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‘Nothing is achieved without
sacrifice and courage . . .
Who is capable to suffer

will eventually win’

Mahatma Gandhi





Abstract

For spacecraft interplanetary missions, gravity assist maneuvers are usually
used because they allow one to get as a rule high ∆V without having to use
propellant, but exploiting the energy given by the gravitational attraction
of a celestial body. This allows improving the useful mass for a specific
mission, for a modest increase in flight time. Thus, when escape from Earth’s
sphere of influence is regarded, lunar gravity assist maneuvers become a valid
alternative to direct escapes.
In this paper, two consecutive gravity assist maneuvers are considered and the
possible moon-to-moon trajectories that allow them are sought. Afterwards,
considering different spacecraft initial velocities relative to Moon, the effect
on the escape orbit is analyzed, with the purpose to link the features of the
latter (i.e the heliocentric flight-path angle and declination) to the maximum
obtainable specific mechanical energy (i.e. the achievable escape velocity).
First, a brief introduction will be presented, followed by a chapter dedicated
to the mathematical models adopted to carry out the thesis; after that, will be
illustrated the technique used for the study of moon-to-moon orbits and lunar
gravity assists, followed by a description of the attained results. Finally, the
conclusive observations, in addition to the problems faced during the analysis
and a short debate on the possible future developments of the present work,
will be introduced in a dedicated chapter.
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Chapter 1

Introduction

In order to develop an interplanetary mission there are two important as-
pects to consider: the definition of the escape trajectory, which allows to the
spacecraft to go out of the Earth’s sphere of influence (i.e. the spheroidal re-
gion of space where the Earth gravitational pull prevails) and the associated
maneuver, which allows to the spacecraft to reach the wanted heliocentric
orbit. The choice of escape strategy used is important, since it affects the
cost of the mission in reference to propellant necessary that directly influence
the payload mass that can be carried. There are different escape strategies
for a specific mission, those usually used are:

• direct escape – a single-impulse maneuver leading the spacecraft on an
hyperbolic orbit, that after is travelled until when the escape condi-
tions are not reached, i.e. the wanted hyperbolic excess velocity; this
strategy needs of a high-thrust propulsion system, that uses chemical
propellants;

• Oberth maneuver (powered flyby) - two single-impulse maneuvers are
used that allow reducing the gravitational losses: the first allows de-
creasing the spacecraft’s velocity while to move closer to the main body
with an Hohmann transfer and the second, given to the periastron now
lowered, bringing the spacecraft on an hyperbolic escape orbit, anal-
ogous to the one of the direct escape. The gravitational losses are

1
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minimized because the second impulse is provided at higher velocity
(i.e to lower altitude). With this escape maneuver is obtained an in-
ferior global ∆V , but it is possible only when the chemical propulsion
is utilized. However, starting from a LEO orbit this maneuver is not
feasible, as it would lead to a collision;

• low-thrust escape – a continuous thrust is used, lightly directed to
the main body, bringing the spacecraft on a spiral orbit. This escape
maneuver allows reducing gravitational losses accepting an increased
of misalignment losses. It is used when the spacecraft has an elec-
tric propulsion system, which allows obtaining low acceleration values,
usually in the range of 1 mm/s2, but higher specific impulse respect to
chemical propulsion. However, the disadvantage is due to its duration,
that can be several years;

• gravity assist – the exchange of momentum between the spacecraft
and the celestial body chosen is used to rotate the spacecraft’s relative
velocity to obtain a ∆V , without consumption of specific propellant,
both chemical or electrical. Since much convenient, it is sometimes
used to non-escape trajectories, over that for escape ones, which is the
principal argument of this paper.

The gravity assist maneuvers, especially the lunar ones, are commonly used
to mission towards asteroids. A particular example is Asteroid Redirect
Robotic Mission (ARRM), which is designed to characterize a 100+ m class
near-Earth asteroid and to capture and recover a 1-6 m maximum extent
boulder off of the surface of the asteroid and bring it into cislunar space.
The Asteroid Redirect Vehicle (ARV) is launched on either a Delta IV Heavy
or Falcon Heavy launch vehicle to a trajectory directed towards the moon,
where is then carried out two lunar gravity assist (LGA): the first sends the
ARV onto a large, distant Earth orbit where solar perturbations increase
its energy before of the second LGA that sends it onto an Earth escape
trajectory. During this phase non-critical deployments and checkouts are
conducted, where the Solar Electric Propulsion system is calibrated and pre-
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pared for interplanetary thrust. When the ARV reach the asteroid, the said
above operations are carried out on it. After, an inbound cruise then takes
the combined ARV and boulder back to Earth, where before another LGA is
performed that sends ARV-boulder combination into the Earth-Moon system
and they are then transferred to a crew-accessible orbit, using solar and lunar
perturbations. Finally, a crew on the other spacecraft, rendezvous and dock
the ARV, which is transferred to a Lunar Distant Retrograde Orbit (DRO)
with an orbit lifetime in excess of 100 years for storage of the returned boul-
der.

The goal of the present study is to analyze the possibility of using the energy
obtained by multiple lunar gravity assist maneuvers to escape from earth’s
gravitational attraction and reach asteroids. Particularly, two consecutive
gravity assist maneuvers have been considered and the possible moon-to-
moon trajectories that allow them have been searched.
In the chapter 2 of this thesis will be discussed the mathematical models will
be used for the analysis: the general N-body problem, which will be then
extended to the problem of two and three bodies, that will allow defining the
coplanar moon-to-moon trajectory among the two gravity assist maneuvers,
followed by an example of a lunar gravity maneuvre, to understand the ra-
tionale.
In the chapter 3 will be presented the designed codes for both the gravity
assist trajectory and the evaluation of the escape conditions according to the
wanted heliocentric flight-path angle and declination of the spacecraft veloc-
ity vector.
The obtained results will be presented in chapter 4, where, for different space-
craft initial velocitys relative to Moon, the found moon-to-moon transfers will
be shown, jointly with the graphs that correlate flight-path angle and decli-
nation to the characteristic energy and escape velocity.
Finally, in chapter 5 will be exposed the conclusive observations, over to
the problems faced during the analysis and a short discussion about possible
future developments.





Chapter 2

Mathematical model

In this chapter will focus on the circular restricted three body problem that
has been adopted to define the desired trajectories. At the beginning, the
general N-body problem will be analyzed, which will be then extended to the
problem of two and three bodies, with a little bracket on the constants of
motion. Finally, after a discussion on the patched-conic approximation, the
mathematical model used for the study of the gravity assist maneuver will
be presented.

2.1 The N-body problem

The N -body problem model explains the mutual gravitational interaction be-
tween N masses in such a way to determine their motion. This can be done
using Newton’s law of universal gravitation, introduced in his Philosophiæ
Naturalis Principia Mathematica in 1686 [8].

Newton’s law of universal gravitation
Any two bodies attract one another with a force along their joining line which
is proportional to the product of their masses and inversely proportional to
the square of their distance.

5



6 2.1. The N -body problem

This law can be written mathematically in vector notation1:

Fg = −GmM
r2

r

r
(2.1)

This equation expresses the force Fg that the body of mass M applies
onto the body of mass m, where r is the position vector of m respect
to M and G is the universal gravitational constant, whose value is G =

6.67259 · 10−11m3/(kg · s2). It is noted that there is a negative sign at the
second member which underline the attractive nature of the gravitational
force.
To understand another concept, Newton’s third law is called back:

Newton’s third law
Every force exerted on object B by another object A, object B will instantly
exert another force with same magnitude but opposite direction on object A.

