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Abstract

The aim of the research is to explore theoretical and mathematical aspects of a Mass Driver
(MD, a.k.a. Electro-Magnetic Launchers, EML) to be used in extreme environmental
conditions, in a permanently shadowed region, inside a small celestial body crater, for
non-chemical delivery of resources. The analysis consists of two phases.

The first is a preliminary analysis of the state of the art of EML on the two most studied
configurations, the Railguns (RGs) and the Coilguns (CGs). The RGs are the most tech-
nologically advanced but suffer from an excessive deterioration of the components, reason
for which they may be complicated to implement in a scenario where numerous annual
launches are expected and where the replacement of broken components is not an easy
task.

The latter, more futuristic, can eliminate some of these defects by means of magnetic
levitation, and therefore are the focus of this investigation.

The second phase is the preliminary design phase, in which it has been completely config-
ured the dynamical system of the MD, which includes electrical, magnetic, thermal, and
structural phenomena. The strong interaction of some of these, namely the electromag-
netic and the electrothermal phenomena, has been analyzed in detail, whereas the other
problems have been analyzed separately a posteriori. The problem appeared to be strongly
non-linear. A SQP algorithm has been developed and used for the constrained nonlinear
optimization, in which the Merit Function and the nonlinear constraints are appropriately
exchanged to ensure their asymptotic congruence.

The results obtained from the analysis show a good adherence to expectations.

The achieved overall efficiency of the system, namely the set of solar panels, transformers
for the energy conversion and distribution, capacitors, all distribution lines, and the MD
itself, is similar to the modern pulsed inductive thrusters.

Results demonstrate that the MD works at its best with few launches per year for large
masses, but many suborbital launches, ie at lower speeds, may guarantee the same annual
tonnage with a non-noticeable decay of performances. This may be considered a benefit,
considering that capacitors would be allowed to recharge for longer times, would deteriorate
less, and would be more aligned to their current space-qualified TRL.

The mathematical model covers the main electromagnetic and electrothermal phenomena,
and its goodness is estimated around 50%. The overall electric efficiency, from the solar
panel to the distribution lines, scores around 0.1, heavily influenced by a conservative solar
panel efficiency of 0.2.
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Future studies may be worth regarding the current tuning to allow the same MD to launch
different payloads while maintaining the same magnetic levitation. In addition, a precise
FEM study regarding the magnetic levitation is suggested, accompanied by the validation
of the considerations regarding the electrical components, especially capacitors and their
TRL, the bucket reutilization, and methods for storing the payloads in different points in
the Earth-Moon system.
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Sommario

Scopo della ricerca è di esplorare gli aspetti teorici e matematici di un Mass Driver (MD, o
Lanciatore ElettroMagnetico, EML) da utilizzare in condizioni ambientali estreme in una
zona perennemente all’ombra all’interno di un cratere lunare, allo scopo di muovere, senza
l’impiego di propellenti chimici, un dato payload. L’analisi consiste di due fasi.

La prima riguarda l’analisi preliminare dello stato dell’arte degli EMLs nelle due config-
urazioni maggiormente esplorate, cioè i Railgun (RG) e i Coilgun (CG). In tale contesto
si è concluso che i RGs sono i più avanzati tecnologicamente ma soffrono un eccessivo de-
terioramento dei componenti, ragion per cui potrebbero essere di difficile impiego in uno
scenario in cui sono richiesti numerosi lanci annui e in cui ci si aspetta che sia complesso
sostituire, o riparare, un dato componente danneggiato. I più futuristici CG, invece, pos-
sono eliminare alcuni difetti dei RG per mezzo della levitazione magnetica, e pertanto sono
stati il focus dello studio.

La seconda fase è quella di design preliminare. In questo contesto si è esplicitato il sistema
dinamico del MD, includendo fenomeni elettrici, magnetici, termici, strutturali e orbitali.
La forte interazione fra alcuni di questi, specificatamente per i fenomeni elettromagnetici
ed elettrotermici, è stata oggetto di approfondimento, mentre le altre problematiche sono
state analizzate separatamente a posteriori.

Il problema è apparso fortemente non lineare. L’impiego di un algoritmo SQP ha permesso
di effettuare un’ottimizzazione non lineare vincolata, nella quale la funzione oggetto e i
vincoli non lineari sono stati opportunamente e mutuamente scambiati per assicurarne la
congruenza e convergenza asintotica.

I risultati hanno mostrato una buona aderenza alle previsioni. L’efficienza globale del
sistema, che include la struttura solare, i trasformatori per la conversione e distribuzione
di energia, i condensatori, tutte le linee di distribuzione e il MD stesso, è nell’ordine dei
moderni Propulsori per Induzione a Impulso (PIT). I risultati mostrano come il MD sia
più efficiente se impiegato per pochi lanci annui ad alto carico, anche se una serie di lanci
suborbitali, cioè a velocità inferiori, potrebbero garantire lo stesso appannaggio annuo, per
ciò che riguarda il peso complessivo, senza decadere significativamente nelle prestazioni. La
condizione di pochi lanci annui potrebbe essere un beneficio, considerato che i condensatori
avrebbero tempi di ricarica maggiori e, pertanto, si consumerebbero meno e sarebbero più
in linea con la loro attuale prontezza tecnologica.

Il modello matematico ricopre i principali fenomeni elettromagnetici ed elettrotermici e
la sua accuratezza può essere stimata intorno al 50%. L’efficienza elettrica globale, a
partire dai pannelli solari fino ai componenti del MD, si attesta intorno allo 0.1, fortemente
influenzata da un’efficienza conservativa dei pannelli solari pari a 0.2.
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Sarebbe auspicabile approfondire lo studio, in futuro, per ciò che riguarda il tuning della
corrente per garantire allo stesso MD masse diverse al lancio, mantenendo comunque la lev-
itazione magnetica. Potenzialmente, tale studio potrebbe essere associato ad un’analisi agli
Elementi Finiti per ciò che concerne i campi magnetici all’interno del MD, accompagnato
dalla validazione di tutte le considerazioni fatte o suggerite circa i componenti elettrici,
specificatamente i condensatori ed il loro TRL, la possibilità di riutilizzare il bucket, e lo
studio di metodi per recuperare il payload in diversi punti del sistema Terra-Luna.
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Nomenclature

Name Unit Value Description
Latin abc

a m s−2 Acceleration
km Semi-major axis

a$ km 384748 Moon semi-major axis around Earth
c J kg−1 K−1 Specific heat capacity
c` m s−1 2.99792 ⋅ 108 Speed of light
cs m s−1 Speed of sound
e J kg−1 Specific energy
e Eccentricity
f Hz Regular/linear frequency
g, g⊕ m s−2 9.80665 Gravitational acceleration (Earth)
g$ m s−2 1.625 Gravitational acceleration (Moon)
h W m−2 K−1 Convection heat transfer coefficient
h J s−1 6.62607 ⋅ 10−34 Planck constant
h̷ J s−1 1.05457 ⋅ 10−34 Reduced Planck (Dirac) constant
k W m−1 K−1 Thermal conductivity
kB J K−1 1.38065 ⋅ 10−23 Boltzmann’s constant
me kg 9.10938 ⋅ 10−31 Electron mass
m⊕ kg 5.97224 ⋅ 1024 Earth mass
m$ kg 7.34767 ⋅ 1022 Moon mass
n mol Number of moles

n/a Number of elements
p km Semiparameter (semi latus rectum)
q C 1.602 ⋅ 10−19 Particle charge
q̇ W m−2 Heat flux
q̇ W m−3 Heat per volume unit
ra km Radius of apoapsis
rp km Radius of periapsis
rw m Wire cross-sectional radius
r,i m Wire cross-sectional insulation radius

W m−2 Emittance, exitance
v m s−1 Particle velocity
A m2 Area
B T Magnetic field (magnetic flux density)

n/a Clem Coefficients
C J K−1 Heat capacity
C F Capacity
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E Pa Modulus of elasticity (Young’s modulus)
E N C−1,V m−1 Electric field
E J Energy, various types
FB N Magnetic force
FE N Electrostatic force
FL N Lorentz force
G m3 kg−1 s−2 6.67408 ⋅ 10−11 Universal Gravitational constant
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H A m−1 Magnetic field (magnetic field intensity)
I A Current
J A m−2 Current density
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N molecules Number of molecules
NA molec mol−1 6.02214 ⋅ 1023 Avogadro’s number
P W, J s−1 Power, various types
Q J Heat
Q̇ W Power
R Ω,Ohm Resistance
R H−1 Reluctance
R J mol−1 K−1 8.31447 Universal gas constant
T K Temperature
T J kg−1 Specific kinetic energy
T s Orbital period
U J kg−1 Specific potential energy
V V Voltage
V m s−1 Velocity
V∞ km s−1 Hyperbolic excess velocity
V m3 Volume
W J Work

Greek αβγ

α K−1 Thermal coefficient
αref K−1 Reference thermal coefficient @20°C
ε n/a Deformation, elongation, strain

deg 23.439291 Obliquity of the ecliptic
ε n/a Material emissivity
ε0 F m−1 8.854 ⋅ 10−12 Vacuum permettivity
εF eV Fermi energy
λ deg 0° ≤ λ ≤ 360° E Longitude (0° ≤ λ ≤ ±180° EW)
µ H m−1 Material permeability
µp km3 s−2 GMplanet Standard gravitational parameter
µr H m−1 Material relative permeability
µ0 H m−1 4π ⋅ 10−7 Vacuum permeability
ν deg True anomaly
ξ J kg−1 Specific mechanical (orbital) energy
ρ C m−3 Charge density
ρ Ω m Electrical resistivity
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ρref Ω m Reference electrical resistivity @20°C
% kg m−3 Material density
ω rad s−1 2πf Angular frequency
σ Pa Stress (normal)
ς W m−2 K−4 5.67037321 ⋅ 10−8 Stefan-Boltzmann constant
τ Pa Stress (shear)
ϕ deg 0° ≤ ϕ ≤ ±90° NS Latitude (North-South)

Symbols

Name Description
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1. Introduction

The dinosaurs became exting because they didn’t have a space program. And if
we become extinct because we don’t have a space program, it’ll serve us right!

— Larry Niven

Since ancient times humanity has sought to know, explore, and reach space. If the historia
magistra vitae dictum has a meaning, one can not avoid noting that any monoplanetary
species may, sooner or later, be destined to undergo the majestic power of nature.
Certainly, it is not intended to emphasize the fragility of the human species, or that a
simple catastrophic event can sweep us off the Earth. However, as one chooses to back up
important documents on an external storage device, no one can argue that, if humanity
becomes a multiplanetary civilization, survival opportunities in the coming millennia would
certainly be greater.

Hundreds of studies have been conducted over the last decades regarding the possibility of
building a human settlement on Mars, analyzing the feasibility in many fields, including
the environmental, scientific, and technological issues. One of the most important problem
is that what allows us to live and breathe on our planet, that is the gravitational attraction
that retains the air, is at the same time the biggest obstacle to abandon the Earth.

Some of the human needs are mandatory, such as air, water, food, and maybe light.
Humans may also need gravity as a consequence of the evolutionary history.

With the aim of establishing ourselves in the near future for a new home –excluding new
habitable planets that seem, to date, more distant than our explorative abilities–, all of
humanity will need the resources mentioned above, and many others. The first step for
this important goal would be to find these resources and to be able to use them or move
them easily and without excessive costs.

In recent decades the Moon has become the subject of numerous scientific discussions.
After the famous moon landing, the attention had shifted to Mars, considered plausibly
a planet more interesting on a scientific level. Yet, recently many have discussed about
the possibility of creating a permanent lunar base -human or robotic- in order to build
refining centers capable of processing the regolith and obtaining various resources with
various techniques.

It is evident the necessity of a device able to move a certain payload -scientific experiments,
resources, propellants- between various points of the lunar surface or able to launch it
towards the space to be used in other missions. One might wonder what is the most
practical, safe, and affordable way to send a payload from the Lunar surface to other
destinations.

Chemical guns are limited to practical velocities of about 1 ÷ 2 km s−1 by detonation dy-
namics, although some multistage laboratory guns have showed muzzle velocities of about
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4 km s−1. Moreover, launching a payload via a detonation creates concerns for the great
impulsive accelerations it may experience.

The first alternative may be the use of chemical propulsion. Usual multistage rockets can
easily produce velocities ranging from the 8÷10 km s−1 needed for Low Earth Orbit (LEO)
to the ∆V for Earth escape maneuvers, even though this implies that the launching vehicle
would have, considering the Tsiolkowski equation,

mf

m0
= e−

∆V
c (1.1)

a certain fixed payload fraction. A further observation is that rockets are energetically
highly inefficient because most of the propellant is consumed to counteract the gravity
force –that is lower on the Moon, but still existent–. Considering the production cost and
the small payload fraction of chemical rockets, as well as the environmental issues that
may arise –i.e. the production of an unwanted toxic atmosphere–, it is clear that massive
space operations or interplanetary travels should base themselves on different technologies
that may grant a launching routine of many tons per hour (Kolm et al. 1980).

That is the reason for which electromagnetic launchers (EMLs) are studied. Recent devel-
opments and advances in energy and magnet technology make electromagnetic acceleration
a viable alternative to chemical rocket spacelaunch –or similar tasks–, usually character-
ized by heavy engines and the use of fairly huge quantity of propellant. EMLs rely on
solar power and can be placed on the Lunar ground, without producing wastes, and are
capable of accelerating payloads to high velocities with electromagnetic forces. EMLs also
permit almost a tunable constant acceleration during the entire launch duration and are
accurately controllable, not subject to projectile size limitations and do not have, ideally,
a velocity limit.

Although the technology may be immature for some applications, it is evident that a lunar
scenario, in the absence of atmosphere, allows the study of EMLs in a suitable environment,
where the terrestrial aerothermodynamic limitations do not come into play.

Therefore, the aim of this study is to produce an estimate of electrical, thermal and material
requirements for the use of a lunar EML, namely a mass driver (MD), placed inside the
Shackleton Crater (SC) at the lunar south pole, including the analysis of the solar arrays
and the energy trasfer. The analysis also presents results about the obtainable tonnage,
given a certain structural configuration obtainable through various trade-off processes.
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2. Electromagnetism

Listening to recordings won’t teach you to play piano (though it can help), and
reading a textbook won’t teach you physics (though it too can help).

— Schroeder, 1994

The theoretical physic branch called classic electromagnetism studies the physical inter-
action between electrically charged particles in electric and magnetic fields. An electric
charge is a property of matter that allows a charged body to experience a force when placed
in an electromagnetic field, i.e. an area in which both electric and magnetic phenomena
are present. On the other hand, the electromagnetic field itself can be produced by an
electrically charged object in specific circumstances.

There are two types of electric charges: positive charges are commonly referred as protons,
while negative ones as electrons. The unit of electronic charge carried by a proton is q,
while electrons have charge −q, and it is approximately equal to

q = 1.602 ⋅ 10−19 C (2.1)

2.1 Electric field

Electrical forces act like gravitation, even if much stronger, varying proportionally as the
inverse of the distance squared. It is known that same charges repel each other while
opposite charges attract, contrary to what happens with gravity, which only attracts.

Figure 2.1: Electric field induced by a proton (left) and an electron (right)

Every particle with a charge has an electric field E, which is at the base of the electrostatic
attraction or repulsion. Indeed, the electric field is a vector field in which the vector force
FE can be defined at a given point. The relationship between charged particles is given
by Coulomb’s law and it is strongly valid when charges are stationary, in which case the
E-field is called electrostatic. If two generic charged particles q1 and q2 do not move in
time, then the repulsive or attractive force F acting on them is
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2.2. Magnetic field

F = q1q2

4πε0r2

r

∣r∣ (2.2)

The electrostatic force FE acting on a stationary particle q in an electrostatic field E is

FE = qE (2.3)

Therefore positive charges +q are attracted in the direction of the electrostatic field, while
electrons −q are pushed in the opposite direction. If an electrostatic field E is applied on
a neutral body with n+ = n− particles, then there is no net force acting on the system,
suggesting that the electrostatic force in eq. (2.3) does not depend on the particle’s mass.

The E-field is a conservative vector field in which the amount of work needed to move a
single charge does not depend on the specific path of the particle but only on its initial and
final position. In other terms, the E-field is irrotational and simply connected, therefore
it is the gradient of a function called electric potential V , a scalar quantity.

E = −∇V (2.4)

Another deduction is that theE-field lines go towards zones at lower potential V . Recalling
by eq. (2.3) that positive charges accelerate in the same direction of the E-field, it follows
that protons move towards lower potential zones and electron towards higher ones.

2.2 Magnetic field

The magnetic field B is a solenoidal vector field, defined by both a direction and a magni-
tude, that can be generated by a moving electric charge or by a variable electric field over
time[1]. The term “solenoidal” indicates that the magnetic field flux through any closed
reference surface is null or, in other terms, that the vector field has zero divergence. It
follows that the magnetic field is rotational and nonconservative. In addition, an important
consequence is that magnetic monopoles do not exist.

An electrical charge at rest produces no magnetic effects (Millikan and Bishop 2016). A
moving charge, instead, –such as those in an electrical wire in which a current I flows–
generates a B-field. The Biot-Savart law, a particular case of the more general Laplace
formula, defines the B-field produced by a constant current I in a straight wire at a generic
point at distance r

B = µ0I

4π
∫
`

d` ∧ r̂
r2

(2.5)

[1]William Thomson (recently known as Lord Kelvin) was the first to distinguish between magnetic flux
density B and magnetic field intensity H and to find a correlation between the two (Whittaker 2012).
Nowadays the two terms are often confused and B is commonly referred simply as “magnetic field”.
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2.2. Magnetic field

Figure 2.2: B-field generated by current I in a wire (Physics, Stackexchange 2017)

Ampère’s law provides another relation, stating that the integral along a closed ` line of
the B-field is proportional to the algebraic sum of the concatenated currents through `

∮
`
B ⋅ d` = µ0

n

∑
i=1
Ii = µ0Ienc (2.6)

For example, referring to Fig. 2.2, as long as the closed line ` encloses or coincides with
the wire circumference, the concatenated current is equal to the one flowing in the wire.
For narrower `, the enclosed current is a fraction of the total.

If an external appliedB-field exists, a moving particle of charge q is subject to an additional
force FB, which is velocity-dependent and adds to the electrostatic one in eq. (2.3)

FB = qv ∧B (2.7)

where ∧ is the vector cross-product. FB is perpendicular to both the velocity v of the
charge q, and therefore of current I, and the B-field direction, and its direction can be
found rapidly with the right-hand rule.

Figure 2.3: Right-hand rule: thumb points v (direction of current), index B (direction of
applied field), palm direction is FB (magnetic force on the particle)(Physics, Stackexchange
2017)
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2.2. Magnetic field

2.2.1 Magnetic field of a solenoid

A solenoid is a coil of length L and winding density n that forms a helix in which current
flows. It is usually continuous, meaning that it is formed by infinitely-thin coils highly
packed among them, leaving no space in between, and its length L is substantially greater
than its diameter D. For these definitions, it is often referred as a cylindrical conductive
sheet.

By using Ampere’s law, eq. (2.6), the B-field calculation is straightforward. Any closed
line ` that does not enclose a portion of the windings has no current through the line and,
therefore, does not generate a magnetic field.

Figure 2.4: Magnetic field in a solenoid

Thus a suitable closed path for such calculation is, for example, that shown in Fig. 2.4.
For L≫D, the magnetic field inside the solenoid is parallel to the axis; consequently, the
` paths BC and DA have B ⋅ d` = 0. Even the CD line outside the solenoid does not
contribute to Ampere’s law. To be convinced about this, it is possible to apply Ampere’s
law to a closed rectangular path outside the solenoid: the two lines perpendicular to the
axis nullify by symmetry (and/or for the previous consideration) and there will be no
concatenated current. It follows that the line integrals of the two parallel lines would be
equal and opposite to any distance these two are located from the axis. By extrapolation,
if one of these is at an infinite distance, it would no longer be affected by the field lines,
canceling its contribution and, thus, also the other.

The consideration that the magnetic field outside a solenoid is null is strongly accurate for
infinitely long solenoids. In this case, exdending AB = L, it follows

∮
`
B ⋅ d` = ∫

B

A
B ⋅ d` = µ0∑ I

BL = µ0InL

B = µ0nI

(2.8)

where the enclosed current is given by the current I in each of the N = nL coil turns.
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2.2. Magnetic field

2.2.2 Magnetic field due to a single coil

Figure 2.5: Single coil side view (left), top view (right)

In Fig. 2.5 there is a single coil of radius R in which a current I flows. To determine the
magnetic field at a point P due to a single loop of current it is considered a coil section
with radius R spaced by xP from the point itself. By considering an infinitesimal length
of the wire d` and applying the Biot-Savart law

dB = µ0I

4π

d` ∧ r̂
∣r∣2

(2.9)

By solving the cross product,

dB = µ0I

4πr2
d` sinα sinϑ = µ0I

4πr2
d` sinϑ (2.10)

Where sinα = 1, as represented in Fig. 2.5. With trigonometric relations, sinϑ = R
r . By

substituting and integrating, it results

B = ∫
`

µ0I

4πr2

R

r
d` (2.11)

By supposing to have a steady current, the constant terms are taken out of integral

B = µ0IR

4πr3 ∫` d` (2.12)

Therefore

B = µ0IR

4πr3
2πR (2.13)

The distance r is the hypotenuse of the triangle formed by the two sides R and xp. It
follows the formulation of the magnetic field generated by a single coil at a point P

B = µ0I

2

R2

(R2 + x2
p)

3
2

(2.14)
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2.2. Magnetic field

2.2.3 Magnetic field induced by an N turn coil

Figure 2.6: N -turns coil

To calculate the B generated by a coil with N turns it is necessary to integrate over all the
loops and with the enclosed current Ienc. The length of the coil L adds up to the generic
distance xp from the point P . By dividing the coil into an infinitesimal length dx, the total
current Itot in the solenoid is related to the one I in each section (Richmond 2017), that is

Itot = I(ndx) (2.15)

These considerations change the eq. (2.14) into

dB = µ0Indx

2

R2

[R2 + (xp + x)
2]

3
2

(2.16)

where x ∈ [0, L]. By integrating

B = ∫
L

0

µ0Indx

2

R2

[R2 + (xp + x)
2]

3
2

= µ0InR
2

2
∫

L

0

dx

[R2 + (xp + x)
2]

3
2

(2.17)

The integration is simplified with a change in the integration variable in the right-hand
side (rhs), X = (xp + x), that implies dX = dx. Therefore

B = µ0InR
2

2
∫

xp+L

xp

dX

(R2 +X 2)
3
2

= µ0InR
2

2

⎡⎢⎢⎢⎢⎢⎣

X

R2 (R2 +X 2)
1
2

⎤⎥⎥⎥⎥⎥⎦

xp+L

xp

= µ0In

2

⎡⎢⎢⎢⎢⎢⎢⎣

xp +L√
R2 + (xp +L)2

− xp√
R2 + x2

p

⎤⎥⎥⎥⎥⎥⎥⎦

(2.18)
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2.3. Lorentz force

2.3 Lorentz force

The force exerted on a moving electric charge by the effect of an electromagnetic field is
known as Lorentz force F L. The two eqs. (2.3, 2.7) found in the preceding paragraphs
have been deduced separately but, in general, electric and magnetic phenomena are only
apparently independent.

