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Abstract

The aim of this work is to propose a model to evaluate the thermo-fluid dynamic

behaviour of district heating networks, with special care on the prediction of ther-

mal transients. An accurate description of the temperature evolution within the

plant is needed to better design new systems or expanding the existing ones, in or-

der to optimize the energy release from the plant to the network and avoid thermal

losses, so that the pollutant emissions are reduced and the cost of heating is kept

sufficiently low.

A brief overview of the existing models is detailed, especially for what concerns

the hydraulic part. Moreover, the main weaknesses of the typically used thermal

models, that are mainly based on the Upwind Differencing Scheme, are described.

Different strategies to avoid the effect of the artificial diffusivity are analysed.

A chapter is also dedicated to the study of the effects of the application of adaptive

moving mesh methods to a one-dimensional model problem completely dominated

by advection.

Finally, the model is developed taking advantage of the Quadratic Upstream In-

terpolation for Convective Kinematics (QUICK), and an example of application is

proposed to test it.
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Chapter 1

Introduction

District energy systems can be described as methods by which thermal energy from

a central source is distributed to residential, commercial and industrial consumers

for use in space heating, cooling, water heating and process heating [1].

District heating networks appeared in Europe since the 14th century [2], and they

have been developed since 1950 [3]. Nowadays, there are more than 5000 district

heating systems in Europe, covering more than 10% of total European heat demand

[4]. Market penetration is unevenly distributed: it is close to zero in some countries,

while it reaches more than 70% of heat market in others.

District Heating and Cooling represent the most suitable solution for providing

heat and cold to urban users, since their benefits are most apparent in areas with

high density energy demand [4]. Apart from urban environments, also energy de-

mands from industry and intensive agriculture are suitable to be satisfied by the

use of district heating. In these sectors an additional benefit is given by the fact

that CO2 emissions for industrial processes and green-houses can be captured and

transported.

Overall, district heating and cooling systems provide a reliable and competitive
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1 – Introduction

energy service, which is able to satisfy user demands and to reduce primary energy

consumptions, responding to the main European energy policy objectives. Indeed,

the fundamental idea of district heating is to use local fuel or heat resources that

would otherwise be wasted [5]. In particular, district heating uses excess heat re-

sources from combined heat and power (CHP) plants, waste-to-energy plants (WtE)

and industrial process, and in the last years, it introduced renewable sources like

geothermal wells, solar collectors and biomass fuels [6].

Thanks to the large number of benefits that district heating technology can boast,

such as higher security of supply, lower costs and lower carbon dioxide and pol-

lutant emissions, the future prospects for district heating and cooling technology

should be promising [6].

Due to the large investment costs required by the extension of existing networks

and construction of newest small ones, there is a great interest in simulations and

solutions which can lead to the reduction of distribution losses, limiting the overuse

of peak generators and optimizing the use of centralized and decentralized storage

capacities [7]. In this sense, the analysis of the thermal transients in the network

assumes a key role.

Some models have been proposed to solve the thermo-fluid dynamic problem of

large district heating networks [8] [9]. This work proposes a numerical thermo-fluid

dynamic model of district heating-networks that, differently from the models typ-

ically used, pays particular attention to the prediction of temperature behaviour,

and tries to avoid the problems, like the introduction of artificial diffusion, that

usually come out when differential equations are solved by means of numerical

schemes.
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Chapter 2

Thermo-fluid dynamic model of

district heating networks

The analysis of a district heating network usually involves the evaluation of mass

flow rates flowing in the system and the prediction of pressure and temperature

evolution in some crucial points. Indeed, the control of these parameters is a key

challenge to reduce heat losses and to minimize the heat cost while ensuring the

user comfort in buildings [10].

One way to evaluate these quantities is to equip the network with proper instru-

mentation to measure temperatures and mass flow rates at numerous locations.

This solution is typically too expensive due to the large cost of sensors and to the

intrinsically intrusive nature of this method. Therefore, an appropriate model is

needed to forecast the thermo-fluid dynamic behaviour of the network. Moreover,

modelling the network leads to the possibility to analyse different conditions with

respect to the operating ones and various layout, evaluating the effects of these

changes without the need to carry out expensive and not always reliable experi-

mental tests.
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2 – Thermo-fluid dynamic model of district heating networks

The model is based on the conservation equations. In particular, velocity and pres-

sure in a flow system are governed by the continuity and the momentum equation

[11]:

∂ρ

∂t
+∇ · ρv = 0 (2.1)

ρ
Dv

Dt
= −∇p−∇ · τ + F , (2.2)

where ∇ · τ represents the net force due to viscous stress and F is a momentum

source term that also includes the gravity term ρg. Then, energy conservation

equation reads:

∂(ρcpT )

∂t
+∇ · (ρcpvT ) = ∇ · k∇T + ϕs . (2.3)

The model used is a pseudo-dynamic model [12]: only heat transfer is simulated

dynamically, while for hydraulic phenomena the unsteady term is not considered.

The reason behind this choice is that fluid-dynamic perturbations are quickly trans-

ferred to the whole network, in a period of time of few seconds, smaller than the

time step adopted for calculations. Oppositely, temperature perturbations travel at

the fluid velocity, which is typically of the order of few meters per second, and their

effects are transferred to the DHN slowly.

2.1 The graph approach

The model adopted to simulate the problem is one-dimensional. The complex struc-

ture of a district heating network, made of components (pipes) that are connected

to each other through junctions, is described by means of the graph theory [13]. A

graph is a representation of a set of connected objects: each connection involves a

pair of objects (nodes), but each object can be connected to multiple other objects

9



2 – Thermo-fluid dynamic model of district heating networks

through multiple links (branches). For a district heating network, nodes usually

corresponds to junctions, and branches, that are elements bounded by two nodes,

to components such as duct, channel, etc.

A flow network is decribed by means of the interconnections between nodes and

branches. These interconnections represent the network topology, and they are de-

scribed by means of the incidence matrix A, which has as many rows as the number

of nodes and as many columns as the number of branches. A general element Aij

is equal to 1 if the i-th node is the inlet node of the j-th branch, or it is equal to

−1 if the i-th node is the outlet node of the j-th branch. Otherwise, the i-th node

and the j-th branch are not related and the element is equal to 0.

2.2 The fluid-dynamic problem

In the case of a one-dimensional description of the system, equations (2.1) and (2.2)

simplify to:

∂ρ

∂t
+
∂(ρv1)

∂x1

= 0 (2.4)

ρ
∂v1

∂t
+ ρv1

∂v1

∂x1

= − ∂p

∂x1

− FFRICT + F1 , (2.5)

where FFRICT takes into account the viscous forces, replacing the term (∇·τ)1 that

loses significance in the case of one-dimensional formulation, and F1 represents the

source term and accounts also for the effect of local fluid dynamic resistance due to

valves or junctions and the effects of pressure rise due to pumps or fans. According

to [11], it can be expressed as:

F1 = ρgx1 − FLOCAL + FPUMP . (2.6)
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2 – Thermo-fluid dynamic model of district heating networks

Continuity equation (2.4) can be integrated over a control volume including the

junction node and half of each branch entering or exiting it. After this integration,

one obtains:

dM

dt
+

NB∑
j=1

ρjv1,jSj = 0 , (2.7)

where M is the mass of fluid in the control volume, NB is the total number of

branches entering or exiting the control volume and Sj represents the section of

the j-th branch. Equation 2.7 must be modified in order to take into account a

possible extraction or injection of fluid from a junction to the external ambient.

Then, considering also that Gj = ρjv1,jSj, it becomes:

dM

dt
+

NB∑
j=1

Gj +Gext = 0 , (2.8)

and, remembering the aforementioned steady-state conditions for the fluid dynamic

problem:
NB∑
j=1

Gj +Gext = 0 . (2.9)

Using the incidence matrix A, it is possible to apply the continuity equation to all

the nodes of the network, obtaining:

A ·G + Gext = 0 , (2.10)

where G is a column vector containing the mass flow rates in the branches and

Gext the vector that contains the mass flow rates injected or extracted in the nodes

from the external environment.

