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Sommario

Nell’ambito del progetto “Evaluation of alternative approach for suspension corner damp-
ing by the use of hydraulic top mounts” si analizzano i benefici dati dall’impiego di supporti
idraulici come testa duomo per un sistema di sospensione automobilistica. L’intero pro-
getto si basa su simulazioni numeriche realizzate via MATLAB®/Simulink®. Pertanto, la
modellazione della testa duomo idraulica per mezzo di un sistema di molle, smorzatori e
masse è stata il punto di partenza del progetto.

Successivamente, la suddetta testa duomo idraulica è stata inserita in un modello
“quarter car” e la sua performance è stata paragonata con un equivalente modello “quarter
car”, in cui, a differenza del precedente, una comune testa duomo in gomma è stata
inserita. Di conseguenza, il modello “quarter car” con la testa duomo in gomma costituisce
il modello di riferimento per la valutazione della performance della nuova testa duomo
idraulica. In particolare, sono stati sviluppati sia modelli lineari che nonlineari, il primo
è stato utilizzato per verificare la robustezza del modello stesso, mentre il secondo è stato
utilizzato per valutare la performance rispetto ai modelli di riferimento. Per simulare i
modelli lineari sono stati utilizzati dei segnali “chirp”, mentre dei profili stradali casuali
sono stati usati per completare la simulazione dei modelli nonlineari.

Inoltre, al fine di valutare ulteriori miglioramenti che possano essere raggiunti per
mezzo dell’impiego di una testa duomo idraulica, una diversa disposizione della testa
duomo rispetto all’ammortizzatore nel modello “quarter car” è stata realizzata e poi veri-
ficata. Un leggero miglioramento della performance è stato registrato nel caso dei modelli
equipaggiati di testa duomo idraulica.

Infine, per una migliore comprensione delle caratteristiche della testa duomo idraulica
un piano di esperimenti (Design of Experiments (DOE)) che considerasse i parametri
idraulici della testa duomo idraulica è stato messo a punto. Questa metodologia ha per-
messo di identificare i parametri più significativi per la performance del modello “quarter
car”. Inoltre, l’analisi dei risultati ottenuti per mezzo del DOE è stata il punto di partenza
per un tentativo preliminare di ottimizzazione della testa duomo idraulica.

Le simulazioni portate a termine impiegando la testa duomo ottimizzata hanno mostrato
un importante miglioramento rispetto alla testa duomo in gomma. In più, è stato mostrato
che la seconda disposizione per la testa duomo rispetto allo smorzatore può risultare in
migliori performance rispetto alla disposizione originale.
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Abstract

The scope of “Evaluation of alternative approach for suspension corner damping by the
use of hydraulic top mounts” is the analysis of the benefit given by the implementation of
a hydraulic mount as the top mount for a vehicle suspension system. The whole project is
based on numerical simulations performed by means of MATLAB®/Simulink®. Therefore,
the modelling of the selected hydraulic top mount by means of a system of springs, dampers
and masses was the starting point of the project.

Afterwards, the aforementioned hydraulic top mount model was inserted into a quarter
car model and its performance was compared to that of an equivalent quarter car model
employing a rubber top mount, instead. Therefore, the quarter car model with the rubber
top mount represented the reference model to assess the performance of the new hydraulic
top mount. In particular, both linear and nonlinear quarter car models were developed,
the former were used to check the robustness of the model itself and the latter were used
to carry out all the comparisons with the reference models. Different chirp signals were
used as input for all the linear models, while random road and single asperity signals were
employed as inputs for the nonlinear models.

Furthermore, in order to explore the potential improvements that could be achieved
by implementing the hydraulic top mount, a second arrangement for the relative position
of the hydraulic top mount and the shock absorbed in the quarter car model was mod-
elled and, then, tested. A slight better performance was recorded in the case of models
containing the hydraulic top mount.

Finally, for a better understanding of the characteristics of the hydraulic top mount,
a Design of Experiments (DOE) that takes into account the parameters of the mount
hydraulic components was carried out; DOE methodology allowed one to identify the
most influential factors in the quarter car model performance. Additionally, the analysis
of DOE results was employed as a starting point to perform a first optimization of the
hydraulic top mount.

The simulation carried out employing the optimized top mount showed a relevant
improvement with respect to the base hydraulic top mount and, a fortiori, with respect to
the rubber top mount case. Moreover, it was shown that the second arrangement for the
hydraulic top mount in the quarter car model could give even better performance than
the model with the standard arrangement.
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CHAPTER 1

Introduction

The top mount in a vehicle suspension assembly connects the strut of the suspension itself
to the chassis of the vehicle. This element is commonly a steel and rubber element with a
visco-elastic behaviour. Throughout this project the possibility to switch to a visco-elastic
hydraulic mount, comprising of two different chambers across which a fluid can travel, has
been explored.

1.1 The Role of Suspension System and Top Mount

The suspension system of a vehicle fulfills many essential functions to reach the best
performance in terms of handling and ride comfort. The absorption of the loads coming
due to profile irregularities is one of the main task that has to be accomplished by the
suspension system thanks to its elastic and damping properties, constituting a sort of filter
between the road and the vehicle body [1].

Many different suspension system designs are available in the market, but all of them
include different linkages to connect the wheels and the body, primary elastic members,
which usually comprises of a coil spring and a shock absorber (even though different designs
are available), and secondary elastic members, whose characteristics can be exploited to
meet the desired comfort and handling performance [1]. The hydraulic to mount taken into
account in this project belongs to this last category; it constitutes the interface between
the suspension system of the vehicle and the body itself.

In Figure 1.1, the strut a McPherson suspension system is presented. On top of the
shock absorber, the top mount is interfaced with the vehicle body, while on the other side
it is connected to the strut [1].
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Figure 1.1: McPherson suspension strut comprising of coil spring, hydraulic shock absorber and
Rubber Top Mount [1].

1.2 Rubber Mounts Structure

The most common type of top mount employed in passenger cars is elastomeric, it is
composed of a steel external structure, that is filled with rubber. The task of absorb-
ing vibration and dissipating energy is, therefore, that of the rubber; however, in many
applications, the rubber alone is not able to fulfill all the damping requirements since
a linear mount has a quasi linear dynamic stiffness, that obliges to a trade–off between
the requirements at low frequency and those at high frequency. An improvement of the
damping can be obtained by making its dynamic stiffness nonlinear, usually this task is
achieved properly shaping the mount and in particular its elastomeric element: nonlinear
mounts have an increased capability in meeting comfort requirements [2], [3].

In order to be able to compare the performance obtained with the hydraulic mounts, in
the present project linear elastomeric mount are taken into account. This type of mounts
is usually modelled by means of the “Voigt Model”, therefore, through a parallel of a
damper and a spring [3]. In Figure 1.2 a 3D model of an actual elastomeric mount is
presented; the section view shows the rubber inside the steel sleeve.

1.3 Hydraulic Mounts Structure

Many different types of hydraulic mounts can be found with characteristics as on their
applications. Nowadays, the most common application of hydraulic mounts is as engine
suspension. A 3D model of a hydraulic mount employed for engine suspension is presented
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Figure 1.2: 3D model of a suspension elastomeric top mount showing the steel sleev and its rubber
insert in section [4].

in Figure 1.3. As the rubber mount, it is composed of a steel sleeve with a rubber insert,
however, in this case the rubber forms two different chambers that are separated by an
inertia track and sometimes also by a decoupler through which a high viscosity fluid can
travel.

Figure 1.4, which shows a half-section technical drawing of the mount, allows one
to better understand how a hydraulic mount works. The mount shown in Figure 1.4
comprises both an inertia track and a decoupler.

The primary rubber is very stiff and mainly acts to absorbe the static load and partially
provides some damping; moreover it can be seen as a pump moving the fluid to the other
chamber. The secondary rubber is instead meant to accommodate the motion of the fluid
and it is usually less stiff than primary one. The Inertia track and the decoupler, instead,
have an important role in the damping of vibrations; the former is a spiral pipe which
separates the two chambers, while the latter is a plate whose motion is limited by a sleeve
and can be seen as a mechanical switch between the two chambers [6].

The inertia track is able to provide a consistent amount of damping and inertia to the
fluid at high amplitude excitation for the engine mount, while the decoupler acts at low
amplitude excitation: when it is not in contact with its sleeve, it offers a low resistance
passage to the fluid, otherwise, at low frequencies, it is in contact with the sleeve and the
fluid is obliged to pass through the inertia track. [6], [7].
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Figure 1.3: 3D Model of an actual hydraulic mount employed in engine suspension. Inertia track
and decoupler are visible [5].

Figure 1.4: Sketch of a common hydraulic mount employed of engine suspension application [6].
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1.4 Objectives of the Research

The objective of this research is to explore the potential benefits on ride comfort in terms
of vertical acceleration deriving from the implementation of hydraulic top mounts in place
of conventional rubber top mount. In order to accomplish this task, different mathematical
models have been developed, as shown in Chapter 3. In particular, mathematical models
for two type of mounts have been created and then they have been inserted as black-
boxes into quarter car models to analyze and compare their influence on ride comfort. All
these mathematical models have been implemented on MATLAB®/Simulink® as shown in
Chapter 4, while the results of the performed simulations are given in Chapter 5.

Once each model had been created and checked, the sensitivity of ride comfort perfor-
mances to the parameters constituting the model and to their interactions was explored
through statistical methods like Design of Experiments (DOE) and Analysis of Variances
(ANOVA) in Chapter 6. The results coming out from these analyses gave the possibility
to understand the best suited dynamic stiffness shape for the ride comfort problem. More-
over, a first attempt of optimization was carried out and the solution has been proposed
in Chapter 7. Finally, an unconventional arrangement for the top mount and the shock
absorber was tested in order to check the possibility of obtaining further improvements.
Other than the baseline mount, also the tuned hydraulic top mount has been used with
this different arrangement.
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CHAPTER 2

Literature Review

The main focus of this work is the improvement of the Noise Vibration Harshness (NVH)
performance of a passenger vehicle by means of the substitution of a suspension assembly
rubber top mount with a hydraulic one in order to gain performance in the shake and
harshness frequency range.

Before the characteristics of hydraulic mounts will be analyzed, a background on vehicle
ride comfort is exposed and then the influence of the suspension top mount on it will be
analyzed. The application of a hydraulic mount in a suspension system has not been very
widespread as the relatively scarce literature about this topic proves; however hydraulic
mounts have been employed widely in powertrain suspension, so a review of the solutions
adopted in this field is provided to help in the understanding of the main characteristics
of these devices.

Beside the characteristics of the hydraulic mounts, the different mathematical models
developed in literature are also analyzed. The peculiarity of these devices is their frequency
dependent behaviour: at low frequency their dynamic stiffness is not very different from a
traditional mount, since primary stiffness and damping are dominant factors; nevertheless,
when the excitation frequency becomes higher, the inertia of the fluid contained into it
starts to play a role and then the damping becomes very high, increasing the dynamic
stiffness of the mount.

2.1 Ride Comfort Background

In the last years the problem of ride comfort is becoming more and more important
for many different factors like the advance in new technologies that made customers more
demanding from this point view: comfort performance of a vehicle can make the difference
against market competitors.

One of the most important sources of discomfort for a passenger in a vehicle is the
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unevenness of the road and the most important filter for this source of vibrations is the
suspension system of the vehicle. Obviously, not only the road input has to be filtered out
to improve ride comfort, but also the other source of excitation like those coming from
powertrain, tires and aerodynamic noise.