F L = q (E + v ∧B) (2.19)

Figure 2.7: Lorentz force - particle trajectory

The interaction of the two fields accelerates the charge parallel to the electric field, con-
cordant if positive and discordant if negative, and perpendicularly to both the magnetic
field and the charge velocity vector. It follows that there is no magnetic interaction if the
charge motion is parallel to the magnetic field lines.

If the cross product in (2.19) does not cancel out, then the particle is curved in its motion.
In particular, the acceleration given from the E-field is called tangent acceleration, as it
acts in the motion direction. The one from the B-field is called, instead, normal, since it
changes the velocity direction but not its module. It follows that the force exerted by the
magnetic field does no work, always acting perpendicularly to the motion.

Lorentz’s force has a fundamental historical significance so that some textbooks use it to
define directly electric and magnetic fields. For example, Jackson (Jackson 1998) treats E
as an entity proportional to Lorentz’s force per charge unit, as well as defines B numerically
proportional to the force per current unit.
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2.4. Magnetic levitation

2.4 Magnetic levitation

The concept of magnetic levitation would be very relevant in this discussion. The entire
MD chosen, as will be seen, will exploit this physical phenomenon to avoid sliding contacts
and frictions, as well as to optimize the ability to aim at launch.

A first basic formulation, which requires numerous iterative convergence studies to obtain
reliable results on stability (Wang et al. 1997), is given by

B
dB

dr
= µ0%

g

χ
(2.20)

where χ is the magnetic susceptivity.

Nevertheless, this study would have required more time to be conducted in depth and
conscientiously, and therefore it was assumed that magnetic levitation existed and was
controlled, and it was assumed that the payload at launch was perfectly stable. The
various insights into the stability and magnetic oscillations in levitation will be addressed
in another context.
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2.5. Maxwell Equations

2.5 Maxwell Equations

TheE-field andB-field equations are not truly separated. The variation in time of one field
causes a change in the other, and viceversa. These interactions are described in the four
Maxwell’s equations, which provide a complete description of electromagnetic phenomena
up to the subatomic scale in the framework of the classic electromagnetism. This set of
equations, composed by two vectorial omogeneous formulations and two scalar ones, is a
unified formulation and extension of electromagnetism laws previously proposed in Gauss’
law, for the E-field, and in Faraday-Neumann-Lenz’s law of induction. These equations
are presented below both in differential and integral form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ⋅E = ρ

ε0
∯

∂Ω
E ⋅ dS = 1

ε0
∭

Ω
ρ dV

∇ ⋅B = 0 ∯
∂Ω

B ⋅ dS = 0

∇∧E = −∂B
∂t

∮
∂Σ

E ⋅ d` = − d
dt
∬

Σ
B ⋅ dS

∇∧B = µ0 (J + ε0
∂E

∂t
) ∮

∂Σ
B ⋅ d` = µ0∬

Σ
J ⋅ dS + µ0ε0

d

dt
∬

Σ
E ⋅ dS

(2.21a)

(2.21b)

(2.21c)

(2.21d)

eq. (2.21a) is Gauss’ law and states that electric charges produce E-fields, and the electrix
flux of these fields passing through a given area ∂Ω is proportional to the electric charge
density ρ contained within.

eq. (2.21b) is Gauss’ law of magnetism. In analogy with the previous one, it states that
the magnetic flux passing through a closed surface ∂Ω is equal to zero[2]. In other words, it
states that magnetic monopoles do not exist, or that B-fields are solenoidal vector fields.

eq. (2.21c) is Maxwell-Faraday-Lenz equation, or Faraday’s law of induction. It states
that a change in time of a magnetic flux through a surface enclosed by a loop induces an
electromotive force (EMF)[3] in the closed loop itself. The negative sign is fundamental:
the current induced by the induced EMF creates a self-induced Bind-field that overlaps
the external one and opposes itself to such flux variation.

eq. (2.21d) is known as Ampère-Maxwell circuital law and it states that every current
flux or variable electrical flux through a closed surface produces a proportional circulating
B-field around any path that bounds that surface. For example, this is what happens in
a wire in which current flows, as shown in Fig. 2.2.

[2]Since divergence is by definition the tendency of a field to “flow” away from a point more than towards
it, “emptying” the source itself, and since all B-field lines are closed and always flow again from the same
source, the divergence of B-fields must be always zero.

[3]Since the electric current is defined as charges moving through a circuit, and given that an E-field is
able to accelerate charges, then an induced E-field may act as a current generator, creating an EMF.
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2.6. Elementary circuitry

2.6 Elementary circuitry

Electrical circuits are composed by electrical elements linked together. The current I and
the voltage V are the two principal variables, from which the power P can be defined. The
current is related to the number of electric charges that flow in a conductor over time

I(t) = lim
∆t→0

∆q

∆t
= dq
dt

(2.22)

The instantaneous current is constant between any two uninterrupted wire points: this is
a consequence of the principle of conservation of the charge. Each charge has energy, and
the potential V is the energy per unit of charge required to move that charge

V = ∆W

q
(2.23)

Both eqs. (2.22, 2.23) are linked together in the power formulation, namely

P (t) = lim
∆t→0

∆W

∆t
= dW
dt
= V dq

dt
= V (t)I(t) (2.24)

2.6.1 Resistive circuit

All materials, except for superconductors, limit the passage of current. This resistive
behaviour can be represented with an electrical resistance R > 0 between V and I

V = IR (2.25)

The eq. (2.25) is the linear characteristic relation of circuits and it is known as Ohm’s law,
where R = cost. Real resistors may closely resemble this behaviour, otherwise there are
variable resistors. In general the resistance R of a wire is computed as

R = ∫
L

0

ρ

A
d` (2.26)

where A is the cross sectional area, L is the cable length and ρ is the resistivity, a charac-
teristic value of the used material. In Table A.1, Appendix A, there is a list of resistivities
of the most common materials. A first observation is that, given a potential V , the power
needed P decreases with I that, in turn, decreases with high resistances. It follows

P (t) = V (t)I(t) = V
2(t)
R
= RI2(t) (2.27)

that is, a resistor can only absorb power and thus it is a passive element that dissipates
energy. The last formulation of eq. (2.27) is knows as Joule Effect (JE), or Joule’s first
law of heating, that is the dissipated energy in the form of heat in a circuit.
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2.6. Elementary circuitry

The temperature is one of the factors that can affect the Ohmic behaviour of an electric
cable. The resistivity depends on the temperature according to the relationship

ρ = ρref [1 + α (T − Tref)]

R = Rref [1 + α (T − Tref)]
(2.28)

where α > 0 is the temperature coefficient of resistance, characteristic of the material,
and indicates how much the resistivity ρ varies with the temperature T compared to
ρref @ Tref = 20°C (please refer to Appendix A, Table A.1).

The linear behaviour of eq. (2.28) is valid in a great range, especially for high tempera-
tures . At temperatures below 100 K, in which quantum phenomena are predominant, the
resistivity tends to settle asymptotically at a constant value called residual resistivity ρ0,
function of the residual resistivity ratio (RRR), the ratio between the resistivity at 273 K
and the one close to the liquid helium condition, at 4 K.

In this document T ≥ 90 K (Stoica et al. 2016; Sefton-Nash et al. 2017). Therefore, the
charges residual mobility at very low temperatures can be neglected and the eq. (2.28)
will suffice. The Material Properties DataBase (MPDB) software (JAHM Software, Inc.
1998) is used to extract discrete data points to be interpolated, as shown in Appendix A,
Table A.6. This operation will prove particularly useful in considering the initial condition
in the lunar Extreme Environment (EE), at ambient temperatures of 90.15 K.

Figure 2.8: Resistivity ρ variation wrt temperature T for Cu and Al

Numerical interpolation or the use of the eq. (2.28) prove to be almost coincident for a
wide range –excluding at most the lower and upper temperature limits–, as can be clearly
seen in Fig. 2.8 and, therefore, the computationally lighter method can be used.
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2.6. Elementary circuitry

Capacitors

The relation between current and potential in a capacitor is linear

I(t) = CdV (t)
dt

(2.29)

where C > 0 is the capacity. The capacitors, in the most schematic version, are devices with
two or more parallel conductive plates separated by a dielectric material. The material
choice, as well as the geometrical characteristics of the capacitor, directly affect the capacity

Figure 2.9: Capacitor scheme

C = kε0
A

d
(2.30)

Where A is the plate area, d is the distance between plates, and k is the material dielectric
constant (Appendix A, Table A.2). The capacity has typical values of C ∈ [10−12,10−3]F.

The instantaneous power P of the capacitor is, in analogy to eq. (2.27),

P (t) = V (t)I(t) = V (t)CdV (t)
dt

(2.31)

The maximum energy Ec that can be stored by a capacitor is function of both the potential
V and the capacity C and is equal to

Ec = ∫
t

0
P (t) dt = 1

2
CV 2 (2.32)

In this analysis the capacitors will be considered as entities defined a priori and will not
be analyzed in detail, specifically for their ability to instantaneous discharge the current
or for what concerns energy conservation. This analysis is certainly relevant and should
be addressed in subsequent studies.
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Inductors

The inductor is a linear circuit component characterized by the following differential rela-
tion between the potential and the current

V (t) = LdI(t)
dt

(2.33)

Where L > 0 is the inductance. A more detailed physical explaination is that the inductance
L is a property of a conductor by which a current variation induces an EMF and it measures
how strongly a circuit opposes to the current change. Indeed, another definition for the
inductance is that it is the costant of proportion between the current over time in the
circuit and the magnetic flux induced by the current itself, that is

ΦB(t) = ∫
S
B(t) ⋅ dS = LI(t) (2.34)

A variabile current over time induces a magnetic field that opposes the change that pro-
duced itself, as stated in Lenz’s law. This statement is reflected in Faraday’s law of
induction, eq. (2.21c), in the negative sign that expresses also the energy conservation
principle. Therefore

E = −dΦB

dt
(2.35)

The explicit calculation of the inductance L for generic geometries, especially in closed
form, has been the subject of numerous studies over the last few decades (Maxwell 1892a;
Langford-Smith 1952; Smythe 1989; Rosa and Grover 2016). Later in the Chapter will
be presented particular cases that allow approximate resolution in closed form for specific
geometries.

The inductor is able to absorb istantaneous power equal to

P (t) = V (t)I(t) = LdI(t)
dt

I(t) (2.36)

Therefore, the maximum energy absorbed over time Ei by the inductor is equal to

Ei = ∫
t

0
P (t) dt = 1

2
LI2 (2.37)

Like the capacitors, the inductive components are also taken "as they are". It should be
noted that these will be analyzed more thoroughly for what concerns their self-inductance
and mutual-inductance: refer to Section 2.8, Paragraph 2.8.1, for more details.
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2.6.2 Dynamic circuit

Dynamic circuits have a differential characteristic between potential V and current I,
while resistive circuits have an istantaneous V -I bond. The two electrical components just
analyzed are dynamic and they are able to store energy but never to dissipate it[4].

Figure 2.10: Circuit passive components

The behaviour of dynamic circuits is usually described by a differential equation. There are
first and second order circuits, depending on whether there is only one dynamic component,
capacitor or inductor, or both. The study of these circuits is beyond the scope of the
analysis, even if a detailed description can be found in various existing books, for example
(Hambley 2009; Perfetti 2012).

Nonetheless, it is worth the effort to emphasize the importance of the time constant τ in
the two circuits. In general, the solution for the variable x in a first order circuit is

x(t) = [x(0) − x(∞)] e−
t
τ + x(∞) (2.38)

Where

τ = RC τ = L
R

(2.39)

respectively for a RC and a LR circuit. For a discrete t step, it is possible to notice that,
regardless of the initial x(0) value, when t ≥ 5τ the solution approaches asymptotically
x(∞). In other words, after approximately 5 constants of time it can be said that the
transient is finished and the solution is nearly costant. The τ constant is also the inverse
of the decay rate: low τ values correspond to a very rapid decay, and vice versa.

In the resolution of Non Linear (NL) Ordinary Differential Equation (ODE) system the
time constants will not be directly computed, but these information become useful for
correctly instructing the optimizer in order to understand in which direction it should
proceed to find the solution.

Therefore, qualitatively the resistance, capacity, and inductance values will strongly affect
the current and potential evolution in a circuit over time.

[4]This is strongly verified in the ideal case, whereas in the real one there are minimal dissipations.
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2.6.3 Circuits in sinusoidal regime

Both current I and potential V can exist in a sinusoidal form, the so called alternate
current (AC) regime. A generic sinusoidal variable corresponds to the function

x(t) = A cos (ωt + ϑ) (2.40)

Where A > 0 is the wave amplitude, or peak value, ω > 0 the angular frequency, ϑ the
phase. ω is related to the period T and, therefore, to the frequency f as

T = 2π

ω
, f = 1

T
Ô⇒ ω = 2π

T
= 2πf (2.41)

Figure 2.11: Sinusoidal waves with different frequency f (left) and different phase ϑ (right)

In Fig. 2.11 there are the effects on the waves by a change in different parameters. Three
waves with the same amplitude A have different frequencies f and same phase ϑ, on the
left, and viceversa on the right. A different phase corresponds to a function translation
with respect to the base A cos (ωt) cosinusoidal function. A frequency variation, instead,
implies a greater or smaller pulse in the same unit of time.

Specifically, by defining Im and Vm as the peak current and potential, and ϑV and ϑI the
respective phases, the eq. (2.40) becomes

V (t) = Vm cos (ωt + ϑV )
I(t) = Im cos (ωt + ϑI)

(2.42)

A generic resistive element absorbs over time a power P (t) equal to

P (t) = V (t)I(t) = Vm cos (ωt + ϑV )Im cos (ωt + ϑI) (2.43)

A prostaferesis trigonometric trasformation allows expressing eq. (2.43) as

P (t) = 1

2
VmIm cos (ϑV − ϑI) +

1

2
VmIm cos (2ωt + ϑV + ϑI) (2.44)
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2.6. Elementary circuitry

Where the first term is constant and is called active power, or mean power, P̂

P̂ = 1

2
VmIm cos (ϑV − ϑI) (2.45)

This value is the one around which the istantaneous power P (t) oscillates over time. The
peak pover Pm, that is the maximum power that can be requested instantly, is given by
the sum of the active P̂ and half-oscillation power, i.e.

Pm = P +
1

2
VmIm (2.46)

In the specific case of a resistor, instantaneous and mean power, eqs. (2.44, 2.45), are

P (t) = 1

2
RI2

m +
1

2
RI2

m cos (2ωt + 2ϑI)

P̂ = 1

2
VmIm =

1

2
RI2

m

(2.47)

The Root-Mean-Squared (RMS) voltage (or Current), is defined as the amount of sinusoidal
Voltage that has the same power as an equivalent constant voltage. By definition, the
RMS or effective value of a function is the square root of the arithmetic mean of the square
values or, if the function is continuous, the integral over the whole domain. In the case of
a sinusoidale waveform the domain is the period T , and therefore

xeff =
√

1

T
∫

T

0
x2
m cos2 (ωt) dt (2.48)

By integrating it is obtained

xeff =
xm√

2
(2.49)

with x = {Vm, Im}. By substituting eq. (2.49) into the mean power expression, the 1
2 factor

disappears and it results

P̂ = VeffIeff cos (ϑV − ϑI) = RI2
eff (2.50)

or any equivalent formulation obtained with Ohm’s law, eq. (2.25).
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2.6. Elementary circuitry

Chirp

A chirp is a sweep signal in which the frequency changes over time (Easton 2010). It
is known as up-chirp if the frequency increases over time, down-chirp if it decreases. A
generic sinusoidal variable would appear as

x(t) = A cos (ϑ(t)) (2.51)

where ϑ(t) is the instantaneous phase and is function of the instantaneous frequency f(t).
The simplest case is given by a linear chirp in which the frequency varies linearly over
time from an initial value f0 to a final f1 in a time ts, the sweep time. The instantaneous
frequency, also related to the phase change over time, becomes

f(t) = f0 +
f1 − f0

ts
t f(t) = 1

2π

dϑ(t)
dt

(2.52)

By integrating the eq. (2.52) it results a quadratic-phase signal

ϑ(t) = 2π (f0t +
f1 − f0

2ts
t2) + ϑ0 (2.53)

where ϑ0 is the classic phase shift shown already in eq. (2.40). Therefore, a chirp signal
has a sinusoidal function that appears like the following

x(t) = A cos
⎡⎢⎢⎢⎣
2π (f0t +

f1 − f0

2ts
t2) + ϑ0

⎤⎥⎥⎥⎦
(2.54)

Figure 2.12: Sinusoidal chirp: ϑ0 = −90°, f0 = 5 Hz, f1 = 100 Hz, ts = 0.2 s

The EML that will be illustrated in the concluding Chapters will use a chirp signal to
generate the magnetic field necessary to accelerate the payload. However, a spatial rather
than a temporal analysis will be preferred, and therefore the sinusoidal pulses of the current
will be at constant frequency in space. It is implied that, since the payload accelerates in
space, this configuration will result in a chirp signal over time, which however will be a
result of the spatial analysis and not an input signal.
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2.7. Reluctance and magnetic saturation

2.7 Reluctance and magnetic saturation

Reluctance R, also known as magnetic resistance, defines how much a magnetic flux can
penetrate inside a solid: the more the reluctance value is high, the more the flow is “re-
luctant” to pass through it. Indeed, its inverse is called permeance P . The most general
formulation is known as Hopkinson’s law and it states

R = F
Φ

(2.55)

where F is the magnetomotive force (MMF) and Φ is the magnetic flux. In a uniform
magnetic field, reluctance is expressed in closed form by the following relation (Sears 1958)

R = `

µ0µrA
(2.56)

where ` is the length of the magnetic path, µ0 is the vacuum permeability, µr is the relative
magnetic permeability of the material, and A is the cross-sectional area of the area in which
the flux enters (please refer to Appendix A, Table A.3). The product between µ0 and µr,
µ, is the material magnetic permeability.

Magnetic permeability is a strongly NL proportionality coefficient wrt Φ. For weak mag-
netic fluxes it exists a linear relationship between H and B

B = µH (2.57)

where H represents how much the B field can influence the reorientation of the dipoles.
The magnetic saturation phenomenon shows that there is a magnetic field intensity value
beyond which the H −B relationship becomes NL.

Figure 2.13: Hysteresis H −B cycle

If the applied magnetic field intensity H is strong enough, the material incurs in the
saturation, that is, the B field is no longer able to increase the magnetization of the
medium. Saturation is a characteristic of ferromagnetic materials.

What has been said outlines an important consequence: if the magnetic fields involved
in the EML are intense, it will not be possible to use ferromagnetic cores due to their
saturation, and different solutions will have to be chosen.
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2.8 Mutual inductance calculations

2.8.1 Mutual inductance of coaxial circular filaments

Mutual inductance is the inductance between two separate circuits that evaluates how a
magnetic field, generated by a circuit, exerts an electromotive force on the other circuit,
thus inducing a current by Faraday’s law of induction, eq. (2.21c).

The term “mutual” underlines that, once the geometric characteristics of two circuits are
fixed, a certain variation of current in a circuit causes an electromotive force in the other,
as well as the same variation of current in the second circuit would cause the same elec-
tromotive force in the first one.

There are various semi-empirical methods for the calculation of mutual (and self) induc-
tances. The tabular method is often referred as the faster but the less accurate, around
zeroth and first order. The Grover’s method mainly refers to the geometric characteristics
of the two coaxial coils and often uses tabular approximations to be interpolated for lookup
values that fall between those presented. A formulation provided by Grover for the mutual
inductance M (in µH) between two coaxial circular filaments of radii a and A, and spaced
apart by a distance d, is (Rosa and Grover 2016)

M = f
√
Aa (2.58)

in which the value of f has to be found in Grover’s table through the lookup parameter k2

k2 = (A − a)
2 + d2

(A + a)2 + d2
(2.59)

Figure 2.14: Two coaxial circular filaments

It is possible to validate the eq. (2.58) by means of an analytical analysis. Consider
two circular filaments c1 and c2 in Fig. 2.14 with radii r1 and r2 and spaced apart by a
distance x. The coil paths are s1 and s2, respectively, and the whole circumferences have
angle parameters ϑ1 and ϑ2. The mutual inductance M between the two circuits is given
by the double integral Neumann’s formula (Nalty 2011)

M = µ0

4π
∮
c1
∮
c2

ds1 ⋅ ds2

∣r∣ (2.60)
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2.8. Mutual inductance calculations

The generic distance r between two points in the two coils is

r =
√
r2

1 + r2
2 + x2 − 2r1r2 cos (ϑ2 − ϑ1) (2.61)

while the two paths are

ds2 = r2 (− sinϑ2âx + cosϑ2ây)dϑ2

ds1 = r1 (− sinϑ1âx + cosϑ1ây)dϑ1

ds1 ⋅ ds2 = r1r2 (sinϑ1 sinϑ2 + cosϑ1 cosϑ2)dϑ1dϑ2

= r1r2 cos (ϑ2 − ϑ1)dϑ1dϑ2

(2.62)

By substituting eqs. (2.61, 2.62) into eq. (2.60)

M = µ0

4π
∮
ϑ1
∮
ϑ2

r1r2 cos (ϑ2 − ϑ1)dϑ1dϑ2√
r2

1 + r2
2 + x2 − 2r1r2 cos (ϑ2 − ϑ1)

(2.63)

By applying a variable change

γ = ϑ2 − ϑ1 Ô⇒ dγ = dϑ2 (2.64)

Therefore

M = µ0

4π
∮
ϑ1
∮
γ

r1r2 cosγdϑ1dγ√
r2

1 + r2
2 + x2 − 2r1r2 cosγ

= µ0

4π
∮
ϑ1

dϑ1∮
γ

r1r2 cosγdγ√
r2

1 + r2
2 + x2 − 2r1r2 cosγ

= µ0

2
∮
γ

r1r2 cosγdγ√
r2

1 + r2
2 + x2 − 2r1r2 cosγ

(2.65)

The integral contained in eq. (2.65) has a known solution by means of elliptic functions K
and E. The reference solution is

∮
ϑ

cosϑ dϑ√
a − b cosϑ

= 4
√
a + b
b

⎡⎢⎢⎢⎣
(1 − β

2

2
)K(β) −E(β)

⎤⎥⎥⎥⎦
(2.66)

where

β =
√

2b

a + b

K(β) = ∫
π
2

0

dϑ√
1 − β2 sin2 ϑ

E(β) = ∫
π
2

0

√
1 − β2 sin2 ϑ dϑ

(2.67)
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Therefore the values in eq. (2.65) corresponding to those in eq. (2.66) are

a = r
2
1 + r2

2 + x2

r2
1r

2
2

b = 2

r1r2

(2.68)

By joining eqs. (2.65, 2.66, 2.67, 2.68) it is obtained

M = 2µ0

√
a + b
b

⎡⎢⎢⎢⎣
(1 − β

2

2
)K(β) −E(β)

⎤⎥⎥⎥⎦
(2.69)

By comparing the results obtained from the eq. (2.69), deduced by analytical means (Nalty
2011), with those derived from the tabulations given by Grover (Rosa and Grover 2016),
it can be concluded that the analytical model is confirmed with very coincident results.
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2.8.2 Mutual inductance of finite coaxial single-layer coils

Calculations of mutual inductances for finite coils, i.e. not approximable to the ideal
solenoid model, have always been complex, sometimes for the accuracy, sometimes for the
inapplicability of a certain formulation for particular geometries.