Momentum equation (2.5) is instead integrated over a control volume which includes
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2 – Thermo-fluid dynamic model of district heating networks

a branch and the two delimiting nodes. This integration brings to:

ρ
∂v1

∂t
V + ρ

v2
1,out − v2

1,in

2
S =(pin − pout)S − ρg(zout − zin)S

−∆PFRICTS −∆PLOCALS + ∆PPUMPS ,

(2.11)

where V = SL is the volume of the considered control volume, S its cross section

and L its length. Defining the total pressure as P := p+ ρv
2

2
+ ρgz, equation (2.11)

can be rewritten as:

ρ
∂v1

∂t
L+ (Pout − Pin) = −∆PFRICT −∆PLOCAL + ∆PPUMP . (2.12)

The terms ∆PFRICT and ∆PLOCAL can be formulated according to the expressions

given by [14]:

∆PFRICT = f
L

D

1

2
ρv2

1 , (2.13)

∆PLOCAL =
∑
k

βk
1

2
ρv2

1 , (2.14)

where f is the friction factor, βk is the localized pressure drop coefficient and the

summation refers to the different local losses that may occur in a duct. The values

of these coefficients can be found in literature.

Substituting (2.13) and (2.14) in equation (2.12), and assuming, as previously ex-

plained, the fluid-dynamic problem a steady-state, it is possible to obtain:

Pin − Pout =
1

2
ρv2

1

(
f
L

D
+
∑
k

βk

)
−∆PPUMP , (2.15)
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2 – Thermo-fluid dynamic model of district heating networks

which is equivalent to:

Pin − Pout =
1

2

G2

ρS2

(
f
L

D
+
∑
k

βk

)
−∆PPUMP . (2.16)

As done in the case of continuity, equation (2.16) can be extended to the whole

network using the matrix formulation:

AT ·P = R ·G− t , (2.17)

where AT is the transpose of the incidence matrix, P is a vector containing the

pressures at the nodes, G is the vector containing the values of mass flow rates

in the branches, t is a vector that contains the terms accounting for the pressure

increases due to pumps, and R is a diagonal matrix that contains the terms:

Rj =
1

2

Gj

ρS2
j

(
fj
Lj
Dj

+
∑
k

βk,j

)
. (2.18)

Isolating G, one gets:

G = Y ·AT ·P + Y · t , (2.19)

being Y = R−1, which represents the fluid dynamic conductance. Proper boundary

conditions need to be applied on equation (2.19): typically the pressure is set on

the node representing the pressurization system [9]. Moreover, the boundary condi-

tions concerning mass flow rates entering or exiting the network must be imposed

on Gext.
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2 – Thermo-fluid dynamic model of district heating networks

2.3 The SIMPLE algorithm

Due to the fact that the matrix Y contains itself a dependence on the mass flow

rates, the system of equations is non-linear. This non-linearity, together with the

strict coupling between mass (2.10) and momentum (2.19) equations, brings to the

need of an iterative algorithm to solve the problem. According to [9], the SIMPLE

(semi-implicit method for pressure linked equation) algorithm [15] can be efficiently

applied to this scope. This algorithm is based on a guess and correction method:

a vector P′ is first guessed and then corrected during the iterations with the mass

flow rate resulting from (2.19). Once guessed P′, another initial guess is made for

G′0. This is needed to build Y′, in order to be able to obtain G′:

G′ = Y′ ·AT ·P′ + Y′ · t . (2.20)

Equation (2.20) is non-linear, and it is solved using the fixed point algorithm [16].

The guessed values of pressure and mass flow rates differ from the correct values.

Therefore, it is possible to define a correction, both for mass flow Gcorr and for

pressure Pcorr, such that:

P = P′ + Pcorr , (2.21)

G = G′ + Gcorr . (2.22)

Combining together equations (2.19) and (2.20), one gets:

G−G′ = Y ·AT ·P−Y′ ·AT ·P′ + (Y −Y′) · t . (2.23)

Then, taking as assumption Y′ = Y and substituting in (2.23) the expressions

(2.21) and (2.22), it is possible to obtain:

14



2 – Thermo-fluid dynamic model of district heating networks

Gcorr = Y ·AT ·Pcorr . (2.24)

Moreover, expression (2.22) can be substituted into the conservation of mass ex-

pressed by (2.10), getting:

A ·Gcorr = −A ·G′ −Gext . (2.25)

If (2.24) is inserted in equation (2.25):

A ·Y′ ·AT ·Pcorr = −A ·G′ −Gext . (2.26)

This expression can be rewritten in a simpler form:

H ·Pcorr = d , (2.27)

where

H = A ·Y′ ·AT and d = −A ·G′ −Gext .

Equation (2.27) can be used to evaluate the pressure correction Pcorr, which is then

inserted in (2.24) to evaluate also the mass flow rate correction. Then, using (2.21)

and (2.22), P and G can be evaluated and used as new guesses for the following

iterations. These iterations stop when a certain tolerance (which is fixed as input)

on the residuals is reached.

Moreover, under-relaxation factors are used to improve the process of convergence.

Therefore, equations (2.21) and (2.22) are modified as follow:

P = P′ + αPcorr , (2.28)

15



2 – Thermo-fluid dynamic model of district heating networks

G = G′ + αGcorr . (2.29)

Finally, one should take care of the boundary conditions that concern the mass flow

rates entering or exiting the network, that are imposed on the vector Gext, and the

pressure which is imposed in at least one node of the vector P′. Since these values

are exact, corrections must not be applied.

To sum up, a schematic of the SIMPLE algorithm, that permits to find the values

of mass flow rates in the branches and pressure in the nodes of the district heating

network analysed, is depicted in Figure 2.1.
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2 – Thermo-fluid dynamic model of district heating networks

Guess P′ and G′ and choose
the under-relaxation factor α

Solve momentum equation
G = Y(P′,G′) ·AT ·P′ + Y(P′,G′) · t

Applicate boundary conditions.
Evaluation of H = A ·Y′ ·AT

and d = −A ·G′ −Gext

Evaluate the corrections: Pcorr = H\d
and Gcorr = Y ·A′ ·Pcorr

P = P′ + αPcorr, G = G′ + αGcorr

Is the residual
small enough?

Set P′ = P
and G′ = G

yes

no

Figure 2.1: Schematic of the SIMPLE algorithm [9].
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Chapter 3

The thermal problem

Modelling the thermal behaviour of a District Heating Network means to be able to

predict the temperature evolution of each node of the network. Therefore, energy

conservation equation must be solved for the whole system. Assuming compress-

ibility effects and viscous heating as negligible, it can be written as:

ρcp
∂T

∂t
+ ρcpv · ∇T = ∇ · k∇T + ϕs , (3.1)

where the first term is the transient term, the second term represents the advective

contribution due to mass flow rates in the branches, the third term is the conductive

term and the last one represents the volumetric heat source contribution.

In case of constant properties, equation (3.1) becomes:

(∂ρcpT )

∂t
+∇ · (ρcpv T ) = ∇2k T + ϕs . (3.2)

18



3 – The thermal problem

Moreover, the model can be considered as one-dimensional, so that the energy

equation reduces to:

∂(ρcpT )

∂t
+
∂(ρcpv1T )

∂x1

= k
∂2T

∂x2
1

+ ϕs . (3.3)

In this case, the volumetric heat source ϕs can be split in two terms: ϕv, which takes

into account the heat generated within the system, and −ϕl, taking into account

the losses due to the non-adiabatic walls. In fact, the presence of non-adiabatic

walls causes temperature gradients in the direction perpendicular to x1, and, since

in the one-dimensional model these gradients cannot be explicitly considered, they

are taken into account by means of a term equivalent to a heat sink. Then, equation

(3.3) becomes:

∂(ρcpT )

∂t
+
∂(ρcpv1T )

∂x1

= k
∂2T

∂x2
1

+ ϕv − ϕl . (3.4)

The thermal problem is solved by means of the finite volume method: the energy

equation is applied in integral form to all the control volumes of the domain. Each

control volume includes the junction node and half of each duct entering or exiting

the junction, as depicted in Figure 3.1.