In addition to the force on m applied by M there is another force on M

generated by m, which has same intensity, but opposite direction.

An inertial reference system (X, Y, Z) is considered, where a system consist-
ing of n masses (m1,m2 ...mi ...mn) will be placed, the coordinates of which
are individuated by position vectors (r1, r2 ... ri ... rn), as shown in figure
2.1. Before Newton’s second law are used to determine the motion of the ith

body, the combined force acting on mi is identified.

Newton’s second law
The rate of change of momentum of an object is proportional to the force
impressed on it and is the same direction as that force.

The mathematical expression of such law is the followed:

∑
F =

d

dt
(miṙi) (2.2)

1In this paper will be used the convention for which vectors are represented by bold
font while scalars with regular font.
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The resultant force acting on mi can be written as:∑
F = Fg + Fother

Here Fg groups the gravitational effects of each mass in the system except
mi, whereas Fother encloses all other kinds of forces (such as thrust, pertur-
bations, atmospheric drag or solar pressure). Therefore, the global effect of
gravitational forces Fg can be expressed using equation 2.1, where rji is the
vector linking the jth and the ith masses.

Fg = −Gmi

n∑
j=1
j 6=i

mj

rji3
rji (2.3)

Finally, expanding equation 2.2, the equation describing the motion of the
ith body is obtained:

r̈i = −G
n∑

j=1
j 6=i

mj

rji3
rji +

Fother

mi

− ṙi
ṁi

mi

(2.4)

The resolution of the N -body problem presented above is substantially com-
plexity, therefore simplifying hypotheses are introduced, that do not com-
promise the reliability of the results, but they make the problem no longer
completely descriptive of the real phenomenon. The hypotheses are:

• the involved bodies are uniform and spherical, in order to consider them
punctiform;

• the involved bodies are constant in time (this second assumption is of-
ten rather accurate, e.g. when talking about a satellite on a Newtonian
orbit, i.e. with thrusters off);

• all kind of external perturbation are ignored and only the gravitational
force is considered.
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m1

mn

m2

mi

O
Y

Z

X

Fni

Fin

ri

Figure 2.1: The N -body problem.
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Consequently, Fother and ṁi are null and the equation 2.4 can be written as
followed:

r̈i = −G
n∑

j=1
j 6=i

mj

rji3
rji (2.5)

Now, it is necessary to rewrite this equation, because the aim is usually to
express the motion of the ith body respect to another body (e.g the motion
of Earth orbiting the sun), whereas it expresses the motion respect to the
inertial reference frame.
For instance, to express the motion of m2 relatively to m1, the equations of
motion in the inertial reference system of both bodies need to be written:

r̈1 = −G
n∑

j=2

mj

rj13
rj1

r̈2 = −G
n∑

j=1
j 6=2

mj

rj23
rj2

(2.6)

After, using the 2.1, the position of body 2 in relation to body 1 can be
expressed:

r12 = r2 − r1 (2.7)

Equally, a similar equation is written for accelerations:

r̈12 = r̈2 − r̈1 (2.8)

Therefore, the motion’s equation of the secondary body around the main one
can be obtained subtracting equation for mass m1 from the other:

r̈12 = −G
n∑

j=1
j 6=2

mj

rj23
rj2 +G

n∑
j=2

mj

rj13
rj1 (2.9)
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Collecting the proportional terms to r12 and underlining how r21 = −r12,
equation 2.9 can be rewritten as:

r̈12 = −Gm1 +m2

r123
r12 −G

n∑
j=3

mj

(
rj2
rj23
− rj1
rj13

)
(2.10)

2.2 The 2-body problem

Although the simplifying hypotheses have been introduced, the solution to
the N -body problem remains anyway complex, since equation 2.10 is a sec-
ond order, non-linear, vector, differential equation of motion, which requires
numerical integration to find a solution. Nevertheless, it is possible to search
an analytic solution to such problem by reducing the number of bodies in-
volved to two: a main body M and a secondary one m orbiting the first.
Another hypothesis is introduced:

• the mass of the secondary body is notably inferior to that of the primary
one (m�M).

An inertial reference system (X ′, Y ′, Z ′) and a non-rotating reference system
parallel to the previous one (X, Y, Z) are taken, whose origin coincides with
the position of the main body. Moreover, as shown in figure 2.2, with rM
and rm the position vectors of the two bodies in the inertial system and with
r the position vector of m in (X, Y, Z) are indicated.
Equation 2.10 can then be rewritten as:

r̈ = −Gm+M

r3
r (2.11)

Using the hypothesis introduced previously (m� M), m + M ' M . Intro-
ducing also the gravitational parameter µ = GM , the following equation is
obtained:

r̈ = − µ
r3
r (2.12)
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O
Y ′

Z ′

X ′

Y

Z

X

M

m

rM

r

rm

Figure 2.2: Relative motion of 2 bodies.



12 2.3. Constants of the motion

2.3 Constants of the motion

Before to integrate the equation of motion to obtain the equation of the
trajectory, it is necessary to define some constants that characterize orbital
motion itself: the specific angular momentum (h) and specific mechanical
energy (E ).

2.3.1 Specific angular momentum

The angular momentum of an orbiting body keeps its magnitude and direc-
tion when no force other than the gravitational one acts on the system.
This can be demonstrated by going initially to multiply both terms of equa-
tion 2.12 to the left by r:

r × r̈ = −r × µ

r3
r (2.13)

Since a vector is always parallel to itself, the vector product r × r = 0, thus
the second member disappears:

r × r̈ = 0 (2.14)

It is to be highlighted, however, that:

d

dt
(r × ṙ) = r × r̈ + ṙ × ṙ (2.15)

Also here ṙ × ṙ = 0 for the same reason indicated above, thus it can be
deduced that r × ṙ = const. since its derivative is null. As ṙ = V is the
velocity vector, it is obtained that the vector product r×V is a constant of
motion, called specific angular momentum (h).
How much just demonstrated, i.e that h is constant, brings to an important
conclusion: being the angular momentum the cross product of r and V , it
is a vector perpendicular to both; but, since it is constant in magnitude and
direction, r and V will always stay on the same plane. Thus, Newtonian
orbits are confined to a plane, which we shall call orbital plane.
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M

m

r

V Lo
ca
l r
ad
ia
l

Local horizontal
γϕ

Figure 2.3: Zenit and flight-path angle.