Figure 2.15: Geometry for the mutual inductance of two single-layer coils

Recent studies (Engel and Rohe 2006; Engel and Mueller 2009) have analyzed the compu-
tation time and precision of mutual inductance calculation through finite element methods,
analytical integration and tabular methods. Also in this case there is a closed form formula
that evaluates the mutual inductance M (Rosa and Grover 2016) as

M = 0.002π2a2n1n2 (r1B1 − r2B2 − r3B3 + r4B4) ⋅ 10−6 (2.70)

Where a and A are respectively the radius of the smaller and the bigger coil, n1 and n2

are the winding densities, and the rn values are the diagonal lengths calculated as

rn =
√
A2 + x2

n n = 1,2,3,4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = s + (m1 +m2)
x2 = s + (m1 −m2)
x3 = s − (m1 −m2)
x4 = s − (m1 +m2)

(2.71)

The total number of wire turns N is directly proportional to m –and, therefore, to the
length l of the coil– and to the winding density n, i.e.

2mn = N where 2m = l (2.72)

The Bn values, instead, are derived from the lookup table provided by Grover. The lookup
parameters, both ranging from 0 to 1, are

ρn =
A2

r2
n

α = a
A

(2.73)

Grover provides two different tables. The first has a 0.05 spacing for both ρn and α values,
the second has a finer granulation of 0.01 for ρ2

n ≥ 0.9, α ≥ 0.9. The main problem with
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2.8. Mutual inductance calculations

this method is that any lookup parameter that does not coincide with those in the tables
must be interpolated. It has been shown in the recent studies that for ρ→ 1, α→ 1, errors
can be as much big as 5 − 10%, especially if the distance s is small. These approximation
errors can be reduced by tightening the table values, thus reducing the granularity.

Nonetheless, a great precision, compared to those values obtained via empirical experi-
ments, is obtained by using Finite Element Method (FEM) or analytical methods.

Analytical computations involve solving elliptic integral of the first and second kind. To
date, these elliptical integrals can be solved with the most popular computational softwares
by numerical convergence or series expansion equivalent formulations. Such alternative
methods of calculation may diverge for particular geometries (Maxwell 1892b), explaining
recent studies attempts to make tabular methods more precise.

A further analysis shows how calculations made using finite elements are wholly comparable
with analytical ones, and both have the lowest error. It may be agreed that for a preliminary
analysis it suffices to use analytical formulation in place of FEM. Moreover, FEM analyses
have shown to execute more than a thousand time slower than tabular methods. On the
other hand, as much as Grover tables can be refined, there are always errors deriving from
lookup parameters interpolation.

An elegant yet effective solution could be to change the evaluation of the Bn terms, Clem
coefficients, in eq. (2.70), that is, not to get them tabulated but evaluated analytically.
This method is implemented in a recent research (Engel and Rohe 2006). Using the eq.
(2.73) it can be obtained

Bn =
2

π
∫

π

0
sin2ϕ

√
1 + α2ρ2

n − 2αρ2
n cosϕ

1 + α2 − 2α cosϕ
dϕ (2.74)

With this information, it is immediately possible to obtain the pattern of the mutual
inductance and its gradient as the distance between the centers of the two coils varies.

Figure 2.16: Mutual inductance M and its gradient dM,x as function of α

In Fig. 2.16, in which the drive coil is centered in x = 0, it is possible to appreciate the
increase of mutual inductance, of its gradient and, hence, of the force exerted on the bucket,
when α→ 1, that is, when the radii of the two coils are similar.
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2.8.3 Mutual- and self-inductance of multi-layer coils

If it is necessary to use more than one radial layer of wire windings, it may be more
appropriate to use a spatial FEM discretization. This new approach is taken up by recent
studies (Akyel and Babic 2007) and is accurate, robust, and fast for small mesh sizes.

This method is based on the Maxwell’s coils analyzed in Paragraph 2.8.1. A coil with nl
radial wire layers and N turns in the axial direction will have a total of nlN windings;
if these are sufficiently close to each other, namely if there are few empty spaces[5], it is
possible to suppose that a coil section is rectangular, with dimensions l and h, respectively
axial span and height. The FEM approach divides the rectangle into small portions and
computes the self- and mutual inductances for both the coils. The total contribution will
be superimposed on each single contribution of the filament.

Altough this method has a quick execution, its integration over space is computationally
expensive and is avoided in this preliminary study. To consider the increase in total
windings N for a multilayer coil, reference will be made to eq. (2.70) by expressing the
winding densities as ratio between the total number of windings and the length of the coil,
namely

M = 0.002π2a2N1nl1
l1

N2nl2
l2
(r1B1 − r2B2 − r3B3 + r4B4) ⋅ 10−6 (2.75)

or alternatively

M = 0.002π2a2n1n2 (r1B1 − r2B2 − r3B3 + r4B4) ⋅ 10−6 ⋅ (nl1nl2) (2.76)

where nl1 and nl2 are the number of layers. As explained in (Rosa and Grover 2016), simply
multiplying the single-layer formulation by the total number of layers provides values lower
than the real ones. Nevertheless, it is preferred to have this numerical discrepancy because
it is conservative.

Self-inductances are found through approximate analytical formulations (Langford-Smith
1952) for the same reasons. These are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ls ≈
r2N2

9r + 10l
− crN

2

10πl
if
l

c
≥ 10

Ls ≈
rN2

13.5
log10 (

kL√
l2 + c2

) else, with kL =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.6a if 0.35 < l
c
< 1

4.02a if 0.15 < l
c
< 0.35

4.55a if 0 < l
c
< 0.15

4 else for
l

r
≈ c
r
≈ 0

L = Ls + 4.951125 ⋅ 10−3rN (2.77)
[5]This assumption is also function of the wire insulation radius, further analyzed in Chapter 4.
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where c = 2kirwnl is the thickness of the multilayer sheet, i.e. twice the radius of the
wire times the number of layers. Please note that the eq. (2.77) (Langford-Smith 1952) is
valid only for closely packed wires, namely wires with spacing equal to one insulated wire
diameter –otherwise another corrective term has to be added–.

As shown in eq. (2.39), an increase in the self-inductance ensures a slower decay of the
current in an LR circuit. Therefore, a circuit with forced current will be more efficient with
low values of L, whereas a natural decaying circuit would be better with higher inductances.
At the same time, the mutual inductance of two circuits would be higher as the number of
layers increase. To achieve the best compromise, it is possibile to show how L, M , and its
gradient dM,x varies with the geometrical parameters

Figure 2.17: Self- and mutual inductance peak wrt number of coil layers

The results in Fig. 2.17 are obtained though optimization with different Merit Functions
(MFs) f . It is clear that the mutual inductance gradient increases as the number of layers
of both the bucket and the drive increase. There is also an asymptotic behaviour with
increasing number of layers in the bucket only, due to the fact that the average radius r of
the latter is reduced to accomodate the new layers. In decreasing size order, the matching
MFs used to retrieve the values of Lb and dM,x are

• Blue circle, fmax = Lb;

• Red star, fmax = ∑∣dM,x(x)∣ for x ∈ [−xi, xi], where xi is the ignition distance which
will be discussed further in Chapter 8;

• Green square, fmax = Lb +∑∣dM,x(x)∣;

• Pink triangle, fmax =maxdM,x;

• Light blue triangle, fmax = Lb +max (dM,x).

where the difference between the two MFs for dM,x are the computation of only the peaks
of the mutual inductance gradient or the whole area covered by the curve –which is, in
particular, the effective proportional value for the force, as will be further analyzed in this
dissertation–.

However, all the optimizations are sufficiently in agreement to notice a trend. Even more
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2.8. Mutual inductance calculations

clearly, as shown in the following Figures, it can be understood which parameters influence
the variation of L, M , and its gradient dM,x, including the ratio b ∶ d of bucket and drive
wire layers. The following results are not optimized.

Figure 2.18: L, M , dM,x variation wrt geometric parameters, 1 ∶ 3 layers

Figure 2.19: L, M , dM,x variation wrt geometric parameters, 20 ∶ 3 layers

In conclusion, it seems that the maximum of L and dM,x is obtained in first approximation
by similar radii, namely rb → rd, and for maximum bucket solenoid axial lengths –as it
increases the maximum windings per layer–. Nevertheless, the combined effect is to be
explored, and therefore these values are to be taken as first guess and are not definitive.
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3. Mechanics

To the optimist, the glass if half full. To the pessimist, the glass is half empty.
To the engineer, the glass is twice as big as it needs to be.

— Unknown

3.1 Mechanics of materials

The mechanics of materials is the engineering branch that deals with the structures resis-
tance to different stresses and strains, which cause deformations and desplacements of the
materials wrt their initial conditions. This branch is extremely wide and has the funda-
mental role to verify, in many engineering fields, that structures are able to withstand the
loads to which they will be subjected.

The analysis can focus on an instantaneous test of material strength or a dynamic control
over the time of the material’s loads. In the latter case, reference is made to the fatigue
behaviour and to the fracture mechanics, which deals with how and how much a crack
propagates, that is, a microfracture of the material over time due to repeated loads - even
well below those instantly bearable by the material - that can cause fracture.

Figure 3.1: Bar in tension

In Fig. 3.1, suppose to exert a traction P on the bar with cross-sectional area A. The
stress σ, supposed uniformly distributed over A, is (Gere 2003)

σ = P
A

(3.1)

Specifically, traction forces cause tensile stresses, while compressive ones cause compressive
stresses. Conventionally, tensile stresses are the positive ones.

The bar streches due to traction. Assuming that the bar has elongated equally in each of
its sections, the elongation per unit of length of the material, or strain, is

ε = ∆L

L
(3.2)

again, dilatations are called tensile strains, compressions are defined as compressive strains.
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3.1. Mechanics of materials

3.1.1 Stress-strain diagrams

For a good range of stress and strain values, σ and ε have a linear relationship. Hooke’s
law is valid for pure traction or compression, that is, an uniaxial stress, and it states

σ = Eε (3.3)

where E is known as the modulus of elasticity of the material, or Young’s modulus.

Figure 3.2: Stress-strain diagram for steel (left) and a brittle material (right) (Gere 2003)

There are a series of diagrams that relate strain and stress depending on the material.

For example, with reference to Fig. 3.2 L, there is a characteristic σ − ε diagram of a
metal. The OA tract is the proportionality section and its slope is the Young’s modulus;
up to this point the deformation phenomenon is reversible, that is, by releasing the load
the structure re-enters in its undeformed condition[1]. By increasing the load a plastic
deformation BC, called yielding, is induced, with non-reversible strain. In this condition
E becomes NL and the material has great strains with small loads up to the point in
which it hardens. This process, shown in CD, consists in a reorientation of the material’s
crystalline structure. By further increasing the load to σ = σR, the material reaches its
ultimate stress condition, after which it breaks. The DE section is “apparent”, because the
load does not actually decrease. The region in which the fracture happens is shrinking,
reducing the cross sectional area and, therefore, increasing the “apparent” load according
to (3.1). In fact, the real material behaviour is represented in the dashed section CE′.

A material varies its section after a traction or compression depending on the Poisson
module ν, defined as the ratio between the lateral and axial dilatation.

Brittle materials, such as glass, have however less ductility. They do not have a large
plastic component and their fracture is more repentine, as shown in Fig. 3.2R.

All the above considerations are strictly true with tensile loads. The compression diagrams
are quite similar, but the ultimate yield strenghts are much higher.

[1]For some materials, such as aluminium, the yield point A is hard to define. It is customary to adopt
the offset method, defining A at the 0.2% plastic deformation noted in the experimental tests.
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3.1. Mechanics of materials

3.1.2 Shear stress and strain

While normal stress acts perpendicular to a given surface A, shear stress is produced when
a force acts tangentially wrt the same surface.

Figure 3.3: Shear stresses convention (left), shear strain (right)

With reference to Fig. 3.3L, two shear stress components τ1, τ2 on the equal upper and
right-side faces are considered. Assuming that the shear stresses are evenly distributed
on the surfaces, the element is in equilibrium when these stresses are equal in magnitude
and opposite in direction. Graphycally, this means that the forces always have arrowheads
pointing to a common point or leaving simultaneously.
Unlike normal strain, shear strains do not vary the length of the material but its spatial
arrangement. The shear deformation is defined as γ; the whole γ is only for the inner side
deformation, while the real deformation per side is half of that value.

The eq. (3.3) has a shear counterpart that extends Hooke’s law in shear

τ = Gγ (3.4)

where G is called shear modulus of elasticity. G and E , together, define the Poisson
coefficient ν

G = E
2(1 + ν) (3.5)

Usually the Poisson ratio is positive, which means that a material reduces its thickness
if tractioned, viceversa if compressed[2]. The follow-up consideration is that ν binds E
and G , indicating that the directional elastic properties of the material are not generally
independent of each other.

An additional elastic parameter, called bulk modulus, defines how much a material is
resistant to compression. For most materials, especially for metals, this can be expressed
as a function of both the Poisson ratio and the elastic modulus, as in the following equation

K = E
3(1 − 2ν) (3.6)

[2]Some particular materials, called auxetics, have a negative Poisson ratio and they thicken if tractioned.
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3.2. Safety factors and allowable stresses

3.2 Safety factors and allowable stresses

From an engineering point of view aimed at obtaining components that do not rapidly break
and do not suffer irreversible deformations, it is necessary to focus on two parameters: to
avoid fractures over a certain time span it has to be imposed that the component shall
work cyclically with loads below those of fracture; to avoid irreversible deformations means
to never have stresses close or beyond the plasticization, or yield, limit.

A safety factor n > 1 can limit the maximum stress so that no plastic deformation arises.
At the same time, this safety factor defines the maximum allowable stress, once given the
maximum one of yielding σy. Therefore

σall =
σy

n
(3.7)

the equation above works well for safety considerations regarding ductile materials. For
brittle materials it is customary to impose the ultimate stress σu as limit, especially due
to the not clearly defined plastic zone. The eq. (3.7) for brittle materials is

σall =
σu
n

(3.8)

3.3 Structures optimization

In the present text, the term structure optimization refers to an optimized structure as the
lightest among all of those able to withstand the maximum allowable stress defined with
a certain safety factor n. It is taken as reference a partially excavated cylinder (a hollow
cylinder).

Figure 3.4: Sample design - bucket with payload (tank)

If the cylinder has a total heigth of h, it can be divided into two sections: h2 refers to the
hollow tube, while h1 to the base filled cylinder. Similarly, r1 is the radius of the main
cylinder and r2 is the inner hole radius. The existing load force are Fx1, applied equally on
the anular surface at the top of the hollow tube, and Fx2, applied equally on the bottom
of the hole.
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3.3. Structures optimization

It is easily inferred that the two areas A1 and A2 on which the forces act are

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A1 = π (r2
1 − r2

2)

A2 = πr2
2

(3.9)

It follows that the volume of the total structure is

V = V1 + V2 = A1h +A2h1 = πr2
1h − πr2

2h + πr2
2h1 = π [r2

1h − r2
2 (h − h1)] (3.10)

and, therefore, having %mat as material density, its mass is

m = V %mat = π [r2
1h − r2

2 (h − h1)]%mat (3.11)

The minimum mass is achieved the more h1 is close to h and the more r2 is close to r1.

Once the material of the structure has been defined, consequently it is defined in which
case of the eqs. (3.7, 3.8) the problem falls. Therefore, it is defined the allowable force
on the given area, which at minimum should be (and, optimizing, has to be) the applied
force.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ1 =
Fx1

A1
≤ σall1 =

σy

n

σ2 =
Fx2

A2
≤ σall2 =

σy

n

(3.12)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Fx1 = σall1A1 =
σy

n
π (r2

1 − r2
2)

Fx2 = σall2A2 =
σy

n
πr2

2

(3.13)

It is added another condition. The heigth h2 and the radius r2 are constrained by the
dimensions of a cylindrical payload inserted into the cavity. It follows that the force Fx2

is given precisely by the weight that the payload exerts on the bottom of the hole and, in
first approximation, it can be stated that the payload occupies exactly the available space.
Given the mass of the payload mp and its density %p, the payload volume is obtained and
the following conditions are imposed

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V = mp

%p
= πr2

plp

rp = r2

lp = h2

(3.14)

it follows
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3.4. Speed of sound in solids

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mb = Vb%b = π [r2
1h − r2

p (h − lp)]%p

Fx1 =
σy

n
π (r2

1 − r2
p)

Fx2 =
σy

n
πr2

p

(3.15)

The total mass is therefore

m =mp +mb = Vp%p + Vb%b = πr2
plp%p + π [r2

1h − r2
p (h − lp)]%b

= πr2
plp%p + πr2

1h%b − πr2
ph%b + πr2

plp%b
(3.16)

3.4 Speed of sound in solids

The speed of sound in solids depends on the material intrinsic properties such as those
defined in Paragraphs 3.1.1, 3.1.2. In particular the sound propagation follows the earth-
quakes phenomenon with P-waves and S-waves, respectively the faster longitudinal primary
waves and the slower traslational secondary ones, such that

cs,L =
¿
ÁÁÀ E (1 − ν)

% (1 + ν) (1 − 2ν) =

¿
ÁÁÀK + 4

3 G
%

cs,T =
√

G
%

(3.17)

These velocities would be constant once defined the three variables in the two eq. (3.17).
If, however, these variables undergo a change wrt, for example, the temperature, then the
speed of sound will also experience a certain temperature-dependent variation.

Often it is commonly defined an average speed of sound in the material. In this regard,
in the literature, there are different formulations that may differ in certain conditions.
The two most commonly found formulations (Holland 1963; Romanowski et al. 2015),
respectively cs,av,1 and cs,av,2, are reported below

cs,av,1 =
⎡⎢⎢⎢⎣

1

3
( 2

cs,T
+ 1

cs,L
)
⎤⎥⎥⎥⎦

−1

cs,av,2 =
⎡⎢⎢⎢⎢⎣

1

3

⎛
⎝

2

c3
s,T

+ 1

c3
s,L

⎞
⎠

⎤⎥⎥⎥⎥⎦

− 1
3

(3.18)

These are the values that will be used in subsequent calculations, in place of those presented
in eq. (3.17).
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3.5. Properties variation with temperature

3.5 Properties variation with temperature

Analyzing in more detail the nature of the elastic constant, this depends on the interatomic
forces. Metal elements, or ones with crystalline structures, have mainly strong primary
bonds among atoms, and therefore they have great E moduli. In contrast, the secondary
weak bonds of non-crystalline elements lead to reduced E .

By dwelling on the metallic elements, it is immediately evident that a variation of tem-
perature causes a variation in the thermal agitation velocity of the atoms: this causes a
volumic variation, defined through the bulk constant K , but at the same time it causes
a variation in the elastic modulus, given that the atoms experience a variation in their
mutual distance and, therefore, in the intensity of their mutual bonds.

Although the nature and entity of these phenomena is to be found with a more detailed
thermodynamic study including the Debye temperature (refer to Chapter 4, Section 4.1
for further details), it can be qualitatively stated that the E variation is negiglible for
temperatures close to absolute zero, whereas its decay is sub- or superlinear with the
increase of higher temperatures (Wigley 2012).

Analyses related to the trasformations of crystalline structures of materials wrt change
in temperature are neglected. Moreover, pure elements are considered, which means that
referring to aluminium, for example, actually means dealing with the Al element, and not
one of its alloy.

From the smallest variation at the atomic level it is possible to obtain large variations in
density, elastic moduli, conductivity, and many other characteristics as the temperature
changes. Given the vastness of the subject and the almost infinite number of materials, in
this dissertation are considered only Cu and Al.

The MPDB (JAHM Software, Inc. 1998) software lends itself as an excellent alternative
to numerically evaluating –and complicating the analysis– all these properties at cryogenic
temepratures, allowing to draw up tables with discrete values from which it is possible to
proceed by numerical extrapolation. The complete tabulation can be found in Appendix
A, Table A.6.
As can be seen from the Fig. 3.5, it is evident that the density and the elastic modulus of
the two materials confirm the expected trends. There is a more or less marked decrease
of both values as the temperature increases, demostrating that the materials dilate and
become more malleable. This behaviour is clearly to be taken into consideration, as it
can substantially influence an analysis and may lead to incorrect results if neglected or
misjudged. In fact, by implementing these values in the equations of the speed of sound
eq. (3.17) in a medium, the following results are obtained
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3.5. Properties variation with temperature

Figure 3.5: Density % and elastic modulus E variation wrt temperature T for Cu and Al

Figure 3.6: Speed of sound in a medium as a function of temperature cs = f(T )

In the following Fig. 3.6 it is possible to notice the trend of the longitudinal, transversal,
and averaged speed of sound waves propagation –whose last formulation is shown in the
two forms cs,av,1 and cs,av,2 as in eq. (3.18)–.

