
POLITECNICO DI TORINO

Corso di laurea in Ingegneria Aerospaziale

Tesi di Laurea Magistrale

Development of a Code for Aeroelastic

Optimization of Wings with Stress

Constraints Aggregation

Relatori

Prof. Enrico Cestino

Prof. Giacomo Frulla

Candidato

Almerico Iacono

Supervisore esterno

ISAE SUPAREO

Prof. Joseph Morlier

Ottobre 2018

Dedica

A mia mamma

per il suo costante supporto.

ii

Abstract

The development of an open-source code for the multidisciplinary design optimiza-

tion related to the aero-structural optimization of wings is presented. This work is

the result of a series of studies done thanks to the cooperation of ISAE and ON-

ERA. The aim of this work is to develop an optimization process able to maximize

the performance of a wing modifying its geometry out of respect of the constraints

imposed, considering the aeroelastic coupling between aerodynamics loads and struc-

tural displacements. In order to manage a huge number of constraints, a constraint

aggregation method is presented, based on the Kreisselmeier-Steinhauser function.

It’s also presented a reduced model in relation to the aeroelastic coupling in order

to reduce the computational cost. The code is entirely written in Python, while

external softwares are used in order to perform aerodynamic or structural analy-

sis. Practical examples on common wings, like the Goland wing or NASA Common

Research Wing CRM is presented.

Contents

List of Figures iv

1 Introduction to Aerostructural Optimization 2

1.1 Multidisciplinary Design Optimization MDO 2

1.1.1 Optimization Methods . 3

1.1.2 Sensitivity Analysis . 6

1.2 Aeroelasticity . 8

1.2.1 Static aeroelasticity . 8

2 Source Code Description 11

2.1 Structure of the Code . 12

2.2 Component . 13

2.2.1 Geometry . 13

2.2.2 Raidial Basis Functions . 14

2.2.3 Aerodynamics . 16

2.2.4 Structure . 16

2.2.5 Load and Displacements Transfer 18

2.3 Driver . 20

2.3.1 Global Optimizer . 20

2.3.2 MDA Driver . 23

i

3 Constraint Aggregation 26

3.1 Aggregation . 26

3.1.1 Aggregation Method . 28

3.2 Aggregation Functions . 29

3.2.1 Function . 29

3.2.2 Effects of the Aggregation Parameter P 32

3.3 Aggregation Component . 35

4 Reduced Model for MDA Loop 37

4.1 Introduction to the Reduced Model 37

4.1.1 Approach for the Reduced Model 38

4.2 Structure of the Code . 39

4.2.1 Creation of the FEM model 40

4.2.2 Extraction of Stiffness and Inertia Properties 41

4.3 Validation of the Stick Model . 45

4.3.1 Comparison of the Static Response 45

4.3.2 Comparison of the Modal Properties 46

4.4 Modification and Results . 50

4.4.1 New Mass Distribution . 50

4.4.2 Automatization of the Mode Pairing 53

4.5 Results . 54

5 Test Cases 55

5.1 Goland Wing . 55

5.2 CRM wing . 57

5.3 CRM Wing Simple Model . 60

5.4 Different Options for the Optimization 61

ii

5.5 Problems . 62

5.5.1 Cobyla Design Variables Limits 62

5.5.2 Finite Difference Gradient Evaluation Error 64

5.5.3 Nastran Output File Reader 65

6 Results 67

6.1 Reader code . 67

6.2 Test Cases Results . 68

6.2.1 Case 1 . 69

6.2.2 Case 2 . 71

6.2.3 Case 3 and 4 . 73

6.2.4 Case 5 . 77

Appendix Appendices 78

Appendix A Python Codes 79

A.1 CRM Wing Optimization Test Case 1 79

A.2 Python Script to Access Results . 88

Bibliography 92

iii

List of Figures

1.1 MDO scheme . 3

1.2 Collar Triangle . 8

1.3 Typical aeroelastic section . 9

2.1 XDSM Diagram of the multidisciplinary analysis and optimization

process . 12

2.2 Example of .igs file created from the geometry component 14

2.3 Example of structural mesh (red) and aerodynamic mesh (blue) . . . 15

2.4 Example of nastran template file and input file generated from it . . . 18

2.5 Different thickness sections in the CRM FEM model 21

2.6 XDSM of the MDA Driver . 24

2.7 Results of the MDA loop refered to the wingtip vertical displacement 25

3.1 XDSM after constraints aggregation 27

3.2 Effects of the aggregation parameter P on the KS function 31

3.3 Effects of the number of constraint on the relative error of the aggre-

gation function . 33

3.4 Effects of the aggregation parameter P on the relative error 34

3.5 Zoom-out of effects of the aggregation parameter P on the relative

error . 35

3.6 Flow chart of the aggregation component 36

iv

3.7 openMDAO structure of the aggregation component 36

4.1 Different modeling levels . 39

4.2 Flow chart of the reduced model code 39

4.3 Schematization of the creation of the stick model 41

4.4 Detailed model subdivisions and unitary loads for the extraction . . . 41

4.5 NASTRAN grid point weight generator output file 44

4.6 Schematization of the creation of the stick model and importing of

the properties . 44

4.7 Optional caption for list of figures . 46

4.8 MAC colour matrix for the first ten modal shapes 48

4.9 Bar plot of the error between the natural frequencies of the full and

stick model . 49

4.10 FEM model after new mass distribution implementation 51

4.11 Improvements on the MAC matrix after correction 52

4.12 Improvements on the bar frequencies plot after correction 52

5.1 Initial FEM model for the Goland wing 56

5.2 Initial aerodynamic mesh for the Goland wing 57

5.3 Plan view of the CRM wing geometry 58

5.4 FEM model of CRM wing . 59

5.5 CRM-65 airfoil . 59

5.6 Aerodynamic mesh of the CRM wing 60

5.7 Aerodynamic mesh of the simple model CRM wing 61

5.8 Aerodynamic mesh of the simple model CRM wing 61

5.9 Thickness variation in a COBYLA optimization 63

5.10 Thickness variation after design limits correction 64

v

6.1 Structure of the recorder output file 68

6.2 Result of the optimization Case 1 . 70

6.3 Result of the optimization Case 2 . 72

6.4 Result of the optimization Case 3 . 75

6.5 Result of the optimization Case 4 . 76

6.6 Result of the optimization Case 5 . 78

vi

Acknowledgements

I would like to say thank to my supervisors Joseph Morlier and Joan Mas Colomer

for the extraordinary support, technical advise and for giving me the opportunity

to join their project and to join their amazing research group. They was always

ready to help with clarification, allowing me to acquire knowledge. Thanks to their

support I was able to grow and improve my technical knowledge. I want to say

thank also to the ISAE SUPAREO, and Institut Clément Ader to guest me in this

period in Toulouse.

My thanks also go to professor Enrico Cestino and Giacomo Frulla and Ing. Claudia

Bruni, to give me the possibility to participate to this project and for the support

I’ve had every time I’ve asked for it.

I have to say thanks also to all the extraordinary people that i meet during the

university experience, for the nice time that we spent together, for the mutual as-

sistance throughout university period and for the friendship born from this.

Special thanks also go to the friends I met in Toulouse, for making this experience

perfect and for the extraordinary friendship that was born and that did not stop

when returned.

However, the biggest thanks is for my extraordinary family and for their endless

support in all forms that may exist.

1

Chapter 1

Introduction to Aerostructural

Optimization

1.1 Multidisciplinary Design Optimization MDO

The multidisciplinary design optimization MDO is a field of engineering that uses

optimization method in design problems incorporating an high number of disciplines.

Due to its multidisciplinary nature, aircraft design problems is one of the first ap-

plication of the MDO. Aerospace vehicles are extremely complex systems, and their

design needs the detailed consideration of disciplines such as aerodynamics, struc-

tural mechanics, materials, control, propulsion, etc ... and the interacting between

this disciplines.

The MDO thus makes it possible to perform a design process (determinate the value

of the design variables) joined to an optimization process (find the value of design

variables to obtain the best value for the objective function under constraints) in

view of the interaction of the different disciplines involved in the process.

«The main motivation for using MDO is that the performance of a multidisciplinary

system is driven not only by the performance of the individual disciplines but also

by their interactions.» [6]

2

1 – Introduction to Aerostructural Optimization

Figure 1.1: MDO scheme

Solving MDO problem in the early phase of the design process, by the support of

advanced computational analysis tools, can improve the design and provide reduc-

tion of time and cost of the design cycle.

One of the first applications of the MDO was aircraft wing design, where there is

a strong coupling between aerodynamics and structures, the aeroelastic coupling.

After the application of MDO have been extended to the complete aircraft and to

other field.

In MDO is important to define the architecture of the process,how organize the

optimization software, the disciplines and the analysis of the model and the ap-

proximation model. So can be distinct two different architecture, the monolithic

and the distributed. In the monolithic approach just one optimization problem will

be solved, instead in the distributed approach there re multiple subproblem, which

contain less variables and constraint, so the reaserch of the optimum of the main

problem is split in the solving of little problems. So to solve the same optimal de-

sign problem there are many ways, and the choise of the architecture entails the

computational cost and the final optimum design.

1.1.1 Optimization Methods

Computational design procedures are based on numerical analysis methods that

evaluate the relative merit of a set of feasible designs. The merit of a design is based

on the value of an objective function that is computed using numerical simulations

3

1 – Introduction to Aerostructural Optimization

such as CFD and CSM programs. The choice of objective function is extremely

important and requires a deep knowledge of the multidisciplinary design problem at

hand. [5]

A typical example of a constrained optimization problem can be represent as:

minimize F (xi)

w.r.t. xi i = 1,2, .., N

subject to Gm(xi) m = 1,2, ...,M

where F is a non linear function of the N design variables xi, and Gm are the M

nonlinear inequality constraints to be respected. For a given design problem , a

number of parameters xi are allowed to change. Optimization algorithms is based

to finding the design variables that yield the optimum. In our project we use the

MDO to find the best configuration for a given wing taking account of the aeroelas-

tic coupling, respecting a set of constraint.

There are a lot of optimization algorithms, but they can be classified in two cate-

gories:

• gradient free: the research of the optimum value is based just on the value

of the objective function

• gradient based: the algorithm use over the value of the objective function

also its gradient with respect to the design parameters

Gradient Free Methods

Between the gradient free methods there is the grid searching, where the design

space is surveyed by evaluating each point in a multidimensional grid;the problem

of this method is that the required number of evaluation of the objective function

grow exponential with the number of design variables, so it’s not worth to use this

method when the design variables is more than a few. An alternative is the random

4

1 – Introduction to Aerostructural Optimization

search, where is not needed an high number of evaluation, but is not guarantee that

the optimum value will be found, also for an high number of evaluation. The most

used methods is the non linear simplex; to create a simplex is necessary to evaluate

N + 1 points in a N−dimensional space; the simplex evolves exploring the design

space searching a better point, but also this method became useless if the design

parameters is more than half dozen.

Ultimately the gradient free method is a powerful instruments to set an fast opti-

mization but they became inefficient when the number of the design parameters is

high.

Gradient Based Methods

In the second category we have the gradient based methods; this methods is charac-

terized by the knowledge of the gradient of the objective function respect the design

variables. That methods need a first and sometimes second order sensitivity analy-

sis, with that information it can move into the design space with criteria, that will

lead to the optimum. The great advantage of these methods is that they converge

to the optimum with a significantly smaller number of objective function evalua-

tion. On the other hand these methods work well only when the objective function

changes smoothly with the design variables, and the convergence is guarantee just

for a local minimum. The simple example of a gradient based method is the steep-

est descend, where the optimization step are choose in the direction of the gradient

vector. Instead the Newton method require the Hessian Matrix, so a second order

sensitivity information, in addition to the first derivatives, but it show an higher

rate of convergence. A middle step is the Quasi-Newton, where the Hessian Matrix

is approximated using conjugate gradient. Overall all of these method use the sen-

sitivity analysis to identify the right direction in the design space and than perform

a one-dimensional optimization in that direction before search a new direction.

Both of these methods are used currently, and the choice depends on the prob-

lem, for problems with small set of variables but with multiple local minima or

5

1 – Introduction to Aerostructural Optimization

discontinues the gradient free methods are more suitable, instead for problem where

the number of variables is pretty high, like high fidelity aerodynamics shape opti-

mization a gradient based method is the best option.

1.1.2 Sensitivity Analysis

A possible definition of sensitivity analysis is the following: "The study of how the

uncertainty in the output of a model (numerical or otherwise) can be apportioned

to different sources of uncertainty in the model input."[7]

In our case sensitivity analysis consist in determining derivatives of one or more

quantities, the objective functions, compared to the independent variables, the de-

sign parameters. Know these derivatives it’s necessary for the gradient based algo-

rithm. The determination of the gradient it’s the most expansive operation in the

optimization process, so it’s important to use efficient methods to do the sensitivity

analysis, to obtain high accurate gradients with the minimum computational cost.

There are different sensitivity analysis methods, with pros and cons, and the correct

choice depends on the problem (number of independent variables and output, and

how it affects the computational expense and scalability of the method), th impor-

tance of the computational efficiency and the amount of the human support. Let’s

see the most common method used for the sensitivity analysis:

Finite Differences

One of the common method to estimate the gradient is the finite differences method.

This method is not particularly accurate and computationally efficient, but his im-

plementation is really easy, that’s why it found a large use in the design process

with a huge number of variables.

All the finite differences formulas derive from the Taylor series expansion, by trun-

cating it at the order of interest. The first order approximation, usinf the foward

difference is given by:

df(xi)

dxi
=
f(xi + h)− f(xi)

h
+O(h)

6

1 – Introduction to Aerostructural Optimization

where h is the finite difference step, xi is the point where the derivate is evaluate

and f is the function which we want to compute the gradient.