Finally, using the flight-path angle ϕ (i.e. the angle between the velocity
vector and the local radial), which is complementary to the zenith angle (γ),
as shown in figure 2.3, the magnitude of h can be linked with the direction
of V , through the following expression:

h = rV cosϕ (2.16)

2.3.2 Specific mechanical energy

Another constant of motion characterizing every orbit is the specific mechan-
ical energy E , i.e. the sum of potential and kinetic energy per unit mass.
In order to demonstrate this, initially, the equation 2.12 is dot multiplied by
ṙ:

ṙ · r̈ + ṙ · µ
r3
r = 0 (2.17)
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That can be rewritten as:

ṙr̈ + ṙ
µ

r2
= 0 (2.18)

It can be observed that ṙ = V and that:
V V̇ =

d

dt

(
V 2

2

)
ṙ
µ

r2
=

d

dt

(
−µ
r

) (2.19)

Therefore, it is possible to write:

d

dt

(
V 2

2
− µ

r

)
= 0 (2.20)

Getting so the want equation:

E =
V 2

2
− µ

r
+ C = const. (2.21)

In this equation there are three terms:

• V 2

2
is the kinetic energy per unit mass, which expresses the energy

contribution due to motion;

• −µ
r
is the potential energy per unit mass due to the gravitational field,

depending only on the position of the orbiting body and the mass of
the main body;

• C is a constant term coming from the integration of equation 2.20 and
being its value arbitrary, it can be then set equal to zero (this is equiv-
alent to choosing the zero reference for potential energy at infinity).
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2.4 Equation of the trajectory

After having defined the constants that characterize orbital motion, it is
now possible to integrate twice equation 2.12 in order to get the trajectory
equation for the 2-body problem. However, instead of proceeding to the
integration of the equation as it is, it is manipulated to find derivatives.
It is first multiplied by the specific angular momentum vector (h):

r̈ × h =
µ

r3
(h× r) (2.22)

In the left term of equation 2.22 can be recognized immediately a derivative,
since:

d

dt
(ṙ × h) = (r̈ × h) + (ṙ × �

��
0

ḣ) (2.23)

Instead, the right term can be transformed into the time rate of change of
another vector quantity:

µ

r3
(h× r) =

µ

r3
(r × V )× r =

=
µ

r3
[V (r · r)− r (r · V )] =

=
µ

r
V − µṙ

r2
r =

= µ
d

dt

(r
r

) (2.24)

The equation 2.12 become the following:

d

dt
(ṙ × h) = µ

d

dt

(r
r

)
(2.25)

Integrating the equation 2.25, it is obtained:

ṙ × h = µ
r

r
+B (2.26)

In this equation B represent a vector constant produced by the integration
process.
Then the equation 2.26 is dot multiplied by r:
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r · ṙ × h = µ
r · r
r

+ r ·B (2.27)

The equation just obtained, denoting with ν the angle between B and r and
using the vector identities, can be rewritten in the following way:

h2 = µr + rB cos ν (2.28)

Solving for r, the trajectory equation is achieved:

r =

h2

µ

1 +
B

µ
cos ν

(2.29)

This equation is equal to the equation of a conic section expresses in polar
coordinates with origin in one of the foci.

r =
p

1 + e cos ν
(2.30)

Where p is the semilatus rectum and e the eccentricity, while ν, as in equation
2.29, is the angle included between the point of the conic closest to the focus
(called periastron) and r.

2.5 The circular restricted 3-body problem

The 2-body model, previously described, does not describe accurately the
orbital motion of the spacecraft between the two maneuvers of lunar gravity
assist, since it does not consider the remarkable role done by the sun. There-
fore, the circular restricted 3-body model is adopted, which includes also the
sun together Earth and the spacecraft. However, using this model can’t be
found an analytical solution, but to simplify it, also in this case, can be made
some assumption, without sacrificing accuracy.
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Figure 2.4: The 3-body problem in an inertial reference.

The assumptions are:

• during the calculations, only two of three masses considered are used
(i.e. the spacecraft’s mass is negligible);

• the main bodies (mS and mE) move on a circular orbit around their
shared centre of mass.

Consider the Earth-Sun-spacecraft system, as shown in figure 2.4.

In order to obtain the vector equation describing the motion of the spacecraft
respect to Earth, first of all the gravitational effect of the three bodies needs
to be written mathematically in the inertial reference system, using equation
2.1: 

mR̈ = −GmME

r2
r

r
−GmMS

ρ2
ρ

ρ
for the spacecraft

MER̈E = G
MEm

r2
r

r
+G

MEMS

r2S

rS
rS

for Earth

MSR̈S = −GMSME

r2S

rS
rS

+G
MSm

ρ2
ρ

ρ
for the Sun

(2.31)
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Thus, subtracting the Earth’s equation from one for the spacecraft, con-
sidering that r = R −RE and using the hypothesis previously enunciated
(m�ME,MS), the equation of motion of the spacecraft respect to Earth is
obtained:

r̈ = −GME

r3
r −GMS

(
ρ

ρ3
+
rS
r3S

)
(2.32)

Turning this equation into a system of six first-order differential equations,
the trajectory solution is found by numerical integration.

2.6 Gravity assist

For spacecraft interplanetary missions, gravity assist maneuvers are usually
used because they allow one to get generally high ∆V without having to use
propellant, but exploiting the energy provided by the gravitational attraction
of a celestial body. Rotating the spacecraft’s relative velocity of the body
itself can be obtained a positive or negative ∆V ; due to this rotation, both in
direction and magnitude, the absolute velocity in the inertial reference sys-
tem is modified, because it can be obtained as the vector sum of the velocity
of the mass around which the maneuver takes place and the spacecraft’s rel-
ative velocity.

This chapter is first focused on the patched-conic approximation and after
an example of a lunar gravity assist maneuver is discussed, to understand
the rationale.

2.6.1 The patched-conic approximation

When interplanetary missions are carried out, it is necessary to take into
account that a spacecraft is principally subject to the gravitational influ-
ence of the sun, while perturbations due to other celestial bodies interfere
on its motion only when it itself is in their proximity. Therefore, the motion
of spacecraft can be approximated by dividing it into different conic orbits
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around each mass the gravitational attraction of which is not neglected, and
patching them together at the edge of the spheres of influence (i.e. a spherical
portions of space within which the gravitation pull of a single body predom-
inate). For a preliminary analysis of a space mission, this approximation
allow obtaining results quite accurate, although it does not give a realistic
description of the phenomenon, since the transition from orbiting a body to
another is a gradual process and does not happen instantaneously.
In this paper the definition of the sphere of influence presented by Laplace
is used; for example, the sphere of influence of Earth’s gravitational field on
the moon is centered at the moon and has radius:

rs = RE−M

(
MM

ME

) 2
5

(2.33)

This equation depends on the two bodies considered, especially their distance
and their masses.

The patched-conic approximation results much useful when maneuvers in
close of a celestial body are analyzed. For instance, during a preliminary
analysis of lunar gravity assists, only the moon’s sphere of influence can
be considered and all other gravitational effects and perturbations can be
neglected.

2.6.2 Lunar gravity assist

It is examined a lunar gravity assist maneuver carried out by spacecraft
headed to it. As shown in figure 2.5, considering a planar case for simplicity,
when the spacecraft arrives in the moon’s sphere of influence, the 2-body
model can be used to represent the problem, where the moon is the main
body and the spacecraft is the orbiting one.