All these vibration phenomena can be classified according to their frequency range,
as it is exposed in [2]. According to the frequency of excitation, it is possible to discern
among ride, shake, vibration, harshness and noise, from here the acronym NVH is used to
address the vibration problem. The frequency ranges for each type are:

• Ride (from 0 Hz to 5 Hz): excitation due to vehicle accelerations and maneuvers

• Shake (from 5 Hz to 25 Hz): it is linked to the resonance of engine suspensions,
unsprung mass or tires;

• Harshness (from 25 Hz to 100 Hz): it is due to the resonances of the vehicle body;

• Noise (more than 100 Hz): excitation sources perceived as noise.

It is also possible to define primary ride which coincides with ride mode and secondary
ride which coincides with shake and part of the range of harshness.

The most common model in order to address ride comfort is the quarter car model,
while a widely used physical quantity to address ride comfort problem is the vertical
acceleration of the vehicle body in time and its frequency response. Quarter car models
represent the corner of a vehicle, they can have different number of degrees of freedom
(DoF) according to the level of details of the model itself; it is possible to insert only one
mass in the model, together with main stiffness and damping of the suspension, or, as is
more common, to distinguish among sprung and unsprung mass and to employ a linear
spring in order to take into account the compliance of the wheel. The former model has
only one DOF, while the latter has two DoF. In case of a secondary suspension system
it is possible to use a three degrees of fredom model; this model is usually employed in
case of body-on-frame architectures, in which a further stage of suspension is present since
body and frame are not connected through rigid elements [8].

Another common model is the half car model, which is called in this way since the
body is modelled as a beam; it also comprises two systems of spring and damper modelling
suspensions. It is possible to have models with more than two DoF as well, which represents
the base case. In case of a model with four DoF the compliance of the tire is also taken
into account. When a model like this one is employed it is possible to consider heave and
pitch mode in order to evaluate he ride comfort [8].

Furthermore, whenever an analysis on NVH is carried out, it is always important to
not overlook the speed factor. In [9], for example, the effect of the speed on the Root
Mean Acceleration Response (RMSAR) of the vehicle was analyzed through the half car
model. However, if the effect of the speed was intuitive, the same does not hold for another
parameter that was analyzed: the wheelbase. It was found that a higher wheelbase is able
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to reduce the RMSAR of the vehicle. Therefore, NVH analysis must be carried on looking
at many different parameters, although they can appear unrelated to the specific problem.

2.2 Suspension Settings

In the literature, many different studies about the optimization of suspension characteris-
tics have been carried out in order to improve NVH performance of vehicles.

In [9] the optimization of suspension settings was also carried out. The aim of this
study was the minimization of RMSAR to achieve better ride comfort performance, in
particular to find the optimum values spring stiffness and viscous damping. They were
found for a constant speed and using the actual road excitation as input signal. It was
discovered that that higher values of the rear stiffness and damping with respect to the
front ones would give a lower RMSAR.

A later work by Uys et al. is focused on the ride comfort of off-road vehicles [10];
also in this case an optimization process was applied, but the simulation was performed
on a full vehicle model by means of MSC.ADAMS. The aim of this research was to find
the optimum suspension settings assuring the best ride comfort at different speed and for
different type of roads. The optimization process led to many important results: in fact
the following items were discovered:

• When increasing the speed, lower values of front damping were needed and the same
for rear damping to have a better comfort. For suspension stiffness, lower speed
required lower stiffness while at higher speeds higher stiffness were necessary.

• The tuning of suspension on a particular road and speed leads is also beneficial for
the same road at different speed with respect to baseline case.

• The most important setting for discomfort is the one related to rear stiffness while
front damping is the least influential parameter,

It is possible to notice that different values of stiffness are needed according to the
speed of the vehicle. As a result, it would be advisable to have a system able to change
its stiffness according to the vehicle speed and, especially, to the excitation frequency.
Therefore, there is the opportunity to replace traditional rubber top mount to enhance
the ride comfort capability of modern vehicles.

2.3 Top Mount Influence

Most passenger vehicle top mounts are now made of rubber; therefore, there is no pos-
sibility to change their characteristic according to the frequency of excitation and it is
not possible to use them to vary the overall stiffness and the damping of the suspension
system.
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The influence of this element has been studied by Kaldas et al. in two different research
papers [11], [12]. Initially, they analyzed the impact of top mount characteristics on NVH
performance, then they tried to optimize those parameters to get the best performance.

In the first research study, a damper top mount model was inserted into a generic
quarter car vehicle model with 2 DoF and two different input signals were used; a road
profile taken from IAE database and a triangle road cleat.

A nonlinear damper top mount was modelled as a parallel of a Coulomb friction ele-
ment, a nonlinear spring and a series of a nonlinear damper and a linear spring. According
to this model, it is characterized by frequency dependent parameters (stiffness of the lin-
ear spring Kd and damping force Fd) and amplitude parameters (stiffness of the nonlinear
spring Ke1, Ke2, Ke3 and maximum friction Force Ffrmax). Finally, the damper mount
was employed in series to the nonlinear damper of the suspension strut, therefore damper
top mount and nonlinear damper had the same force applied at their nodes but a different
displacement. A sketch of the quarter car model developed in the scope of that research
is shown in Figure 2.1, while in Figure 2.2 a sketch of the damper top mount model is
shown.

Figure 2.1: Sketch of the quarter car model used by Kaldas et al [11].

Once the model had been developed, an identification process was carried out in order
to define all these parameters. The evaluation of ride comfort and harshness gave the
following results:

• The increase of the spring stiffness K[e1] in the top mount model brought significant
advantages in the zone of ride comfort and shake (0 - 20 Hz), but the behaviour in
the harshness frequency range was degraded with respect to lower stiffness values.
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Figure 2.2: Sketch of the damper top mount model used by Kaldas et. al in their researches [11],
[12].

• In relation to the variation of damping force Fd, the effect was less marked than in
case of stiffness in ride comfort and shake range. In the harshness range, instead, the
effect was more noticeable: a lower acceleration was obtained for a lower damping
force, while a higher viscous force resulted in a decreased deformation of the damper
top mount.

• By varying the maximum friction force only and maintaining fixed the other param-
eters a reduction of the vertical acceleration around body resonance was obtained.
At the wheel resonance frequency, instead, the effect given by friction force was not
noticeable.

In the second mentioned research paper, the optimization of the parameters found in
the previous study was performed, in order to assure the best performance in terms of
ride comfort and harshness of a vehicle.

The optimization process was carried on a quarter car vehicle model; the objective
function is the linear combination of two different cost functions: the ride and harshness
cost function and the impact harshness one. The former considered both ride comfort and
harshness frequency ranges, the second one referred to the impact harshness characteris-
tics. The model used was the same quarter car model used in the previous research paper.
Optimization gave the following results:

• Ride comfort optimum gave a very high dynamic stiffness with respect to harshness
optimum. The reference case resulted that with the lowest dynamic stiffness.

• The solution with combined optimum for both ride comfort and harshness gave a
dynamic stiffness trend very close to harshness and impact harshness ones even if the
weights of the optimization process were the same. This result was obtained since
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only one cost function was related to ride comfort while three ones were related to
harshness, this choice was driven by the fact that top mount has to deal mostly
with harshness and impact harshness performances, but it was necessary to add this
term to be sure that is element does not deteriorate ride comfort performance of the
suspension system.

• Power Spectral Density (PSD) of body acceleration in the ride comfort, harshness,
impact harshness and standard case were very close with the ride comfort one espe-
cially in the resonance part. The opposite for higher range of frequencies.

Nevertheless, all the investigated parameters resulted to have an influence on the NVH
performance, in particular stiffness was found to be the most important parameter in ride
comfort frequency range, while damping took the lead in harshness range.

2.4 Hydraulic Mount Modelling

In the literature, many different models for hydraulic mounts can be found: many attempts
to have a reliable model for this type of devices have been made. The first attempts made
to build a mathematical model dates back to 1985 in which Flower developed a linear
model using massess, springs and dampers [13]. The structure of the model developed by
Flower is very similar to the model analyzed by Golnaraghi et al. in [7]; however, in this
last paper nonlinearities are also added to the former linear model.

The hydraulic mount taken into account in these studies had both a decoupler and
an inertia track similar to the mount described in Chapter 1. For very low frequencies
the static stiffness of the mount is equal to the stiffness of the upper rubber part because
of the high compliance of rubber lower chamber, as the frequency rises the inertia track
causes a much higher damping, causing an increase of the dynamic stiffness [7].

The sketch of a common hydraulic mount and of the lumped parameter model are
presented in Figure 2.3a and Figure 2.3b. As it is shown, the mount is modelled by means
of a parallel of spring and damper with stiffness kr and damping coefficient br, respectively.
Fluid properties are modelled through a hydraulic piston with two compliant chambers
(modelled through parameters C1 and C2) separated by the decoupler, whose inertia and
resistance are denoted by Id and Rd, and the inertia track, which is an orifice with effective
inertia Ii and resistance Ri.

Once the linear model had been developed, the nonlinear one was built step by step
by adding nonlinearities to each parameter shown before. Initially, spring stiffness and
damper coefficient were made dependent on frequency, amplitude and preload. The inertia
parameter Ii of the inertia track was considered constant as in the experiments, while the
resistance could not be constant since laminar and turbulent flows should have been con-
sidered. Therefore, resistance was split into two different components, one turbulent and
one laminar, while the decoupler was treated similarly to the inertia track: it was assumed
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(a) Mount (b) Mathematical Model

Figure 2.3: Sketch of the actual hydraulic mount (a) and of the lumped parameter model (b) for
the hydraulic mount studied by Golnaraghi et al.[7]

that resistance was not constant, and that it was dependent on the flow characteristics of
the fluid.

Finally, transmitted force and leak flow were also modelled. The first one was con-
sidered as dependent on the decoupler position; in fact, it was described by two different
equations according to the opening or closing status of the decoupler. Moreover, the de-
coupler area was considered not constant but dependent on the decoupler position and
pressure differential.

Leakages were taken into account, since, even though the decoupler is closed, it is
always possible that a small volume of fluid passes from one chamber to the other; in
order to consider this phenomenon, a variable resistance orifice, which opens only when
the decoupler is in contact with the cage, was added to the model.

Decoupler volume, inertia track volume and upper chamber pressure were evaluated
in function of time through simulations and then also dynamic stiffness and phase lag in
frequency were evaluated in order to verify the functionality of this model. Experiments
were used to verify the agreement with simulation and then its reliability.

In other two studies by Christopherson et al. [14], [15], the behaviour of hydraulic
mounts was studied, at first from a mathematical point of view then with the Finite Ele-
ment Method (FEM). The mathematical method was applied to both linear and nonlinear
models; in both cases the differential equations were solved in the frequency domain. In
particular, the models developed by two authors were similar to the ones developed in the
aforementioned research studies; the important advance of this study was the application
of FEM to evaluate the dynamic behaviour.

The complexity of these devices arises from the heterogeneity of materials which hy-
draulic mounts are made of, in fact this obliges one to use different models to characterize
the single elements.