Adiabatic and perfect mixing is assumed when different streams converge in a

junction: the temperature of all the flows exiting from the junction are at the same

temperature T .

Integrating equation (3.4) over a control volume brings to:

∂(ρcpTi)

∂t
Vi +

NB∑
j=1

±ρcpv1TjSj =
NB∑
j=1

±k ∂T
∂x1

∣∣∣∣
j

Sj + Φv,i − Φl,i , (3.5)
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3 – The thermal problem

Figure 3.1: Schematic of the control volume of a node [9].

where NB is the total number of branches entering or exiting that control volume,

Sj is the cross section of the j-th branch and Vi is the volume of the CV considered,

which can be computed as
∑NB

j=1 Sj ·Lj/2. For what concerns the advective and the

conductive terms, they are negative if the stream is entering the j−th branch, and

positive in the opposite case.

From now on, the conductive term will be neglected, since it is usually small. Also,

Φv,i is imposed equal to zero. Therefore, the following equation will be considered,

remembering that G = ρvS:

∂(ρcpTi)

∂t
V +

NB∑
j=1

±cpGjTj = −Φl,i , (3.6)

where the term accounting for the heat losses Φl can be expressed as

Φl,i =
NB∑
j=1

Lj
2

ΩjUj(Ti − T∞) , (3.7)
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3 – The thermal problem

being Ωj the perimeter of the j−th branch, Uj the global heat transfer coefficient

and T∞ the external temperature.

Note that the energy equation must be expressed in transient form, since thermal

perturbations are slowly transferred: indeed, differently from changes in the flows

which are quickly transferred to the network as pressure waves (typically in sec-

onds), they travel at water velocity, which is of the order of few meters per second.

Thus, temperature changes generated at the production plant reach end-users, of-

ten located after tens of kilometers, with a significant delay, up to several hours.

For these reasons, the model adopted is based on a quasi-dynamic approach: the

flow and the pressure are obtained through a static analysis, while temperature is

dynamically evaluated.

From equation (3.6), one can observe that there is a need to define the temperature

Tj associated with each boundary of the control volume, i.e. the temperature in

the middle point of each branch: it must be expressed as a function of the nodal

values of temperature Ti, which are the unknowns of the problem. After that, the

equations will be ready to be written in matrix form.

To do this, it would seem natural to apply to the central differencing method,

which is known to work well for the diffusion term, even on the convective term.

However, while the diffusion process affects the distribution of temperature along

its gradients equally in all the directions, excellently fitting this scheme which has

such an isotropic nature, the convection process has a very different feature: it is

highly anisotropic and affects the solution only in the flow direction. For this reason,

the application of the central differencing scheme to the convective term generates

some problems, which will be further analysed taking as example of application the

convection-diffusion problem.
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3 – The thermal problem

3.1 The central differencing scheme

3.1.1 Steady-state advection-diffusion model problem

In steady state and if there are no sources, the one-dimensional convection-diffusion

problem is governed by the following equation, obtained by a simplification of equa-

tion (3.4)1:

∂(ρcpvT )

∂x
= k

∂2T

∂x2
. (3.8)

The domain is assumed to be a pipe with constant section in which water flows.

Due to the incompressibility constraint, v is constant along the pipe. Integrating

equation (3.8) over the control volume represented in Figure 3.2, one can obtain:

ρcpvSTe − ρcpvSTw = kS
∂T

∂x

∣∣∣∣
e

− kS∂T
∂x

∣∣∣∣
w

. (3.9)

For a uniform grid, and with a central difference scheme, the cell face values of T

can be written as:

Te =
TP + TE

2
Tw =

TW + TP
2

. (3.10)

These expressions can be substituted in equation (3.9), that becomes:

ρcpv
TP + TE

2
− ρcpv

TW + TP
2

= k
TE − TP
δx

− kTP − TW
δx

. (3.11)

Grouping the multipliers, it is possible to end up with the following formulation:

−
(
ρcpv

2
+

k

δx

)
TW +

(
2k

δx

)
TP +

(
ρcpv

2
− k

δx

)
TE = 0 . (3.12)

1For the sake of simplicity from now on it will be considered x1 = x and v1 = v.
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3 – The thermal problem

Figure 3.2: A control volume around node P . Modified from [17].

This discretization equation can be applied to all the internal nodal points, while the

control volumes that are adjacent to the domain boundaries need special treatment,

since they need to take into account boundary conditions.

Supposing that Dirichlet boundary conditions are applied to the west boundary

of the first control volume and to the east boundary of the last control volume,

equation (3.9) takes a different form. Indeed, for the first control volume, Tw is

known, and the discretization equation reads:

ρcpv
TP + TE

2
− ρcpvTw = k

TE − TP
δx

− kTP − Tw
δx/2

. (3.13)

Rearranging the various terms, one obtains:

(
ρcpv

2
+

3k

δx

)
TP +

(
ρcpv

2
− k

δx

)
TE =

(
ρcpv +

2k

δx

)
Tw . (3.14)

Similarly, for the last control volume, Te is known:

ρcpvTe − ρcpv
TW + TP

2
= k

Te − TP
δx/2

− kTP − TW
δx

(3.15)

(
− ρcpv

2
− k

δx

)
TW +

(
− ρcpv

2
+

3k

δx

)
TP =

(
− ρcpv +

2k

δx

)
Te . (3.16)
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Then, the whole problem can be written in matrix formulation and the solution T

can be obtained:

KT = f (3.17)

Some example are carried out in order to assess the quality of the results produced

by the central differencing scheme. The three cases that are presented differ for

number of control volumes N , entity of the advective part F = ρcpv, entity of the

conductive part D = k/δx, and, clearly, their ratio, which is the Peclet number,

defined as:

Pe =
ρcpv
k
δx

. (3.18)

In detail, the data of the three cases are the following ones:

1. N = 5, F = 0.1 W/(m2K), D = 0.5 W/(m2K) → Pe = 0.2

2. N = 5, F = 2.5 W/(m2K), D = 0.5 W/(m2K) → Pe = 5

3. N = 20, F = 2.5 W/(m2K), D = 2 W/(m2K) → Pe = 1.25

The pipe is imposed to be 1 meter long and, as boundary conditions, T = 100 �

is imposed on the left and T = 0 � on the right.

The results are reported in Figure 3.3, where they are compared to the analytical

solution given by:

T (x) = c1 + c2 · eαx , (3.19)

where c2 = (Tleft − Tright)/(e
αL − 1), c1 = Tleft − c2 and α = F/(D · δx). From

Figure 3.3(a) it can be seen that in the first case, despite the coarse grid, the nu-

merical solution is able to accurately reproduce the correct one, due to the fact

that the advective contribution is sufficiently low with respect to the diffusive one.
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With the same grid but with a more significant advective contribution, as in the

case of Figure 3.3(b), the numerical solution is completely unphysical: it is no more

monotonic, affected by unrealistic oscillations. Taking a finer grid, with the same

value of the advective term as in the previous case, the numerical solution is again

representative of the physics of the problem, as it is possible to see in Figure 3.3(c).

Qualitatively, it is possible to observe that when the problem is strongly affected by

advection, a finer grid is needed to be able to produce a relevant numerical solution,

due to the fact that the central differencing scheme is isotropic by nature and it is

not always able to represent the anisotropy of convection.

3.1.2 Conservativeness and boundedness

In general, the results produced by a numerical method should reproduce the ex-

act solution when the number of cells is infinitely large, whatever the differencing

method used. However, in practical calculations the number of cells should nec-

essarily be limited. For this reason, the choice of the discretization scheme to be

adopted assumes a relevant weight: it will be able to produce a result which is phys-

ically realistic only if it satisfies certain fundamental properties. The main ones are

conservativeness and boundedness. These properties are described in the following

lines according to the analysis of [17].