It can be observed that in the Earth-centered reference the spacecraft reaches
the moon sphere of influence with a velocity V −S/C . However, since it is desired
to describe the motion with the 2-body model, it is necessary to express the



20 2.6. Gravity assist

spacecraft’s velocity respect to the moon:

V −∞ = V −S/C − VM (2.34)

The angle between VM and V −∞ is the pump angle before LGA (p−), which
is important to evaluate the effectiveness of the maneuver.
Known V −∞ , it can be drawn the spacecraft’s orbit, which is a hyperbola, since
to enter in the sphere of influence V −∞ must be greater than 0 and its edge
can be approximated by r → ∞. The spacecraft treads along the orbit and
escapes the sphere of influence with a relative velocity V +

∞ , which is equal to
V −∞ due to the conservation of mechanical energy:

E =
V −∞

2

2
−

�
�
��
0
µ

r
=
V +
∞

2

2
−

�
�
��
0
µ

r
(2.35)

It is observed that the direction of V∞ is modified by an angle δ = π − 2φ,
where φ = arccos(1/e) is the opening angle of the hyperbola of eccentricity
e, while its magnitude remains constant. Therefore, also the angle V∞ forms
with VM is changed (p− 6= p+), thus:

V +
S/C = VM + V +

∞ 6= V −S/C (2.36)

The gravity assist maneuver allows then obtaining a ∆V – to accelerate or
decelerate a spacecraft – without consumption of propellant. This is possible
thank to the conservation of angular momentum for the moon-spacecraft
system. Indicating with rs the radius of the lunar sphere of influence, it is
had:

∆H = mrs∆V −MMrs∆VM = 0 (2.37)

Therefore, simplifying rs:

∆VM =
m

MM

∆V (2.38)

Since the spacecraft’s mass is much smaller than the mass of the moon
(m�MM), the effect on the moon’s velocity is negligible.
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V +
∞

V +
S/Cp+

Figure 2.5: Geometrical schema for a generic lunar gravity assist manoeuvre.

However, gravity assists influence also the inclination of the orbit, producing
a ∆i and a ∆V . Therefore, in general, over the pump angle, it is then neces-
sary to introduce the crank angle to accurately identify the three components
of the velocity vector: radial, tangential, and normal (figure 2.6).

u∞ = V∞ sin p cos k

v∞ = V∞ cos p

w∞ = V∞ sin p sin k

(2.39)
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Figure 2.6: Components of V∞ expressed via pump (p) and crank (k) angles.



Chapter 3

Analysis

3.1 Solar-perturbed moon-to-moon transfer

The analysis of the moon-to-moon transfer between the two gravity-assist
maneuvers is performed using the circular restricted 3-body model, which
takes into account the perturbative effect of the sun on the spacecraft’s mo-
tion. Moreover, a planar hypothesis has been used: each body involved lies
on the same plane X − Y and each vector does not have a Z component.

Another simplification, considering a non-rotating reference system centered
on Earth, is to fix the transfer starting point at the intersection between
the moon orbit and the x axis (θM0 = 0◦), as to make easier the compari-
son among the various orbits and underline their differences. Besides, two
different orbits categories can be distinguished :

• outbound-inbound - outbound-inbound - initially the spacecraft moves
away from Earth and then it gets closer to it;

• inbound-inbound - initially the spacecraft moves closer to Earth, then
it moves away from it and successively it gets closer to it again.

In order to study the effect of the magnitude of the spacecraft’s velocity vec-
tor relative to the moon on the orbits, the following different velocities are
used: V∞ = 0.9 km/s, V∞ = 1 km/s and V∞ = 1.1 km/s. From this last one

23
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θM0

θS0

Figure 3.1: Geometrical schema for determination of moon-to-moon transfer
orbits. Here the outbound-inbound example is shown, being α > 0.

a velocity relative to the inertial reference is obtained VS/C = VM + V∞,
where VM is the moon velocity vector relative to Earth.
The first variable parameter is the angle α between V∞ and VM , which de-
fine the inner loop of the iteration process – varying from 0◦ to 180◦ for
the outbound-inbound orbits and from −0.05◦ to −179.95◦ for the inbound-
inbound, in 0.05◦ steps. The initial position of the sun (θS0) is the second
varying parameter, which cycles from 0◦ to 359◦ in 1◦ increments, determining
the outer loop. In figure 3.1 is presented a sketch of the geometry of the issue.

Using the following initial conditions, the designed program integrates the
equations of motion (2.32).

X0 = RM cos (θM0)

Y0 = RM sin (θM0)

Z0 = 0

VX0 = −VM sin (θM0)− V∞ sin (θM0 − α)

VY0 = VM cos (θM0) + V∞ cos (θM0 − α)

VZ0 = 0

(3.1)
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To avoid unreasonable flight times, an integration period of 7 months has
been chosen, but if an encounter with the lunar orbit is found, the integra-
tion is stopped earlier and the moon’s and spacecraft’s angular positions are
then compared with those obtained in the previous iteration; if there is an
inversion of sign, a subroutine is called, which identify the exact value of α
that allows a spacecraft-moon re-encounter, reaching convergence with the
secant method.

The procedure described might not converge and miss some solutions, thus, to
use it, a systematic search of solutions with sun’s initial position translated
by ±180◦ is inserted, which take into account that the sun gravitational
perturbation has an almost exact 180◦ periodicity with respect to the latter.

θS0,sym = θS0 + π (3.2)

As the deviations have the same order of magnitude of
r

rS
, available moon-

to-moon trajectories are expected to show same periodicity.
Moreover, the search for αsym that are associated to a correct solution is
limited to the range α, due to the just mentioned symmetry.

Another aspect to underline is many of the found solutions are not significa-
tive in the context of this analysis: several duplicates and solutions, which
do not have a physical meaning are identified. The first have the unsought
effect of slowing down computation and leading no advantage, while the sec-
ond have an extremely limited orbit duration (also under 1 s), thus it can be
attributed only a mathematical meaning.

Finally, solutions are divided by family on the basis of their orbit duration.
Results are saved in a .xlsx, where each family is stored in a dedicated sheet,
in the form of a Ni × 13 matrix, where Ni is the number of identified so-
lutions for the ith family. The matrix is built according to the following
structure: columns from 1 to 6 - contain the coordinates of the spacecraft-
moon rendezvous and the vector components of the spacecraft velocity at the
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encounter; column 7 contains to the duration of the orbit (in s); in column 8

is stored the value of α, while column 9 contains the initial angular position
of the Sun (θS0); columns 10 and 11 are dedicated to the angular position
of both spacecraft and moon at the rendezvous (even though this means the
same value is saved twice for each solution, this strategy has been used so as
to have one more check regarding whether the rendezvous has been properly
reached), column 12 contains the conversion of TE in lunar months; the final
column contains the angular position of the Sun at the moment of rendezvous.

After having classified the values of α that permit for a moon-to-moon trans-
fer according to their duration, the corresponding orbits are drawn. Each
family is given an accurate name, composed of three letters: the first one,
from A to F, identifies the family according to the duration of the orbits,
with A corresponding to TE ' 1 month, B to TE ' 2 months, and so on; the
other two distinguish whether in the family are present outbound-inbound
orbits or inbound-inbound ones. For instance, a family consisting of inbound-
inbound orbits that allow a rendezvous after circa 5 months is classified as
Eii.

In addition, a minimum altitude of 250 km is applied: if during the integra-
tion process the magnitude of the spacecraft’s distance vector from Earth’s
centre achieves R⊕ + 250 km or lower, integration is braked and a warning
is showed. This allows accounting the dimensions of Earth and prevent both
impacts and the feasible dissipation of energy due to drag caused by the at-
mosphere, which would stop the algorithm since has not been introduced a
control on the conservation of mechanical energy.
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3.2 Moon-to-escape lunar gravity assist

In order to study the LGA maneuver are used the results acquire during
the moon-to-moon leg analysis: the spacecraft’s position coordinates at the
re-encounter, its velocity vector components, the value of α, the time of the
encounter TE (measured from the start of the integration process T0), the
angular position of the spacecraft at the encounter, the angular position of
the Sun both at T0 and at TE, and the number of lunar revolutions between
TE and T0.
Besides, to avoid collisions during the maneuver, the periselene rp is fixed at
50 km over the moon’s surface.