Nevertheless, results obtained with FEM were really close those obtained with math-
ematical method; as a result, the application of FEM is deemed as an acceptable way to
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characterize the dynamic behaviour of hydraulic mounts.
As far as modelling the hydraulic mounts, there are many different studies proposing

many different solutions. Even though a nonlinear model would precisely capture in a
very precise way the dynamics of these devices, in this thesis, only a linear model will be
employed to evaluate the benefit of the application in a suspension system of a hydraulic
top mounts since this is only a very early stage of the design. Moreover, in order to
simplify the problem, a hydraulic mounts without decoupler will be employed. Only the
inertia track will give additional damping at relatively high frequency, but the switchable
properties of the hydraulic mounts can be sacrificed in this first phases of the application
study.

2.5 Applications: Engine Suspension

Hydraulic mounts are currently used in many vehicles; however their most important
application is not on the main suspension system but on the engine suspension. For this
reason it could be beneficial to give a look to the technologies applied in this field.

The engine is the main power source of the vehicle; it delivers torque to the driveline,
thanks to the cyclic motion of the pistons. However, the crankshaft and the alternating
masses exert inertia forces and centrifugal forces that are transmitted the engine block
and then transferred to vehicle body. Even though the inertia forces can be compensated
simply by phasing the cylinder layout in the appropriate way, a perfect balancing is not
always possible and, in addition, it is necessary to consider the torque perpendicular to
the axis of the crankshaft that can be generated by the same inertia and centrifugal forces.

Another source of vibration is the pressure variation in the cylinder, due to the ther-
modynamic cycle that each piston experiences in order to deliver power to the crankshaft.
The frequency range of engine excitation depends on the number of cylinder on the rota-
tional speed of the crankshaft, of the engine itself. A bigger engine with many cylinders
has a frequency range wider than that of smaller engines [2], [16].

All automotive engines under consideration are four stroke engines, therefore there is a
power stroke each two revolutions of the crankshaft. Hence, for a four cylinder, four stroke
engine the excitation frequency corresponds to twice the rotational speed of the engine,
i.e. for the range of speed 900 rpm to 6000 rpm, the excitation frequency ranges from 30 Hz
to 200 Hz, while for a six cylinder with the same speed range, excitation frequency ranges
from 45 Hz to 300 Hz. The higher the number of cylinders the higher excitation frequency
range is [2].

Vibrations are then transmitted to the vehicle body through engine mounts which
has a dual purpose; in fact, the role of an engine mounting system is to absorb high
frequency vibrations coming from the engine, but at the same time to support the engine
at low frequency in order to avoid engine vibrations. Because of this dual behaviour,
the traditional rubber mounts were not capable of performing this task efficiently. Thus,
the need for frequency dependent mounts capable of switching their damping capabilities
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arose and led to the widespread use of hydraulic mounts, which were the focus of studies
in relation to engine the suspension in the last decades [17].

At high freqeuncies it is desirable to have a low stiffness and damping mount at high
frequency in order to absorb vibrations and high stiffness and high damping at low fre-
quency to minimize the displacement of the engine itself. Therefore, frequency dependent
characteristics of the engine mounts are necessary [3].

Moreover, the trend for front wheel drive vehicles with lightweight engines made the
use of hydraulic mounts a necessity. Even though technical specifications may vary, the
design of most hydraulic mounts is very similar. Nevertheless, it was found that these
devices are very sensitive on design and structural parameters; the most common design
in the powertrain field is the one with an inertia track and a decoupler whith functionality
as explained in Section 2.4 [3].

Many different research papers address the characterization of this type of mounts,
with the scope of determining the frequency response and time response of the system
with the engine mount but also the characterization of inertia track and decoupler. All
these studies address both linear and nonlinear models and usually confirm that hydraulic
mounts outperform traditional mounts.

It has been shown that in the case of engine suspension, it is convenient to have a
frequency dependent damping; the amount of damping influences the transmissibility of
the mount in different ways according to the frequency. The advantage of the hydraulic
mount was recognized in the higher flexibility in tuning the amount of damping thanks
to the hydraulic circuit; in other words, these type of mounts permit more customizable
dynamic stiffness. [2].

However, passive hydraulic mounts were not able to solve all the issues linked to
engine suspension, for this reason semi-active and active mounts were also developed;
these mounts allow the variation of some parameters of the mounts to adapt the vehicle
response, as in case of semi-active mounts, or it is possible to use an external source of
energy to suppress the of the disturbance force acting on the vehicle, as in active devices.

Even though the structure of these engine mounts is very similar to those that have
been studied throughout this research, there are some crucial differences that makes engine
mounts unsuitable to be employed as top mounts. First of all, the range of frequencies in
which they work is much wider with respect to that which top mounts are used to work
with: in this last case the excitation frequency coming from the road is much lower. In
this particular case, the target frequency is between 5 Hz and 30 Hz, which corresponds to
the secondary ride frequency range and it is much lower than that of to engine excitation;
this main difference makes it that the structure of the mount should be modified to fit in
a suspension system, i. e. the decoupler can be removed in case of suspension top mount.
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2.6 Hydraulic Bushings and Mounts in Different Chassis
Applications

The advances made in this field are the result of many years of research, which dates back
to the beginning of the 1960’s as the previously discussed literature shows; contrarily, the
development and the implementation of hydraulic bushings on vehicle suspension it is only
at the early stages. In the following some applications of hydraulic bushings and mounts
are analyzed.

Application of hydraulic mounts and bushings in the suspension system is made nec-
essary by the requirements of NVH of the new automotive market. The technologies used
for rubber mounts were reviewed by of Piquet et al [18]; they analyzed the possibility to
insert rubber bushings in rear axle suspensions in order to improve their handling and ride
comfort capability similarly to more expensive multi-link suspensions.

Moreover, hydraulic bushings are becoming more and more important because the
customer, sometimes, would like to be able to switch the behaviour of the car from luxury,
comfortable riding to sport riding. For this reason, it is not possible to offer only traditional
rubber bushing: there is the need to have tunable devices that allow for switching and
offering the best performance in all different situations. Authors not only analyzed the
possibility to insert passive hydraulic bushings but also magnetorheological bushings.

Another SAE paper by Sauer and Guy [19], analyzed the possibility to replace all the
traditional suspension bushings with hydraulic passive bushings in order to improve the
NVH performance of the vehicle. They individuated the following possible applications of
hydraulic bushings: control arm bushing to eliminate steering wheel judder to the front
wheel, sub-frame mounts, rear axle twist beam bushings and finally top mounts, even if
they posed the problem of cost.

The author also presented two examples of hydro-bushings benefit on steering wheel
vibration due to brake judder and tire and wheel unbalance, in case it is employed on the
lower control arm. These applications however do not specifically address the top mounts,
which is the primary objective of this research. This is the confirmation that this type of
application is new in the suspension field.

Another application of hydraulic mounts could be the suspension of the cab of light
duty trucks as analyzed in [20]. In this paper, the authors try to accurately build a model
for this type of device. The model used to analyze the hydraulic mounts is shown in Figure
2.4, it is not very different from the one exposed in Figure 2.3a, but it is possible to notice
that the decoupler is not present. The only element presents are the rubber parts, which
are represented by the main rubber stiffness and the chamber stiffness (respectively cr and
cb) and the orifice or inertia track, which gives the additional damping (whose area is Ak).

The equations for the model were evaluated separately for the elastomer and the fluid,
and then the simulation is run on MSC.ADAMS. The results were compared with the
experimental values in order to give a value to each parameter of the model. After pa-
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Figure 2.4: Sketch of the nonlinear model for the hydraulic mounts used in [20]

rameter identification, dynamic and static characteristics of the hydraulic mounts were
analyzed through the model. The authors concluded that, in order to accurately model
and simulate the behaviour of these devices, it was essential to identify amplitude and
frequency dependent parameters of the mount itself.

The type of mount used in that study is close to the one that will be used in this study
because of the absence of the decoupler. In fact, the lower frequencies with which the
suspension top mount has to deal with makes the decoupler characteristics less important
with respect to the additional damping given by the inertia track.

The literature review just developed shows the different characteristics of the hydraulic
mounts and the different models that can be used in order to determine their dynamics and
their most common applications in the automotive field. As it has been shown, whether
the implementation of hydraulic bushings in the suspension system is becoming common,
the use of hydraulic top mounts in place of traditional rubber ones is a new development
area.

Therefore, the scope of this research is the analysis of the possible benefit coming from
the application of a hydraulic mount as the top mount for a vehicle suspension assembly.
In particular, the main focus is the improvement of the vehicle behaviour in the secondary
ride frequency range. Traditional mounts lead to a compromise between the primary
and secondary ride behaviour; instead, the particular characteristics of the hydraulic top
mounts may improve the performance at the higher frequency range, without degrading
the performance at the lowest frequency.
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CHAPTER 3

Theory

In this chapter, differential equations and frequency response analysis relative to hydraulic
mount model and quarter car models is presented after a short introduction about the
effect of vibrations on the human body. A summary of the relevant quantities taken into
account in this thesis is also included.

3.1 The Effect of Vibration on Human Body

The effect of vibrations on human body is described by ISO – 2631-1 [21], which defines
methods to analyze the problem and indexes necessary to address comfort. In this norm,
the Root Mean Square (RMS) values of the acceleration are considered to be the most
relevant quantities to address the problem after a proper weighting of signals.

In order to evaluate the effect of vibrations on human body, many different studies
have been developed. The effect of vibrations can be studied experimentally or through
simulations. In the last couple of decades, several attempts have been made to develop
different mathematical models. One example can be seen in the research by Muksian and
Nash [22], in which a lumped was built. Then, all the different masses are connected
through nonlinear springs and dampers, which model the different joints modelling the
motion of a human body.

In a later work by Liang and Chiang [23], a review of the different models developed
in literature was performed in a systematical way. They realized that lumped parameter
models closely fit experimental data even if different applications could require different
models.

Beside the attempts taken to build simulation models, there are also examples of
experimental studies, like the one carried out by Demic et al.[24].

In the experimental campaigns carried out by the authors, different persons were sub-
jected to vibrations with different frequencies and directions. Finally, the authors con-
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cluded that vertical and fore – aft accelerations are the most severe for the human body.
In particular, they found that human body is the most sensitive at very low frequencies and
the least sensitive above 5 Hz. Instead, the human body was found to have two resonance
peaks: one at around 5 Hz and the other at around 14 Hz.

Another important parameter that should always be taken into account is the time
of exposure, since it highly affects the sensitivity of the human body to vibrations; this
aspect is clearly visible in Figure 3.1, where different limit curves for vertical vibrations
are shown according to different exposure times. It is apparent from this diagram that
substantial exposure time highly impairs tolerance to vibrations.

Figure 3.1: Tolerance limit curves of human body to vibrations at different exposure times accord-
ing to ISO – 2631 [8].

This short summary of the human sensitivity to vibrations allows for better under-
standing which type of target we should pursue in the present project and also the effec-
tiveness of the solutions proposed in this thesis.

The hydraulic mount taken into account in this study should improve the behaviour
of the vehicle in the secondary ride, then for a frequency around 5 Hz and 20 Hz, a range
in which, according to Figure 3.1, there is a minimum in the tolerance limit of the human
body at any exposure time. Therefore, reducing at minimum the magnitude of acceleration
in that frequency range, it could be possible to have a significant advantage in terms of
comfort.

In addition, according to the ISO – 2631 standard, the physical quantities relative to
the sprung mass are the most important parameters in comfort assessment, since they are
directly felt by vehicle occupants. However, it is not possible to consider raw acceleration
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Figure 3.2: Bode plot of the transfer function H2631 employed to filter the data of sprung mass
acceleration coming from the simulations.

values but it is necessary to evaluate a weighted acceleration in order to take into account
the human sensitivity to acceleration [21]. In order to weight the acceleration, the transfer
function H2631 shown in Equation (3.1) has to be employed to filter raw acceleration data
coming from the simulations.