Complex-Step Derivate Approximation

The complex-step derivative approximation is a relatively new method that unlike

finite differences is extremely robust to changes in the step size [5]. The approxima-

tion of the first derivative can be obtained from complex calculus and represented

by the formula :

df(xi)

dxi
=
Im[f(xi + jh)]

h
+O(h2)

where the imaginary part of the function evaluation is obtained by a perturbation

with a pure imaginary step, and dividing by h a second order approximation is

reached.

The computational cost, as the finite difference method, is proportional to the num-

ber of variables N , but a complex arithmetic is required, so generally the cost is

twice than the cost for finite differences.

Analytic Methods

The analytics methods are the most accurate and efficient methods for sensitivity

analysis. But they are also the most expansive methods, because to determinate

the gradients of a model by analytic approach it’s required to know the govern-

ing equations of the model and how to resolve it. Usually it’s hard to implement

an algorithm capable to calculate the gradient, so it’s required the human support

to determinate it, alternatively is possible to use algorithms that solves the corre-

sponding sensitivity equation, like the adjoint methods. That kind of method is

appreciated because the cost to computing gradient is independent of the number

of design variables, so it’s a right chose for problem where a large number of design

variables is engaged.

7

1 – Introduction to Aerostructural Optimization

1.2 Aeroelasticity

Aeroelasticity is the science which studies the interaction among inertial, elastic and

aerodynamic forces acting upon a flexible structure exposed to a fluid flow. It was

defined by Arthur Roderick Collar in 1947 as "the study of the mutual interaction

that takes place within the triangle of the inertial, elastic, and aerodynamic forces

acting on structural members exposed to an airstream, and the influence of this

study on design.".

This interaction is described by the Collar aeroelastic triangle Fig.1.2

Figure 1.2: Collar Triangle

The interaction between these three forces can cause several undesirable phenom-

ena like divergence (static aeroelastic phenomenon), flutter (dynamic aeroelastic

phenomenon), limit cycle oscillations (nonlinear aeroelastic phenomenon), vortex

shedding, buffeting, galloping (unsteady aerodynamic phenomena) .

1.2.1 Static aeroelasticity

The interaction between the aerodynamic forces ans the elastic forces determine the

static aeroelasticity phenomena. In this work we are principally interested to the

aeroelastic coupling, the aerodynamic force induce on the wing a structural defor-

mation, which modify the geometry of the wing, and then the aerodynamic forces.

So to determinate correctly the aerodynamic forces it’s necessary to determinate it

whit an iterative process, where step by step the forces and the deformation are

updated, until the convergence is reached.

A typical aeroelastic problem can be described by the following matrix equation:

[M]q̈ + [C]q̇ + [K]q = F(bs,q, q̇, q̈,V, t, ω)

8

1 – Introduction to Aerostructural Optimization

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix,

q̈, q̇, q are the degree of freedom(and the first and second time derivatives), F is

the aerodynamic force, V is the air speed, t is the time, ω is the oscillation frequency

and bs indicate bodyshape, and define the join between the aerodynamic forces and

the shape of the structure.

In a static model the equation became:

[K]q = F(bs,q,V)

To understand how the problem involve the study of the typical aeroelastic section

can be approached.

Typical Aeroelastic Section

The typical aeroelastic section consist in a model where the wing is assumed as a

2DoF system:

Figure 1.3: Typical aeroelastic section

The two DoF are the vertical translation h and the rotation α. The stiffness is

concentrated in the elastic axes, and is represented by two spring, one linear and

one torsional, with respectively Kh and Kα. Writing the equation of the rotation

at the shear center we obtain:

Wd+Mc.a.+ Le−Kαα = 0

where W is the weight, d4 the distance of the center of gravity and shear center, e

the distance of the aerodynamic center and shear center. Collecting the terms that

9

1 – Introduction to Aerostructural Optimization

depends of the rotation α, we obtain:

(Kθ − qSCp,αe)θ = M0

where

M0 = Wd+Mc.a.+ qSCp,α0e

The term Kae = Kθ− qSCp,αe is the aerodynamic stiffness. So in the moment when

we consider the deformation of the wing the stiffness of the structure change, while

the aerodynamic stiffness is coupled with the aerodynamic forces and structural

displacement, so it’s not possible to compute its value at the start of the process,

from this an iterative method is used.

The divergence problem is caused from this pattern, in fact the aerodynamic stiffness

reduce the stiffness of the structure, when the total stiffness reach the value of 0 the

structure became instable.

In our work we don’t consider the divergence problem, but just the aerodynamic

coupling, solved by the MDA loop.

10

Chapter 2

Source Code Description

The main goal of this project is to develop an open-source software to perform an

aeroelastic optimization on an established wing model.

To perform aeroelastic optimization it is necessary to have an instrument capable of

carrying out a structural analysis, in order to determine the extent of the structural

deformations as well as the tensions generated in the structure under the action of

the aerodynamic loads, of an instrument capable of to carry out an aerodynamic

analysis, which allows to determine the entity of the aerodynamic forces as a function

of the flight variables, of an instrument able to perform a dynamic analysis and

therefore to determine factors such as flutter velocity, and frequency trends and

of the damping according to the flight speed and finally of an instrument able to

optimize the problem, going to modify the design variables according to the effect

that the latter induce in the process and therefore determine the optimal value for

these variables for which the best performances are obtained, but respecting the

limits imposed.

To perform a multidisciplinary analysis like this, various software are required, which

must be launched successively over and over again. For this reason we have chosen

as the programming language the python language, through which it is possible to

automate this process as much as possible, it is possible to configure the program

in such a way as to compile the input files necessary for the different programs to

run, launch these programs, and obtain the values of the desired variables from the

output files.

11

2 – Source Code Description

So let’s see the tools that make up our code:

• Python: open source coding language based on class and methods

• OpenMDAO: open source library for python containing method specialised

for the multidisciplinary design optimization

• Panair: open source software developed by NASA for aerodynamic analysis

• Panin: precompiler for Panair

• Nastran95: open source software developed by NASA for static and dynamic

structural analysis

• Gmsh: open source software for generation of meshes

2.1 Structure of the Code

The best way to see how the code is structured is via the XDSM diagram (eXtended

Design Structure Matrix), a tool developed by Lambe and Martins (citation) that

aims to represent MDO process.

In Fig.2.1 the XDSM diagram related to our project is shown. In the diagram each

rectangular box represents an analysis (which can be a function or a computational

code), whose input variables are represented by the white boxes on the left, while

the output variables from the white boxes on the top, the gray lines represent the

date dependencies, on the contrary the black lines represent process connections.

All components are numbered in relation to the order in which they are executed.

12

2 – Source Code Description

Figure 2.1: XDSM Diagram of the multidisciplinary analysis and optimiza-
tion process

The steps that define the optimization process are the following:

0. Initiate the optimization process.

1. The initial geometry is created.

2. The interpolation matrix to couple aerodynamic and structure is created.

3. Initiate the coupling process between aerodynamic forces and structural dis-

placements.

4. Determination of the aerodynamic loads by aerodynamic analysis.

5. Transfer the aerodynamic forces from aerodynamic mesh to structural mesh.

6. Determination of the structural displacements and stresses.

7. Transfer the structural displacements from structural mesh to aerodynamic

mesh.

8. Determination of the characteristics of the wing for this configuration.

13

2 – Source Code Description

9. Computation of the constraints.

10. Based on the objective and constraints value, decide the design variables value

for the next optimization iteration.

Steps 1 to 10 are repeated until the convergence of the optimization is achieved.

2.2 Component

In this section is explained how each component is structured. Each component is

written on a different .py file, and it will be called in the main script. Using the

openMDAO structure all the variables are connected between the components by

the command promotes = [*], so each time a component changes the value of a

variable, its value will be updated for all the component.

2.2.1 Geometry

The first component it’s the geometry component, this component will create the

initial geometry from a bounch of parameters specified in the main code, or in an

appropriate .py file. The user can specify the chord factor, the scale factor, the

twist angle, the mid spar position and the sweep angle. From this parameters the

component create and .igs file with the parametric geometry. After it will run the

program gmsh to mesh this geometry and that meshed geometry will stored in an

.bdf file.

At the end of the process the component stores in a dedicated python dictionary

the coordinates of the aerodynamic points, the nodes of the outer surface and the

nodes and them coordinates of the finite element model, in order to be used later

by other components.

14

2 – Source Code Description

Figure 2.2: Example of .igs file created from the geometry component

2.2.2 Raidial Basis Functions

The second component is the radial basis functions, this component creates the in-

terpolation matrix to couple the aerodynamic and structure component, in fact in

the general case these grids are not coincident.The interpolation matrix is created

using a fluide-structure interpolation and mesh motion scheme based on the use of

radial basis functions (RBF), as the method presented in the work of Rendall and

Allen [24]. This displacement and load transfer techniqueis conservative in terms

of total load and moment, as shown by Jakobsson and Amoignon. [15] One of the

advantages of this type of interpolations is that no mesh connectivity is required

between the two disciplines. This is particularly suitable for the cases where the

aerodynamic and structural models do not represent the same geometries. Usually,

the aerodynamic grid is based on the outer mold line, even though there may be

cases where it is based on the mean camber surface only (e.g., the vortex lattice

methods).[14]

15

2 – Source Code Description

Once the interpolation matrix H have been created, since the dimensions of the

problem will not change until the process, it will hold and it will be used each time

the aerodynamic component and the structure component run in order to transfer

respectively the aerodynamic forces from the CFD mesh to the FEM mesh and the

nodal displacement from the FEM mesh to the CFD mesh.

Figure 2.3: Example of structural mesh (red) and aerodynamic mesh (blue)

The input of this component are the outputs of the geometry component, in partic-

ular the vector containing the nodes of the CFD mesh Xa and the vector containing

the nodes of the FEM mesh Xs. Instead the output will be the interpolation matrix

H.

This matrix is able to transform the displacements of the structural nodes into

displacements of aerodynamic nodes using the formula :

ua = H · us

Furthermore, the transpose of this matrix is used to convert the forces of the aero-

dynamic nodes to the forces of the structural ones with the corresponding formula:

fs = HT · fa

2.2.3 Aerodynamics

The aerodynamics component as first creates the shape of the deformed wing by

adding the deformation on the initial jig shape, after creates the input file to run an

16

2 – Source Code Description

aerodynamic analysis using the external software Panair, than launch Panair, and

extracts the aerodynamic characteristics of the wing and stores it into an appropri-

ated dictionary; for each iteration.

Once the jig shape is updated, the component creates an auxiliary file that Panin,

the input file compiler for Panair, than run Panin in order to get the input file for

Panair in a .wgs format. The aerodynamics loads are computed by means a po-

tential flow panel code, Panair/A502, wich, from an aerodynamic mesh,the value of

angle of attack and the Mach, determines the pressure coefficient Cp at the control

points of the panel. In order to use the RBF interpolation we need the aerodynam-

ics load on the grid points, so first we use numerical integration of the Cp over the

aerodynamic panels and then evenly distributing the total panel forces among the

four panel vertexes. A symmetric flow is assumed throughout this work.

At the end of process we have a python dictionary which contains the aerodynamics

load for each grid point for that iteration.

2.2.4 Structure

The structure component uses the external software Nastran95 to perform the static,

and when is request the modal and/or dynamic, analysis of the wing. As first the

component takes as input a nastran template file, where is declared the BEGIN

BULK section, a sample for each nastran cards used(GRID for nodes, QUAD for

shell elements, FORCE1 for the nodal forces, MAT1 for material proprieties,BAR

for rod elements [26]), the mechanical proprieties, the section proprieties, the dictio-

nary containing the coordinates of the structural nodes. Using this parameters the

component writes the input files for nastran, where the coordinates of the node from

the template file are filled with the dictionary of all structural nodes, and the same

for the other nastran card featured in the template file Fig. 2.4. Until the thickness

of the shell elements is assumed as design variables also the thickness vector mod-

ified from the optimizer is included in the input variables. Whenever the dynamic

analysis is requested it’s essential define also the data required for the analysis.

When the input file is ready the component launch the nastran software.

As for the static structural analysis to compute the displacements of the wing and

17

2 – Source Code Description

the stresses of the elements a linear finite element model have been used. The

equation that must be solved for the finite element analysis is :

Kus = fs

which is linear with respect to the structural displacement, and the stiffness matricK

depends only of the material properties and of the underformed geometry, contained

in the jig shape. Nastran uses an LU decomposition of the stiffness matrix K to

solve the linear system. So seen as structured the problem the LU decomposition of

K doesn’t change until the optimization process, than it will be stored, and using

a DMAP alteration of the FORTRAN code, it will used at the beginning of each

MDA loop, to award a computational cost reduction.

After the analysis is finished the component takes from the output file (.out for

displacement, .pnh for stresses, modal shape, frequencies,V − g and f − g diagrams)

the value of the required variables and stores it into an dedicated python dictionary.

Nastran can be used also to determinate the mass of the wing, that is an important

information, especially when mass is used as objective function. As we will see

more detailed in the next chapter, this component can be modified also to extract

the mass and inertia properties of a section of the wing, using the nastran weight

generator instrument and a unitary load ad nodal forces.

Figure 2.4: Example of nastran template file and input file generated from it

18

2 – Source Code Description

2.2.5 Load and Displacements Transfer

In the MDA loop as we said there is coupling between aerodynamic mesh point

displacements ua, structural node displacement us, aerodynamic forces referred on

the structural nodes fs and aerodynamic forces referred on the aerodynamic mesh

points.

If the aerodynamic mesh is different from the structural mesh it’s necessary to

interpolate the structural displacement into the aerodynamic mesh points. The

displacement interpolation scheme is based on the work by Rendall and Allen. [24]

In that method, each component of the displacement vector u is interpolated as

follows (Eq. 2.1 is written for the x component, but the same holds for y and z):

ux =
Ns∑
i=1

αxi Φ (||x− xi||) + γx0 + γxxx+ γxy y + γxz z (2.1)

where Φ(r) is the form of function adopted. In that case, we choose Φ(r) = r2 ln r,

known as the Thin Plate Spline function (TPS).[14] According to Lombardi et al.

