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I 

 

Abstract 

Solar home battery systems: analysis of historical time series and system 
optimization  

The installed PV capacity is growing fast worldwide and it is forecasted that will 

continue to grow considerably. In addition to this, home battery systems have 

been improved in the last years and this created high expectation in the sector, 

since their introduction could make the PV even more profitable for domestic use. 

Analysing historical data of 19 households in Germany, equipped with these two 

technologies, indicators of their profitability will be calculated and discussed to 

better understand the potentialities of these systems and to assess if they are 

already economically viable or not. 
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1 Introduction 

Photovoltaic systems are an important achievement of last century: The first 

remarkable solar cell, which is its main component, was developed at Bell 

Laboratories in 1954 by Chapin et al. [1]; it was silicon based and had an 

efficiency of 6%. 

At the beginning, solar cell technology was used mainly to power space vehicles 

but in few decades, thanks to important investments done to improve its 

performances and lowering its costs, had a huge diffusion and found application 

in different sectors. 

 

1.1 General context about photovoltaic and batteries 

The rise of photovoltaic (PV) is not astonishing because it, and more in general 

the solar energy, is a renewable source and one of the most promising one. 

Renewable’s growth can be explained considering the energetic-environmental-

economic problems of the last decades:  

 

 The world energy consumption has gradually increased and it is supposed 

to rise more: according to the International Energy Agency (IEA) [2] it 

amounted to 13’760 MToe1 in 2016 and it is estimated to expand by 

around 30% between today and 2040, reaching 17’584 MToe. 

 The high rate of fossil fuels (coal, oil and natural gas) exploitation has 

considerably lowered their availability. 

 The pollution due in particular to the use of fossil fuels, which still are the 

most employed type of energy source, has been linked to several 

environmental issues. 

 

                                            
1 1 Mtoe = 11.63 TWh 
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Today renewables give a consistent contribute to the electricity produced 

worldwide, though they are not predominant (and even less in terms of total 

energy consumed since the world consumes more for heat and transportation 

than to have electricity). 

It is estimated that, at the end of 2017, the global renewable generation capacity 

amounted to 2’179 GW and it was composed as follow: 53% hydro, 23% wind, 

18% solar, 6% others sources. 

These renewables are not equally distributed across the world: 919 GW are 

installed in Asia, 512 GW in Europe, 348 GW in North America, 202 GW in South 

America and 198 GW in the rest of the world [3]. 

 

 

Figure 1 shows the trend of renewables during last ten years:  

Figure 1. Renewable power generation and capacity as a share of global power [4]. 
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First line from the top shows the percentage of new installed renewable capacity 

in the corresponding year compared to all the others plants. It reaches its 

maximum in 2017: 61%.  

Lines in the middle and at the bottom indicates respectively the trends of installed 

renewable capacity and power generation in the world, which are both upward. 

These two lines never cross each other. The share of installed capacity is 

generally higher indeed to compensate that renewable energy sources like solar 

or wind are not constant and always available, but subject to time variability. 

These data, which are all referred to plants dedicated to production of electricity 

only, evidence that renewables still have a long way to go but are growing fast. 

In 2017 they beat other sources in terms of installed capacity and share of money 

invested (265 billion $), with a contribute given mainly by solar and wind. 

Solar alone was equivalent to 38% of all the net new power capacity added in 

2017 worldwide, while wind contribute was 20% [4]. 

This shows how important is the PV today. It could be objected that it is not the 

only technology existent to exploit the solar energy, but the PV is currently the 

mainstream one: concentrated solar power is still very limited in term of installed 

capacity, that amounts to 4 GW. 

The leader in PV installations is China, followed by the USA, Japan, Germany 

and Italy. Those countries are not located in the regions with the highest potential 

for resource availability (Africa and Middle East), but they achieved their goals 

due to opportune policy and regulatory incentives (see Appendix A). 

“Grid parity” has been achieved in several countries and the costs for solar power 

are continuing to diminish thanks to advancements in technology and the opening 

of new markets for solar industry in emerging and developing nations [5]. 

 

1.1.1 Future trends 

IEA tries to evaluate how it will change the energy market in the future; in this 

paragraph are listed the projections for one of the possible scenarios [6]. 
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Energy consumption, as already said, is supposed to rise by around 30% by 2040 

in the world. 

This trend is in line with the expected rise of population, that could reach and 

overcome 9 billion, to which will contribute developing countries in Asia, with India 

as first.  

The growth in the energy demand takes already into account important 

improvements in energy efficiency, that will play a key role together with natural 

gas and renewables, while oil, coal and nuclear will continue to grow with a rate 

much lower than these. 

Policies will continue to support renewable electricity, more by means of 

competitive auctions than feed-in tariffs, and the power sector will change due to 

investment in distributed solar PV done also by millions of households, 

communities and enterprises. 

It is forecasted that renewables will receive two-thirds of global investment in 

power plants to 2040 and in that year the share of renewables in power 

generation will reach 40%. Solar, thanks to a rapid diffusion of PV, promoted by 

China and India, will become the largest source of low-carbon capacity. 

Also in the European Union the renewables will continue to grow considerably 

(they will represent 80% of new capacity installed) and wind will become the first 

electricity source after 2030. 

Another important change will be the growth of electricity share in final 

consumption of almost a quarter by 2040, due also to the increased employ for 

heat and mobility (according to IEA’s projections there will be 280 million of 

electric vehicles worldwide). 

 

1.1.2 Batteries for the residential PV market 

Batteries can improve the performances of PV systems that, without a storage 

system, cannot regulate their production to match the demand curve, but only be 

disconnected when it is opportune in order to stop their production.  
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Recently home batteries are becoming more popular, especially due to price 

reductions in this sector, and their further develop could support the diffusion of 

PV across the world, promote the micro-grids and also lead to autonomous 

households [7]. 

Despite they are already available for the residential market, these storage 

systems are still too expensive and need subsidies like feed-in tariffs, favourable 

net metering schemes or green certificates to be profitable in the European 

countries [8]. For this reason, their diffusion in this field it is still limited and under 

evaluation. 

From the prosumer (term used to indicate that the owner of the PV battery system 

is a consumer and a producer of electricity at the same time) point of view, the 

benefit is given by savings to fulfil his electrical demand: they tends to become 

higher if higher is the share of the self-consumed energy, thanks also to 

exemptions (generally at least partial in the European framework) from taxes 

regarding the use of the electrical grid, that is financed by its users for its 

maintenance and development. 

It is clear that this situation can put in discussion the distribution of shared grid 

costs into an energy market because, as the prosumers become more 

predominant, this change could lead to an unfair situation for the other consumers 

fully depending by the grid, that would be forced to pay more if the costs are not 

redistributed in an alternative way. 

 

1.2 Aims and objectives of this thesis 

The main goal of this work is the evaluation of Solar Home Battery Systems: 

The term is referred to PV for domestic use (generally mounted on the rooftop of 

a residential building) coupled with batteries. 

Results obtained and considerations will be based on the analysis of a database, 

which contains historical data of these systems, gently put at disposal by the 

University of Liège.  
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The analysis will be performed using Python, a powerful programming language 

that currently find application also as a data analysis tool. 

Thanks to the information contained in the database object of studies, some 

actually existent solar home battery systems will be described, discussed and 

compared to two corresponding hypothetic cases:   

In the first any contribution given by the battery to the system will not be 

considered (case without battery/stand-alone PV system). 

In the second the controller that regulates the energy flows of the system is 

substituted with an ideal one that follows a precise dispatch strategy (case 

optimized). 