H2631 = 80.03s2 + 989s + 0.02108
s3 + 78.92s2 + 2412s + 5614 (3.1)

The Bode plot of the transfer function H2631 is presented in Figure 3.2. It is possible
to notice that in this transfer function, the lowest and the highest frequencies are filtered
out, while frequencies around 15 Hz are not filtered by the transfer function following the
sensitivity curves shown in Figure 3.1.

3.2 Relevant Quantities for Comfort Performance

The most important quantities that measure the discomfort given due to a vehicle is the
acceleration, in particular vertical acceleration, since the reference model of this project is
the quarter car model.

In order to compare the time histories of the quarter model after the implementation
of the hydraulic mount with those of the quarter car with the traditional configuration,
some short indexes have been defined like the root mean square value of the vertical sprung
mass (ẍs,RMS) and its range (ẍs,range).

In order to evaluate results obtain in Laplace domain, instead, the transfer functions
between the sprung and unsprung mass accelerations (ẍs, ẍu) and input displacement (u)
and those between sprung and unsprung mass displacements (xs, xu) and input displace-
ment will be considered.
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Finally, another important figure is the road holding index ηrh; its formula is shown
in Equation (3.2), where kw is the stiffness of the spring modelling the tire, u is the road
displacement input, g is the gravitational acceleration, while ms and mu are namely sprung
and unsprung mass.

ηrh = kw(xu − u)
(ms + mu)g (3.2)

The Road Hoding Index (ηrh) is the ratio between the vertical force exerted by the tire
and the weight of the sprung mass and unsprung mass together; therefore whether ηrh is
equal to or higher than unity, the tire would exert a higher force than the overall weight,
making the tire detach from the road [25].

3.3 Linear Models

3.3.1 Hydraulic Top Mount Mathematical Model

Linear Differential Equations

The hydraulic top mount chosen for this application can be seen in Figure 3.3; it is
comprised of two chambers, which are surrounded by a primary rubber (a) and by a
secondary rubber (c); primary rubber is usually stiffer than the secondary one. The two
chambers are separated by an inertia track (b) providing an additional amount of damping
at high excitation frequencies since high viscosity oil (d) has to travel across it when the
mount is excited from the outside.

(a)

(b)

(c)

(d)

Figure 3.3: Section of the hydraulic top mount analyzed in this study [26]. (a) Primary Rubber,
(b) Inertia Track, (c) Secondary Rubber, (d) Oil

The mathematical model chosen to simulate the behaviour of the hydraulic top mount
is a linear model with lumped parameters. Since the application of hydraulic mounts in
this field is quite new, as the literature review developed in Chapter 2 showed, we have
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decided to start analyzing the characteristics of the mount with a relatively simple model
and then to add nonlinearities only once the behaviour of the element had become clearer.
A sketch of the lumped parameter model for the hydraulic top mount is shown in Figure
3.4.

xt

k1
xt'

k2

c3

c2

c1
m3

ft

Figure 3.4: Sketch of the lumped parameter model for the hydraulic top mount.

The model comprises two different parts: on the left side there is a parallel between a
spring (k1) and a damper (c1), which models the elastic and dissipative behaviours of the
primary rubber. At low excitation frequencies, the dynamic stiffness of the mount corre-
sponds to that of the primary rubber, while at higher frequencies, the secondary rubber
and the fluid contribute to the dynamic stiffness too. The behaviour of the secondary
rubber is modelled by the spring k2 in parallel with the damper c2, while the fluid inside
the inertia track is modelled by means of the mass (m3) in parallel with the damper (c3).
The mass (m3) is represented by means of a rack-pinion system to underline that it is only
an object modelling the inertia of the fluid and it is not directly connected to the ground;
despite this representation, it is treated as a mass in the differential equations.

In addition, it is possible to notice in Figure 3.4 that two parallel systems, modelling
the secondary rubber and the hydraulic component of the mount, work in series, while the
whole series system works in parallel with the primary rubber model.

The linear differential equations for the linear model with lumped parameters in Figure
3.4 were obtained manually. The starting point to accomplish this task is Equation (3.3),
which links the force exerted by the mount (ft) with the visco-elastic properties (k1 and
c1) of the primary rubber and the hydraulic components of the mount (fhydraulic); xt and
ẋt are, instead, the displacement and the displacement rate of the hydraulic top mount.

ft = k1xt + c1ẋt + fhydraulic (3.3)

The relation for fhydraulic was found by taking the series system apart from the rest
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of the model and solving it. By means of this subsystem it was also possible to write the
linear differential equations necessary to evaluate the displacement (x′

t), the speed (ẋ′
t) and

the acceleration (ẍ′
t) of the parallel system comprising of the mass (m3) and the damper

(c3). The subsystem solved to obtain the relationship for fhydraulic is presented in Figure
3.5.

c2

c3

k2

m3

xT

Fhydraulic

xT'

Figure 3.5: Hydraulic part of the top mount model.

The relationship between fhydraulic, x′
t and ẋ′

t is shown in Equation (3.4), while in
(3.5), it is possible to see the linear differential equation for x′

t which was obtained by
rearranging the right-hand side of Equation (3.4).

fhydraulic = k2(xt − x′
t) + c2(ẋt − ẋ′

t) = m3ẍ′
t + c3ẋ′

t (3.4)

ẍ′
t = −c3ẋ′

t + k2(xt − x′
t) + c2(ẋt − ẋ′

t)
m3

(3.5)

Combining Equation (3.4) with the Equation (3.3) for ft, it is possible to obtain
Equation (3.6).

ft = k1xt + c1ẋt + m3ẍ′
t + c3ẋ′

t (3.6)

Transfer Function Analysis

Transfer functions were found by applying the Laplace transform to Equations (3.3) and
(3.5); relations for ft, xt, and x′

t in Laplace domain are shown in Equations (3.7) and
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(3.8), where the variables are indicated as in time domain, but with capital letters.

Ft = (k1 + c1s)Xt + (m3s2 + c3s)X ′
t (3.7)

X ′
t = Xt

c2s + k2
m3s2 + (c2 + c3)s + k2

(3.8)

Rearranging Equations (3.7) and (3.8) it is possible to find the transfer function G

between the force generated by the hydraulic top mount Ft and its displacement Xt,
which is shown in Equation (3.9).

G = Ft

Xt
= (c1s + k1)(m3s2 + (c2 + c3)s + k2) + (m3s2 + c3s)(c2s + k2)

m3s2 + (c2 + c3)s + k2
(3.9)

When the velocity Ẋt is considered as input, a new transfer function Gv can be defined:

Gv = Ft

Ẋt
= (c1s + k1)(m3s2 + (c2 + c3)s + k2) + (m3s2 + c3s)(c2s + k2)

s[m3s2 + (c2 + c3)s + k2] (3.10)

Once the model for the Hydraulic Mount had been developed, the same was integrated to
a quarter car model in order to analyze the possible benefit with respect to a traditional
suspension assembly.

3.3.2 Quarter Car Model with Hydraulic Top Mount

Linear Differential Equations

The quarter car model is a common tool used to analyze the vertical behaviour of a
vehicle. For this thesis, a model with two degrees of freedom (DoFs) has been chosen;
the model comprises two masses, mu and ms, representing the unsprung mass and the
sprung mass of the vehicle, respectively. Then, the unsprung mass is connected to the
road by means of the wheel which is modelled through a very rigid spring (kw), while two
masses are connected through the suspension strut and the top mount. The suspension
strut is modelled by means of a spring (ks) and a damper (cs), while the top mount is
hydraulic and works in series with the damper. Here the top mount has been considered
as a “black-box”, whose model has been presented in section 3.3.1. Figure 3.6 shows a
sketch of the quarter car model used in this study.

Together with the coordinates of sprung and unsprung masses (xu, xs), the coordinate
of the damper stem tip has also been defined (x′

s), while the input of the system is
indicated with u.

Linear differential equations for the quarter car model are presented in Equations (3.11)
and (3.12). The equations have been obtained manually in this case as well and, similarly
to what had been done for the hydraulic mount, in order to find the equation for x′

s, the
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Figure 3.6: Sketch of the quarter car model integrated with the hydraulic top mount, which works
in series with the damper.

series system comprising of damper and top mount was taken apart and studied separately
and Equation (3.13) was obtained.

muẍu + kw(xu − u) = cs(ẋ′
s − ẋu) + ks(xs − xu) (3.11)

msẍs + cs(ẋ′
s − ẋu) + ks(xs − xu) = 0 (3.12)

ft(ẋ′
s, ẋs, x′

s, xs) = cs(ẋ′
s − ẋu) (3.13)

In Equations (3.14), (3.15) and (3.16) the linear differential equations above have been
rearranged in order to make them suited for the implementation on Simulink®.

ẍu = − kw

mu
(xu − u) + cs

mu
(ẋ′

s − ẋu) + ks

mu
(xs − xu) (3.14)

ẍs = − cs

ms
(ẋ′

s − ẋu) + ks

ms
(xs − xu) (3.15)
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ẋ′
s = ft(ẋ′

s, ẋs, x′
s, xs)

cs
+ ẋu (3.16)

Transfer Function analysis

Transfer functions for Equations (3.11), (3.12) and (3.13) were obtained by means of
Laplace transform as they were for the Hydraulic Top Mounts equations in Section 3.3.1.

In order to proceed with the analysis of frequency response, it is worth noting that the
hydraulic top mount is subjected to the relative displacement between the sprung mass
and the tip of the damper stem (xs−x′

s), when inserted in the quarter car model; therefore,
the relation between the force Ft and the input displacement, in Laplace domain, becomes:

Ft = GXs − GX ′
s (3.17)

When the velocity (ẋs − ẋ′
s) is considered, it is possible to obtain:

Ft = GvẊs − GvẊ ′
s (3.18)

Transforming all equations in Laplace domain, it is possible to obtain the following transfer
functions: H = Xu

Xs
, I = Xs

U , J = Ẍs
U , K = Xu

U and L = Ẍu
U .

The expressions for H, J , K and L are shown in Equations (3.19), (3.20), (3.21), (3.22)
and (3.23). It is possible to notice that, since the hydraulic mount has been treated as a
black-box, its effect on the transfer functions is only determined by its transfer function
G.

H = (css + G)(mss2 + ks) + csGs

(css + ks)(css + G) − c2
ss2 (3.19)

I = (css + G)kw

(css + G)(mus2 + css + kw + ks)H − (css + G)ks − csGs − c2
sHs2 (3.20)

J = s2I (3.21)

K = I · H (3.22)

L = s2K (3.23)
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3.3.3 Traditional Rubber top Mount

Linear Differential Equations

The traditional linear rubber mount was modelled through a linear spring and a linear
damper in parallel. A sketch for this top mount model is shown in Figure 3.7.

c1'k1'

ft
xt

'

Figure 3.7: Sketch of the model employed for the traditional rubber top mount.

The relationship between the force generated by this mount (f ′
t) is quite straightforward

and it is shown in Equation (3.24).

f ′
t = k′

1xt + c′
1ẋt (3.24)

Transfer Function Analysis

The simplicity of the model also leads to a very simple transfer function (G′), which
was obtained, as usual, by applying the Laplace Transform to the corresponding linear
differential equation. The result is shown in (3.25).