3.2.1 Lunar gravity assist evaluation

The evalutation is performed for only one orbit family at a time, selected
at the time of running the executable, as to reduce the computing time; for
each selected family every orbit are considered (outermost loop).
First of all, a system change is executed: from a Cartesian reference system
to a reference system moving with the moon with the first axis along the
Earth-moon direction, the second one perpendicular to the moon orbit plane,
and the third one parallel to VM (obtained with the right-hand rule); this
changed is applied to velocity vector, thus obtaining V −∞ :


u−∞ = V∞,X cos θ + V∞,Y sin θ

v−∞ = −V∞,X sin θ + V∞,Y cos θ − VM
w−∞ = 0

(3.3)

Where θ, as exposed in section 3.1, is the angular position between the space-
craft and the moon at the re-encounter.
Moreover, given that the moon-to-moon leg stays on the moon orbit plane,
the normal component of V −∞ is null.
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Using the radial and tangential components of V −∞ , the pump angle at the
start of the LGA maneuver can be evaluated:

p− = arctan
u−∞
v−∞

(3.4)

After evaluating p−, the maximum possible rotation (δmax) that can be
achieved by the LGA is calculated:

δmax = 2 arcsin
µM/rp

V −∞
2 + µM/rp

(3.5)

Since 0 < δ < δmax , an inner loop begins where the possible pump angles
after the LGA are taken into consideration:

p− − δmax < p+ < p− + δmax (3.6)

After for every p+, all probable crank angles after the LGA are evaluted, from
0 to the maximum value k+max (innermost loop), where k+max can be obtained
from the definition of dot product:

V −∞ · V +
∞ = V 2

∞ cos δ (3.7)

Writing the dot product (eq. 2.39) using pump and crank angles, and ob-
serving that k− = 0:

cos δ = cos p− cos p+ + sin p− sin p+ cos k+ (3.8)

Remembering the limits for δ mentioned previously, it can be deduced that:

cos δ > cos δmax (3.9)

Therefore:

sin p−sinp+ cos k+ > cosδmax − cos p− cos p+ (3.10)

Now, it is possible to identify two cases:

sin p− sin p+ > 0 −→ cos k+ >
cos δ − cos p− cos p+

sin p− sin p+

sin p− sin p+ < 0 −→ cos k+ <
cos δ − cos p− cos p+

sin p− sin p+

(3.11)
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The solution of the equation 3.11 is:

cos k+ =
cos δ − cos p− cos p+

sin p− sin p+
(3.12)

Therefore:

k+max = arccos

(
cos δmax − cos p− cos p+

sin p− sin p+

)
(3.13)

Where the argument of the arccosine function is denoted with arg :

arg =
cos δmax − cos p− cos p+

sin p− sin p+
(3.14)

Moreover, to assure k+max is correctly calculated, a verification is carried out
both on the value arg that the sign of its denominator. It is to be highlighted
that, for k+ = 0 in equation 3.8:

cos δ = cos p− cos p+ + sin p− sin p+ = cos |∆p| > cos δmax (3.15)

Therefore:

sin p− sin p+ > 0 −→ arg < 1

sin p− sin p+ < 0 −→ arg > 1
(3.16)

There are only three feasible cases, as the others do not produce significant
solutions:

• sin p− sin p+ > 0, −1 < arg < 1 −→ kmax is calculated according to
equation 3.13;

• sin p− sin p+ > 0, arg < −1 −→ kmax = 180◦;

• sin p− sin p+ < 0 (i.e. the gravity assist manoeuvre modifies the sign of
the pump angle) −→ kmax = 180◦.

Using again equation 2.39, inside the innermost loop, the velocity relative to
the moon after the LGA maneuver is computed for each k+.



30 3.2. Moon-to-escape lunar gravity assist

Afterwards, the absolute velocity in Earth’s reference frame is got:
u+ = u+∞

v+ = v+∞ + VM

w+ = w+
∞

(3.17)

To calculate the escape velocity, it is required to compute the energy associ-
ated to the orbit where is spacecraft.

E =
V +2

2
− µE

RM

(3.18)

Now, a further check is carried out, if the energy E is negative (i.e. the orbit
is closed), the code is breaked and is moved to the next iteration; this is done
because the aim of analysis is evaluate the evasion maneuvers.
Therefore, the characteristic energy can be computed:

C3 = 2E (3.19)

The magnitude of the escape velocity vector, supposing r →∞ at the escape,
is:

Vesc =
√
C3 (3.20)

The other parameters of spacecraft’s orbit can be obtained as shown below.
The specific angular momentum is computed:

h = RM

√
v+2 + w+2 (3.21)

This value is used to calculate the orbital eccentricity, which should be greater
than 1, since E > 0:

e =

√
1 +

2E h2

µ2
E

(3.22)
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The evaluation of the semi-major axis is obtained form the equation 3.18 ,
which depend on the orbit size:

a = −µE

2E
(3.23)

Consequently, the semilatus rectum can be computed as:

p = a
(
1− e2

)
(3.24)

Equally, the perigee can be calculated also:

rp = a (1− e) (3.25)

Instead, the true anomaly, which identifies the position of the spacecraft on
its hyperbolic orbit, can be achieved from equation 2.30:

ν = arccos
p/RM − 1

e
(3.26)

Its aperture is computed as followed:

ϕ = arccos
1

e
(3.27)

To avoid collisions with Earth, another verification is performed: if the true
anomaly (ν) is negative, i.e. the spacecraft is close to the perigee, the perigee
radius (achieved from equation 3.25) is compared to Earth’s radius raised by
200 km; if rp is under this value, the algorithm jumps to the next iteration
and disregards the current solution.

Making geometric considerations on figure 3.2, it can now be estimated the
angle between the direction corresponding to the true anomaly after the LGA
and the direction of Vesc:

∆ = π − ϕ− ν (3.28)

The inclination of the escape orbit can be deduced from V + components:

i = arctan
w+

v+
(3.29)
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Vesc
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∆ ν

Figure 3.2: Geometrical schema for escape orbit.

Now, the angle Ω is introduced, which identify the angular position of the
LGA relative to the sun’s:

Ω = θ − θS (3.30)

Finally, another reference change is carried out, considering the effects of ∆,
i, and Ω; this allow evalutating the components of the spacecraft’s velocity
(VH) in a radial-tangential-normal reference frame centered at the sun:

uH
VH

= sin ∆ sin Ω cos i− cos ∆ cos Ω

vH
VH

= − sin ∆ cos Ω cos i− cos ∆ sin Ω

wH

VH
= sin ∆ sin i

(3.31)

Underline that Vesc = VH , since it is the same vector represented in two
different reference systems.
Therefore, as illustrated in figure 3.3, the heliocentric flight-path angle (γH)
and declination (δH) for the spacecraft’s velocity after the LGA maneuver
are computed: 

γH = arctan
uH
vH

δH =

∣∣∣∣arcsin
wH

VH

∣∣∣∣ (3.32)
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Figure 3.3: Heliocentric flight-path angle (γH) and declination (δH) for the
spacecraft’s velocity after the lunar gravity assist.