For the purposes of this analysis, temperatures below T = 90 K will never be treated.
Furhtermore, the melting values of the materials would be avoided. With these hypoteses,
and considering only copper for reasons that will be subsequently explained, it is possible
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3.5. Properties variation with temperature

to derive an interpolating function for each of the quantities described. Namely

E(T ) ≈ 1.367357 ⋅ 1011 + 1.506419 ⋅ 107T − 2.842035 ⋅ 105T 2+
+ 4.587768 ⋅ 102T 3 − 1.810566 ⋅ 10−1T 4 − 3.317744 ⋅ 104T 5+
+ 3.834610 ⋅ 10−7T 6 − 1.161974 ⋅ 10−10T 7

%(T ) ≈ 9.027303 ⋅ 103 + 1.115309 ⋅ 10−1T − 3.008421 ⋅ 10−3T 2+
+ 8.852896 ⋅ 10−6T 3 − 1.513867 ⋅ 10−8T 4 + 1.459334 ⋅ 10−11T 5+
− 7.354734 ⋅ 10−15T 6 + 1.503195 ⋅ 10−18T 7

(3.19)
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4. Thermodynamics

Zeroth: there’s a game. First: you can’t win. Second: you can’t break even.
Third: you can’t quit.

— C. P. Snow

An in-depth study of thermodynamics would require a substantial separate treaty and goes
beyond the scope of the dissertation. Therefore, here are presented the main principles
and some useful considerations for the continuing of the study.

First of all, it is considered a “system”, for reference a region of space with a certain mass
and delimited by a boundary between the system and the surrounding environment.

The concept of energy E can have different variations depending on the specific topic.
Energy can be defined as the ability to perform an action and it is a quantity that can be
trasferred -or converted- mainly into three forms, that are heat, work, and mass flow. Heat
is the form of energy that is trasferred due to a temperature difference; work by means of
a force along a distance; mass flow by exchanging mass between a system and the outside.

If the mass of a system is kept constant, then the energy can be trasferred only through
heat or work. If the system is fixed and closed, which means it has constant mass with
fixed boundaries, then the energy can be trasferred only through heat.

Thermodynamics’ key concept is the thermal equilibrium. Two systems in contact with
different temperatures show a heat transfer from the warmer to the colder region and,
after being in contact long enough, their temperatures coincide. This concept extends to
n bodies by transitive property, and its intrinsic meaning, though it may seem trivial and
naive, is so important to be called zeroth law of thermodynamics (Cengel 2002). In essence,
it implies the existance of the temperature as a system property and, qualitatively, as an
indicator of how spontaneosly a system is inclined to yield spontaneously part of its own
energy.

The following three well-known laws of thermodynamics can have many different facets
depending on the scope and the most convenient definition for the specific case. However,
despite the definition, the physical meaning remains unchanged, that is that the energy
is conserved, natural processes are irreversible and disordered, and that any system at
absolute zero temperature has minimal residual entropy.

The period just above attempts to enclose, perhaps in a too hasty and inaccurate way, the
many implications contained in the first, second, and third law of thermodynamics.
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4.1. Heat capacity

4.1 Heat capacity

Every system has a certain total energy E . This can be considered, in first approximation,
composed by three main components

E = Ei + Ek + Ep (4.1)

where Ei is the internal energy (often referred to as U), Ek the kinetic, and Ep the potential.
The first law of thermodynamics, also known as the conservation of energy principle,
establishes that the total energy that a system possesses can at most, during a process,
vary its form and redistribute itself in the different components of eq. (4.1), but never
create or destroy itself. In other words, if the energy of a system increases or decreases, in
another external space one or more systems have lost or gained energy, respectively.

The internal energy is given by the sum of heat and work, that is

∆Ei =∆U = Q +W (4.2)

Conventionally, the two values are positive when entering the system, i.e. for heat absorbed
and work done on the system, or negative for outsourcing. If a system is stationary, then
kinetic and potential energies in the eq. (4.1) experience no net variation and its total
energy variation coincides with its change in internal energy. In this case, heat, that is
energy in transition, is the only form of transferable energy (Boles 2014), and the eq. (4.2)
reduces to the simpler

∆U = Q (4.3)

There are three mechanisms of heat transmission, depending on whether this is transmitted
through molecular contact, fluids, or Electromagnetic waves (EMVs). Another way to
express the eq. (4.3) and to relate the variation of internal energy with the temperature
variation is to introduce the concepts of heat capacity C and specific heat capacity c.
Therefore,

∆U =mc∆T = C∆T (4.4)

The specific heat defines the heat needed to change by 1 degree (Celsius or Kelvin) 1 kg
of matter. Since a stationary system can not change its shape and, therefore, its volume,
in this case the specific heat is at constant volume, cv [1].

Specifically, the eq. (4.4) is valid only for temperature variations without substance phase
change. In the case of incompressible systems, i.e. solids and the great part of liquids,
cv = cp, and the specific heats depend only on temperature.

[1]If, as great part of materials do, a system expands when heated, this would perform a work towards
the surrounding environment and, if the pressure remains constant, it can be defined a specific heat at
constant pressure such as it is always valid cp > cv.
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4.1. Heat capacity

The specific heat is strongly temperature dependent, with different trends for different
temperature ranges. In the ideal case, its trend is linked to the Degree of freedom (DOF)
of the atoms that make up the system, that is, in which ways each atomic or molecular
structure can move -translations, rotations, vibrations-, and when these modes “activate”
due to the thermal energy. The detailed quantum mechanics treatment is well beyond
the scope of the discussion, but it can be easily found in the literature, for example in
(Schroeder 1999) or (Ashcroft and Mermin 1976). For the moment, it shall be sufficient
to state that there are two mathematical models for the c evaluation: one for ambient or
higher temperatures, the law of Dulong and Petit, and one for lower temperatures, the
Einstein-Debye model, which takes into consideartions the quantum processes.

The basis of these considerations is the equivalence, at the molecular level, of the kinetic
energy of a particle with its thermal energy, such that for each spatial direction {x, y, z}
the following equality holds

1

2
mV 2

x =
1

2
mV 2

y =
1

2
mV 2

z =
1

2
kBT (4.5)

The vector sum of the terms in the eq. (4.5) provides the translational kinetic energy Ek,t
of a molecule such that

Ek,t =
1

2
mV 2 = 3

2
kBT (4.6)

A quick observation of eq. (4.6), strictly valid for gases, most liquids, and -sometimes- for
solids, points out that the average velocity due to thermal agitation for the molecules is
greater for light atoms than for light ones, at the same temperature.

The more general and realistic formulation of eq. (4.6) is called equipartition (of energy)
theorem; each form of energy contained in a molecule is referred to as DOF, and this may
be due to a translation, rotation, vibration, or elastic potential energy. Each form of energy
has a quadratic function such as those in eq. (4.5), and the theorem states that each has
an average thermal energy equal to 1

2kBT . However, the theorem fails to correctly evaluate
molecular energy at low temperatures, i.e. when thermal energy is lower than quantum
energy, that is when some DOFs are “frozen out”.

Generally, by relating these considerations to eq. (4.4), it can be stated that the average
internal thermal molecular energy for N molecules with nf DOFs activated is equal to

Uth = Nnf
1

2
kBT (4.7)

The real problem in quantum mechanics is to understand which DOFs are active. Trans-
lational degrees are usually three. Rotational degrees depend on inertia on rotation; linear
molecules, i.e. oxygen O2, lack a rotational DOF since the inertia around the connection
axis is negligible; polyatomic molecules, however, can rotate around three axis. Molecular
vibration is more complex, as each vibration has at least two DOFs, one for the vibrational
kinetic energy and one for the spring potential, and at room temperature many vibrational
DOFs are frozen out, that is, they do not own enough energy to contribute. For example,
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4.1. Heat capacity

atoms in solids can vibrate in the three main directions, and therefore the vibrational DOFs
are 6, 3 kinetic and 3 potential.

Another useful formulation called energy capacity, with reference to the (4.4), is

CV = (
∂U

∂T
)
V

(4.8)

From now on, unless otherwise specified, reference is made to steady-state stationary sys-
tems. Therefore, it is possible to differentiate the (4.7) to obtain

C = ∂U
∂T
= NnfkB

2
(4.9)

As written, the eq. (4.9) is known as rule of Dulong and Petit and it assumes that the
heat capacity, and consequently the specific heat c, is independent of the temperature and,
therefore, it is fixed and constant for a given number of DOFs. This implies, in turn, that
the DOFs number is temperature independent, which is known to be not always true.

Figure 4.1: CV − T for solid with varying temperature (Schroeder 1999)

Nevertheless, this rule approximates the values of specific heats at high temperatures, in
which, for example, a solid tends to have a C = 3R , as can be noted in Fig. 4.1.

It is easy to note that the law of Dulong and Petit lends itself to analyses in specific high
temperature ranges, provided that some approximations are accepted. While this law is
based on the statistical Maxwell-Boltzmann energy distribution, Einstein’s contribution
had to be expected, followed by Debye’s one, to allow the inclusion of quantum phenom-
ena and electron lattice vibrations (phonons), respectively. Again, how the Einstein-Bose
statistic energy distribution is introduced, what the quantum harmonic oscillators are, how
these affect the intensive quantities of materials, and other observations on energy states,
are far beyond the scope of the discussion.

The main result researched here is an integral or closed formulation of the heat capacity
for each temperature range. This exists and exploits two concepts called Fermi energy εF
and Debye temperature TD. For what concerns the first quantity
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4.1. Heat capacity

εF =
h2

8me
(3N

πV )
2
3

(4.10)

where the value N
V is the electron density, which is function of the material (see Appendix

A, Table A.4). This is the highest energy an electron can have.

The Debye temperature is defined as

TD
!= hcs

2kB
(6N

πV )
1
3

(4.11)

here cs is the speed of sound in the material defined in eq. (3.17). Sometimes the eq. (4.11),
moving the 1

2 factor in the parenthesis, is written in the form of the Debye frequency νD

TD
!= hνD
kB
= h

kB
cs (

3N

4πV )
1
3

(4.12)

For gases and for metal lattice vibration there is a formulation in closed form of the internal
energy as a linear function of temperature. This, once derived over temperature, provides
the heat capacity per mole as (Schroeder 1999)

Clv =
π2NAk

2
BT

2εF
(4.13)

For solids, it could be possible to refer to Einstein solid model, in which each atom vibrates
independently in three directions. This model, however, may be inaccurate especially for
metals, in which the lattice vibration has a key role; indeed, the Einstein model shows an
exponential decay of C versus temperature, while experimentally it is known that C ∝ T 3.
Hence the need to include Debye’s contribution to the Einstein model, which is an excellent
approximation for low and high temperatures. It can be proved that it is possible to express
the internal energy as (Van Sciver 2012)

U = 9NkB
T 4

T 3
D
∫

T

0

x3

ex − 1
dx (4.14)

where T = TD
T . The upper and lower limit solutions of the eq. (4.14) are

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U = 3NAkBT C = 3NAkB T ≫ TD

U = 3

5
π4NAkB

T 4

T 3
D

C = 12

5
π4NAkB (

T

TD
)

3

T ≪ TD
(4.15)

results which agree with the Dulong and Petit approximation eqs. (4.7, 4.9) for a solid in
which nf = 6, and therefore with the equipartition theorem eq. (4.5) and the Einstein solid
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4.1. Heat capacity

model. An additional consideration must be made wrt metals; in these the heat capacity
is increased due to the conduction electrons, and in the free electron model this additional
linear term for the lattice vibration is the one presented in the eq. (4.13).

The set of all the considerations just made shows how the thermodynamic problem, even as
presented in a quick and simplistic manner, is complex and strongly diversified according
to the temperature ranges. A good approximation for the heat capacity, for temperatures
above 10 ÷ 20 K, may be that of deriving eq. (4.14) and of numerically evaluating the
integral. For the level of the present discussion and for the phase of the project, this
method seems the most appropriate, sufficiently precise and unequivocal as the temperature
changes. Therefore

C = 9NAkB (
T

TD
)

3

∫
T

0

x4ex

(ex − 1)2
dx [J mol−1 K−1] (4.16)

It is inferred that eq. (4.16) provides the heat capacity per mole of matter (to be precise,
this would be a specific molar heat). By dividing it by the molecular mass of the material,
it is possible to obtain the specific heat in the International System of Units (SI). Therefore

c = 9NAkB
M ( T

TD
)

3

∫
T

0

x4ex

(ex − 1)2
dx [J kg−1 K−1] (4.17)
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4.1.1 Temperature dependence of Debye temperature

The particularity of defining the Debye temperature as the limit between the temperature
regions in which quantum phenomena should be considered or not, and subsequently de-
clare that this temperature is dependent on the temperature itself, should sound an alarm
bell. Not by chance, in literature, can be found dozens of studies in which the same ma-
terial shows a different Debye temperature (Patterson and Bailey 2016; Pässler 2017). To
date, defining a “Debye temperature” has become more a consolidate terminology, since
nowadays its trend is obtained from the experimental values of heat capacities, which are
temperature dependent. The heat capacities trend C = f (TD(T )) is called “non-Debye
nonmonotonic model” and requires highly elaborate analytical models for each material.

In the present analysis, it would burdensome and counterproductive to carry out this
study, since the whole Chapter has been focusing on the specific heats calculations as
output parameter. Although the calculation of TD from eq. (4.11) is sufficiently accurate
wrt the values found in literature, it is common nowadays to choose and force TD as that
temperature-varying value which allows to obtain specific heats values comparable to those
found experimentally (Schroeder 1999; Van Sciver 2012; Patterson and Bailey 2016).

Therefore, this particular analysis is avoided. To give a better realism, though, the effect of
temperature in the speed of sound in solids is included, in the form of variation of Young’s
modulus in eq. (3.17) as done in Section 3.5, Fig. 3.6. By doing so, the TD defined in eq.
(4.11) is temperature dependent, as shown in the following Figure

Figure 4.2: Debye temperature as a function of temperature TD = f(T )

The TD usually found in literature differs from the calculable values and intersects the other
curves only in some points, i.e. for the copper around the room temperature. Nevertheless,
the values calculated with the formulas eqs. (3.17, 3.18, 4.17) should provide a more
truthful trend of the TD and, consequently, of the specific heats c values, even compared
with those read from the MPDB software
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4.1. Heat capacity

Figure 4.3: Specific heat of Cu as a function of temperature c∣Cu = f(T )

Figure 4.4: Specific heat of Al as a function of temperature c∣Al = f(T )

In the two Figs. 4.3, 4.4, the asymptotic trend of the curves is clearly shown, in accordance
with the Dulong and Petit approximation in eq. (4.9). In both cases, at least one curve
approaches sufficiently the experimental values. Unfortunately, this curve is always the one
given by the TD chosen in literature to match the specific heat experimentally measured
values. For this reason, and due to the fact that the analytical formulations fail to take into
account the specific heat increase beyond the Dulong-Petit limit, the interpolated values
from the MPDB software will be used in the continuation of the analysis.
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4.2. Thermal conduction

4.2 Thermal conduction

Conduction is one of the three heat transfer mechanisms and occurs through a physical
exchange of thermal energy between particles in contact with each other; the other two are
convection and radiation. In a solid the conduction can take place between any two points
inside the material itself or at the boundary of two materials. The transported heat Q is
dimensionally related with the heat transfer rate Q̇ and the heat flux q̇ as follows

Q = Q̇∆t = q̇A∆t (4.18)

The heat equation is a general Partial Differential Equation (PDE) that describes the
three-dimensional (3D) heat transport in a stationary, homogeneous, and isotropic solid
(Hahn and Özişik 2012) both in space and time

∇ ⋅ (k∇T ) + g = %c∂T
∂t

(4.19)

where the nabla operator varies depending on the coordinate system. For example, by
directly showing the heat equation in cylindrical coordinates, and developing the vector
differential operator, the general heat conduction in eq. (4.19) is

1

r

∂

∂r
(kr∂T

∂r
) + 1

r2

∂

∂ϕ
(k∂T
∂ϕ
) + ∂

∂z
(∂T
∂z
) + g = %c∂T

∂t
(4.20)

The eq. (4.20) states that the net rate of heat conducted per volume unit plus the rate
of energy generated per volume unit, in the left-hand side (lhs), is equal to the net energy
stored per volume unit, in rhs. Furthermore, {r,ϕ, z} form the cylindrical coordinate
system, respectively in the radial, circumferential, and axial coordinate. The eq. (4.20)
with no heat generation leads to the Fourier’s equation; steady-state conduction to the
Poisson’s equation; if both conditions are verified simultaneously, the Laplace equation is
found (Karwa 2017).

Assuming a one-dimensional (1D) problem with isothermal conditions in the ϕ and z
coordinate and no heat generation, the remaining non-zero temperature gradient is the
radial one and the eq. (4.20) is reduced to the simpler form

1

r

∂

∂r
(kr∂T

∂r
) = %c∂T

∂t
(4.21)

or, if k is not radius-dependent,

k
∂2T

∂r2
+ k
r

∂T

∂r
+ g = %c∂T

∂t
(4.22)

or
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∂2T

∂r2
+ 1

r

∂T

∂r
+ g
k
= 1

α

∂T

∂t
(4.23)

Still simplifying the problem, for a steady-state problem, from the eq. (4.21) it is obtained
the Fourier’s 1D heat conduction equation (Cengel 2002)

Q̇cond = −kA
dT

dx
(4.24)

the minus sign indicates that heat is conducted in the direction of decreasing temperature.
As expected, following the analysis in Sections 3.5, 4.1, the thermal conductivity k is
material and temperature dependent itself.

4.2.1 Temperature dependent thermal conductivity

The thermal conductivity for metals is given by the contributions of the electrons and the
lattice. As in Section 4.1, k undergoes the same rules and is proportional to the heat
capacity (Van Sciver 2012). For model congruity, k values have been interpolated from the
software MPDB, as shown in the following Figure

Figure 4.5: Thermal conductivity k variation wrt temperature T for Cu and Al
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4.3 Thermal convection

Convection is the principle of heat transfer between a solid and a moving fluid, where
the “in motion” concept is crucial, as a stationary fluid transfers heat by pure conduction.
This subtle difference between pure conduction and “conduction with fluid motion” (Cengel
2002) is the reason why sometimes, in literature, convection is not considered a transporta-
tion phenomenon in its own right but a particular conduction condition. Nevertheless, the
rate of conduction heat transfer is described by the Newton’s law of cooling

Q̇conv = hA (T − T∞) (4.25)

where the convection rate transfer coefficient h is not a property of the fluid and is de-
termined sperimentally. For the present analysis, since the case study happens to be on
the lunar surface, in the vacuum, and there will never be fluids in motion with which to
exchance heat, this transfer mechanism is neglected.

4.4 Thermal radiation

Every body with non-zero absolute temperature emits thermal energy in the form of EMVs,
and radiation is the only form of heat transfer that does not require a medium. Al-
though the phenomenon is volumetric –every portion of a body emits energy with different
intensity–, in the present analysis only the energy emitted by the external surface will be
considered. The radiative heat transfer rate is given by the Stefan-Boltzmann formulation

Q̇rad = εςA(T 4 − T 4
surr) (4.26)

It has to be specified that the temperatures in the eq. (4.26) must be expressed in degrees
Kelvin. The Tsurr indicates the temperature of the outside portion of space enclosing
the emitting reference surface A. If the surrounding environment is the vacuum, which
has a background temperature TBG ≈ 3 K, usually the back-radiation is negligible and the
Tsurr ≈ 0 can be neglected.

Emissivity ε is a property of bodies that identifies how much these are prone to emit thermal
energy in the form of EMVs –where 1 is a black body and 0 a white body–. Emissivity is
also strongly temperature dependant for gray bodies, and also wavelength dependent for
non-gray bodies.

The complete formulation of the heat equation in cylindrical coordinates containing the
emissive phenomena, from the PDE in eq. (4.20), assumes the form (Karwa 2017)

1

r

∂

∂r
(kr∂T

∂r
) + 1

r2

∂

∂ϕ
(k∂T
∂ϕ
) + ∂

∂z
(∂T
∂z
) + g = %c∂T

∂t
− ες A

V
(T 4 − T 4

surr) (4.27)
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4.4. Thermal radiation

4.4.1 Temperature dependent emissivity

In the present analysis is omitted the study of the reasons for which the optical and
thermal properties of a material, such as the emissivity, are dependent on electrodynamic
properties, such as the resistivity and the wavelength. It can be stated that the emissivity
trend wrt temperature is substantially different for cryogenic and high temperatures.

For low temperatures a closed formulation has been developed over the years, only resistivity-
and temperature-dependent (Estalote and Ramanathan 1977; Sievers 1978)

ε = 0.751 (%T )
1
2 − 0.632 (%T ) + 0.67 (%T )

3
2 − 0.607 (%T )2 + . . . (4.28)

For high temperatures the values are taken from the literature (Ramanathan and Yen
1977), even if it exists a complex integral calculation. Both values consider pure materials.

Figure 4.6: Emissivity ε variation wrt temperature T for Cu and Al

The first two curves in Fig. 4.6, following the Davisson-Weeks (DW) formulation in eq.
(4.28), were obtained using the interpolated resistivity values from Table A.6, Appendix A.
Between the low (DW) and high (Ramanathan-Yen, RW) temperature values, the curves
are interpolated.

It is important to underline that the materials used are perfectly pure and no surface
treatments have been carried out. For non-pure materials there are higher RRR as the
impurity degree increases, with a greater asymptotic value for the resistivity as T → 0
(Van Sciver 2012). At the same time, surface treatments may greatly change the material
emissivity. A slight polishing process is supposed in the analysis prosecution, giving a
≈ 50% increase in emissivity.
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4.5 Electrothermal analysis

A general overview of the eletrical and thermal phenomena, shown respectively in Chapter
2 and at the beginning of Chapter 4, allows to make an interesting case study which will
help to introduce the MD model analyzed in the last part of the present analysis. Although
the specific MD configuration will be presented in Chapter 7 and specific case studies will
be carried out in Chapter 8, some concepts should be anticipated. It is understood that
the reasons for which the following considerations are taken into account have to be found
in the aforementioned Chapters, while for the moment the focus will be the understanding
of the electrical and thermal phenomena. In particular, it is sought the set of assumptions
and simplifications that can be made for the prosecution of the analysis.