G′ = F ′
t

Xt
= k1 + c1s (3.25)

When the first derivative of the displacement is considered as input, it is possible to obtain
Equation (3.26).

G′
v = F ′

t

Ẋt
= k1 + c1s

s
(3.26)
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3.3.4 Quarter Car Model with Traditional Top Mount

Linear Differential Equations

A quarter car model with the traditional rubber top mount model was developed in order
to have a reference baseline for the evaluation of the results obtained using the set-up with
the hydraulic mount.

As in case of the hydraulic top mount, the rubber top mount has also been inserted
in series with the suspension damper. A sketch of the quarter car model integrated with
a traditional rubber mount is shown in Figure 3.8.

 

,

ks
cs

kw

xs

xs

xu

ms

mu

c1'k1'

Figure 3.8: Sketch of the quarter car model with a traditional rubber mount in series to the
suspension damper.

Linear differential equations for sprung and unsprung mass in this configuration are
the same as those shown in Section 3.3.2, namely in Equations (3.11) and (3.12)

The only equation that is affected by the different configuration is the one relative to
the subsystem damper – top mount, which is shown in (3.27).

k1(xs − x′
s) + c1(ẋs − ẋ′

s) = cs(ẋ′
s − ẋu) (3.27)

Although the equations relative to this configuration of quarter car are more manageable
than the ones relative to the configuration shown in Section 3.3.2, it is convenient to
use the same procedure used for that model, in other words considering the top mount
as a black-box only affecting the model through its own transfer function. In this way,
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Equation (3.27) reduces to Equation (3.28), similarly to Equation (3.13).

f ′
t(ẋ′

s, ẋs, x′
s, xs) = cs(ẋ′

s − ẋu) (3.28)

Transfer Function Analysis

Since the top mount model has been treated as a black-box, the transfer functions H ′,
I ′, J ′, K ′ and L′ for this model do not differ from those relative to the model with the
hydraulic top mount: only transfer function G′ has a different formulation, as shown in
Section 3.3.3, because of the different type of mount employed.

All the transfer functions are shown in Equations (3.29), (3.30), (3.31), (3.32) and
(3.33).

H ′ = (css + G′)(mss2 + ks) + csG′s

(css + ks)(css + G′) − c2
ss2 (3.29)

I ′ = (css + G′)kw

(css + G′)(mus2 + css + kw + ks)H − (css + G′)ks − csG′s − c2
sHs2 (3.30)

J ′ = s2I ′ (3.31)

K ′ = I ′ · H ′ (3.32)

L′ = s2K ′ (3.33)

3.4 Nonlinear Models

Beside the linear quarter car models, nonlinear models were created for both configurations
with a hydraulic top mount and with a rubber top mount. The nonlinearity of these
models lies on the shock absorber: in nonlinear models it is not modelled through a single
parameter cs, but through a map which gives a value of force for each value of speed.
Since the model is nonlinear, it was not possible to represent the transfer functions of the
model formulaically, which has been numerically estimated from the time simulation by
means of MATLAB.

3.4.1 Quarter Car Model with Hydraulic Top Mount

In Figure 3.9 it is possible to appreciate a sketch of the nonlinear quarter car model with
the hydraulic top mount in which the damper cs has been replaced with a generic device
generating the force fd given a certain velocity input.
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Figure 3.9: Sketch of the nonlinear quarter car model with the hydraulic top mount.

In Equations (3.34), (3.35) and (3.36), differential equations relative to the nonlinear
quarter car model are shown. It is clear that the equations are the same as those written
for the linear model except for the force exerted by the damper, which is written in closed
form.

muẍu + kw(xu − u) = ks(x′
s − xu) + fd(ẋ′

s, ẋu) (3.34)

msẍs + ks(x′
s − xu) + fd(ẋ′

s, ẋu) = 0 (3.35)

ft(ẋ′
s, ẋs, x′

s, xs) = fd(ẋ′
s, ẋu) (3.36)

3.4.2 Quarter Car Model with Rubber Top Mount

Figure 3.10 presents a sketch of the nonlinear quarter car model; as above, the only
difference with the linear model is represented by the shock absorber.

Differential equations for sprung and unsprung mass are the same as the equations
obtained for the configuration with the hydraulic top mount in Equations (3.34), (3.35),
with the exception of the equation relative to the series comprising of the shock absorber
and the rubber mount. This equation differs because of the relation to evaluate the force
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Figure 3.10: Sketch of the nonlinear quarter car model with the rubber top mount.

exerted by the top mount which, in this case, is ft(ẍ′
s, ẍs, x′

s, xs). This last equation is
reported in (3.37).

ft(ẍ′
s, ẍs, x′

s, xs) = fd(ẍ′
s, ẍu) (3.37)

3.4.3 A Different Arrangement for the Hydraulic Top Mount

Together with the traditional arrangement for the hydraulic top mount, a quarter car
model with the hydraulic top mount in series with the spring and the nonlinear shock
absorber was created. A sketch of the quarter car model in this configuration is presented
in Figure 3.11. The equations relative to sprung and unsprung mass are similar to those
seen in previous sections, while the equation relative to the series element differs from the
equation for the normal configuration since the spring (ks) is included in it as well.

In Equations (3.41), (3.42) and (3.40), differential equations relative to the new con-
figuration of the model are shown.

muẍu + kw(xu − u) = ks(x′
s − xu) + fd(ẋ′

s, ẋu) (3.38)

msẍs + ft(ẋ′
s, ẋs, x′

s, xs) = 0 (3.39)

ft(ẋ′
s, ẋs, x′

s, xs) = ks(x′
s − xu) + fd(ẋ′

s, ẋu) (3.40)
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Figure 3.11: Sketch of the quarter car model with the hydraulic top mount in series with the whole
suspension strut.

Similarly to the standard configuration case, it is possible to rewrite the equations
relative to the sprung and unsprung mass in order to ease the transposition on Simulink®,
as shown in Equations (3.41) and (3.42).

ẍu = − kw

mu
(xu − u) + ks

mu
(x′

s − xu) + fd(ẍ′
s, ẍu)

mu
(3.41)

msẍs = −f ′
t(ẋ′

s, ẋs, x′
s, xs)

ms
(3.42)

Since the system is nonlinear, it is not possible to obtain represent the transfer functions
of the system formulaically, which has been estimated in a numerical way starting from
the results of the time simulation.

Differential equations and transfer functions shown in this chapter were used in order
to build Simulink® models relative to top mounts and quarter car models and to analyze
the frequency response of the systems by means of MATLAB®. The different steps taken
to build various simulation models are presented in Chapter 4, while the results of the
simulations are shown in Chapter 5.
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CHAPTER 4

Simulation Models

In this chapter the development of simulation models, necessary to evaluate the benefits
introduced by the hydraulic top mount implementation, is reported. The models have been
built using the equations described in Chapter 3. In particular, two different Simulink®

models were built for the two different top mounts, then they were combined together
with linear and nonlinear quarter car models.

In addition, a MATLAB® code was developed in order to evaluate the frequency re-
sponse of each system and to compare theoretical transfer functions with those estimated
starting from Simulink® linear models. This step was not feasible for nonlinear models,
since a general solution in Laplace domain is not available for these systems and the
frequency response was estimated starting from time simulations.

4.1 Simulink® Models

4.1.1 Linear Model for the Hydraulic Top Mount

The diagram block for the hydraulic mount built with Simulink® is shown in Figure 4.1,
the input of the model is represented by the displacement (xt), while its output is the
force ft generated by the top mount.

The subsystem present in the block is meant to solve the linear differential equations
relative to the series composed by the parallel damper (c2) and spring (k2) and the parallel
mass (m3) and damper (c3). The block diagram relative to the subsystem is shown in
Figure 4.2; in this case, the inputs are the same as the main system, while the outputs of
the system are the displacement and the velocity of the parallel system composed of m3

and c3 (x′
t and ẋ′

t).
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Figure 4.1: Block diagram for the main system of the hydraulic top mount.
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Figure 4.2: Block diagram for the subsystem for the hydraulic mount.

4.1.2 Linear Model for the Rubber Top Mount

Beside the model for the hydraulic mount, a linear model for the rubber top mount was
also built in order to have a reference to assess the characteristics of the hydraulic top
mount. As it has discussed in Chapter 3, the linear differential equations for this module
are quite simple, therefore its Simulink® model is likewise simple.

The block diagram for the rubber mount is shown in Figure 4.3. Similar to the block
diagram for the hydraulic top mount, the input signals are the displacement (xt) and the
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speed (ẋt), while the output is the force exerted by the mount (f ′
t). The main difference

between the models for the two mounts is the absence of the subsystem representing the
hydraulic component and the secondary rubber.

Add

k1

Gain

Chirp Signal

c1

Gain1

-K-

Gain4
Force Output

Derivative

Ft

To Workspace

xt

To Workspace1

Figure 4.3: Block diagram for the rubber top mount model.

4.1.3 Simulink® Linear Quarter car Model with the Hydraulic Top Mount

The numerical linear model for the quarter car model with the hydraulic top mount has
been built according to the Equations (3.14) and (3.15). The block diagram can be seen
in Figures 4.4 and 4.5; the former shows the main system, which solves the equations
relative to sprung mass and unsprung mass, while the latter shows the subsystem leading
to the solution of the equations for the series composed by the suspension damper and the
hydraulic mount.

It is important to note that the subsystem was not built following Equation 3.16: in
that case an algebraic loop would have been generated since the force exerted by the
hydraulic mount directly depends on the velocity of the damper stem tip. Therefore, to
avoid modifying the equations relative to the hydraulic top mount, the block diagram was
built along with the frequency domain equation relating the damper stem tip, the sprung
mass and unsprung mass velocities (Ẋ ′

s, Ẋs and Ẋu), respectively through the top mount
transfer function (Gv) and the damping coefficient (cs) as Equation (4.1) shows.

Ẋ ′
s = Gv

Gv + cs
Ẋs + cs

Gv + cs
Ẋu (4.1)

To run the simulation, a chirp signal was chosen as input, as it is shown in Figure 4.4.
The upper part of the block diagram for the main system (Figure 4.4) is meant to solve
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Equation (3.14) relative to the unsprung mass, while the blocks in the lower part lead to the
solution of Equation (3.12) relative to the sprung mass. Both parts of the system employ
the output of the subsystem (ẋ′

s), to solve the equations; the inputs of the subsystem are,
instead, the unsprung mass velocity (ẋu) and the sprung mass velocity(ẋs).

4.1.4 Simulink® Nonlinear Quarter car Model with the Hydraulic Top
Mount

Once the linear model was built, the linear damper of the strut has been replaced with
a nonlinear one; in other words, the force exerted by the damper and the speed of the
damper stem are no longer related by a constant parameter cs, but rather by a damping
coefficient dependent on the speed of the damper stem.

The difference in the block diagram of the main system is given by the lookup table
block that replaces the gain block cs, while the block diagram of the subsystem was
radically changed: since the system is not linear, it was not possible to write its differential
equations in Laplace domain.

Therefore, Equation 4.2 was used to develop the model in Simulink.

Ẋ ′
s = Ẋs − Fd

Gv
(4.2)

The block diagram for the main system and the subsystem are shown in Figures 4.6
and 4.7.

4.1.5 Quarter car models with traditional mount

The block diagram for the quarter car model with the traditional rubber mount appears
to be the same as the diagram for the quarter car model with the hydraulic top mount.
The main difference between the two lies in the transfer function of the top mount whose
expression is shown in Equation (3.26).