The finite volume formulation is conservative by construction inside the element,

but conservation must occur at the element boundary as well. In this sense, a scheme

guarantees conservativeness if the energy flux leaving one cell across a certain face

is equal to the energy flux entering the adjacent cell through the same face. Conser-

vativeness is always achieved by the central differencing scheme. This can be proved
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Figure 3.3: Numerical CDS solution and exact solution of the one-dimensional
steady-state advection-diffusion problem with three different Peclet numbers.

considering the one-dimensional steady-state diffusion problem without sources on

the domain represented in Figure 3.4 and writing an overall flux balance which can

be obtained by summing the net flux though each control volume:

[
k
T2 − T1

δx
− qA

]
+

[
k
T3 − T2

δx
− kT2 − T1

δx

]
+

[
k
T4 − T3

δx
− kT3 − T2

δx

]
+

[
qB − k

T4 − T3

δx

]
= qB − qA .

(3.20)
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The fluxes are expressed in a consistent manner and cancel out in pairs when

summed over the entire domain. Therefore, equation (3.20) expresses the overall

conservation of T .

Figure 3.4: Example of consistent specification of diffusive fluxes [17].

For boundedness to be satisfied, two conditions are required:

� In order to guarantee the convergence of the iterative method which solves

the set of algebraic equations the Scarborough criterion must be satisfied. It

requires that ∑
|anb|
|a′P |


≤ 1 for all nodes

< 1 for at least one node

(3.21)

where a′P is the net coefficient of the central node P , and anb is the summation

over all the neighbouring nodes. Analysing equation (3.12), one can verify that

the central differencing scheme satisfies this criterion.

� All the coefficients of the discretized equations written in the form aPTP =

aWTW + aETE should have the same sign. Looking at equation (3.12), it is

possible to see that this happens only if:

ρcpv

2
<

k

δx
, (3.22)
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i.e.:

Pe =
ρcpv
k
δx

< 2 . (3.23)

Therefore, the central differencing scheme is conservative but it is bounded only

under the condition that Pe < 2, explaining the behaviour of the results seen in

Figure 3.3 and confirming that this scheme is not able to reproduce an advective

dominant problem with a limited number of nodes. Indeed, in the extreme case

of pure advection the Peclet number tends to +∞. Instead, coming back to pure

diffusion, Pe = 0 and the central differencing scheme accurately describes the real

solution.

Due to the instability of the central differencing scheme in advection dominated

situations, there is a need to individuate a stable scheme, which is able to to describe

the strongly anisotropic nature of this phenomenon.

3.2 The upwind scheme

The simplest numerical scheme that solves the problem of stability is the Upwind

Differencing Scheme, which takes into account the flow direction of the stream.

Using this method, the temperature value at a cell face is taken equal to the one

of the upstream node.

3.2.1 Steady-state advection-diffusion model problem

Applying the upwind differencing scheme to the one-dimensional steady-state ad-

vection diffusion problem seen in Section 3.1.1 and expressed by equation (3.8)
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brings to the following discretized equation, supposing that the flow is in the posi-

tive direction:

ρcpvTP − ρcpvTW = k
TE − TP
δx

− kTP − TW
δx

. (3.24)

Grouping the multipliers it is possible to obtain:

−
(
ρcpv +

k

δx

)
TW +

(
ρcpv +

2k

δx

)
TP −

(
k

δx

)
TE . (3.25)

It can be easily shown that the expressions utilised by the upwind differencing

scheme to approximate the fluxes across the faces are consistent and therefore that

the formulation is conservative.

Moreover, looking at equation (3.25), it is possible to verify that both the Scarbor-

ough criterion and the condition on the sign of multipliers are always verified, so

boundedness is guaranteed.

Therefore, the upwind differencing scheme gives an answer to the problem of lack

of stability of the central differencing scheme in those situations in which advection

plays a significant role.

Thanks to its stability and also because of its simplicity, the upwind differencing

scheme has been widely applied in CFD calculations in general and in thermo-fluid

dynamic models of district heating networks [8] [9].

However, it is important to observe that the introduction of stability comes at the

price of a reduced accuracy: while the central differencing scheme was second order

accurate, the upwind differencing scheme is only first order. Indeed, writing the
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Taylor expansion of the advective term around point P :

ρcpvT (x) = ρcpvT (P ) +
∂(ρcpvT )

∂x

∣∣∣∣
P

(x−P ) +
1

2

∂2(ρcpvT )

∂x2

∣∣∣∣
P

(x−P )2 + o((x−P )3)

(3.26)

and rearranging the terms evaluating the expression in W , one obtains:

∂(ρcpvT )

∂x

∣∣∣∣
P

=
ρcpvT (P )− ρcpvT (W )

δx
− 1

2

∂2(ρcpvT )

∂x2

∣∣∣∣
P

δx− o(δx2) . (3.27)

The first term on the right hand side of equation (3.27) represents exactly the

upwind approximation, while the last term is the truncation error. It can be seen

that the method is first-order accurate, i.e. the error scales linearly with the grid

size. Furthermore, the error scales with the second derivative of the solution, in

a similar manner to the diffusion term, introducing in the problem an artificial-

numerical diffusivity which is physically not present.

3.2.2 Transient pure advection model problem

An application to the one-dimensional transient pure advection problem is proposed

in order to visualize the problem. In absence of sources, the problem reads:

∂(ρcpT )

∂t
+
∂(ρcpvT )

∂x
= 0 . (3.28)

The domain is supposed to be a pipe 1 meter long, in which water flows from left

to right at T = 100 � and with v = 1m/s, discretized on a uniform grid. At t < 0,

the temperature of water in the pipe is assumed to be T = 0 �.

The problem is solved with four different grids, each one with a different number

of nodes N . A backward Euler scheme is used for time discretization. The results
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are shown in Figure 3.5. The effect of the numerical diffusivity introduced by the

method is clearly visible in Figure 3.5(a), in which 10 nodes are used, and it tends

to be less significant increasing the number of nodes and moving through N = 1000

of Figure 3.5(d).
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(c) N = 1000 (d) N = 10000

Figure 3.5: Numerical UDS solution of the one-dimensional transient pure advection
problem at different times, solved using four grids of different quality.

To better appreciate the differences, in Figure 3.6 the results obtained using the

various grid are depicted together with the exact solution at t = 0.5 s. It is possible

to see that the solution is strongly sensitive to the grid size and in order to obtain
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something similar to the analytical solution, at least 1000 nodes are required.
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Figure 3.6: Numerical UDS solution of four different grids and exact solution of the
one-dimensional transient pure advection problem at t = 0.5 s.

The expression of the artificial diffusivity can be easily deduced from equation

(3.27):

Γnum =
vδx

2
. (3.29)

Clearly, one way to minimize its contribution is to increase the degree of geometrical

discretization, as seen in the previous example. However, if one wishes to make it

insignificant in comparison with the physical diffusion coefficient Γ0, the condition

Γnum
Γ0

� 1

is required. This condition brings to:

vδx

2Γ0

� 1 ⇒ vδx

2Γ0

� 1 ⇒ ρcpvδx

2k
� 1 ,

and consequently to:

Pe =
ρcpv
k
δx

� 2 . (3.30)
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This condition is much more stringent than the practical stability condition Pe < 2

of the central differencing scheme. Since it results to be highly unrealistic in terms

of practical calculations, there is a need of finding another way to reduce artificial

diffusion, in order to build a method which is more reliable in terms of thermal

predictions, essential in problems like the one of district heating networks.
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Chapter 4

The problem of numerical

diffusion

One of the main issues of numerically solving the thermal differential equation to

determine the thermal behaviour of a district heating network is that the numerical

scheme typically used, i.e. the upwind differencing scheme, introduces an artificial

diffusion which affects the quality of the solution, giving a wrong representation of

the problem.

As seen in Chapter 3, one way of minimizing this artificial diffusion is to increase

the degree of geometrical discretization. However, this solution is unfeasible in sim-

ulations of district heating systems, since the computational cost of simulation

becomes in this way highly demanding.

Therefore, other methods to decrease the influence of the numerical diffusion with-

out decreasing too much the grid size are investigated. In particular, a model based

on the method of characteristic proposed by [18] is quickly described. Then, the

pipe model based on the Type31 model of TRNSYS proposed by [10] and [12] is
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briefly illustrated. Finally, the discretization technique based on the quadratic up-

stream interpolation introduced by [19] is analysed. It will be used in the following

chapters for the development of a model for the entire district heating network.

