜𝑜𝑡ℎ function, so it has 

been replaced with: 

 
𝑠𝑎𝑤𝑡𝑜𝑜𝑡ℎ(𝑥) = 2(

𝑥

2𝜋
− 𝑓𝑙𝑜𝑜𝑟 (

𝑥

2𝜋
)) (4.25) 
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The relationship (4.24) with the correction explained in (4.25) is introduced in the monitor 

model combined with the short circuit fault, as shown in figure (4.33) and (4.34). 

 

Figure 4. 33 - Implementation of the eccentricity fault in the monitor model 

 

 

Figure 4. 34 - Eccentricity modification block 
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4.5.3. Dynamic Response to a step command 

Also for this fault, an investigation regarding the dynamic response has been carried out for 

values of 𝜁 from 0 to 1, equal to a situation in which rotor and stator touch each other.  

  

Figure 4. 35 - User position for a step command with an eccentricity fault from 0% to 100%  

 

Figure 4. 36 - Motor speed for a step command with an eccentricity fault from 0% to 100%  
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The dynamic response of the speed to a step command (open-loop response) is 

represented in graph 4.36. It’s possible to see that is similar to the response of the short 

circuit fault, but with the characteristic time of the mechanical system longer: indeed, the 

inertia of the motor acts like a low-pass filter, damping the high-frequency peaks of the speed 

trend. Another little difference is in the value of the maximum speed, lower than the short 

circuit fault. 

 

Figure 4. 37 – Equivalent single-phase current for a step command with an eccentricity fault from 0% to 100%  

As already said, the counter electromotive force and torque gains modify their value 

depending on the angular position. In figure 4.37 is depicted the equivalent single-phase 

current in nominal and faulty conditions: it’s important to underline that the average value of 

the oscillations is the same of the nominal condition, and the ripple is more accentuated than 

the short circuit fault. Concerning the peak current, a faultier motor requires a higher and 

higher value.  

4.5.4. Dynamic Response to a chirp command 

The figures in the next page describe the dynamic response of the electromechanical 

actuator to a chirp command. Comparing them with the graphs coming from the short circuit 

fault, it’s possible to state that user position and rotor speed are very similar, because the 

controller is able to compensate the unbalancing magnetic forces and it is capable to 
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maintain the nominal position and speed (with a slight delay at the moment of inversion of 

the speed).  

 

Figure 4. 38 – User position and motor speed for a chirp command with an eccentricity fault from 0% to 100% 

 

 

Figure 4. 39 -– Equivalent single-phase current for a chirp command with an eccentricity fault from 0% to 100% 
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Concerning the current, figure 4.39 highlights the increase of ripples when the motor is 

afflicted by a superior value of fault. This fact could be explained as an overlap of effect: 

there is a sine wave with the same frequency of the rotational movement coming from the 

variation of the air gap, and the high-frequency sawtooth ripple generated by the activation 

and deactivation of the motor phases.  

From the figure below the capability of the monitor model to approximate the high-fidelity 

one is described both in nominal and faulty conditions. In the left part of the graph, at the 

start of motion, the approximation is good but not optimal (the percentual error is about 7%), 

after 0.1 s the percentual error become approximately the 2%, confirming the validity of the 

previous treatise. 

 

Figure 4. 40 - Equivalent single-phase current of reference and monitor models in nominal and faulty conditions 
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4.6. Proportional gain 

4.6.1. Description 

Electronic components are assuming an increasingly critical role in a lot of different fields, 

such as on-board function, communications and autonomous functions. All these new 

functionalities, together with the growth of lead-free electronics and microelectronic devices, 

could increase the number of electronic faults and maybe result in unknown behaviours. 

Hence, to assure a high reliability and safety of the flight control system, is mandatory to 

provide a system health awareness. [25] 

Electronic faults can be categorized for example by type of component afflicted, as already 

described in table 6. Main issues with the control electronics may take place in the capacitors 

or in the transistor, with a possible open or short circuit failure, which can lead to an entire 

break-down of the system. Other types of electronic failures can be found in wiring 

connection due to an overheating, or in the power supply with the intermittent performance 

or thermal runaway. [16] 

Usually, a great part of electronic faults arise without any pre-alerting signals, so they are 

very difficult to implement in a prognostic study. The main solution to fix this problem is the 

implementation of multiple redundancies, in order to substitute the broken controller as soon 

as possible without interrupting the normal working activities of the system.  

4.6.2. Implementation 

In this work a generic progressive electronic fault is implemented with a variation of the 

proportional gain applied by the control electronics: in this way it’s possible to see the 

modification of the dynamic response of the models.  

The practical implementation is quite simple: the proportional gain into the reference and 

the monitor model (both represented in a light-blue square respectively in figures 4.41 and 

4.42) is multiplied for a suitable value which can vary in the range 0.5-1.5: in this way the 

nominal proportional gain 105 [s-1] can assume values between 5∙104 [s-1] and 1.5∙105 [s-1].  
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Figure 4. 41 - Proportional gain implemented in the reference model 

 

 

Figure 4. 42 - Proportional gain implemented in the monitor model 

 

 

4.6.3. Dynamic Response to a step command 

In this paragraph the open-loop dynamic response to a step command is investigated. The 

user position, motor speed and equivalent single-phase current are not affected by the 

modification of the proportional gain fault parameter from 50% to 150% and they are 

perfectly overlapped to nominal condition trends. Indeed, when the proportional gain is half 

of the nominal conditions, the error evaluated by the controller is high enough to require the 

maximum current available.  
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Figure 4. 43 - User position, motor speed and equivalent single-phase current for a proportional gain fault from 0.5 to 1.5 

 

4.6.4. Dynamic Response to a chirp command 

 

Figure 4. 44 – Rotor position for a chirp command with gain fault from 50% to 150% of nominal conditions 
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Figure 4. 45 - Motor speed for a chirp command with gain fault from 50% to 150% of nominal conditions 

 

Figure 4. 46 – Equivalent single-phase current for a chirp command with gain fault from 50% to 150% of nominal 
conditions 

 

From the figures above, it’s possible to understand the effect of a proportional gain fault in 

the controller. Assuming as nominal conditions (NC) the orange curve, a decrease of 

proportional gain (yellow and purple trends) leads to a decline of the readiness of the motor, 
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causing a delay in the current calculation by the control law and therefore in the velocity and 

position of the motor. In particular, if the acceleration acts on the motor in delay, the 

maximum speed reached by the rotor is less than the case with a superior gain, because 

the command forces the current to decrease before the achievement of the maximum speed 

allowed. The characteristic time of the system increase if the gain rises up: the light-blue 

trend, corresponding to a gain equal to 1.5∙105, represents the most similar curve to the 

command (in blue).  

Figure 4.47 represents the non-faulty and faulty condition for reference and monitor models. 

The proportional gain does not affect the reliability of the approximation capabilities of the 

monitor model, which overlaps in long part the high-fidelity trend.  

 

Figure 4. 47 - Equivalent single-phase current of reference and monitor models in nominal and faulty conditions 
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4.7. Noise 

4.7.1. Description 

Noise is any unwanted signal which interferes with the measurement or communication of 

another signal: it conveys information regarding the sources of noise and the environment 

in which it propagates. Noise is present in almost all environments in the form of different 

disturbances such as cellular mobile communication, speech recognition, image processing, 

medical signal processing, radar and sonar acquisition data. In general, noise and distortion 

are the main factors which limit the capacity of signal transmission and the precision of the 

results coming from measurement; if the disturbances are too high relating to the signals 

acquired, they can cause transmission errors, until even disrupt the communication process. 

Their removal is a critical issue, deeply studied in a lot of disciplines. [26] 

In literature there are a lot of different classification of the noise; in this paragraph, the main 

two are described.  

Depending on its source and physics, a noise can be described as [26]: 

➢ Acoustic disturbances, which include the noise, wrong feedbacks and echoes. The 

noise emanates from the movement, vibrations, weather conditions (rain, wind, et c.) 

or from the utilization of everyday stuff such as air-conditioners, vehicles or fans; the 

feedbacks and echoes coming from the reflection of the sound carried out by walls, 

especially if they are made with particular materials;  

➢ Electronic device noise, which could further be divided into thermal noise, shot noise, 

flicker noise and burst noise;  

o Thermal noise is created by the movement of thermally energised particles in 

an electric/electronic conductor; 

o Shot noise represents the random fluctuation of electric current due to its 

nature, indeed the electrons are discrete charges with different arrival time; 

o Flicker noise is caused by the inclusions in the conductive channel and 

recombination of noise carried out by the transistors; 

o Burst noise composed by step transitions of several hundred millivolts, at 

random time and durations.  
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➢ Electromagnetic noise, particularly critical at radio frequencies (kHz to GHz range), 

is the combination of natural and man-made sources; 

➢ Electrostatic noise, generated by the voltage with or without current flow; 

➢ Channel distortions, multipath, echo and fading, created by the non-ideal conditions 

and characteristic of communication channels, which are very sensitive to 

environment, multipath effect and fading of signals; 

➢ Co-Channel interference appears when two different radio transmitters are on the 

same channel frequency: the effect is a sort of crosstalk; 

➢ Missing samples, several part of the signal could lack due to packet loss in 

communication systems; 

➢ Processing noise, related to the analogic and digital signal acquisition noise. 

Depending on its frequency spectrum or time characteristics, a noise process can be also 

divided into [26]: 

➢ White noise, purely random noise, theoretically contains all frequencies in equal 

power; 

➢ Band-limited white noise, characterized by a flat power spectrum and a limited 

bandwidth; 

➢ Narrowband noise, limited between 50 and 60 Hz; 

➢ Coloured noise, whose spectrum has a non-flat trend; 

➢ Impulsive noise, a short duration pulses of random amplitude; 

➢ Transient noise pulses, long duration noise pulses such as clicks or burst noise. 

 

Relating to this work, a white noise is implemented in the reference model, to simulate in a 

realistic way the test benchmark in which the monitor model has to work. White noise is 

theoretically defined as an uncorrelated random noise process with equal power to all 

frequencies: this fact leads to the concept that it requires to have infinite power and a flat 

power spectral density. In reality, physical systems are never affected by white noise, but it 

is only a useful approximation when the real disturbance has only a slight correlation with 

the trend analysed.  Figure 4.48 represents a possible white noise time trend to a flat type 

acquisition: 
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Figure 4. 48 - White noise time trend 

4.7.2. Implementation 

The implementation of the noise disturbance in reference system is carried out by a suitable 

Simulink white noise block, represented in the figure below, which generates a normally-

distributed random numbers suitable for hybrid systems. 

 

Figure 4. 49 – Implementation of the noise in the reference system 

 

This block allows the scaling of the covariance of the noise from a continuous power spectral 

density to a discrete one, in order to obtain the correct intensity of the noise [15]. The noise 

signal coming from that block goes into a rate transition block, which transform the 

disturbance frequency into the frequency of the system, to have the same rate of simulation. 

The monitor model does not simulate the noise, because it will extend the computational 

time without adding any improvement to the algorithms’ precision.  
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4.7.3. Dynamic response 

The response of the system to different values of noise coefficient are investigated only for 

a chirp command: this decision has been made due to the small influence of that disturbance 

of the system and because, during the optimization paths, the noise has not been 

introduced. 

The Simulink block receive as input a noise coefficient, Knoise, which is suitably multiplied by 

10-6, in order to make the values of disturbance and current of the same order. Increasing 

the values of Knoise from 1 to 100, the system clearly becomes always more unstable, 

showing a more indented trend. 

 

Figure 4. 50 - Effect of the growing noise on the equivalent single-phase current 

 

  



 
97 

 

5. Optimization algorithms 

As already said in the “Introduction” chapter, Prognostics is the discipline which evaluates 

the current state of a system or single component and estimates the Remaining Useful Life 

(RUL), namely how much time will pass until the object of the study will no longer able to 

operate within its stated specification [2]. In this work a model-based prognostics approach 

is proposed: it will be applied to the study of fault appearance in flight controls. 

Optimization algorithms are used for the monitor model to approximate in the best way 

possible the parameters of the reference model. Indeed, design optimization is an important 

part of every design problem in engineering and industry: it focuses on finding the optimal 

and practical solution to complex problems, also under non-linear constraints. 

The first step is to launch the reference model in which a pre-determined fault is 

implemented. In this way with the simulation it’s possible to obtain as outputs all signals of 

position, speed, torque and current in faulty condition. The second step is the simulation of 

the monitor model: it is required to approximate as best as it can the parameters of the 

reference, in order to detect the fault introduced. To achieve that goal, the monitor needs to 

run a lot of times with different parameters, choosing as best those closest to reference 

model: these variations of the main characteristics of the monitor model at each simulation 

are made by suitable optimization algorithms. 

In this work, four different algorithms have been evaluted to solve the problem and compared 

each other: Genetic Algorithm (GA) and Differential Evolution (DE) as Evolutionary 

Algorithms, Particle Swarm Optimization (PSO) and Greywolf Optimization (GWO) as 

Swarm Intelligence. In this chapter, after a brief introduction to different types of optimization 

patterns, they are deeply described. 

5.1. Introduction to problem solving algorithms 

Optimization problems are wide ranging and numerous, hence also methods for solving 

them need to be an active research topic [27]. Classical problem-solving methodologies 

could be easily divided into two branches: deterministic or stochastic. The former are the 

exact methods, as logical or mathematical formulas, which solves a problem with a pre-

determined sequence of search points, obtaining a solution very close to the global 
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minimum. However, they require huge computational efforts to achieve the solution, and if 

the problem’s size grows up this is not an accessible path anymore. This is the reason of 

the development of stochastic and heuristic methods: these rely on the iterative 

improvement of a population of solutions created with a randomization. For this reason, 

different runs of the same algorithm applied to the same problem lead to different results 

due to the random nature of the solutions.  

Development of stochastic and meta-heuristic nature-inspired algorithms started from 1973 

with the publication by Holland [29] of the first Genetic Algorithm based on Darwin’s principle 

of development of the species. Since then, with the growing interest in these new 

approaches also Ant Colony Optimization (ACO), Simulated Annealing (SA) and Particle 

Swarm Optimization (PSO) have been introduced. Their generality, facility and convergence 

attributions allowed their fast development and application to an enormous range of different 

applications [28]. On the other hand, also deterministic methods met a remarkable growing 

through the past years, developing Direct search, branch and bound, clustering and 

tunneling methods. In this work only stochastic algorithms are described and investigated. 

A first classification of metaheuristic algorithms is performed on the basis of the number of 

initial attempts: single-solution-based (e.g. Simulated Annealing) the optimization process 

starts with a single solution tried which is improved iteration after iteration, population-based 

exploit a set of search agent which work contemporary to find a greater number of suitable 

solutions. 

Heuristic methods can be further divided into Evolutionary Algorithms (EA), based on the 

natural evolution, and Swarm-based Algorithms (SI), which rely on collective behaviour of a 

group of animals.  

➢ Evolutionary algorithms are a particular application of artificial intelligence, which 

exploit the iterative progress of a population: birth, growth, development, 

reproduction, selection and survival. These methodologies are the most well-known, 

used and established among the nature-inspired algorithms. The exploited generic 

process starts with the creation of random search points, whose deviation have a 

poor suitability with the objective function carried out by a selection mechanism, and 

the subsequent variation of the points left to reach different solutions in the function 

domain. The most famous algorithms are: Genetic Algorithm (GA), Genetic 
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Programming (GP), Differential Evolution (DE), Evolutionary strategies (ES) and 

Paddy Field Algorithm (PF). 

➢ Swarm intelligence (SI) concept has been introduced in 1993 [37] and takes 

inspiration from colonies, flocks, packs, herds and schools present in nature. It is a 

recent and emerging path of problem resolution: it efficiently finds suitable solutions 

to intractable and complex optimization problems exploiting the social behaviour of 

group of organisms. The word “swarm” comes from the movement of particular 

agents in the problem’s domain and it is defined as “any loosely structured collection 

of agents that interact among each other” [30]. Every agent of the swarm is required 

to evaluate the objective function a lot of times, so a parallelization is very easy to 

implement in order to reduce computational time and to obtain more reliable results. 

Furthermore, SI usually has less parameter to adjust and a lower number of operators 

in comparison with Evolutionary Algorithms. The most used swarm-based 

methodologies are Ant Colony Optimization, Particle Swarm Optimization and 

Artificial Bee Colony, but in last years a huge number of nature-inspired algorithms 

has been developed. 

It's important to underline that not all the algorithms behave in the same way. Indeed, the 

No Free Lunch Theorem (NFL, [38]) states that if an algorithm works particularly well on a 

class of problems, it will show poor performances on other sets of problems. In particular, if 

an algorithm performs better than a random search in a determined class of problem, in 

other types of problem it will behave worse than the random search. Summarizing, it means 

that a perfect heuristic algorithm able to solve all optimization problems does not exist.  
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5.2. Genetic Algorithm (GA) 

Genetic algorithms are a class of Evolutionary-based self-adaptive stochastic optimization 

algorithms with a global search potential proposed by Holland in 1973 [29] and based on 

the Charles Darwin’s theory of the survival of the fittest.  

Initially, this algorithm creates randomly possible solutions of the problem, called initial 

population. In its most common representation, a population is composed by a variable 

number of individuals (a binary string, called chromosome), thinkable as group of different 

genotypes (the 1 and 0). Genotypes represents the characteristic of a solution, e.g. the 

parameter of an electric motor for an electrical optimization purpose. The three main 

operations carried out by the GA are selection, crossover and mutation. 

In figure 5.1, taken from [31], is represented first steps of genetic algorithm path. 

 

 

Figure 5. 1 - Representation of first steps of Genetic Algorithm path 
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Exploiting a suitable fitness function which changes depending on the type of the problem, 

each string of population is evaluated to discover its effectiveness, which could be seen as 

the capability of each individual to adapt at the environment. Near every “population” 

column, in figure 5.1 there are several numbers varying from 0 to 1: these are the values of 

effectiveness of that agent to solve the problem. Once evaluated this coefficient, the 

algorithm ranks the most effective solutions from the best to the worst.  

The second step is the cross-over. Between the best solutions there is a recombination of 

portion of strings carried out by random points. They divide the individuals in several parts 

and mix each other in the “mating pool” to obtain new possible solutions, called off-springs. 

It’s possible to classify the cross-over in “N-points cross-over” where N is the number of 

cutting points. The second generation of population is not only the result of the cross-over, 

but also of the mutation. This phenomenon consists in the introduction of discarded 

individuals or new ones in the population, in order to reintroduce material loss or explore 

new possible random solutions. After this action, the effectiveness of every individual of the 

new population is evaluated with the help of the fitness function and the cycle restarts.  

 

 

Figure 5. 2 - Final steps of genetic algorithm path 
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In figure 5.2, also taken from [31], final steps of the genetic algorithm process are depicted. 

Continuing this process for more steps, efficiency of solutions rises up, allowing the discover 

of higher effectiveness results. It’s possible to put together the algorithm and determined 

stopping criteria, such as the maximum number of iterations or the objective function 

tolerance between a step and the next.  

For further clarity, below the pseudo-code of the genetic algorithm is reported: 

𝑡=0;  
initialize (randomly) a chromosome population 𝑃(𝑡);  
evaluating 𝑃(𝑡) using the fitness function; 
  

while (Stopping criteria not respected)  

 

do  

- Select individuals from 𝑃(𝑡);  
- Insert them into the mating pool 𝑀𝑃;  

- Apply crossover to the individuals of the 𝑀𝑃, forming 𝑃’(𝑡); 
- Apply mutation to the individuals of 𝑃’(𝑡) forming 𝑃’’(𝑡); 
- Form 𝑃(𝑡+1) by selecting for replacement individuals from  

𝑃’’(𝑡) and 𝑃(𝑡);  
 

𝑡=𝑡+1;  
 

End 

Genetic Algorithm is useful when [27]: 

✓ there is not any mathematical treatise available; 

✓ the knowledge of the function domain is poor; 

✓ the search space is large, complex and highly constrained; 

✓ there is the necessity to parallelize the computation; 

✓ traditional search method fails. 

As just explained, the genetic algorithm is a very powerful tool to obtain reliable optimized 

data, but it has also some drawbacks: 

- often it converges to local optima if the objective function is not defined properly; 

- the implementation in dynamic set of data is critical; 

- for specific problems, some other simpler optimization algorithms could achieve more 

precise results. 
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The usage of this algorithm has been carried out using the equivalent command in Matlab 

environment [15], ga, together with the modification of some the optimization options. The 

syntax of the command is: 

x = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options) 

where: 

➢ fun is the fitness function to be optimized; 

➢ nvars is the number of variables which have to be optimized (in our case, the eight 

values of the fitness vector: see chapter 7); 

➢ A, b, Aeq, beq are the coefficients of the linear equalities and inequalities the fitness 

function is subjected (Aeq*x = beq or A*x ≤ b); 

➢ lb, ub are the lower and the upper bounds, in our case set to zero and one; 

➢ nonlcon introduces non-linear constraints; 

➢ options are the possible modifications to implement in the optimization. In our case 

the options used are: 

o Display set the level of optimization detail returned to the user. In our case I’ve 

set ‘iter’ because it’s important how the error behaves iteration after iteration 

to see if the code works rightly; 

o FitnessLimit has been used to set the maximum objective value to 10-3 during 

the multiple optimizations; 

o MaxGenerations impose the maximum number of iterations. For all the results 

shown in next chapters, this value is set to 200; 

o MaxTime is set only once to calibrate the right algorithm’s parameters; 

o PopulationSize limits the number of individuals per each generation to the 

value set; 

o UseParallel exploit the parallelization of the calculations. 