The first concept presented has as subject a good conductor. It can be reasonably assumed
that copper and aluminium are the two most widespread, as they have excellent conductiv-
ity compared to their cost. It is known that the current passage in a conductor dissipates
by JE part of the energy, and wrt eq. (4.20), it can be seen as a source of energy in the
conductor core. A similar consideration can be made from the first law of thermodynamics
in eqs. (4.4, 4.3), so that

mwcwṪw = Q̇Je,w = RwI(t)2 (4.29)

where mw, cw, and Ṫw, in the lhs, are respectively the wire mass, specific heat, and
temperature variation over time. In the rhs there is the wire resistance Rw and a certain
current source variable in time. By explicitly writing the quantities in the eq. (4.29), with
mass as density and volume, it is obtained

%w(T )`wAwcṪ =
ρw(T )`w
Aw

I(t)2 (4.30)

or

dT

dt
= ρw(T )
%w(T )A2

wc(T )
I(t)2 (4.31)

where all temperature-dependent values can be appreciated; to lighten the notation, from
now on the temperature-dependent quantities, if already presented in the previous Sections,
will be implicitly understood as such without the need of writing (T ). The eq. (4.31) is
an ODE that can be easily solved numerically. Results could be provided as parametrized,
but for sake of readibility the wires cross sectional area Aw is given by a wire radius of
rw = 0.01 m, while the current is

I(t) = 1 ⋅ 105e−0.8tA (4.32)

By appropriately changing the material-dependent parameters between copper and alu-
minium, the following results are obtained with the same current trend
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4.5. Electrothermal analysis

Figure 4.7: T (t) due to JE for Cu and Al

The analysis is performed over one second. If the aim is to better withstand the tem-
perature increase over time, the copper lends itself as the best candidate. The set of its
parameters leads to a less intense temperature gradient, as can be noted in Fig. 4.7. To
confirm this assumpion, the radiative contribution is added to eq. (4.29)

mwcwṪw = RwI2 − Q̇rad,w (4.33)

The additional radiative term in eq. (4.33) is written as

dT

dt
= − ε(T )ς

%w(T )`wAwc(T )
A(T 4 − T 4

s ) (4.34)

where A is the cable exposed external surface, ie A = 2πrw`w. Performing the same analysis,
with a surrounding temperature Ts = 90.15 K, the following results are shown.

Figure 4.8: T (t), t ∈ [0,1] s due to JE and radiation for Cu and Al

In Fig. 4.8 the trend of emissivity for both materials takes the place of the last graph in
Fig. 4.7, presented only as an indication of the “weigth” of the materials’ parameters.

The radiative phenomenon does not significantly vary the maximum temperature reached.
Since aluminium reaches a maximum temperature of TAl,max ≈ 550 K, one would anyway
expect a slight variation in this particular analysis. To consider this situation, the same
is perfomed over 60 seconds: it should be noted that the current in eq. (4.32) was chosen
specifically to tend to zero shortly before 2 s, so that the maximum temperature of the
wires is mantained subsequently constant without other heat transmission mechanisms.
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Figure 4.9: T (t), t ∈ [0,60] s due to JE and radiation for Cu and Al

A greater dissipation time and a higher maximum temperature reached allow to dissipate
more energy for radiation, as is evident in the case of aluminium in Fig. 4.9, while copper
has temperatures still too low for appreciable emissions. It is anticipated that the heating
times in the mass driver analysis are in the order of a second, and therefore the last example
is for demonstration purposes only.

Although conductive phenomena are still not considered, copper shows a better overall
heating resistance. To verify whether or not the radiation is negligible up to one-second
copper heating, the analysis is repeated with a higher current

I(t) = 1.2 ⋅ 105 A t ∈ [0,1] Ô⇒ TCu,max ≈ 1000 K, t = 1 s (4.35)

The maximum temperature is certainly indicative of radiative phenomena. It follows

Figure 4.10: High temperature copper radiative emission for t ∈ [0,1]

The radiation reduces by ≈ 1 K the maximum temperature reached, and therefore the
radiative phenomena, even with very high temperatures, are negligible for short times.
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4.5.1 Wires insulation

Before considering the conductive heat transportation, it should be noted that is unrealistic
to consider that the conductor is left exposed and not isolated. For example, a solenoid-
shaped conductor, if not isolated and in contact, would make the current find less resistance
in flowing axially instead then circumferentially. Moreover, by isolating the conductor, as
radiative emission has been shown negligible, also the conduction will be limited.

The problem, therefore, shifts in finding the insulation (cable or wire) thickness able to
withstand the temperatures that the conductor can reach (cable core, or simply core).
Many companies provide the standard thickness for heavy-duty cables that can withstand
these conditions, for example (Plastelec SAS 2018; Eland Cables 2018). However, it is
advisable to find an approximate closed-form formulation for the insulation radius as a
function of the core radius.

The heat transfer between core and cable is considered steady. The differential Fourier’s
law, eq. (4.24), in cylindrical coordinates, integrating between the core and insulator
radiuses, rw and rins, and over their steady temperatures, Tw and Text,all, is

Q̇all,loss = −2π`inskins
Text,all − Tw

ln( rinsrw
)

(4.36)

where Text,all is the allowable temperature at the insulator external surface, and Q̇all,loss
the maximum allowable heat loss of the core. Hence, by solving for rins,

rins = rw exp
⎡⎢⎢⎢⎢⎣
−2πkins`ins

Q̇all,loss
(Text,all − Tw)

⎤⎥⎥⎥⎥⎦
(4.37)

Figure 4.11: Insulation radius rins

A good insulator can have conducibilities around kins ≈ 0.02. The results in Fig. 4.11
assume a power loss per unit length of Q̇all,loss/`ins = 100 W m−1 and a constant core
temperature of Tw = 1100 K, both conservative values wrt real conditions. Given the
approximate calculation in eq. (4.37), it may be initially assumed that the isolation radius
is rins = 1.5rw compared to the core. Nevertheless, some advanced insulation technologies
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–by means of polymer dielectric films (Jones and Wright 1992; Tan et al. 2014)– allow very
low insulation radii even at high temperatures.

For this reason, the multiplicative coefficient between rins and rw is conservatively imposed
equal to ki = 1.1.

By inserting these consideration into the PDE in eq. (4.20) and solving numerically with
the finite –central– differences method (Recktenwald 2017), the temperature in space and
time is

Tn+1
i = Tni +∆tα

Tni+1 − 2Tni + Tni−1

∆x2
(4.38)

where i = 0 ∶ N + 1 is the discretization of the spatial coordinate, and n = ti ∶ dt ∶ tf is the
time discretization. The Euler explicit method implies that the ∆x can not be chosen at
will, since the Courant-Friedrichs-Lewy condition must be respected

CFL = α∆t

∆x2
< 1

2
(4.39)

By appropriately selecting the discretization steps and the Boundary Conditions (BCs), in
which the boundary temperature is the one obtained in Fig. 4.10, the following conductive
heat transfer in the insulator is obtained

Figure 4.12: Heat conduction calculation with central finite-differences method

Both for the good insulator characteristics and for the short analysis time, the heat does
not penetrate deeply and is well confined in the core. To fully validate this approxi-
mate analysis, the various parameters obtained in this Section are included in a complete
unsteady-transient heat analysis with the Matlab® PDE toolbox.
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4.5.2 Application example

Figure 4.13: Thermal equilibrium of two coaxial cylinders

The Fig. 4.13 represents the resulting case study from the previous Paragraphs consider-
ations. A hollow cylindrical bucket, with inner and outer radius r1 and r2, is placed in
perfect contact with a coaxial solenoid-shaped insulated wire. The wires packing factor
allows it to be considered as a cylinder with inner and outer radius, wrt the central axis,
r2 and r3. Accordingly scaled, the core is placed with a central mean radius between the
insulator ones. The wires are heated by JE and have a Tw = 1100 K, while the remaining
geometries have an initial condition of T = 90.15 K. The heat is transferred by conduction
between all the geometries in contact and by radiation towards the environment. The
geometric implementation in the Matlab® PDE toolbox is shown in the following Figure.

Figure 4.14: Transient heat transport - PDE model
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Running the analysis for 1 s produces the following results

Figure 4.15: Transient heat transport - isothermal contours PDE result for t ∈ [0,1]

while, running the same analysis, with the same initial and boundary conditions, for 60 s
produces the following

Figure 4.16: Transient heat transport - isothermal contours PDE result for t ∈ [0,60]

The insulation performs its tasks well. There is no excessive conduction for high tempera-
tures and for long period, as can be clearly seen in Fig. 4.16, and therefore will be minimal
and negligible conduction for very short periods, such as those expected in this analysis
and shown in Fig. 4.15.

In conclusion, although the radiative and conductive thermal phenomena are fundamental
for a complete thermal analysis, it is considered that they can be neglected in the specific
case. Nevertheless, future studies could perform a more in-depth analysis of these, which
would include, for example, the cooling and reuse times of the components, as well as the
life cycle stress limit of the same.
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4.6 Polynomial interpolation of thermal properties

The analysis in the current Chapter faithfully reproduces both the experimental value and
those made available through MPDB, but suffers for a high computational cost in the
implementation due to the high volume of interpolation function calls.

The analysis is adapted trying to preserve its accuracy. It will be shown that the temper-
ature would be kept in T ∈ [90,1200]K. The range of allowable temperatures outlines a
family of properties that can be interpolated polynomially, with at the most 0.7% different
values wrt experimental ones, but highly reducing the computational cost.

By writing the generic material property X = {E , %, c, k, ρ} as

X (T ) ≈
n

∑
k=0

akT
k (4.40)

the following polynomial coefficient for each property are found.

ak E % c k ρ

a0 1.367 357 ⋅1011 9.027 303 ⋅103 4.038 080 7.015 013 ⋅102 −2.877 876 ⋅10−10

a1 1.506 419 ⋅107 1.115 309 ⋅10−1 −2.648 113 −5.818 977 2.495 959 ⋅10−12

a2 −2.842 035 ⋅105 −3.008 421 ⋅10−3 1.750 206 ⋅10−1 4.601 388 ⋅10−2 5.011 418 ⋅10−13

a3 4.587 768 ⋅102 8.852 896 ⋅10−6 −2.381 144 ⋅10−3 −2.015 002 ⋅10−4 −1.811 758 ⋅10−15

a4 −1.810 566 ⋅10−1 −1.513 867 ⋅10−8 1.751 250 ⋅10−5 5.364 811 ⋅10−7 3.464 188 ⋅10−18

a5 −3.317 744 ⋅104 1.459 334 ⋅10−11 −8.226 901 ⋅10−8 −9.024 209 ⋅10−10 −3.590 511 ⋅10−21

a6 3.834 610 ⋅10−7 −7.354 734 ⋅10−15 2.643 471 ⋅10−10 9.623 143 ⋅10−13 1.912 434 ⋅10−24

a7 −1.161 974 ⋅10−10 1.503 195 ⋅10−18 −6.014 245 ⋅10−13 −6.301 254 ⋅10−16 −4.093 559 ⋅10−28

a8 9.852 038 ⋅10−16 2.309 740 ⋅10−19

a9 −1.166 286 ⋅10−18 −3.626 692 ⋅10−23

a10 9.886 735 ⋅10−22

a11 −5.850 912 ⋅10−25

a12 2.295 138 ⋅10−28

a13 −5.361 589 ⋅10−32

a14 5.645 295 ⋅10−36

Table 4.1: Polynomial interpolation of Cu properties (note kfit ⇐⇒ T ≥ 90 K)

Figure 4.17: Polynomial fitting
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5. Orbital Mechanics

We are insignificant creatures on a small rock orbiting a very average star in
the outer suburbs of one of a hundred thousand million galaxies.

— S. W. Hawking, 1995

5.1 Introduction

The celestial mechanics is an astronomy branch that deals with the definition of the motion
of celestial bodies. The study of orbital mechanics is located within the latter; this sub-
category has the main purpose of studying the motion of a spacecraft and its maneuvering
under the gravitational influence of one or more celestial bodies.

For this purpose, reference is often made to Newton’s law of universal gravitation, start-
ing with a simple approximate problem known as Two-Body Problem (2BP), and then
extending the treatment to more complex scenarios.

In the 2BP the spacecraft is supposed to be subject to the sole gravitational attraction of
a main body. In the Three-Body Problem (3BP) two main bodies simultaneously influence
the temporal propagation of the orbit of the less massive third body, that is, the spacecraft.
The Restricted Three-Body Problem (R3BP) assumes that the spacecraft has negligible
mass, and in the Circular Restricted Three-Body Problem (CR3BP) the hypotesis of cir-
cular orbits is appended to the latter.

Describing an orbit implies the definition of references, both for space and time. There
are appropriate reference systems (RSs) based on the specific study to be conducted; for
example, the study of a planet’s orbit around the Sun would require a heliocentric RS,
while the study of a satellite around the Earth would require a geocentric one. The starting
point for the definition of a RS is to define its origin, the orientation of the fundamental
planes and the principal direction[1]. Please note that, sometimes, the terms RS, reference
frame (RF), and coordinate system (CS) may be used as synonyms; in the present analysis,
reference is made to the notation adopted by NASA’s Navigation and Ancillary Information
Facility (NAIF)® in the SPICE® software (SPICE 2018), i.e. a RS, or RF, is given by the
definition of the three axes, while a CS describes how a specific point is located in the RS.

Furthermore, RSs can be inertials –not rotating wrt fixed stars and their origins have
negligible accelerations, assumed null– or non-inertials.

[1]By defining the principal direction it is also defined the entire triplet of coordinates, since a RS has a
dextral orthogonal triad (DHT) for the vast majority of situations
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Figure 5.1: Earth equator and ecliptic planes (Vallado 2007)

In Fig. 5.1 is shown the Earth with both the equator plane, perpendicular to the axis of
rotation, and the ecliptic plane, defined by the average position of the Earth during the
revolution around the Sun. The two are inclined by about 23.5° (the approximate value is
due to Earth’s rotation axis precession).

The position of a site on the ground is identified by its North-South geocentric latitude
ϕgc and East-West longitude λ, where 0° ≤ λ ≤ 360° if eastbound, or between ±180° if East-
West. A constant line of longitude is a meridian, of which Greenwich is the prime meridian,
and a constant line of latitude is a parallel. Depending on whether the reference plane is
the equator or the ecliptic, the two are referred to as simply latitude ϕ and longitude λ in
the first case, or ecliptic ones ϕecl, λecl in the second. Sometimes the ecliptic parameters
refer to the celestial sphere (Vallado 2007); in this case the terrestrial equatorial plane is
extended into the celestial one, and positions are evaluated with the right ascension α,
from the vernal equinox �, and the declination δ (wrt the equatorial plane, as λ and ϕ).
As in Fig. 5.1, a generic site has position vector rsite defined by

rsite =

⎡⎢⎢⎢⎢⎢⎢⎣

r cosϕ cosλ
r cosϕ sinλ
r sinϕ

⎤⎥⎥⎥⎥⎥⎥⎦

(5.1)

For example, the sunny Pasadena, with {ϕ,λ} = {34° 8′ 52′′ N; 118° 8′ 37′′ W}, is located
at rPas = {−2.4870,−4.6492,3.5762} ⋅ 103 km.
Trani, a charming Pugliese resort in Italy, has {ϕ,λ} = {41° 17′ 0′′ N; 16° 25′ 0′′ E}, or
rTra = {4.5924,1.3531,4.2035} ⋅ 103 km.

In this particular analysis the focus in on the SC.
It is positioned at {ϕ,λ} = {89° 40′ 12′′ S; 129° 46′ 48′′ E} or, equally, it is located at at
the Moon’s south –really south– pole at rSC = {−6.4012,7.6884,−1736.97} ⋅ 103 km.

For the considerations made at the end of this Chapter, the analysis on the RS and the
time is left out and postponed to future studies.

60



5.2. Two Body Problem

5.2 Two Body Problem

It may be stated that the two greatest steps forward in understanding the celestial me-
chanics are the contributions of Kepler and Newton. The first, Kepler, in different treatises
and different years (Astronomia Nova in 1609 and Harmonices Mundi Libri V in 1619),
described the kinematics of motion of celestial bodies in his famous three laws
1. The orbit of a planet is an ellipse with the Sun at
one of the two foci

Ellipsin fieri orbitam planetae [. . . ] Sole foco altero
huius ellipsis

2. The line joining the planet to the Sun sweeps out
equal areas in equal times

Arcum ellipseos, cujus moras metitur area AKN, de-
bere terminari in LK, ut sit AM

3. The square of the orbital period of a planet is
proportional to the cube of its orbit’s semimajor axis

Proportio qua est inter binorum quorumcunque
planetarum tempora periodica, sit praecise sesquial-
tera proportionis mediarum distantiarum

The dynamics of motion was studied, understood, and pusblished years later by Sir Isaac
Newton in his equally fundamental three laws of dynamics. In his Philosophiae Naturalis
Principia Mathematica, in 1687, the three laws were described as

1. Every body perseveres in its state of rest, or of
uniform motion in a right line, unless it is compelled
to change that state by forces impressed thereon

Corpus omne perseverare in statu suo quiescendi vel
movendi uniformiter in directum, nisi quatenus illud
a viribus impressis cogitur statum suum mutare

2. The alteration of motion is ever proportional to the
motive force impressed; and is made in the direction
of the right line in which that force is impressed

Mutationem motus proportionalem esse vi motrici
impressæ, et fieri secundum lineam rectam qua vis
illa imprimitur

3. To every action there is always opposed an equal
reaction: or the mutual actions of two bodies upon
each other are always equal, and contrary directed

Actioni contrariam semper et aequalem esse reac-
tionem: sive corporum duorum actiones in se mutuo
semper esse aequales et in partes contrarias dirigi

Figure 5.2: Conic sections (Vallado 2007)

The first law of Kepler guides the following treatment: the planets move on elliptical orbits
and the Sun occupies one of the two foci. An ellipse is a conic section and, more precisely,
as will be clear once introduced Newton’s law of Universal Gravitation, the ellipse is just
one of the possible conic sections that can define an orbit. For example, as shown in Fig.
5.2, artificial satellites can have circular, elliptic, parabolic, or hyperbolic orbits, drawn
from the intersection of a plane and a cone –from which derives the name–. Only the point
and any straigh line tangent to the cone surface are not physically viable orbits.
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Figure 5.3: Geometry for conic sections (Vallado 2007)

The conic equation, often called in orbital mechanics trajectory equation, is known

r = p

1 + e cosν
(5.2)

In Fig. 5.3 the geometry of an ellipse is shown. Neglecting the geometric treatment,
the most important parameters in orbital mechanics are the Semimajor Axis (SMA) a,
the Semiminor Axis (sma) b, the rp and ra radii, respectively periapsis and apoapsis, the
eccentricity e, which defines the “flattening” of the ellipse, and the semilatus rectum p –or
semiparameter–. From the conic, eq. (5.2), it is inferred that the periapsis and apoapsis
are the two extreme values of the radius r such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

rp =
p

1 + e cos 0
= p

1 + e ν = 0

ra =
p

1 + e cosπ
= p

1 − e ν = π
(5.3)

where ν is the true anomaly, which defines the position of the satellite in its orbit.

From other geometrical considerations,

p = a(1 − e2) (5.4)

by joining eqs. (5.3, 5.4)

⎧⎪⎪⎨⎪⎪⎩

rp = a (1 − e)
ra = a (1 + e)

(5.5)

from which

e = ra − rp
ra + rp

(5.6)
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Finally, from Fig. 5.3, it can be graphically seen the relationship

2a = rp + ra (5.7)

So far, only closed orbits have been treated, namely ellipses; dealing with circumferences
–degenerate ellipses– should show a similar trend. Controversely, parabolas and hyperboles
are open orbits, and a satellite would not retrace indefinitely the same path over time. The
parabola is really more an ideal case that acts as a watershed between closed and open
orbits; hyperbolas, on the other hand, allow to escape from a Sphere Of Influence (SOI).

Briefly, the characteristics of each conic section are presented in the Table below.

Orbit e a

Circle e = 0 a = r
Ellipse 0 < e < 1 rp < a < ra
Parabola e = 1 a =∞
Hyperbola e > 1 a < 0

Table 5.1: Types of orbits (values of conic sections)

It is possible to add to the considerations just made, following the first Kepler’s law, that
the second law of Newton, in conjunction with his law of Universal Gravitation, serves as
a starting point for the study of orbital mechanics. Let m1 and m2 be two massive point
bodies separated by a distance r. The two laws can be expressed as follows

∑F = d (mV )
dt

=ma F g =ma = −Gm1m2

r2

r

∣r∣ (5.8)

Through some mathematical steps the relative acceleration is

r̈ = −Gm1 +m2

r2

r

r
(5.9)

The restricted problem hypotesis is introduced, implying that one body has significantly
lower mass than the other, such as a satellite around a central body –like the Earth–. If
m2 ≪ m1, the gravitational parameter µ = GM , where M is the greater mass among the
two bodies, is introduced into eq. (5.9) leading to

r̈ = − µ
r2

r

r
(5.10)

eq. (5.10) is known as relative two-body equation. The eq. (5.10) is a NL second-order
ODE, implementable in a Matlab® ODE solver, preferably ode113. By dividing the ac-
celeration in the three spatial coordinates, it can be written (Curtis 2013)
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5.2. Two Body Problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ = − µ
r3
x

ÿ = − µ
r3
y

z̈ = − µ
r3
z

with r =
√
x2 + y2 + z2 : f(t,y) = [ẋ ẏ ż − µ

r3
x − µ

r3
y − µ

r3
z] (5.11)

For the 2BP it has been said that the main hypothesis is that the mass of the orbiting body
is negligible compared to that of the main one. Moreover, the bodies are supposed with
spherical simmetry, and therefore point-like, and the only force existing is the gravitational,
in eq. (5.8). Assuming an intertial RS, the specific angular momentum h is

h = r ∧V (5.12)

which is mass independent. Since r and V define the orbital plane, h must be always
perpendicular to it. Furthermore, this values is always constant and conserved in the 2BP,
and therefore provides a proportionality factor between the two quantities.