Apart from the transfer function of the top mount, block diagrams for linear and
nonlinear quarter car models with the traditional rubber top mount do not differ from
those shown in Figures 4.4, 4.5, 4.6 and 4.7.

4.2 Simulink® Nonlinear Quarter car Model with the Hy-
draulic Top Mount in Series with the Strut

As shown, the last model that was built contains a hydraulic mount, but in a different
position: it has been placed in series with the whole suspension strut. In Figures 4.8 and
4.9, the Simulink® model leading to the solution of sprung and unsprung mass equations
and the subsystem for the solution of the system in series are shown.

The two models reflect the equations reported in Chapter 3, with the subsystem that
is more complex because of the presence of the spring ks inside the series subsystem, while
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Figure 4.4: Block diagram for the quarter car model with the hydraulic top mount built with
Simulink®.

the main system for the sprung and unsprung mass equation is similar to models created
for the standard configuration, although it was created to solve the sprung mass equation
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Figure 4.5: Block diagram for the subsystem composed by the series of damper and hydraulic
mount in quarter car model built with Simulink®.

by means of the top mount force only.

4.3 Choice of Model Parameters

4.3.1 Rubber and Hydraulic Top Mounts

The parameters for the hydraulic top mount necessary to run the simulation were cho-
sen starting from the parameters for a normal bushing: it has been assumed that the
main rubber stiffness and dissipative behaviour of the primary rubber were the same as a
traditional rubber top mount.

The values for the other parameters were initially hypothesized with the purpose of
finding optimal values once the model were validated. A typical value used for the (k1)
stiffness of rubber top mounts is 800 N/mm, while the damping is usually chosen in relation
to the desired phase at the desired frequency (νref ), which corresponds to the frequency of
the vibrations that should be damped by the implementation of the hydraulic top mount
– in other words, the wheel hop frequency of the quarter car model. The procedure to
evaluate this frequency is shown in Appendix B and, according to the data shown in
section 4.3.2, it is equal to 10.2 Hz.

A phase value of 5◦ was chosen for the phase at the aforementioned frequency. The
formula for the evaluation of damping (c1) is reported in Equation 4.3).

c1 = Kdyn

2πνref
sin(ΦKdyn

) (4.3)

The two parameters for the rubber mount have been set equal to the main rubber
stiffness and dissipative behaviour of the hydraulic mount in order to have comparable
results between the two different models. Therefore, the stiffness of the rubber mount
k′

1 coincides with the dynamic stiffness amplitude of the hydraulic top mount in ride
frequency range (0 − 5 Hz), while the damping value is set according to the desired value
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Figure 4.6: Block diagram for the nonlinear quarter car model with the hydraulic top mount built
with Simulink®.
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Figure 4.7: Block diagram for the subsystem of the nonlinear quarter car model with the hydraulic
top mount.

of the dynamic stiffness phase. The values for the rubber top mount and the hydraulic
top mount are shown in Table 4.1.

Table 4.1: Values of the parameters for the hydraulic top mount model.

Rubber Top
Mount Hydraulic Top Mount

k′
1 c′

1 k1 c1 k2 c2 c3 m3

(N/mm) (Ns/mm) (N/mm) (Ns/mm) (N/mm) (Ns/mm) (N/mm) (kg)

800 2.18 800 2.18 200 0.2 1.2 10

4.3.2 Linear Quarter Car Models

The values for the linear quarter car model were defined starting from the parameters for
an actual suspension system. However, when considering a quarter car, it is not possible
to use raw component values, rather it is necessary to transport their characteristics to
the centre of the wheel. The value of stiffness and damping for the suspension assembly
analyzed and the sprung mass are listed in Table 4.2.

In an actual suspension system, spring, damper, top mount and sprung mass are not
placed exactly on top of the wheel like in the simplified quarter car model; therefore, the
forces acting on these elements and also the value of the “sprung mass” seen by the strut
in the actual configuration are different from the values in the simple configuration of the
quarter car model.

In order to have reasonable data in the quarter car model and to transport all the
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Figure 4.8: Block diagram for the nonlinear quarter car model with the hydraulic top mount in
series with the strut.
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Figure 4.9: Block diagram for the subsystem of the nonlinear quarter car model with the hydraulic
top mount in series with the strut.

Table 4.2: Values of stiffness and damping of suspension component and sprung mass value.

kspring cdamper ms,actual

(N/mm) (Ns/mm) (kg)

40 6 635.6

forces to the centre of the wheel, it was necessary to introduce the concept of motion ratio
(MR). This parameter only depends on the geometry of the suspension system, which is
defined as the ratio between the wheel centre travel and the spring displacement, given
a certain load at wheel level. AS it is possible to note in the sketch in Figure 4.10, the
displacement of the spring is much smaller then that of that of wheel. One of the formulas
to evaluate motion ratio MR is presented in Equation (4.4). Studying the equilibrium
with respect to the rotation centre of the Lower Control Arm (LCA), it is possible to
calculate the ratio between the force at the spring location and at the wheel location.
This results in a value equal to the aforementioned motion ratio and to the ratio between
the distances of the spring and of the wheel centre from the LCA rotation centre.

MR = ds

dw
= da

db
(4.4)

The same concept of motion ratio holds for the shock absorber; since it is usually placed
inside the coil spring, the damper and spring motion ratios are equal. In the suspension
analyzed in this project, the motion ratio is equal to 0.93.

The procedure to calculate the stiffness parameter to use in the quarter car model is
shown in Equation (4.5). Moving the spring from its location to wheel centre, the force
decreases, while the displacement increases by means of the motion ratio.
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dw
ds

da

db

Figure 4.10: Sketch of the suspension assembly in front view.

Table 4.3: Parameters values for the quarter car model.

ks cs ms mu kw

(N/mm) (Ns/mm) (kg) (kg) (N/mm)

34.30 5.15 545.0 80 294.7

ks = fw

dw
= MR · fs

ds
MR

= fs

ds
= kspring · MR2 (4.5)

A similar procedure can be applied to the other parameters of the suspension assembly.
Therefore, to transport the characteristics of the components to the wheel centre, it is
sufficient to multiply their numerical values by the square of the motion ratio (MR2). In
Table 4.3, all the parameters used for the quarter car simulation are listed. The quantity
that resembles the tire vertical stiffness (kw) is also presented; it not only depends on the
considered type of tire but also on its inflation pressure. The tire considered in this project
is a 265/40 R18 97 V inflated at 248 kPa, which approximately corresponds to 35 psi.

4.3.3 Nonlinear Quarter Car Models

The difference between linear and the nonlinear quarter car models used in this project
is the damper, which, in the latter model, is a nonlinear device with an asymmetric
characteristic. Therefore, the force exerted by the damper and the speed of the stem are
linked by a variable damping coefficient.

The curve describing the relationship between force (fd) and velocity (vd) refers to the
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actual component, therefore it is necessary to transport its characteristic at wheel centre
as well in order to have reasonable results.

In Figure 4.11 it is possible to see the actual characteristic of the damper and the
same characteristic once transported to the wheel centre. Similar to the other parameters,
this characteristic was also moved to the wheel centre by means of the motion ratio; in
particular, speed values were divided by MR, while force values were multiplied by the
same MR.
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Figure 4.11: Damper characteristic curves: component level (blue) and wheel centre (red)

The results obtained through the numerical simulation for the model shown in this
chapter are presented in Chapter 5.

In particular, results obtained from linear models are mostly used in order to validate
the model itself through the comparison between time and Laplace domain simulation,
while nonlinear models are employed to assess the benefits given by the implementation
of the hydraulic top mount.
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CHAPTER 5

Simulation Results

In this chapter, the most relevant results obtained by the simulation of the models pre-
sented in Chapter 4 are presented. All those plots not shown can be found in Appendix
C.

First, results for the linear models are presented, which have been mainly used in
order to validate different models: a comparison between analytic and numerical frequency
response has been made to this extent.

In the second part of the chapter, results coming from nonlinear simulations are shown.
Because of their nonlinearity, it was not possible to analytically evaluate the frequency
response; therefore, only time simulation was carried out and then the Fast Fourier Trans-
form (FFT) for the relevant output signals were estimated using MATLAB®.

5.1 Linear Models

The results coming form the simulations performed for linear models were mainly used to
validate Simulink® models.

It was possible to achieve this task for linear models since its transfer function was first
determined analytically, and thus could be compared with the estimated transfer function.

5.1.1 Hydraulic Top Mount

Time simulation

The time simulation for the hydraulic top mount was performed employing a chirp signal
as the input displacement signal (u): a sinusoidal signal whose frequency increases linearly.

The parameter values were chosen in order to have a sufficiently slow input and a
standard amplitude of 1 mm. Input signal parameters are shown in Table 5.1, while its
variation in time is shown in Figure 5.1.
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Table 5.1: Parameters values for the chirp signal employed as input of the simulation for the
hydraulic top mount.

Initial Frequency Target Time Frequency at Target time Amplitude

(Hz) (s) (Hz) (mm)

0 1 1 1

In Figure 5.2, the variation of the force ft in time is shown. At low excitation fre-
quencies, force amplitude is relatively small and it tends to increase at high frequencies.
In particular, a rather high step can be seen around 20 − 25 s, which corresponds to the
frequency range of 20 − 25 Hz according to the parameters of the input signal.

Nevertheless, the variation of the force according to the excitation frequency is clearly
shown by the transfer function.
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Figure 5.1: Input displacement for the hydraulic top mount time simulation.

Transfer Function Analysis

The transfer function analysis was performed by building the Bode diagrams of the hy-
draulic top mount transfer function (G), whose analytic expression was presented in Chap-
ter 3. In particular, this transfer function represents the variation of the hydraulic mount
dynamic stiffness according to frequency.

Since the frequency range of interest is located in the low frequency range and because
said range is very narrow, all the transfer functions is represented with a linear frequency
axis differently from common practice for Bode diagrams. In addition, the transfer function
relative to the hydraulic mount is represented with absolute scale for the magnitude axis
as well. The dynamic stiffness of the hydraulic mount is shown in Figure 5.3.
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Figure 5.2: Variation in time of the force exerted by the hydraulic top mount due to the chirp
signal used as input.

The Bode diagram for dynamic stiffness reflects the variation in time of force ft; an
apparent increase in the magnitude of the force is displayed in the frequency range between
20 Hz and 25 Hz, while a flat curve, resembling a nearly constant value of the force at
higher frequencies, is present above 25 Hz. Moreover, the same value of the force (ft) can
be obtained by multiplying the input displacement by the value of the dynamic stiffness
amplitude for any frequency value.

The sudden increase in dynamic stiffness at high frequencies, together with its conse-
quent flattening, is due to the hydraulic component of the top mount, which, as expected,
provides an increased amount of damping beyond a certain excitation frequency. The be-
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Figure 5.3: Variation of the hydraulic top mount dynamic stiffness in Laplace domain.
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haviour of this type of mount is completely different from a traditional mount as explained
in Section 5.1.2.

Once the analysis of frequency response had been completed, it was decided to verify
that the Simulink® model, meant to solve differential equations, were correct.

In order to perform this comparison, the MATLAB® function “tfestimate” was em-
ployed. This allows one to evaluate a transfer function starting from the numerical values
of input and output signal in the time domain. Therefore, input and output signals eval-
uated through the time simulation were used as the argument for this function and the
resulting Bode diagram has been superimposed to the analytic one.