 

5.3. Differential Evolution (DE) 

Differential Evolution (DE) is a population-based derivative-free stochastic evolutionary 

algorithm, firstly introduced by Storn and Price in 1995 [32], very powerful and efficient in 

the continuous search domain. This algorithm is very similar to the GA, since a population 
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of individuals is exploited to find the optima in a fitness function; on the other hand, in the 

Differential Evolution the mutation is the result of arithmetic combination of factors and not 

the merely randomization of genes as in GA. Furthermore, the fact that it does not exploit 

derivative operations makes the DE a suitable path when the gradient is difficult or even 

impossible to calculate.  

Although slight differences are present between an evolutionary algorithm and another, they 

all rely on Darwin’s theory of evolution and exploit the concept that a population of individuals 

could find a problem solution with some fixed steps which are repeated cyclically.  The steps 

involved in the algorithm are barely the same of the Genetic Algorithm: initialization, 

mutation, cross-over and selection, as depicted in figure 5.3 taken from [33]. 

 

Figure 5. 3 - Working flow chart of the Differential Evolution 

The initialization creates a pre-determined number of new individuals (𝑁𝑃) with generic 

features according to a normal or uniform distribution.  

With the mutation event some new material is implemented in the population by generating 

variations to existing individuals. This operation creates at each generation a mutation vector 

which could take care about the best solution, the current solution or the difference between 

the current and the best solution. In the Matlab code developed for this work, the last type 

of mutation vector is exploited (see Appendix A). Usually, the mutation or scaling factor 𝐹𝑖 is 

the same for every generation, but it’s common to meet in literature some DE codes which 

take advantage of mutation factors different for different generations. 

The cross-over action mixes up some informations between different individuals. It forms a 

trial vector with the help of the characteristic parameter 𝐶𝑅𝑖 ∈ [0,1]: it is the cross-over ratio, 

which represent the average fraction of vector components that are inherited from the 

mutation vector [33]. Similarly, also 𝐶𝑅𝑖 as 𝐹𝑖 is often fixed through different generations. 
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After the evaluation of the fitting value carried out by the fitness function, which identifies 

how satisfying is the suitable solution, the selection chooses as best solution the trial vector 

or the original parent depending on the type of the problem. In our case, we need to find a 

minimum of a function, so the best value 𝑥𝑖,𝑔+1 of the second generation (𝑔 + 1) is: 

𝑥𝑖,𝑔+1 = {
𝑢𝑖,𝑔, 𝑓(𝑢𝑖,1) < 𝑥𝑖,𝑔
𝑥𝑖,𝑔, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝑢𝑖,𝑔 is the i-th components of the trial vector at generation 𝑔 and 𝑥𝑖,𝑔 the start value 

of the previous generation (parent). All these operations explained are parts of a loop, until 

stopping criteria are fulfilled.  

The main advantages of the Differential Evolution are: 

✓ ease to implement; 

✓ excellent speed of convergence; 

✓ perfect for problem which has solution close or even on the boundaries; 

✓ it’s widely used thanks to the high reliability and achievable accuracy. 

DE algorithms have also some limitations: 

- the presence of noise could roughly affect the precision of the results; 

- tuning difficulties. The number of individuals (𝑁𝑃), mutation and cross-over ratios (𝐹𝑖 

and 𝐶𝑅𝑖) are uneasy to find, because they require to perform time-consuming tries. 

Furthermore, in domain space it’s possible to meet several places in which different 

optimization parameters work better than others. To fix this problem, in past years 

some self-adaptive Differential Evolution algorithms (SaDE) have been developed [e. 

g. 34]. 

The implementation of this algorithm has been made in Matlab environment starting with the 

code contained in [33], strongly modified in order to adapt it at our problem (see all the code 

in Appendix A). The code developed receives as input the fitness values from the main code 

(reported in Appendix C) as the maximum number of iterations, set like GA as 200, the 

population size, also set to 50, and the lower and the upper boundaries. After a random 

initialization of the positions, the current objective fitness for every individual is evaluated, 

stored in a vector and investigated in order to find the minimum of the function.  
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The subsequent part is the mutation, which exploit int8 values and Boolean operations to 

become faster. As explained in the description part, this method utilizes only additions, 

subtractions and multiplications to introduce a “chaos” component into the code. Once 

generated the new individuals from the fittest of the previous generation, a new investigation 

finds the best solution through the minimum values and substitutes it in the best-solution 

vector. Implementing the stopping criteria, the algorithm stops if requirements are fulfilled 

and the output is the last value of the best vector.  

5.4. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is an intelligence-oriented, stochastic swarm-based 

global optimization technique firstly introduced by Kennedy and Eberhart in 1995 [35]. It was 

born from these two authors as lightening research of bird-flocking algorithms already 

published, but during some tests the continuous changes made it more powerful than the 

previous ones.  

The term “particle” in the name of the algorithms indicates the population members which 

are mass and volume free, or even characterised by arbitrary small mass and volume. They 

represent possible solutions in a high-dimensional space with four vectors: actual position, 

best position already found, the position of the neighbourhood and its velocity. Every 

iteration, all particles calculate the fitness value of their position exploiting a suitable fitness 

function; if it is better than the best position they have already reached, it becomes the new 

best position.  

Main steps in PSO algorithm represented in figure 5.4 could be summarized as: 

➢ initialization of the particle swarm composed by the pre-determined number of 

individuals. Every agent takes a random position in the space and, in minima 

research problems, its best value is set as first approximation to a high value, in order 

to be eliminated immediately; 

➢ for each particle, it’s evaluated the fitness value with a suitable objective function 

(evaluation). It’s clear that in first iteration whatever is the position in the space of the 

particle, it has to eliminate the set best position; 
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➢ in the loop iteration, the position evaluated is compared with the best position for each 

particle. As already said, if the former’s fitness value is better – in our case smaller – 

than the latter’s, current position becomes the new best position.  

➢ The algorithm subsequently finds the best absolute position of the entire swarm and 

saves it as the actual best solution found; 

➢ Particles update their speeds and positions according to their best position and best 

position of the neighbourhood. These steps continue until stopping criteria are 

fulfilled. 

 

Figure 5. 4 - Conceptul flow chart of the Particle Swarm Optimization 

As it’s possible to discuss, Particle Swarm Optimization is similar to generic Evolutionary 

Algorithms, because it also has initialized solutions which update themselves during iterative 

paths. The strong difference is the type of updating: Swarm Intelligence algorithms such as 

PSO exploit solution already found by agents to improve the precision of the final result, 

Evolutionary algorithms introduce different amounts of chaos with the randomization of 

mutation vectors.  

Main advantages of PSO over other types of optimization are: 

✓ marked ease to be implemented in a lot of different kinds of problems; 

✓ simple concept; 

✓ complete absence of parameters tuning except for the swarm size; 
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✓ more effective memory capability in comparison with GAs; 

✓ this algorithm is able to maintain the diversity of the particles thanks to the updating 

method: in this way it’s possible to explore a greater part of the solutions’ domain. 

This method is implemented exploiting the right command of Matlab and setting the 

optimization options as already done for the Genetic Algorithm. The implementation is 

similar, the syntax is: 

x = particleswarm(fun,nvars,lb,ub,options) 

where the parameters are the same already described for the GA in some paragraphs 

before. The settings are coherent with the analysis carried out: population size of 50 

individuals and 200 iteration as maximum. The only difference is the expression of the 

maximum objective value, here recalled by the option ObjectiveLimit. 

 

5.5. Greywolf Optimization (GWO) 

This algorithm is the newest between those already described and it mimics the hierarch 

behaviour of grey wolves in nature. They have a strict hierarchy:  

- the leaders are the alphas, usually a male and a female, which have the task to make 

decision and lead the group in everyday activities. However, there is also a sort of 

democracy in the pack concerning the less important decisions; 

- the betas are the second hierarchic level and help the alpha to make decisions. When 

an alpha becomes old or dies, one of the betas take his/her position as leader; 

- lowest rank is occupied by the omegas. They are the “scapegoat” of the pack and are 

dominated by all other wolves of the pack; 

- wolves which are not alpha, beta and omega are deltas. Usually they are sentinels, 

scouts, hunters and caretakers. 

The algorithm [36] faithfully reproduces the hunting activity of a pack: the prey is the best 

value of the function to obtain and the wolves are the search agents. Mathematically, alphas 

(α) are the fittest solution, the second and the third best solution are betas (β) and deltas (δ) 

respectively, the other solutions are categorised as omegas (ω). 
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A grey wolves hunt is composed by some moments: first there is the tracking and the 

approaching the prey, in a second moment the wolves encircle and harass the prey until it 

is jaded and stops to move and then they attack. In a 2-D domain, the situation could be 

represented as depicted in figure 5.5, taken from [36]. 

 

 

Figure 5. 5 - Encircling action of grey wolf in a 2-D domain 

 

In an abstract search space, we do not know where the optimum value is (in other words, 

where is the prey), but in nature the hunt is led by the alphas who see the prey; 

mathematically this fact has been introduced by the recombination moment. Indeed, βs’ and 

δs’ positions at the time (t+1) are evaluated introducing random movement around the 

position of the αs at the time (t+1), calculated as the barycenter between the positions of the 

three search agents at the time (t). The position of the ωs is random and around the 

estimated position of the prey: in every instant of simulation the algorithm evaluates the 

fitting values for the wolves exploited and it assigns the label α, β, δ or ω depending on the 

objective function (e.g. for a minima research, αs are the wolves with the lower fitting values). 
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Figure 5. 6 - Update of the wolves' position time by time (taken from [36]) 

Also the exploration of the function domain is a priority for this method: usually wolves 

diverge from each other to search new preys and converge to attack a prey.  

For further clarity, below the pseudo-code is reported. 

Initialize the grey wolf population Xi (i = 1, 2, ..., n)  

Initialize exploration and exploitation parameters 

Calculate the fitness of each search agent  

 

Xα=the best search agent  

Xβ=the second best search agent  

Xδ=the third best search agent  

 

while (t < Max number of iterations)  

 

for each search agent  

Update the position of the current search agent 

end for  

 

Update exploration and exploitation parameters  

Calculate the fitness of all search agents  

Update Xα, Xβ, and Xδ  

t=t+1  

 

end while  

 

return Xα 

Concerning the description of the algorithm’s parameters, three of them are particularly 

important: 
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- 𝑎 is the controller of the behaviour of the pack and it decreases gradually from 2 to 

0. It is used in the settings of  

- 𝐴 which represents the ratio between an exploration and exploitation behaviour; 

- 𝐶 ∈ [0,2] is the randomization member of the algorithm and it is used in the evaluation 

of the new position of every wolf. 

This algorithm is implemented in Matlab environment as a code written starting from whose 

already present in [36], but suitably modified (see Appendix B). Particularly difficult has been 

the implementation of the parallelization: GWO does not support the split of the calculations.  

It receives as input the initial positions of the search wolves from an external supporting 

code; then starts the definition of the optimized fitness vectors and best values for alphas, 

betas and gammas wolves, represented respectively by their positions and closeness to a 

prey. In an inner for loop, the best values for the random positions are evaluated taking care 

of the boundaries provided by the main code and subsequently the best vectors are 

assigned to alphas, betas and deltas. The recombination is carried out with six different 

random vectors in order to achieve the best exploration of the function domain possible.  

After the storage of the best values in a suitable variable, the loop restarts with a movement 

of the wolves starting from their previous position.  
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6. Failure detection and calibration 

The algorithms just described in the previous chapter need a suitable fitness function in 

order to detect precisely faults growth in the electromechanical system. The definition of the 

fitness function is a quite critical issue, because from that depends most of the features and 

behaviours of optimization algorithms. It’s important to use as objective function an easy-to-

measure quantity, maybe without adding new sensors to the system: in fact, increasing its 

complexity means introducing new components liable to damages, so a possible reason of 

fault or breakdown (and so, reducing the system reliability). 

The three main parameters measured in the considered EMA system under studies are the 

user position, the rotor speed and phase current, as already explained in chapter 4. Speed 

signal could be a great parameter to detect failures, but the necessity to generalize the 

treatise for different systems, maybe devoid of speed feedback ring, suggest to not use this 

value. The user position is useful for prognostics, because a controller can compensate the 

early phases of progressive damages. Hence, the current signal is exploited as failure 

detection parameter. 

The current is evaluated in different ways in the reference and monitor model: the former 

calculates the three phase currents of the star-pattern circuit and then assesses the 

equivalent one, the latter uses the equivalent single-phase current (𝐼𝑚(𝑡)). In the high-fidelity 

model, contained in the BLDC Motor ElectroMechanical Model, is implemented the 

evaluation of the equivalent single phase, as depicted in the figure 5.7. 

 

Figure 6. 1 - Evaluation of the equivalent single-phase current 
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Following the Kirchoff’s laws, in the BLDC motor the sum of the three phase currents is 

always null, because two has the same value and a different sign, the third is null. Hence, 

the equivalent single-phase current (𝐼3𝑒𝑞𝑢𝑖𝑣(𝑡)) is evaluated as the sum of the modules of 

the three currents, subsequently divided by 2 (only two are the active phases) and then 

multiplied for the sign of the torque: in this way it’s possible to obtain the envelope of the 

three phases. In order to use a simpler signal, and to not analyse too high frequencies, a 

filter composed by a series of three first-order transfer functions with a time constant of 10-5 

s is exploited. The application of this filter generates an unavoidable delay in the signal 

response, so the same filter is applied to the monitor model: the two signals are thereby 

comparable.  

6.1. Faults implementation 

Every sample time, the equivalent current of the monitor model 𝐼𝑚(𝑡) is evaluated and then 

compared with the single-phase current of the reference model 𝐼3𝑒𝑞𝑢𝑖𝑣(𝑡): the error is stored, 

some parameters of the monitoring changes and then a new current calculation starts. Not 

all monitor parameters change, but the fault ones, introduced as variables in the Simulink 

environment.  

Faults described in chapter 4 are introduced in the reference and monitor model as an eight-

columns normalized row vector. The normalization has been carried out because 

Evolutionary Algorithms showed a faster convergence if the objective value is contained 

between 0 and 1 [3]. The aforementioned vector is: 

 𝑘 = [𝑘(1), 𝑘(2), 𝑘(3), 𝑘(4), 𝑘(5), 𝑘(6), 𝑘(7), 𝑘(8)] (6.1) 

where: 

➢ 𝑘(1) ∈ [0,1] represents the normalized friction fault: 𝑘(1) = 0 describes nominal 

conditions, 𝑘(1) = 1 introduces a friction fault equal to 300% nominal conditions. 

➢ 𝑘(2) ∈ [0,1] introduces the normalized backlash fault: 𝑘(2) = 0 means nominal 

backlash, equal to 0.005 rad (≅0.29 degrees), 𝑘(2) = 1 represents a backlash equal 

to 100 times nominal conditions (0.5 rad ≅ 29 degrees). It’s important to underline 

that such backlash needs to be multiplied for the gear ratio in order to find the user 

play. 
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➢ 𝑘(3), 𝑘(4), 𝑘(5) ∈ [0,1] are the short circuit parameters for the phase A, phase B and 

phase C respectively. 𝑘(𝑖) = 0 means that the i-th phase is correctly working (the 

current flow through the 100% of the copper coil), 𝑘(𝑖) = 1  means that the i-th phase 

is in a complete short-circuit situation. In the simulation, the maximum of the short 

circuit parameter is set to 0.99, because if two phases are in short circuit at the same 

time, the current will diverge to infinite. The complete short circuit situation is not very 

interesting for prognostics purposes, because the motor results entirely broken. 

➢ 𝑘(6), 𝑘(7) ∈ [0,1] describes the normalized eccentricity fault. In particular, 𝑘(6) is the 

rotor eccentricity ratio 𝜁 = 𝑥0

𝑔0
 and if it equal to 0 means that there is not static 

eccentricity, if it is equal to 1 the rotor touches the stator because the air gap is 

decreased to zero. On the other hand, 𝑘(7) represents the phase of the rotor 

eccentricity: 𝑘(7) = 0 implies a φ=-π, 𝑘(7) = 1 is the same of an angle φ=π. This last 

parameter, during the evaluation the function error, is suitably treated, because if the 

eccentricity is null, the eccentricity phase can assume all values between -π and π. 

➢ 𝑘(8) ∈ [0,1] represents the gain fault. Nominal conditions are equal to 𝑘(8) = 0.5; 

𝑘(8) = 0 means that the gain is decreased of the 50%, 𝑘(8) = 1 means that gain is 

increased of the 150%. 

Hence, in nominal conditions the fault vector is: 

 𝑘 = [0, 0, 0, 0, 0, 0, 0.5, 0.5] (6.2) 

 

When the reference model runs, one or more faults are implemented exploiting this vector: 

all the parameters coming out from the simulation are those related to the conditions of the 

faulty motor. Launching the optimization algorithm, its task is to continuously runs the 

monitor model in order to find the right values of these eight fault parameters previously 

implemented in the reference model. To achieve this goal, the algorithm has to compare the 

equivalent single-phase current trends of the two models. 

6.2. Fitness function 

The objective function to be optimized is known as fitness function: it expresses how the 

monitor model is approximated in a satisfying way the high fidelity one. When, every sample 

time, the algorithm runs the monitor model with a determined fault vector 𝑘, the single-phase 
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current is stored in a suitable variable in Matlab’s workspace. Then, this value is compared 

with the reference equivalent current evaluated as described at the start of chapter 6 in order 

to calculate the error between the two parameters. The comparison, in first approximation, 

were carried out exploiting the least squares method: 

 
𝑒𝑟𝑟 =∑(𝐼3𝑒𝑞𝑢𝑖𝑣(𝑡0) − 𝐼𝑚(𝑡0))

2

𝑡

 (6.3) 

where 𝑡0 is a generic instant contained in the simulated time. With the (6.3), the two current 

trends are compared finding the minimum of the parabola described, which means that the 

error must remain as close possible to zero. With a deeper inspection, it should be noted 

that equation (6.3) resulted to be unable to recognize very small differences between the 

behaviour of the reference and monitor model, which could generate phase displacement in 

the rotor angular position measured between the two models. This inaccuracy is particularly 

accentuated in case of abrupt change of the commanded current. 

To avoid this problem, it’s possible to implement an error value calculated with the total least 

squares method (TLSM): it takes care for the error evaluation not only of the dependent 

variable, but also of the independent one. It was firstly introduced by Golub and Van Loan 

as a solution to the problem 𝐴𝑋 ≅ 𝐵 and it is particularly useful when data stored in 𝐴 and 𝐵 

are disturbed by a noise or generally perturbed [39]. Least-squares method and total least-

squares method assess the precision of the fitting in different ways: former minimizes the 

sum of the squared vertical distances from the acquired data to the fitting line, latter takes 

care about the squared perpendicular distance from the data to the fitting curve. The figure 

6.2, taken from [39] and slightly modified, shows efficiently this difference: 

 

Figure 6. 2 - Differences between least-squares method and total least-squares method 
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The circles are the acquired data, probably coming from a sensor test campaign, the dashed 

lines are the distances used in the evaluation of the error and the solid black line is the 

approximation trend optimized.  

Concerning our problem, the acquired data are the output of the reference model and the 

approximation is carried out by the optimization algorithms and the monitor model. Applying 

the TLSM, the assessment of the error is possible only evaluating the normal distance 

between a fit curve and a data trend (see figure 6.3). 

 

Figure 6. 3 - Total least squares method representation 

Assuming 𝑦1 = 𝐼3𝑒𝑞𝑢𝑖𝑣(𝑡) and 𝑦2 = 𝐼𝑚(𝑡), and considering that the distance 𝐵𝐶̅̅ ̅̅  is small 

enough to approximate the curve with the segment, the length of the horizontal line could 

be evaluated as: 

 𝐴𝐶̅̅ ̅̅ =
𝑦1 − 𝑦2
𝑑𝑦1
𝑑𝑡

 (6.4) 

 

Knowing that 𝐴𝐻̅̅ ̅̅  is the height of the hypotenuse, for every time instant it’s possible to state 

that: 
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𝐴𝐻̅̅ ̅̅ =
𝐴𝐵̅̅ ̅̅ ∙ 𝐴𝐶̅̅ ̅̅

𝐵𝐶̅̅ ̅̅
=

(𝑦1 − 𝑦2) ∙
𝑦1 − 𝑦2
𝑑𝑦1
𝑑𝑡

√(𝑦1 − 𝑦2)2 + (
𝑦1 − 𝑦2
𝑑𝑦1
𝑑𝑡

)

2
=
(𝑦1 − 𝑦2)

√𝑑𝑦1
𝑑𝑡

2

+ 1

  
(6.5) 

 

Hence, the error with the total least-squares method can be evaluated as: 

 
𝑒𝑟𝑟 =∑

(𝑦1(𝑡0) − 𝑦2(𝑡0))
2

√𝑑𝑦1(𝑡0)
𝑑𝑡

2

+ 1𝑡

=∑
(𝐼3𝑒𝑞𝑢𝑖𝑣(𝑡0) − 𝐼𝑚(𝑡0))

2

√𝑑𝐼3𝑒𝑞𝑢𝑖𝑣(𝑡0)
𝑑𝑡

2

+ 1
𝑡

 
(6.6) 

The total error, eventually, is then multiplied for the sampling time in order to avoid its 

dependence from the compiling time. 