Figure 5.4: Specific angular momentum conservation in an orbit (Curtis 2013)

By rearranging the eq. (5.10), the specific mechanical energy of an orbiting body is

ξ = T − U = V
2

2
− µ
r

(5.13)

The eq. (5.13) is called integral equation, or vis-viva (living force). Both kinetic T and
potential U specific energies can be noted. An alternative formulation is

ξ = − µ
2a

(5.14)

always defined except for parabolic orbits. For elliptic orbits, therefore, the orbital velocity
V is unequivocally defined by the specific position, r, and the orbit itself is uniquely defined
by the SMA a. Therefore, by joining eqs. (5.13, 5.14) and solving for V

V =
√

2(µ
r
+ ξ) =

¿
ÁÁÀµ(2

r
− 1

a
) (5.15)
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5.2. Two Body Problem

For circular orbits a = r, and therefore the eq. (5.15) is reduced to the simpler

Vc =
√
µ

r
(5.16)

which is the velocity in a circular orbit of radius r, equal in every point.

Another important detail is that the visviva equation can be used in two different points
of the same orbit. For example, let the following be the equation for a parabolic orbit

ξ = V
2
E

2
− µ
rp
= V

2∞
2
− µ

r∞
= 0 (5.17)

where the lhs refers to the periapsis and the rhs to the parabola “infinity”. Since r∞ =∞
by definition and, unlike the hyperbola, the hyperbolic excess of velocity is V∞ = 0 for a
parabola, then from eq. (5.17) is possible to obtain the minimum speed necessary to reach
a central body’s SOI, namely the escape speed VE .

VE =
√

2
µ

r
=
√

2Vc (5.18)

From the second and third Newton’s law, instead, it is possible to derive the orbital time,
or simply the period T .

T = 2π

√
a3

µ
(5.19)

The analysis could continue with the definition of Keplerian orbital parameters and with the
introduction of Lagrangian and Hamiltonian mechanics. This would allow the introduction
of the 3BP and, with the addition of a trajectories study from the moment of launch to
a certain point in the Earth-Moon system, would allow to study the payload position
propagation with more precision. Moreover, it would also allow to study the suborbital
trajectories to move the payloads between hypothetical multiple lunar bases, as well as
the various uses that payloads could have (return to Earth, positioning in a well-defined
parking orbit, near the Lagrangian points, etc. . . ). This interesting but complex study,
already started, is postponed to subsequent studies.

In the continuation of the analysis, the eq. (5.18) will be used to calculate an approximate
value to be attributed to the burnout speed, i.e. the speed that the EML must guarantee
at every payload.

65



5.2. Two Body Problem

66



6. The Moon

Shoot for the moon; you might get there.
— B. Aldrin

6.1 The environment

The Moon has many peculiar characteristics that can be taken into account during the
design phase of a permanent base and, in the specific case, of a MD.

The positioning of a MD inside the SC, at the lunar south pole, eq. (5.1) creates a well-
defined environment scenario. For example, the edge of the SC is almost perpetually
illuminated, while inside it is mainly dark (Haruyama et al. 2008). Moreover, the Moon
always shows the same side for an observer on the Earth[1]. This information, in conjunction
with the quasi-circular lunar orbit with low orbital inclination, allows to have launch
windows almost constant, in first approximation. SC is a truncated cone-shaped crater
and has an outer radius of ≈ 10.5 km, a basement radius of ≈ 3.3 km, and a depth of ≈ 4.2
km, hence the inner wall slopes is

δSC ≈ 30° (6.1)

The Moon lacks an atmosphere, which eliminates the problems related to atmospheric
friction and ideally does not place aerothermodynamics limits at the speeds reachable near
the lunar ground. In addition, the lunar gravity is less than 20% compared to the Earth’s
one, reducing the deceleration during the launch proportional to the sin (δSC).

With reference to SC, lighting conditions play both in favor and against its design. As
already shown in Chapter 4, the thermal phenomena are extremely relevant and must be
kept under close observation. The fact that the SC has a permanently shadowed region
(PSR) implies an average temperature of 90 K, leaving a wide margin of heating before
reaching prohibitive temperatures for the materials themselves. At the same time, the
energy needed to operate the MD derives from solar lighting, and therefore it is necessary
to place solar panels outside the crater and to have energy distribution systems.

The set of all these phenomena, including their variations during the lunar orbital period,
have been left out in this feasibility study. Nevertheless, it was noteworthy to mention
them at the beginning of the Chapter to point out how many factors are interconnected.

[1]This phenomenon is called tidal locking: in the Earth-Moon gravitational interaction, over time the
latter has lost a net component of rotation wrt that of Earth and has a synchronous rotation –except for
the librations due to the eccentricity of the lunar orbit–.
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6.2 Orbital characteristics

From eq. (5.18) it is obtained

VE,$ = 2.3757 km s−1 (6.2)

from the surface, where r$ = 1.7374 ⋅ 103 km.

An estimated launch velocity, to confirm with future studies, for example, for the fluctua-
tions due to the launch time or due to the effective destination, can be set to be

Vbo = 2.500 km s−1 (6.3)

This speed is the one that will be set as minimum at the launch and on which the sizing
of the MD will be performed. It is noteworthy that Vbo > VE,$ and, therefore, the generic
payload has a hyperbolic excess speed, so it manages to exceed the SOI radius of the Moon
(Bate et al. 1971), namely

rSOI = a$ (
m$
m⊕
)

2
5 1

10
√

1 + 3 cos (ϑ)2
∈ [5.7674,6.6244] ⋅ 104 km (6.4)

Figure 6.1: Moon SOI function of relative position wrt Earth

It is known that the SOI is a mathematical generalization and that this region of space,
in which the sole attraction of the relevant body is supposed to exist, can vary its shape
as the position of the orbiting body changes around the principal. The formulation in eq.
(6.4) provides the radius of the SOI according to the relative angular position ϑ of the
Moon wrt Earth.

For this dissertation it is sufficient to state that the payload will succeed in overcoming
the maximum distance of the SOI, eq. (6.4).
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7. Mass drivers

The science of today is the technology of tomorrow.
— E. Teller

7.1 Introduction

An electromagnetic launcher is a device capable of accelerating payloads to high velocities
with electromagnetic forces. Recent developments and advances in energy and magnet
technology make electromagnetic acceleration a viable alternative to chemical rocket space
launch -or similar tasks-, usually characterized by massive engines and the use of a sub-
stantial quantity of propellant.

One of the main advantages in using EMLs, in place of conventional accelerating systems,
is to have no limitations, or minor ones, in the payload size and final launch speed that
can be achieved, especially in environments without friction, i.e., space or lunar surface.
Indeed, unlike chemical propulsion, these do not depend on Tsiolkowski’s equation (Kolm
et al. 1980).

In the last decades, two different types of EMLs have been analyzed, with various alterna-
tive solutions and improvements. In turn, these types fall into two categories depending
on their use. In the first place, the distinction between railguns (RGs) and coilguns (CGs)
depends on the type of electromagnetic interaction that is used to accelerate the payload.
A device that expels a mass to get by reaction an acceleration is called a reaction engine,
which can be useful, i.e., to provide ∆V for space missions. If, on the other hand, the
device aim is to provide kinetic energy to the launched mass and not to the accelerator
itself, thus by discharging the reaction force to the ground, then it is referred to as a MD.
This last category is of interest in this analysis.

The use of a MD does not have only energetic advantages. Even if it launches a payload
without consuming chemical propellant to counteract the force that keeps the payload on
the ground, it is also true that the use of electromechanical energy allows avoiding harmful
gas emissions that could, in the long run, set up an unwanted lunar atmosphere (O’Neill
and O’Leary 1977; O’Neill, Billingham, et al. 1979).

Furthermore, the possibility to power the MD system with solar energy, converted by
solar panels, and the implementation of appropriate choices, to guarantee high reliability,
efficiency and a high degree of reusability of the component (Chilton 1977), show how this
technology can become extremely useful and efficient for the future of space exploration.
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7.2 Railgun

The railgun, or Lorentz rail accelerator, is the most heavily studied hypervelocity launcher
technology over the last decades. The reason is that a railgun is a relatively simple device
to convert electric energy into kinetic and to obtain high performances (Lianos and Brown
1994; He et al. 2010; Morgan 1997).

The railgun, in its simplest version, consists of two conductive rails and a sliding conductive
armature that moves with a sliding contact on them.

Figure 7.1: Railgun scheme

The principle of railgun operation bases itself on the Lorentz force (2.7). Referring to
Fig. 7.1, the armature closes the circuit between the two rails, allowing the current flow.
According to Biot-Savart law (2.5), this current induces a circumferential magnetic field,
which results in a pushing force on the armature itself. The main advantages in the use
of a railgun are its simplicity and acceleration capability. Moreover, the RG bases its
acceleration principle on an electrical basis, allowing the payload or its container to be
conductive but not necessarily ferromagnetic –even though the use of the latter would
increase the performances even if limited by the magnetic saturation, Section 2.7–.

There are, however, few disadvantages, especially if great energies are needed. For the
same acceleration principle, the current throught the rails creates a force that tends to
repel each binary from the other. Moreover, using high currents may create a plasma arc
which may bypass the payload, leaving it behind. Resistive and inductive losses increase
with the length of the RG and a speed saturation is noticeable, given that railguns behave
as large inductors whose inductance is proportional to the area enclosed by the armature
and the barrel. The sliding contact between armature and projectile creates friction and
erosion, strongly damaging and deteriorating the rails and making a multishot scenario
a difficult task (Masugata 1997). Finally, the acquired kinetic energy by the projectile
cannot exceed the magnetic energy left behind, thus limiting the efficiency.

The top speed and the efficiency can be increased by connecting shorter rails in series, each
one connected to a dedicated power supply. Further improvements can be obtained with
the use of more complex geometries, starting from an ideal cylindrical geometry, then using
curved rails in pairs of two or four that contain a cylindrical payload, or even implementing
models with their own name, like the helical railgun (Baum 2007). Nevertheless, it is
immediate to notice the analogy between these cylindrical geometry improvements and
the native configuration of the CG, which is analyzed from now on.
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7.3 Coilgun

The term CG defines the class of EMLs which may improve railguns characteristics and
overcome limitations in some applications. The CG is an EML which uses the magnetic
interaction to accelerate the payload and, as a secondary effect, to make it levitate; CGs
are made of drive coils, that are solenoid portions in which the current pulses and produces
a magnetic field that interacts with the payload.

Figure 7.2: Schematic coilgun representation

Referring to Fig. 7.2, the solenoid portions fixed at specific points of the system are
the drive coils. The payload, on the other hand, is contained in the so-called bucket, a
subsystem constituted by the payload itself and the armature that holds and/or pushes it.
The bucket radius is smaller than the drive coils’ one, allowing it to pass through them.

CGs base their operating principle on the classic electromagnetic laws. The force acting
on the bucket is given by the following formulation (O’Neill, Billingham, et al. 1979)

F = dM
dx

IbId (7.1)

In the simplest way, a CG design can be divided into two categories as follows.

Depending on the material of the bucket, i.e. the payload container, CGs are divided into
reluctance and inductance. The first ones use a ferromagnetic projectile, which is heavy
and subject to magnetic saturation; moreover, due to the dipoles orientation, it may work
only with a pulling force, and the magnetic field generated by the drive coils has to be
quenched when the bucket reaches their center, otherwise it would be pulled back.
The second version, the inductance, does not need a ferromagnetic payload; the bucket may
be magnetized inductively and, then, can produce its magnetic field which can interact with
the one from the drive coils. If the bucket is wrap with another coil, the bucket can be
made of any material and it is possible to achieve both a pulling and a pushing force; this
is the configuration studied in this analysis, the so-called Push-and-Pull Inductance (PPI).
By charging inductively the bucket before the launch, the PPI bucket coil has a decaying
current in its windings and the current in the drive coils can be timely pulses so that the
bucket is attracted during the approach and rejected when leaving.

In this framework lies one of the main characteristics in CGs: the inversion of the current.
The mutual inductance gradient, one of the three factors contributing to the force exerted
on the bucket calculation (Fig. 2.16, eq. (7.1)), is antisymmetrical over the traveled
space: it follows that by mantaining constant the current values, the same attractive force
produced in the approaching part is experienced in the leaving part, stopping completely
the payload. Hence the need to commute, or reverse, the current.
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7.3.1 Reluctance coilgun

A reluctance accelerator consists of a series of solenoid portions in which the bucket passes
through. The principle of operation is based on the magnetization of the drive coils by
means of a rapidly supplied electrical pulse which produces a magnetic field that attracts
the bucket –ferromagnetic–, accelerating it in its path. The acceleration principle is based
on the variation of reluctance during the advance (Bresie and Andrews 1991).

Materials with low reluctance, i.e. materials with a high coefficient of magnetic permeabil-
ity, concentrate great part of the magnetic flux inside themselves, generating temporary
poles that are attracted to areas with higher magnetic flux density, that is, the drive coil
center. The flux actually concentrates in the material and not in the surrounding air
because the former has a superior magnetic permeability. It is worth pointing out that
the bucket can only be attracted, because even by reversing the direction of the current,
once overtaken the center of the drive coil, would generate reversed poles in the bucket.
Therefore, reluctance CGs are only able to generate pulling forces and have to quench the
current as fast as possible -usually by switching off the voltage and closing the circuit with
a diode, in the simplest scenario- when the center of the bucket approaches the center of
the drive coil. This leads to a “spatial” efficiency at most equal to 50%.

Moreover, as mentioned in Section 2.7, the ferromagnetic materials fall into saturation if
the applied magnetic field is too intense; i.e., iron reaches magnetic saturation around a
magnetic field of ≈ 2 T. All other materials, with higher reluctance, saturate in advance.

Diverse studies are present in literature about the reluctance CG (Bresie and Andrews
1991; Daldaban and Sari 2014; Barrera and Beard 2014). In many of these references,
more and more precisely with the advancement of the publication year, it is stated that the
reluctance CG technology is the most advanced and efficient at engineering and constructive
level, among the CGs, but has many limitations due to its operating principles. One on
all is saturation, which limits the maximum magnetic field intensity and, therefore, the
maximum force on the bucket. The second is that the pull-only mode causes drive coils
to span twice as much the bucket is accelerated. The third, which follows the foregoing
considerations, is that as the bucket accelerates the current quenching is increasingly faster
in order to avoid the so-called suckback effect. In other terms, the force density of the
reluctance CG is lower than other CG classes, and also compared to the more advanced
railguns.

Another fundamental consideration is that all electromagnetic phenomena, in the presence
of ferromagnetic elements, become strongly NL. It seems that this technology is best suited
for use with low-mass high-accelerated payloads.

All of these considerations push the author to devote more attention to the latest CGs
developed, the induction CGs.
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7.3.2 Quenchgun

Before proceeding to the configuration chosen for this analysis, the PPI CG, it is right
to point out that there are still better solutions, to be improved to date from the point
of view of realization, but promising. These are the technologies that require the use of
superconducting materials in the drive coils, which would allow obtaining improvements
on power needs and TRL (Andrews and Devine 1991). Nonetheless, the focus is still on the
PPI CG, as it may be more efficiently implemented and cheaper in the immediate future.

One of the major issues in the use of standard materials for CGs is the energy supply
method. In particular, the bucket plays only the role of the receiver, letting the current
it has inside to drop with a decay rate dictated by the parameters of the LR circuit of its
wire windings. While this energy can be provided somehow in a short time, it becomes
more difficult to do the same with the drive coils, in much less time and with large energy
discharges, given that the storage devices are capacitors, which are extremely inefficient,
that is, they have low energy densities, when they have to provide large amounts of charge
in a short time.

The use of quenchguns aims to overcome this limitation, changing the place for storing
energy and how this electrical energy behaves over time. Quenchguns, more precisely
defined as superconductive quenchgun (SQ), are EMLs that use superconductor materials
in drive coils: in this way the electrical energy can be stored inside them, eliminating the
use of external power storage devices (Korsmeyer et al. 1990).

Superconductors can conserve energy ideally for an indefinite period of time and can be
recharged between two consecutive launches, requiring minor energy compared to tradi-
tional CGs. Additionally, while in conventional CGs the huge energy impulse must be
supplied by a pulsed alternator or a flywheel, both subject to erosion, the superconducting
barrels can be effectively powered directly by the energy generated by solar panels (Snow
and Kolm 1992).

Another important feature that improves energy and the mere constructive cost consid-
erations is that the bucket does not necessarily have to be provided with wires made of
superconducting materials, provided their time costant is greater than the launch time.
In the last cited study, it can be noted that many advantages can be obtained in the use
of aluminium or beryllium alloys for bucket coils, provided that they are pre-cooled to
about −195°C. While this study is based on the MD positioning at the lunar equator,
where the environment is warmer than the point in which the present analysis is discussed,
the SC has temperature in the PSRs of about −183°C, and therefore this constraint is
roughly envisioned by the environment itself. At the most, it will be needed to maintain
this temperature while charging the drive coils before each launch.

Notice how this study can be interesting to investigate in the future. It has been postulated
that quenchguns can reach efficiencies ηQG > 90% (Davis 2018).
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7.3.3 Push-and-Pull inductance coilgun

Since the probable pilot paper (O’Neill and O’Leary 1977) regarding the CGs, this alter-
native EML model has been studied as an improvement of the RG. CGs are formed by a
payload, the bucket, which is accelerated by the electromagnetic interaction with one or
more drive coils in which a great current pulses, producing a strong magnetic field. There
are two CG families, reluctance, and inductance. The difference between the two lies in the
material with which the bucket is made. In the reluctance coilguns the bucket is composed
of a ferromagnetic material -or equipped with permanent magnets- that is attracted by
the drive coils. In Paragraph 7.3.1 are presented the preliminary reasons for which in the
analyzed framework it would be preferable to exploit the CG configuration.

In the inductance model, the payload is non-ferromagnetic and is wound by an additional
coil, in which the current flows. This configuration, analyzed in (O’Neill and O’Leary 1977;
O’Neill, Billingham, et al. 1979; Kolm et al. 1980), is the subject of the present analysis.

The study focuses on the PPI CG model for several reasons: for the lunar launch scenario,
the CG is better than the RG for high-cycle launch applications, due to issues related to
the component deterioration. Moreover, inductance CGs are the most suitable for high-
speed applications, as they eliminate the high weight of ferromagnetic materials, they do
not have magnetic saturation problems, and they do not have long-lasting transients as for
ferromagnetic cores during the hysteresis cycle.

7.3.4 Carrier deceleration

Ultimately, it may be noted that the bucket containing the payload is an element that
would be useful to keep in the vicinity of the launcher, without dispersing it with the
payload itself. Thanks to the electromagnetic interaction it could be assumed to leave
the front part of the bucket open so that, once the launch speed is reached, the bucket
itself can be decelerated by means of opposing magnetic fields and stored for successive
operations; the opening would allow the payload to escape, ideally without misalignments
and perturbations.

This study, already deepened in the first papers about CGs (Snow, Dunbar, et al. 1982;
Snow and O’Neill 1979), is certainly interesting and deserves a more profound analysis.
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8. Lunar mass driver case study

Let’s face it, space is a risky business. I always considered every launch a
barely controlled explosion.

— A. Cohen

8.1 Mathematical model

Please remember the difference between ρ and %, respectively resistivity and material
density. The notation with subscripts Ax,y indicates that A refers to the element b, while
y, if present, specifies the distinction between different types of A. For example, Tb,w
indicated the temperature of the wires in the bucket, while Td,w the temperature of the
wires in the drive coils.

It is possible to write a series of ODEs to be simultanously satisfied to model the MD
physical phenomena as realistically as possible. A condition to be certainly verified is the
decay over time of the bucket current, which is not fed with a potential during its motion.
The current circuit equation in the drive coils can be “omitted” as it is supposed to be
forced. It will be interesting, however, to consider how the two currents will generate a
proportional force on the bucket. Obviously, it will be essential to consider the thermal
phenomena: the currents certainly cause a temperature rise, which affects the resistance
of the cables and, therefore, the whole phenomenon.

A more realistic model of electromagnetic and mechanical phenomena in a MD shows
an interdependence between the bucket velocity V and the current Ib flowing in its coil
windings.

The drive and bucket coil circuit equation can be expressed in matricial form as (Andrews
and Devine 1991)

{VdVb
} =
⎧⎪⎪⎨⎪⎪⎩
[Ld 0

0 Lb
] + [ 0 M

M 0
]
⎫⎪⎪⎬⎪⎪⎭

d

dt
{Id
Ib
} + [Rd 0

0 Rb
]{Id
Ib
} + V {Ib

Id
} d

dx
[ 0 M
M 0

] (8.1)

or, likewise,

{VdVb
} =
⎧⎪⎪⎨⎪⎪⎩
[Ld 0

0 Lb
] + [ 0 M

M 0
]
⎫⎪⎪⎬⎪⎪⎭

d

dt
{Id
Ib
} + [Rd 0

0 Rb
]{Id
Ib
} + {Ib

Id
} d
dt
[ 0 M
M 0

] (8.2)
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Vd = Ld
dId
dt
+MdIb

dt
+RdId + V Ib

dM

dx

Vb = Lb
dIb
dt
+MdId

dt
+RbIb + V Id

dM

dx

(8.3)

Unless considering the t < 0 condition –bucket coil charging period–, the bucket as no
potential applied during its motion, and therefore Vb = 0. The current in drive coils,
instead, is forced. It follows that the variation of current over time in the bucket is given
by the following formulation

dIb
dt
= − 1

Lb
(RbIb +M

dId
dt
+ Id

dM

dt
) (8.4)

From the magnetic energy stored in a circuit it can be deduced the force on the bucket
(7.1), and, therefore, another ODE. It follows

a = dV
dt
= F
m
= 1

m

dM

dx
IdIb (8.5)

The gravity of the moon, g$ = 1.625 m s−2, scaled with the sin δ of the launch angle
deducted in the eq. (6.1), has to be subtracted from eq. (8.5) in the lhs, leading to

dV

dt
= 1

m

dM

dx
IdIb + 1.625 sin δ (8.6)

For optimized geometries, the mutual inductance gradient dM,x can reach values of about
1 ⋅ 10−5 H m−1. To obtain an acceleration comparable to the gravity one, for example, it
would be necessary to have the product of the currents about five orders of magnitude
higher than the mass values.