[18] who performed a comparison between several available functions, the use of

TPS functions is the best and safest option in terms of accuracy of the interpola-

tion. The terms αxi are the coefficients of the radial basis functions. Each structural

node is the center of an RBF (xi) and the γ terms are the coefficients of the lin-

ear polynomial part. By imposing the interpolating condition on these coefficients

(the interpolation function evaluated at the structural nodes must be equal to their

known displacements) and by evaluating this same function on the aerodynamic grid

points, the transformation matrix between the displacements of the structural and

aerodynamic points can be expressed as:

ua = Hus (2.2)

where H is a matrix which depends only on the coordinates of the structural and

aerodynamic grid points and the type of RBF chosen.

As detailed by Rendall and Allen,[24] and by virtue of the principle of virtual work

to ensure the conservation of energy, we can determine the transformation matrix

between the aerodynamic forces on the aerodynamic fa and structural fs points.

The virtual work can be written as:

δW = δuTs · fs = δuTa · fa (2.3)

19

2 – Source Code Description

where δus and δua are the virtual displacements of the structural and aerodynamic

grids respectively. Through the displacement interpolation matrixH, we can express

the virtual displacements of the aerodynamic grid:

δua = Hδus (2.4)

as function of δus. By substituting equation 2.4 into equation 2.3 we get that:

fs = HTfa (2.5)

In the case where gradient-based optimization techniques are used for optimization

problems that use the aerostructural coupling presented herein, it can be useful

to compute the partial derivatives of the coordinates of the deformed aerodynamic

mesh Xa with respect to the structural displacements uS, as well as the partial

derivatives of the aerodynamic forces on the structural nodes fs with respect to the

forces on the aerodynamic grid points fa.[14]

The deformed aerodynamic mesh is obtained by adding the interpolated displace-

ments (given by equation 2.3) to the jig shape aerodynamic mesh:

Xa = X0
a + ua = X0 +Hus (2.6)

2.3 Driver

In this section is explained how the driver of the problem, the optimization and the

aeroelastic coupling driver, is structured. The entirely code is based on the open-

MDAO structure, so we use the integrated optimization driver for the optimization

loop, and also the integrated equation solver for the aeroelastic coupling loop. Let’s

see in details how each driver works.

2.3.1 Global Optimizer

The global optimizer controls all the process, it will change the design variables in

order to minimize the objective function, each time the design variables change it

will launch the mda loop until convergence to determinate the correct aerodynamics

20

2 – Source Code Description

loads and structural displacement, and consequently the right stresses, after that it

will check if the constraint is respected and the effect of the changes on the objective

function, than it will repeat this process until convergence.

To define the optimization driver first thing is to choose the optimizer and set the

optimizer option, after need to define the objective function, the constraint and the

design variables.

Optimizer

The optimizer chosen for this problem are two:

• COBYLA: a gradient free optimizer

• SLSQP: a gradient based optimizer (in this case gradient will be calculated

using finite differences method)

In the examples chapter optimization using both method on the same model have

done, to see the differences between the two optimization method.

Design Variables

In this code several design variables were implemented:

– The angle of attack α

– The twist angle θ

– The mid spar position

– The scale factor

– The area of stringer

– The sweep angle Λ

– The cord factor

– The thicknesses of the different section of the wing inputted as an array *

21

2 – Source Code Description

* The structural design variables consist of the thicknesses of the structural finite

elements. The topology of structure remains unchanged. In the FEM model we

divided the QUAD elements in groups, all the elements of the same group has the

same thickness. How you can see in Fig. 2.5 there are different group for the upper

surface and for the longerons, so we collect all the information about the thickness

in an array. During the optimization process the thicknesses array can be set as

design variable.

Figure 2.5: Different thickness sections in the CRM FEM model

For each design variable it’s possible to set the limits and the initial value. It’s

possible also to choose just one, a group or all the design variables. In fact in the

test cases presented in this work, where the relevant aspect is to test the aggregation

component just the angle of attack and the thickness vector is selected as design

variables, while all the variables related to the geometry are assumed as constant,

so once the geometry is defined it will not change until the process.

Constraint

As for the constraints that were imposed, there is one constraint concerning the

lift, where the lift must be at least equal to the weight of the aircraft during the

cruise, we constrain the CL by periodically adjusting of the angle of attack of the

aircraft within the aero-structural solution until the desired lift is obtained; to set

a constraint like this it’s necessry to define an Executable Component, a component

22

2 – Source Code Description

of openMDAO where it’s possibile to define a function that is updated for each

iteration, and after set this function as constraint imposing the lower or the upper

limit.

In this case the constraint will be:

CL −
2W

ρaV 2Sw
> 0

The stresses is also considered, so in addition to maintaining the CL there is also

a stress constraint that guarantee the stress of material is lower of the yield stress

at the various load condition. The stresses is the result of the structural analysis

performed with the finite elements method, so it’s necessary to check that the stress

of each element respect the constraint, to do this it’s necessary to create an Exe-

cutable Component for each element, but usually over than thousand od elements

is necessary to describe the structure of the wing, and it becomes computationally

very costly to treat these constraints separately. To avoid this problem in the next

chapter is explained how we implemented the constraint aggregation.

In this case the constraint will be:

σi − σyield < 0 for i = 1,2, ..., Ne

where Ne it’s the number of finite elements.

Objective Function

In the typical aircraft optimization problem the objective is to find the good trade-off

between aerodynamic drag and structural weight. So for our optimization problem

we set as objective function the induced drag coefficient CDi
and the structural mass

W , or in the general case a function like:

F = αCDi
+ βW

where α and β are scalar parameters that is indicative of the relative importance of

the variables that we want to minimize.

Is important note that openMDAO is able to manage just minimization problem, so

to manage maximization problem is necessary to create an objective function equal

to the negative of the real objective function.

23

2 – Source Code Description

2.3.2 MDA Driver

To solve the coupling problem between aerodynamics loads and structural displace-

ments it’s necessary an internal loop that through an iterative process which update

iteration for iteration the value of the variables implicitly linked reach the conver-

gence. That process is tasked to a non linear equation solver, in this case we choose

one of the solver included in the openMDAO library, the non linear Gauss Seidel

Solver NLGaussSeidel with the aitken accelaration [13].

To do this the MDA driver call the components that we discussed above in order to

reach the convergence. In the Fig. 2.6 it’s showed the XDSM concerning the MDA

loop:

Figure 2.6: XDSM of the MDA Driver

The required parameters for each component is the following, fro:

– RBF interpolation: the aerodynamic mesh X0
a and the structural mesh Xs;

– Aerodynamic analysis: the angle of attack α,the flight speed V , the density of

the air ρa, the wing surface Sw, the Mach M ;

– Structural analysis: the Young module E,the barycentric moment of inertia

Ix, Iy and Iz;

– Interpolation: the interpolation matrix H.

24

2 – Source Code Description

while the coupling variables are ua, us, fa and fs. The steps to reach the coupling

convergence is the following:

1. Compute the interpolation matrix H.

2. Initiate the MDA loop.

3. Compute the aerodynamic forces on the aerodynamic grid points.

4. Compute the aerodynamic forces on the structural grid points.

5. Compute the structural displacements.

6. Compute the aerodynamic grid point displacements

Repeat 3 → 7 until convergence. In Fig. 2.7 it’s showed how the vertical displace-

ment of the wingtip nodes change until the process, and how the MDA loop reach

the convergence.

Figure 2.7: Results of the MDA loop refered to the wingtip vertical displace-
ment

For each optimization iteration, the MDA loop determinate the displacements and

the aerodynamic loading considering the aeroelastic coupling. Normally to reach the

convergence needs 6 or 7 iteration, for each iteration one aerodynamic analysis and

25

2 – Source Code Description

one static structural analysis is performed, so for high fidelity model, aerodynamic

and/or structural, the computational cost can be huge, that’s the first reason to

introduce a reduce model for the MDA loop, showed in the chapter 4.

26

Chapter 3

Constraint Aggregation

3.1 Aggregation

For aircraft wing design, currently, there is a trend to employ higher-fidelity (more

expensive) and multidisciplinary numerical simulations, such as the coupling of CFD

code and CSD code. In addition, optimization problems become more and more

complex, with many design variables, tightly coupled objectives, and a large num-

ber of constraints. Handling large-scale constraints presents a challenge for wing

structural and aero-structural design, since the refined finite element model with

multiple freedoms incurs millions of structural failure constraints. [30]

In our optimization problem we are also interested to minimize the structural mass

subject to constraint on structural failure, in particular we are interested in failure

based on yield stress. In the design checking the failure criteria in the optimization

process is desirable, because allow to verify that the optimized structure is suitable

for the prescribed load conditions.

The primary issue with including failure constraints directly in the structural opti-

mization problem is the resulting size of the optimization problem. Conceptually, for

a continuum structure, failure constraints need to be enforced throughout the ma-

terial domain, leading to an infinite number of constraints. More practically, failure

constraints may be enforced element-wise in the finite element model. For detailed,

high-fidelity structural models, this can lead to an optimization problem with many

thousands or millions of failure constraints. These constraints are costly to enforce

27

3 – Constraint Aggregation

because they can only be checked by completing the structural analysis.[17]

Aggregation methods allow to manage an huge number of constraints, in fact that

methods lump a large number of constraint into one global constraint, so the com-

putational cost of the multidisciplinary optimization drastically decrease. These

methods consist in the use of an aggregation function, which transform a set of local

function values into a scalar function. This scalar function converge in the limit to

the maximum local function value:

lim
P→∞

G(f , P) = max(f1, f2, ..., fN)

where f = (f1, f2, ..., fN)T is a vector in which the entries are the local function

values, G is the scalar aggregation function and P is the draw-down factor that

manage the aggregation.

There are different aggregation function, some of them approximate the maximum

of the local function from above, and other from belove. So depending on this

characteristic behavior aggregation function forms an upper or lower bound to the

maximum local function value.

Related to our problem aggregation function became necessary for the stress failure

constraints, in fact when the structural model is detailed, so the number of elements

became huge, we need to check the stress criteria on each single element; this en-

tails that need one constraint for each element in the optimization process, with the

result that the computational cost became prohibitive, and openMDAO find prob-

lem in the setup phase to creates this huge number of constraint, and sometimes

it can crash in this phase.Additionally using a gradient-based optimizer the aggre-

gation fucntion can avoid the problem of the not differentiable maximum function,

increasing the curvature of the function in the region where there is this problem

modifying the draw-down factor. That’s one of the reason because we implemented

a new component in the optimization process, the aggregation component, so the

XDSM of the optimization process is modified as follow:

28

3 – Constraint Aggregation

Figure 3.1: XDSM after constraints aggregation

As we can see after the implementation of the aggregation component a new box

function have been added, the box function 11. So after the extraction of the Von

Mises stresses vector by the structural component the aggregation component take

this vector as input and give as output the scalar G. Now the constraint function

is connected toG and to σyeild, so the constraint will be determinate using these

variables.

3.1.1 Aggregation Method

Let’s see how the aggregation implementation modifies the approach of the opti-

mization design problem, and in particular referred to our problem.

Suppose the original problem is to optimize the mass of a structure under the failure

criteria constraint, the problem in this case can be written as:

minimize m

subject to σVMi
< σY ield ∀ i = 1,2, ..., N

where m is the mass of the structure, σVM = [σVM1 , σVM2 , ..., σVMN
] is the vector

containing the Von Mises stresses of each finite element used for the structural

analysis, σY ield is the yield stress and N is the number of the finite elements.

Let’s see how the problem is modified using the maximum constraint approach, the

29

3 – Constraint Aggregation

simplest aggregation method. Using this method we have that the most violated

constraint is selected, while the rest are ignored.

In this case the problem can be written as:

minimize m

subject to max(σVMi
) < σY ield i = 1,2, ..., N

However, because the constraints is not smooth it’s not possible to use a gradient-

based algorithms in the optimization process, and the search direction is determined

by considering only the Lagrange multipliers of the most violated constraint, usually

leading to the violation of another constraint in the next iteration.

Using an constraint aggregation function the optimization is subject to the value of

the aggregation function G, so the problem can be written as:

minimize m

subject to G < 0

where G is a scalar, given from the aggregation function and it’s representative of

the maximum value of the Von Mises stresses vector. G depends, as we said, also

to the aggregation function choose, so in the next paragraph we will introduce the

most common aggregation function, and theirs properties.

3.2 Aggregation Functions

In literature several aggregation function have been used. The choice of the function

depends of the nature of the problem, of the size of the problem and of the proper-

ties required to perform the analysis. For the failure criteria, where the constraint

impose the stresses lower than yield stress, the natural choice for these constraint

aggregates is a maximum- or minimum-value function. But the problem it’s that

this kind of functions are not differentiable, so cannot be used efficiently in gradient-

based optimization. Another choice can be the p-mean and p-norm function, or

the Kreisselmeier-Steinhauser KS function, kind of smooth estimator. These

estimators do not precisely reproduce the true feasible design space provided by the

30

3 – Constraint Aggregation

original constraints, so the final design determined by the optimizer will be different

depending on the aggregation scheme. [17]

3.2.1 Function

First, we briefly discuss aggregation function used in the literature.

About the nomenclature we use G to indicate the aggregation function, the su-

perscript L and U to denote respectively an lower- or upper-bounded aggregation

function, and P to indicate the draw-down factor.

The first two aggregation function that we analize is the p-norm and the p-mean

function. This kind of aggregation function can be use when the local function value

f are non-negative, as in our case where f is the Von Mises stresses vector, so for

definition we have that all the component of the vector, the Von Mises stress of each

finite element, is positive.

P-norm

GU
PN =

(
N∑
i=1

fi

)1/P

(3.1)

P-mean

GL
PM =

(
1

N

N∑
i=1

fPi

)1/P

(3.2)

The difference between these two aggregation functions is that the P-norm is an

upper bound, and the P-mean is a lower bound to the maximum local function

value:

GL
PM ≤ max(f1, f2, ..., fN) ≤ GU

PN

For this propriety it’s important to note, in the implementation in an optimization

process, that the p-norm function is conservative, backwards the p-mean is not

conservative.