A critical issue in the definition of the error is the measure unit: total least squares method 

uses the Pythagoras’ theorem to sum two values with different measure unit. Indeed, the 

first member (𝑦1 − 𝑦2) is a distance between values with the same measure unit, the second 

member (𝑦1−𝑦2𝑑𝑦1
𝑑𝑡

) introduces the derivative at the denominator. To fix this problem, in 

literature are findable some solutions. The first is the variables normalization carried out by 

the analysis of the precision measurement, the second is the substitution of the normal 

distance with the horizontal and vertical distances’ residuals. Both these solutions are 

affected by criticalities: precision measurement is not simple to obtain because time by time 

the error is forced to be equal to 0 in nominal conditions, and the second underestimates 

the error when the curve derivative is too small. The strategy thought is the substitution of 

the derivative at the denominator with its root mean square value: thereby the current has 

unitary average derivative.   

The root mean square (RMS) value has been assessed using the suitable Matlab command 

“rms”; the value of the derivative can be evaluated in two different ways with the “diff” or 

“gradient” Matlab commands. Trying these two solutions, the results were the same, so the 

“diff” command has been chosen thanks to its slightly higher computational speed. 
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6.3. Command choice and calibration 

In the next chapter, the results coming from the optimization paths are reported. All data 

contained in those tables represents the fault parameters resulting from a chirp command 

in the Simulink models. The command time history strongly affects the reliability and 

precision of the data, since it can change the behaviour and the dynamic response of the 

two models, as already seen in chapter 4.  

The chirp is a signal in which frequency linearly varies (can both increase or decrease) and 

particularly applies to laser, radar and sonar purposes. This command has been chosen for 

our problem due to multiple reasons: firstly, it’s important to see the evaluation of the 

position, speed and current errors in the closed-loop response, in which the controller 

iterates time by time the difference between sets and feedbacks, in a second time this 

command give the possibility to analyse the changes in the motor characteristic which follow 

the inversion of rotation sense. With only a sense of rotation, for example in open-loop 

condition as carried out by the step command, some faults are not recognizable (see, for 

example, the dynamic response to a step command of the proportional gain fault, chapter 

4.6.3). The parameters used for the chirp command during optimization process are 

summarized in table below. 

Table 7 - Chirp parameters used in optimization process 

Initial amplitude of the signal 0.005 [rad] 
Initial frequency 0 [Hz] 
Target frequency 15 [Hz] 
Time in which the target frequency is achieved 0.5 [s] 

 

The chirp command, due to the multiple simplifications of the monitor model, introduces a 

slightly different behaviour between the currents of the high-fidelity and monitor models.  

Figure 6.4 depicts the trend of the current coming from the two simulations in nominal 

conditions. 
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Figure 6. 4 - Comparison between nominal conditions in monitor and reference models 

 

This static error is required to be null in nominal conditions, in order to realize the simulations 

of the two models from same starting trends. To achieve this goal, a static calibration has 

been carried out: in Matlab environment the difference between the two aforementioned 

trends is evaluated point by point and stored in a suitable external file as a row vector. In 

the fitness function, this error is recalled every iteration to evaluate the right monitor model’s 

current. 
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7. Results 

This chapter focuses on the optimization results obtained by the simulations performed in 

Matlab-Simulink environment. Matlab is the R2018a version, Simulink is the 1.61 version,  

calculations are managed by an Intel®Core™ i5-6200U with a CPU @2.3-2.4 GHz and 8 

GB of Random Access Memory (RAM), using Window 10 Pro 64 bit. 

7.1. Optimization parameters 

Once the writing of the algorithms was completed, there was the necessity to find the rightest 

optimization parameters possible. The aim was to obtain reliable data, characterised by a 

high precision, in a short amount of time. To achieve this goal, a long calibration has been 

carried out to choose the common main parameters: the population size (number of search 

agents), the number of generations, the function tolerance and the parallelization. 

➢ Population size is the number of individuals of each generation in Genetic Algorithm 

and Differential Evolution (in Particle Swarm Optimization is called the “swarm size”, 

in Grey wolf Optimization is the “number of search agents”). Increasing this parameter 

allows to achieve a better precision and a reliable data, but the time is unacceptable 

longer. 

➢ Number of generations is the maximum number of different iterations. In every 

generation the best individuals are chosen as a temporary solution to the problem: if 

one of these solutions meets the stopping criteria, the algorithm stops its work. In 

PSO and GWO this parameter is called “number of iterations”, because these two 

algorithms do not exploit the evolution strategies of species. Increase the number of 

generations, produce the same results given by the population size increase, i.e. a 

better quality of the solutions, but an incredibly longer computational time. 

➢ Function tolerance is the average relative change in the best fitness function value. 

Imposing this number, the algorithm stops iterating if the relative change between the 

best value of a generation and that of the next is less than the value set. It’s important 

to set a number which allows the right stop: if an iteration recalls as best value the 

individual of the previous generation (as DE algorithm does), whichever number has 

been set the iteration will stop. In this case it’s important to add another stopping 

criterium. 
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➢ Parallelization is the choice to split or not the computational efforts over different 

cores. Do not parallelize means that the evaluation is carried out in a serial mode, so 

the algorithm calls the fitness function on only one individual at a time; using parallel 

computation means that the algorithm calls multiple individuals at the same time 

(depending on the number of core processor) and evaluates their fitness with the 

objective. In our case, two individuals are investigated at the same time, thanks to 

the Dual Core processor. The computational time, with the parallelization on, is less 

than the serial process, but it requires strong modifications to DE and GWO codes in 

order to implement this feature.  

In table 8 is reported an example of the calibration process, in this case applied to the 

Genetic Algorithm. The name on the left are highlighted in red if the parameters chosen do 

not have achieved satisfying results, in yellow if the parameters was right but the 

computational time or the precision can be improved, in green the optimal combination.  

Table 8 – Calibration process for Genetic Algorithm 

# Population  StoppingCrit UseParallel 
Rif #Iterations OptTime FAILURE PopType PopSize Gen TimeLim FuncTol 
GA001   >2400 Na DV 200 def def def FALSE 
GA002 11 540 Na DV 100 def def def FALSE 
GA003 43 >2400 Na DV 100 def def def FALSE 
GA004 68 >2400 Na DV 100 def def def FALSE 
GA005 46 2400 Na DV 100 300 2400 1E-05 FALSE 
GA006 46 2400 Na DV 100 300 2400 1E-05 FALSE 
GA007 200 2091 Na DV 20 200 def 1E-09 FALSE 
GA008 200 1388 Bklsh DV 20 200 def 1E-09 FALSE 
GA009 200 2738 Bklsh DV 40 200 def 1E-09 FALSE 
GA010 200 970 Bklsh DV 20 200 def 1E-09 TRUE 
GA011 143 1097 Na DV 20 200 def 1E-09 TRUE 
GA012 200 2175 Gain DV 50 200 def 1E-09 TRUE 

 

Yellow cells are the modified parameters: the aim of each try is to test the effectiveness of 

the modification implemented. The “def” label indicates Matlab’s default values:  

➢ number of generations is set to 100∙(variables number=8). These number is 

constantly decreased to drop the optimization time;  

➢ limit of time is set to default as infinite: I’ve introduced it only twice to see how many 

optimizations the algorithm could complete in 40 minutes.  
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➢ Function tolerance is set to 10-6 (1E-06), and after some tries it has been set to 10-9. 

It’s important to underline that after the sixth attempt (GA006), due to the small number of 

iterations carried out in a long time, I’ve suitably modified the fitness function, getting rid of 

all code rows which only introduce additional computational time and do not provide 

essential outputs. It’s possible to see how the number of iterations per minute moves from 

1.15 of GA006 to 5.74 of GA007.  

After calibration process, the population size is set to 50, the maximum number of 

generations is set to 200, the function tolerance is set to 10-9 for GA and PSO, 10-12 for DE 

and 10-16 for GWO, and the parallelization is set to true. The stopping criterium has been 

developed taking care of the number of the actual iteration, the value of the objective function 

(in our case the error) and the difference between the error of one iteration and the same 

value in the previous iteration. The code developed could be summarized with the pseudo-

code below: 

if (Iteration number > 20 && Error value < 10-3)  

 

criterium=error value(previous iteration)-error value(current 

iteration) 

 

if criterium < Function tolerance 

  

break (stop the algorithm’s for loop) 

 

end if  

 

end if 

 

The iteration number and the error value used in the first if have been chosen after some 

attempts. Using the “display” option of the algorithms, with which it’s possible to see the 

objective function evaluated for each iteration, it was clear that from the thirtieth generation 

the value of the error slightly changes, arriving around 5∙10-4. Setting this value as error goal 

in the first if, the iterations never stop, because only in some random conditions the 

algorithm reaches this level of precision. The value 10-3 is the result of a compromise, 

because if the fault is high (> 0.7) the optimization makes a greater effort than if the fault is 

low (< 0.25), because it starts from nominal condition (usually 0). The 10-3 value allows to 

stop pretty always the low fault detection and sometimes the high fault detection.  

Differential Evolution is a particular case, because all other algorithms has implemented 

determined mutation coefficient or random number in order to explore all function domain, 
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DE instead requires the setting of the mutation factor 𝐹 and cross-over ratio 𝐶𝑅. In literature, 

it’s possible to find some papers oriented to the research on the optimal combination of 

these two parameters. Using the suggestions coming from [40], in first approximation the 

mutation factor 𝐹 = 0.5 and cross-over ratio 𝐶𝑅 = 0.9 are set. With these values, ten different 

optimizations are carried out, in order to find the mean percentual error (see next paragraph 

for the definition of the error) and the average computational time. After some attempts in 

which 15 different combination are tested (so the overall number of optimizations has been 

150), the chosen parameters are 𝐹 = 0.9 and 𝐶𝑅 = 0.95. In tables below the differences 

concerning the precision and the computational time between two set of coefficients are 

reported. It’s clear that both in terms of average percentual error and compiling time, the 

second combination of options is strongly better than the first, in which in only one case the 

error is less than the 2%. The computational time strongly drop from the first case and the 

second because the parallelization has been implemented. It’s important to underline that in 

both optimizations shown below, the stopping criterium was not implemented yet. 

Table 9 - Low friction fault detection with DE optimization (F=0.5 and CR=0.9) 

Obj. 0,25 0 0 0 0 0 0,5 0,5 Time % Error Generations  

DE 
Friction 

Low fault 
 

F=0.5 
CR=0.9 

# 1 0,2181 0,0041 0,0147 0,0653 0,0051 0,0324 0,5214 0,4327 3793 10,545 200 Avg % error 

# 2 0,2450 0,0030 0,0006 0,0004 0,0024 0,0061 0,0464 0,4804 3753 2,166 200 

9,12 
# 3 0,2472 0,0010 0,0002 0,0000 0,0007 0,0027 0,9856 0,4910 3749 0,997 200 

# 4 0,2269 0,0120 0,0165 0,0007 0,0142 0,0455 0,0775 0,4226 3760 9,789 200 

# 5 0,2320 0,0009 0,0030 0,0442 0,0005 0,0220 0,5757 0,4798 3771 5,641 200 

# 6 0,1420 0,0117 0,1368 0,0519 0,0135 0,0212 0,5405 0,2631 3782 29,994 200 Avg comp. Time 

# 7 0,2263 0,0061 0,0216 0,0075 0,0168 0,0094 0,5385 0,4538 3779 6,022 200 

3773 
# 8 0,2374 0,0072 0,0001 0,0198 0,0021 0,0056 0,9733 0,4702 3793 3,916 200 

# 9 0,2398 0,0038 0,0001 0,0000 0,0151 0,0027 0,3701 0,4761 3768 3,042 200 

# 10 0,1870 0,0061 0,0779 0,0344 0,0452 0,1032 0,4411 0,3892 3787 19,043 200 

 

Table 10 - Low friction fault detection with DE optimization (F=0.9 and CR=0.95) 

Obj. 0,25 0 0 0 0 0 0,5 0,5 Time % Error Generations  

DE 
Friction 

Low fault 
 

F=0.9 
CR=0.95 

# 1 0,2462 0,0020 0,0001 0,0000 0,0007 0,0026 0,1874 0,4888 2692 1,232 200 Avg % error 

# 2 0,2477 0,0003 0,0000 0,0004 0,0002 0,0028 0,1403 0,4929 2582 0,805 200 

1,12 
# 3 0,2459 0,0026 0,0002 0,0001 0,0005 0,0055 0,0513 0,4885 2621 1,387 200 

# 4 0,2479 0,0011 0,0000 0,0002 0,0000 0,0023 0,9437 0,4880 2418 1,246 200 

# 5 0,2473 0,0004 0,0001 0,0000 0,0000 0,0023 0,1536 0,4932 2472 0,772 200 

# 6 0,2461 0,0012 0,0002 0,0005 0,0006 0,0031 0,0698 0,4892 2472 1,203 200 Avg comp. Time 

# 7 0,2464 0,0017 0,0001 0,0007 0,0000 0,0009 0,1437 0,4882 2458 1,254 200 

2511 
# 8 0,2461 0,0025 0,0001 0,0000 0,0001 0,0055 0,0675 0,4872 2479 1,490 200 

# 9 0,2475 0,0017 0,0001 0,0006 0,0002 0,0037 0,1537 0,4930 2488 0,861 200 

# 10 0,2471 0,0012 0,0001 0,0002 0,0001 0,0023 0,9857 0,4915 2430 0,939 200 
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7.2. Faults detection 

As already explained, the reference current is generated by injecting a fault vector k in the 

high-fidelity model; then faults detection is carried out by the different algorithms, which, 

using the monitor model, try to approximate as best as they can the values of each fault 

coefficient matching the equivalent current trend. All results obtained will be displayed as 

table 9 and 10: for each objective function, reported in light blue in the first row, ten different 

optimizations are evaluated and listed below. In each row, the percentual error is calculated 

with the relation above: 

 

𝐸𝑟𝑟% = 100 ∙ √∑(𝑘𝑖 − 𝑘�̂�)
2
+ 𝑘6̂ ∙ (𝑘7 − 𝑘7̂)

2
+ (𝑘8 − 𝑘8̂)

2
6

𝑖=1

 (7.1) 

where �̂� = [𝑘1̂, 𝑘2̂, 𝑘3̂, 𝑘4̂, 𝑘5̂, 𝑘6̂, 𝑘7̂, 𝑘8̂] are the values of the reference model’s fault vector. 

The aforementioned relation is entirely equal to a mean square error, with a slight difference 

in the definition of the eccentricity phase error 𝑘7, because when the eccentricity coefficient 

ζ is zero, the phase eccentricity can be whatever value. 

For every fault, two different objective functions are investigated: the low fault detection (with 

𝑘�̂� ≤ 0.25) and the high fault detection (𝑘�̂� ≥ 0.7), indicated with a bold font in the first row. 

Every objective function is obviously approximated by all the four optimization algorithms.  

The optimization has been carried out not only for the single fault implementation, but also 

for the multiple fault implementation. To simulate in a more accurate way the real behaviour 

of an electromechanical actuator, in which faults are usually small due to the planned 

maintenance of the system, the multiple fault is implemented with this pseudo-code (special 

thanks to Pier Carlo Berri for the suggestion): 

RandomFaultParams=rand(1,8); 
RandomFaultParams(:,1:6)=RandomFaultParams(:,1:6).^7; 
RandomFaultParams(:,8)=((RandomFaultParams(:,8)*2-1).^7+1)/2; 
 

It defines the fault parameters randomly and then raises to exponent equal to 7 to decrease 

their absolute values (they are normalized); for the eccentricity and gain faults, which 
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nominal condition are 𝑘𝑖 = 0.5, the definition of the parameter is slightly different, but follows 

the same reasoning.  

7.2.1. Single fault detection – Friction 

The results for a low friction fault are now reported. 

Table 11 - Low friction fault detection with Genetic Algorithm 

Obj. 0,25 0 0 0 0 0 0,5 0,5 Time % Error Generations  

GA_001 
Friction 

Low fault 

# 1 0,2446 0,0009 0,0030 0,0023 0,0003 0,0015 0,7045 0,4851 2622 1,64 200 Avg % error 

# 2 0,2378 0,0033 0,0099 0,0059 0,0060 0,0095 0,3734 0,4685 2557 3,76 200 

2,09 
# 3 0,2443 0,0032 0,0012 0,0010 0,0019 0,0058 0,8864 0,4818 2560 2,05 200 

# 4 0,2439 0,0004 0,0038 0,0025 0,0014 0,0015 0,6673 0,4838 2556 1,80 200 

# 5 0,2460 0,0005 0,0004 0,0009 0,0024 0,0019 0,3378 0,4861 2560 1,48 200 

# 6 0,2419 0,0043 0,0002 0,0048 0,0054 0,0007 0,5121 0,4830 2562 2,06 200 Avg comp. Time 

# 7 0,2443 0,0024 0,0012 0,0003 0,0010 0,0075 0,9905 0,4829 2571 2,01 200 

2633 
# 8 0,2445 0,0001 0,0010 0,0100 0,0003 0,0135 0,6144 0,4889 2568 2,10 200 

# 9 0,2456 0,0038 0,0001 0,0024 0,0002 0,0053 0,0766 0,4838 2719 1,83 200 

# 10 0,2418 0,0014 0,0034 0,0081 0,0024 0,0064 0,5147 0,4829 3055 2,20 200 

  

Table 12 - Low friction fault detection with Particle Swarm Optimization 

Obj. 0,25 0 0 0 0 0 0,5 0,5 Time % Error Generations  

PSO_001 
Friction 

Low fault 

# 1 0,2478 0,0001 0,0000 0,0002 0,0001 0,0015 0,9263 0,4946 1953 0,60 152 Avg % error 

# 2 0,2478 0,0016 0,0000 0,0000 0,0000 0,0004 0,1100 0,4912 2565 0,92 200 

0,93 
# 3 0,2481 0,0000 0,0000 0,0001 0,0000 0,0000 0,7033 0,4914 966 0,89 75 

# 4 0,2481 0,0017 0,0000 0,0000 0,0000 0,0001 0,3409 0,4869 1159 1,33 91 

# 5 0,2487 0,0008 0,0000 0,0000 0,0000 0,0005 0,8649 0,4961 1820 0,43 140 

# 6 0,2481 0,0002 0,0000 0,0001 0,0000 0,0004 0,9995 0,4912 1171 0,91 92 Avg comp. Time 

# 7 0,2479 0,0013 0,0000 0,0000 0,0000 0,0000 0,6329 0,4912 2175 0,92 169 

1662 
# 8 0,2476 0,0000 0,0000 0,0000 0,0000 0,0042 0,1160 0,4912 896 1,02 69 

# 9 0,2479 0,0015 0,0000 0,0001 0,0000 0,0019 0,9266 0,4879 2006 1,26 156 

# 10 0,2478 0,0010 0,0000 0,0001 0,0000 0,0002 0,0677 0,4899 1911 1,03 148 

 

Table 13 - Low friction fault detection with Differential Evolution 

Obj. 0,25 0 0 0 0 0 0,5 0,5 Time % Error Generations  

DE_001 
Friction 

Low fault 

# 1 0,2420 0,0080 0,0033 0,0019 0,0122 0,0052 0,0630 0,4908 414 2,03 26 Avg % error 

# 2 0,2428 0,0040 0,0008 0,0070 0,0024 0,0064 0,6693 0,4843 577 2,03 45 

2,50 
# 3 0,2409 0,0036 0,0062 0,0106 0,0049 0,0051 0,2256 0,4743 363 3,10 28 

# 4 0,2395 0,0027 0,0038 0,0010 0,0091 0,0062 0,2565 0,4864 420 2,10 33 

# 5 0,2362 0,0011 0,0011 0,0102 0,0026 0,0006 0,8173 0,4758 444 2,98 35 

# 6 0,2536 0,0039 0,0013 0,0040 0,0001 0,0002 0,2549 0,4831 293 1,82 22 Avg comp. Time 

# 7 0,2487 0,0044 0,0007 0,0006 0,0082 0,0113 0,1880 0,4783 339 2,65 27 

393 
# 8 0,2418 0,0031 0,0044 0,0089 0,0008 0,0058 0,7012 0,4770 345 2,72 27 

# 9 0,2459 0,0025 0,0003 0,0128 0,0058 0,0046 0,7530 0,4857 408 2,11 32 

# 10 0,2454 0,0079 0,0014 0,0047 0,0016 0,0047 0,9569 0,4675 335 3,45 27 
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Table 14 - Low friction fault detection with Grey Wolf Optimization 

Obj. 0,25 0 0 0 0 0 0,5 0,5 Time % Error Generations  

GWO_001 
Friction 

Low fault 

# 1 0,2453 0,0117 0,0000 0,0000 0,0000 0,0000 0,0013 0,4867 1478 1,83 112 Avg % error 

# 2 0,2489 0,0091 0,0000 0,0005 0,0000 0,0000 0,0000 0,4931 327 1,15 26 

1,56 
# 3 0,2477 0,0000 0,0000 0,0000 0,0000 0,0000 0,0001 0,5103 564 1,06 45 

# 4 0,2437 0,0033 0,0000 0,0000 0,0000 0,0000 0,0000 0,4994 262 0,72 21 

# 5 0,2416 0,0001 0,0000 0,0007 0,0000 0,0019 0,0002 0,4635 349 3,76 28 

# 6 0,2534 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,4954 592 0,57 47 Avg comp. Time 

# 7 0,2501 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,5153 267 1,53 21 

484 
# 8 0,2500 0,0000 0,0003 0,0000 0,0000 0,0000 0,0000 0,4788 269 2,12 21 

# 9 0,2484 0,0000 0,0002 0,0000 0,0000 0,0000 0,0000 0,4878 264 1,23 21 

# 10 0,2393 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,4873 475 1,66 38 

 

The results coming from a high friction fault are now reported. 