 

1.3 Recent studies on Solar Home Battery Systems 

The classical system considered in this thesis is illustrated in Figure 2: it consists 

of a DC-coupled PV and battery system that covers partially the consumption of 

one household and sends electricity in excess to the grid.  

 

 

Figure 2. Energy flow chart of a typical solar home battery system [9]. 
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All the fundamental aspects concerning components and functioning of PVs and 

Lithium Ion batteries (the ones most used for this kind of application) are not 

presented in this work because they are considered to be already known by the 

average reader.  

In this paragraph we will instead focus on the recent studies effectuated to 

evaluate the profitability of these systems. 

According to [10], in Germany, investments in battery storage for small residential 

PV systems were already profitable in 2013, without policy support, but for that 

study the battery investment cost was calculated by adding up the energy and 

power cost of 171 €/kWh and 172 €/kW respectively. 

That cost assumption seems to be really low: reference [11] estimates that in 

2015 the storage price was around 500 EUR/kWh and the investment resulted to 

be not profitable, since it would have been needed a cost below 450 EUR/kWh. 

In accordance with this, another study of 2016 [12] states that these systems still 

needed subsidies and increasing retails price of electricity to become 

economically viable in Germany. 

In evaluating the profitability, it is necessary to determine the volume of self-

consumption. Once that is known, it is possible to calculate the self-sufficiency 

rate (SSR) and the self-consumption rate (SCR), two important indicators that will 

be described in Section 4.1.6. of this thesis. 

Self-consumption depends by the system design: [13] shows that, varying the 

size of the battery from 0 to 16 kWh, the SSR varies from 30% to 66% in winter 

and from 48 to 98% in summer; in that case, a further augment of the capacity 

was clearly inconvenient because even with 32 kWh the SSR in winter was still 

66% (while reached 99% in summer). 

In order to evaluate it correctly, it is important to have data of good quality 

concerning the profiles of consumption and production. 

Nevertheless, several previous studies are based on models and historical data 

that are “aggregated”: 
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In fact, they are relative to the profile of more household or characterized by a 

low time-resolution, like for instance of a value for each day, that therefore 

smoothen out the variability of the individual profiles or the variability over time. 

This thesis instead, to obtain results as accurate as possible, will follow the same 

approach of [7], a study based on historical disaggregated data with high time-

resolution, relative to households located in different European countries. 
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2 The Python language and other tools 

What is Python, the main tool of this thesis? By definition: “Python is an 

interpreted, object-oriented, high-level programming language with dynamic 

semantics” [14].  

Since its first appearance in 1991, Python has become one of the most popular 

programming languages, together with Perl, Ruby, and others [15]. It has become 

famous to create websites using its different frameworks and it is sometimes 

called “scripting language” since it can be used to write quickly small programs, 

or scripts, and it can be used also as a glue language to connect existing 

components together. 

Adoption of this interpreted language for scientific computing in industry 

applications and academic research has raised considerably since the early 

2000s. Actually Python is supported by a large and active scientific computing 

community and it is freely distributed; this gives a nice boost to its future additional 

diffusion and improvement. 

Others reasons to justify its popularity are that its supports many scientific 

modules and packages, that are also distributed for free, its syntax is easy to read 

and, least but not last, a program written in Python is easy to debug. 

In the other hand, since Python is an interpreted programming language, usually 

most of its code cannot be fast as code written in a compiled language like Java 

or C++. This is an aspect to consider if the application of interest requires high 

requirements in terms of process time performance at the expense of more time 

spent in programming. 

To pursue aims of this thesis the learning of Python’s basis has been essential 

and additional time has been devoted to acquire the skills useful to employ it as 

data analysis tool. 

Concerning this last application (data analysis and exploratory/interactive 

computing and data visualization), it is possible to remark that in last years, 

thanks to the improvement of its library support (mainly due to Pandas’ 
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introduction and development), it has become an important alternative for data 

manipulation tasks among other dedicated languages and tools. 

As mentioned Python supports numerous additional modules and packages, built 

to extended its basic functionalities, and it is often employed the term “library” to 

indicate a collection of more modules. 

In this chapter will be illustrated the main libraries of Python and other tools that 

have been useful to reach the goals of this thesis and that in general are suitable 

to explore and analyse a database. 

 

2.1 NumPy 

NumPy stands for Numerical Python and it is the basic package for scientific 

computing in Python. It lets to use [15]: 

 A fast and efficient multidimensional array object: “ndarray”. 

 Functions for performing element-wise computations with arrays or 

mathematical operations between arrays. 

 Tools for reading and writing array-based data sets to disk. 

 Linear algebra operations, Fourier transform, and random number 

generation. 

 

NumPy arrays (an array is the collection of elements of a single data type) are 

important concerning data analysis because they are the most efficient Python 

data structures to store and manipulating numerical data. 

 

2.2 Pandas 

Pandas (name derived from panel data and Python data analysis) is a Python 

library that adds objects and functions conceived to work easier with structured 

data and it makes of Python a suitable environment for data analysis. 
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The primary object in pandas is the “DataFrame”: a two-dimensional, tabular, 

column-oriented data structure. 

Pandas combines the high performance array-computing features of NumPy with 

the flexible data manipulation capabilities of spreadsheets and relational 

databases. It includes sophisticated indexing functionality to facilitate classical 

data analysis operation such as to reshape, slice and dice, perform aggregations, 

and select subsets of data [15].  

 

2.3 Matplotlib 

Matplotlib is the Python library most commonly used to create plots and other 2D 

data representations. It is possible to choose among different types of plots and 

styles and the quality of figures so created is good enough for scientific 

publications. 

 

2.4 Spyder 

Spyder stands for “Scientific PYthon Development EnviRonment” and it is one of 

the possible IDEs (integrated development environments) for Python. It is 

compatible with Python libraries and it provides advanced editing, interactive 

testing, debugging and other useful features, such as the “variable explorer”. 

 

2.5 MySQL 

MySQL is an open source Relational Database Management System (a particular 

type of software that makes possible the interaction between the user and the 

database of interest) based on Structured Query Language (SQL). 

SQL is the most popular language for adding, managing and retrieving data in a 

database. It lets to perform these operations quickly and it is reliable. 
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3 Data management of the database Speicherdata 

3.1 Speicherdata’s content and structure 

The database to analyse, own by the University of Liège, is called Speicherdata 

(“Speicher” means memory in German) and it contains measures (mostly 

electrical measures), regarding the performances of 19 houses equipped with 

photovoltaic panels and electrical batteries. 

Together with these data were not given additional information, except that all 

these houses were located in Aachen (a city in the west of Germany, close to the 

borders with Belgium and Netherlands). 

To access to the database and its content was quite immediate since it was 

stored on MySQL; the access was effectuated through remote desktop 

connection to exploit a computer of the university already configured to 

communicate with the database. 

It was immediate, once logged into MySQL, to realize how big it is the database 

Speicherdata:  

It occupies in total 80.5 Gigabytes and it is divided in 19 tables. Each table 

represents one household, it is distinct by a numeric code and has a size that 

varies from a minimum of 0.4 to a maximum of 8.5 Gigabytes.  

This difference in size among tables is especially due to the fact that the period 

between the first and last measure effectuated is not the same for each table, 

while the period between two consecutive measure is always the same, as it will 

be better clarified in this chapter.  

In Appendix B it is possible to see the first screen of Speicherdata; it can be noted 

also that there is correspondence, almost proportional, between the numbers of 

rows contained in a table and its dimensions. 