31

3 – Constraint Aggregation

Kreisselmeier-Steinhsauser function

The Kreisselmeier-Steinhsauser aggregation function have been presented for the

first time by G. Kreisselmeier and R. Steinhsauser [16].The function constains a

“draw-down” factor or aggregation parameter, P , which is analogous to the penalty

factor in penalty methods used to perform constrained optimization [19].

This function have been used first to aggregate multiple objectives and constraints

into single functions, but in the time became popular to be used in the direct con-

strained optimization problem. This function has few important proprieties, about

we will discuss after, but ne of the more important property is the following: "The

function produces an envelope surface that is C1 continuous and represents a con-

servative estimate of the maximum among the set of functions" [28].

The KS function can be used also to aggregate only the constraints into a single

continuous function, in that way is defined as:

GU
KS =

1

P
ln

(
N∑
i=1

ePfi

)
(3.3)

This function, as the superscript denote, is an upper bounded function, for each

P > 0, so it overestimates the maximum local function value. Let’s see the properties

of this function:

GKS(x, P) ≥ max(fi(x)) for P > 0

lim
P→∞

GKS(x, P) = max(fi(x)) for j = 1,2, ..., N

GKS(x, P1) ≥ GKS(x, P2) for P1 > P2 > 0

GKS(x, P) is convex, if and only all constraint are convex

These properties is really important for the KS function to be considered an valid

aggregation function. The first three properties indicate, as we said, that the KS

function is upper-bounded, it overestimates the maximum of the constraint defined

as Gi ≤ 0, a positive value returned indicate that a constraint is violated or close

to being violated. The conservative nature is determined from the aggregation

parameter P , id P increases the aggregation function value became more closer to

the maximum value. The effect of the aggregation parameter will be investigate in

32

3 – Constraint Aggregation

the next paragraph, but in Fig. 3.2 we can see that effect from the investigation

done by J. R. R. A. Martins, for a two constraints problem, g1 and g2: [19]:

Figure 3.2: Effects of the aggregation parameter P on the KS function

An alternative formulation can be used, to avoid numerical difficulties caused by

numerical overflow, the KS function can be written as:

GU
KS = fmax +

1

P
ln
[N∑
i=1

eP (fi−fmax)
]

(3.4)

where fmax is the max value of the local function.

The maximum difference between the maximum value of the local function and the

value of the aggregation function is determinate by P , and it’s value its:

1

P
ln
(
NePfma

)
− fmax =

1

P
ln(N) (3.5)

that’s mean:

fmax < GKS < fmax +
1

P
ln(N) (3.6)

From this property can be obtained an alternative formulation of the KS function,

a lower bounded KS function. To obtain it we need to subtract the maximum

difference between the maximum of the local function to the KS upper bounded

33

3 – Constraint Aggregation

function, obtaining :

GL
KS = GU

KS −
1

P
ln(N) =

1

P
ln

(
1

N

N∑
i=1

ePfi

)
(3.7)

that became the following using the alternative formulation:

GL
KS = fmax +

1

P
ln
[N∑
i=1

eP (fi−fmax)
]
− 1

P
ln(N) (3.8)

3.2.2 Effects of the Aggregation Parameter P

The aggregation parameter or draw-down factor P has several effects on the aggre-

gation function. Choose it correctly is really important to have low relative error of

aggregation function relatively at the real maximum of the local function, and also

a low computational cost. The right choice of the aggregation parameter depends

as first of the problem size, but also from the dispersion of the value of the local

function and their absolute value. In addiction is important to choose the draw-

down factor to smooth the aggregation function in the region where the constraints

intersect, to be possible to compute the derivatives.

As first we can see in Fig. 3.3 how the size of the problem influence the relative error

for a given draw-down factor. We use the aggregation function to aggregate the Von

Mises stresses vector, so the value of the aggregation function is representative of

the maximum stress for the finite elements of the structure. In this case we choose

a Kreisselmeier-Steinhsauser function lower bounded, we set the draw-down factor

as 50, then we compute the relative error as:

ε =

∣∣∣∣GL
KS − fmax
fmax

∣∣∣∣
Than we compute the relative error for different size of the stresses vector. Lock-

ing the draw-down factor we can see how the relative error grow with the size of

the problem, or analogously with the number of the constraints that we want to

aggregate.

34

3 – Constraint Aggregation

Figure 3.3: Effects of the number of constraint on the relative error of the
aggregation function

The choice of aggregation parameter is also constrained to the aggregation function

and to the maximum relative error. In Fig. 3.4 there are showed how the relative

error changes with the aggregation parameter for the different aggregation function

implemented in the code. To obtain this graph we take one Von Mises stresses vector

as example, and we determinate the aggregation function value for different value

of the aggregation parameter, then we compare the aggregation function value with

the maximum of the stress vector obtained with the maximum-value function:

Figure 3.4: Effects of the aggregation parameter P on the relative error

35

3 – Constraint Aggregation

From these graphics we can saw the difference between a lower bounded function

(GL
KS and GL

PM) or an upper bounded function (GU
KS and GU

PN), in fact as we can

see in the first case the relative error converge to 0 from the bottom, and in the

second case from the top. As we can see, as definition, for p→∞ the relative error

go to 0, and that error depends from the aggregation function, the relative error is

acceptable for P ≈ 50 for the upper bounded function, while for the lower bounded

the error is still not acceptable. "P = 50 is usually a reasonable value that has a

maximum relative error of ≈ 0.03 for two constraints, and is often used"[20].

In Fig. 3.5 it’s showed an zoom-out to see also the upper-bounded function reach

the convergence.

Figure 3.5: Zoom-out of effects of the aggregation parameter P on the relative
error

3.3 Aggregation Component

To implement the constraint aggregation in the optimization code needs a compo-

nent that take as input the Von Mises stresses vector and give as output the value

of the aggregation function. To be implemented in our script the component should

be written in the openMDAO structure. In Fig. 3.6 is represented the flow chart of

the component.

36

3 – Constraint Aggregation

Figure 3.6: Flow chart of the aggregation component

The aggregation component takes as input parameters the Von Mises stresses vector

σVM and the reference stress σ0 used for the nondimensionalization, connected to

the relative variables of the main code between the command promotes=[*] ; the

settings of the aggregation are declared in the main script and are input for the

component, there are the value choose for the draw-down factor, the aggregation

function selected and the dimension of the vector. Than the component compute

the aggregation function and give as output it’s value, joined to the constraints

functions to be used during the optimization process.

In Fig. 3.7 it’s showed how the component is made, in the openMDAO structure

and the links between the variables:

Figure 3.7: openMDAO structure of the aggregation component

37

Chapter 4

Reduced Model for MDA Loop

4.1 Introduction to the Reduced Model

The aerolastic analysis is one of the costly operation in the optimization process,

in fact many computation must be performed, with different software; to perform

an aerolastic analysis a static structural analysis, an aerodynamic analysis and a

dynamic structural analysis, for each iteration is required. So to contain the cost of

the analysis models with a low computational cost are needed. In parallel with the

multidisciplinary design optimization process, Josè Serralta and Dimitrios Glenis,

work to the project which the objective is to perform a model reduction from a

complex 3D geometry to a simpler one with a computational cost compatible with

the one required for the optimization process and yet a sufficient accuracy for a

satisfactory preliminary design, as is illustrated in their report [25]. A modal analysis

will be performed on both the complete and the reduced model, to check that their

dynamic are indeed similar. Then, the reduced model will be used for the static,

dynamic and aeroelastic analysis in the optimization loop.

In the preliminary design phase simplified beams models, knowns as stick models, are

used to perform static and dynamic aeroelastic analysis, to have some preliminary

results without high cost. During the last stages of the design, high fidelity detailed

3D FEM models are used for design validation and optimization, but this kind of

models are too expensive for the MDO process. Thus, condensed models are created

for dynamic simulations, using reduction techniques to develop models which are

38

4 – Reduced Model for MDA Loop

sufficiently simple but sophisticated enough to predict the dynamic behavior [22].

Guyan reduction technique was one of the first to appear, it is one of the most

popular condensation methods and it is included in many commercial FEM codes

[29].

4.1.1 Approach for the Reduced Model

In Fig. 4.1 are showed the different modeling levels for a wing. As we can see the

structure of the wing can be represented with a box-like model, where the semi-

monocoque structure, composed by discrete stiffeners, like stringer, and thin walled

panels, like the cover skin and ribs, is modeled and meshed using FEM elements, like

beam and shell elements. Another approach to model the wing is using a beam-like

model, where each beam element represent the stiffness properties of an associated

wing strip.

In literature two approaches are considered:

– Reduction techniques, such as guyan or IRS [10], can be used to reduce the

original 3D FEM model with N degree of freedom to one which a much smaller

number of nodal points M << N . The DoF of the reduced model are referred

as masters, and the deleted ones as slaves. The selection of the master nodes

is very important, although there exist iterative methods which make their

selection much less critical [11]. The result of condensation is still a 3D model,

but with less nodes.

– Generating a stick model by extracting the stiffness properties of the full 3D

FEM model and applying them to a set of beam elements extending along the

structure’s elastic axis [4]. In this case the full model is not reduced, but a

new equivalent FEM model is built.

The reduction techniques are usually used for dynamic analysis, while for the aeroe-

lastic studies the condensation to stick models is more used, so for this project the

second approach is adopted.

So the main idea for the reduced model is to start from the detailed FEM model

39

4 – Reduced Model for MDA Loop

with the shell elements, perform an static analysis with exploration load, and from

that analysis compute the stiffness and inertial properties of a section, then for each

section one beam elements are associated to one section, and we set its stiffness and

inertial properties the properties of the respective section.

Figure 4.1: Different modeling levels

4.2 Structure of the Code

In this part we will see how the stick model is obtained from the full model, and

how the validation of the stick model is performed. In Fig. 4.2 is represented the

flow chart of the reduction model:

Figure 4.2: Flow chart of the reduced model code

40

4 – Reduced Model for MDA Loop

The Full FEM model is created using the geometry component, that we discuss in

the chapter 2. From the full FEM model the mass and stiffness properties of the

section, which we split our model, are extracted using the Nastran Weight Generator

instrument. Then the stick model be created, importing the mass and stiffness

properties of each section in one beam element. The stick model need now to be

validated, one static analysis and one modal analysis will be performed on the stick

model, then the result will be compared to the result of the same analysis performed

on the full model. While the results is not acceptable some corrective coefficient will

be changed until the convergence of the relative error is guaranteed. When the stick

model is validated, it can be used in the optimization code, in particular in the MDA

loop, to obtain a gain on the computational cost of this operation.

4.2.1 Creation of the FEM model

To create the FEM model of the stick model the procedure it’s the same of the

creation of the FEM model of the full model. As we saw in the chapter 2, after the

geometry component creates the .igs file, and after the program gmsh create the

FEM mesh, the structure component write the bfd file, putting the properties of

each elements in a NASTRAN card, from a template .bdf file. In this case we use

another .bdf template, where there are just BAR elements (the beam elements in

the NASTRAN95 language). For this part just the number of the elements, equal

to the number of the section used to split the full model, and the position of the

nodes are required. For each element also a lumped mass will be created, and for

the moment it’s value is 0 and it’s located in the first node of the element, when we

will have the information about the mass propierties, using the offset command we

will change the effective position of the lumped mass. At the end of this process we

will have a .bdf file of a stick model, that present N BAR elements and N lumped

mass, but without information about the material and inertia properties. In Fig.

4.3 are schematized what this component do:

41

4 – Reduced Model for MDA Loop

Figure 4.3: Schematization of the creation of the stick model

4.2.2 Extraction of Stiffness and Inertia Properties

Starting from the 3D FEM model of the structure, we split it into section called

boxes, which could be delimited by the ribs of the wing. The object is to build a

1D model in which each box is represented from an equivalent beam element. To

do this as first we need to determinate the stiffness properties (A, Iy, Iz, J) and the

inertia properties (m,xG, IG) to give to the beam element so it’s representative of

the box.

Stiffness Properties

The flexibility matrix C of each box is obtained from the displacements due to a set

of unitary loads applied to one of its sections. [25].

Figure 4.4: Detailed model subdivisions and unitary loads for the extraction

42

4 – Reduced Model for MDA Loop

In Fig.4.4 is showed a box with the 2 associated nodes of the reduced model (nodes

i and j). To compute the flexibility matrix C a set of six unitary loads are applied

at node j and the consequent displacements are measured at nodes i and j.

Let Ci and Cj be the flexibility matrices relating loads at j with displacements at

i and j respectively. If a unitary load vector F is applied, then from CḞ = U the

associated displacements u provides a column of matrix C. In this way, with the

displacements from the six unitary loads, the six columns of matrices Ci and Cj are

built. [25]

The Ci and Cj are the flexibility matrices relating loads at node j with displacement

at nodes i and j respectively. We can obtain the flexibility matrix of the box from

the forces and strains. Strains are approximated obtained from these relations:

εx =
uxj − uxi

∆x
; γy =

uyj − uyi
∆x

; γz =
uzj − uzi

∆x

κx =
θxj − θxi

∆x
; γy =

θyj − θyi
∆x

; γz =
θzj − θzi

∆x

where uxj is the displacement in x -direction at node j, θxj is the rotation in x -

direction at node j, and the same for the others, ∆x is the length of the box. So the

flexibility matrix of the box will be:

C =
Cj −Ci

∆x

from that we can obtain the stiffness matrix of the box from:

K = C−1

From the stiffness matric we can obtain the section proprieties, from the following

relation:

Fx

Fy

Fz

Mx

My

Mz

=

A11 0 0 0 A12 A13

0 S11 S12 S13 0 0

0 S21 S22 S23 0 0

0 S31 S32 S33 0 0

A21 0 0 0 A22 A23

A31 0 0 0 A32 A33

εx

γy

γz

κx

κy

κz

43

4 – Reduced Model for MDA Loop

Where Aij and Sij are the stiffness terms associated to axial and shear sets. So from

the constitutive equation it’s possible to determinate the section properties:

A =

A11 0 0

A22 0

sym A33

 =

EA 0 0

EIy 0

sym EIz

S =

S11 0 0

S22 0

sym S33

 =

GAy 0 0

GAz 0

sym GJ

From this it’s possible to extract the section properties A, Iy, Iz, J to give to the

beam element to be representative of the box section.