 

Table 15 - High friction fault detection with Genetic Algorithm 

Obj. 0,75 0 0 0 0 0 0,5 0,5 Time % Error Generations  

GA_002 
Friction 

High fault 

# 1 0,7307 0,0051 0,0000 0,0040 0,0024 0,0055 0,9739 0,4665 2589 3,98 200 Avg % error 

# 2 0,7337 0,0053 0,0017 0,0010 0,0019 0,0002 0,4181 0,4717 2494 3,32 200 

4,49 
# 3 0,7337 0,0012 0,0003 0,0009 0,0022 0,0081 0,2181 0,4641 2495 4,03 200 

# 4 0,7327 0,0037 0,0021 0,0005 0,0012 0,0019 0,6858 0,4643 2491 3,99 200 

# 5 0,7205 0,0146 0,0195 0,0012 0,0119 0,0094 0,2609 0,4490 2491 6,55 200 

# 6 0,7359 0,0045 0,0016 0,0003 0,0031 0,0032 0,9954 0,4655 2490 3,79 200 Avg comp. Time 

# 7 0,7350 0,0037 0,0006 0,0029 0,0019 0,0019 0,9808 0,4650 2491 3,84 200 

2501 
# 8 0,7228 0,0104 0,0123 0,0169 0,0097 0,0071 0,4346 0,4740 2490 4,58 200 

# 9 0,7083 0,0141 0,0061 0,0179 0,0298 0,0109 0,3478 0,4428 2489 8,11 200 

# 10 0,7365 0,0039 0,0003 0,0005 0,0012 0,0001 0,4713 0,4768 2489 2,71 200 

 

Table 16 - High friction fault detection with Particle Swarm Optimization 

Obj. 0,75 0 0 0 0 0 0,5 0,5 Time % Error Generations  

PSO_002 
Friction 

High fault 

# 1 0,7386 0,0000 0,0000 0,0000 0,0000 0,0028 0,1419 0,4767 969 2,61 77 Avg % error 

# 2 0,7376 0,0000 0,0000 0,0000 0,0000 0,0001 0,2152 0,4754 2173 2,75 174 

2,77 
# 3 0,7393 0,0001 0,0000 0,0000 0,0000 0,0020 0,1293 0,4795 2038 2,32 163 

# 4 0,7388 0,0001 0,0000 0,0000 0,0000 0,0000 0,5592 0,4780 2491 2,47 200 

# 5 0,7369 0,0031 0,0000 0,0000 0,0000 0,0082 0,0350 0,4734 1725 3,12 138 

# 6 0,7380 0,0018 0,0001 0,0000 0,0000 0,0000 0,3575 0,4754 2495 2,74 200 Avg comp. Time 

# 7 0,7391 0,0020 0,0000 0,0000 0,0000 0,0022 0,0322 0,4756 2094 2,69 168 

1875 
# 8 0,7389 0,0012 0,0001 0,0003 0,0000 0,0049 0,2341 0,4776 918 2,55 73 

# 9 0,7368 0,0021 0,0000 0,0000 0,0001 0,0076 0,0402 0,4700 1994 3,38 160 

# 10 0,7361 0,0002 0,0000 0,0002 0,0000 0,0049 0,9970 0,4732 1853 3,07 148 
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Table 17 - High friction fault detection with Differential Evolution 

Obj. 0,75 0 0 0 0 0 0,5 0,5 Time % Error Generations  

DE_002 
Friction 

High fault 

# 1 0,7366 0,0034 0,0000 0,0000 0,0002 0,0064 0,0910 0,4732 2730 3,09 200 Avg % error 

# 2 0,7368 0,0045 0,0001 0,0000 0,0000 0,0091 0,1242 0,4702 2675 3,43 200 

3,20 
# 3 0,7353 0,0025 0,0004 0,0001 0,0002 0,0040 0,0070 0,4705 2733 3,34 200 

# 4 0,7356 0,0042 0,0001 0,0002 0,0001 0,0082 0,0495 0,4740 2654 3,13 200 

# 5 0,7351 0,0023 0,0001 0,0002 0,0000 0,0045 0,9983 0,4702 2518 3,37 200 

# 6 0,7363 0,0013 0,0001 0,0003 0,0001 0,0056 0,0431 0,4737 2683 3,03 200 Avg comp. Time 

# 7 0,7368 0,0031 0,0007 0,0006 0,0001 0,0073 0,0844 0,4736 2632 3,08 200 

2649 
# 8 0,7366 0,0026 0,0008 0,0004 0,0002 0,0067 0,0393 0,4735 2648 3,07 200 

# 9 0,7369 0,0042 0,0000 0,0002 0,0000 0,0088 0,1282 0,4705 2648 3,39 200 

# 10 0,7362 0,0039 0,0000 0,0001 0,0004 0,0046 0,9955 0,4734 2573 3,07 200 

 

Table 18 - High friction fault detection with Grey Wolf Optimization 

Obj. 0,75 0 0 0 0 0 0,5 0,5 Time % Error Generations  

GWO_002 
Friction 

High fault 

# 1 0,7319 0,0218 0,0071 0,0000 0,0000 0,0000 0,0000 0,4551 2649 5,35 200 Avg % error 

# 2 0,7334 0,0000 0,0000 0,0000 0,0000 0,0089 0,0350 0,4737 2704 3,26 200 

3,49 
# 3 0,7345 0,0000 0,0000 0,0000 0,0000 0,0083 0,0310 0,4662 2598 3,83 200 

# 4 0,7357 0,0000 0,0000 0,0000 0,0000 0,0058 0,0271 0,4709 2601 3,31 200 

# 5 0,7346 0,0000 0,0000 0,0000 0,0000 0,0058 0,0270 0,4733 2582 3,15 200 

# 6 0,7365 0,0000 0,0000 0,0000 0,0000 0,0072 0,0290 0,4705 2578 3,34 200 Avg comp. Time 

# 7 0,7366 0,0000 0,0000 0,0000 0,0000 0,0072 0,0200 0,4713 2537 3,27 200 

2585 
# 8 0,7362 0,0000 0,0000 0,0000 0,0000 0,0072 0,0195 0,4702 2531 3,38 200 

# 9 0,7373 0,0000 0,0000 0,0000 0,0000 0,0073 0,0192 0,4743 2534 2,98 200 

# 10 0,7365 0,0000 0,0000 0,0000 0,0000 0,0076 0,0194 0,4735 2534 3,09 200 

 

Summarizing the average values of data obtained in table 19, it’s clear that a low value of 

friction fault is simpler to recognize and optimize than a high fault: indeed, both compiling 

time and percentual error are quite the half. This is due the nature of the optimizations, 

because all iterations start from nominal conditions, and the friction in a non-faulty motor is 

equal to 0. The quickest algorithm for low fault detection has been Differential Evolution, 

with around 6 minutes and half, but the best precision is achieved with Particle Swarm 

Optimization (less than 1%); for the high fault the best algorithm both for speed and precision 

has been the Particle Swarm Optimization (table 16). 

Table 19 - Summary of friction fault average values 

Friction 

Type Avg Comp. Time (s) % error 

Low fault 1293 1,77 

High Fault 2403 3,49 
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7.2.2. Single fault detection – Backlash 

As already done for the friction fault, now the results of optimization of backlash fault are 

listed below. 

Table 20 - Low backlash fault detection with Genetic Algorithm 

Obj. 0 0,0909 0 0 0 0 0,5 0,5 Time % Error Generations  

GA_003 
Backlash 
Low fault 

# 1 0,0022 0,0881 0,0008 0,0023 0,0034 0,0147 0,4823 0,5094 2552 1,83 200 Avg % error 

# 2 0,0012 0,0860 0,0006 0,0012 0,0004 0,0076 0,4937 0,5063 2316 1,12 200 

1,68 
# 3 0,0024 0,0887 0,0028 0,0049 0,0024 0,0097 0,4559 0,5067 2058 1,37 178 

# 4 0,0008 0,0891 0,0006 0,0028 0,0027 0,0114 0,5152 0,5122 2315 1,73 200 

# 5 0,0006 0,0866 0,0011 0,0019 0,0007 0,0067 0,5189 0,5064 2440 1,05 200 

# 6 0,0042 0,0875 0,0002 0,0084 0,0007 0,0110 0,4524 0,5267 2400 3,06 196 Avg comp. Time 

# 7 0,0002 0,0872 0,0017 0,0026 0,0075 0,0092 0,4447 0,5049 2445 1,38 200 

2336 
# 8 0,0000 0,0871 0,0036 0,0078 0,0018 0,0140 0,4908 0,5026 1919 1,71 157 

# 9 0,0010 0,0870 0,0026 0,0038 0,0015 0,0063 0,4864 0,5066 2452 1,11 200 

# 10 0,0000 0,0873 0,0001 0,0090 0,0062 0,0186 0,5073 0,5104 2467 2,42 200 

 

Table 21 - Low backlash fault detection with Particle Swarm Optimization 

Obj. 0 0,0909 0 0 0 0 0,5 0,5 Time % Error Generations  

PSO_003 
Backlash 
Low fault 

# 1 0,0000 0,0881 0,0000 0,0001 0,0001 0,0009 0,3684 0,5004 1376 0,30 118 Avg % error 

# 2 0,0000 0,0880 0,0000 0,0000 0,0000 0,0000 0,0234 0,5006 726 0,30 62 

0,29 
# 3 0,0000 0,0885 0,0001 0,0002 0,0001 0,0000 0,9767 0,4999 1125 0,25 97 

# 4 0,0000 0,0879 0,0009 0,0000 0,0000 0,0015 0,5617 0,5003 1185 0,35 102 

# 5 0,0001 0,0880 0,0001 0,0002 0,0000 0,0007 0,1135 0,5006 1221 0,30 99 

# 6 0,0000 0,0884 0,0002 0,0000 0,0000 0,0001 0,9311 0,5015 1178 0,29 96 Avg comp. Time 

# 7 0,0000 0,0885 0,0001 0,0000 0,0003 0,0000 0,9999 0,4998 1104 0,24 90 

1242 
# 8 0,0002 0,0877 0,0008 0,0000 0,0001 0,0020 0,4326 0,5005 1981 0,39 162 

# 9 0,0000 0,0885 0,0002 0,0001 0,0000 0,0004 0,3193 0,5001 1109 0,25 90 

# 10 0,0000 0,0883 0,0000 0,0000 0,0000 0,0005 0,0847 0,5006 1413 0,27 114 

 

Table 22 - Low backlash fault detection with Differential Evolution 

Obj. 0 0,0909 0 0 0 0 0,5 0,5 Time % Error Generations  

DE_003 
Backlash 
Low fault 

# 1 0,0072 0,0956 0,0003 0,0044 0,0052 0,0071 0,5636 0,4830 407 2,15 26 Avg % error 

# 2 0,0045 0,0730 0,0052 0,0253 0,0113 0,0742 0,5831 0,5176 299 8,36 21 

3,93 
# 3 0,0108 0,0826 0,0063 0,0067 0,0215 0,0110 0,3518 0,5068 290 3,01 22 

# 4 0,0006 0,0996 0,0008 0,0030 0,0275 0,0277 0,4377 0,4890 296 4,16 22 

# 5 0,0011 0,0876 0,0051 0,0180 0,0157 0,0451 0,5171 0,5008 290 5,14 21 

# 6 0,0160 0,0925 0,0062 0,0021 0,0086 0,0035 0,3176 0,5163 549 2,55 59 Avg comp. Time 

# 7 0,0113 0,0749 0,0024 0,0160 0,0120 0,0355 0,3931 0,5227 303 5,08 23 

334 
# 8 0,0017 0,0729 0,0305 0,0001 0,0083 0,0072 0,8085 0,5173 282 4,10 21 

# 9 0,0029 0,0970 0,0144 0,0050 0,0035 0,0106 0,4829 0,4999 352 2,01 27 

# 10 0,0012 0,1023 0,0089 0,0104 0,0088 0,0036 0,5291 0,5184 268 2,73 21 
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Table 23 - Low backlash fault detection with Grey Wolf Optimization 

Obj. 0 0,0909 0 0 0 0 0,5 0,5 Time % Error Generations  

GWO_003 
Backlash 
Low fault 

# 1 0,0000 0,0656 0,0000 0,0000 0,0000 0,0000 0,0000 0,5413 319 4,84 21 Avg % error 

# 2 0,0000 0,1050 0,0000 0,0000 0,0000 0,0000 0,0025 0,4856 283 2,01 21 

3,91 
# 3 0,0000 0,0902 0,0000 0,0009 0,0073 0,0000 0,0000 0,4655 310 3,52 21 

# 4 0,0000 0,0822 0,0000 0,0000 0,0000 0,0000 0,0013 0,4524 286 4,84 21 

# 5 0,0000 0,0644 0,0000 0,0000 0,0000 0,0095 0,0000 0,5161 859 3,27 64 

# 6 0,0000 0,0608 0,0000 0,0000 0,0000 0,0018 0,0000 0,4982 311 3,02 24 Avg comp. Time 

# 7 0,0000 0,0881 0,0000 0,0000 0,0000 0,0006 0,0000 0,4865 297 1,38 23 

585 
# 8 0,0000 0,0698 0,0000 0,0000 0,0000 0,0004 0,0000 0,5247 284 3,25 21 

# 9 0,0000 0,0201 0,0000 0,0000 0,0000 0,0001 0,0000 0,5171 2610 7,29 200 

# 10 0,0000 0,0659 0,0000 0,0000 0,0000 0,0000 0,0000 0,5515 289 5,72 23 

 

Now results coming from the optimization of the high backlash fault are shown. 

 

Table 24 - High backlash fault detection with Genetic Algorithm 

Obj. 0 0,747 0 0 0 0 0,5 0,5 Time % Error Generations  

GA_004 
Backlash 
High fault 

# 1 0,0007 0,7341 0,0026 0,0009 0,0011 0,0026 0,2601 0,4949 2615 1,48 200 Avg % error 

# 2 0,0002 0,7358 0,0014 0,0009 0,0039 0,0111 0,0528 0,4973 2557 1,75 200 

2,25 
# 3 0,0018 0,7335 0,0039 0,0012 0,0012 0,0089 0,0979 0,4964 2579 1,79 200 

# 4 0,0005 0,7438 0,0014 0,0076 0,0011 0,0293 0,9921 0,4977 2656 3,39 200 

# 5 0,0004 0,7404 0,0005 0,0072 0,0000 0,0274 0,0351 0,5028 2671 3,20 200 

# 6 0,0014 0,7339 0,0008 0,0007 0,0015 0,0078 0,9651 0,4959 2558 1,67 200 Avg comp. Time 

# 7 0,0018 0,7406 0,0001 0,0004 0,0010 0,0140 0,9946 0,5002 2552 1,72 200 

2524 
# 8 0,0018 0,7380 0,0004 0,0011 0,0031 0,0128 1,0000 0,4987 2351 1,76 182 

# 9 0,0009 0,7386 0,0007 0,0028 0,0009 0,0175 0,9984 0,5007 2548 2,17 200 

# 10 0,0002 0,7470 0,0037 0,0002 0,0010 0,0317 0,0156 0,4978 2155 3,55 169 

 

Table 25 - High backlash fault detection with Particle Swarm Optimization 

Obj. 0 0,747 0 0 0 0 0,5 0,5 Time % Error Generations  

PSO_004 
Backlash 
High fault 

# 1 0,0000 0,7299 0,0019 0,0000 0,0003 0,0000 0,1664 0,4954 1005 1,82 78 Avg % error 

# 2 0,0002 0,7356 0,0000 0,0000 0,0000 0,0069 0,0560 0,4989 2249 1,40 176 

1,63 
# 3 0,0000 0,7298 0,0000 0,0010 0,0010 0,0000 0,6263 0,4954 1963 1,83 153 

# 4 0,0000 0,7317 0,0000 0,0000 0,0000 0,0001 0,9926 0,4973 1211 1,60 88 

# 5 0,0000 0,7332 0,0008 0,0013 0,0000 0,0063 0,0123 0,4982 1981 1,60 155 

# 6 0,0002 0,7331 0,0000 0,0064 0,0001 0,0053 0,9815 0,4963 1673 1,71 131 Avg comp. Time 

# 7 0,0001 0,7326 0,0000 0,0000 0,0000 0,0001 0,3726 0,4975 1419 1,50 111 

1634 
# 8 0,0000 0,7330 0,0000 0,0004 0,0005 0,0072 0,0590 0,4970 1562 1,67 122 

# 9 0,0001 0,7326 0,0000 0,0000 0,0000 0,0000 0,9962 0,4976 1728 1,50 135 

# 10 0,0000 0,7325 0,0000 0,0000 0,0010 0,0062 0,0629 0,4977 1547 1,66 121 
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Table 26 - High backlash fault detection with Differential Evolution 

Obj. 0 0,747 0 0 0 0 0,5 0,5 Time % Error Generations  

DE_004 
Backlash 
High fault 

# 1 0,0041 0,7264 0,0115 0,0070 0,0054 0,0244 0,3770 0,4914 383 3,67 27 Avg % error 

# 2 0,0005 0,7608 0,0033 0,0247 0,0045 0,0181 0,1349 0,4815 317 3,91 24 

3,92 
# 3 0,0064 0,7385 0,0316 0,0110 0,0060 0,0185 0,9579 0,5007 328 4,11 26 

# 4 0,0010 0,7484 0,0122 0,0008 0,0025 0,0473 0,4070 0,4763 335 5,46 26 

# 5 0,0080 0,7603 0,0054 0,0194 0,0067 0,0210 0,9578 0,4864 358 3,74 29 

# 6 0,0052 0,7368 0,0066 0,0220 0,0213 0,0020 0,7914 0,5117 265 3,55 20 Avg comp. Time 

# 7 0,0027 0,7346 0,0056 0,0137 0,0231 0,0164 0,3190 0,4973 297 3,48 24 

323 
# 8 0,0123 0,7629 0,0061 0,0043 0,0176 0,0022 0,9359 0,4814 312 3,33 25 

# 9 0,0006 0,7559 0,0058 0,0097 0,0075 0,0160 0,0918 0,5083 350 2,50 29 

# 10 0,0003 0,7281 0,0279 0,0081 0,0314 0,0206 0,0306 0,4854 280 5,42 22 

 

Table 27 - High backlash fault detection with Grey Wolf Optimization 

Obj. 0 0,747 0 0 0 0 0,5 0,5 Time % Error Generations  

GWO_004 
Backlash 
High fault 

# 1 0,0039 0,7510 0,0035 0,0192 0,0000 0,0000 0,0208 0,5270 556 3,37 39 Avg % error 

# 2 0,0030 0,7330 0,0020 0,0052 0,0002 0,0004 0,0182 0,4632 279 4,00 23 

3,80 
# 3 0,0003 0,7216 0,0055 0,0000 0,0029 0,0000 0,0000 0,5145 265 3,03 21 

# 4 0,0000 0,6857 0,0000 0,0000 0,0002 0,0000 0,0060 0,5104 633 6,25 49 

# 5 0,0003 0,7124 0,0000 0,0000 0,0000 0,0000 0,0000 0,4778 378 4,15 29 

# 6 0,0000 0,6857 0,0000 0,0000 0,0001 0,0030 0,0000 0,4881 671 6,30 53 Avg comp. Time 

# 7 0,0000 0,7142 0,0000 0,0000 0,0000 0,0015 0,0000 0,4856 515 3,62 41 

476 
# 8 0,0000 0,7699 0,0000 0,0000 0,0000 0,0014 0,0000 0,4966 330 2,29 26 

# 9 0,0000 0,7322 0,0000 0,0000 0,0000 0,0000 0,0000 0,5283 251 3,21 21 

# 10 0,0009 0,7309 0,0000 0,0000 0,0000 0,0000 0,0000 0,4942 882 1,75 68 

 

As it’s summarised in tables above, backlash is a fault relatively simple to detect. For this 

reason, the average computational time is low both for low and high fault, with a value slightly 

greater than 1100 s; the average error is comparable too. Concerning the time, the best 

choice is Differential Evolution Algorithm, both for low and high fault; speaking about the 

precision, Particle Swarm Optimization provides the best performance, with an incredible 

0.3% of percentual error in low fault detection.   