In the next page instead it is shown the screen that appears when one of the 

tables is selected, that provides simply a partial view of its measures: 
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Figure 3. Table “high_res_02098” in MySQL. 
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Each table has rows and columns; each columns has a label that refers to the 

type of measure contained. For example, the column with label “T_bat_C” 

contains the measures of the battery’s temperature in Celsius degrees. 

The number of columns/measures is not exactly the same among tables and it is 

usually around 50. Of these, several measures won’t be interesting to analyse 

and therefore a selection will be done. 

The fact that the measures contained in each table are not exactly the same it is 

not a big problem since the most important measures are contained in almost 

every table and the convention used to write labels is always the same (name of 

the measure in English abbreviated plus unit of measure). 

A key measure, also useful to understand better how are structured these tables, 

is the time, contained in the column labelled “time”. 

As displayed in figure, the time is recorded in a numeric format: The Unix Epoch. 

According to this format, every number (of 10 digits in our case) represents the 

number of seconds that have elapsed since the midnight of 1th January 1970. 

The time conversion is immediate with Python or other programs such as Epoch 

Converter (freely available on the web) therefore we know, for example, that the 

first measure of the table considered, was collected the 14th April 2015, at 

12:00:00 AM (GMT). 

Looking the “time” column we note that each number written in the Unix Epoch 

format is equal to the previous value plus one and so it is straightforward to 

conclude that measures were collected with a time step of 1 second, or that in 

other words each row contains the values collected in a precise instant of time 

and that the database has a resolution of 1 second (even if data are not perfect 

as it will be explained). 
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3.2 Data processing: download 

In order to work with a database of these dimensions, the first preliminary step 

was to arrange the data in a more suitable way: 

In fact, even if Python, through a toolkit called SQLAlchemy, can directly interact 

with the database on the MySQL platform to read and process the values there 

contained, this was highly inadvisable since it would have slowed down 

considerably the next steps. 

The best way to proceed, that made unnecessary a further communication 

between Python and MySQL, was to download the data on the computer, in a 

suitable format. 

Before to download the database, some considerations were done: 

According to common sense, it looked useless in this case to keep unaltered the 

original high resolution of the database that, as already said, contains measures 

effectuated with a time step of 1 second. 

This especially for two reasons: 

 In this analysis we are interested in results evaluated on time intervals 

much higher of one second, usually comprised between one hour as 

minimum and one year as maximum, so considering a lower resolution 

should not affect much the results. 

 The precision of each measure is unknown and this discourage from 

evaluating the errors and following standards of precision really strict.  

 

About the first point, it find confirm in reference [7]: this article demonstrates that 

a time step of 15 minutes is good enough to carry out data analysis of this kind. 

Another concern before to proceed with the download was the following: all the 

19 tables contain values of interest or not? 

To answer it was useful to run a script on Python (results are displayed in the 

following figure). 
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Here each column contains 7 values relative to one table; in order there are: 

 “First”: starting date of the measures. 

 “Last”: ending date of the measures. 

 “Delta”: difference of time between these two extreme dates (last - first). 

 “Delta_s”: the previous value (delta) expresses in seconds. 

 “Nrows”: total number of rows in the table. 

Figure 4. Information about Speicherdata’s tables. 
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 “Completeness”: The ratio Nrows/Delta_s. If it is equal to 1 the 

completeness of the table is considered maximum (100%) since in the 

ideal case it should contain one row (set of measures) for each second. 

 “Completeness*”: It is like the Completeness but it is evaluated only on the 

last 365 days if delta it is higher than one year. We are considering the last 

365 days and not the first because the ending date doesn’t change much 

from table to table (making the last measures more interesting for our 

purposes), at difference of the starting date. 

 

Looking at these values it emerges that tables are different in terms of quantity of 

data and also of quality. 

Of 19 tables, 7 were discarded, according to this preliminary analysis, because 

they could provide information about a period shorter than 200 years.  

Since we would like to calculate yearly indicators in our analysis, it was in fact 

advisable to select tables characterized by a period not too shorter than one year 

and a percentage of completeness as high as possible, in order to obtain good 

results. 

The data contained in the remaining tables of Speicherdata were instead 

elaborated and then saved on the computer: 

Using Python in combination with MySQL, the values contained in each table of 

interest were read at groups of 900 at a time, then averaged and saved to obtain 

12 corresponding tables (Panda’s dataframes to be more precise) with a 

resolution of 15 minutes instead of 1 second (so much smaller but still good 

enough as previously explained). 

This process took hours and it was the only one expensive in term of process 

time. Done this, it was possible to collect all the information in one file: 

As format pickle (a serialization format of Python) was considered the most 

convenient choice. The file resultant was easily accessible through Python and 

had a size of 195 Megabytes. 
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3.3 Further data’s manipulations 

At this point, even if data were easily accessible (less than 1 minute required to 

load all the rearranged database) and apparently ready to be used, it was still 

necessary to pay more attention to the quality of the data and to do additional 

steps before to start the true analysis. 

 

3.3.1 NaN values 

In the tables, due to the processing done to transfer data from MySQL to Python, 

is now present a DateTimeIndex: a column with dates in chronological order, in 

which the first corresponds to the time of the first set of measures available for 

the selected table/house, the next is equal to the first plus 15 minutes (the new 

time step) and so on until the last measure available for that table. 

Nevertheless, as we already could expect when we noted that the numbers of 

the rows in the tables is generally lower than the expected value, for some dates 

that compose the DateTimeIndex, instead to have the corresponding numeric 

values, it appears repeatedly the acronym “NaN” that stands for “not a number”. 

This since even in the original version of the data there are not measures 

associated to certain periods: it is like if the recordings were interrupted for some 

days (some weeks in the worst cases) before to start again. 

To compensate this, instead of leaving holes, the best thing to do was to fill all 

the NaNs using values as realistic as possible. 

It was chosen to fill the NaNs with the values of the previous day and, in case 

that it was missing more than one day of measures, half of the missing days were 

built using the first day available going backward and the other half with the first 

day available going forward.  

This modify was effectuated for all the tables running a Python script, that was 

also useful to check if the number of NaNs was well described by the 

complementary percentage of the completeness calculated before. 
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It was unavoidable to introduce an error by proceeding with the filling but, since 

the system object of study usually do not change behaviour considerably during 

few consecutive days, we expect that the error introduced is not relevant at 

condition that the number of missing data was not excessive. 

Considering this, it was chosen to discard all the tables with a completeness lower 

than 80% and consequently the number of tables to study decreased to 10. 

 

3.3.2 Null values 

Observing the data, it was noted that some particular measures had only null 

values. This means that zeros were used to indicate the lack of information. 

It was important to check if it happened also for the measure of interest, and 

therefore through a script was calculated the percentage of null values for each 

measure, for all the tables. 

For some measures (like for instance the power of the battery or the power of the 

PV) it was normal to have a lot of zeros and so it was not trivial to make the 

distinction. 

In these uncertain cases it helped to graphically evaluate the distribution of the 

null values: 

 

This simply plot gives a representation of the periods in which the power of the 

battle is predominantly null for the considered table, that appear as not coloured 

areas. 

Figure 5. Power battery null values distribution in “high_res_01584”. 
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It was immediate to conclude that the null values are more frequent during the 

winter months, as we expected since during winter the battery is less used 

(because the PV produces less electricity). In addition to this the null values were 

never concentrated on periods longer than 10 days and so this distribution was 

considered acceptable. 