The eq. (2.24) allows to find the energy needed to operate the drive coils, namely

dWd

dt
= Pd = Rd(T )I2

d(t) (8.7)

while the energy needed to charge, at t = 0, the wires in the bucket, is governed by the
equation

Ib,charge(t) =
Vs
Rb
(1 − e−

Rbt

Lb ) (8.8)

where tf can be assumed equal to 5 time constants, eq. (2.39), which is the conventional
time to reach the steady state value. Moreover, the following condition must be respected

Vs = Ib0Rb (8.9)
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Therefore, the energy needed to charge the bucket coil can be written as

dWb

dt
= Pb = Rb(T )

⎡⎢⎢⎢⎣
Ib0 (1 − e

−Rbt
Lb )
⎤⎥⎥⎥⎦

2

(8.10)

Another equation that is convenient to implement is the heat equation, eq. (4.3). Assuming
that the heat produced inside the wires depends solely on the thermal dissipation due to
the Joule effect –reasonable consideration given the analysis made in Chapter 4–, it is
possible to obtain the (8.39). Indeed, the thermal conduction and radiation phenomena,
specifically the eqs. (4.24, 4.26), are neglected for short times as the ones in the MD
launch. By writing the resistance in explicit form, the length of the cables is eluted and it
is obtained for both the bucket and drive wires

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dTb,w

dt
=

ρb,w (Tb,w)
cb,w (Tb,w)%b,w (Tb,w)A2

b,w,cs

I2
b (t)

dTd,w

dt
=

ρd,w (Td,w)
cd,w (Td,w)%d,w (Td,w)A2

d,w,cs

I2
d(t)

(8.11)

where the quantities [ρ, c, %] = f(T ), as shown in Chapter 4, and Acs specifies the cross-
sectional area, πr2.

It is possible to include the ODEs presented in eqs. (8.4, 8.5, 8.7, 8.11) in one system. It is
inferred that in the eqs. (8.4, 8.7) the wire resistances R have to be explicitely expressed,
namely

R(T ) = ρw(T )`w
Aw,cs

= ρw(T )`w
πr2

w

(8.12)

Therefore

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dIb
dt
= − 1

Lb

⎛
⎝
ρb,w (Tb) `b,w
Ab,w,cs

Ib +M(x)
dId
dt
+ Id(x)

dM(x)
dt

⎞
⎠

dV

dt
= 1

m

dM

dx
Id(x)Ib + 1.625 sin δ

dTb,w

dt
= ρb,w (Tb)
cb,w (Tb)%b,w (Tb)A2

b,w,cs

I2
b (t)

dTd,w

dt
= ρd,w(T )
cd,w (Td)%d,w (Td)A2

d,w,cs

I2
d(t)

dWd

dt
= ρd,w (Td) `d,w

Ad,w,cs
Id(t)2

(8.13)

Given the definition of M(x) and dM(x), it may be convenient to convert the system in
eq. (8.13) into a space-derivative one by the following transformation
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X (x)
dt
= X
dx

dx

dt
= X
dx
V (x) (8.14)

At the same time, an additional ODE can be inserted to compute the time t, known that
V = dx

dt , hence

dt

dx
= 1

V (x) (8.15)

Therefore

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dIb
dx
= − 1

Lb

⎛
⎝
ρb,w (Tb) `b,w
Ab,w,cs

Ib
V (x) +M(x)

dId
dx
+ Id(x)

dM(x)
dx

⎞
⎠

dV

dx
= 1

m

dM

dx
Id(x)

Ib
V (x) +

1.625 sin δ

V (x)
dTb,w

dx
= ρb,w (Tb)
cb,w (Tb)%b,w (Tb)A2

b,w,cs

I2
b (x)
V (x)

dTd,w

dx
= ρd,w (Td)
cd,w (Td)%d,w (Td)A2

d,w,cs

I2
d(x)
V (x)

dWd

dx
= ρd,w (Td) `d,w

Ad,w,cs

I2
d(x)
V (x)

dt

dx
= 1

V (x)

(8.16)

Let {Ib, V, Tb,w, Td,w,Wd, t} = {y1, y2, y3, y4, y5, y6}. The system can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′1 = −
1

Lb

⎛
⎝
ρb,w (y3) `b,w
Ab,w,cs

y1

y2
+M(x)dId

dx
+ Id(x)

dM

dx

⎞
⎠

y′2 =
1

m

dM

dx
Id(x)

y1

y2
+ 1.625 sin δ

y2

y′3 =
ρb,w (y3)

cb,w (y3)%b,w (y3)A2
b,w,cs

y2
1

y2

y′4 =
ρd,w (y4)

cd,w (y4)%d,w (y4)A2
d,w,cs

I2
d(x)
y2

y′5 =
ρd,w (y4) `d,w

Ad,w,cs

I2
d(x)
y2

y′6 =
1

y2

(8.17)

The advantage of using the variable in space instead of time allows to to evaluate Id(x)
as sinusoidal over space, avoiding the difficulty of writing the function for the chirp signal
analyzed in the Paragraph 2.6.3.
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The system in eq. (8.17) is eventually rewritten as follows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

dIb
dx
dV

dx
dTb,w

dx
dTd,w

dx
dWd

dx
dt

dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y′1
y′2
y′3
y′4
y′5
y′6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

f1(x, y1, y2, y3)
f2(x, y1, y2)
f3(y3)
f4(x, y4)

f5(x, y2, y4)
f6(y2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− 1

Lb

⎛
⎝
ρb,w (y3) `b,w
Ab,w,cs

y1

y2
+M(x)dId

dx
+ Id(x)

dM

dx

⎞
⎠

1

m

dM

dx
Id(x)

y1

y2
+ 1.625 sin δ

y2

ρb,w (y3)
cb,w (y3)%b,w (y3)A2

b,w,cs

y2
1

y2

ρd,w (y4)
cd,w (y4)%d,w (y4)A2

d,w,cs

I2
d(x)
y1

ρd,w (y4) `d,w
Ad,w,cs

I2
d(x)
y2

1

y2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(8.18)

This ODE system is the iterative core of optimization which must be accompanied by ap-
propriate boundary conditions, NL constraints and MFs, in order to constrain the solution
to physically feasible and desired results.
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8.1.1 Constraints

Figure 8.1: Mass driver configuration

In Fig. 8.1 is represented the mass driver configuration. There are 21 variables expressed
in the column vector x

x = {mp, rp, lp, rh, lh, th, rb, rb,i, lb, tft, rd, rd,i, ld, nb, nd, rb,w, rd,w, xd, xign, Ibm, Idm}
T (8.19)

The convergence of a system of such large size and independent variables is difficult, with
the addition of the fact that the computational cost could prove to be excessive. Further-
more, the problem will likely be not convex, and unless using a coarse global optimization
to find feasible initial guess values, the solution would probably fall into various local
minima.

It is possible to reduce the number of variables, in eq. (8.19), by imposing some parameters
a priori, thus eliminating them from the optimization iterations. Surely two geometric
parameters can be treated in this way, namely

th [m] =
max (mp) ⋅ 10−3

1 + exp [−mp−0.5 max (mp)
0.1 max (mp) ]

tft [m] = 5 ⋅ 10−3

(8.20)
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Initially it was decided to use an S-curve –Sigmoid curve, or logistic function– for th to
adapt the mass driver characteristics according to the payload mass. This choice proved
to be only computationally more burdensome, and therefore the empirical formulation in
eq. (8.21) was derived from the mean values of the iterations.

th [m] = 1 ⋅ 10−3 + 5mp ⋅ 10−5

tft [m] = 5 ⋅ 10−3
(8.21)

Lower mass implies a thinner bucket and, even though the value max (th) should be derived
from structural considerations –as shown in Chapter 3–, since the acting forces are an
output of the set of ODEs, a trial and error approach is implemented.

Furthermore, following the considerations made for the insulating radius in Paragraph
4.5.1, it is stated in first approximation that for any wire radius

ri = 1.1rw ⇐⇒ ki = 1.1 (8.22)

This strong hypothesis will be refined in subsequent calculations.

Optimizing the value ofmp, rb, lb, together with eq. (8.21), allows to eliminate from the set
of variables in eq. (8.19) the cavity dimensions, namely rh and lh, as linearly dependent.
In other words, for the bucket volume computation, reference will be made only to the
optimised values in such a way that the following expression is valid

Vb = π {(rb − 1.1rb,w)
2
lb − [rb − 1.1rb,w − th (mp)]

2
[lb − th (mp)]} (8.23)

The verification of containment of the payload inside the bucket is done a posteriori.
Indeed, the radius and the length of the cylinder, rp and lp, which simulates the payload,
are variables and are actually independent of the whole problem. What really matters is
that it is contained in the bucket cavity: a volume check would suffice

Vp =
mp

%p
= πr2

plp (8.24)

with rp and lp freely chosen. A better result would be to impose them realistically as a
real tank, for example by imposing

2rp = lp (8.25)

Following the considerations in Chapters 4, 6, it can be stated a preliminary sizing of the
wires. Given that the total launch time is –roughly and indicatively–

tlaunch ≥ 2
lMD

Vbo
(8.26)
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i.e. below a second with reference values of lMD = 500 m, Vbo = 2500 m s−1, it follows that
the bucket and drive coil wires can be sized a priori, knowing the JE heating. At most,
they may be modified one-off. Therefore

⎧⎪⎪⎨⎪⎪⎩

rd,w[m] = 1 ⋅ 10−3

rb,w[m] = 5 ⋅ 10−3
(8.27)

The bucket wires are thicker because they undergo the JE for the entire acceleration –and
also after the launch, if the current has not yet completely decayed–. Consequently, other
two parameters are deleted from the set of equations in eq. (8.19).

As anticipated, a slight improvement may be achieved by imposing a greater wire radius
for the first bunch of drive coils, with the same provided current, so that temperature
considerations will not limit the other fast-passing-through drive coils. For example, a first
guess imposed set of values could be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rd,w,1[m] = 5 ⋅ 10−3

rd,w,2[m] = 4 ⋅ 10−3

rd,w,3[m] = 2.5 ⋅ 10−3

rd,w,4∶n[m] = 1 ⋅ 10−3 n = NDC

rb,w[m] = 5 ⋅ 10−3

(8.28)

Moreover, if the bucket and drive lengths are optimization variables, and the wire thickness
is fixed as in eq. (8.28), then the winding densities nb and nd can be deleted from the set
of eqs. as linearly dependent on these.

To reduce the computational cost, it is possible to make some observation to effectively
limit the variability of each component of eq. (8.19), or to make one variable linearly
dependent on another. It is possible to state that

• Chapter 2, eq. (2.70), Fig. 2.16: M and dM,x increase with the ratio between
the smaller and bigger coil, namely α = rb

rd
, therefore similar radii provide better

electromagnetic mutual phenomena. Moreover, from Chapter 7, eq. (7.1), the force
acting on the bucket and, thus, on the payload, is directly proportional to the dM,x.
This implies a strict equality between rb and rd, and therefore only one among the
two should be used in the optimization, and the one chosen is rb to comply with eq.
(8.23) and, indeed, also with the considerations made in Paragraph 2.8.3;

• Chapter 4, eq. (4.35), Fig. 4.10: Copper does not melt with high currents over a
single second. The drive coils have forced current and their impulse, even for the
first couple of drives, lasts much less than a second. Therefore, the drive coil wire
thickness does not need to be optimised and can be imposed a priori ;

Finally, it is necessary to consider how M and dM,x are defined and how a NL optimizer
works, in this case fmincon. The functions contained within it must be continuous and
derivable in the domain, but both the previous are defined only in the ignition interval of
the drive coil. For this reason, it might be appropriate to discretize the problem in the
domain of a single drive coil, therefore within [Dd,i − xign,Dd,i + xign], and then integrate
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in the subsequent domain [Dd,i+1 − xign,Dd,i+1 + xign] taking as initial values the final ones
of the previous. In doing so, it is not necessary to know the distance between the drive coils,
since the optimized condition –which also guarantees magnetic levitation– is to always have
a current in the drive coils that accelerates buckets and payload. Therefore, also xd can
be deleted.

To generalize, the number of drive coils NDC can be added to the system prior the compu-
tation. In addition, an integer parameter referred to the number of radial wire layers may
be added for both the bucket and the drive coil(s), respectively nlb and nld. Nevertheless,
the number of layers can be defined also a priori ; from the considerations made in Chapter
2, Paragraph 2.8.3, it can be deduced that the greater the number of layers, the more ben-
efits to some electromagnetic parameters. Therefore, with the same considerations, after
some iterations it was found the best efficiency with the following

⎧⎪⎪⎨⎪⎪⎩

nlb = 20

nld = 3
(8.29)

which leads to eliminate these parameters from the set of variables.

It is also important to consider the cable weight, especially for the bucket. In fact, the
bucket mass to be accelerated is not simply the payload mp, but to this must be added the
container massmb, supposed in fiberglass laminate with %b = 1800 kg m−3 (Laminated Plas-
tics 2018), and the mass of the cable around the bucket, mw. The following relationships
can be used

mw = Vw%w = `wAw%w
Aw = πr2

b,w

`w = 2πlb

nlb

∑
i=0
[rb + kirb,w (nlb + 1 − 2i)]

(8.30)

It follows that the effective number of variables is at least 8, and the system in eq. (8.19)
becomes

x = {rb, lb, Ib0, ld, xign, Idm, rbw, rdw,i}
T (8.31)

Therefore x ∈ Rñ, where ñ = n+NDC , where n = 7 are the variables for a single bucket-drive
configuration and each set of new NDC variables rdw,i are for each additional drive coil.
Whether or not each drive coil is independent or not among each other, except for the wire
radius size, arises from a first optimization.

Therefore, following these considerations, all constraints are presented.
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(rb + 1.1rb,w + tft − rd + 1.1rdw)i ≤ 0

1 − 2 ⋅ 1.1rb,wnb = 0

(1 − 2 ⋅ 1.1rd,wnd)i = 0

lb − 2xign,i ≤ 0

mp

%p
− π {(rb − 1.1rb,wnlb)

2
lb − [rb − 1.1rb,wnlb − th (mp)]

2
[lb − 2th (mp)]} = 0

(8.32)

Where i = 1,NDC , and all the pedices p refer to the payload, b to the bucket, d to the drive
coils, and ,w to the coil wires. The r are radii, l lengths, and n winding densities. The xign
parameter refers to the drive coil ignition distance from its center for the current pulse.
Finally, Ibm and Idm refer to the current amplitude in the bucket and drive coils.

From this definition, the system of equations in eq. (8.32) can be rewritten in different
form, separating the linear equations from the NL ones.

(rb + 1.1rb,w + tft − rd + 1.1rdw)i ≤ 0

lb − 2xign,i ≤ 0

⎫⎪⎪⎬⎪⎪⎭
L

1 − 2 ⋅ 1.1rb,wnb = 0

(1 − 2 ⋅ 1.1rd,wnd)i = 0

mp

%p
− π {(rb − 1.1rb,w)

2
lb − [rb − 1.1rb,w − th (mp)]

2
[lb − th (mp)]} = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

NL

(8.33)

The eq. (8.33) can be expressed in matrix form. The linear disequalities Ax ≤ b are

⎧⎪⎪⎨⎪⎪⎩

rb − rd + 1.1rd,w ≤ −5 ⋅ 10−3 − 1.1rb,w

lb − 2xign ≤ 0
(8.34)

[

rb lb Ibm rd ld xign Idm
i→

1 0 0 −1 0 0 0 . . .
0 1 0 0 0 −2 0 . . .

]{x } ≤ {−5 ⋅ 10−3 − 1.1rb,w
0

} (8.35)

2 rows and 4 columns are added to A in eq. (8.35) for each additional drive coil.

There are no linear equalities Aeqx = beq.

There are no nonlinear disequalities c(x ) ≤ 0.

All the nonlinear equations in eq. (8.33) are nonlinear equalities ceq(x ) = 0.
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8.1.2 Optimization logic

The entire ODE system presented in the previous Paragraphs allows to optimize geometric
and electromagnetic parameters in order to obtain the minimum possible energy needed to
feed the drive coils and make the launch of a certain payload for a certain mission feasible.
This scenario implies the necessity to optimize two parameters, the final velocity –above
a certain minimum value, eq. (6.3)– and the energy –the lowest possible for that final
velocity–. However, the objective function of the optimization process can be only one.
Therefore, the Matlab® possibility to embed a function in nested function is exploited to
place a NL constraint to the velocity itself.

The optimization process is made up of two phases and the dimensions of the system to
be solved, as well as the MF, change with each variation.

The first phase deals with the research of feasible geometries that fall within the limits
imposed by linear and NL constraints. This phase has a raw discretization and usually
converges in a short time: the set of variables of the system is simply 8, as if there was
only a single drive coil, with the only difference to impose a scaling trend for the drive wire
radii, as ideally done in eq. (8.28).

x = {rb, lb, Ib0, ld, xign, Idm, rbw, rdw}
T ∈ R8 (8.36)

In particular, to simulate a complete integration along the length of the MD, each drive
coil sees, in first approximation, its rdw scaling according to the following equation

rdw,i = (1 +
1

i
) rdw,i i = 1 ∶ NDC (8.37)

which allows to respect the thermal constraints without having singularities. In fact, the
first coils will have thicker cables, which goes well with the longer pulse time which, in
turn, produces a greater JE. With these hypotheses, the optimizer produces an estimate
of the feasible geometry in order to obtain that given burnout speed using the Sequential-
Quadratic-Programming (SQP) algorithm.

When this first phase is completed, the results, specifically the geometrical and electro-
magnetic values, are taken as initial guess of the second optimization phase. This foresees
a change of the MF to be minimized, that is the energy, the fifth equation of the system
in eq. (8.18). At the same time, the burnout speed becomes a NL constraint. The bound-
aries are immediately changed: in particular, the geometric optimization occurs in the
neighborhood of the guess values produced in the first optimization, with the exception of
the Ib0 and Idm,i currents which act as upper limit values. In this optimization phase the
system is bigger since it considers singularly each drive coil –and, therefore, computes the
best radius for each of them–.

x = {rb, lb, Ib0, ld, xign, Idm, rbw, rdw,i}
T ∈ R7+NDC (8.38)

In the following Figure it is possible to appreciate a flowchart that describes the optimiza-
tion logic.
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8.1. Mathematical model

Figure 8.2: Optimization logic
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8.1. Mathematical model

8.1.3 A further consideration about thermal constraints

By combining electrothermal phenomena, specifically the eq. (2.27) in Chapter 2 and the
eq. (4.4) in Chapter 4, it is possible to show what will be computed “behind” the optimizer.

c ⋅m∆T = R(T )I2∆t (8.39)

in which the specific heat of the cable is correlated with the thermal energy produced by
JE. By writing the resistance with eq. (2.28) and rearranging the rhs and lhs

c ⋅ %mat`Aw,cs∆T = [1 + α (T − Tref)]ρref
`

Aw,cs
I2∆t

∆T

∆t
= ρrefI

2

c ⋅ %matA2
w,cs

[1 + α (T − Tref)]

dT

dt
= ρrefI

2

c ⋅ %matA2
w,cs

(1 + αT (t) − αTref)

dT

dt
= k (1 + αT (t) − αTref)

(8.40)

where %mat is the material density while ρref is the material resistivity at 20°C.
It is possible to express the terms within the parentesis in the rhs as a function of an
auxiliary variable (Adam 2015) in such a way that

ϑ = 1 + αT − αTref Ô⇒ T = ϑ − 1 + αTref
α

(8.41)

and therefore

dT

dt
= dT
dϑ

dϑ

dt
= 1

α

dϑ

dt
(8.42)

by equating (8.40, 8.42) it is possible to solve the ODE.

dϑ

dt
= kαϑ Ô⇒ dϑ

ϑ
= kαdt

∫
ϑ

1

dϑ
ϑ
= ∫

t

0
kα dt Ô⇒ lnϑ − ln 1 = kαt Ô⇒ lnϑ = kαt

(8.43)

By substituting again ϑ in the lhs and k in the rhs

ln (1 + αT − αTref) =
ρrefI

2

c ⋅ %matA2
αt (8.44)

Equation (8.44) can be solved according to various parameters. If the temperature and
time limit coincide with those of melting, Tmelt and tmelt, knowing the physical parameters
of the cable it can be traced back the melting current Imelt
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8.1. Mathematical model

Imelt = A

¿
ÁÁÀc ⋅ %mat ln (1 + αT − αTref)

ρrefαtmelt
(8.45)

The (8.45) is used for a thermal analysis of cable fusion[1]. Taking as references cables made
in aluminium, copper, and iron, in order to analyze their differences, an analysis should be
made to understand to what extent may be influential to consider the temperature rise of
the cables, at least from the point of view of the melting temperature and to understand
if the short current pulses in the drive coils are sufficiently below the melting current.

Figure 8.3: Melting current Imelt

In Fig. (8.3) it is possible to appreciate the trend of the melting current wrt the cable thick-
ness. As reference temperature, it was chosen the Shackleton Crater PSR temperature,
Tref = −183°C (Stoica et al. 2016; Sefton-Nash et al. 2017).

Figure 8.4: Melting current Imelt - smaller wires

Due to the copper melting temperature and its thermal properties at low temperatures
(refer to Appendix A), the melting current is constantly higher wrt the other materials

[1]The validity of the formula is proven with the Stauffacher and Onderdonk study of short-time melting
current for copper, (Stauffacher and Onderdonk 1928; Onderdonk 1944), in which all the variables in eq.
(8.45) referred to a specific material are directly expressed by numbers and the units of measurement are
related to the cmil. In this text, however, it is considered more appropriate to provide a general formulation
and adopt the SI, specifying that the results for the copper differ less than half a percentage point wrt the
cited formula.
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8.1. Mathematical model

and, for a pulse that last at most 5 centiseconds, higher than 105 A for wire radii of just
5 mm, as shown in Fig. 8.4. This current value increases in quadratic proportions by
increasing the thickness of the cable.

It should be emphasized that the melting current is direct current (DC). Therefore, the
use of an AC, as is actually done for the drive coils, would imply the use of the Ieff (2.49).
Continuing to use Id,m in place of Id,eff implicitly imposes a safety factor of

√
2.

An important observation: on the one hand, the mutual inductance, and therefore its
gradient, and in turn the force exerted on the bucket, increases with the winding density,
which implies small wires, if the coil axial length is fixed; on the other hand, too small
wires must have lower current to not melt, reducing the available force again.

Concluding, it can reasonably be stated that the melting current is not a problem for the
the drive coils, as they are excited individually for short periods and with AC of about
105 A –imposed as upper limit–. As for the bucket, in which the decay of the current is
given by the LR circuit, with the same considerations and with a conservative analysis, it
must be imposed a conservative minimum radius, as done in eq. (8.27).