Table 28 - Summary of backlash fault average values 

Backlash 

Type Avg Comp. Time (s) % error 

Low fault 1124 2,45 

High Fault 1239 2,90 
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7.2.3. Single fault detection – Short Circuit 

Obviously, the three parameters 𝑘(3), 𝑘(4), 𝑘(5) act in the same way into the model. For this 

reason, only the short circuit of the phase A (𝑘(3)) has been tested. 

Table 29 - Low short circuit fault detection with Genetic Algorithm 

Obj. 0 0 0,2 0 0 0 0,5 0,5 Time % Error Generations  

GA_005 
Short Circuit 

Low fault 

# 1 0,0007 0,0037 0,1875 0,0063 0,0002 0,0092 0,9737 0,5002 1672 1,77 200 Avg % error 

# 2 0,0001 0,0003 0,1722 0,0144 0,0242 0,0076 0,4304 0,5077 1662 4,11 200 

5,04 
# 3 0,0073 0,0093 0,1395 0,0251 0,0066 0,0478 0,9482 0,5094 1670 8,55 200 

# 4 0,0025 0,0032 0,1558 0,0097 0,0489 0,0074 0,9703 0,4949 1671 6,75 200 

# 5 0,0002 0,0210 0,1553 0,0040 0,0478 0,0189 0,0894 0,4843 1666 7,35 200 

# 6 0,0000 0,0572 0,1602 0,0128 0,0282 0,0313 0,9619 0,4482 1441 9,84 173 Avg comp. Time 

# 7 0,0020 0,0073 0,1839 0,0003 0,0051 0,0010 0,7861 0,5120 1665 2,21 200 

1644 
# 8 0,0019 0,0003 0,1771 0,0126 0,0087 0,0005 0,9637 0,5050 1665 2,81 200 

# 9 0,0001 0,0007 0,1741 0,0285 0,0065 0,0187 0,5177 0,5165 1662 4,63 200 

# 10 0,0009 0,0077 0,1823 0,0034 0,0039 0,0116 0,9997 0,5027 1665 2,40 200 

 

Table 30 - Low short circuit fault detection with Particle Swarm Optimization 

Obj. 0 0 0,2 0 0 0 0,5 0,5 Time % Error Generations  

PSO_005 
Short Circuit 

Low fault 

# 1 0,0000 0,0000 0,1960 0,0000 0,0000 0,0031 0,0000 0,4963 1688 0,65 112 Avg % error 

# 2 0,0000 0,0000 0,1917 0,0000 0,0001 0,0060 0,9683 0,4997 1399 1,06 87 

0,86 
# 3 0,0000 0,0000 0,1965 0,0000 0,0000 0,0000 0,0348 0,4997 1507 0,35 113 

# 4 0,0000 0,0010 0,1943 0,0001 0,0003 0,0069 0,1069 0,4968 3215 0,99 200 

# 5 0,0000 0,0005 0,1945 0,0000 0,0005 0,0056 0,1125 0,4976 1007 0,86 78 

# 6 0,0000 0,0012 0,1925 0,0000 0,0000 0,0050 0,0206 0,4969 1635 0,99 130 Avg comp. Time 

# 7 0,0000 0,0000 0,1942 0,0000 0,0000 0,0000 0,0000 0,5039 1120 0,70 89 

1695 
# 8 0,0000 0,0000 0,1951 0,0000 0,0000 0,0042 0,0470 0,4950 1691 0,84 134 

# 9 0,0000 0,0000 0,1919 0,0000 0,0003 0,0052 0,9578 0,5000 1622 0,99 125 

# 10 0,0000 0,0000 0,1913 0,0000 0,0002 0,0068 0,9583 0,4962 2061 1,21 166 

 

Table 31 - Low short circuit fault detection with Differential Evolution 

Obj. 0 0 0,2 0 0 0 0,5 0,5 Time % Error Generations  

DE_005 
Short Circuit 

Low fault 

# 1 0,0026 0,0008 0,1886 0,0016 0,0027 0,0056 0,1016 0,5154 830 2,05 33 Avg % error 

# 2 0,0015 0,0015 0,1789 0,0168 0,0006 0,0123 0,8214 0,5078 768 3,09 36 

2,44 
# 3 0,0051 0,0012 0,1768 0,0046 0,0107 0,0015 0,6343 0,5141 577 3,00 28 

# 4 0,0010 0,0026 0,1904 0,0081 0,0065 0,0014 0,7832 0,4929 642 1,62 31 

# 5 0,0015 0,0008 0,1825 0,0012 0,0026 0,0066 0,1345 0,5185 440 2,66 23 

# 6 0,0001 0,0011 0,1991 0,0052 0,0006 0,0032 0,0522 0,4730 428 2,77 26 Avg comp. Time 

# 7 0,0002 0,0052 0,1919 0,0064 0,0019 0,0014 0,1134 0,4978 486 1,20 31 

540 
# 8 0,0003 0,0039 0,1921 0,0170 0,0089 0,0030 0,5972 0,5096 346 2,34 21 

# 9 0,0014 0,0010 0,1818 0,0005 0,0043 0,0132 0,9578 0,5008 503 2,38 34 

# 10 0,0005 0,0015 0,1862 0,0014 0,0002 0,0273 0,1351 0,5052 380 3,27 23 
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Table 32 - Low short circuit fault detection with Grey Wolf Optimization 

Obj. 0 0 0,2 0 0 0 0,5 0,5 Time % Error Generations  

GWO_005 
Short Circuit 

Low fault 

# 1 0,0000 0,0000 0,1976 0,0000 0,0000 0,0000 0,0000 0,5340 635 3,41 44 Avg % error 

# 2 0,0000 0,0037 0,1793 0,0005 0,0000 0,0168 0,0122 0,5336 455 4,39 35 

2,53 
# 3 0,0000 0,0006 0,1828 0,0005 0,0000 0,0131 0,0017 0,5081 324 2,40 25 

# 4 0,0000 0,0000 0,1955 0,0000 0,0000 0,0000 0,0000 0,5126 274 1,34 21 

# 5 0,0000 0,0006 0,1824 0,0000 0,0000 0,0022 0,0000 0,4735 278 3,19 21 

# 6 0,0000 0,0000 0,1776 0,0003 0,0000 0,0000 0,0098 0,5043 472 2,28 36 Avg comp. Time 

# 7 0,0000 0,0000 0,1822 0,0000 0,0000 0,0000 0,0000 0,5064 273 1,90 21 

392 
# 8 0,0000 0,0000 0,1837 0,0000 0,0000 0,0000 0,0169 0,4878 285 2,04 22 

# 9 0,0000 0,0000 0,1916 0,0000 0,0000 0,0000 0,0000 0,5282 652 2,94 50 

# 10 0,0000 0,0000 0,2093 0,0000 0,0000 0,0000 0,0000 0,5110 273 1,45 21 

 

The next four tables (32 to 35) summarize the data coming from high fault optimizations. 

 

Table 33 - High short circuit fault detection with Genetic Algorithm 

Obj. 0 0 0,7 0 0 0 0,5 0,5 Time % Error Generations  

GA_006 
Short Circuit 

High fault 

# 1 0,0012 0,0051 0,6595 0,0121 0,0175 0,0138 0,9937 0,5045 2638 4,88 200 Avg % error 

# 2 0,0023 0,0020 0,6665 0,0040 0,0084 0,0149 0,1233 0,5170 2675 4,20 200 

6,25 
# 3 0,0044 0,0075 0,6453 0,0230 0,0282 0,0220 0,0131 0,5245 2420 7,48 178 

# 4 0,0029 0,0043 0,6419 0,0234 0,0299 0,0198 0,9892 0,5118 2697 7,39 200 

# 5 0,0018 0,0038 0,6624 0,0186 0,0125 0,0063 0,6178 0,5134 2547 4,64 200 

# 6 0,0014 0,0049 0,6444 0,0215 0,0348 0,0146 0,0856 0,5033 2545 7,11 200 Avg comp. Time 

# 7 0,0044 0,0072 0,6476 0,0230 0,0231 0,0169 0,0155 0,5119 2541 6,61 200 

2559 
# 8 0,0016 0,0028 0,6606 0,0047 0,0132 0,0094 0,0702 0,5079 2565 4,38 200 

# 9 0,0010 0,0012 0,6435 0,0305 0,0309 0,0022 0,9766 0,5108 2541 7,22 200 

# 10 0,0002 0,0030 0,6340 0,0378 0,0385 0,0077 0,1327 0,5101 2419 8,63 187 

 

Table 34 - High short circuit fault detection with Particle Swarm Optimization 

Obj. 0 0 0,7 0 0 0 0,5 0,5 Time % Error Generations  

PSO_006 
Short Circuit 

High fault 

# 1 0,0017 0,0017 0,6745 0,0000 0,0000 0,0077 0,0000 0,5063 1241 2,77 92 Avg % error 

# 2 0,0000 0,0021 0,6760 0,0000 0,0002 0,0082 1,0000 0,5070 2375 2,67 177 

2,73 
# 3 0,0000 0,0031 0,6763 0,0001 0,0000 0,0081 0,9990 0,5031 1358 2,58 96 

# 4 0,0000 0,0000 0,6770 0,0006 0,0000 0,0000 0,9831 0,5074 1013 2,41 74 

# 5 0,0002 0,0000 0,6706 0,0022 0,0037 0,0093 0,0510 0,5111 1101 3,33 86 

# 6 0,0001 0,0025 0,6756 0,0014 0,0024 0,0098 0,0369 0,5036 1731 2,71 136 Avg comp. Time 

# 7 0,0021 0,0000 0,6769 0,0000 0,0000 0,0002 0,8760 0,5144 2535 2,73 200 

1474 
# 8 0,0000 0,0005 0,6771 0,0001 0,0007 0,0001 0,9982 0,5113 1363 2,56 107 

# 9 0,0000 0,0023 0,6740 0,0048 0,0019 0,0069 1,0000 0,5065 857 2,85 67 

# 10 0,0000 0,0014 0,6763 0,0000 0,0000 0,0092 0,0247 0,5090 1161 2,73 91 
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Table 35 - High short circuit fault detection with Differential Evolution 

Obj. 0 0 0,7 0 0 0 0,5 0,5 Time % Error Generations  

DE_006 
Short Circuit 

High fault 

# 1 0,0020 0,0079 0,6565 0,0191 0,0151 0,0135 0,0285 0,5094 590 5,35 34 Avg % error 

# 2 0,0063 0,0041 0,6582 0,0172 0,0197 0,0004 0,8104 0,5281 529 5,73 35 

4,78 
# 3 0,0011 0,0024 0,6685 0,0075 0,0044 0,0123 0,0533 0,5139 517 3,81 32 

# 4 0,0018 0,0039 0,6603 0,0099 0,0211 0,0168 0,9897 0,5112 634 5,12 43 

# 5 0,0005 0,0060 0,6734 0,0136 0,0007 0,0057 0,9784 0,4952 552 3,15 35 

# 6 0,0036 0,0054 0,6581 0,0169 0,0026 0,0256 0,9927 0,4964 623 5,40 42 Avg comp. Time 

# 7 0,0007 0,0016 0,6507 0,0176 0,0144 0,0083 0,0262 0,5216 466 5,92 29 

534 
# 8 0,0007 0,0072 0,6613 0,0132 0,0159 0,0026 0,2807 0,4916 479 4,53 30 

# 9 0,0019 0,0097 0,6652 0,0140 0,0130 0,0084 0,1137 0,5211 465 4,69 30 

# 10 0,0014 0,0057 0,6658 0,0126 0,0135 0,0017 0,3572 0,4892 482 4,08 32 

 

Table 36 - High short circuit fault detection with Grey Wolf Optimization 

Obj. 0 0 0,7 0 0 0 0,5 0,5 Time % Error Generations  

GWO_006 
Short Circuit 

High fault 

# 1 0,0000 0,0000 0,6641 0,0241 0,0000 0,0000 0,0738 0,5168 1800 4,64 124 Avg % error 

# 2 0,0000 0,0000 0,6736 0,0000 0,0000 0,0000 0,0000 0,4812 295 3,24 21 

3,49 
# 3 0,0001 0,0039 0,6805 0,0000 0,0000 0,0000 0,0000 0,4936 816 2,10 58 

# 4 0,0000 0,0000 0,6705 0,0000 0,0000 0,0000 0,0000 0,5386 419 4,85 30 

# 5 0,0000 0,0000 0,6722 0,0000 0,0000 0,0327 0,0000 0,5061 293 4,63 21 

# 6 0,0000 0,0031 0,6750 0,0049 0,0000 0,0000 0,0110 0,5250 990 3,58 70 Avg comp. Time 

# 7 0,0008 0,0000 0,6659 0,0000 0,0000 0,0000 0,0000 0,5189 943 3,90 67 

655 
# 8 0,0011 0,0000 0,6847 0,0000 0,0000 0,0000 0,0000 0,4824 292 2,33 21 

# 9 0,0000 0,0000 0,6823 0,0000 0,0000 0,0000 0,0430 0,4781 406 2,82 29 

# 10 0,0000 0,0000 0,6821 0,0010 0,0000 0,0000 0,0000 0,5211 299 2,77 21 

 

As it’s possible to observe in tables above and in the summarizing table below, the average 

computational time is slightly different, but the percentual error maintains a big gap between 

the more precise low fault and the high fault. Particle Swarm Optimization has been the best 

algorithm in terms of precision, with a percentual error less than 1% in low fault detection 

and 2.7% in high fault detection. The quickest algorithms are Grey Wolf Optimization for low 

fault and Differential Evolution for high fault.  

Table 37 - Summary of short circuit fault average values 

Short circuit 

Type Avg Comp. time (s) % error 

Low Fault 1068 2,72 

High Fault 1305 4,31 
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7.2.4. Single fault detection – Eccentricity 

To simulate the eccentricity fault, only 𝑘(6) has been modified, but in the calculation of the 

error also 𝑘(7) is taken in care (see the definition of the error in the previous paragraph). 

  

Table 38 - Low eccentricity fault detection with Genetic Algorithm 

Obj. 0 0 0 0 0 0,25 0,5 0,5 Time % Error Generations  

GA_007 
Eccentricity 

Low fault 

# 1 0,0008 0,0037 0,0002 0,0026 0,0001 0,2551 0,5002 0,4921 2511 1,05 200 Avg % error 

# 2 0,0001 0,0029 0,0006 0,0038 0,0004 0,2546 0,5028 0,4967 2564 0,75 200 

3,32 
# 3 0,0004 0,0030 0,0029 0,0066 0,0016 0,2555 0,5017 0,4953 2742 1,08 178 

# 4 0,0004 0,0291 0,0026 0,0003 0,0000 0,0000 0,0052 0,4578 2461 25,52 200 

# 5 0,0011 0,0018 0,0000 0,0038 0,0029 0,2526 0,4997 0,4952 2615 0,76 200 

# 6 0,0009 0,0018 0,0012 0,0029 0,0016 0,2518 0,5015 0,4969 2625 0,55 196 Avg comp. Time 

# 7 0,0028 0,0041 0,0023 0,0017 0,0001 0,2500 0,4992 0,5030 2624 0,65 200 

2502 
# 8 0,0001 0,0012 0,0040 0,0084 0,0010 0,2580 0,4960 0,4893 2210 1,64 157 

# 9 0,0000 0,0019 0,0000 0,0024 0,0001 0,2513 0,5022 0,4957 2004 0,55 200 

# 10 0,0012 0,0014 0,0004 0,0042 0,0033 0,2521 0,4963 0,4967 2666 0,70 200 

 

Table 39 - Low eccentricity fault detection with Particle Swarm Optimization 

Obj. 0 0 0 0 0 0,25 0,5 0,5 Time % Error Generations  

PSO_007 
Eccentricity 

Low fault 

# 1 0,0000 0,0011 0,0001 0,0000 0,0014 0,2470 0,5001 0,4932 1976 0,76 118 Avg % error 

# 2 0,0000 0,0009 0,0000 0,0000 0,0000 0,2494 0,4980 0,4987 901 0,18 62 

1,01 
# 3 0,0000 0,0008 0,0003 0,0008 0,0018 0,2498 0,4968 0,4989 2201 0,26 97 

# 4 0,0015 0,0027 0,0000 0,0000 0,0000 0,2503 0,4993 0,4966 2108 0,46 102 

# 5 0,0001 0,0025 0,0000 0,0007 0,0000 0,2492 0,4979 0,4977 2460 0,36 99 

# 6 0,0001 0,0299 0,0000 0,0000 0,0000 0,2451 0,4999 0,4463 2614 6,17 96 Avg comp. Time 

# 7 0,0001 0,0002 0,0000 0,0008 0,0000 0,2493 0,4978 0,4991 2615 0,15 90 

2099 
# 8 0,0000 0,0001 0,0003 0,0039 0,0003 0,2517 0,4980 0,4989 2055 0,44 162 

# 9 0,0000 0,0027 0,0000 0,0006 0,0027 0,2455 0,4951 0,4935 2615 0,89 90 

# 10 0,0000 0,0000 0,0000 0,0002 0,0035 0,2512 0,4974 0,4973 1442 0,46 114 

 

Table 40 - Low eccentricity fault detection with Differential Evolution 

Obj. 0 0 0 0 0 0,25 0,5 0,5 Time % Error Generations  

DE_007 
Eccentricity 

Low fault 

# 1 0,0023 0,0085 0,0022 0,0011 0,0020 0,2515 0,5179 0,4867 412 1,70 27 Avg % error 

# 2 0,0023 0,0017 0,0056 0,0096 0,0115 0,2541 0,5165 0,4720 335 3,29 24 

3,62 
# 3 0,0054 0,0104 0,0004 0,0049 0,0180 0,2267 0,4973 0,4783 459 3,87 35 

# 4 0,0138 0,0011 0,0022 0,0104 0,0013 0,2648 0,5047 0,5314 457 3,89 35 

# 5 0,0010 0,0003 0,0055 0,0037 0,0163 0,2991 0,4983 0,5234 305 5,72 23 

# 6 0,0036 0,0041 0,0097 0,0005 0,0252 0,2431 0,4802 0,5224 454 3,65 35 Avg comp. Time 

# 7 0,0021 0,0108 0,0093 0,0015 0,0129 0,2686 0,4949 0,5219 418 3,47 32 

401 
# 8 0,0006 0,0139 0,0010 0,0027 0,0245 0,2494 0,4788 0,5031 412 2,90 31 

# 9 0,0002 0,0158 0,0106 0,0065 0,0004 0,2065 0,4950 0,4685 364 5,74 28 

# 10 0,0005 0,0017 0,0179 0,0031 0,0023 0,2544 0,4877 0,4963 390 1,95 30 
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Table 41 - Low eccentricity fault detection with Grey Wolf Optimization 

Obj. 0 0 0 0 0 0,25 0,5 0,5 Time % Error Generations  

GWO_007 
Eccentricity 

Low fault 

# 1 0,0000 0,0000 0,0097 0,0000 0,0000 0,1447 0,4994 0,4865 2747 10,66 200 Avg % error 

# 2 0,0000 0,0000 0,0107 0,0000 0,0000 0,2594 0,4812 0,5112 641 1,88 48 

13,54 
# 3 0,0000 0,0000 0,0000 0,0000 0,0000 0,2044 0,4825 0,5180 1047 4,92 78 

# 4 0,0000 0,0124 0,0000 0,0000 0,0000 0,2158 0,4858 0,4569 976 5,65 73 

# 5 0,0000 0,0062 0,0000 0,0000 0,0000 0,2067 0,4883 0,4801 806 4,81 60 

# 6 0,0000 0,0000 0,0000 0,0000 0,0000 0,2093 0,4848 0,4827 739 4,43 55 Avg comp. Time 

# 7 0,0000 0,0299 0,0000 0,0000 0,0000 0,0000 0,0000 0,4403 2683 25,88 200 

1771 
# 8 0,0000 0,0276 0,0000 0,0000 0,0000 0,0000 0,0000 0,4471 2679 25,70 200 

# 9 0,0000 0,0282 0,0000 0,0000 0,0000 0,0000 0,0000 0,4431 2709 25,79 200 

# 10 0,0000 0,0272 0,0000 0,0000 0,0000 0,0000 0,0000 0,4488 2683 25,66 200 

 

 

 