4.1 Method of characteristics

Giraud et al. [18] proposed a Modelica® model of the pipe in which the energy

balance equation is derived according to the method of characteristics. This method

permits to noticeably reduce artificial diffusion speeding up the simulation. In order

to understand how it works, it is applied on the pure advection problem with no

sources as a simplified example. Assuming constant thermo-physical properties and

constant positive velocity v, the problem reads:

∂T

∂t
+ v

∂T

∂x
= 0 . (4.1)

Equation (4.1) says that the directional derivative (v,1) · ∇T = 0, where ∇T =

(∂T
∂x
, ∂T
∂t

). Consequently, T should be constant on the lines x− vt = x0, where x0 is

the point in which this line intersects the x axis. The speed of this line is v and its

slope 1/v.

Knowing T (x, t = 0) = f(x), one can obtain T (x, t) = f(x0) = f(x − vt) by rigid

translation of the initial function. Therefore, the solution of the problem described

by equation (4.1) can be obtained since the initial solution is known. It is repre-

sented in Figure 4.1: despite only 100 nodes have been used, the solution appears

to be quite accurate.

However, as highlighted by [12], when heat losses are introduced, this approach

brings to a still considerable error.
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Figure 4.1: Solution of the transient pure advection problem at different times,
obtained using the method of characteristics, N = 100.

4.2 TRNSYS Type31 Model

Other authors [10] [12] developed a model that relies on the Type31 model of

TRNSYS, based on a plug-flow approach. The properties of each fluid particle are

considered along their direction in function of time, considering the energy balance

in each cell according to Figure 4.2.

Figure 4.2: Lagrangian coordinate system for one-dimensional system [10].

In this approach, the momentum balance is neglected and the fluid is considered
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as incompressible. Therefore, mass and energy balance are expressed by:

∂m

∂t
= 0 , (4.2)

mcp
∂T

∂t
= Φ . (4.3)

This component models the thermal behaviour of a flow in a pipe whose cell volume

and density are considered as constant. The pipe is divided in cells that follow the

heat wave propagation: the entering fluid shifts the position of the existing cell and

the energy balance is applied to each cell. The plug-flow model allows a quicker

resolution of the system compared to the resolution of 1D finite volume method.

4.3 Quadratic Upstream Interpolation for Con-

vective Kinematics (QUICK)

An alternative strategy to reduce numerical diffusion errors when solving the ther-

mal partial differential equation is to employ higher-order discretization methods

which also preserves sensitivity to flow direction to guarantee stability.

The quadratic upstream interpolation for convective kinematics (QUICK) scheme

of Leonard [19] uses a three-point upstream-weighted quadratic interpolation for

cell values. This formulation leads to the achievement of a conservative formulation

with stable advective sensitivity, as proved in the reference.

Considering a uniform grid, the basic interpolation scheme for Te when v is positive

to the right is shown in Figure 4.3 and reads:

Te =
1

2
(TP + TE)− 1

8
(TW + TE − 2TP ) . (4.4)
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This formulation may be interpreted as a linear interpolation corrected by a term

proportional to the upstream-weighted curvature.

For modelling the gradient (∂T/∂x)e, the tangent at the wall has also been shown

in Figure 4.3. Since for a parabola the slope half way between two points is equal

to the slope of the chord joining the points, the gradient is:

∂T

∂x

∣∣∣∣
e

=
TE − TP
δx

(4.5)

This formula is exactly the same as the central differencing formula. In a similar

manner, Tw and (∂T/∂x)w, whose construction is represented in Figure 4.4, can be

obtained:

Tw =
1

2
(TW + TP )− 1

8
(TWW + TP − 2TW ) , (4.6)

∂T

∂x

∣∣∣∣
w

=
TP − TW

δx
. (4.7)

Figure 4.3: Quadratic upstream interpolation for Te, adapted from [19].
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Figure 4.4: Quadratic upstream interpolation for Tw, adapted from [19].

4.3.1 Transient pure-advection model problem

An application of the discretization method previously described on the transient

one-dimensional pure-advection problem is proposed in order to see the practical

advantages of using this method, comparing the results with the ones obtained with

the upwind differencing scheme (see Chapter 3.2.2).

The domain considered is a pipe with constant section, in which water at constant

velocity v = 1m/s is flowing from left to right. The initial condition is T (x,0) = 0

�, while the boundary condition, applied to the left boundary, is T (0, t) = 100 �.

Backward Euler scheme is used for time discretization. On the last control volume

an upwind scheme is used.

In Figure 4.5 the results obtained at different times with different grid sizes are

shown. Moreover, Figure 4.6 compares the result obtained at t = 0.5 s with the four

different meshes. One can see that, using this scheme, a sharper and less sensitive

to grid refinement solution is obtained. Indeed, apart from the first case (N = 10),

the solutions are very close to each other. Small undershoot and overshoot appear,

but they are all below 5% of the step length.

In Figure 4.7, the solutions with N = 100 and at t = 0.5 s of Upwind Differencing

Scheme (UDS) and QUICK are compared: in this way it is possible to appreciate

how QUICK improves the quality of the solution, leading to a result which is much
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(c) N = 1000 (d) N = 10000

Figure 4.5: Numerical QUICK solution of the one-dimensional transient pure ad-
vection problem at different times, solved using four grids of different quality.
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Figure 4.6: Numerical QUICK solution of the one-dimensional transient pure ad-
vection problem at t = 0.5 s for N = 10, N = 100, N = 1000 and N = 10000.
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less affected by the artificial diffusion proper to UDS.
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Figure 4.7: Numerical QUICK and UDS solutions compared to the exact one at
t = 0.5 s and with N = 100.

In order to obtain an UDS solution less diffusive and closer to the one produced by

QUICK with N = 100, at least 1000 nodes are required, as shown in Figure 4.8.

Therefore, with respect to the other method, QUICK can produce a solution of

comparable accuracy with a great reduction of the number of nodes, and an even

more significant reduction of the size of the N ×N matrices.
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Figure 4.8: Numerical QUICK (N = 100) and UDS (N = 1000) solutions compared
to the exact one at t = 0.5 s.
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For these reasons, QUICK can be a good solution to decrease the numerical diffusion

without increasing too much the computational cost. It can be used as discretization

scheme in district heating applications, in order to make the model more reliable

than the classically used models in which UDS is implemented, keeping the total

cost of computation below the one normally required. The idea of extending the

use of this scheme to the whole network will be exploited in the following chapters.
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Chapter 5

Adaptive moving mesh methods

The solution of the energy conservation equation for an advection dominated flow

in a pipe, and in general in the framework of DHN, has large variations occurring

over a small portion of the physical domain. This feature of the solution brings to

the need of having a fine mesh in those portions of the domain. If a uniform mesh

is used, the number of mesh points becomes very large and the computational cost

extremely high.

To cope with this problem, an idea could be to use a non-uniform mesh, placing

a high proportion of mesh points in the regions of large solution variation and few

points in the rest of the domain, where the solution is less subject to variations.

With this basic idea of “mesh adaptivity”, much less mesh points are required with

respect to a uniform mesh, and the computational time is significantly reduced.

However, in applications like the one of district heating network, whose thermal

behaviour is described by a time-dependent PDE, it is required that the mesh

points are dynamically adjusted to follow the front as it propagates in time. This

is the concept of “adaptive moving mesh”.

In this chapter an introduction to the principles of adaptive mesh movement in 1D

43



5 – Adaptive moving mesh methods

is presented, on the basis of what analysed by Huang and Russell in [20].

When approximating the function T by using its values at a finite number of mesh

points, a mesh density function ρ(x) is chosen in order to distribute these points:

mesh points are then collocated in such a way that distance between them are

smaller in regions where ρ(x) is larger, and the distances are larger in regions

where ρ(x) is smaller. Mesh density functions are also called by other references

(e.g. [21]) monitor functions. They need to be selected accurately according to the

application.