Inertia Properties

The inertia properties of each box are extracted using the NASTRAN grid point

weight generator [26], which generate an output file containing the information rel-

ative to the position of the center of gravity XG, the mass m and inertias I of the

box. In Fig. 4.5 is showed an example of the output file. From this information we

will change the position and the properties of the lumped mass that we create in

the first phase. Since the mass of the boxes are represented from the lumped mass,

the density of the material is set to 0.

44

4 – Reduced Model for MDA Loop

Figure 4.5: NASTRAN grid point weight generator output file

At the end of the process the beam element has the stiffness and inertia properties

of the box, as the Fig. 4.6 shows:

Figure 4.6: Schematization of the creation of the stick model and importing
of the properties

45

4 – Reduced Model for MDA Loop

4.3 Validation of the Stick Model

For the validation of the stick model two comparison have been done, one on the

static response results, in terms of displacement and rotation of the nodes, and one

on the modal analysis, in terms of natural frequencies and modal shapes. In both

the cases to allow the comparison, since the number of nodes and their position is

different, a series of nodes have been added in the full model, in particular we add in

the full model the same nodes used for the stick model in the same relative position,

then we connected these nodes to the structural nodes of the full model between

rigid connection. In that way we can comparison the displacement, the eigenvector

and the eigenvalue of the two different models.

4.3.1 Comparison of the Static Response

To do the comparison of the static response an exploration load have been applied at

the wing tip. To determinate the displacements and the rotation in all the direction

6 different load have been applied, 3 force of 1 N applied on the x, y and z direction,

Fx, Fy and Fz, and 3 moments of 1 N mm, ;Mx,My and Mz.

In the Fig. 4.7 there are the results obtained from the comparison.

As we can see the errors on the displacements are ≈ 15% at the wingtip, while the

errors on the rotation are smaller, ≈ 10%, and ≈ 1% on the horizontal rotation θy.

46

4 – Reduced Model for MDA Loop

(a) Longitudinal displacement ux (b) Torsional rotation θx

(c) Horizontal displacement uy (d) Horizontal rotation θy

(e) Vertical displacement uz (f) Vertical rotation θz

Figure 4.7: Comparison of the static response

To get better results it’s possible to adopt a correction on the Young module E and

on the shear module G, using virtual modules obtained from the relative error on

the displacements and rotation:

Ecorr =
uz|stick
uz|full

E; Gcorr =
θx|stick
θx|full

G

4.3.2 Comparison of the Modal Properties

To do the comparison of the modal properties we compare as first the modal shapes

of the two model, and after the natural frequencies. Also in this case the extra nodes

47

4 – Reduced Model for MDA Loop

are used in the full model to have a compatibility for the two modal shapes. To

compare the modal shape the Modal Assurance Criterion MAC have been used.

Modal Assurance Criterion MAC

The function of the modal assurance criterion (MAC) is to provide a measure of

consistency between estimates of a modal vector. [8] The Modal Assurance Criterion

is a vector correlation index frequently used in experimental dynamics to quantify

the similarity of mode shapes[9].

This criterion is based on the computation of a normalized scalar product of the

eigenvector of the system given by:

MAC(Φ1,Φ2) =
(ΦT

1 ·Φ2
T)

||Φ1||2 · ||Φ2||2
0 ≤MAC ≤ 1

where Φ1 and Φ2 are the eigenvector related to the modal shape that we want to

compare. A value of 1 means that the modal shapes are identical, while a value of 0

means that the modal shapes are not similar at all. In our case we are interested to

check the similarity of the first ten modal shapes, to do this we use the eigenvector

output of the modal analysis performed with NASTRAN. For each node 6 DoF are

present, so we put the vector related to each singol Dof in a single expanded vector

to compare them:

Φ = [ΦTX,ΦTY,ΦTZ,ΦRX,ΦRY,ΦRZ]

Then 100 comparison of the modal shapes have been done, and the results can be

visualized using a matrix with a colour scale, as is showed in Fig. 4.8.

48

4 – Reduced Model for MDA Loop

Figure 4.8: MAC colour matrix for the first ten modal shapes

A value of MAC ≈ 1 means the modal shape of the i mode of the full structure Φi

is similar to the modal shape of the j mode of the stick structure Φj.

As we can see there is a large compatibility on the full bending modes, while the

compatability of the torsional and coupled modes is lower.

Frequencies Comparison

As we said also a comparison on the first ten natural frequencies have been done.

It’s important to remark that the frequencies are ordered in ascending order by

NASTRAN, so when the error on the frequencies is more than the step from two

consecutive frequencies the frequency i of the full model cannot be associated at the

same mode of the frequency i of the stick model. To avoid this problem it’s required

to order the frequencies using the modal shape order. To order the frequencies a

visualization of the modal shapes is required, than we can recognize the type of the

mode and associate the correct number to the mode to do the comparison.

In Fig. 4.9 there is the bar plot of the error between the full model natural frequencies

and the stick model natural frequencies relative to the same modal shape:

49

4 – Reduced Model for MDA Loop

Figure 4.9: Bar plot of the error between the natural frequencies of the full
and stick model

In Tab. 4.1 there are the value of the first ten frequencies, ordered for the same

modal shape for both model, and the relative error computed as:

E =
Fifull − Fistick

Fifull
∗ 100

Mode Full modelfreq.[Hz] Stick modelfreq.[Hz] Relative error[%]

1 0.73553 0.55505 24.53683

2 2.46789 1.92782 21.88389

3 5.4666 4.33701 20.66340

4 7.66535 13.3805 −74.55837

5 9.40136 8.16675 13.13220

6 9.50287 7.64263 19.57560

7 13.2508 22.4217 −69.21020

8 14.4031 11.7250 18.5939

9 19.613 21.4223 −9.22500

10 20.0155 16.4092 18.01750

Table 4.1: Frequencies of full and stick model and relative error

50

4 – Reduced Model for MDA Loop

4.4 Modification and Results

As we can see the validation od the stick model is passed for the static analysis, while

for the modal analysis there are some incompatibility. The modal shape related to

the torsional and coupled torsional-bending modes are not quite similar, and the

results on the natural frequencies present for this mode an error really high, and

without sense. A modification at the stick model have been done to avoid this

problem. After investigation we understand that the problems are related to the

mass distribution, in fact while until the span wing there is a good discretization

of the mass of the wing, 20 lumped muss are used, until the cord there isn’t a

valid distribution, all the lumped mass are positioned until the elastic axis, so the

torsional behavior is not correctly represented. A new mass distribution have been

implemented to correct this errors.

4.4.1 New Mass Distribution

As we showed in the first section to import the inertia proprieties of the full model

on the stick model a series of lumped mass have been used. These lumped mass

are positioned in the center of gravity of each box, that’s mean that all the mass is

concentrated until the elastic axis, then the torsional inertia proprieties of the full

model are not imported in the stick model.

The idea to avoid this problem is to use a different mass distribution, in particular

which takes into account of the distribution of mass until the cord. While just beam

elements and lumped mass are used the only way to avoid this problem is to add

lumped mass for each section and delocalise that mass from the elastic axis.

The new mass distribution provides to create 3 lumped mass for each box, one lo-

cated in the trailing edge, one located in the center of gravity and one located in the

leading edge. The value of the mass is chosen with a linear distribution on the cord,

the total mass of the box should be unchanged. To do this the structure component

have been modified, as first to compute the value of the 3 lumped mass, then to

create the grid point to allocate the mass and finally to modify the .bdf file.

51

4 – Reduced Model for MDA Loop

In Fig. 4.10 it’s showed how the .dbf file is built after the correction:

Figure 4.10: FEM model after new mass distribution implementation

In white there are the beam elements used for the stick model, in orange there are

the lumped mass used, as u can see for each element, representative of one wing

box section, there are 3 lumped mass, one localized on the center of gravity of the

element, and two respectively localized on the trailing edge and on the leadng edge.

Using this new mass distribution as first we solved the problem related to the tor-

sional modes, then the modal shapes and the frequencies related to the torsional and

coupled mode assumed sense value, but there are also improvement on the bending

modes. The error on the frequencies for the torsional and coupled mode are now of

the same order of magnitude of the errors on the bending mode frequencies, and the

last see a reduction of ≈ 5%.

52

4 – Reduced Model for MDA Loop

The new MAC matrix and the new comparison between the frequencies are showed

respectively in Fig. 4.11 and in Fig. 4.12.

Figure 4.11: Improvements on the MAC matrix after correction

Figure 4.12: Improvements on the bar frequencies plot after correction

53

4 – Reduced Model for MDA Loop

In Tab. 4.2 are showed the new frequencies for the stick model after correction and

the relative errors:

Mode Full modelfreq.[Hz] Stick modelfreq.[Hz] Relative error[%]

1 0.73553 0.55505 21.0668

2 2.46789 1.92782 19.0021

3 5.4666 4.33701 19.6497

4 7.66535 13.3805 24.7905

5 9.40136 8.16675 12.9799

6 9.50287 7.64263 20.6029

7 13.2508 22.4217 27.5247

8 14.4031 11.7250 21.778

9 19.613 21.4223 28.2195

10 20.0155 16.4092 23.1296

Table 4.2: Frequencies of full and stick model and relative error after correc-
tion

4.4.2 Automatization of the Mode Pairing

Another problem of the reduction method was the non completely automatization

of the process, that doesn’t allow an implementation in the optimization process.

In fact as we said, when the error on the frequencies is bigger than the step of two

frequencies in the row, the order of the mode is not the same for the full and the

stick model. Can happen that the 4th mode for the full model is the 1st torsional

mode while for the stick model the 4th mode is the 3rd bending mode. Now for

a correct evaluation of the errors on the frequencies and the relative correction the

errors should be evaluate on the same mode, and the vector of frequencies need to

be reorganized. This operation was did manually, by watching the modal shapes

using a vizualization software for the output files.

To automatize the process we create an algorithm, based on the evaluation of the

MAC matrix, to order the vector of frequencies related of the MAC value. In

particular blocked the vector of the frequencies related to the full model, we put for

each mode the frequencies related to the mode which have the maximum value of

54

4 – Reduced Model for MDA Loop

MAC, by exploring the full MAC matrix.

Once this function was implemented the reduction model could be implemented in

the optimization loop to reduce the computational cost of the aeroelastic coupling

loop.

4.5 Results

The main objective of this chapter is to prove that the stick model is reducing the

overall time of the procedure and can be used for complex and multidisciplinary

computations. Thus, in each component a timer was placed in order to calculate

the time reduction of the stick model. Certainly, in the first iterations the advantage

of the stick model will not be evident since there are two additional components in

comparison with the 3D model, thus, extra time. However, when the process reaches

the multidisciplinary analysis(MDA), the computational efficiency of the stick model

should be clear. [25]

In Tab. 4.3 the time cost of each component in both optimizations are presented:

Component Full model[s] Stick model[s] Reduction[%]

Geometry 7.97 7.81 −2.01

Interpolation 0.371 0.416 −88.79

Total Reduction − 7.27 −
Aero 7.26 7.25 −0.28

Load Transfer 0.0044 0.00183 −58.41

Structure 3.52 2.19 −37.78

Displacements Transfer 0.00166 0.000605 −63.55

Total Pre−MDA Process 8.341 15.1216 81.29

Total MDA Process 10.78606 9.432435 −12.55

Total T ime 116.2016 107.7537 −7.27

Table 4.3: Time reduction of the stick model

55

Chapter 5

Test Cases

To validate the optimization script, several test cases have been done. Many aspects

of the problem had to be tested, in order to obtain information on the effective

functioning of the software, as well as to bring out errors and complications not

taken into account in the programming phase. Tests were therefore carried out

on different wing models, in particular the Goland wing and the NASA Common

Research Wing CRM , characterized by a different level of detail of the structural

meshes, as well as by different aerodynamic properties. Moreover, in the various tests

both drivers chosen for the implementation, COBYLA and SLSQP, were used, with

the corresponding comparisons on the results; and different combinations between

objective function and constraints were carried out.

As first let’s see in details the wing model used for the validation of the software.

5.1 Goland Wing

The Goland wing is a wing model developed by M. Goland, and described in [12].

This model of wing is really simple, and several numerical and experimental studies

have been carried out on this wing, which is usually used as reference to validate

aeroelastic codes. So for the preliminary approach it’s the best choice, because we

can obtain fast results and find in literature many works to compare the results.

The Goland wing model that we use is based on the model described in the work of

Beran P.S. [21]

56

5 – Test Cases

The wing is schematized as a cantilevered wing. The wing span is 6.10 m, the chord

1.22 m and the thickness 0.51 m.

The finite element model is built up from shear panels, modeling the spars and

ribs, and membrane elements, modeling the wing skins. The spar and rib caps are

modeled by rod elements and posts connect the wing skins at every spar/rib inter-

section.[1] In Fig. 5.1 is showed how the initial FEM model is structured.

The result is a very flexible wing, that it’s ideal to show several aeroelastic behavior.

Figure 5.1: Initial FEM model for the Goland wing

For the aerodynamic mesh an airfoil are obtained using a 4% thick parabolic arc,

then the mesh is generated using 4 section until the wing span, for each section

several point of the airfoil are considered, with a condensation of nodes on the

trailing and leading edge, then the panel are obtained joining the nodes and the

sections. In Fig. 5.2 is showed how the initial aerodynamic mesh is structured.