In general, the problem of null values was not so relevant since it was more 

related to not useful measures. Anyway other tables were discarded because of 

that, like the table high_res_06615 that had null values of consumption for a 

whole month. 

 

3.3.3 Reindexing and final adjustments 

Checked the quality of the data during the previous steps, the tables still had a 

variable length in term of time: the average was similar to one year, with some 

tables much shorter and a few of them closer to one year and half. 

In order to obtain better results, it looked convenient to be a little more restrictive 

in the selection and so at the end it was chosen to work only with the following 5 

tables: 

 High_res_01584 

 High_res_02009 

 High_res_02098 

 High_res_02207 

 High_res_04054 

 

These tables were considered the most suitable to be analysed since they have 

a completeness equal or higher to 80%, a length of at least 365 days and they 

contained all the most important measures. 

It was possible to select a period of one year common to all these 5 tables to work 

with: 
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The period comprised between the midnight of the 15 October 2015 (included) 

and the midnight of the 15 October 2016 (not included). 

Therefore, the tables were reindexed to take this into account. This scheme can 

be useful to better understand the new structure common to all 5 the tables: 

 

  Index (label of 

measure 1)  

(label of 

measure 2) 

… (label of 

measure n) 

2015-10-15 

00:00:00 

(value of 1 at 

that time) 

(value of 2 at 

that time) 

… (value of n at 

that time) 

2015-10-15 

00:15:00 

(value of 1 at 

that time) 

(value of 2 at 

that time) 

… (value of n at 

that time) 

… … … … … 

2016-10-14 

23:45:00 

(value of 1 at 

that time) 

(value of 2 at 

that time) 

… (value of n at 

that time) 

Table 1. Structure of one table in Python (Type of object=Pandas’ Dataframe). 

 

To end tables were renamed keeping the last four digits of their name, preceded 

by the letter “t” (ex: “t1584” instead of “high_res_01584”), and about half of their 

columns were deleted because they contained measures not useful. 

At this point each table had 35136 rows (corresponding to 366 days because 

during that period is comprised the 29th February 2016) and a number of columns 

comprised between 22 and 28. 

All that information, that will be used to perform the true data analysis, was stored 

in a pickle file of 39 Megabytes. A really small one if compared with the huge 

dimensions of the database Speicherdata. 
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4 Data analysis 

The five selected tables, containing data (gathered during one year) of 5 different 

households, equipped with PVs and batteries, could finally be analysed. 

The procedure is more or less the same for each table and, to avoid repetitions, 

the table t4054 has been chosen as reference. Computations and plots are done 

using Python and its libraries. 

The most important measures at disposal are: 

 Power consumption of the house (AC) [W]. It’s always positive. 

 PV production before the inverter (DC) [W]. It’s always positive. 

 PV production after the inverter (AC)2 [W]. It’s always positive. 

 Power entering or exiting the battery (DC) [W]. It’s positive when the 

battery is discharging and negative during the charge. 

 Irradiance [W/m2].  

 

4.1 Computations and estimations 

4.1.1 House consumption 

Since we know the average power consumed by the house and its corresponding 

date, it is easy to evaluate the energy consumed on a period of choice (daily, 

monthly, etc…).  

In general:          

𝐸 = ∫ 𝑃(𝑡) 𝑑𝑡

𝑡𝑓

𝑡𝑖

 

Where E is the energy, P the instantaneous power and t the time. 

                                            
2 In few cases this measure is not available. To overcome this the inverter’s efficiency is 
considered equal to the average value of the other tables. 
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In our case the integral becomes a summation and it is important to keep in 

mind that it does not refer to 1 second (SI unit) but to 15 minutes (time step for 

each data after the data management phase). 

Considering this, to calculate the energy consumed during a period X, 

expressed in kWh, we have that: 

𝐸 =
∑ 𝑃(𝑖)𝑛

𝑖=1

4
 

 

Where n is the number of measures contained in X.  

If we want to evaluate the yearly energy consumed, n is equal to 4 (4 measures 

for hour), multiplied by 24 (24 hours for day), multiplied by 366 (days contained 

in the period considered). So in this case n is equal to 35’136. 

For table t4054 the result is 6’135 kWh. This and other results will be shown 

and discussed in the next chapter. 

 

4.1.2 PV production 

The yearly energy produced by the PV of each house is calculated in the same 

way and for the reference it amounted to 5’781 kWh (value before the inverter). 

If it is present also the measure of PV power after the conversion in AC (missing 

for some tables), the inverter’s efficiency (µinv) can be calculated considering the 

simple relation: 

𝑃𝑝𝑣𝑎𝑐
= 𝑃𝑝𝑣𝑑𝑐

∗ µ𝑖𝑛𝑣 

 

It is also interesting to evaluate the relative PV size, given by the ratio of the 

energy yearly produced by the PV and yearly consumption of the house. 

In average it was equal to 1.2 for the five households. 
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4.1.3 Peak power 

The peak power has been estimated for each PV installation, despite the fact that 

we do not have proper information, such as the tilt angle and the orientation of 

the panels, and we do not know neither how it was exactly taken the measure of 

irradiance. 

For this estimation it was taken the maximum power registered with a 

temperature of the panels equal to 25°C or higher, divided by its respective 

irradiance and multiplied by the value of irradiance in the standard conditions 

(1000 W/m2). 

We obtained values comprised between 6.7 and 12.5 kWp. 

As next step it was interesting to calculate the ratio between the energy yearly 

produced by the PVs and their peak power. In average the result was equal to 

869 kWh/kWp, with a maximum value of 942 kWh/kWp. 

Confronting these values with a reference [16], they look realistic for the area 

around Aachen where the correspondent optimal value should be slightly lower 

than 1’000 kWh/kWp.  

Among the PVs, it was especially one to keep the average low with a value of 

766 kWh/kWp, and this can be caused by different reasons like errors in the data, 

not optimal installation of the PV or low efficiency of the solar cells (for example 

due to ageing or scarce maintenance). 

 

4.1.4 The battery 

About the battery we know the corresponding power, positive when the battery is 

discharged and negative when it is charged. Its maximum value is about 3 kW for 

each battery, except for t4054’s one that has a maximum power of 2 kW. 

With these data is possible to calculate the energy exchanged by the battery 

during a certain period, as seen before for the consumption.  

The ratio of these two values corresponds to the efficiency of the battery in that 

period (since in an ideal case all the energy stored in the battery can be released,  
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while in reality it is unavoidable to have some losses, like losses due to Joule’s 

effect for instance).  

For three tables the battery’s efficiency so evaluated is high (between 94 and 

97.5%) and for the other two is considerably lower (about 76 and 81%). This 

difference could be due to errors in the measures, hypotheses supported by the 

fact that one of these batteries results to be in state of charge also when the PV 

production is null (it happens for t2098). 

Going back to energy yearly discharged, it amounted to 1’672 kWh (of DC) in 

average. 

Another important data of the battery that can be evaluated is its available 

capacity: 

It is considered to be equal to the energy associated to the maximum consecutive 

power flow of discharge (situations in which the battery discharges a little before 

to be charged again are not considered), during the whole year of measurements. 

The average value of capacity its about 9.5 kWh, with a minimum of only 2.2 kWh 

for table t4054. 

A data correlated to this is the relative battery size that is the ratio between the 

battery’s capacity in kWh and the yearly house consumption expressed in MWh. 

Also in this case the minimum corresponds to table t4054 with 0.4 kWh/MWh 

against an average of 1.3 kWh/MWh. 