Table 42 - High eccentricity fault detection with Genetic Algorithm 

Obj. 0 0 0 0 0 0,75 0,5 0,5 Time % Error Generations  

GA_008 
Eccentricity 
High fault 

# 1 0,0044 0,0038 0,0021 0,0091 0,0069 0,7520 0,5003 0,4954 2690 1,39 200 Avg % error 

# 2 0,0045 0,0052 0,0007 0,0100 0,0056 0,7543 0,5002 0,4887 2117 1,81 167 

1,78 
# 3 0,0015 0,0048 0,0001 0,0202 0,0021 0,7544 0,5007 0,4991 2526 2,14 200 

# 4 0,0081 0,0093 0,0009 0,0101 0,0075 0,7415 0,5011 0,4880 2587 2,30 200 

# 5 0,0002 0,0042 0,0030 0,0141 0,0028 0,7578 0,5015 0,4934 2325 1,84 183 

# 6 0,0025 0,0090 0,0003 0,0084 0,0122 0,7497 0,4991 0,4946 2204 1,83 175 Avg comp. Time 

# 7 0,0070 0,0058 0,0026 0,0045 0,0002 0,7419 0,5013 0,4866 2514 1,89 200 

2453 
# 8 0,0047 0,0058 0,0003 0,0067 0,0008 0,7505 0,5004 0,4976 2527 1,03 200 

# 9 0,0046 0,0096 0,0037 0,0034 0,0027 0,7561 0,5019 0,4838 2521 2,12 200 

# 10 0,0061 0,0056 0,0024 0,0092 0,0048 0,7485 0,5000 0,4955 2522 1,42 200 

 

 

 

Table 43 - High eccentricity fault detection with Particle Swarm Optimization 

Obj. 0 0 0 0 0 0,75 0,5 0,5 Time % Error Generations  

PSO_008 
Eccentricity 
High fault 

# 1 0,0030 0,0052 0,0000 0,0140 0,0008 0,7516 0,5008 0,4914 1010 1,76 79 Avg % error 

# 2 0,0038 0,0065 0,0000 0,0062 0,0027 0,7523 0,5004 0,4925 1561 1,28 123 

1,44 
# 3 0,0078 0,0019 0,0005 0,0004 0,0001 0,7634 0,4994 0,5022 1495 1,58 118 

# 4 0,0037 0,0000 0,0028 0,0000 0,0004 0,7561 0,5002 0,5012 2520 0,78 200 

# 5 0,0003 0,0049 0,0001 0,0132 0,0019 0,7528 0,5013 0,4957 1780 1,51 141 

# 6 0,0072 0,0018 0,0000 0,0000 0,0013 0,7660 0,5004 0,5024 1468 1,79 116 Avg comp. Time 

# 7 0,0000 0,0042 0,0000 0,0146 0,0010 0,7571 0,5007 0,4957 1340 1,73 106 

1506 
# 8 0,0087 0,0015 0,0001 0,0001 0,0002 0,7605 0,5001 0,5027 1563 1,40 124 

# 9 0,0108 0,0000 0,0002 0,0000 0,0016 0,7537 0,4993 0,5071 814 1,36 64 

# 10 0,0078 0,0019 0,0019 0,0030 0,0020 0,7499 0,5091 0,5040 1509 1,20 120 
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Table 44 - High eccentricity fault detection with Differential Evolution 

Obj. 0 0 0 0 0 0,75 0,5 0,5 Time % Error Generations  

DE_008 
Eccentricity 
High fault 

# 1 0,0044 0,0066 0,0002 0,0078 0,0008 0,7509 0,5001 0,4918 2889 1,38 200 Avg % error 

# 2 0,0039 0,0046 0,0006 0,0132 0,0001 0,7544 0,5002 0,4947 2810 1,61 200 

1,41 
# 3 0,0035 0,0053 0,0001 0,0082 0,0015 0,7541 0,4998 0,4936 2809 1,29 200 

# 4 0,0044 0,0071 0,0004 0,0072 0,0029 0,7515 0,4996 0,4924 2810 1,38 200 

# 5 0,0027 0,0037 0,0002 0,0114 0,0009 0,7564 0,5002 0,4952 2809 1,47 200 

# 6 0,0042 0,0066 0,0002 0,0082 0,0003 0,7511 0,5005 0,4919 2813 1,40 200 Avg comp. Time 

# 7 0,0047 0,0054 0,0001 0,0098 0,0012 0,7534 0,5005 0,4944 2818 1,38 200 

2809 
# 8 0,0040 0,0049 0,0000 0,0089 0,0039 0,7528 0,5003 0,4945 2801 1,31 200 

# 9 0,0033 0,0048 0,0002 0,0110 0,0027 0,7549 0,4998 0,4950 2777 1,45 200 

# 10 0,0039 0,0051 0,0007 0,0101 0,0041 0,7533 0,5000 0,4943 2754 1,43 200 

 

Table 45 - High eccentricity fault detection with Grey Wolf Optimization 

Obj. 0 0 0 0 0 0,75 0,5 0,5 Time % Error Generations  

GWO_008 
Eccentricity 
High fault 

# 1 0,0335 0,0000 0,0000 0,0000 0,0043 0,7139 0,4971 0,5236 2924 5,48 200 Avg % error 

# 2 0,0328 0,0000 0,0000 0,0000 0,0045 0,7175 0,5011 0,5235 2856 5,20 200 

2,30 
# 3 0,0132 0,0000 0,0000 0,0000 0,0042 0,7482 0,4975 0,4953 2858 1,49 200 

# 4 0,0145 0,0000 0,0000 0,0000 0,0038 0,7553 0,4991 0,5001 2862 1,59 200 

# 5 0,0136 0,0000 0,0000 0,0000 0,0035 0,7493 0,4997 0,5029 2859 1,44 200 

# 6 0,0135 0,0000 0,0000 0,0000 0,0036 0,7476 0,5023 0,5062 2855 1,56 200 Avg comp. Time 

# 7 0,0133 0,0000 0,0000 0,0000 0,0034 0,7473 0,5009 0,5068 2856 1,56 200 

2866 
# 8 0,0133 0,0000 0,0000 0,0000 0,0035 0,7467 0,5003 0,5070 2855 1,58 200 

# 9 0,0133 0,0000 0,0000 0,0000 0,0035 0,7486 0,5013 0,5066 2865 1,54 200 

# 10 0,0134 0,0000 0,0000 0,0000 0,0034 0,7481 0,5020 0,5072 2867 1,58 200 

 

These data are afflicted by a GWO problem in the detection of low faults, in fact it is possible 

to see how the optimizations from the 7th to the 10th have an average percentage error of 

about 25%. This fact may be caused by the stabilization of the algorithm into a local minimum 

and the inability to overwhelm the boundary of that trend. In table below the average values 

are affected by this problem and the high fault detection proves to be more performant in 

term of precision than the low fault, but the latter is always quicker. In particular, Differential 

Evolution takes only about 400 s (slightly more than 6 minutes and half) to perform 10 low 

fault optimizations, against PSO which employs around 25 minutes to approximate the high 

fault parameters.  

Table 46 - Summary of eccentricity fault average values 

Eccentricity 

Type Avg Comp. Time (s) % error 

Low Fault 1693 5,37 

High Fault 2409 1,73 
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7.2.5. Single fault detection – Gain 

Table 47 - Low gain fault detection with Genetic Algorithm 

Obj. 0 0 0 0 0 0 0,5 0,25 Time % Error Generations  

GA_009 
Gain 

Low fault 

# 1 0,0032 0,0017 0,0031 0,0051 0,0011 0,0139 0,4965 0,2602 2715 1,87 200 Avg % error 

# 2 0,0035 0,0023 0,0073 0,0054 0,0059 0,0241 0,4763 0,2601 2609 2,86 200 

1,93 
# 3 0,0001 0,0076 0,0040 0,0008 0,0109 0,0175 0,3904 0,2532 2499 2,26 200 

# 4 0,0011 0,0041 0,0002 0,0105 0,0023 0,0062 0,6193 0,2566 2469 1,47 200 

# 5 0,0024 0,0036 0,0015 0,0010 0,0102 0,0155 0,4190 0,2560 2469 2,01 200 

# 6 0,0019 0,0014 0,0026 0,0023 0,0010 0,0088 0,4568 0,2594 2245 1,36 182 Avg comp. Time 

# 7 0,0028 0,0003 0,0018 0,0025 0,0106 0,0227 0,4936 0,2582 2469 2,67 200 

2492 
# 8 0,0018 0,0014 0,0004 0,0047 0,0018 0,0138 0,4714 0,2593 2469 1,76 200 

# 9 0,0031 0,0023 0,0012 0,0037 0,0036 0,0135 0,5350 0,2572 2474 1,66 200 

# 10 0,0015 0,0020 0,0028 0,0020 0,0093 0,0086 0,4446 0,2525 2506 1,36 200 

 

 

Table 48 - Low gain fault detection with Particle Swarm Optimization 

Obj. 0 0 0 0 0 0 0,5 0,25 Time % Error Generations  

PSO_009 
Gain 

Low fault 

# 1 0,0000 0,0000 0,0004 0,0015 0,0000 0,0024 0,8937 0,2527 1944 0,40 147 Avg % error 

# 2 0,0000 0,0021 0,0002 0,0011 0,0001 0,0048 0,9776 0,2499 872 0,58 67 

0,45 
# 3 0,0002 0,0022 0,0021 0,0026 0,0009 0,0000 1,0000 0,2503 1435 0,41 116 

# 4 0,0017 0,0001 0,0000 0,0000 0,0000 0,0000 0,1586 0,2525 1006 0,31 81 

# 5 0,0017 0,0000 0,0000 0,0000 0,0000 0,0000 0,5943 0,2525 1297 0,31 105 

# 6 0,0000 0,0026 0,0040 0,0010 0,0001 0,0000 0,7587 0,2503 1239 0,49 100 Avg comp. Time 

# 7 0,0017 0,0000 0,0000 0,0000 0,0001 0,0001 0,9721 0,2525 1905 0,31 1503 

1395 
# 8 0,0019 0,0000 0,0007 0,0000 0,0000 0,0000 0,9718 0,2529 944 0,35 76 

# 9 0,0000 0,0005 0,0012 0,0013 0,0001 0,0033 0,7725 0,2525 2499 0,46 200 

# 10 0,0003 0,0000 0,0000 0,0064 0,0000 0,0000 0,0012 0,2563 811 0,90 64 

 

 

Table 49 - Low gain fault detection with Differential Evolution 

Obj. 0 0 0 0 0 0 0,5 0,25 Time % Error Generations  

DE_009 
Gain 

Low fault 

# 1 0,0033 0,0073 0,0020 0,0117 0,0003 0,0003 0,5064 0,2566 456 1,57 29 Avg % error 

# 2 0,0030 0,0060 0,0012 0,0085 0,0011 0,0028 0,1819 0,2609 372 1,57 25 

2,52 
# 3 0,0005 0,0017 0,0076 0,0082 0,0017 0,0118 0,3931 0,2511 358 1,65 25 

# 4 0,0024 0,0024 0,0014 0,0141 0,0119 0,0401 0,5881 0,2455 381 4,47 26 

# 5 0,0088 0,0110 0,0054 0,0101 0,0035 0,0093 0,3196 0,2417 309 2,24 21 

# 6 0,0006 0,0049 0,0014 0,0077 0,0071 0,0136 0,8270 0,2446 337 1,92 24 Avg comp. Time 

# 7 0,0029 0,0111 0,0135 0,0021 0,0096 0,0326 0,5224 0,2447 302 3,87 21 

355 
# 8 0,0092 0,0028 0,0129 0,0030 0,0075 0,0002 0,2398 0,2697 317 2,67 22 

# 9 0,0018 0,0088 0,0058 0,0148 0,0171 0,0244 0,5640 0,2368 342 3,73 24 

# 10 0,0039 0,0058 0,0076 0,0094 0,0039 0,0041 0,5848 0,2481 371 1,52 26 
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Table 50 - Low gain fault detection with Grey Wolf Optimization 

Obj. 0 0 0 0 0 0 0,5 0,25 Time % Error Generations  

GWO_009 
Gain 

Low fault 

# 1 0,0000 0,0000 0,0008 0,0011 0,0000 0,0000 0,3217 0,2475 367 0,29 22 Avg % error 

# 2 0,0000 0,0002 0,0029 0,0000 0,0000 0,0000 0,0002 0,2555 310 0,62 21 

0,34 
# 3 0,0000 0,0000 0,0049 0,0001 0,0000 0,0001 0,1831 0,2501 301 0,49 21 

# 4 0,0001 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,2526 301 0,26 21 

# 5 0,0000 0,0000 0,0000 0,0040 0,0000 0,0000 0,0000 0,2521 302 0,45 21 

# 6 0,0000 0,0000 0,0024 0,0000 0,0005 0,0000 0,0009 0,2526 302 0,36 21 Avg comp. Time 

# 7 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,2502 304 0,02 21 

312 
# 8 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,2551 301 0,51 21 

# 9 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,2529 300 0,29 21 

# 10 0,0000 0,0000 0,0001 0,0000 0,0000 0,0000 0,0000 0,2487 330 0,13 23 

 

 

Table 51 - High gain fault detection with Genetic Algorithm 

Obj. 0 0 0 0 0 0 0,5 0,75 Time % Error Generations  

GA_010 
Gain 

High fault 

# 1 0,0002 0,0008 0,0010 0,0010 0,0002 0,0055 0,1712 0,7554 2633 0,81 200 Avg % error 

# 2 0,0001 0,0009 0,0013 0,0003 0,0002 0,0053 0,0625 0,7496 2521 0,60 200 

0,95 
# 3 0,0011 0,0018 0,0004 0,0010 0,0001 0,0098 0,0133 0,7496 2525 1,11 200 

# 4 0,0006 0,0002 0,0011 0,0005 0,0004 0,0116 0,0980 0,7476 2526 1,28 200 

# 5 0,0001 0,0001 0,0001 0,0013 0,0017 0,0016 0,4625 0,7413 2536 0,91 199 

# 6 0,0004 0,0001 0,0012 0,0010 0,0038 0,0017 0,4765 0,7486 2531 0,47 200 Avg comp. Time 

# 7 0,0006 0,0006 0,0003 0,0001 0,0013 0,0061 0,9995 0,7492 2535 0,71 200 

2527 
# 8 0,0016 0,0010 0,0002 0,0000 0,0016 0,0072 0,1098 0,7653 2377 1,73 187 

# 9 0,0001 0,0000 0,0004 0,0011 0,0008 0,0058 0,0581 0,7588 2550 1,10 200 

# 10 0,0008 0,0008 0,0018 0,0001 0,0005 0,0068 0,0732 0,7509 2536 0,77 200 

 

 

Table 52 - High gain fault detection with Particle Swarm Optimization 

Obj. 0 0 0 0 0 0 0,5 0,75 Time % Error Generations  

PSO_010 
Gain 

High fault 

# 1 0,0000 0,0000 0,0000 0,0006 0,0000 0,0000 0,0779 0,7496 602 0,07 47 Avg % error 

# 2 0,0000 0,0000 0,0000 0,0004 0,0000 0,0000 0,6434 0,7486 939 0,14 74 

0,21 
# 3 0,0000 0,0000 0,0001 0,0000 0,0000 0,0033 0,0019 0,7513 1190 0,39 89 

# 4 0,0000 0,0000 0,0000 0,0003 0,0001 0,0000 0,9813 0,7487 1041 0,14 82 

# 5 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,7490 566 0,10 44 

# 6 0,0000 0,0000 0,0000 0,0004 0,0000 0,0000 0,6674 0,7480 1423 0,20 112 Avg comp. Time 

# 7 0,0000 0,0000 0,0000 0,0000 0,0000 0,0012 0,4422 0,7491 1020 0,15 80 

1078 
# 8 0,0000 0,0000 0,0000 0,0000 0,0000 0,0021 0,0017 0,7498 1373 0,23 108 

# 9 0,0000 0,0000 0,0000 0,0000 0,0000 0,0033 1,0000 0,7511 1656 0,39 130 

# 10 0,0000 0,0000 0,0000 0,0000 0,0000 0,0021 0,0030 0,7498 974 0,23 76 
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Table 53 - High gain fault detection with Differential Evolution 

Obj. 0 0 0 0 0 0 0,5 0,75 Time % Error Generations  

DE_010 
Gain 

High fault 

# 1 0,0066 0,0044 0,0036 0,0012 0,0151 0,0194 0,3940 0,7793 436 3,93 31 Avg % error 

# 2 0,0010 0,0017 0,0066 0,0027 0,0065 0,0101 0,9850 0,7410 305 1,74 21 

3,31 
# 3 0,0034 0,0002 0,0026 0,0005 0,0124 0,0153 0,5508 0,7378 316 2,36 24 

# 4 0,0013 0,0011 0,0014 0,0027 0,0021 0,0021 0,1979 0,7726 352 2,31 27 

# 5 0,0067 0,0008 0,0004 0,0004 0,0087 0,0084 0,3909 0,7306 310 2,39 24 

# 6 0,0001 0,0092 0,0023 0,0073 0,0205 0,0013 0,3177 0,7724 306 3,26 23 Avg comp. Time 

# 7 0,0046 0,0017 0,0067 0,0014 0,0010 0,0128 0,7895 0,8034 354 5,57 27 

332 
# 8 0,0054 0,0047 0,0027 0,0116 0,0100 0,0058 0,9330 0,8082 270 6,10 21 

# 9 0,0047 0,0035 0,0051 0,0142 0,0035 0,0139 0,0301 0,7268 342 3,23 27 

# 10 0,0076 0,0029 0,0052 0,0049 0,0062 0,0149 0,9758 0,7564 329 2,17 27 

 

Table 54 - High gain fault detection with Grey Wolf Optimization 

Obj. 0 0 0 0 0 0 0,5 0,75 Time % Error Generations  

GWO_010 
Gain 

High fault 

# 1 0,0104 0,0090 0,0000 0,0079 0,0015 0,0196 0,0000 0,7436 502 2,79 32 Avg % error 

# 2 0,0000 0,0011 0,0000 0,0000 0,0000 0,0021 0,0706 0,7484 301 0,30 21 

0,63 
# 3 0,0000 0,0000 0,0000 0,0000 0,0049 0,0000 0,0000 0,7537 293 0,62 21 

# 4 0,0000 0,0000 0,0015 0,0000 0,0000 0,0066 0,0015 0,7498 307 0,75 22 

# 5 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,7486 291 0,14 21 

# 6 0,0000 0,0000 0,0000 0,0002 0,0000 0,0000 0,0000 0,7506 304 0,07 22 Avg comp. Time 

# 7 0,0000 0,0000 0,0000 0,0000 0,0000 0,0014 0,0000 0,7489 291 0,20 21 

316 
# 8 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,7490 291 0,10 21 

# 9 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,7388 289 1,12 21 

# 10 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,7479 290 0,21 21 

 

From previous tables it’s possible to see how gain fault is the most detectable failure 

between those already studied: only once (Differential Evolution for high fault) the overall 

precision exceeds the 3% of average error. The most promising result comes from Particle 

Swarm Optimization for high fault, in which the percentage error is about 0.2%. Concerning 

the computational time, both low and high fault detections are comparable: this fact is due 

to the start point of optimization, because in nominal conditions gain is set to 0.5. The 

quickest algorithm both in low and high fault conditions is Grey Wolf Optimization. 

Table 55 - Summary of gain fault average values 

Gain 

Type Avg Comp. Time (s) % error 

Low Fault 1138 1,31 

High Fault 1063 1,27 
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7.2.6. Multiple fault detection 

To test the reliability of the algorithms treated in a real situation, a multiple fault optimization 

has been carried out: indeed, a situation in which the electromechanical actuator is slightly 

faulty is met easily in usual working behaviour of secondary flight control. This has been 

possible thanks to the Matlab code developed, which allows to implement a random fault or 

to introduce by yourself the fault parameters. The optimizations have been carried out in a 

slightly different way compared to single fault detections. Initially, the stopping criterium 

which force the algorithm to do more than 20 iterations has been eliminated, in order to test 

the convergence speed of each code (data summarised in table 56): the unique constraint 

is to achieve an objective function’s value less or equal than 10-3.  