57

5 – Test Cases

Figure 5.2: Initial aerodynamic mesh for the Goland wing

5.2 CRM wing

The second wing model used for the test cases is the NASA Common Research

Model Wing CRM. This choice has been adopted in order to have a more complex

wing’s model, to access to more problematic and design’s aspect, compared to the

Goland wing, and the choice was the CRM, because several project is based on this

model, so we can easily find in literature results to compare, and evaluate the quality

of them.

The Common Research Model (CRM) consists of a contemporary supercritical tran-

sonic wing and a fuselage that is representative of a widebody commercial transport

aircraft. The CRM is designed for a cruise Mach number of M∞ = 0.85 and a

corresponding design lift coefficient of CL = 0.5. [2]

The wing consist in a fullscale cantilevered wing. The CRM was generated as open

geometry for the research, imagined for transport class aircraft with single-aisle con-

figuration. The geometry of the wing is more complex of the Goland wing, in fact

there are sweep angle, taper ratio, etc... .It’s caraterized of a wing span of 58.76 m,

an aspect ratio of 9, a root cord of 7 m, a taper ratio of 0.275, a leading edge sweep

angle of 35 deg, and a break along the trailing edge at 37% of the semi-span, the

wing reference area is 383.68 m2. For the structure the wing box is defined to lie

between 10% and 70% of the wing cord.

58

5 – Test Cases

In Fig. 5.3 the plan view of the CRM wing is showed:

Figure 5.3: Plan view of the CRM wing geometry

For the structural model an high fidelity model have been created. All the compo-

nent of the wing (ribs, spar, stringer, skin) are modeled using shell elements. Over

25’000 finite elements have been used. In Fig. 5.4 the complete FEM model is

showed:

59

5 – Test Cases

Figure 5.4: FEM model of CRM wing

The airfoil used to obtain the aerodynamic mesh is the CRM-65 in Fig. 5.5, provided

by NASA [3]. The aerodynamic mesh is obtained using 50 different section, in order

to take account of the taper ratio and the thickness. In Fig. 5.6 the aerodynamic

mesh is showed:

Figure 5.5: CRM-65 airfoil

60

5 – Test Cases

Figure 5.6: Aerodynamic mesh of the CRM wing

5.3 CRM Wing Simple Model

The CRMwing model allow to consider more parameters in the optimization process,

but the cost of the structural and aerodynamic analysis for the model that we create

are really high. In the test phase of the component, where coding or conceptual

errors emerge, the time required to launch the code can be prohibitive. So to solve

this problem a simple model of the CRM wing have been used, in order to have

all the proprieties of the CRM wing but with a much less computation cost. The

quality of the result is, of course, worse, but in that phases we wasn’t interested to

obtain result, but just to validate the code.

The most important changes are on the structural model. As first much less elements

have been used, from 25’000 to 1’000, then instead to use shell elements for all the

components, beam elements have been used for stringer and spars.

In Fig. 5.7 the structural mesh of the simple model of the CRM wing is showed, the

beam elements are in red while the shell elements are in blue:

61

5 – Test Cases

Figure 5.7: Aerodynamic mesh of the simple model CRM wing

Also the aerodynamic mesh is simple. In this case we just reduced the number of

section, from 50 to 20. In Fig.5.8 is showed the aerodynamic mesh of the simple

CRM wing model:

Figure 5.8: Aerodynamic mesh of the simple model CRM wing

5.4 Different Options for the Optimization

Several test cases have been performed in order to validate the different components,

to test the different drivers, the different wing model. So each test case represent a

62

5 – Test Cases

combination of different option and has different goal. In Tab. 5.1 there are collect

all the possible option used in the various test case:

Options Possible Choice

Wing Model
Goland Wing
CRM Wing

CRM Wing Simplified

Driver
COBYLA
SLSQP

Design
Variables

Angle of Attack α
Thickness of Shell Elements

Sweep Angle Λ

Wingspan b

Objective
Function

Mass m
Induced Drag Coefficient CDi

Generic Function f

Generic
Options

Constraint Aggregation
Design Varibles Limit as Constraint

Reduced Structural model
Table 5.1: Different option selectable for the optimization

5.5 Problems

During the test cases several problems emerge. In this section we will explain the

most relevant problems, and the relative solution that we find.

5.5.1 Cobyla Design Variables Limits

One of the first problem that have emerged when we pass to the CRM wing cases was

relative to the use of the optimization driver COBYLA. The problem was that when

the thickness of the wing tip shell elements, the zone of the wing characterized to the

biggest value of displacements , start to be to little, the displacements start to being

really impressive. Then this displacements are moving into the aerodynamic mesh

using the interpolation. Now if the wing tip section nodes are moving too much, the

63

5 – Test Cases

aerodynamic analysis will fail, because the mesh assume a weird shape. That’s cause

the crash of the program and interrupts the optimization. The direct consequence

is to set limits for the design variables, in this case limits on the minimum value of

the shell elements thickness, in order to avoid that the displacements being huge.

Then we set limits on the thickness as 10−3 m.

Using the COBYLA optimization we see that, despite the design variables limits was

exactly set, the optimization still crash. Then opening the database of the iterations

we saw that the limits of the design variables are not respected, as we can see in

Fig. 5.9:

Figure 5.9: Thickness variation in a COBYLA optimization

As we can see the optimization crashes at the iteration 34, because the thickness of

the section 16 is lower than 10−3 m. The problem is that COBYLA doens’t respect

the design variables limits. That’s is result of the is a consequence of how it was

programmed, COBYLA is a driver programmed to get results, so when it decide the

direction of the optimization, in this case the direction is to reduce the thickness of

section in order to obtain a reduction of the mass of the wing, it still work in order

to get the convergence of the objective function respecting the constraints.

64

5 – Test Cases

To solve this problem, and avoid the crashes, our solution was to set also the thick-

ness limits of the section as constraint, in order to be respected by COBYLA. So

a new set of constraint have been created, the constraints equation check for each

iteration if the minimum value of the thickness is bigger than the limit which we

set:

con(ti) = ti − timin
> 0 i = 1,2, ..., nt

where con(ti) is the constraint function, ti the value of the thickness of the section

i, timin
the limit of the thickness and nt the number of the section with different

thickness.

In order to check if the solution works, we start a particular optimization focused

on the reduction of the thickness for all the section, and check if the limits on the

thickness if finally respected, as is showed in Fig. 5.10:

Figure 5.10: Thickness variation after design limits correction

As we can see the correction works well, in fact when the thickness reach the design

limit, in this case 3 ∗ 10−3, that value will not more changed, and the stability of

the optimization is guaranteed.

65

5 – Test Cases

5.5.2 Finite Difference Gradient Evaluation Error

Another error has emerged using the SLSQP driver. As we said in the chapter 2,

to evaluate the gradient, for the gradient based optimization using SLSQP, we use

the finite difference method. In our specific case one of the gradient that we need

for the optimization, being the thickness of the section a design variables, and the

Von Mises stress a constraint, like the lift, and the mass an objective, the gradient

of these function respect to the thickness.

As we explain the structural analysis and the aerodynamic analysis is performed by

the external codes, respectively NASTRA95 and Panair. So to compute the gradient

the flow-chart is the following, for example in the case of the gradient of the mass

respect the thickness:

1. Set the the starting value of the thickness

2. Perform an static structural analysis

3. Extract from the output file the value of the mass

4. Change the thickness of the finite difference step

5. Perform an static structural analysis

6. Extract the new value of the mass from the output file

7. Compute the gradient using the finite difference equation

The problem that we found was that using the default settings, the solver can’t

evaluate the gradient, as the mass didn’t change after a change of the thickness.

That happens because NASTRAN95 use a 8 bit floating point numeration; so the

finite difference step set as default for SLSQP is 10−4, so the effect that the variation

of this step induce on the structural mass is really little, and it changes just the

9th or 10th significant digits, then NASTRAN95 cut the information after the 8th

significant digit, so he will lose the information on the variation of the mass, and

the mass seems unchanged.

To solve this problem is just necessary to specify in the setting of the driver the

66

5 – Test Cases

new step used for the finite difference, in order to induce a bigger variation on the

structural mass, then the information on the variotion of the mass will not lose, in

our case a step of 10−2 it’s enough to compute correctly the gradient.

5.5.3 Nastran Output File Reader

Another problem emerged in the test cases is relative to the structural component,

specifically for the output file reading method. In order to extract the information of

the Von Mises stress for each element we set NASTRAN95 to save this information

in a .pnh file, characterized by a special structure of the file. Then the structural

component after the analysis access to this output file, and an algorithm have been

written to associate all the stress to the elements and save these information in a

python dictionary. The algorithm have been written in relation at the output file

of an analysis performed on the CRM wing, where only shell elements have been

used. In the moment that we introduce the simple CRM wing model that contains

also beam elements, the structure of the output file changes, then the algorithm

can’t read successfully it. In the first moment a new algorithm have been written

to read correctly also the new output file, but we are working in order to make it

universally. The idea is to use an .exe file that convert the .pnh file. The difference

between the output files is that the number of the stresses depends on the number of

the degree of freedom of the elements, then the data is collected on more lines. The

.exe file is structured to convert the file in a file where all the stress of one element

are collected on just one line, then is easy to write an algorithm to collect the data

independently of the wing structural model chosen.

67

Chapter 6

Results

In this chapter are collected the results related to the most significant test cases. For

each case all the combination of the setting used have given, together with the graph

relative to the trend of the design variables, constraints and objective function until

the iteration. The data relative to this trend are collected in a database, created

using the recording function implemented in the openMDAO package. So to access

to te result is required to use the openMDAO database function, for this reason an

external component have been created in order to access to the database and plot

the graphics.

6.1 Reader code

In order to collect all the information through the optimization process, the recorder

function of openMDAO have been used. This function provide to create a database,

which contain all the value of the variables. For each iteration a new dictionary will

be created, this dictionary contain one dictionary for each type of variables, in the

last there are all the value of the variables for that iteration, as showed in Fig. 6.1:

68

6 – Results

Figure 6.1: Structure of the recorder output file

Since the database file name is set, is possible to extract the keys of the dictionary,

which are representative of the iterations. Depends on the optimization drives used,

SLSQP or COBYLA, the extraction algorithm is different, so it’s necessary to specify

the used driver. Then for each iteration the value of the variables will be stored in

a bunch of vector, defined by the user. At the end of the process a plotting section

have been written in order to plot the trend of the variables. For the constraints

plots also the limits of the constraint have been plotted, in order to see when a

constraint is violated.

In Appendix A.2 is reported the python code written for extract the result, with

indication of the function of each section.

6.2 Test Cases Results

In this section the result relative to the most significant test cases are given. For

each case a table indicate all the setting parameters, while the results are stored in

the output graph.

69

6 – Results

6.2.1 Case 1

In this test case an optimization of the CRM wing, full model, respect to the mass

of the wing have performed. The driver chosen in this case is COBYLA, then the

design limits have been implemented as constraint. The objective function is the

mass of the wing, while the design variables are the angle of attack α and the

thicknesses of the 12 shell element section of the structural model. The constraints

are the lift constraint and the stress constraint, for the second the aggregation have

been performed, using the GL
KS function.

In Fig. 6.2 are shown the trend of the variables until the optimization, for the stress

are shown the maximum of Von Mises stress vector obtained using the maximum

value function and the relative aggregation function value; for the aerodynamic

variables the trend of the induced drag coefficient CDi
and the lift coefficient CL are

shown. In Tab. 6.1 are summarised the information of the optimization settings.

Options Choice
Wing Model CRM Wing

Driver COBYLA
Design Variable Angle of Attack Thicknesses
Constraints Lift Stresses

Objective Function Mass

Generic Options
Constraints Aggregation X�

Design Limits as Constraints X�

Table 6.1: Optimization Settings Case 1

70

6 – Results

Figure 6.2: Result of the optimization Case 1

As you can see from the graph the optimization reach the convergence of the ob-

jective function in around 160 iteration. All the constraint are respected, and the

optimization reach a gain in terms of structural mass of around 15%, the initial

mass of the wing was 17’200 Kg, at the end of the optimization the mass is around

15’000 Kg. As we can see using a lower bounded aggregation function the maximum

of Von Mises stress exceed the limit.

For this optimization we use COBYLA, the gradien free optimization driver imple-

mented. As we can see the driver choose the design direction for the optimization

in an evaluation performed in the initial iteration, that we can see on the graph as

71

6 – Results

a little step on the design variables. Once the direction it’s decided he continue in

that direction until the convergence. We can see how the direction is to reduce the

thickness of the panel until the failure stress criteria allow it. The angle of attack is

related to the CL, so its initial value is chosen in order to respect the lift constraint.

At iteration 40 the driver found the best design point, so from that point he start to

evaluate the functions changing the design variable from that point, checking step

by step the constraints.

6.2.2 Case 2

In this test case we have done an optimization on the CRM wing, in order to

minimize the induced drag coefficient CDi
using, this time, the gradient based opti-

mizer SLSQP, where, as we said, the gradient is computed using the finite difference

method. The constraint are the lift constraint and the stress constraints, aggregate

this time with the upper bounded Kreisselmeier-Steinhsauser function. This time,

since COBYLA is not used, isn’t necessary to set the design limits as constraint.

In Fig. 6.3 are showed the results, in the same format of the first case, while in Tab.

6.2 there are given the problem settings.

Options Choice
Wing Model CRM Wing

Driver SLSQP
Design Variable Angle of Attack Thicknesses
Constraints Lift Stresses

Objective Function Cdi

Generic Options
Constraints Aggregation X�

Design Limits as Constraints 7�

Table 6.2: Optimization Settings Case 2

72

6 – Results

Figure 6.3: Result of the optimization Case 2

73

6 – Results

In this case more than 220 iteration need to reach the convergence. The optimization

target is the reduction of the induced drag coefficient, that see a reduction of the

25%. No limits are imposed on the structural mass and on the minimum stress, so

as we can see to reach this gain on the CDi
there is an increase of the mass of the

45%, due to the increase of the thicknesses of the shell elements. This involves that

the material is not fully exploited, the stresses are much lower than the yield stress.