This brief observational paragraph also provides the information, once again, how in the
scenario presented in this analysis the use of copper as a conductive material for cables is
more convenient.
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8.1. Mathematical model

8.1.4 Energy needs

When the optimization process has completed the various iterations, it is possible to derive
the energy needed to operate the MD. The simple ideal net energy W =Wb+∑Wd derived
from the ODE system must be appropriately scaled by means of a series of electrical or
energy efficiencies.

Figure 8.5: Efficiencies throughout the whole MD system

With reference to Fig. 8.5, starting from the solar panel system, it is noted that there is
a transformer on the edge of the crater - which produces a high voltage in order to reduce
line losses to the bottom–, a further transformer at the base of the crater, and a series of
distribution lines in number equal to the number of drive coils. Each component has its
energy efficiency, estimated or calculated in

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηsp = 0.200

ηil = 0.867

ηtr = 0.900

ηtf = 0.970

ηdis = 0.980

ηmc =
1

NDC

NDC

∑
i=1

M2

LbLd,i

(8.46)

The solar panel efficiency, ηsp has a conservative value, compared to the current Technology
Readiness Level (TRL). It may be pushed up to ηsp ≈ 0.250 ÷ 0.300.

It is assumed a region with high solar illumination over a certain period of time to provide
energy to the solar panels. Considering an illumination of 86.3% (Bryant 2009) towards
the solar panel, the corresponding illumination efficiency ηil is deduced. It should be noted
that it is not convenient to raise the solar panel height to increase the illumination because
the gain in light/dark ratio does not justify the costs and the construction complexity
(Haruyama et al. 2008).

To reduce transmission losses the power transmission from the crater rim to the bottom
occurs with a very high-voltage line, thus defining a conservative transmission efficiency
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8.1. Mathematical model

ηtr. The transformer used for the electrical conversion has its own efficiency ηtf and has
to be considered twice, one for the transformer on the crater rim and one on the base.

For the NDC distribution lines it is supposed an equal efficiency for each line of ηdis.

The last efficiency, ηmc, is related to the magnetic coupling factor and it indicates how
efficiently the magnetic fields interact among the coils. Since it changes during the launch,
its mean value is taken as reference and it is computed at the end of every optimization.

In conclusion, the overall efficiency is

η = ηsp ⋅ ηil ⋅ η2
tf ⋅ ηtr ⋅ ηmc ⋅

NDC

∑
i=1

ηdis,i (8.47)
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8.2. Mass Driver Optimizer - MDO

8.2 Mass Driver Optimizer - MDO

Figure 8.6: MDO GUI

The optimizer (Mass Driver Optimizer (MDO)®) has its own GUI for a wide input offer.
It can re-analyze previous optimization to find, potentially, other possibly better local
minima. MDO uses a gradient descent algorithm and, therefore, it searches for local
minima. If the results are good local minima, or even –casually– a global minimum, is due
to the fact that the same input array is executed more times the more the NDC increases,
and with random defects in order to avoid the same convergence.

It is also included a cue of a genetic algorithm: the more previous runs the software has,
the more the database is filled with results that are cataloged, through the file name,
with the most indicative parameters of a specific output (efficiencies, required energies,
costs, etc. . . ). If an actual iteration tends to approach values that have been categorized
as inefficient, the algorithm tends to avoid that convergence, stopping that research and
generating a new set of input data.
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9. Results

The analysis presented in Chapter 8 includes a general guideline that clearly delineates
the magnitude of the various parameters. Nevertheless, during the various optimizations
it was noted that some parameters could be further refined: this "manual" optimization
may have led to better results, but it is certainly worthy of an automated implementation
in future studies.

Below there are the most significant results for three payloads of mp = {5,50,500} kg.
Please note that mu is the payload fraction, i.e. the mass of the payload mp compared to
the mass of the whole system (payload and bucket), namely

mu =
mp

mp +mb +mw
(9.1)

where mb and mw are, respectively, the bucket mass (eq. (8.24)) and the wire mass (eq.
(8.30)).

Payload mass
5 50 500

bucket
nlb 10 15 25
lb [m] 0.6216 2.1217 3.8601
Ib0 [A] 9.7538 ⋅ 103 8.9306 ⋅ 103 7.3080 ⋅ 103

rb [m] 0.4083 0.8500 0.8825
rbw [m] 1.112 ⋅ 10−3 2.120 ⋅ 10−3 2.237 ⋅ 10−3

drive
nld 3 3 3
ld [m] 0.9353 2.4935 4.0974
Idm [A] 1.0000 ⋅ 104 1.0000 ⋅ 104 1.0000 ⋅ 104

xign [m] 0.9617 2.7576 5.2765

goodness
η [%] 7.24 6.00 4.15
mu 0.4449 0.3012 0.2970

Table 9.1: Geometrical and electrical results
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Drive coil wire radius rdw [mm]
i = 1,4,7, . . . i = 2,5,8, . . . i = 3,6,9, . . .

mp = 5 [kg] 0.869 0.751 0.701
0.667 0.644 0.625
0.609 0.599 0.586
0.577

mp = 50 [kg] 7.734 3.344 3.034
1.631 1.543 1.419
1.344 1.293 1.260
1.260 1.224 1.192
1.164 1.142 1.112
1.110 1.086 1.078
1.069 1.059 1.053
1.046 1.041 1.035
1.031

mp = 500 [kg] 1.500 1.250 1.180
1.125 1.100 1.083
1.093 1.063 1.056
1.050 1.045 1.042
1.038 1.036 1.033
1.031 1.029 1.028
1.026 1.025 1.024
1.023 1.022 1.021
1.020 1.019 1.019
1.018 1.017 1.017
1.016 1.016 1.015
1.015 1.014 1.014
1.014 1.014 1.013
1.013 1.012 1.012
1.012 1.012 1.011
1.011 1.011 1.011
1.010 1.010

Table 9.2: Drive coils wire radii

94



Figure 9.1: mp = 5 [kg] - results 1 - overall trend

Figure 9.2: mp = 5 [kg] - results 2 - material properties

95



Figure 9.3: mp = 5 [kg] - results 3 - electromagnetic details

Figure 9.4: mp = 5 [kg] - results 4 - payload/bucket coils/drive coils geometry
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Figure 9.5: mp = 5 [kg] - results 5 - energy contour 1

Figure 9.6: mp = 5 [kg] - results 6 - energy contour 2
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Figure 9.7: mp = 50 [kg] - results 1 - overall trend

Figure 9.8: mp = 50 [kg] - results 2 - material properties
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Figure 9.9: mp = 50 [kg] - results 3 - electromagnetic details

Figure 9.10: mp = 50 [kg] - results 4 - payload/bucket coils/drive coils geometry
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Figure 9.11: mp = 50 [kg] - results 5 - energy contour 1

Figure 9.12: mp = 50 [kg] - results 6 - energy contour 2
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Figure 9.13: mp = 500 [kg] - results 1 - overall trend

Figure 9.14: mp = 500 [kg] - results 2 - material properties

101



Figure 9.15: mp = 500 [kg] - results 3 - electromagnetic details

Figure 9.16: mp = 500 [kg] - results 4 - payload/bucket coils/drive coils geometry
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Figure 9.17: mp = 500 [kg] - results 5 - energy contour 1

Figure 9.18: mp = 500 [kg] - results 6 - energy contour 2
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Payload mass mp [kg]
5 50 500

`SP = 2.5 [m] 0.8766 ⋅ 104 1.9923 ⋅ 104 − − −
`SP = 5 [m] 1.2523 ⋅ 104 2.9220 ⋅ 104 0.4383 ⋅ 105

`SP = 10 [m] 1.7532 ⋅ 104 3.9845 ⋅ 104 1.3486 ⋅ 105

`SP = 15 [m] 2.1915 ⋅ 104 4.8700 ⋅ 104 1.7532 ⋅ 105

`SP = 20 [m] 2.9220 ⋅ 104 6.2614 ⋅ 104 2.0386 ⋅ 105

`SP = 25 [m] 4.3830 ⋅ 104 7.3050 ⋅ 104 2.3068 ⋅ 105

`SP = 30 [m] 5.4787 ⋅ 104 8.7660 ⋅ 104 2.5782 ⋅ 105

`SP = 35 [m] 6.2614 ⋅ 104 1.0958 ⋅ 105 2.8277 ⋅ 105

`SP = 40 [m] 6.7431 ⋅ 104 1.2523 ⋅ 105 3.0228 ⋅ 105

Table 9.3: Annual tonnage vs solar panel size of area A = `2

In Table 9.3 it is possible to appreciate the annual tonnage according to the size of the
MD power supply system –solar panel structure– and the payload mass.
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10. Conclusions

In this document, the preliminary study of a Mass Driver was presented.

Chapter 1 shows in general why the study of electromagnetic launchers is appropriate,
especially for lunar applications. In the continuation, specifically in Chapter 2, Chapter
3, Chapter 4, the key concepts for the preliminary analysis have been examined, namely
the electromagnetic phenomena –at the base of the mass driver operating principle–, the
mechanical characteristics –to verify the sizing and the structural safety–, and the thermo-
dynamic phenomena –one of the most limiting characteristics for any tradeoff, specifically
these phenomena are those that make most an ideal analysis detached from the real one–.

In Chapter 5 there are the main orbital dynamic phenomena, specifically in order to outline
the first design parameters of the mass driver: the burnout velocity –launch speed– and
the launch location. These considerations are supported by the brief description of the
lunar environment and the Shackleton Crater in Chapter 6, allowing to know also relevant
parameters such as the ambient base temperature, the solar lighting coverage and the mass
driver inclination.

These chapters allowed to make a reasoned choice in Chapter 7, which describes shortly
the state of the art of EMLs and chooses the most suitable for the present discussion,
specifically a coilgun in the push and pull (inductance) configuration.

Chapter 8 represents the model of the analyzed case study. This chapter clearly shows the
whole mathematical model implemented, which parameters –based on the considerations
made in the previous Chapters– are included, and what was the logical process with which
the optimizer was trained to allow the convergence of the iterations. The various constraints
are clearly shown, with all the hypotheses necessary to endorse some linear dependencies.

Finally, in Chapter 9 are presented the results of three different case studies depending on
the mass of payload available at launch. From a sample payload of 5 kg, further analyses
were carried out with 50 and 500 kg. Based on the results shown and the subsequent sizing
of the solar panels, it was found that all three configurations are capable of providing an
annual mass at launch of more than 50000 kg (50 tonnes), assuming continuous launches
at each recharge cycle. Clearly, the example of only 5 kg deteriorates the components more
than making fewer more substantial launches of 500kg.

The 300 tons per year are potentially achieved with a system of solar panels with a total
surface of 40 × 40 meters, or 200 tons a year with 20 × 20 meters.

As a final remark, the reasons that led to the choice of the PPI CG geometry over reluctance
or superconductive models are the cost, the Technology Readiness Level, and the hypotet-
ical effective reliability. The structural resistance analysis was verified retrospectively with
a trial-and-error process on the bucket wall thickness.
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10.1. Future work

10.1 Future work

The annual launch tonnage values obtained are lower than other feasibility studies found
in literature. It is estimated that a CG, in the simplest version, can launch from 10 to 100
kilotons.

The reasons for which this analysis shows lower values are to be found in the mathematical
model and in the assumptions that have led the author to neglect some phenomena to
focus attention on others –apparently more influential–.

Therefore, the areas that deserve a more thorough analysis in the future should be pointed
out:

● thermodynamics: the entire thermodynamic treatment, even if sufficiently detailed,
should be validated with a more accurate model that includes radiative phenomena and
thermal dissipation times. In particular, it is suggested to investigate how thermal stresses
affects long-term performance and, if it is necessary to change materials, how weights and
performances at launch are affected;

● electromagnetics: the entire electromagnetic interaction, specifically the interpene-
tration of the magnetic fields, the electromotive force and all the main phenomena that
guarantee the acceleration of the payload, should be verified with a more detailed and pre-
cise FEM analysis. It is suggested to include in this analysis also the magnetic levitation,
with the consequent stability analysis. Furthermore, the actual availability and operating
capacity of components that can develop large currents in a very short discharge time
should be verified;

● orbital mechanics: this part has been left out but will be the focus of the author’s per-
sonal studies in the future. The orbital analysis would require to understand more clearly
the actual lighting times, the launch windows and the various available destinations. A
relevant detail would be to be able to position the various payloads in the vicinity of the
Lagrangian points, where it could be built a lunar refueling base (like the lunar orbiting
base discussed in recent years). Lastly, a factor to be taken into consideration would be to
be able to adjust the current pulses: in the hypothetical case in which a lunar MD is built,
this would have a fixed geometry but could have at the launch several payloads at different
times, or different destinations, and therefore it is opportune to analyze how the electro-
magnetic interactions change when only the electrical component changes, specifically to
understand if the magnetic levitation is still guaranteed at low currents or a flytube must
be included.

The entirety of these measures would improve the reliability of the mathematical model
that, to date, covers the main electromagnetic and thermal phenomena, and its goodness
can be estimated to be around 50%.
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A. Material properties

Material ρ [10−8 Ohm m] α [°C−1]
Aluminium 2.65 0.0039
Carbon 1 −0.0002
Copper 1.68 0.00404
Gold 2.44 0.0034
Iron 9.71 0.005
Tungsten 5.60 0.0045

Table A.1: List of materials resistivity ρ and temperature coefficient of resistance α (Gi-
ancoli 2004)

Material k

Air 1.00059
Glass 5 ÷ 10
Plexiglass 3.40
Vacuum 1

Table A.2: List of materials dielectric constant k

Material µr[H m−1]
Iron (anneled) 1.26
Cobalt-iron 2.3 ⋅ 10−2

Iron (pure) 6.3 ⋅ 10−3

Ferrite 8 ⋅ 10−4

Nickel 5 ⋅ 10−4

Aluminium 1.25665 ⋅ 10−6

Air 1.25663753 ⋅ 10−6

Vacuum 4π ⋅ 10−7

Copper 1.256629 ⋅ 10−6

Superconductors 0

Table A.3: List of materials relative magnetic permeability µr
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Material Symbol N
V [1028 e−m−3]

Aluminium Al 18.1
Copper Cu 8.47
Gold Au 5.90

Table A.4: List of materials electron density N
V (Ashcroft and Mermin 1976)

Material Symbol TD[K]

Aluminium Al 428
Copper Cu 343
Gold Au 165
Iron Fe 470

Table A.5: List of materials Debye temperature TD (Van Sciver 2012)
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Table A.6: Cu and Al properties wrt temperature variations

Temperature [K]

0 10 20 30 40 50 60 70 80 90 100

Cu

% [kg m−3] 9028 9028 9028 9028 9027 9026 9025 9023 9021 9019 9016
E [109 Pa] 137.0 137.0 136.9 136.9 136.8 136.7 136.5 136.4 136.2 136.0 135.7
c [J/(kg K)] ≈ 0 0.0872 6.999 26.63 58.54 96.97 135.1 170.4 201.3 227.9 250.7
k [W/(m K)] ≈ 10 453.2 839.3 992.4 902.6 728.0 600.2 513.0 464.9 436.9 420.9
ρ [10−8Ω m] 0.002 0.0021 0.0026 0.0083 0.0239 0.0529 0.0972 0.1528 0.2157 0.2821 0.3479

Al

% [kg m−3] 2734 2734 2734 2734 2734 2734 2733 2733 2732 2731 2730
E [109 Pa] 76.60 76.59 76.56 76.50 76.40 76.28 76.13 75.96 75.76 75.55 75.31
c [J/(kg K)] ≈ 0 ≈ 1 ≈ 10 481.7
k [W/(m K)] 0 23960 11670 4895.2 2364.8 1284.3 785.8 518.7 368.9 323.8 300.8
ρ [10−8Ω m] 0.0001 0.0002 0.0007 0.0045 0.0180 0.0477 0.1029 0.1714 0.2513 0.3412 0.4398

Temperature [K]

100 110 120 130 140 150 160 170 180 190 200

Cu

% [kg m−3] 9016 9013 9010 9007 9003 9000 8996 8992 8988 8984 8980
E [109 Pa] 135.7 135.5 135.2 134.8 134.5 134.1 133.8 133.3 132.9 132.4 131.9
c [J/(kg K)] 250.7 270.1 286.6 300.6 312.5 322.5 331.0 338.3 344.6 350.1 354.9
k [W/(m K)] 420.9 414.2 408.7 404.0 400.1 397.0 394.5 392.6 391.2 390.2 389.5
ρ [10−8Ω m] 0.3479 0.4162 0.4852 0.5541 0.6629 0.6917 0.7603 0.8288 0.8973 0.9657 1.034

Al

% [kg m−3] 2730 2729 2728 2727 2725 2724 2723 2721 2720 2718 2716
E [109 Pa] 75.31 75.06 74.80 74.52 74.24 73.94 73.63 73.31 72.99 72.66 72.33
c [J/(kg K)] 481.7 528.2 570.6 609.0 643.8 675.3 703.6 729.1 752.0 772.5 790.9
k [W/(m K)] 300.8 282.8 269.0 258.6 251.1 245.9 242.4 240.1 238.8 238.1 237.6
ρ [10−8Ω m] 0.4398 0.5455 0.6571 0.7730 0.8920 1.013 1.133 1.253 1.370 1.483 1.590

Temperature [K]

200 210 220 230 240 250 260 270 280 290 300

Cu

% [kg m−3] 8980 8976 8972 8967 8963 8959 8954 8950 8946 8941 8937
E [109 Pa] 131.9 131.4 130.8 130.3 129.7 129.1 128.4 127.7 127.0 126.3 125.6
c [J/(kg K)] 354.9 359.3 363.3 366.9 370.4 373.5 376.4 378.9 381.1 382.7 383.5
k [W/(m K)] 389.5 389.2 389.0 389.0 389.0 389.0 388.8 388.5 388.0 387.1 385.8
ρ [10−8Ω m] 1.034 1.102 1.170 1.239 1.307 1.375 1.443 1.511 1.579 1.647 1.715

Al

% [kg m−3] 2716 2715 2713 2711 2710 2708 2706 2704 2703 2701 2699
E [109 Pa] 72.33 72.00 71.66 71.31 70.97 70.63 70.28 69.94 69.59 69.25 68.90
c [J/(kg K)] 790.9 807.4 822.1 835.3 847.2 857.8 867.4 876.1 884.1 891.4 898.2
k [W/(m K)] 237.6 237.3 236.9 236.5 235.9 235.3 234.7 234.4 234.6 235.6 237.2
ρ [10−8Ω m] 1.590 1.711 1.830 1.948 2.065 2.182 2.299 2.414 2.529 2.644 2.758

Temperature [K]

300 320 340 360 380 400 420 440 460 480 500

Cu

% [kg m−3] 8937 8928 8919 8910 8901 8891 8882 8873 8863 8854 8844
E [109 Pa] 125.6 124.5 123.4 122.2 121.1 120.0 118.8 117.7 116.5 115.3 114.1
c [J/(kg K)] 383.5 386.0 388.4 390.8 393.2 395.5 397.7 399.8 402.0 404.0 406.0
k [W/(m K)] 385.8 386.1 385.7 385.3 385.0 384.6 384.2 383.8 383.4 382.9 382.4
ρ [10−8Ω m] 1.175 1.852 1.988 2.124 2.261 2.397 2.535 2.672 2.809 2.948 3.086

Al

% [kg m−3] 2699 2695 2691 2687 2683 2679 2675 2671 2667 2663 2659
E [109 Pa] 68.90 68.21 67.53 66.84 66.15 65.44 64.73 63.99 63.22 62.41 61.54
c [J/(kg K)] 898.2 910.6 922.0 932.9 943.2 953.1 962.5 971.7 980.5 989.1 997.6
k [W/(m K)] 237.2 238.6 239.5 240.0 240.1 239.9 239.4 238.8 238.0 237.2 236.2
ρ [10−8Ω m] 2.758 2.985 3.210 3.434 3.658 3.881 4.103 4.326 4.549 4.773 4.998



Table A.6: Continued

Temperature [K]

500 520 540 560 580 600 625 650 675 700 750

Cu

% [kg m−3] 8844 8835 8825 8815 8805 8795 8783 8770 8757 8744 8718
E [109 Pa] 114.1 112.9 111.7 110.5 109.2 108.0 106.4 104.8 103.2 101.6 98.30
c [J/(kg K)] 406.0 407.9 409.8 411.7 413.5 415.2 417.3 419.4 421.4 423.3 427.2
k [W/(m K)] 382.4 381.8 381.1 380.3 379.5 378.6 377.4 376.1 374.7 373.2 369.9
ρ [10−8Ω m] 3.086 3.225 3.365 3.505 3.646 3.788 3.966 4.146 4.327 4.509 4.879

Al

% [kg m−3] 2659 2655 2651 2646 2642 2637 2631 2626 2620 2614 2601
E [109 Pa] 61.54 60.61 59.60 58.49 57.27 55.93 54.03 51.86 49.37 46.51 39.49
c [J/(kg K)] 997.6 1006.0 1014.3 1022.7 1031.2 1039.8 1050.9 1062.5 1074.7 1087.6 1116.0
k [W/(m K)] 236.2 235.2 234.2 233.1 232.0 230.9 229.4 227.9 226.4 224.8 221.3
ρ [10−8Ω m] 4.998 5.225 5.453 5.683 5.915 6.151 6.449 6.752 7.062 7.378 8.031

Temperature [K]

750 800 850 900 950 1000 1050 1100 1150 1200 1250

Cu

% [kg m−3] 8718 8692 8666 8640 8614 8586 8559 8531 8502 8474 8444
E [109 Pa] 98.30 94.95 91.53 88.05 84.50 80.89 77.21 73.74 69.66 65.79 61.86
c [J/(kg K)] 427.2 431.1 435.0 439.2 443.8 448.9 454.8 461.6 469.6 479.0 490.0
k [W/(m K)] 369.9 366.4 362.8 359.1 355.4 351.9 348.5 345.3 342.3 339.2 336.0
ρ [10−8Ω m] 4.879 5.255 5.640 6.033 6.435 6.848 7.272 7.707 8.155 8.616 9.091

Al

% [kg m−3] 2601 2588 2575 2562 Als⇀Al`
E [109 Pa] 39.49 31.57 22.83 12.90 Als⇀Al`
c [J/(kg K)] 1116.0 1148.7 1186.7 1231.0 Als⇀Al`
k [W/(m K)] 221.3 217.6 213.7 210.0 Als⇀Al`
ρ [10−8Ω m] 8.031 8.719 9.444 10.21 Als⇀Al`
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