 

Table 56 - Random fault detection with all algorithms studied to investigate the convergence speed 

Obj. 0,0068 0,0000 9,19E-03 0,0013 8,60E-04 0,0111 0,8009 0,3804 Time % Error Generations  

GA 
Multiple 

# 1 0,0000 0,0000 0,0234 0,0163 0,0304 0,0219 0,5311 0,3518 324 4,816 20 Avg % error 

# 2 0,0000 0,0258 0,0406 0,0000 0,0000 0,0097 0,4491 0,3588 268 4,667 18 

5,45 
# 3 0,0077 0,0160 0,0048 0,0199 0,0226 0,0560 0,4328 0,3723 546 6,005 40 

# 4 0,0000 0,0000 0,0000 0,0105 0,0000 0,0000 0,0000 0,4148 108 3,899 7 

# 5 0,0039 0,0251 0,0071 0,0000 0,0029 0,0373 0,0313 0,3537 862 5,364 62 

# 6 0,0140 0,0057 0,0145 0,0423 0,0000 0,0331 0,5437 0,3885 743 4,915 54 Avg comp. Time (s) 

# 7 0,0051 0,0122 0,0047 0,0029 0,0398 0,0507 0,3982 0,3826 852 6,066 59 

551 
# 8 0,0028 0,0108 0,0326 0,0137 0,0000 0,0671 0,5262 0,3926 938 6,678 67 

# 9 0,0000 0,0241 0,0217 0,0039 0,0000 0,0039 0,8268 0,3296 294 5,846 20 

# 10 0,0043 0,0063 0,0337 0,0417 0,0000 0,0437 0,5425 0,3586 574 6,285 40 

PSO 
Multiple 

# 1 0,0000 0,0000 0,0000 0,0000 0,0042 0,0000 0,0000 0,4038 116 2,855 5 Avg % error 

# 2 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,3454 156 3,849 10 

3,43 
# 3 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,1339 0,3638 86 2,301 5 

# 4 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,9018 0,3537 80 3,110 5 

# 5 0,0000 0,0057 0,0000 0,0352 0,0000 0,0000 0,9899 0,3519 145 4,740 9 

# 6 0,0000 0,0000 0,0000 0,0000 0,0106 0,0335 0,9659 0,3476 72 4,285 4 Avg comp. Time (s) 

# 7 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,2357 0,4269 54 4,920 3 

97 
# 8 0,0180 0,0000 0,0000 0,0000 0,0000 0,0000 1,0000 0,3538 67 3,227 4 

# 9 0,0000 0,0000 0,0167 0,0000 0,0000 0,0000 1,0000 0,3619 125 2,389 8 

# 10 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,7979 0,3601 68 2,584 4 

DE 
Multiple 

# 1 0,0035 0,0057 0,0172 0,0012 0,0027 0,0075 0,1683 0,3790 383 1,215 24 Avg % error 

# 2 0,0012 0,0176 0,0101 0,0106 0,0201 0,0328 0,5752 0,3970 315 4,002 22 

3,54 
# 3 0,0031 0,0043 0,0057 0,0373 0,0001 0,0267 0,6549 0,3835 294 4,012 22 

# 4 0,0056 0,0177 0,0031 0,0254 0,0037 0,0009 0,1569 0,3645 369 3,597 27 

# 5 0,0116 0,0015 0,0020 0,0061 0,0049 0,0316 0,2453 0,4136 219 4,419 15 

# 6 0,0054 0,0084 0,0036 0,0072 0,0097 0,0174 0,1430 0,3697 285 2,236 21 Avg comp. Time (s) 

# 7 0,0029 0,0051 0,0025 0,0073 0,0152 0,0228 0,2295 0,4079 251 3,734 18 

305 
# 8 0,0121 0,0038 0,0106 0,0368 0,0034 0,0464 0,5970 0,3712 282 5,228 21 

# 9 0,0075 0,0009 0,0201 0,0210 0,0104 0,0420 0,5062 0,3773 285 4,151 20 

# 10 0,0003 0,0061 0,0001 0,0202 0,0088 0,0012 0,3114 0,3693 371 2,837 28 
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GWO 
Multiple 

# 1 0,0000 0,0083 0,0000 0,0000 0,0069 0,0059 0,0000 0,3518 86 3,324 4 Avg % error 

# 2 0,0000 0,0000 0,0000 0,0000 0,0000 0,0089 0,0000 0,3738 189 1,520 14 

3,49 
# 3 0,0000 0,0000 0,0000 0,0000 0,0000 0,0035 0,0000 0,3613 82 2,372 6 

# 4 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,3315 118 5,142 9 

# 5 0,0000 0,0000 0,0004 0,0000 0,0008 0,0002 0,0001 0,3350 124 4,795 9 

# 6 0,0004 0,0000 0,0000 0,0000 0,0000 0,0025 0,8164 0,3803 181 1,421 11 Avg comp. Time (s) 

# 7 0,0000 0,0000 0,0000 0,0000 0,0335 0,0000 0,4526 0,3318 135 6,068 10 

134 
# 8 0,0005 0,0000 0,0000 0,0000 0,0000 0,0004 0,0205 0,3273 277 5,532 18 

# 9 0,0035 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,4017 43 2,596 3 

# 10 0,0000 0,0000 0,0000 0,0000 0,0018 0,0000 0,0000 0,3658 100 2,166 5 

 

In the second table below, the results for the four different algorithms are summarised, taking 

care only for the precision of the data and neglecting the computational time. To do that, the 

precision constraint has been eliminated and the only one remained is the stall condition 

criterium: if the best fault vector is the same for ten consecutive iterations, the algorithm 

must stop the evaluation.  

Table 57 - Random fault detection with all algorithms studied to investigate the overall precision 

Obj. 0,0068 0,0000 9,19E-03 0,0013 8,60E-04 0,0111 0,8009 0,38038 Time % Error Generations  

GA 
Multiple 

# 1 0,0055 0,0016 0,0083 0,0023 0,0013 0,0000 0,9999 0,3819 2716 1,145 200 Avg % error 

# 2 0,0051 0,0010 0,0093 0,0079 0,0041 0,0125 0,4984 0,3797 2106 0,866 158 

1,07 
# 3 0,0048 0,0042 0,0113 0,0093 0,0019 0,0191 0,6194 0,3757 2663 1,380 200 

# 4 0,0073 0,0018 0,0084 0,0057 0,0019 0,0051 0,3723 0,3782 2687 0,840 200 

# 5 0,0084 0,0006 0,0113 0,0015 0,0009 0,0187 0,5266 0,3895 2665 1,319 200 

# 6 0,0051 0,0022 0,0040 0,0061 0,0065 0,0012 0,9920 0,3726 2671 1,574 200 Avg comp. Time 

# 7 0,0084 0,0007 0,0081 0,0038 0,0009 0,0117 0,5038 0,3825 2688 0,524 200 

2637 
# 8 0,0072 0,0016 0,0039 0,0049 0,0033 0,0100 0,5457 0,3841 2663 0,845 200 

# 9 0,0049 0,0009 0,0100 0,0008 0,0092 0,0139 0,3982 0,3847 2739 1,155 200 

# 10 0,0065 0,0002 0,0136 0,0006 0,0025 0,0156 0,4796 0,3869 2775 1,050 200 

PSO 
Multiple 

# 1 0,0078 0,0010 0,0077 0,0003 0,0007 0,0048 0,4782 0,3808 2358 0,690 174 Avg % error 

# 2 0,0090 0,0001 0,0000 0,0045 0,0004 0,0008 0,3616 0,3842 2297 1,485 157 

1,06 
# 3 0,0066 0,0021 0,0077 0,0023 0,0000 0,0008 0,4415 0,3769 1696 1,122 127 

# 4 0,0093 0,0001 0,0049 0,0002 0,0000 0,0020 0,0728 0,3818 2761 1,068 200 

# 5 0,0074 0,0015 0,0104 0,0038 0,0000 0,0076 0,4502 0,3784 2021 0,583 152 

# 6 0,0044 0,0016 0,0115 0,0007 0,0021 0,0075 0,3978 0,3762 1400 0,738 105 Avg comp. Time 

# 7 0,0000 0,0000 0,0140 0,0061 0,0000 0,0000 0,3373 0,3687 2664 1,874 200 

2292 
# 8 0,0048 0,0000 0,0115 0,0028 0,0025 0,0104 0,4778 0,3773 2659 0,594 200 

# 9 0,0093 0,0000 0,0045 0,0000 0,0000 0,0003 0,2928 0,3821 2653 1,218 200 

# 10 0,0067 0,0004 0,0045 0,0054 0,0002 0,0000 0,9530 0,3796 2409 1,274 181 

DE 
Multiple 

# 1 0,0079 0,0004 0,0078 0,0006 0,0000 0,0057 0,4455 0,3823 3022 0,640 200 Avg % error 

# 2 0,0072 0,0004 0,0121 0,0008 0,0014 0,0097 0,4660 0,3814 2679 0,475 200 

0,58 
# 3 0,0071 0,0003 0,0084 0,0001 0,0015 0,0075 0,4514 0,3812 2656 0,481 200 

# 4 0,0077 0,0004 0,0078 0,0000 0,0000 0,0053 0,4400 0,3823 2832 0,675 200 

# 5 0,0076 0,0005 0,0057 0,0017 0,0008 0,0083 0,4577 0,3832 2631 0,612 200 

# 6 0,0072 0,0002 0,0092 0,0009 0,0000 0,0068 0,4932 0,3810 2653 0,490 200 Avg comp. Time 

# 7 0,0079 0,0000 0,0082 0,0004 0,0007 0,0073 0,4585 0,3822 2684 0,515 200 

2840 
# 8 0,0077 0,0002 0,0072 0,0000 0,0003 0,0053 0,4433 0,3822 3741 0,686 200 

# 9 0,0073 0,0002 0,0097 0,0000 0,0001 0,0062 0,4530 0,3800 2824 0,558 200 

# 10 0,0078 0,0006 0,0082 0,0001 0,0000 0,0044 0,4690 0,3807 2678 0,716 200 



 
142 

 

GWO 
Multiple 

# 1 0,0047 0,0000 0,0147 0,0000 0,0000 0,0000 0,0000 0,3772 3077 1,302 200 Avg % error 

# 2 0,0087 0,0000 0,0038 0,0000 0,0000 0,0000 0,0000 0,3839 2856 1,305 200 

1,21 
# 3 0,0075 0,0000 0,0061 0,0000 0,0000 0,0000 0,0000 0,3834 2825 1,200 200 

# 4 0,0074 0,0000 0,0054 0,0000 0,0000 0,0000 0,0000 0,3838 2879 1,231 200 

# 5 0,0073 0,0000 0,0047 0,0000 0,0000 0,0000 0,0000 0,3813 2677 1,209 200 

# 6 0,0065 0,0000 0,0068 0,0000 0,0000 0,0000 0,0000 0,3810 3043 1,147 200 Avg comp. Time 

# 7 0,0073 0,0000 0,0074 0,0000 0,0000 0,0000 0,0000 0,3803 2678 1,134 200 

2898 
# 8 0,0081 0,0000 0,0056 0,0000 0,0000 0,0000 0,0000 0,3850 2988 1,269 200 

# 9 0,0069 0,0000 0,0056 0,0000 0,0000 0,0000 0,0000 0,3800 2930 1,175 200 

# 10 0,0078 0,0000 0,0094 0,0000 0,0002 0,0000 0,0134 0,3798 3022 1,121 200 

  



 
143 

 

7.3. Comparison of the results 

In this paragraph all the results coming from the optimizations reported in the previous pages 

are summarized and commented. Initially, speaking about the results for the single fault 

detection, the graph depicted in figure 7.1 and summarizing table 58 could be useful to better 

understand the error trend. The same types of algorithm are pictured with same colours: low 

fault is darker and high fault is lighter. 

 

Figure 7. 1 - Average percentual error for all the algorithms analysed 

 

Table 58 - Average percentual error summarized for all faults analysed 

 Friction Backlash Short Circuit Eccentricity Gain Total 

 Avg error (%) Avg error (%) Avg error (%) Avg error (%) Avg error (%) Avg error (%) σ 

GA - low fault 2,093 1,678 5,042 3,323 1,928 2,813 1,398 

GA - high fault 4,491 2,247 6,253 1,778 0,950 3,144 2,177 

PSO - low fault 0,930 0,294 0,863 1,013 0,452 0,711 0,318 

PSO - high fault 2,773 1,629 2,734 1,465 0,205 1,761 1,060 

DE - low fault 2,499 3,930 2,438 3,618 2,522 3,001 0,714 

DE - high fault 3,199 3,917 4,778 1,411 3,305 3,322 1,239 

GWO - low fault 1,562 3,915 2,532 13,537 0,342 4,378 5,285 

GWO - high fault 3,494 3,797 3,486 2,301 0,631 2,742 1,312 

Average 2,630 2,676 3,516 3,556 1,292   
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As it clearly reported above, PSO algorithms offer the best precision in terms of percentual 

error, in particular for the detection of low faults. This property is especially shown in 

backlash fault and gain fault, where the percentual error is less than 0.5%. The worst 

precision is achieved by the Grey Wolf Optimization, with a total average percentual error of 

about 3.5%. This bad behaviour is caused by the nature of this algorithm: it encourages the 

exploration of the search agents instead exploitation: in this way the precision is badly 

affected.  

Concerning the stability of the algorithm, the small standard deviation suggests that Particle 

Swarm Optimization and Differential Evolution provide percentual error very similar 

throughout different fault implemented, in particular for low fault detection.  

Most difficult faults to detect are short circuit and eccentricity, with an average percentual 

error of about 3.5%: this fact is caused by the relative complexity and the consequences of 

these failures, which affect multiple components in both reference and monitor model. The 

strong differences between the description of these two dysfunctions could be part of the 

detection problem: a possible development of this work is the deeper study of their 

implementation in the monitor model. As already said, gain fault is the most detectable fault 

with an average percentual error of 1.3%, due to its simplicity of description. 

As already done for the average error, also the computational time is investigated. In figure 

7.2 the histogram of time trends is depicted; in subsequent table the main values are listed.  

Grey Wolf Optimization and Differential Evolution are the computationally fastest algorithms, 

especially to carry out the optimization of the low faults. This is clear from the fact that these 

two codes have been written by hand and as stopping criteria has an objective function’s 

value of 10-3. This value has been set after the observation of the behaviour of the GA and 

PSO, which usually arrives at a precision of 10-4. Calibrating this number taking care both 

low and high fault detection allow a greater convergence speed for these two solutions. The 

high fault convergence speed is comparable between PSO, DE and GWO; Genetic 

Algorithm provides a terrible performance, with an average computational time of about 40 

minutes.  

However, GA applied to a high fault is a very stable method, because it shows a standard 

deviation of only 39 s.  
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The time required from each algorithm to reach the precision wanted is pretty comparable, 

with a minimum obtained by the gain fault and a maximum by the eccentricity. 

 

 

Figure 7. 2 - Average computational time for all the algorithms analysed 

 

Table 59 - Average computational time summarized for all faults analysed 

 Friction Backlash Short Circuit Eccentricity Gain Total 

 Avg comp. Time (s) Avg comp. Time (s) Avg comp. Time (s) Avg comp. Time (s) Avg comp. Time (s) Avg comp. Time (s) σ 

GA - low fault 2.633 2.336 1.644 2.502 2.492 2.322 393 

GA - high fault 2.501 2.524 2.559 2.453 2.527 2.513 39 

PSO - low fault 1.662 1.242 2.152 2.099 1.395 1.710 408 

PSO - high fault 1.875 1.634 1.474 1.506 1.078 1.513 290 

DE - low fault 394 334 540 401 355 405 81 

DE - high fault 2.649 323 534 2.809 332 1.329 1.282 

GWO - low fault 485 585 392 1.771 312 709 602 

GWO - high fault 2.585 476 655 2.866 316 1.380 1.238 

Avg 1.848 1.182 1.244 2.051 1.101   

 

To effectively understand the performance of all optimization algorithm applied to a single 

fault detection, a suitable parameter has been introduced, called reliability coefficient. The 

average error in table 58 and the average computational time in table 59 need to be the 
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lowest possible: the reliability coefficient has to be a percentage which indicates the fitness 

power of that algorithm for each fault. The relation thought is: 

 
𝑅𝐶𝑖(%) = 100 ∙ (1 −

𝑡𝑖 ∙ 𝑒𝑟𝑟𝑖(%)

∑ 𝑡𝑖 ∙ 𝑒𝑟𝑟𝑖(%)
4
𝑖=1

) (7.1) 

 

where: 

- 𝑅𝐶𝑖 is the reliability coefficient (expressed in %) of the i-th algorithm; 

- 𝑡𝑖 is the average computational time of the i-th algorithm; 

- 𝑒𝑟𝑟𝑖(%) is the average percentual error of the i-th algorithm. 

The division for the sum of the multiplied average values has been carried out in order to 

have as output a non-dimensional value; subtracting the resulting value to 1 allows to 

overturn the problem, in order to have a bigger reliability coefficient if the suitability is high. 

The next multiplication for 100 transforms it in a percentual value. In this way, choosing the 

highest reliability coefficient means choosing the best algorithm for that problem. 

For every fault, the reliability coefficient has been evaluated, in order to find which algorithm 

is better for a determined fault. The results are summarised in table below. 

Table 60 - Reliability coefficient for single fault detection 

 Friction fault Backlash fault Short-circuit fault Eccentricity fault Gain fault Total 

 time*err RC(%) time*err RC(%) time*err RC(%) time*err RC(%) time*err RC(%) time*err RC(%) 

GA 8.451 57,62 4.769 49,71 11.867 36,34 6.319 79,58 3.611 30,16 7.199 54,00 

PSO 3.275 83,58 1.383 85,42 3.260 82,51 2.233 92,78 407 92,14 1.992 87,27 

DE 4.335 78,26 1.287 86,43 1.937 89,61 4.035 86,96 1.000 80,66 2.741 82,49 

GWO 3.880 80,54 2.045 78,44 1.576 91,55 18.359 40,67 153 97,05 3.717 76,25 

sum 19941  9484  18641  30947  5170  15649  

   

The green values represent the best solution for the detection of that fault. Particle Swarm 

results are for twice (friction and eccentricity) the most reliable data, such as Grey Wolf 

Optimization, which is the best for short-circuit and proportional gain fault; Differential 

Evolution is the most suitable algorithm to detect the backlash. Only in one case (eccentricity 

fault) Genetic Algorithm resulted to be appreciable, with a reliability coefficient pretty equal 

to 80%. Concerning the overall values, the most reliable algorithm to detect single fault 

implementation is Particle Swarm Optimization, with a RC equal to 87%; however also 

Differential Evolution provides a great optimization performance, with a RC=82.5%.  
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Concerning the multiple fault detection, from table 56 reported in the previous paragraph, 

it’s possible to understand the power of the swarm-based algorithms: indeed, both Particle 

Swarm Optimization and Grey Wolf Optimization provide the fastest results. In particular 

PSO is the fastest and the most precise between the algorithms tested, because has also a 

3.4% of percentual error in only 97 s of average computational time. Concerning the number 

of iterations, in ten different tries PSO has an average value equal to 5.7 iterations, GWO of 

about 9: that means that the former manages to reach faster the target error’s value. The 

iterations do not have the same speed in different algorithms: evaluating the average 

number of iterations for the four algorithms tested, using the average computational time, 

it’s possible to find that the quickest iterations are those of Genetic Algorithm and Differential 

Evolution, with approximately 14 seconds used per each iteration; the o PSO shows the 

slowest iterations, with 17 second per iteration. This consideration strengthens the 

astounding performance of the Particle Swarm Optimization, because every iteration has an 

astonishing optimization power. 

The precision, as already said, is not a study object, because it has been set previously to 

a determined value, equal for all the optimizations: it’s only possible to comment that every 

algorithm is around the 3.5% of error except for Genetic Algorithm, the less reliable one, 

which is around the 5.5%. 

In the second table the situation is very different: focusing on the overall precision of the 

algorithm and neglecting the computational time, it has been possible to investigate which 

algorithm allows to obtain the most reliable and data. This simulation is different from the 

single fault isolation, because algorithms do not have stopping criteria concerning the 

objective value or the maximum computational time, but only the maximum number of stall 

iterations, set at 10. 

From table 57 it’s possible to see how Differential Evolution provides the best results in term 

of precision, with only the 0.58% of average error. It’s important to underline that this 

algorithm detects brilliantly also the friction fault, implemented in the objective function with 

a very small value, with a percentage error referred to this fault of only 0.07%. The other 

algorithms are around the 1% of average error, meaning that in any case they represent a 

reliable alternative to the DE.  

Another important characteristic is the stability of the algorithms: the standard deviation 

provides the information referred to the nominal displacement of output from the average 



 
148 

 

error value. During the usual 10 optimizations, Grey Wolf Optimization appears to be the 

most stable, with a σ equal to 0.067; on the other hand, Particle Swarm shows a particularly 

big dispersion of the values, with a σ=0.42.  

As already done for single faults, also for the multiple fault detection the reliability coefficient 

is evaluated. In this case, it assumes the importance of mixing together tables 56 and 57, in 

order to find a perfect equilibrium between error value and computational time.  

In table 61 𝑅𝐶 is evaluated for all the algorithms. 

Table 61 – Reliability coefficient for multiple fault detection 

 Average Comp. Time (s)  Average % error Time*error 𝑅𝐶𝑖(%) 

Genetic Algorithm 551 1,07 589,57 42,84 

Particle Swarm Optimization 97 1,06 102,82 90,03 

Differential Evolution 305 0,58 176,9 82,85 

Grey Wolf Optimization 134 1,21 162,14 84,28 

sum(t*err)     1031,43   

 

The best optimization to detect a multiple fault implemented in our models is the Particle 

Swarm Optimization, with a brilliant 90% of reliability coefficient. DE and GWO have very 

similar behaviours and close to the best, so they are also efficient solutions for this type of 

problem. It’s important to underline also the bad behaviour of the Genetic Algorithm, which 

provides values with only 42% of reliability coefficient.  
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8. Conclusions and future perspectives 

In this work the behaviour of different algorithms to a single fault and multiple fault detection 

in an electromechanical actuator (EMA) has been deeply studied.  