In this case we used an upper bounded aggregation function, so, as you can see, the

value of the aggregation function is bigger than the value of the maximum of the

Von Mises stress vector. Both the constraint are respected.

In this case we have used the gradient based optimizer, we can observe how the

optimizer work, it start the initial condition, evaluate the gradient using the finite

difference centered in that design point, than decide the direction of optimization

and continue in that direction until the best condition are reached, then start a new

gradient evaluation centered this time in the new design point, and it repeat this

until the best is reached. So the graph are typed of strong excursions each time the

gradient are computed.

6.2.3 Case 3 and 4

The case 3 and 4 have the same settings, expect for the driver, in fact this test case

have been done to got a comparison between the two different driver. In this cases

the objective function is given by:

f = αCDi
+ βm

where α = β = 0.5, in order to obtain an optimization where the objective is find the

best compromise between the mass and the induced drag, to avoid an optimization

as the case 2 where to minimize the drag coefficient the mass of the wing grows

disproportionately.

In Tab. 6.3 and Tab. 6.6 there are given respectively the setting option of the two

case, while in Fig. 6.4 and Fig. 6.5 are showed the results graphs.

74

6 – Results

Options Choice
Wing Model CRM Wing

Driver SLSQP
Design Variable Angle of Attack Thicknesses
Constraints Lift Stresses

Objective Function f = αCDi
+ βm

Generic Options
Constraints Aggregation X�

Design Limits as Constraints 7�

Table 6.3: Optimization Settings Case 3

75

6 – Results

Figure 6.4: Result of the optimization Case 3

Options Choice
Wing Model CRM Wing

Driver COBYLA
Design Variable Angle of Attack Thicknesses
Constraints Lift Stresses

Objective Function f = αCDi
+ βm

Generic Options
Constraints Aggregation X�

Design Limits as Constraints X�

Table 6.4: Optimization Settings Case 4

76

6 – Results

Figure 6.5: Result of the optimization Case 4

The result of the objective functions, as expected, are in between of the result of the

case 1 and case 2, which was polarized just on one objective function. In both cases

in order to have a reduction of the induced drag coefficient it’s necessary to increase

the structural mass, but the increase is not bigger as the case 2.Though there are

difference between the two optimization:

COBYLA

– ≈200 iterations

– maximize the stresses

SLSQP

– ≈ 220 iterations

– minimize α

77

6 – Results

– final mass = + 11%

– final CDi
= 0.037

– final mass = + 27%

– final CDi
= 0.039

In Tab. 6.5 a comparison of the important value of the optimization between the

first 4 test case is given:

Case 1 Case 2 Case 3 Case 4
α [deg] 5.5 3.4 4.1 4.8
CL 0.70 0.71 0.70 0.69
CDi

0.044 0.034 0.037 0.039
m [Kg] 14900 38000 23700 19600

Table 6.5: Comparison of Results

6.2.4 Case 5

This test case is relative to an optimization performed using the Goland wing, in

order to obtain fast result in testing phase. Being the wing model different, the

number of the section is different, but the structure of the script is the same. This

optimization has as objective the function f , described in the test case 3 and 4, with

α = β = 1.

Options Choice
Wing Model Goland wing

Driver COBYLA
Design Variable Angle of Attack Thicknesses
Constraints Lift Stresses

Objective Function f = αCDi
+ βm

Generic Options
Constraints Aggregation 7�

Design Limits as Constraints X�

Table 6.6: Optimization Settings Case 2

78

6 – Results

Figure 6.6: Result of the optimization Case 5

79

Appendix A

Python Codes

A.1 CRM Wing Optimization Test Case 1

1 #MAIN SCRIPT

#Modules Importing

3 # -*- coding: utf-8 -*-

"""

5 Created on Tue Mar 29 10:50:10 2016

7 @author: a.iacono

"""

9 from __future__ import print_function

11 from openmdao.api import Problem, Group, IndepVarComp,

ScipyGMRES, SqliteRecorder, ExecComp, ScipyOptimizer, view_tree

13 from aerostructures import NastranStatic, DisplacementTransfer,

Panair, LoadTransfer,Aggregation, Interpolation,\

StaticStructureProblemDimensions, StaticStructureProblemParams,

AeroProblemDimensions, AeroProblemParams, NLGaussSeidel

15

import numpy as np

80

A – Python Codes

17 #Definition of Specific Problem Parameters

#Note: To choose correctly the aggregation function parameters

checking the guide.

19

if __name__ == "__main__":

21

#Interpolation function type and setup

23 function_type = ’thin_plate’

bias = (1,50,1)

25

#Symmetry plane index

27 sym_plane_index = 1

29 #Problem parameters

Sw = 383.689555 # Wing Surface

31 V = 250.75 # Velocity

rho_a = 0.337 # Air Density

33 Mach = 0.85 # Flight MACH

alpha = 0.58465 # Starting Angle of Attack

35 b = 58.7629 # Wing Span

c = 7.00532 # Cord

37 E = 6.89e10 # Young Module

nu = 0.31 # Poisson Coefficient

39 rho_s = 2795.67 # Material Density

t_i_max=0.0125 # Upper Limit for Panel’s Thickness

41 t_i_min=0.0018 # Lower Limit for Panel’s Thickness

sigma_y = 5.033172e+08 # Yield Stress

43 W = 9.81*300000. # Airplane Weight

function = ’Gksl’ # Aggregation Function

45 p=100. # Draw-Down Function

s0=40000000.0 # Reference Stress

81

A – Python Codes

47 #Definition of Problem Dimensions:

#Note: To do this we are using some of the methods defined in the

Aerostructures Package, in the relative guide is declared the

meaning of each variables and how we determinate it.

49

structure_problem_dimensions =

StaticStructureProblemDimensions()

51 aero_problem_dimensions = AeroProblemDimensions()

53 ns = structure_problem_dimensions.ns

ns_all = structure_problem_dimensions.ns_all

55 node_id = structure_problem_dimensions.node_id

node_id_all = structure_problem_dimensions.node_id_all

57 n_stress = structure_problem_dimensions.n_stress

tn = structure_problem_dimensions.tn

59 mn = structure_problem_dimensions.mn

61 structure_problem_params =

StaticStructureProblemParams(node_id, node_id_all)

aero_problem_params = AeroProblemParams()

63

na = aero_problem_dimensions.na

65 network_info = aero_problem_dimensions.network_info

67 node_coord = structure_problem_params.node_coord

node_coord_all = structure_problem_params.node_coord_all

69 t = structure_problem_params.t

m = structure_problem_params.m

71

apoints_coord = aero_problem_params.apoints_coord

73 #Setting OpenMDAO Problem

82

A – Python Codes

75 top = Problem()

top.root = root = Group()

77 #If you want to used a gradient based optimization like SLSQP the

gradient is obtained by finite difference. So you have to set

the step because the default step make really little changes

on the variables, and the 8 float architecture of nastran

can’t recognize this variation.

79 #===

UNCOMMENT JUST FOR SLSQP OPTIMIZER

81 #===

top.root.deriv_options[’type’] = ’fd’

83 # top.root.deriv_options[’step_size’] = 1.0e-1

#===

85 #Here we are defining the openMDAO variables as Independent

Variables Component:

87 root.add(’wing_area’, IndepVarComp(’Sw’, Sw), promotes=[’*’])

root.add(’airspeed’, IndepVarComp(’V’, V), promotes=[’*’])

89 root.add(’sigma_y’, IndepVarComp(’sigma_y’, sigma_y),

promotes=[’*’])

root.add(’stress_ref’, IndepVarComp(’s0’, s0), promotes=[’*’])

91 root.add(’air_density’, IndepVarComp(’rho_a’, rho_a),

promotes=[’*’])

root.add(’Mach_number’, IndepVarComp(’Mach’, Mach),

promotes=[’*’])

93 root.add(’young_module’, IndepVarComp(’E’, E), promotes=[’*’])

root.add(’tick_max’,IndepVarComp(’t_i_max’,t_i_max),promotes=[’*’])

83

A – Python Codes

95 root.add(’t_min’, IndepVarComp(’t_i_min’,t_i_min),

promotes=[’*’])

root.add(’weight’, IndepVarComp(’W’, W), promotes=[’*’])

97 root.add(’mat_density’, IndepVarComp(’rho_s’, rho_s),

promotes=[’*’])

root.add(’poisson’, IndepVarComp(’nu’, nu), promotes=[’*’])

99 root.add(’angle_of_attack’, IndepVarComp(’alpha’, 0.),

promotes=[’*’])

root.add(’wing_span’, IndepVarComp(’b’, b), promotes=[’*’])

101 root.add(’wing_chord’, IndepVarComp(’c’, c), promotes=[’*’])

root.add(’s_coord’, IndepVarComp(’node_coord’, node_coord),

promotes=[’*’])

103 root.add(’s_coord_all’, IndepVarComp(’node_coord_all’,

node_coord_all), promotes=[’*’])

root.add(’thicknesses’, IndepVarComp(’t’, t), promotes=[’*’])

105 root.add(’masses’, IndepVarComp(’m’, m), promotes=[’*’])

root.add(’a_coord’, IndepVarComp(’apoints_coord’,

apoints_coord), promotes=[’*’])

107 #Here we are adding the modules for the interpolation between

aerodinamic and strucutural mesh, and the aggregation module,

defined in the Aereostructures package:

109 root.add(’inter’, Interpolation(na, ns, function =

function_type, bias = bias), promotes=[’*’])

root.add(’agrr’, Aggregation(n_stress,p,function),

promotes=[’*’])

111

#Creating the mda group for the convergence of aerodinamyc forces

and structural displacement:

113 mda = Group()

84

A – Python Codes

115 #Add disciplines to the group

mda.add(’displacement_transfer’, DisplacementTransfer(na,

ns), promotes=[’*’])

117 mda.add(’aerodynamics’, Panair(na, network_info),

promotes=[’*’])

mda.add(’load_transfer’, LoadTransfer(na, ns), promotes=[’*’])

119 mda.add(’structures’, NastranStatic(node_id, node_id_all,

n_stress, tn, mn), promotes=[’*’])

#Setting the mda solver type and settings:

121 mda.nl_solver = NLGaussSeidel()

mda.nl_solver.options[’rtol’] = 1.e-1

123 mda.nl_solver.options[’maxiter’] = 15

mda.nl_solver.options[’rutol’] = 1.e-2

125 mda.nl_solver.options[’use_aitken’] = True

mda.nl_solver.options[’aitken_alpha_min’] = 0.1

127 mda.nl_solver.options[’aitken_alpha_max’] = 1.5

#Adding the mda cycle to the optimization group:

129

mda.ln_solver = ScipyGMRES()

131

root.add(’mda_group’, mda, promotes=[’*’])

133 #==

UNCOMMENT JUST FOR SLSQP OPTIMIZER

135 #==

#==

137 # top.root.mda_group.deriv_options[’type’] = ’fd’

top.root.mda_group.deriv_options[’step_size’] = 1.0e-1

139 #==

#Setting Recorder

141 recorder = SqliteRecorder(’opti_g_55’) # In brackets

the name of the database

85

A – Python Codes

recorder.options[’record_params’] = False

143 recorder.options[’record_metadata’] = False

recorder.options[’record_resids’] = False

145 recorder.options[’record_derivs’] = False

top.root.nl_solver.add_recorder(recorder)

147 #Setting the Optimitazion

#Defining solver type and the optimizer

149 root.ln_solver = ScipyGMRES() # Solver type

top.driver = ScipyOptimizer() # Adding Optmizer

151 top.driver.options[’optimizer’] = ’COBYLA’ # Defining the

optimizer and is settings

top.driver.options[’disp’] = True

153 top.driver.options[’tol’] = 1.e-4

top.driver.options[’maxiter’] = 500

155 top.driver.opt_settings[’rhobeg’]= 0.1 # USE JUST FOR

COBYLA

#Defining objective and constraint functions

157 # Minimize the CDi or the mass

root.add(’obj_function’, ExecComp(’obj_f = CDi’),

promotes=[’*’])

159 # Define constraint CL - W/q

root.add(’con_lift’, ExecComp(’con_l = CL -

W/(0.5*rho_a*V**2*Sw)’), promotes=[’*’])

161 # Define constraint G - sigma_y

root.add(’con_stress’, ExecComp(’con_s = G - sigma_y’),

promotes=[’*’])

163 t_max=0.01*np.ones(tn)

t_min=0.006*np.ones(tn)

165 # Define one constraint t_max and t_min for each

differentthickness section in the model

for i in range(tn):

86

A – Python Codes

167 root.add(’max_t_’+str(i+1),ExecComp(’max_t_’+str(i+1)+’ =

t[’+str(i)+’] - t_i_max’,

t=np.zeros(tn,dtype=float)),promotes=[’*’])

169 root.add(’min_t_’+str(i+1),ExecComp(’min_t_’+str(i+1)+’ =

t[’+str(i)+’] - t_i_min’,

t=np.zeros(tn,dtype=float)),promotes=[’*’])

171 #Setting objective, design variables and constraint

top.driver.add_objective(’obj_f’)

173

alpha_max=10.

175 alpha_min=0.

177 top.driver.add_desvar(’alpha’, lower=alpha_min,

upper=alpha_max, adder=-alpha_min,

scaler=1/(alpha_max-alpha_min))

top.driver.add_desvar(’t’, lower=t_min, upper=t_max,

adder=-t_min, scaler=1/(t_max-t_min))

179

top.driver.add_constraint(’con_l’, lower=0.)

181 top.driver.add_constraint(’con_s’, upper=0.)

for i in range(tn):

183

top.driver.add_constraint(’max_t_’+str(i+1),upper=0.,scaler=1/t_i_max)

top.driver.add_constraint(’min_t_’+str(i+1),lower=0.,scaler=1/t_i_min)

185 #As u can see we have created one constraint for each different

thickness section, but for

#the stress constraint we just created one constraint using the

aggregation function, that is

87

A – Python Codes

187 #representative of the max value of the stress for each iteration.