Given an integer N > 1 and a continuous function ρ = ρ(x) > 0 on a bounded

interval [a, b], a mesh Th : x1 = a < x2 < · · · < xN = b which evenly distributes ρ

among the subintervals determined by the mesh points, in the sense that:

∫ x2

x1

ρ(x)dx = · · · =
∫ xN

xN−1

ρ(x)dx , (5.1)

is an equidistributing mesh. In the one-dimensional case, equidistribution plays an

important role in mesh adaption. As proved in [20], for a given integer N > 0 there

exists a unique equidistributing mesh of N point satisfying (5.1) for any strictly

positive mesh density function.

For the numerical solution of time-dependent problems, the mesh density function

will depend upon the solution, and hence on time. Therefore, it is needed to adopt

a time-dependent mesh as well. This moving mesh can be obtained by solving a

moving mesh PDE (MMPDE), which is a mesh equation involving mesh speed and

defining the co-ordinate transformation.

There are numerous ways of formulating MMPDEs. Some of the most popular for-

mulations are MMPDE4, MMPDE5 and MMPDE6.

Once the new grid has been obtained, it is needed to update the solution T at the
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new grid point, based on the knowledge of the solution computed at the old grid

point and of the coordinates of the new grid points and of the old ones, as well

explained in [22].

This is done by means of a linear interpolation, whose major difficulty generally

consists in point location, i.e. finding the elements that contain the new mesh

points. For the general situation in which the meshes may have different topologies,

this can be quite difficult, representing a topic of active research on its own right.

However, the case treated here is much simpler: the new and old meshes have the

same topology, so that the new mesh can be interpreted as a deformation of the

old one. The search for the location of a mesh point begins with the neighbours of

the corresponding point on the old mesh, and it proceeds until the element that

contains the new point is found. Typically it is not so far from the old point and

the point location is quickly identified.

5.1 Transient pure advection model problem

In order to appreciate the advantages of using such a kind of method, an application

to the transient pure advection model problem, described by equation (3.28) and

previously analysed with UDS and QUICK on a uniform grid, is proposed.

Data are the same of the previous cases, and the only thing that changes is that

now the grid is non-uniform and it evolves with time, as the front propagates.

The mesh density function used to distribute the mesh points is the arc-length mesh

density function:

ρ =
√

1 + |∇T |2 . (5.2)
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This mesh density function is one of the most used in moving mesh applications. It

aims at equidistributing the arc-length of the solution curve over the mesh points.

The algorithm chosen to generate the new mesh at each new instant of time is the

MMPDE5 [23]. After having built the new mesh, which is updated at each time,

one needs to discretize the equation in space and then in time, in order to be able

to write the discretized problem in matrix form and to solve it.

The mesh in this case is no more uniform, and it is evolving in time. Equation

(3.28) integrated on a generic control volume reads:

∂(ρcpT )

∂t
V + ρcpvSTe − ρcpvSTw = 0 . (5.3)

By simplification, one obtains:

∂(ρcpT )

∂t
(xe − xw) + ρcpvTe − ρcpvSTw = 0 . (5.4)

In fact, there is no more a constant δx valid for all the cells, but it varies for each

node and also at each time. Since the faces are assumed to be in the mid point

between the two nodes, their coordinates are:

xe =
xP + xE

2
and xw =

xW + xP
2

. (5.5)

Therefore:

xe − xw =
xP + xE

2
− xW + xP

2
=
xE − xW

2
. (5.6)

For what concerns the values of the solution at the cell faces, their evaluation

depends on the discretization scheme chosen.
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5.1.1 Upwind differencing scheme

If the upwind differencing scheme is used, the values of T at the cell faces are im-

posed equal to their upstream value, as in the uniform mesh case. In this problem,

since the flow is considered positive to the right, Te = TP and Tw = TW .

The solution produced by UDS with an adaptive moving mesh made of 100 nodes

is shown in Figure 5.1(a), where the temperature behaviour every 0.1 s is reported;

to have an idea of the movement of the mesh, the centroids of the corresponding

control volumes are depicted in Figure 5.1(b).
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Figure 5.1: On the left, numerical UDS solution on a non-uniform adaptive grid of
the one-dimensional transient pure advection problem every 0.1 s. On the right, the
centroids of the corresponding adaptive moving mesh.

To understand the benefits of the use of adaptive moving mesh methods, Figure

5.2 compares the numerical solution obtained on the adaptive grid with the one ob-

tained with the uniform grid at t = 0.5 s. As expected from expression (3.29), since

the numerical diffusivity depends on δx, a more accurate and less over-diffusive so-

lution is obtained with the adaptive grid in the gradient zone, where δx diminishes

with respect to the uniform grid. There are other portions of the domain where δx

increases and consequently an additional numerical diffusivity is added; however,
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in these zones the solution is flatter and the introduction of a numerical diffusiv-

ity is less critical. Overall, the use of an adaptive grid can be considered satisfactory.
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Figure 5.2: Numerical UDS solution of the one-dimensional transient pure advection
problem on an adaptive grid and on a uniform one, at t = 0.5 s.

5.1.2 QUICK

The solution values at the cell faces can also be obtained through a three-point

upstream-weighted quadratic interpolation (QUICK). However, in the case of the

intrinsically non-uniform adaptive mesh, the formulations of the wall values ex-

pressed by equations (4.4) and (4.6) are no more valid. Indeed, those simplified ex-

pressions were obtained due to the fact that the mesh was uniform and δx constant

all over the domain. As an example, to obtain the upstream quadratic interpolation

on a non-uniform grid of the wall value Te of a certain control volume, one might

first of all find the equation of the parabola passing through the three points W ,

P and E (since the flow is positive to the left), by solving for ae, be and ce the
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following system: 
TW = aex

2
W + bexW + ce

TP = aex
2
P + bexP + ce

TE = aex
2
E + bexE + ce .

(5.7)

In this way, each coefficient can be evaluated as a function of the nodal values of

the solution and of the coordinate of the centroids:

ae =

[
− 1

(xW − xE)(xP − xW )

]
TW +[

1

(xW − xE)(xP − xW )
+

1

(xW − xE)(xE − xP )

]
TP +[

− 1

(xW − xE)(xE − xP )

]
TE

be =

[
− 1

xP − xW
+

xP + xW
(xW − xE)(xP − xW )

]
TW +[

1

(xP − xW )
− xP + xW

(xW − xE)(xP − xW )
− xP + xW

(xW − xE)(xE − xP )

]
TP +[

xP + xW
(xW − xE)(xE − xP )

]
TE

ce =

[
1 +

x2
W

(xW − xE)(xP − xW )
+

xW
xP − xW

− (xP + xW )xW
(xW − xE)(xP − xW )

]
TW +[

− x2
W

(xW − xE)(xP − xW )
− x2

W

(xW − xE)(xE − xP )
− xW
xP − xW

+
(xP + xW )xW

(xW − xE)(xP − xW )
+

(xP + xW )xW
(xW − xE)(xE − xP )

]
TP +[

x2
W

(xW − xE)(xE − xP )
− (xP + xW )xW

(xW − xP )(xE − xP )

]
TE
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At this point, Te can be obtained by simply evaluating:

Te = aex
2
e + bexe + ce , (5.8)

being xe expressed by (5.5). Similarly, Tw can be expressed knowing the values of

the solution in the points WW , W and P and by finding the equation of another

parabola whose coefficients are aw, bw and cw:


TWW = awx

2
WW + bwxWW + cw

TW = awx
2
W + bwxW + cw

TP = awx
2
P + bwxP + cw ,

(5.9)

Tw = awx
2
w + bwxw + cw . (5.10)

Obviously, for the non-uniform adaptive grid these coefficients are not always the

same but they vary for each control volume and at each time step.

After these steps, the problem can be written in matrix form and it is ready to be

solved. Figure 5.3(a) illustrates the solution every 0.1 s for a non-uniform adaptive

grid made of 100 nodes. In Figure 5.3(b) the corresponding evolving grid is plotted.

It is possible to appreciate a noticeable reduction of the undershoot and overshoot

that were present in uniform mesh case: now they are all below 1%. Solutions ob-

tained with the uniform mesh and with the adaptive moving mesh are compared

in Figure 5.4.