Note that in equation 3.32, δH is calculated using the modulus (i.e. the study
is confined to positive values of declination) being the maneuver symmetrical:
it is enough to invert k+ to modify the sign of δH .
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3.2.2 Maximum C3, given heliocentric flight-path angle

and declination

The procedure described in section 3.2.1, for every of the solutions found for
the moon-to-moon leg enable to build three matrices each one joining a value
of C3, γH and δH respectively to a couple (p+, k+). As the purpose of the
study is to link C3 to γH and δH , the final part of the code interpolate data
coming from the three matrices mentioned above: for every couple (p+, k+)

considered during the LGA evaluation, the corresponding values for C3 to γH
and δH are acquired from the relative matrix, and the latter two are rounded
to the closest integer. Thus, it can be written:

γ −→ 0 ≤ g ≤ 359, g ∈ N
δ −→ 0 ≤ d ≤ 90, d ∈ N

(3.33)

After, (g + 1) and (d+ 1) are used as indices to created a matrix with the
value of C3 corresponding to the γH and δH (C3max (g, d) ∈ R360×91 ), for
each family; if the couple (g, d) repeats, the higher C3 is stored, while the
lower one is put aside.

At the end, for a global evaluation, the twelve matrices obtained are assem-
bled: for each (g, d) couple, the values of C3 from each of the twelve families
are compared and the maximum one among them is stored in a new matrix.
The final result is a map which associates to a given γH and a given δH the
maximum attainable energy value after the lunar gravity assist maneuver,
regardless from the duration of the moon-to-moon leg.
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Results

4.1 Moon-to-moon leg

In this section, for three different spacecraft initial velocities relative to Moon
(V∞ = 0.9 Km/s,V∞ = 1 Km/s e V∞ = 1.1 Km/s) , the orbits allowing a ren-
dezvous between the spacecraft and the moon are shown, for both outbound-
inbound and inbound-inbound families.

4.1.1 Outbound-inbound

As regard outbound-inbound families (figure 4.1, 4.2 and 4.3), it is observed
clearly that for a limited range of α, trajectories that allow a rendezvous
between the spacecraft and the moon are identified. This range is influenced
by both the family (i.e. the duration of the moon-to-moon leg) and spacecraft
initial velocity relative to Moon.
For the first aspect, if a velocity V∞ = 1 Km/s is considered, it is to be
observed that while for Aoi family the interval in which solutions have been
identified is limited to ∼ 4◦ (110.50◦−114.75◦), Foi family displays a fivefold
variation range (87.81◦ − 108.52◦); the possible range of α where a solution
can be found, becomes wider as the orbit duration increases. Moreover, it is
to be noted how, for each family, the upper boundary of this interval stays
close to 110◦. Differently, the lower boundary of the range reduces constantly
with the increase of TE, meaning that the first LGA maneuver can have more

35
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Table 4.1: Ranges (in ◦) for α and θSC for oi families and V∞ = 0.9 Km/s.

Family αmin αmax α range θSC,min θSC,max θSC range

Aoi 105.71 110.40 4.69 83.83 139.60 55.78
Boi 96.22 105.65 9.43 47.41 188.12 140.71
Coi 90.56 105.57 15.01 27.01 277.33 250.32
Doi 86.52 104.56 18.04 -21.24 322.58 343.82
Eoi 83.52 104.27 20.75 -188.15 167.76 355.9
Foi 81.15 104.20 23.05 -101.31 321.70 333.01

Table 4.2: Ranges (in ◦) for α and θSC for oi families and V∞ = 1 Km/s.

Family αmin αmax α range θSC,min θSC,max θSC range

Aoi 110.50 114.75 4.25 66.95 114 47.05
Boi 101.40 109.93 8.53 50.22 178.84 128.62
Coi 96.22 109.63 13.41 9.71 243.94 234.23
Doi 92.59 108.86 16.27 -31.53 300.31 331.84
Eoi 89.92 108.81 18.89 -178.91 162.05 340.96
Foi 87.81 108.52 20.71 -109.19 217.51 326.70

Table 4.3: Ranges (in ◦) for α and θSC for oi families and V∞ = 1.1 Km/s.

Family αmin αmax α range θSC,min θSC,max θSC range

Aoi 115.14 119.03 3.89 50.41 90.68 40.27
Boi 106.27 114.05 7.78 51.93 170.27 118.34
Coi 101.43 113.46 12.04 2.61 220.75 218.14
Doi 98.11 112.96 14.85 -44.18 272.68 316.86
Eoi 95.67 112.71 17.04 -185.39 148.01 333.4
Foi 93.76 112.64 18.88 -105.28 192.22 297.5

solutions that result practicable for a moon-to-moon trajectory.
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For the second aspect, is observed that as the velocity increases, the values
of αmax and αmin increase for each family, while the range of α is reduced.

Besides the considerations made on the range of α, another important aspect
is the location of the rendezvous θSC : in comparison to Aoi, Boi, and Coi

families, the last families allow re-encounters almost all along moon’s orbit,
having a larger range of α and a greater time available. This begins to be
possible even for the Coi family, going to increase spacecraft initial velocity
relative to Moon.

Finally, another noteworthy aspect is the perturbative effect of the Sun on
the spacecraft orbit: long-lasting orbits that reach significant distances from
Earth revel remarkable irregularities that are not according to with a Newto-
nian description of the orbital motion, while shorter legs appear to be more
regular and without inversions – although the orbits are not simply conic in
these cases.

4.1.2 Inbound-inbound

Similar considerations to the ones made on oi families are applicable inbound-
inbound orbits, shown in figure 4.4, 4.5 and 4.6.

The range of α once again rises with the duration of the orbit while it de-
creases with increasing V∞, in a similar way to what has been seen for oi
families. The upper and lower boundaries change their role, meaning that,
considering a V∞ = 1 Km/s, for inbound-inbound orbits the lower boundary
is the one presenting the less amount of variation (from −120.65◦ for Aii to
−108.58◦ for Fii) in comparison to the higher boundary (from −117.84◦ to
−87.86◦) and this does not change for different V∞. This role change, though,
is logical and expected: as observed by oi families longer-lasting orbits allow
values of α determining a V∞ closer to VM , in comparison to shorter ones.
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Table 4.4: Ranges (in ◦) for α and θSC for ii families and V∞ = 0.9 Km/s.

Family αmin αmax α range θSC,min θSC,max θSC range

Aii -117.62 -114.67 2.95 -6.79 9.26 16.05
Bii -107.78 -100.75 7.03 -38.21 226.84 155.05
Cii -105.10 -94.08 11.02 -99.98 159.17 259.15
Dii -104.48 -87.07 17.41 -33.40 313.43 346.83
Eii -104.36 -83.58 20.78 -27.40 319.8 347.2
Fii -104.27 -81.07 23.20 -40.55 284.81 325.36

Table 4.5: Ranges (in ◦) for α and θSC for ii families and V∞ = 1 Km/s.