Even if that table is equipped with the smallest battery, it will be the one of 

reference to create plots because it is considered to have the most trustworthy 

measures. 

 

4.1.5 The grid  

Like it happens in vast majority of cases, about solar home battery systems, the 

five households are not independent from the energetic point of view: despite 

they can produce energy with PVs, they still exploit the local electric grid to fulfil 

their electric consumption. 
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Generally, the house-owner try to cover its consumption exploiting as much as 

possible the electricity that his PV can produce, to save moneys that are also 

required to recover the cost of his investment.  

Energy is bought from the grid only when it is necessary:  

Thanks to the presence of the battery he can store the surplus of electricity 

produced into the battery that can behave like a secondary source of power, to 

exploit when the demand exceeds the production. 

At the same time if the production is higher than the consumption, since the 

amount of energy that can be stored is limited by the capacity of the battery and 

since it does not exist a storage system that does not comport losses, he can 

send his surplus to the grid. He usually receives a compensation lower than the 

average price that pays to buy electricity and, if in that moment the line is 

congested, he could instead be forced to pay for this choice.  

In the database Speicherdata are not included measures of the power extracted 

or injected into the grid (that would have been also useful to evaluate the 

precision of other measures, calculating the residual of the following balance), 

but these values can be calculate by difference, considering this balance of 

power: 

𝑃𝑔𝑟𝑖𝑑 = 𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 − (𝑃𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑑𝑐) + 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑑𝑐)) ∗ µ𝑖𝑛𝑣 

 

Where all terms respect the convention seen before; they are all positive except 

the power of the battery and the power of the grid. This last term will be positive 

if the electricity goes from the grid to the house, and negative in the reverse 

situation. 

Once that also the power of the grid was known (along the full period with a time 

step of 15 minutes), it was straightforward to consider separately its positive and 

negative values to calculate, respectively, the electricity received from the grid 

during one year (2’917 kWh in average) and the electricity sent to the grid (4’051 

kWh in average). 
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The same procedure was repeated to consider the case without battery 

(considering the power of the battery always null in the balance).  

As it was expected, in this case the energy flows exchanged with the grid raise: 

even if consumption and production do not change, the system loses flexibility 

and as consequence it becomes more dependant from the grid to balance the 

mismatch between production and consumption during each period. 

 

4.1.6 Self-consumption, SSR and SCR 

We use the word “self-consumption” to put in evidence the amount of energy 

consumed by the house that was made available by the PV or the battery. 

By definition it is equal to the consumption when the house does not receive 

energy from the grid and it is lower in the other cases. 

It can be evaluated for each time step using this expression: 

 

𝑃𝑠𝑒𝑙𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = min [𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑  , (𝑃𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝑑𝑐) + 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑑𝑐)) ∗ µ𝑖𝑛𝑣] 

 

In which “min” is the operator “minimum” that selects the smallest value between 

the power consumed and the other term separated by the comma.  

The energy yearly self-consumed is calculated in analogy with the energy 

consumed through a summation; the result is 3’003 kWh for the table t4054. 

To visualize better the concept of energy self-consumed we can use two 

important indicators: 

 The self-sufficiency rate (SSR) is the ratio between the self-consumed 

energy and the energy consumed by the house in a period (usually of one 

year, and n is the number of time steps contained in the period selected): 

 

𝑆𝑆𝑅 =
∑ 𝑃𝑠𝑒𝑙𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑   𝑛

𝑖=1

∑ 𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
𝑛
𝑖=1
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 The self-consumption rate (SCR) is the ratio between the energy self-

consumed in a period and the energy produced by the PV in that period, 

evaluated before the inverter: 

𝑆𝐶𝑅 =
∑ 𝑃𝑠𝑒𝑙𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑛
𝑖=1

∑ 𝑃𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑(𝐷𝐶)
𝑛
1

 

 

These two indicators, that can be evaluated also in the case without battery 

considering null its contribution to self-consumption, give an immediate idea 

concerning the system analysed:  

Higher is the SSR, higher is the grade of self-sufficiency/autonomy; if it reaches 

1 (its maximum value) the owner becomes completely autonomous (it can avoid 

to buy electricity from the grid). At the same time, values of SSR really high can 

indicate also that probably the PV and/or the battery is oversized with respect to 

the consumption: in common cases is not advisable to reach value too high of 

SSR, because the higher cost of the investment is not justified by its advantages, 

and there will be always an optimal size of the system that varies from case to 

case. 

Higher is the SCR, higher is the share of production self-consumed and higher 

should be the profitability of the system. In the other hand, this is not necessary 

true: it can mean also that the PV production is too small compared to the 

consumption and/or that the battery is oversized. 

Done these considerations, it is always better to have values of SSR and SCR 

as high as possible at parity of cost and, to choose the system with the optimal 

size for each specific case, another opportunity to maximise the system’s 

profitability is the demand side management (DSM). 

It consists in shifting the demand (usually it is possible to do it only partially) 

considering two objectives (not necessary coincident): 

The first is to make the profiles of consumption and production, that both vary 

during time, more similar in order to raise the SSR.  
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For instance, the owner could choose to activate his washing machine, manually 

or automatically, when the production is higher than the consumption. 

The second, but not less important, is to make the interaction with the grid more 

profitable, trying to consume less (and if it is possible to sell instead) when the 

price of electricity on the local market is high and trying to buy energy when it is 

low.  

A system equipped with artificial intelligence and sensors that can shift properly 

loads and storage devices, considering continuously information such as data of 

the system, data of the energy market and forecasts of the behaviour of both, is 

a solution that could justify its costs, especially in the future. 

 

4.2 Plots 

The creation of plots was helpful, starting from the first phases, to better 

understand the database’s content: the only information available about each 

measure was contained in a short label and, even if the labels were quite clear 

(ex: “I_dc_bat_1_A” for the direct current exiting or entering the battery in 

Ampère), it was important to create some plots simply to verify to have well 

understood. They were also useful initially, together with computation, to check 

the coherency between interrelated measures. 

In this section plots are used to show the behaviour of the systems object of 

studies and, when it is not specified, they refer to the household of reference 

(table t4054; while in Appendix C it is possible to see the plots for table t2098). 

The first one lets to visualize the balance of power discussed in Section 4.1.5:  

The four different powers (consumed by the house, produced by the PV, 

exchanged with the grid, exchanged with the battery) must give a null sum for 

each time step along the full period of study, else it is symptom of errors in the 

measurements.  

Graphically, during a period of choice, the areas under these four curves, that 

represent the quantities of energy exchanged, must give a sum null if summed 
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with the right convention of sign (ex: area positive when the power enters in the 

solar home battery system and negative when it leaves it due to consumption or 

losses or injection in the local grid). 

Here are displayed the power flows during a winter day: 

 

It is possible to see that, during the night, contributions of PV and battery are null 

and therefore the house consumption is satisfied by the grid only.  

Starting from 8:45 the PV starts to produce electricity, that is directly consumed, 

and consequently the grid will continue to supply power to satisfy the remaining 

share consumption. As the production increase, it exceeds the consumption 

(after 10:30) and the surplus is in part stored in the battery and in part sent to the 

grid. About three hours later the situation is reversed and the battery 

compensates the deficit of production, while the grid is almost inactive. 

After 16:30 the production is null, the battery is not able anymore to satisfy the 

consumption alone and in one hour it is fully discharged so the grid comes back 

to play the main role for the rest of the day. 