In conclusion, the introduction of an adaptive moving mesh method seems to bring
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Figure 5.3: On the left, numerical QUICK solution on a non-uniform adaptive grid
of the one-dimensional transient pure advection problem every 0.1 s. On the right,
the centroids of the corresponding adaptive moving mesh.
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Figure 5.4: Numerical QUICK solution of the one-dimensional transient pure ad-
vection problem on an adaptive grid and on a uniform one, at t = 0.5 s.

to favourable results. It leads to the correction of the main issues related to the

scheme used to approximate the wall values, being in the UDS case the numerical

diffusivity and in QUICK the presence of overshoots. Therefore, one can think to

extend the use of adaptive moving mesh methods to the whole district heating net-

work, in order to guarantee a more accurate prediction of what happens in reality.

To avoid to make the analysis too heavy, the model proposed in this work and

analysed in the following chapters is not based on a method of this kind. However,
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for the mentioned benefits, the application of moving grids within district heating

networks can be left as a target for future works.
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Chapter 6

Description of the thermal model

In view of what seen in the previous chapters, the thermal model proposed is mainly

based on the QUICK scheme, in order to reduce the undesired effect of the artificial

diffusion. Starting from the initial topology description of the district heating net-

work, the configuration is modified by adding some “fictitious” nodes to the “real”

ones.

This choice aims at decreasing the size of the control volumes to increase the accu-

racy of the solution thanks to the improvement of spacial discretization. Moreover,

it helps to have the same mesh size along a physical branch, making the application

of QUICK immediate.

The Upwind Differencing Scheme is instead applied to those nodes that were

presents in the initial configuration, representing the junctions, and in the pre-

vious and the following ones. Indeed, in these nodes, the application of QUICK can

generate problems: for instance, the approximation of the control volume face val-

ues requires two upstream and one downstream nodes, and the farthest upstream

node in case of converging branches is not well defined.

Therefore, the discretization method adopted is actually an hybrid between QUICK
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and UDS, but, if a sufficient number of fictitious nodes is added, the percentage of

control volumes for which QUICK is adopted is far greater.

As well explained in Chapter 3, the energy conservation equation that models the

district heating network, integrated on a generic control volume, reads:

∂(ρcpTi)

∂t
Vi +

NB∑
j=1

±cpGjTj = −
NB∑
j=1

Lj
2

ΩjUj(Ti − T∞) , (6.1)

where NB is the total number of branches entering or exiting that control volume

and Vi is the volume of the CV considered, which can be computed as
∑NB

j=1 Sj ·Lj/2,

being Sj the cross section of the j-th branch and Lj its length. Ωj is the perimeter

of the j−th branch, Uj the global heat transfer coefficient and T∞ the external

temperature. For what concerns the advective term, it is negative if the stream is

entering the j−th branch, and positive in the opposite case.

Equation (6.1) can be discretized using the backward Euler method:

ρcpT
t
i − ρcpT t−∆t

i

∆t
Vi +

NB∑
j=1

±cpGt
jT

t
j = −

NB∑
j=1

Lj
2

ΩjUj(T
t
i − T∞) , (6.2)

The crucial point of the thermal analysis consists now in the approximation of the

wall values Tj in terms of nodal values Ti. Once this approximation is done for all

the control volumes of the domain, one is able to write a system of equations in

matrix form:

(M + K) ·Tt = f + M ·Tt−∆t , (6.3)

and to solve the thermal problem at each instant of time. In expression (6.3), K is

the stiffness matrix and depends on the scheme used to approximate Tj and on the

topology of the network. Its construction will be explained in the following sections.
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M is instead a diagonal matrix of dimensions (N×N), where N is the total number

of nodes, whose terms are

Mi,i =
ρcpVi
∆t

.

Finally, f is a column vector (N ×1) and represents the known term accounting for

the losses:

fi =
NB∑
j=1

Lj
2

ΩjUjT∞

.

The mass flow rates Gj flowing in the different branches of the network are assumed

to be known and fixed (they can be obtained through the SIMPLE algorithm that

solves the fluid-dynamic problem and that was illustrated in section 2.3). There-

fore, starting from an initial condition, and after having applied proper boundary

conditions on the matrix problem, it can be solved step by step as:

Tt = (M + K)\(f + M ·Tt−∆t) . (6.4)

6.1 Approximation of wall values with QUICK

Considering a generic internal control volume, i.e. one of those corresponding to

the “fictitious” nodes added to produce a better solution, the approximation of the

solution values at the wall of these elements is made by applying the Quadratic

Interpolation Scheme for Convective Kinematics proposed by Leonard [19] and

explained in section 4.3.

These fictitious nodes in which QUICK is applied do not represent a junction. They

are all internal nodes belonging to a pipe. This means that they all have only one

incoming and one outgoing fictitious branch.

55



6 – Description of the thermal model

Calling i the node which represents the center of the generic control volume, and

i− 2, i− 1 and i+ 1 respectively the two upstream nodes and the downstream one,

and considering that the incoming branch is j and the outgoing one j + 1, equation

(6.2) can be written as:

ρcpT
t
i − ρcpT t−∆t

i

∆t
Vi − cpGj(−

1

8
T ti−2 +

3

4
T ti−1 +

3

8
T ti ) + cpGj+1(−1

8
T ti−i +

3

4
T ti +

3

8
T ti+1)

= −Lj
2

ΩjUj(T
t
i − T∞)− Lj+1

2
Ωj+1Uj+1(T ti − T∞) .

(6.5)

This helps to understand how to build the stiffness matrix K. Indeed, from equation

(6.5) it is possible to deduce that at each i-th row corresponding to the i-th control

volume, the stiffness matrix has non-zero values in the following positions:

� in the column corresponding to the node before the one that precedes the CV

considered, that in the example considered is i−2, where it assumes the value

Ki,i−2 =
1

8
cpGj ;

� in the column corresponding to the node that precedes the CV considered,

that in the example considered is i− 1, where it is

Ki,i−1 = −3

4
cpGj −

1

8
cpGj+1 ;

� in the column corresponding to the i-th CV considered

Ki,i = −3

8
cpGj +

3

4
cpGj+1 +

Lj
2

ΩjUj +
Lj+1

2
Ωj+1Uj+1 ;
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� in the column corresponding to the node that follows the CV considered, that

in the case analysed is i+ 1

Ki,i+1 =
3

8
cpGj+1 .

Therefore, for each row the matrix has four non-zero values. Their collocation de-

pends on the enumeration of the nodes. Obviously, they cannot be all subsequent

due to the fact that more than one branch can come out from a node and more

than one branch can converge in a single node. Anyway, when possible, they are

enumerated consecutively to try to obtain a structure as much diagonally dominant

as possible.

6.2 Approximation of wall values with USD

For what concerns the nodes corresponding to junctions, the previous and the

successive ones, their wall values are not approximated using QUICK. Indeed, this

scheme seems to create troubles in the approximation of the solution on the east

face of the junction control volume and on the west face of the successive one, which

are coincident, especially in the case in which more than one branch converges in a

single node. These troubles originate from the fact that in the mentioned face the

value of the solution in the farthest of the two upstream nodes, which is needed

in QUICK, is not unique when more branches converge in the control volume. For

these reasons, to avoid any kind of issues, in these nodes the Upwind Differencing

Scheme is used.

To have an idea of how to fill the matrix K in the row corresponding to these

special nodes, an example is proposed. The example is referred to Figure 6.1: there
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are two incoming and two outgoing branches for a single control volume centered

in node i.

Figure 6.1: Example of the upwind scheme for a node [11].