Family αmin αmax α range θSC,min θSC,max θSC range

Aii -120.65 -117.84 2.80 -6.92 8.97 15.89
Bii -111.40 -104.94 6.46 -39.94 95.45 135.39
Cii -109.25 -98.82 10.43 -88.47 163.42 251.9
Dii -108.75 -93.00 15.75 -156.04 179.97 336.01
Eii -108.62 -90.00 18.62 84.84 254.85 337.69
Fii -108.58 -87.86 20.72 -42.3 274.89 317.19

Table 4.6: Ranges (in ◦) for α and θSC for ii families and V∞ = 1.1 Km/s.

Family αmin αmax α range θSC,min θSC,max θSC range

Aii -120.97 -123.46 2.49 -7.16 8.58 15.74
Bii -115.26 -109.02 6.24 -38.82 82.77 121.59
Cii -113.18 -103.37 9.81 -83.59 157.64 241.23
Dii -112.70 -98.36 14.34 -144.88 180.81 323.69
Eii -112.57 -95.49 17.07 -73 256.58 329.58
Fii -112.59 -94.85 17.74 -38.11 257.3 295.41
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As for oi families, even for these families the location of rendezvous is an
important aspect, since the shift from a small interval for the first families to
the almost complete lunar orbit is even more evident. For example, always
considering V∞ = 1 Km/s, the family Aii presents a θSC at the re-encounter
varying in a limited ∼ 16◦ interval around 0◦, even smaller than the ∼ 47◦

range for Aoi.

Finally, the perturbation due to the gravitational effect of the Sun is once
again much evident for the last families, where the same irregularities and
inversions of oi families are showing.
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Figure 4.7: Range of α that allow a rendezvous for oi and ii families.
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Figure 4.8: Range of θ that allow a rendezvous for oi and ii families.
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4.2 Lunar gravity assist

In this section, the graphs where C3(γ) is compared for different values of
declination δ and for different spacecraft initial velocities relative to Moon
(V∞ = 0.9 Km/s,V∞ = 1 Km/s e V∞ = 1.1 Km/s) are shown.

4.2.1 C3(γ) for given δ

Figures from 4.9 to 4.44 show the values for the maximum achievable char-
acteristic energy C3 with varying flight-path angle γ, for fixed values of dec-
lination (δ = [0 30 45 60 80]). Due to the nature of the perturbation effect
generated by the Sun, all graphs show a periodicity around 180◦, however,
from A to C families clearly show this, compared last families. Therefore,
considerations can be limited to γ ∈ [0◦, 180◦]. Furthermore, it can be high-
lighted that higher values for characteristic energy (C3) are generally limited
to reduced declinations, independently of the family - although values them-
selves tend to vary and grew with longer-lasting orbits.

Aoi− Aii

Figures from 4.9 to 4.14 show that A families have a peak C3 around γ = 70◦

and it is lightly higher for the outbound-inbound family, for the same V∞;
instead, as the velocity increases, this peak is had at higher C3.
Furthermore, it can be observed how escape manoeuvres are allowed only for
low declination over the ecliptic plane. For instance, δ ≥ 45◦ is not achievable
if an escape associated to a moon-to-moon leg of ∼ 1 month and V∞ ≤ 1

Km/s is desired, and even for δ = 30◦ escape trajectories are possible only
for a limited range of flight-path angle, which increases with V∞.
A particular feature of the curve for δ = 0◦ is its amplitude: consider-
ing V∞ = 1 Km/s, while Aoi shows a higher peak, it also goes down to
1 km2/s2, whereas for Aii it does not reach 2 km2/s2 but it does not dip
below 1.5 km2/s2; changing V∞ this behaviour remains the same and only
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the values of the maximum and minimum C3 will be changed. Therefore,
Aii family seems to give a more consistent escape for each flight-path angle.

Figure 4.9: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 0.9 Km/s, Aoi family.

Figure 4.10: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1 Km/s, Aoi family.
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Figure 4.11: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1.1 Km/s, Aoi family.

Figure 4.12: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 0.9 Km/s, Aii family.
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Figure 4.13: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1 Km/s, Aii family.

Figure 4.14: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1.1 Km/s, Aii family.
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Boi−Bii

Figures from 4.15 to 4.20 show that Boi family allows the achievement of
higher characteristic energies compared to Aoi. Also, in this case, higher val-
ues is had for low declination, however, two peaks can be identified instead
of a single one: a first, more evident one for γ ' 50◦; then, a second, more
difficult to identify just after γ ' 100◦. Boi is continuous between the two
peaks, showing a discontinuity for γ ' 120◦, while Bii presents a jump both
for γ ' 120◦ and for γ ' 55◦, between the maximums, but this discontinuity
disappears for low velocities. Moreover, also for these families an increase of
C3 is observed with the V∞ .
Another noteworthy feature of these curves is the decrease of C3 with δ:
more evident moving to flight-path angles corresponding to the maximums
of the curves, whereas the variation is much more small when in the range
of values of γ associated with minimum C3.
Additionally, it can be noted how multiple peaks are present only for δ = 0◦,
whereas higher declination has a single maximum. Finally, another charac-
teristic showed by the maximums is a shift to smaller flight- path angles:
considering Boi, while the peak for C3(δ = 30◦) is associated with γ ' 200◦,
the one for δ = 60◦ is before γ = 180◦.
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Figure 4.15: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 0.9 Km/s, Boi family.

Figure 4.16: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1 Km/s, Boi family.
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Figure 4.17: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and and V∞ = 1.1 Km/s, Boi family.

Figure 4.18: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 0.9 Km/s, Bii family.
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Figure 4.19: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1 Km/s, Bii family.

Figure 4.20: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1.1 Km/s, Bii family.
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Coi− Cii

If escapes with high declination for any γ are desired, accepting transfers of
approximately 3 months or longer is necessary. As said previously, character-
istic energy is higher than what is achievable with shorter moon-to-moon legs
and inbound-inbound orbits seem to permit less energetic escapes respect to
outbound-inbound.
Equally to B families, C families show multiple peaks as well, instead of a
single one, and they are more spaced out. As for Boi, the multiple peaks that
there are for null declination do not reach the same value, since the second
one is more than 0.3 km2/s2 below the first one.
Moreover, it is visible how the distance between the maximum C3 for Coi
and Cii is reduced compared to B families – and even more, if A families are
taken into account. Finally, as in the previous families, C3 increases with
V∞.
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Figure 4.21: C3max function of the flight-path angle (γ) for fixed values of
declination (δ)and V∞ = 0.9 Km/s, Coi family.

Figure 4.22: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1 Km/s, Coi family.
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Figure 4.23: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1.1 Km/s, Coi family.

Figure 4.24: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 0.9 Km/s, Cii family.
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Figure 4.25: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1 Km/s, Cii family.

Figure 4.26: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1.1 Km/s, Cii family.
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Doi−Dii

Figures from 4.27 to 4.32 clearly show the curves are less regular than the
previous families, but the symmetry continues to exist. While less apparent
for δ = 0◦, higher declination angles see curves for C3 with multiple irreg-
ularites. Furthermore, the same considerations can be made on the C3-V∞
ratio, made for previous families.
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Figure 4.27: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 0.9 Km/s, Doi family.

Figure 4.28: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1 Km/s, Doi family.
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Figure 4.29: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1.1 Km/s, Doi family.

Figure 4.30: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 0.9 Km/s, Dii family.
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Figure 4.31: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1 Km/s, Dii family.