Firstly, after a theoretical part in which the prognostics concepts, the functioning of BLDC 

motor and the structure of the models are described, all the faults are investigated 

concerning their effect to the dynamic response of the electromechanical actuator. All the 

position, speed and current trends are depicted with a single fault growth, from the nominal 

condition to the end of the failure domain. Before the explanation of the parameters used in 

optimization process, the four different algorithms studied are described and analysed.  

The results chapter highlights the importance of Particle Swarm Optimization both for single 

fault and multiple fault detection. Indeed, it shows the best reliability coefficient – a suitable 

parameter described in chapter 7 – throughout the ten optimizations carried out for the 

multiple random fault and for three different single fault implementations (friction, eccentricity 

and gain). Particularly important is also the information coming from one of the two multiple 

optimization paths: every iteration has an astonishing optimization power, because in only 

3 generations evaluated in 54 seconds, this algorithm is capable to obtain a 5% error, equal 

to that coming from the average values of all the 10 genetic algorithm’s optimizations (for 

551 s of average computational time).  

Differential Evolution provides data with elevated level of reliability, close to the behaviour 

of the PSO in the single fault detection: this algorithm is the best for the detection of backlash 

fault. It has also a great stability in the provided results, both in terms of computational time 

and percentual error.  

The results coming from Grey Wolf Optimization have an intermediate level of efficiency, 

because they are the best to detect short-circuit faults, but their nature to promote 

exploration instead of exploitation do not allow it to have a great overall reliability. In the 

detection of multiple faults, it behaves slightly better, providing results comparable to those 

coming from Differential Evolution, but in general very similar to PSO. It could be a great 

choice if the will is to study the problem with new nature-inspired approaches. 
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In conclusion, it’s important to underline the bad behaviour of the Genetic Algorithm, which 

do not have satisfactory results both for single or multiple fault detection. It is badly affected 

by the complexity of the problem and the presence of multi-objective target.   

This work surely makes room for further developments.  

Initially, it’s possible to improve the reliability of the data coming from reference model 

implementing a better model for the mechanical transmission of the motion. For example, a 

subsystem referred to the mechanical behaviour of the nut-screw device could be studied 

and subsequently introduced. In this way, data take care also of the friction and little 

malfunctions of the transmission. Another possible development is the implementation of 

the temperature effects over the overall working behaviour of the BLDC Motor, in order to 

not neglect the viscous effects of the temperature.  

In a second time, surely different optimization algorithms could be introduced and studied, 

in order to find which is the best compromise to study our problem: indeed, there are a lot 

of fast-growing new bio-inspired algorithms which could achieve new optima results. These 

algorithms could be also tested on a real situation, maybe exploiting the data coming from 

real sensor located on a test benchmark.  

Changing the development environment could be useful to accelerate the simulation. 

Instead of Matlab, lower level languages can be used as C, C#, C++ or Fortran and maybe 

this simulation will be tested also on a flight control computer, in order to approaching always 

more the implementation in a real aerospace purpose. 
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Appendix A 

Differential Evolution Matlab code (Copyright© Stefano Re – Politecnico di Torino 2018): 

%% Function to be minimized 

  
D=8; %number of variables 

  
fobj=@(k) FitnessFunction(k); 
% objf=inline('4*x1^2-2.1*x1^4+(x1^6)/3+x1*x2-4*x2^2+4*x2^4','x1','x2'); 
% objf=vectorize(objf); 

  
%% Initialization of DE parameters 

 
% N=50; %population size (total function evaluations will be itmax*N, must 

be>=5) 
% itmax=200; 
% F=0.5; CR=0.95; %mutation and crossover ratio 

  
%% Problem bounds 

 
% LB=zeros(N,D); 
% UB=ones(N,D); 

  
% a(1:N,1)=-1.9; b(1:N,1)=1.9; %bounds on variable x1 
% a(1:N,2)=-1.1; b(1:N,2)=1.1; %bounds on variable x2 

 
d=(UB-LB);  
basemat=repmat(int8(linspace(1,N,N)),N,1);  
basemat2=repmat(int8(linspace(1,D,D)),N,1);  
 

%% Optimization 

 
% numOpt=10; 
xbest=zeros(numOpt,8); 

  
for ii=1:numOpt 

%Random initialization of positions 
tic 
x=LB+d.*rand(N,D); 

  
%Evaluate objective for all particles 
% fx=objf(x(:,1),x(:,2)); 

  
fx=zeros(N,1); 

  
     for i=1:N 
         fx(i)=fobj(x(i,:)); 
     end 

  
%Find best 
[fxbest,ixbest]=min(fx); 
xbest(ii,:)=x(ixbest,:); 
xbestit=repmat(2,itmax,D); 

  



 
152 

 

%Iterate 
     for it=1:itmax 
         disp(['Iteration number ',num2str(it),' of the optimization number 

',num2str(ii)]) 

  
         permat=bsxfun(@(x,y) x(randperm(y(1))),basemat',N(ones(N,1)))'; 

  
         %Generate donors by mutation 
         v=repmat(xbest(ii,:),N,1)+F*(x(permat(:,1),:)-x(permat(:,2),:)); 

  
         %Perform recombination 
         r=repmat(randi([1 D],N,1),1,D);  
         muv = ((rand(N,D)<CR) + (basemat2==r)) ~= 0; 
         mux = 1-muv;  %negation of muv 

 
% u(1:N,1:D)=x(1:N,1:D).*mux(1:N,1:D)+v(1:N,1:D).*muv(1:N,1:D); 

         u=abs(x.*mux+v.*muv); 

  
         %Greedy selection 
         fu=zeros(N,1); 

         
            parfor iii=1:N 
                 fu(iii)=fobj(u(iii,:)); 
            end 

     
         idx=fu<fx; 
         fx(idx)=fu(idx); %subtitution of the lowest values of obj func in 

function fx 
         x(idx,:)=u(idx,:); % subtitution of the worst fitting vector with 

most fitting vector 

  

         
         %Find best 
         [fxbest(it,1),ixbest]=min(fx); 
         xbest(ii,:)=x(ixbest,:); 
         xbestit(it,:)=x(ixbest,:); 
%          disp(xbestit(it,:)); 

    
%          if it>2 
%              
%              stopCrit=mean(abs(xbestit(it,:)-xbestit(it-1,:))); 
%              if stopCrit<1e-6 
%                  it=itmax; 
%              end 
%              
%          end 
             

%% Stopping criteria 

             
         if it>20 && fxbest(it,1)<1e-3  
             crit=fxbest(it-1,1)-fxbest(it,1); 
             if crit<1e-12 
                   break 
             end 
         end 

         
end %end loop on iterations 
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%% Saving results 
 

save('Results_DE','xbest') 
% [xbest,fxbest] 
toc 

end 
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Appendix B 

Greywolf Optimization Matlab code (Copyright© Stefano Re – Politecnico di Torino 2018): 

%% Parameters from Main script 
 

% SearchAgents_no=50; 
% Max_iter=200; 
% dim=8; 
% lb=zeros(1,dim); 
% ub=ones(1,dim); 
fobj=@FitnessFunction; 

  
%Initialize the positions of search agents 
Positions=GWO_initialization(SearchAgents_no,dim,ub,lb); 

  
%% Main loop 

  
% numOpt=input('How many optimizations do you like to do?'); 

  
Z=zeros(numOpt,dim); 

  
for ii=1:numOpt %numero di ottimizzazioni 

     
    tic 

     
    Alpha_pos=zeros(SearchAgents_no,dim); 
    Alpha_score=1e6*ones(SearchAgents_no,1); %change this to -inf for 

maximization problems 

  
    Beta_pos=zeros(SearchAgents_no,dim); 
    Beta_score=1e6*ones(SearchAgents_no,1); %change this to -inf for 

maximization problems 

  
    Delta_pos=zeros(SearchAgents_no,dim); 
    Delta_score=1e6*ones(SearchAgents_no,1); %change this to -inf for 

maximization problems 

     
    Alpha_score_best=1e6*ones(Max_iter,1); 
    Alpha_pos_best=repmat(10,Max_iter,dim); %metto 2 così so che sono numeri 

impossibili 

  

     
    for l=1:Max_iter  

     
        disp(['Iteration number ',num2str(l),' of the optimization number 

',num2str(ii)]) 

    
            parfor i=1:SearchAgents_no           

         
               % Return back the search agents that go beyond the boundaries of 

the search space 
                 Flag4ub=Positions(i,:)>ub; 
                 Flag4lb=Positions(i,:)<lb; 
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Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag

4ub+lb.*Flag4lb;                

  
                % Calculate objective function for each search agent 
                 fitness(i,1)=fobj(Positions(i,:)); 
            end 

 
            parfor i=1:SearchAgents_no 
            % Update Alpha, Beta, and Delta 
                if fitness(i,1)<Alpha_score(i)  
                    Alpha_score(i)=fitness(i,1); % Update alpha 
                    Alpha_pos(i,:)=Positions(i,:); 

  
                elseif fitness(i,1)>Alpha_score(i) && fitness(i,1)<Beta_score(i) 
                    Beta_score(i)=fitness(i,1); % Update beta 
                    Beta_pos(i,:)=Positions(i,:); 

  
                elseif fitness(i,1)>Alpha_score(i) && fitness(i,1)>Beta_score(i) 

&& fitness(i,1)<Delta_score(i)  
                    Delta_score(i)=fitness(i,1); % Update delta 
                    Delta_pos(i,:)=Positions(i,:); 
                end 
            end    

  
    a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0 

     
    % Update the Position of search agents including omegas 
        for i=1:SearchAgents_no 
            for j=1:dim      

                        
                r1=rand(); % r1 is a random number in [0,1] 
                r2=rand(); % r2 is a random number in [0,1] 

  
                A1=2*a*r1-a;) 
                C1=2*r2;  

  
                D_alpha=abs(C1*Alpha_pos(i,j)-Positions(i,j));  
                X1=Alpha_pos(i,j)-A1*D_alpha;  

  
                r1=rand(); 
                r2=rand(); 

  
                A2=2*a*r1-a;  
                C2=2*r2;  

  
                D_beta=abs(C2*Beta_pos(i,j)-Positions(i,j));  
                X2=Beta_pos(i,j)-A2*D_beta;  

  

                r1=rand(); 
                r2=rand();  

  
                A3=2*a*r1-a;  
                C3=2*r2;  

  
                D_delta=abs(C3*Delta_pos(i,j)-Positions(i,j));  
                X3=Delta_pos(i,j)-A3*D_delta;  
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                Positions(i,j)=(X1+X2+X3)/3; 

             
            end 
        end 

     
        [Alpha_score_best(l,1),Best_index]=min(Alpha_score); 
        Alpha_pos_best(l,:)=Alpha_pos(Best_index,:);     

         
        %% Stopping criteria 
%         l>20 && 
%         if Alpha_score_best(l,1)<1e-3  
%             crit=Alpha_score_best(l-1,1)-Alpha_score_best(l,1); 
%             if crit<1e-16 
%                  break 
%             end 
%         end 

     
    end 

    
    [best_solution(ii), indexx]=min(Alpha_score_best); 
    Z(ii,:)=Alpha_pos_best(indexx,:); 
    save('GWO_Results','Z') 

  
toc 

     
end 
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Appendix C 

Main optimization Matlab code (Copyright© Stefano Re – Politecnico di Torino 2018): 

%% Introduzione  

  
clear 
close all 
clc 

  
disp('%%%%%%%%%%%%%%-------    Fault parameters optimization for EMA model    --

-----%%%%%%%%%%%%%%') 
disp(' ') 
disp('Script developed by Stefano Re, with Pier Carlo Berri and Matteo Dalla 

Vedova (DIMEAS Polito)') 
disp(' ') 

  
%% Command choice 

  
% User could choice the type of the command for the EMA. Commands are 
% expressed in [rad]: 

  
a=input('Choose the command: (1=step, 2=ramp, 3=sinusoidal, 4=chirp): '); 

  
if a==1 
        Com1=1; 
        Com2=0; Com3=0; Com4=0; Com5=0; Com6=0;               
elseif a==2 
        Com2=1; 
        Com1=0; Com3=0; Com4=0; Com5=0; Com6=0; 
elseif a==3 
        Com3=1; 
        Com1=0; Com2=0; Com4=0; Com5=0; Com6=0; 
elseif a==4 
        Com4=1; 
        Com1=0; Com2=0; Com3=0; Com5=0; Com6=0; 
else 
        disp('Do a valid choice!') 
        clear 
end 

  

  
%% Optimization choice 

  
OptChoice=input('Would you like to study a single-faulty or a multiple-faulty 

BLDC motor? (1=single, 2=multiple): '); 
disp(' '); 

  

if OptChoice==1 

  
    %% Fault choice 

  
    disp(' ') 
    disp('Choose the fault you would like to introduce:') 
    disp('1= Friction fault') 
    disp('2= Backlash fault ') 
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    disp('3= Phase A short circuit fault') 
    disp('4= Phase B short circuit fault') 
    disp('5= Phase C short circuit fault') 
    disp('6= Eccentricity parameter fault (zita) ') 
    disp('7= Eccentricity phase fault ') 
    disp('8= Gain fault ') 
    disp(' ') 

  
    b=input('Your choice: '); 

     
    if b==1 
        F=input('Give a value for the friction [1 - 3] --> [NC - 3*NC]: ');          
        B=1;                                                                         
        Z=0;                                                                         
        phi=0;                                                                       
        G=1;                                                                         

  
        if F<1 || F>3 
            disp('Do a valid choice!') 
            clear 
        else     
            run('EMA_Re_DAT') 
        end 
    elseif b==2 
        F=1; 
        B=input('Give a value for the backlash [1 - 100] --> [NC - 100*NC]: '); 
        Z=0; 
        phi=0; 
        G=1; 

  
        if B<1 || B>100 
            disp('Do a valid choice!') 
            clear 
        else     
            run('EMA_Re_DAT') 
        end 
    elseif b==3 
        F=1; 
        B=1; 
        Na=input('Give a value for the phase A short-circuit [1 - 0] --> [0% - 

100%]: '); 
        Nb=1; 
        Nc=1; 
        Z=0; 
        phi=0; 
        G=1; 

  
        if Na<0 || Na>1 
            disp('Do a valid choice!') 
            clear 
        else     
            run('EMA_Re_DAT2') 
        end 
    elseif b==4 
        F=1; 
        B=1; 
        Na=1; 
        Nb=input('Give a value for the phase B short-circuit [1 - 0] --> [0% - 

100%]: '); 
        Nc=1; 
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        Z=0; 
        phi=0; 
        G=1; 

  
        if Nb<0 || Nb>1 
            disp('Do a valid choice!') 
            clear 
        else     
            run('EMA_Re_DAT2') 
        end 
    elseif b==5 
        F=1; 
        B=1; 
        Na=1; 
        Nb=1; 
        Nc=input('Give a value for the phase C short-circuit [1 - 0] --> [0% - 

100%]: '); 
        Z=0; 
        phi=0; 
        G=1; 

  
        if Nc<0 || Nc>1 
            disp('Do a valid choice!') 
            clear 
        else     
            run('EMA_Re_DAT2') 
        end 
    elseif b==6 
        F=1; 
        B=1; 
        Z=input('Give a value for the Z [0 - 0.42]: '); 
        phi=0; 
        G=1; 

  
        if Z<0 || Z>0.42 
            disp('Do a valid choice!') 
            clear 
        else     
            run('EMA_Re_DAT') 
        end 
    elseif b==7 
        F=1; 
        B=1; 
        Z=0; 
        phi=input('Give a value for the eccentricity phase [-pi - +pi]: '); 
        G=1; 

  
        if phi<-pi || phi>pi 
            disp('Do a valid choice!') 
            clear 
        else     
            run('EMA_Re_DAT') 
        end 
    elseif b==8 
        F=1; 
        B=1; 
        Z=0; 
        phi=0; 
        G=input('Give a value for the gain [0.5 - 1.5] --> [0.5*NC - 1.5*NC]: 

'); 
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        if G<0.5 || G>1.5 
            disp('Do a valid choice!') 
            clear 
        else     
            run('EMA_Re_DAT') 
        end 
    else  
        disp('Do a valid choice!') 
        clear 
    end 

  
    % Single fault part termined 

  
elseif OptChoice==2     %% Start multiple fault part 
    InputType=input('Would you like to introduce a random multiple fault (choose 

1) or write the fault parameters by your own (choose 2)?: '); 

  
    if InputType==1         %% random multiple fault 

         
        RandomFaultParams=rand(1,8); 
        RandomFaultParams(:,1:6)=RandomFaultParams(:,1:6).^7; 
        RandomFaultParams(:,8)=((RandomFaultParams(:,8)*2-1).^7+1)/2; 
        disp(' ') 
        disp(['The random fault vector is: ',mat2str(RandomFaultParams(:))]) 
        save('Random_fault', 'RandomFaultParams') 
        disp(' ') 

         

  
        F=2*(RandomFaultParams(1,1))+1; 
        B=99*(RandomFaultParams(1,2))+1; 
        Na=1-RandomFaultParams(1,3); 
        Nb=1-RandomFaultParams(1,4); 
        Nc=1-RandomFaultParams(1,5); 
        Z=0.42*(RandomFaultParams(1,6)); 
        phi=RandomFaultParams(1,7); 
        G=RandomFaultParams(1,8)+0.5; 

         
        run('EMA_Re_DAT2'); 

         
    elseif InputType==2     %% User-introduced fault 

         
        disp(' '); 
        F=2*input('Introduce the friction fault: ')+1; 
        B=99*input('Introduce the backlash fault: ')+1; 
        Na=1-input('Introduce the phase A short-circuit fault: '); 
        Nb=1-input('Introduce the phase B short-circuit fault: '); 
        Nc=1-input('Introduce the phase C short-circuit fault: '); 
        Z=0.42*input('Introduce the eccentricity fault: '); 
        phi=input('Introduce the eccentricity phase fault: '); 
        G=input('Introduce the gain fault: ')+0.5; 

         
        run('EMA_Re_DAT2'); 

         
    else 
        disp('Do a valid choice!') 
        clear        
    end         
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end         

              
%% Simulation of the reference Model 

  
sim('EMA_Re_EVO');               

  
%% Optimizations 

  
disp(' ') 
disp('Choose the optimization algorithm: ') 
disp('1= Genetic Algorithm') 
disp('2= Particle Swarm Optimization') 
disp('3= Differential Evolution') 
disp('4= Greywolf Optimization') 
disp(' ') 
c=input('Your choice: '); 
disp(' ') 
d=input('Would you like to parallelize the optimization? (1=yes, 2=no)'); 

  
%Parallelization of the optimizations 

  
if d==1 
    parpool 
    Parp=true(1); 
else 
    Parp=false(1); 
end 

  
% For every set of input, I do 10 optimizations (heuristic!=deterministic) 
numOpt=input('How many optimizations do you like to do?'); 

  
X=zeros(numOpt,8); 
Y=zeros(numOpt,8); 
popsize=input('Specify the population size: '); 
numgen=input('Specify the number of generations: '); 

  

  
for i=1:numOpt 

  
     if c==1 
        LB=zeros(1,8); 
        UB=ones(1,8); 
        disp(' ') 

         
        tic 
        

opt1=optimoptions(@ga,'Display','iter','PopulationSize',popsize,'Generations',nu

mgen,'FunctionTolerance',1e-12, 'UseParallel',Parp); 
%         'FitnessLimit',1e-3 
        X(i,:)=ga(@FitnessFunction,8,[],[],[],[],LB,UB,[],[],opt1); 
        toc 

  
        save('Results_GA','X') 
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     elseif c==2 
        LB=zeros(1,8); 
        UB=ones(1,8); 
        disp(' ') 
        disp(' ') 

  
        tic 
        

opt2=optimoptions(@particleswarm,'Display','iter','SwarmSize',popsize,'MaxIterat

ions',200,'FunctionTolerance',1e-12,'UseParallel',Parp); 
%         'ObjectiveLimit',1e-3 
        Y(i,:)=particleswarm(@FitnessFunction,8,LB,UB,opt2); 
        toc 

  
        save('Results_PSO','Y') 

         

         

         
     elseif c==3 
        N=input('Specify the population size: '); 
        D=8; 
        LB=zeros(N,D); 
        UB=ones(N,D); 

          

         
        itmax=input('Specify the maximum number of iterations: '); 
        disp(' '); 
        disp('CHOICE OF THE D.E. PARAMETERS:'); 
        F=input('Mutation ratio (F): '); 
        CR=input('Crossover ratio (CR): '); 

  
        run('DE_main');     %the "save" command is already inside the script 

(xbest) 

         
        break 

         
     elseif c==4 
        SearchAgents_no=input('Specify the number of search agents: '); 
        Max_iter=input('Specify the maximum number of iterations: '); 
        dim=8; 
        lb=zeros(1,dim); 
        ub=ones(1,dim); 

         
        run('GWO_remix');   %the "save" command is already inside the script (Z) 

  
        break 
     else 
         disp('Do a valid choice!') 
         break 
     end 

     
%    save('Results','X','Y') 
end 

  
disp(' ') 
disp('Optimization successfully termined') 
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