Therefore, equation (6.2) reads:

ρcpT
t
i − ρcpT t−∆t

i

∆t
Vi − cpGjT

t
j − cpGj+2T

t
j+2 + cpGj+1T

t
j+1 + cpGj+3T

t
j+3 =

−Lj
2

ΩjUj(T
t
i − T∞)− Lj+2

2
Ωj+2Uj+2(T ti − T∞)

−Lj+1

2
Ωj+1Uj+1(T ti − T∞)− Lj+3

2
Ωj+3Uj+3(T ti − T∞) ,

(6.6)

and applying the upwind scheme:

ρcpT
t
i − ρcpT t−∆t

i

∆t
Vi − cpGjT

t
i−1 − cpGj+2T

t
i+2 + cpGj+1T

t
i + cpGj+3T

t
i =

−Lj
2

ΩjUj(T
t
i − T∞)− Lj+2

2
Ωj+2Uj+2(T ti − T∞)

−Lj+1

2
Ωj+1Uj+1(T ti − T∞)− Lj+3

2
Ωj+3Uj+3(T ti − T∞) ,

(6.7)

Then, the rows of the matrix K corresponding to the control volumes that need to

be discretized with UDS have non-zero terms in the following positions:

� in the columns corresponding to the control volumes that precede the control
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volume i considered, that in this example corresponds to i− 1 and i+ 2

Ki,i−1 = −cpGj ,

Ki,i+2 = −cpGj+2 ;

� in the column corresponding to the control volume i considered, in which the

outgoing mass flow rates and all the losses are taken into account; in this case

Ki,i = cpGj+1+cpGj+3+
Lj
2

ΩjUj+
Lj+2

2
Ωj+2Uj+2+

Lj+1

2
Ωj+1Uj+1+

Lj+3

2
Ωj+3Uj+3 .

Finally, special care must be taken also to the outlet nodes. In these nodes not

only UDS scheme is used, but differently from the previous ones it is needed to pay

attention to keep into account the energy extraction.

6.3 Example of application

An example of application is provided in order to test the method proposed. The

node-branch representation of the supply line of the district heating network is

shown in Figure 6.2. The figure and the data of the district heating network used

in this section are taken from [11]. Node 0 represents the power plant that supplies

heat to the system, while nodes 7, 12, 13, 14, 16, 18 an 19 are the users, each one

requiring a certain amount of thermal demand, and therefore a certain amount of

mass flow rate of hot water.

In this example the design of the network is supposed to be known. In particular,

the length of the branches, their diameters and their local loss coefficients are de-

tailed in Table 6.1. The friction factor is assumed to be f = 0.014. The mass flow
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rates required by the users are listed in Table 6.2. At the thermal plant a pressure

of 8 bar and a temperature of 120 � are imposed. As initial condition T = 70 �

is considered.

In accordance to the method described, some fictitious nodes are added. In detail,

a node every 10m is inserted.

The simulation is carried for a total time of 1 hour, and a time step of 1 s is used.

Figure 6.2: Schematic of the district heating network [11].

The model proposed permits to evaluate the temperature evolution of all the nodes.

In this way it is possible to obtain the temperature level at the point and at the

time desired.

The temperature distribution in those nodes that were presents in the initial topo-

logical description of the network is reported in Figures 6.3 and 6.4, respectively

after half an hour and after an hour. Note that the colour bars are different. From

the comparison of the two pictures one can note that while after half an hour the
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Table 6.1: Length, diameter and total local loss coefficient of the various branch of
the network [11].

Branch L [m] D [mm]
∑

k βk
0 1 660 500 2.6
1 2 260 500 4
2 10 360 350 4
2 3 500 450 4.3
3 4 100 450 4
4 5 380 350 4
5 6 400 250 4.3
6 7 140 250 2
6 8 300 250 4
9 8 180 250 3.8
10 9 60 350 4
9 11 180 250 4
11 12 160 250 2.9
11 13 120 250 2.9
5 17 180 250 4.3

Branch L [m] D [mm]
∑

k βk
4 16 240 300 2.9
10 15 330 125 4.9
1 15 380 250 4
3 17 400 250 4
17 14 720 250 2
1 18 20 125 2
2 19 20 250 2
10 20 20 250 2
3 21 20 75 2
4 22 20 250 2
5 23 50 250 2
6 24 50 250 2
15 25 50 125 2
8 26 70 250 2

Table 6.2: Mass flow rates injected in the plant and required by the users [11].

Node G [kg/s]
0 -513.13
7 23.71
12 27.6
13 32.34
14 31.05
16 78.92
18 15.52
19 56.92

Node G [kg/s]
20 36.22
21 3.88
22 58.21
23 70.72
24 30.61
25 18.97
26 28.46

high temperature mass flow rate started from the power plant at t = 0 s has not

yet reached the farthest nodes, after an hour it reaches all the users with a slightly

lower temperature due to the heat losses.

Figure 6.5 the temperature evolution of node 14, that represents the farthest user,

is illustrated: the hot fluid arrives at this user with about 40min of delay with

respect to the power plant.
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Then, the same simulation is repeated decreasing the grid size, by imposing a ficti-

tious node every 5m instead of 10m. Temperature distributions at t = 1800 s and

t = 3600 s are shown in Figures 6.6 and 6.7. The temperature evolution of node 14

is depicted in Figure 6.8. The pictures are similar, but it is possible to immediately

see that the overshoot typical of QUICK that was visible in Figure 6.5 is disap-

peared, improving the quality of the solution. This is obtained at the expenses of

the computational time of simulation, which is almost doubled.

In conclusion, the method proposed seems to work well in case of district heating

networks, giving a good opportunity to produce a more accurate solution without

increasing too much the computational cost.
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Figure 6.3: Temperature distribution at t = 1800 s in the real nodes, obtained
inserting a fictitious node every 10m and using a time step of 1 s.

Figure 6.4: Temperature distribution at t = 3600 s in the real nodes, obtained
inserting a fictitious node every 10m and using a time step of 1 s.
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Figure 6.5: Temperature evolution of node 14, obtained inserting a fictitious node
every 10m and using a time step of 1 s.
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Figure 6.6: Temperature distribution at t = 1800 s in the real nodes, obtained
inserting a fictitious node every 5m and using a time step of 1 s.

Figure 6.7: Temperature distribution at t = 3600 s in the real nodes, obtained
inserting a fictitious node every 5m and using a time step of 1 s.
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Figure 6.8: Temperature evolution of node 14, obtained inserting a fictitious node
every 5m and using a time step of 1 s.
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Chapter 7

Conclusions

The scope of this work was to propose a numerical model able to describe in an

accurate manner the thermal transients that occur in a district heating network. In-

deed, predicting the temperature behaviour is essential to have a full control of the

network, to reduce the temperature losses and to guarantee the thermal comfort of

the users at a reasonably low cost, as explained in a brief introduction in Chapter 1.

Therefore, a proper thermo-fluid dynamic model is needed. After having described

the hydraulic part of the problem in Chapter 2, on the basis of what suggested by

[8], the focus of the work passed on the thermal problem, solved by means of the

finite volume method, developed in Chapter 3.

To solve the problem, an approximation of the values at the interfaces of the con-

trol volume has been needed. A description of why the Central Differencing Scheme

cannot be applied in a case like district heating, strongly dominated by the advec-

tion contribution, has been carried out. Then, the Upwind Differencing Scheme

(UDS) has been analysed, and it has been applied to a transient pure advection

model problem in a pipe. In this way, the problem of the unphysical oscillatory

behaviour given by Central Differencing Scheme has been solved. However, a new
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problem emerged: the Upwind Differencing Scheme suffer from severe inaccuracies

due to truncation error, that behaves in a similar manner to the diffusion term,

introducing in the problem an artificial-numerical diffusivity.

Chapter 4 was dedicated on the analysis of some strategies to solve the issue of

numerical diffusivity. The Quadratic Upstream Interpolation for Convective Kine-

matics (QUICK) introduced by [19] was found to be a good method to solve the

problem.

Moreover, in Chapter 5, the effects of the use of an adaptive mesh methods to

the transient pure advection model problem in a tube have been studied. Also this

strategy has shown to produce satisfactory results.

Finally, Chapter 6 was dedicated to the development of a thermal model mainly

based on QUICK, which uses UDS only in the nodes in which this method cannot

be applied. The model proposed has been applied to a network taken from [11].

Thanks to this application it has been possible to show how it leads to adequate

results.

Thanks to the good prospects of the model, as future work one can think to extend

the application of the model presented to larger and real district heating networks.

Moreover, another idea could be to apply moving meshes to a small network in

order to investigate on the possible benefits that this kind of method can provide.
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