Figure 4.32: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1.1 Km/s, Dii family.
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Eoi− Eii

Similar observations to the ones for earlier families is done for E family: peak
C3 rises and is higher for outbound-inbound orbits compared to inbound-
inbound. However, the difference between oi and ii families are less evident,
and ii orbits seem to be more and more similar to oi, in terms of escape
conditions.
The difference between the outbound-inbound peak and the inbound-inbound
one is reduced to the minimum, as both reach C3 ' 3.2 km2/s2 – with Eii
just lightly inferior.
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Figure 4.33: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 0.9 Km/s, Eoi family.

Figure 4.34: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1 Km/s, Eoi family.
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Figure 4.35: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1.1 Km/s, Eoi family.

Figure 4.36: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 0.9 Km/s, Eii family.
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Figure 4.37: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1 Km/s, Eii family.

Figure 4.38: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1.1 Km/s, Eii family.
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Foi− Fii

The irregularities that were evident for D and E families are here even more
so. Although there are numerous discontinuities, the trend for the different
curves are still perceivable, and it can be noted, ignoring the most important
falls, how the minimum C3 is grown up when compared to the first families,
meaning that escapes that use a 6-month long moon-to-moon leg are more
energetic than quicker ones.
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Figure 4.39: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 0.9 Km/s, Foi family.

Figure 4.40: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1 Km/s, Foi family.
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Figure 4.41: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1.1 Km/s, Foi family.

Figure 4.42: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 0.9 Km/s, Fii family.
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Figure 4.43: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1 Km/s, Fii family.

Figure 4.44: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1.1 Km/s, Fii family.
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4.2.2 Global results

Assembling the matrices of every family has been obtained final matrix, as
indicated in section 3.2.2. It allows evaluating the global obtainable effect of
the lunar gravity assist, regardless of the duration of the moon-to-moon leg
employed to sort the different families.

Equally to what has been done for every family, this matrix has been graph-
ically represented using the same colour scale and the trend of C3(γ) for the
same given values of δ has been plotted.

Two main peaks can be identified: the first, smaller, one is located in the
proximity of flight-path angle γ = 30◦, and it achieves C3 = 3.04 km2/s2

for a declination of δ = 0◦ and each V∞– equivalent to the first peak of the
Foi family, visible in figures from 4.39 to 4.41 ; the second one, on the other
hand, is higher and achieves C3 = 3.21 km2/s2 for γ ' 70◦ and each V∞–
equivalent to the first peak of the Eoi family or the second one for the Foi
one.

As concern the minimum value, any combination of flight-path angle and
declination gives C3 ≥ 0.5 km2/s2.

Finally, six additional graphs have been made (figures from 4.48 to 4.53),
showing, varying δ and V∞, the minimum and maximum C3,Vesc and the
ratio Vesc/V∞ achievable, so as to obtain what the guaranteed attainable es-
cape velocity given the desired escape declination and the spacecraft initial
velocity relative to Moon is.
For V∞ = 1 Km/s, notwithstanding there are some irregularities, deriving by
the ones present in the single families, the trend of the minimum C3max is the
following: usually more energetic escapes are had for lower declination, since
a smaller part of the gained ∆V is spent for the rotation of the V vector
away from the ecliptic plane. With a planar escape – δ = 0◦ – the minimum
guaranteed escape velocity, independently from the desired flight-path angle,
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Figure 4.45: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 0.9 Km/s.

Figure 4.46: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1 Km/s.
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Figure 4.47: C3max function of the flight-path angle (γ) for fixed values of
declination (δ) and V∞ = 1.1 Km/s.

is Vesc = 1.57 km/s, as the associated C3 is 2.5 km2/s2. This value remains
enough steady until δ = 2◦, where it starts to have quickly downhill, shifting
to C3 ' 1.58 km2/s2 and Vesc = 1.26 km/s for δ = 26◦; after, are had a more
gradual decrease and, for δ = 80◦, C3 ' 0.78 km2/s2 and Vesc = 0.85 km/s is
get. Afterwards, it decreases again rapidly until it reaches a C3 = 0 km2/s2

for δ = 89◦ and consequently also the V is null. The trend of the curves for
V∞ = 0.9 Km/s and V∞ = 1.1 Km/s is the same as that just considered, even
if the many irregularities present do not allow us to understand the correct
effect of the V∞ on the C3.
Figure 4.51 shows a similar trend for the maximum values for C3: starting
from C3 = 3.21 km2/s2 and Vesc = 1.79 km/s, it is had a rapidly decrease
until δ = 16◦, where the descent becomes more slight, even though with few
irregularities, goes on steadily up to C3 ' 1 km2/s2 for δ = 90◦. The trend
of the curves for V∞ = 0.9 Km/s and V∞ = 1.1 Km/s is the same as that just
considered and also the presence of few irregularities allow us to understand
the effect of the V∞ on the C3: up to δ = 18◦ the C3 obtainable, for the
different velocities are always the same, while for higher δ values, it is shown
that as the velocity increases, higher C3 are obtained and accordingly higher
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Vesc.

Figure 4.48: Minimum C3max(γ) varying with δ and V∞.

Figure 4.49: Minimum Vescape varying with δ and V∞.
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Figure 4.50: Minimum Vescape/V∞ varying with δ and V∞.

Figure 4.51: Maximum C3max(γ) varying with δ and V∞.
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Figure 4.52: Maximum Vescape varying with δ and V∞.

Figure 4.53: Maximum Vescape/V∞ varying with δ and V∞.



Chapter 5

Conclusions

5.1 Conclusions

The goal of aforesaid work is been to analyze the possibility to carrying
out multiple lunar gravity assist escape maneuvers, linking the desired es-
cape conditions (i.e heliocentric flight-path angle and declination) with the
obtainable escape velocity, which is the square root of the specific character-
istic energy (C3). At the beginning, the solar-perturbed orbits that allow two
consecutive LGAs have been searched, using the code designed. After, the
second LGA has been analyzed for every moon-to-moon transfer identified in
the previous step. The obtained data, that correlating heliocentric flight-path
angle, declination and the respective C3 at the escape to the characteristics
of the gravity assist (i.e pump and crank angle) have been interpolated, to
straight link a C3 to every couple (γ, δ) .Only the case δ > 0◦ has been
studied since the LGA maneuver is symmetrical.
Observing the obtaining results can be concluded that for interplanetary
missions, the lunar gravity assist escape maneuvers allow bringing more pay-
load mass in exchange for longer mission duration, respect to thrust-based
escape strategies, since the heliocentric escape velocity attainable is not cor-
relating to used propellant mass. Finally, in a preliminary design phase of
an interplanetary mission exploiting lunar gravity assist escape strategy, the
previously graphs presented can be used, since they link the characteristics
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of the desired heliocentric orbit to the minimum guaranteed escape velocity.

5.2 Future work

The main issue faced during the development of the present study has con-
sisted of elimination of the overlap of the curves for different declination
angles and lack of symmetry that occurred in the previous version of the
developed algorithm. Although these problems have been solved, the curves
are not regular for all families due to the miss of solutions, as discussed in
the section 4.2.1; however, it was possible to visualize the general trend of
curves. Therefore, the present study might be completed by looking for miss-
ing solutions.
Finally, to complete the evaluation of the geocentric part of an interplanetary
mission, the present study might be completed by an analysis of the launch
and Earth-to-moon phases.
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