Figure 6. Power flows during the 1th January 2016. 
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During a summer day the dynamics are the same: 

 

Nevertheless, there are differences: the PV production is much higher and 

available during more hours, the battery does more switches between charge and 

discharge and there is not the peak of consumption that was registered in winter 

during evening, since it was probably due to heating devices. 

Figure 7. Power flows during the 1th July 2016. 

Figure 8. Self-consumption during the 1th July 2016. 
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Last figure lets to appreciate graphically the concept of self-consumption: 

Without battery, the system at each instant would simply try, as priority, to fulfil 

its consumption with the production available in that moment and the self-

consumption is the area given by the intersection of production’s area (in orange) 

and consumption’s area (in blue), coloured in brown. 

When a battery is added, the self-consumption raises because the battery 

charges when the consumption is lower than the production, exploiting the 

surplus, and it can release the energy when the situation is reversed. 

Looking at figure 7 we can see that it happens at least two time during that day 

(areas in black represent the amount of energy provided by the battery) and 

therefore the self-consumption in this case is equal to the brown area plus the 

black areas.  

Next two figures show, on daily basis, the amount of energy self-consumed along 

the year compared with the total consumption (figure 8) and with the PV 

production (figure 9): 

 

 

We can see that the consumption tends to oscillate between 15 and 20 kWh/day, 

with some peaks of about 25 and a negative peak of 10 kWh/day during the 

middle of September. 

Figure 9. Daily energy consumed and self-consumed along the year. 
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The self-consumption oscillates in a similar way but it is much smaller in winter 

and closer to the consumption in summer, so we will expect to have the highest 

values of SSR (that is given by the ratio of the two curves) during the summer 

months. 

 

 

Here we can remark that the profile of production is the most variable:  

During summer the production is higher and there are peaks over 35 kWh/day, 

while during several winter days is under 5 kWh/day and, as we expect since the 

battery is not of big capacity and it usually fully discharges before the end of each 

day, it is almost coincident with the self-consumption when it is lower than the 

daily consumption. 

We will expect to have the highest values of SCR (that is given by the ratio of 

these two curves) during winter months when the surplus of production is lower 

(mostly due to the production curve since the consumption curve has a more 

constant trend along the year). 

The next plot, that shows the values of SSR and SCR calculated during each 

week, confirms the previous considerations about these two indicators. 

It is possible to deduce that yearly SCR must be higher because the area 

comprised between the two curves is bigger when SCR is higher (if compared 

with the area between the two curves when instead SSR is higher). 

Figure 10. Daily energy produced and self-consumed along the year. 
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Furthermore, it is possible to note the difference between values collected in 

middle October 2015 and the ones collected exactly one year later. 

It is also interesting to see how the SSR and SCR change if we consider the same 

system deprived of its battery; we will indicate them as SSR* and SCR* when 

they are evaluated in this situation.  

This change is here displayed considering the ratio of the two indicators in the 

case without and with battery:  

 

 

These ratios can reach 1 as maximum and weekly they are always lower (if 

evaluated daily there are instead days in which they reach the maximum instead). 

This means that in the case without battery the weekly performances are always 

worse (as it could be expected):  

Figure 11. Weekly average of SSR and SCR along the year. 

Figure 12. Weekly constant of proportionality to have SSR* and SCR*, respect the normal case. 
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The SSR* is about 20% lower than the SSR along the year and the SCR* in 

average is about 50% lower than the SCR; this last one is small especially in the 

period in which the surplus of production is higher since the system without 

battery lacks of the flexibility necessary to exploit better this surplus. 

To conclude this section, monthly quantities of energy exchanged are reported in 

figure 13: 

 

 

Here we see again trends observed before for the consumption (that varies from 

420 to 560 kWh/month), the production (from 160 to 710 kWh/month) and the 

self-consumption (from 130 to 360 kWh/month). 

In addition, it is displayed the difference between energy received from the grid 

and energy sent to the grid (from -270 to 370 kWh/month): 

We see that during the six months more productive (from April until September 

included) the difference is negative, so the share of energy sold is higher, while 

during other months it is higher the share of energy bought from the grid. 

 

Figure 13. Monthly energy exchanged by the solar home battery system. 
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5 Results of the analysis 

Following the methodologies described in the previous chapter, the physical 

quantities of interest are evaluated for each table selected and results are 

collected in the following tables. They all refer to the whole period of 1 year if it is 

not specified the contrary. 

 

5.1 PVs 

Tables 
Energy 

Produced 
[MWh] 

Relative PV 
Size 

[kWh/kWh] 

Peak Power 
installed 

[kW] 

Production 
for kWp 

[kWh/kWp] 

Inverter  
Efficiency 

[%] 
t1584 8.550 1.0 11.6 765.6 96.3 

t2009 11.110 1.6 12.1 941.8 97.4 

t2098 5.985 0.9 6.7 916.1 97.6 

t2207       10.503 1.6 12.5 865.9 97.1 

t4054 5.613 0.9 6.8 855.6 97.1 
Table 2. Results about each photovoltaic system. 

 

From this table we can see that there are two PVs (of t2009 and t2207) 

characterized by much higher production (almost double than the minimum) and 

relative PV size with respect to the others. 

 

5.2 Yearly energy exchanged 

Tables 
Energy 

Consumed 
[MWh] 

Self-Cons.  
Energy 
[MWh] 

Energy 
from Grid 

[MWh] 

Energy 
to Grid  
[MWh] 

Energy to 
Battery  

 (DC) [MWh] 

Battery  
Efficiency 

[%] 
t1584 9.165 4.592 4.573 3.958 2.090 76.1 

t2009 7.187 5.670 1.517 5.441 2.895 94.4 

t2098 6.990 3.747 3.244 2.239 1.864 80.8 

t2207 6.613 4.495 2.118 6.007 2.045 97.5 

t4054 6.135 3.003 3.133 2.611 0.672 94.9 
Table 3. Other relevant energy flows, in addition to PV production, and efficiency of the batteries. 
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From Table 3 we can observe that consumption of household t1584 is about 50% 

higher than t4054, while the consumption of the two equipped with the biggest 

PVs is average; these last households exchange with the grid mainly to sell 

electricity.  

Differences about the energy received by the battery are coherent considering 

the differences of production and of battery capacity (value that will be displayed 

in Table 5). 

The distribution of each group of 5 results (one for each household) can be better 

appreciated if displayed through a box plot3, in which each box shows their 

statistical distribution: 

 

 

5.2.1 Case without battery 

Removing the battery from each system (that it corresponds to consider null its 

capacity) we obtain different results: 

The consumption and the production are not affected but the self-consumption 

will be lower and the flows entering or exiting the grid will be higher.  

                                            
3 With the convention chosen, each box is built to show the minimum, the maximum and the 
quantiles 25%, 50% and 75%. 

Figure 14. Box plot about energy exchanged (case with battery). 
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Results obtained in this condition are marked by an asterisk and they are 

collected in next table and figure: 

 

Tables 
Energy 

Consumed*  
[MWh] 

Self-Cons. 
Energy* 
[MWh] 

Energy 
from Grid*  

[MWh] 

Energy 
to Grid*  
 [MWh] 

t1584 9.165 3.231 5.934 5.319 

t2009 7.187 3.166 4.021 7.945 

t2098 6.990 2.460 4.531 3.525 

t2207 6.613 2.885 3.728 7.618 

t4054 6.135 2.412 3.724 3.202 
Table 4. Energy flows in the case without battery. 