189 #Setup Problem and Run It

top.setup()

191

view_tree(top, show_browser=False)

193

top.run()

195 top.cleanup()

opti_con_nt.py

88

A – Python Codes

A.2 Python Script to Access Results

1 #ACCESS TO THE RESULTS

#Importing Section

3 # -*- coding: utf-8 -*-

"""

5 Created on Mon Jun 25 15:57:07 2018

7 @author: a.iacono

"""

9 import sqlitedict

import numpy as np

11 import matplotlib.pyplot as plt

#Preprocessing Section

13 #Setting the name of the file that contain the database

name=’opti_g_50’

15 #Creating a dictonary from the database

#The print line just show us the number of the iterations and the

respective keys for each iteration.

17 db = sqlitedict.SqliteDict(name, ’iterations’)

print(list(db.keys()))

19

#Defining the number of the iteration and the x-axis for the graph

21 n=len(db)

x=np.arange(0,n)

23 #Creating the empy vector to save all the value for each

iteration of the variables of interest

cd=np.array([])

25 g=np.array([])

m=np.array([])

27 vm=np.array([])

cl=np.array([])

89

A – Python Codes

29 a=np.array([])

vms=np.array([])

31 t1=np.array([])

t2=np.array([])

33 t3=np.array([])

t4=np.array([])

35 t5=np.array([])

t6=np.array([])

37 t7=np.array([])

t8=np.array([])

39 t9=np.array([])

t10=np.array([])

41 t11=np.array([])

t12=np.array([])

43 #Extrapoling the dictonary of the first iteration to have access

to some value like the yield stress

data = db[’rank0:COBYLA|0|root|1’]

45 c = data[’Unknowns’]

#Determinating the value of the lift and stress constraint

47 con_l=(c[’W’]/(0.5*c[’rho_a’]*c[’V’]**2*c[’Sw’]))*np.ones(n)

con_s=c[’sigma_y’]*np.ones(n)

49 #Accessing to the value for each iteration

#As first we obtain a database for each iteration, the print

command it’s just to have a feedback on the runtime.

51

#From the Data dictonary we can collect all the data in refernce

at the variables of interest, and append it to the vector

created in the settings section.

53 for j in range(0,n):

data = db[’rank0:COBYLA|’+str(j)+’|root|’+str(j+1)]

55 print(’rank0:COBYLA|’+str(j)+’|root|’+str(j+1))

90

A – Python Codes

u = data[’Parameters’]

57 c = data[’Unknowns’]

g = np.append(g,c[’G’])

59 cd =np.append(cd, c[’CDi’])

a = np.append(a,c[’alpha’])

61 m = np.append(m,c[’mass’])

vms = max(c[’VMStress’])

63 vm = np.append(vm,vms)

cl = np.append(cl, c[’CL’])

65 t = c[’t’]

t1 = np.append(t1,t[0])

67 t2 = np.append(t2,t[1])

t3 = np.append(t3,t[2])

69 t4 = np.append(t4,t[3])

t5 = np.append(t5,t[4])

71 t6 = np.append(t6,t[5])

t7 = np.append(t7,t[6])

73 t8 = np.append(t8,t[7])

t9 = np.append(t9,t[8])

75 t10 = np.append(t10,t[9])

t11 = np.append(t11,t[10])

77 t12 = np.append(t12,t[11])

#Print Results

79 #Here we are printing all the graph of the variation of the

variables for each iteration.

#The script is also set to save the plot as jpg files in the code

folder.

81 fig, axes = plt.subplots(1, 3, figsize=(12, 4))

axes[1].grid (True)

83 axes[1].set_xlabel(’iteration’, fontsize=14)

axes[1].plot(x,vm)

91

A – Python Codes

85 axes[1].plot(x,con_s)

axes[1].set_title("VonMises")

87 axes[2].set_xlabel(’iteration’, fontsize=14)

axes[2].grid (True)

89 axes[2].plot(x,g)

axes[2].plot(x,con_s)

91 axes[2].set_title("G")

axes[0].plot(x,a)

93 axes[0].set_title("alpha")

axes[0].grid (True)

95 axes[0].set_xlabel(’iteration’, fontsize=14)

#axes[2].plot(x,32vms)

97 #axes[2].set_title("VonMises Stresses")

plt.savefig(name+’_1’,dpi=1000, bbox_inches=’tight’)

99 plt.show()

fig, axes = plt.subplots(1, 3, figsize=(12, 4))

101

axes[1].grid (True)

103 axes[1].set_xlabel(’iteration’, fontsize=14)

axes[1].plot(x,cd)

105 axes[1].set_title("CDi")

axes[2].set_xlabel(’iteration’, fontsize=14)

107 axes[2].grid (True)

axes[2].plot(x,cl)

109 axes[2].plot(x,con_l)

axes[2].set_title("CL")

111 axes[0].plot(x,m)

axes[0].set_title("Mass")

113 axes[0].grid (True)

axes[0].set_xlabel(’iteration’, fontsize=14)

115 #axes[2].plot(x,32vms)

92

A – Python Codes

#axes[2].set_title("VonMises Stresses")

117 plt.savefig(name+’_2’,dpi=1000, bbox_inches=’tight’)

plt.show()

119 plt.plot(x,t1,label=’t[1]’)

plt.plot(x,t2,label=’t[2]’)

121 plt.plot(x,t3,label=’t[3]’)

plt.plot(x,t4,label=’t[4]’)

123 plt.plot(x,t5,label=’t[5]’)

plt.plot(x,t6,label=’t[6]’)

125 plt.plot(x,t7,label=’t[7]’)

plt.plot(x,t8,label=’t[8]’)

127 plt.plot(x,t9,label=’t[9]’)

plt.plot(x,t10,label=’t[10]’)

129 plt.plot(x,t11,label=’t[11]’)

plt.plot(x,t12,label=’t[12]’)

131 plt.grid(True)

plt.xlabel(’iteration’, fontsize=14)

133 plt.ylabel(’thickness’, fontsize=14)

plt.legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.05),

135 fancybox=True, shadow=True, ncol=5)

plt.savefig(name+’_3’,dpi=1000, bbox_inches=’tight’)

reader.py

93

Bibliography

[1] url: http://www.cfd4aircraft.com/4ecerta_testcases_goland.php.

[2] url: https : / / commonresearchmodel . larc . nasa . gov / experimental -

approach/model-description/.

[3] url: https://commonresearchmodel.larc.nasa.gov/crm-65-airfoil-

sections/.

[4] Mostafa S. A. Elsayed, Ramin Sedaghati, and Mohammed Abdo. “Accurate

Stick Model Development for Static Analysis of Complex Aircraft Wing-Box

Structures”. In: AIAA Journal 47.9 (2009).

[5] Martins Joaquim R. R. A. “A COUPLED-ADJOINT METHOD FOR HIGH-

FIDELITY AERO-STRUCTURAL OPTIMIZATION”. In: (2002).

[6] Martins Joaquim R. R. A. and Lambe Andrew B. “Multidisciplinary Design

Optimization: A Survey of Architectures”. In: AIAA JOURNAL (2013).

[7] Saltelli A. Sensitivity Analysis for Importance Assessment, Risk Analysis,

2002.

[8] R.J. Allemang and D.L. Brown. “A correlation coefficient for modal vector

analysis”. In: Proceedings of The 1st International Modal Analysis Conference

(1972).

[9] Daniele Brigante, Carlo Rainieri, and Giovanni Fabbrocino. “The role of the

Modal Assurance Criterion in the interpretation and validation of models

for seismic analysis of architectural complexes”. In: Procedia Engineering 199

(2017), pp. 3404–3409.

94

http://www.cfd4aircraft.com/4ecerta_testcases_goland.php
https://commonresearchmodel.larc.nasa.gov/experimental-approach/model-description/
https://commonresearchmodel.larc.nasa.gov/experimental-approach/model-description/
https://commonresearchmodel.larc.nasa.gov/crm-65-airfoil-sections/
https://commonresearchmodel.larc.nasa.gov/crm-65-airfoil-sections/

BIBLIOGRAPHY

[10] George Done. “Introduction to Aircraft Aeroelasticity and Loads J. R. Wright

and J. E. Cooper John Wiley and Sons, The Atrium, Southern Gate, Chich-

ester, West Sussex”. In: The Aeronautical Journal (1968) (2008).

[11] M.I. et al. Friswell. “The convergence of the iterated IRS methods”. In: Journal

of Sound and Vibration (1998).

[12] M. Goland. “The Flutter of a Uniform Cantilever Wing”. In: Journal of Applied

Mechanics 12 (1945), A197–A208.

[13] B. M. Irons and R. C. Tuck. “A Version of the Aitken Accelerator for Computer

Iteration”. In: International Journal for Numerical Methods in Engineering 1

(1969), pp. 275–277.

[14] Mas Colomer J. et al. “Similarity Maximization of a Scaled Aeroelastic Flight

Demonstrator via Multidisciplinary Optimization”. In: (2017).

[15] S. Jakobsson and O. Amoignon. “Mesh deformation using radial basis functions

for gradient-based aerodynamic shape optimization”. In: Computers & Fluids

36.6 (2007), pp. 1119–1136.

[16] G. Kreisselmeier and R. Steinhauser. SYSTEMATIC CONTROL DESIGN BY

OPTIMIZING A VECTOR PERFORMANCE INDEX. Ed. by M.A. CUENOD.

Pergamon, 1980, pp. 113–117.

[17] Andrew B. Lambe, Graeme J. Kennedy, and Joaquim R. R. A. Martins. “An

evaluation of constraint aggregation strategies for wing box mass minimiza-

tion”. In: Structural and Multidisciplinary Optimization 55.1 (2017), pp. 257–

277.

[18] M Lombardi, Nicola Parolini, and Alfio Quarteroni. “Radial basis functions

for inter-grid interpolation and mesh motion in FSI problems”. In: Computer

Methods in Applied Mechanics and Engineering 256 (2013), pp. 117–131.

[19] Joaquim R. R. A. Martins and Nicholas M. K. Poon. On Structural Optimiza-

tion Using Constraint Aggregation. 2005.

[20] Joaquim R. R. A. Martins, Peter Sturdza, and Juan J. Alonso. “The Complex-

step Derivative Approximation”. In: ACM Trans. Math. Softw. 29.3 (2003),

pp. 245–262.

95

BIBLIOGRAPHY

[21] Beran P. et al. “Numerical analysis of store-induced limit-cycle oscillation”. In:

Journal of Aircraft 41 (2004), pp. 1315–1326.

[22] Pat Piperni, Mohammed Abdo, and Fassi Fafyeke. “The Application of Multi-

Disciplinary Optimization Technologies to the Design of a Business Jet”. In:

(2004).

[23] Nicholas M. K. Poon and Joaquim R. R. A. Martins. “An adaptive approach

to constraint aggregation using adjoint sensitivity analysis”. In: Structural and

Multidisciplinary Optimization 34.1 (2007), pp. 61–73.

[24] T.C.S Rendall and C.B Allen. “Unified fluid-structure interpolation and mesh

motion using radial basis functions”. In: International Journal for Numerical

Methods in Engineering 74.10 (2008), pp. 1519–1559.

[25] J.C. Serralta. and D. Glenis. “BLENDED WING BODY MODEL REDUC-

TION FOR AEROELASTICITY”. In: (2017).

[26] MSC Software.MSC Nastran 2012 Quick Reference Guide. MacNeal-Schwendler

Corporation, 2011.

[27] Alexander Verbart, Matthijs Langelaar, and Fred van Keulen. “A unified ag-

gregation and relaxation approach for stress-constrained topology optimiza-

tion”. In: Structural and Multidisciplinary Optimization 55.2 (2017), pp. 663–

679.

[28] G. A. Wrenn. “An indirect method for numerical optimization using the Kreis-

selmeier– Steinhauser function”. In: Technical Report CR-4220 (1989).

[29] Qu Z. Model Order Reduction Techniques with Applications in Finite Element

Analysis. Springer-Verlag London, 2004.

[30] Ke-Shi Zhang et al. “Constraint aggregation for large number of constraints

in wing surrogate-based optimization”. In: Structural and Multidisciplinary

Optimization (2018).

96

	List of Figures
	Introduction to Aerostructural Optimization
	Multidisciplinary Design Optimization MDO
	Optimization Methods
	Sensitivity Analysis

	Aeroelasticity
	Static aeroelasticity

	Source Code Description
	Structure of the Code
	Component
	Geometry
	Raidial Basis Functions
	Aerodynamics
	Structure
	Load and Displacements Transfer

	Driver
	Global Optimizer
	MDA Driver

	Constraint Aggregation
	Aggregation
	Aggregation Method

	Aggregation Functions
	Function
	Effects of the Aggregation Parameter P

	Aggregation Component

	Reduced Model for MDA Loop
	Introduction to the Reduced Model
	Approach for the Reduced Model

	Structure of the Code
	Creation of the FEM model
	Extraction of Stiffness and Inertia Properties

	Validation of the Stick Model
	Comparison of the Static Response
	Comparison of the Modal Properties

	Modification and Results
	New Mass Distribution
	Automatization of the Mode Pairing

	Results

	Test Cases
	Goland Wing
	CRM wing
	CRM Wing Simple Model
	Different Options for the Optimization
	Problems
	Cobyla Design Variables Limits
	Finite Difference Gradient Evaluation Error
	Nastran Output File Reader

	Results
	Reader code
	Test Cases Results
	Case 1
	Case 2
	Case 3 and 4
	Case 5

	Appendix Appendices
	Appendix Python Codes
	CRM Wing Optimization Test Case 1
	Python Script to Access Results

	Bibliography

		Politecnico di Torino
	2018-10-18T14:11:50+0000
	Politecnico di Torino
	Enrico Cestino
	S