The superimposition between the two Bode diagrams can be seen in Figure 5.4. It is
apparent that the Bode diagrams for both magnitude and phase are perfectly superimposed
except for some very small deviations, which are probably due to numerical inaccuracies.
This result further confirms that the block diagram developed for the hydraulic top mount
is able to provide reliable results.
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Figure 5.4: Comparison between the analytic Bode diagram and the numerical one for the hydraulic
top mount model.

5.1.2 Rubber Top Mount

Time Simulation

The time simulation of the rubber top mount model was performed using the same input
signal used for the hydraulic top mount. Also in this case, the time history for the force
generated by the top mount f ′

t and the dynamic stiffness in the time domain was evaluated.
In Figure 5.5 the variation in time of the force generated by the top mount is shown.

It is possible to note that, in this case, a sudden increase of the force is not present as in
the case of the hydraulic mount, but rather the force increases almost steadily in time.
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From this time history, it is possible to expect a nearly linear dynamic stiffness.
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Figure 5.5: Variation in time of the force f ′
t generated by the rubber top mount due to a chirp

input displacement.

Transfer Function Analysis

The transfer functions of this system were analyzed in a similar manner to those of the
hydraulic top mount. The Bode diagrams for amplitude and phase are presented in Figure
5.6.

As expected, the dynamic stiffness monotonically increases according to the frequency:
at the lowest frequencies it is comparable to the dynamic stiffness of the hydraulic top
mount, while at the highest frequencies it results to be lower than that of the hydraulic
top mount.

The difference with the hydraulic top mount dynamic stiffness is apparent. In the case
of the hydraulic top mount, it is constantly increasing throughout the whole frequency
range differently from the step-wise shape of the hydraulic top mount. Similarly, the
phase does not present the “plateau” beyond the frequency at which the mount is tuned.

Moreover, in the case of the rubber top mount the range of dynamic stiffness amplitude
is much smaller than hydraulic mount one, confirming the difficulties in tuning the device
at different frequency ranges to accomplish the different requirements.

Moreover, in the case of the rubber top mount, Bode diagrams obtained analytically
have been compared to those evaluated through the time simulation. One of the plots
resulting from the superposition of the two Bode diagrams has been presented in Figure
5.7. Also for this system, the two transfer functions coincide, confirming the accuracy of
the numerical model.
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Figure 5.6: Dynamic stiffness variation in function of frequency for the rubber top mount.

5.1.3 Quarter Car Model with the Hydraulic Top Mount

Time Simulation

The most relevant plots for the time simulation of the linear quarter car models are
the displacement and the acceleration of both sprung and unsprung mass. Moreover, as
anticipated in Chapter 3, other important figures like Root Mean Square (RMS) values of
the acceleration and its range have been evaluated for both sprung and unsprung mass.

The parameters chosen for the input signal are shown in Table 5.2. The amplitude
value chosen is common among automotive manufacturers for this kind of simulation,
while the frequency values have been selected in order to have a sufficiently slow increase
in frequency to run the simulation.

The input signal time history is very similar to the input signal used for the two top
mounts. For the sake of brevity, this time history, as well as the time histories of sprung
and unsprung mass accelerations, can be found in Appendix C. Instead, in Figures 5.8
and 5.9, the sprung and unsprung mass displacement time histories are shown.

The displacement of the sprung mass in Figure 5.8 presents a very sharp peak around
t = 10 s corresponding to a frequency around 1 Hz: it coincides with the bounce mode
of the vehicle. Then, the displacement is quickly damped until a second small peak is
encountered around t = 100 s, which, instead, corresponds with a frequency of about

Table 5.2: Parameters values for the chirp signal employed as simulation input for the linear quarter
car models.

Initial Frequency Target Time Frequency at Target time Amplitude
(Hz) (s) (Hz) (mm)

0.1 10 1 3.82
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Figure 5.7: Comparison between numerical and analytic transfer function for the rubber top mount.

10 Hz. This second peak should represent the wheel hop mode of the vehicle. The same
two peaks can be also noticed in the time history for the unsprung mass displacement,
but in this case the second one is more pronounced.

Finally, in Table 5.3, Root Mean Square (RMS) values of acceleration and its range
for sprung and unsprung mass are shown.

Table 5.3: Values of RMS acceleration and range for sprung and unsprung mass in the quarter car
model with hydraulic mount.

ẍs,RMS ẍu,RMS ẍs,range ẍu,range

(m/s2) (m/s2) (m/s2) (m/s2)

0.91 11.96 4.48 46.93

Transfer Function Analysis

After the time simulation, the transfer functions presented in Chapter 3 were evaluated.
Bode diagrams for amplitude and phase with linear scale for magnitude were generated
using a MATLAB® code and the most relevant ones are shown in Figures 5.10 and 5.11.

It is possible to note that the shapes of the transfer functions resembles the time
histories of the corresponding signals, even though it is necessary to keep in mind that
frequency domain graphs have a logarithmic scale on the magnitude axis, while time
histories have been represented with a linear scale on the y-axis. In particular, diagrams
relative to displacement present the two peaks at bounce and wheel hop frequencies, at
1.18 Hz and at 10.30 Hz, respectively. Relative amplitude values for sprung and unsprung

50



0 50 100 150 200 250 300 350

-6

-4

-2

0

2

4

6
10

-3

Figure 5.8: Time history of the sprung mass displacement in the linear quarter car model with the
hydraulic top mount.
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Figure 5.9: Time history of the unsprung mass displacement in the linear quarter car model with
the hydraulic top mount.
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mass are presented in Table 5.4.

-60

-40

-20

0

20

5 10 15 20 25 30 35

-360

-270

-180

-90

0

Figure 5.10: Bode diagram for amplitude and phase for the transfer function between the sprung
mass displacement and th input displacement in the case of the quarter car model with the hydraulic
top mount.

Table 5.4: Values of the peak magnitude in dB of sprung and unsprung mass displacements for
the quarter car with the rubber top mount.

Frequency Magnitude
(Hz) (dB)

Sprung Mass
1.18 3.89
10.30 −17.12

Unsprung Mass
1.18 1.17
10.30 0.094

In order to verify the reliability of the Simulink® model, Bode diagrams obtained
analytically were superimposed to those estimated starting from the time histories. An
examples of a diagram showing the overlapped transfer function is presented in Figure
5.12.

Once again, all the diagrams generated following this procedure show a nearly perfect
superimposition, proving the accuracy of the model. After the verification of the model,
it was possible to take a step forward, developing the nonlinear quarter car models, which
were employed to compare and to asses the performance of the two different mounts.
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Figure 5.11: Bode diagram for amplitude and phase for the transfer function between the unsprung
mass displacement and the input displacement in the case of the quarter car model with the
hydraulic top mount.
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Figure 5.12: Comparison between analytic and estimated amplitude Bode diagrams of the transfer
function I of the quarter car model with the hydraulic top mount.

5.1.4 Quarter Car Model with the Rubber Top Mount

Time Simulation

The same plots generated for the quarter car model with the hydraulic top mount have
been obtained for the quarter car model with the conventional rubber top mount, namely
time histories of sprung and unsprung mass displacement and acceleration. In order to
run the simulation, the same input employed for the model with the hydraulic top mount
was used.
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In Figures 5.13 and 5.14 the time histories of sprung and unsprung mass displacement
are shown, while, in Table 5.5, RMS values and range of the acceleration are reported.
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Figure 5.13: Sprung mass displacement in function of time for the quarter car model with rubber
the rubber top mount.
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Figure 5.14: Unsprung mass displacement in function of time for the quarter car model with rubber
the rubber top mount.
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Table 5.5: RMS values of acceleration and range for sprung and unsprung mass in the quarter car
model with the rubber top mount.

ẍs,RMS ẍu,RMS ẍs,range ẍu,range

(m/s2) (m/s2) (m/s2) (m/s2)

0.94 12.38 4.58 49.35

Transfer Function Analysis

As was the case for the previous model, the transfer functions were initially analyzed by
simply plotting the Bode diagrams for amplitude and phase. Later, the comparison with
the estimated transfer functions were carried out.

Bode diagrams for the transfer functions I and K defined in Chapter 3 have been
presented in Figures 5.15 and 5.16. The trend of the magnitude plots is similar to that
obtained for the configuration of the quarter car with the hydraulic top mount, with the
peaks for bounce and wheel hop in the displacement transfer functions, whose frequency
values are 1.17 Hz and 10.03 Hz, respectively. Peak amplitude values for sprung and un-
sprung mass are reported in Table 5.6.

Applying the same procedure seen for the quarter car model with the hydraulic top
mount, analytic amplitude Bode diagrams have been compared to those estimated from
time simulation. The plot comparing the analytic transfer function I and its numerical
estimate has been shown in Figure 5.17. No differences were found between the superim-
posed graphs in this case either.

5.2 Nonlinear Models

In this section, the results obtained from the simulation of the nonlinear quarter car
models with the hydraulic and the rubber top mounts are presented. For the two different
configurations of the quarter car model, results in the time and frequency domains are

Table 5.6: Values of the peak magnitude in dB of sprung and unsprung mass displacements for
the quarter car model with the rubber top mount.

Frequency Magnitude
(Hz) (dB)

Sprung Mass
1.17 3.88
10.03 −17.1

Unsprung Mass
1.17 1.17
10.03 −0.22
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Figure 5.15: Bode diagram for amplitude and phase of the transfer function I between the sprung
mass displacement and the input signal in the case of the quarter car with the rubber top mount.
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Figure 5.16: Bode diagram for amplitude and phase of the transfer function K between the un-
sprung mass displacement and the input signal in the case of the quarter car model with the rubber
top mount.
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Figure 5.17: Comparison between the analytic and estimated amplitude bode diagram of the
transfer function I for the quarter car model with the rubber top mount.

shown. In particular, frequency response is presented in the form of Fast Fourier Transform
(FFT) plots for sprung and unsprung mass displacement and acceleration.

5.2.1 Input Signals

Since the results of the nonlinear simulations were used to perform the comparison be-
tween the different solutions, more realistic input signals were necessary. Therefore, three
different input signals were used to perform the simulations: smooth and rough random
roads and a single asperity signal.

Random Road Inputs

Roads are usually classified according to the ISO 8608, which defines road profiles ac-
cording to their displacements, velocity and acceleration Power Spectral Density (PSD).
In this way, eight different classes (from A to H) are identified in order to classify road
profiles [27]. The two road profiles considered in this thesis belong to the A and D classes
and their profiles are shown in Figures 5.18a and 5.18b.

In order to obtain input signals to run the simulation, it was necessary to express the
road profiles as a function of time instead of as function of the “travelled distance”. Time
data can be found by dividing the data about the travelled distance by the constant speed
v. For the quarter car model in both configurations and for the first two inputs, a speed
of 40 km/h was selected. In this way, input signals shown in Figures 5.19a and 5.19b were
obtained.
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Figure 5.18: Input road signal employed to run the simulation of the nonlinear quarter car models.
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Figure 5.19: Input road signals in time domain employed to run the simulation of the nonlinear
quarter car models.

Single Asperity Input

Asperities on actual roads are rather sharp irregularities, but they are enveloped through
the physical and geometrical characteristics of tires encountering the asperity itself. Since
in quarter car models, the tire contact patch with the ground is a single point, the asperity
signal has been modelled as a half sine wave with a 25 mm amplitude and a 150 mm length
in order to simulate the actual contact as much as possible .