 

Comparing these results with the previous table, it is possible to realise that: 

 In average self-consumption decreases by 34%. 

 In average the energy received from the grid increases by 50%. 

 In average the energy sent to the grid increases by 36%. 

 

 

Figure 15. Box plot about energy exchanged (case without battery). 
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In term of statistical distribution, it is interesting to note that variability of results 

about self-consumption and energy from the grid decreases (the correspondent 

boxes are smaller than before), while it happens the opposite for the results 

relative to the energy sent to the grid. 

 

5.3 SSR and SCR 

Tables 
Relative 

Battery Size 
[kWh/MWh] 

Battery   
Capacity        

[kWh] 
SSR             
[%] 

SCR                    
[%] 

SSR*                 
[%] 

SCR*                 
[%] 

t1584 1.4 12.5 50.1 51.7 35.3 36.4 

t2009 1.8 12.7 78.9 49.7 44.0 27.8 

t2098 1.5 10.8 53.6 61.1 35.2 40.1 

t2207 1.4 9.2 68.0 41.6 43.6 26.7 

t4054 0.4 2.2 48.9 51.9 39.3 41.7 
Table 5. Battery parameters; Self-Sufficiency Rate and Self-Consumption Rate with and without 
battery. 

 

These results let to quantify the performance improvement due to the battery: 

It is maximum in correspondence of the maximum value of relative battery size 

and battery capacity (It is the case of t2009 that has a record improvement of 

SSR and SCR close to +80%), and minimum in the opposite case (about +25% 

for t4054). 

About absolute values of SSR and SCR, they look in line with results of similar 

analysis [7], according to which they can differ much even between comparable 

households, even if a little high in some cases (for example for 4054 the 

SSR*=39.3% is a value high considering that its relative PV size is 0.9). 

Eventually this can be due to the use of some DSM strategy that, as seen before, 

consists in increasing the self-consumption shifting the loads in an advantageous 

way with respect to demand. 

It follows the box plot corresponding to Table 5: 
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To study the influence of data’s time step on results, the 4 indicators were 

calculated also using a time step of 1 hour, instead of 15 minutes. Here it is shown 

the difference between the new results and the ones of Table 5: 

 

Tables Δ(SSR)            
[%] 

Δ(SCR)                   
[%] 

Δ(SSR*)                
[%] 

Δ(SCR*)                
[%] 

t1584 0.7 0.7 1.7 1.8 

t2009 0.6 0.4 3.2 2.0 

t2098 0.6 0.7 1.5 1.7 

t2207 0.7 0.4 2.4 1.4 

t4054 0.8 0.8 2.0 2.1 
Table 6. Difference between results obtained with a time step=1 hour and with time step=15 min. 

 

It is possible to note that differences are all positive. It means that the time step 

at lower resolution (of 1 h), in which the fast variations are smoothed out, leads 

to overestimate all these indicators. 

The error is lower than 0.9 % and so almost negligible in the case with the battery, 

while in the other case it reaches a maximum of 3.2%. 

 

Figure 16. Self-Sufficiency Rate and Self-Consumption Rate, with and without battery. 
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5.4 Economic analysis 

To estimate the profitability of a PV battery system grid-connected, its levelized 

cost of electricity (LCOE) is calculated, according to [7].  

This economic indicator can be seen as the minimum average price at which the 

system should sell the energy produced, during its life, to recover its total cost 

(that takes into account the investment and costs of operation and maintenance, 

while the grid is considered as a costless generator producing at its retail price). 

Its formula is the following: 

 

𝐿𝐶𝑂𝐸 =
𝐴 + 𝐸𝑓𝑟𝑜𝑚𝐺𝑟𝑖𝑑 ∗ 𝑃𝑅𝑒𝑡𝑎𝑖𝑙 − 𝐸𝑡𝑜𝐺𝑟𝑖𝑑 ∗ 𝑃𝑡𝑜𝐺𝑟𝑖𝑑

𝐸𝑙𝑜𝑎𝑑
 

 

In which EfromGrid and EtoGrid are the amounts of energy yearly bought (at price 

PRetail) and sold to the grid (at price PtoGrid) and Eload is the yearly consumption 

of the house. 

A is the annuity (constant in this case) that takes into account the investment of 

the PV (IPV) and of the battery (Ibat). Because of their different lifetime (NPV and 

Nbat), we assume the Ibat is payed another time after Nbat years: 

 

𝐴 = (𝐼𝑃𝑉 + 𝐼𝑏𝑎𝑡 ∗ [1 +
1

(1 + 𝑖)𝑁𝑏𝑎𝑡
]) ∗ (𝐶𝑅𝐹 ∗ 𝑂𝑀) 

 

The other terms are the discount rate (i), the fraction of yearly operation and 

maintenance, respect the total investment, (OM) and the capital recovery factor 

(CRF): 

𝐶𝑅𝐹 =
𝑖 ∗ (1 + 𝑖)𝑁𝑃𝑉

(1 + 𝑖)𝑁𝑃𝑉 − 1
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Considering references [7] and [17], the assumptions done to perform the 

economic analysis are:  

 NPV = 20 years; 

 Nbat = 10 years; 

 IPV = 1300 €/kWp; 

 Ibat = 300 € + 200 €/kWh of capacity; 

 OM = 1.5 %; 

 i = 5 %; 

 PRetail = 0.293 €/kWh; 

 PtoGrid = 0.122 €/kWh. 

 

In the same way it can be analysed the case in which the battery is absent: 

For installations of PV only, the investment of the battery will be null and this is 

the only positive change that could make the LCOE lower. 

In this case however the yearly self-consumption will be lower (while Eload does 

not vary) and so for each kWh self-consumed in less there will be an equivalent 

raise of the energy bought by the grid and of the energy sold. This entails a 

negative change:  

Even if the difference of EfromGrid and EtoGrid does not change, the difference of 

their cost will augment because the price to buy electricity is higher than the feed-

in tariff for this systems, especially in Germany that has a price of retail above the 

European average. 

The values of yearly consumption and of yearly energy exchanged with the grid 

are already been calculated (see Table 3 for the case with battery and Table 4 

for the other case). 

It is important to highlight that the cost chosen for the battery is much lower than 

the current price, nevertheless it could become a realistic value in the next year 

due to improvements in this technology. 
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The results are the following: 

 

 t1584 t2009 t2098 t2207 t4054 
LCOE with Battery 

[€/kWh] 0.297 0.239 0.270 0.267 0.253 
LCOE PV only        

[€/kWh] 0.276 0.238 0.247 0.259 0.251 
Table 7. Levelized cost of electricity for each household, with and without battery. 

 

It is possible to see that these investments look all profitable except the first case, 

since for t1584, in the case with battery, the LCOE is higher than the price of retail 

considered (0.293 €/kWh). 

Each PV only investment has a lower LCOE than the same with battery included. 

They look to be more profitable then but the difference is almost negligible in two 

cases (t2009 and t4054). 

We can conclude that investments in PVs can already be profitable, in a similar 

contest, while the PVs coupled with batteries have potential but are not 

competitive yet. 

Incentives here are not considered since they can differ considerably from year 

to year and from country to country, nevertheless they play an important role 

because they can lower the LCOE of any investment. 
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6 Case Optimized 

In the previous chapters, the behaviour of five solar home battery systems has 

been described, but still it is not clear how the controller present in each system 

operates to manage the different flows of power.  

In fact, this can be done trying to reach one or more objectives, such as for 

instance to maximize the self-consumption, to improve the interaction with the 

local grid with the aim of increasing its stability or to increase the life time of the 

battery. 

In this chapter each real case analysed before will be optimized changing its 

controller with one that lets to maximize the self-consumption, to see how much 

the two cases differ and which is the maximum values of self-consumption rate 

that is possible to achieve. 

According to this dispatch strategy, the battery, if it has not already reached its 

limit of capacity, will charge every time that there is a surplus of production (with 

respect to the consumption) and, if it has not already reached the maximum depth 

of discharge of project, it will discharge every time that there is a deficit of 

production. 

The modelling process is done using a Python toolkit called “prosumpy”. It has 

already been used in reference [7] and currently it can be freely downloaded by 

the platform GitHub [9]. 

Inputs given to the algorithm of prosumpy are: 

The house consumption and the PV generation (evaluated during a year with a 

time step of 15 minutes). 

The efficiency of the inverter and 3 other parameters, already calculated before, 

important to characterise the battery: its capacity, its efficiency and its maximum 

power of charge and discharge4. 

                                            
4 With these same inputs normally it is also possible modelling according to an alternative strategy 
of dispatch (that lets to maximize the self-consumption in a more grid-friendly way, assuming 
perfect forecast of the demand) but this will not be considered because the corresponding results 
were affected by an error too high. 
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The two following figures, realised with prosumpy, show the behaviour of the 

system optimized during a winter and a summer week: 

 

 

Figure 17. Energy flows for t4054, during a winter week, with strategy of dispatch 
that maximizes the self-consumption. 
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In the first subplot, yellow areas correspond to energy produced, while the curve 

in black is the demand and the area below is the energy consumed (in dark yellow 

if directly self-consumed and in dark grey if self-consumed thanks to the battery). 

Figure 18. Energy flows for t4054, during a summer week, with strategy of dispatch 
that maximizes the self-consumption. 
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In the second subplot it is represented the state of charge of the battery, that can 

vary from 0 to the maximum capacity available. 

In the third, areas in green correspond to the energy sent to the grid, while the 

areas in red to the energy received. 

Comparing graphically with respect to the real case, the difference for this two 

weeks displayed is not evident but, looking to the corresponding numerical 

values, it resulted that the battery tends to charge and to discharge at higher 

power (at its maximum power whenever it is possible). In reality this behaviour 

could be not recommended because fast variations in power can lower the 

lifetime of the battery. 

New values of self-sufficiency rate and self-consumption rate, evaluated with 

prosumpy for the optimized case (“SSR opt” and “SCR opt”), are all higher as it 

was expected: 

 

Table 8. Battery parameters; Self-Sufficiency Rate and Self-Consumption Rate in the real and in 
the optimized case. 

 

The difference between indicators of profitability, in the two cases, is in average 

of about 5%.  

Nevertheless, for the data of table t4054 this difference is much lower (around 

2%) and this is justified by the small dimension of its battery. 

At the contrary, for table t1584 there is an increase record of over 9%. 

 

Tables 
Relative 

Battery Size 
[kWh/MWh] 

Battery   
Capacity        

[kWh] 
SSR             
[%] 

SCR                    
[%] 

SSR opt                 
[%] 

SCR opt                 
[%] 

t1584 1.4 12.5 50.1 51.7 59.2 61.1 

t2009 1.8 12.7 78.9 49.7 84.2 53 

t2098 1.5 10.8 53.6 61.1 58.1 66.3 

t2207 1.4 9.2 68.0 41.6 75.4 46.1 

t4054 0.4 2.2 48.9 51.9 50.7 53.9 
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These results could indicate that, for all the five systems considered, the strategy 

of dispatch applied differs from the one that lets to maximize the self-consumption 

(and that would let consequently to maximize the economic gain if evaluated with 

the same hypotheses of before). 

This could be due to the choice of do not fully exploit the performances of the 

battery in order to preserve its durability and/or avoiding rapid fluctuation in power 

that is positive also for the grid. 

Anyway another explanation of the difference in profitability indicators is that the 

technical parameters of the battery (especially its capacity) could have been 

overestimated, since the values were not the ones provided by the constructor, 

but derived by measures of the database. 

LCOE, after the optimization, has been calculated like seen in Section 5.4 and, 

in accordance with higher values of SSR and SCR, it is always lower with respect 

to the real case with battery and, for three households, it is lower even if 

compared with the case without battery. 

 

 t1584 t2009 t2098 t2207 t4054 

LCOE with Battery 
[€/kWh] 0.297 0.239 0.270 0.267 0.253 

LCOE PV only 
[€/kWh] 0.276 0.238 0.247 0.259 0.251 

LCOE with Bat. optimized 
[€/kWh] 0.282 0.230 0.262 0.254 0.250 

Table 9. Levelized cost of electricity in the three cases, for each household.  
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7 Conclusions 

The main goal of this thesis was to evaluate residential PV battery systems, 

analysing the results obtained processing historical data.  

The starting database contained information gathered monitoring 19 households 

in Germany, between the year 2015 and 2016. 

Final results seem to be in accordance with mostly of the studies present in 

literature. In particular, it emerged that: 

 It is important the quality of data at disposal to perform analysis of this kind 

and to have a clear understanding of them.  

 The starting high time-resolution of 1 second was excessive: replacing it 

by a time-resolution of 15 minutes lets to simplify the analysis without 

affecting the results evaluated on the whole period of 1 year. 

 Mostly of the data were not enough complete: only 5 households passed 

the selection criteria. This especially because the others contained 

information relative to periods shorter than 1 year. 

 It was possible to obtain several results using a low variety of measure, 

anyway the lack of detailed information about some specific technical 

parameter could have led to errors. 

 SSR was a little higher compared with similar case in literature, therefore 

it is suspected that some DMS strategy could have been applied in the 

cases studied. 

 SSR and SCR depend strongly by the system design. Nevertheless, there 

will be always a more or less evident difference since they depend by 

several parameters and, for instance, each household has a different 

profile of consumption. 

 For the five systems studied the use of the battery lets to reach values 

considerably higher of SSR and SCR, even if no battery is bigger than 

13kWh. One of them had a record increment of the self-sufficiency rate 

from 44% (case without battery) to about 79%. 
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 Simulating an ideal dispatch strategy to maximize the SSR, the profitability 

indicators raised more and the highest value of SSR became 84.2%. 

Anyway, according to the literature, generally is not possible to reach value 

really high of SSR without oversizing the PV battery system. 

 The price of the battery is still high so it does not look economic viable to 

equip the small PV systems with this kind of storage. Despite this, even if 

today its employ can be convenient only if incentivised, in the future this 

can change as its cost continues to follow a decreasing trend.  
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9 Appendices 
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Appendix A 

 

 

Fig. App. 1. Key drivers for growth in major solar PV markets [5] 
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Appendix B 

 

 

 

Fig. App. 2. Database Speicherdata in MySQL 
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Appendix C 

 

 

Fig. App. 3. Power flows during the 1th January 2016 for table t2098. 

Fig. App. 4. Power flows during the 1th July 2016 for table t2098. 
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Fig. App. 5. Daily energy consumed and self-consumed along the year for table t2098. 

Fig. App. 6. Daily energy produced and self-consumed along the year for table t2098. 
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Fig. App. 7. Weekly average of SSR and SCR along the year for table t2098. 

Fig. App.8.  Weekly constant of prop. to have SSR* and SCR*, respect the normal case, for t2098. 

Fig. App. 9. Monthly energy exchanged by the solar home battery system of table t2098. 
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