The asperity profile can be seen in Figure 5.20a, while the corresponding input signal
for a speed equal to 30 km/h is shown in Figure 5.20b. Since the wavelength of the time
signal is very short, its spectrum in frequency has to be very wide; therefore, the system
is excited in a very wide frequency range.

58



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(b)

Figure 5.20: Profile of the single asperity signal in function of the travelled distance and input
signal in function of time.

5.2.2 Quarter Car Model with the Hydraulic Top Mount

Time Simulation: Random Road Inputs

Time histories resulting from the time simulation for the quarter car model equipped with
hydraulic mount are shown in Figures 5.21a, 5.21b, 5.22a and 5.22b, while data about RMS
values and range of acceleration for sprung and unsprung mass is shown in Table 5.7. For
nonlinear models beside the overall RMS values, the components of RMS acceleration for
the primary (ẍ′

u and ẍ′
s) ride and the secondary ride (ẍ′′

u and ẍ′′
s) were evaluated and are

presented in Table 5.8. These quantities allow one to better understand which range of
frequency is more affected by the top mount. It is possible to notice that for sprung mass
the two components are very similar, while for the unsprung mass the component of the
secondary ride is very dissimilar from the component of the primary ride. These results
can be explained through the frequency response analysis developed in Section 5.2.2.

As expected, data about displacement and acceleration given by the smooth A-class
road is one order of magnitude smaller than those of the D-class road. This behaviour
can be seen in time history plots as well as in the values of RMS acceleration, acceleration
range and RMS of road holding index (ηrh).

Time Simulation: Single Asperity Input Signal

The third input signal employed to simulate the quarter car model is the single asperity
signal. This type of signal was chosen because it is able to excite the system in a wide
frequency range.

In Figures 5.23 and 5.24, the displacement of srpung and unsprung masses are pre-
sented. The plots show a sharp peak in correspondence of the asperity, then the sprung
mass presents a relevant undershoot, before the displacement slowly goes to 0. By contrast,
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Figure 5.21: Sprung mass displacement in function of time for the quarter car model with the
hydraulic top mount in the case of A-class road input (a) and D-class road input (b).
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Figure 5.22: Unsprung mass displacement in function of time for the quarter car model with the
hydraulic top mount in the case of A-class road input (a) and D-class road input (b).

Table 5.7: RMS values and range of sprung and unsprung mass accelerations for the quarter car
model with the hydraulic top mount.

ẍs,RMS ẍs,range ẍu,RMS ẍu,range ηrh,RMS

(m/s2) (m/s2) (m/s2) (m/s2) (−)

A-Class Input 0.285 2.16 0.922 7.02 0.0266

D-Class Input 1.79 10.65 10.15 104.11 0.183

the unsprung mass appears to oscillate before its displacement is nullified.
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Table 5.8: Components of RMS acceleration values of sprung and unsprung mass accelerations for
primary and secondary ride in the case of the quarter car model with and random road inputs.

0 − 5 Hz 5 − 20 Hz 0 − 5 Hz 5 − 20 Hz

ẍ′
s,RMS ẍ′

s,RMS ẍ′
u,RMS ẍ′′

u,RMS

(m/s2) (m/s2) (m/s2) (m/s2)

A-Class Input 0.216 0.185 0.272 0.868

D-Class Input 1.21 1.29 2.09 9.65

It is important to underline that the sprung mass is much slower than the unsprung
mass in reaching the equilibrium conditions. In fact, at the end of the simulation time,
the displacement is not null for the sprung mass.

Performance indexes like RMS acceleration and range were evaluated and they have
been presented in Table 5.9 with the component for the RMS values presented in Table
5.10. As opposed to the random road input, both sprung and unsprung mass accelerations
are more important in the secondary ride.
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Figure 5.23: Displacement of the sprung mass due to single asperity input for the quarter car
model with the hydraulic top mount.

Fast Fourier Transform: Random Road Input Signals

In order to analyze the frequency response of the model, it was necessary to estimate the
Fourier Transform of the output time signal through the Fast Fourier Transform (FFT)
algorithm implemented on MATLAB®. The Fourier Transform of a signal allows to un-
derstand which frequencies are contributing the most to the signal itself. FFT plots have
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Figure 5.24: Displacement of the unsprung mass due to single asperity input for the quarter car
model with the hydraulic top mount.

Table 5.9: RMS and range values for the acceleration of sprung and unsprung mass in the case of
the nonlinear quarter car model with the hydraulic top mount due to a single asperity signal.

ẍs,RMS ẍu,RMS ẍs,range ẍu,range ηrh,RMS

m/s2 m/s2 m/s2 m/s2 (−)

0.731 10.52 6.62 132.33 0.135

Table 5.10: Components of RMS acceleration values of sprung and unsprung mass acceleration for
the primary ride and the secondary ride in the case of the quarter car model with the hydraulic
top mount and a single asperity input.

0 − 5 Hz 5 − 20 Hz 0 − 5 Hz 5 − 20 Hz

ẍ′
s,RMS ẍ′′

s,RMS ẍ′
u,RMS ẍ′′

u,RMS

(m/s2) (m/s2) (m/s2) (m/s2)

0.258 0.669 0.657 7.98

been generated for the displacement and the acceleration of sprung and unsprung masses
and are shown in Figures 5.25a, 5.25b, 5.26a, 5.26b, 5.27a, 5.27b, 5.28a and 5.28a.

It is noticeable that only a small portion of the frequency spectrum contributes to the
output signal and high frequencies are completely filtered by the system. In particular,
considering A-class road input signals, acceleration contributions are almost null beyond
15 Hz for both random inputs, while displacement contributions are null at 5 Hz for the
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sprung mass and after 10 − 15 Hz for the unsprung mass. In case of D-class road input,
frequency contributions beyond this frequency value are really low, but not null: null
values are moved slightly forward in these cases.

Moreover, it is notable that two different peaks characterize the acceleration Fourier
transform of the sprung mass, the first in the primary ride, while the other in the secondary
ride. The Fourier transform, then, explains why the two components of the RMS are not
dissimilar. In the case of unsprung mass acceleration, instead, the only peak that can be
found is in the secondary ride, which is why the most important component of the RMS
acceleration is that of the secondary ride. As in the time simulation, FFT due to D-class
road input are also characterized by one order of magnitude higher than the signals relative
to the A-Class road input.
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Figure 5.25: Fast Fourier Transform of the sprung mass displacement for the nonlinear quarter car
model with hydraulic mount.

Fast Fourier Transform: Single Asperity Input Signals

The results given by the simulation performed with a single asperity as the input were
also analyzed in the frequency domain through the FFT.

The first important difference between FFT plots relative to the asperity input signals
with frequencies up to 180 Hz. Moreover, in the acceleration plots the range at which
frequency contributions are not null is wider than in the case of the displacements. In the
case of sprung mass displacement, a clear peak is shown around 1 Hz, while all the other
frequencies are almost completely filtered. Looking at the unsprung mass, two peaks are
noticeable, but the most important one occurs around 10 Hz.

Plots relative to accelerations show peaks around 11 Hz and 12 Hz, however frequency
contributions are not null until 60 Hz and 80 Hz for sprung and unsprung masses, respec-
tively. Since the peaks of acceleration are located in the secondary ride frequency range,
the most relevant components of the RMS should be that of the secondary ride as shown
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Figure 5.26: Fast Fourier Transform of the unsprung mass displacement for the nonlinear quarter
car model with hydraulic mount.
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Figure 5.27: Fast Fourier Transform of the sprung mass acceleration for the nonlinear quarter car
model with hydraulic mount.

in Table 5.10. In addition, FFT plots are shown in Figures 5.29a, 5.29b, 5.30a and 5.30b.

5.2.3 Quarter Car Model with the Rubber Top Mount

Time Simulation: Random Road Input Signals

The same type of simulation performed for the quarter car model with the hydraulic top
mount was also performed for the quarter car with the rubber top mount. The most
relevant simulation results are shown in Figures 5.31a, 5.31b, 5.32a and 5.32b. In Table
5.11, RMS acceleration and range are shown.
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Figure 5.28: Fast Fourier Transform of the unsprung mass acceleration for the nonlinear quarter
car model with hydraulic mount.

As in the case of the hydraulic top mount, all the data relative to the D-class input
are one order of magnitude higher than in the case of a smooth road. Looking at the data
shown in Table 5.7, it is possible to note that all the values are slightly higher than in
the case of the quarter car model with the hydraulic top mount. Even though there is a
really slight difference between the two models in these first attempts, the improvement
is promising since the parameters relative to the hydraulic mount have to be optimized in
order to achieve the best performance. In particular it is worth noting that the components
of the RMS acceleration for the primary ride shown in Table 5.12 are the same as those
relative to the configuration of the quarter car model with the hydraulic mount, while the
only noticeable difference is in the secondary ride components. This result proves that the
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Figure 5.29: FFT plots of the sprung and unsprung mass displacement for the nonlinear quarter
car model with the hydraulic mount due to single asperity input signal.
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Figure 5.30: FFT plots of the sprung and unsprung mass acceleration for the nonlinear quarter
car model with the hydraulic mount due to single asperity input signal.

top mount is effective in filtering the secondary ride frequency range.
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Figure 5.31: Sprung Mass Displacement in function of time for the quarter car model with the
rubber top mount in the case of A-class road input (a) and D-class road input (b).

Time Simulation: Single Asperity Input

The displacement of sprung and unsprung masses due to the single asperity signal is shown
in Figures 5.33 and 5.34.

The trend of both displacements is similar to that of the quarter car model with the
hydraulic top mount, however it is possible to note that in this case the peaks are slightly
higher for both sprung and unsprung masses. These conclusions can be drawn also looking
at the acceleration, as the data shown in Tables 5.13 and 5.14, presenting RMS and range
of acceleration. Acceleration values result to be higher than those of the quarter car
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Table 5.11: RMS values and range of sprung and unsprung mass acceleration for the quarter car
model with rubber top mount. Values in parentheses refer to the hydraulic top mount.

ẍs,RMS ẍs,range ẍu,RMS ẍu,range ηrh,RMS

(m/s2) (m/s2) (m/s2) (m/s2) (−)

A-Class 0.288 (0.285) 2.18 (2.16) 0.917 (0.922) 6.88 (7.02) 0.0265 (0.0266)

D-Class 1.80 (1.79) 10.7 (10.6) 10.16 (10.15) 103.7 (104.11) 0.181 (0.183)

Table 5.12: Primary and secondary ride components of RMS sprung and unsprung mass acceler-
ation for the quarter car model with the rubber top mount. Values in parentheses refers to the
hydraulic top mount.

0 − 5 Hz 5 − 20 Hz 0 − 5 Hz 5 − 20 Hz

ẍ′
s,RMS ẍ′′

s,RMS ẍ′
u,RMS ẍ′′

u,RMS

(m/s2) (m/s2) (m/s2) (m/s2)

A-Class Input 0.217 (0.216) 0.188 (0.185) 0.271 (0.272) 0.862 (0.868)

D-Class Input 1.21 (1.21) 1.31 (1.29) 2.09 (2.09) 9.64 (9.65)
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Figure 5.32: Unsprung Mass Displacement in function of time for the quarter car model with the
rubber top mount in the case of A-class road input (a) and D-class road input (b).

model with the hydraulic top mount. This behaviour is likely due to the additional stage
of damping present in the top mount model in the case of the hydraulic top mount.
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Figure 5.33: Displacement of the sprung mass due to single asperity input for the quarter car
model with the rubber top mount.

Fast Fourier Transform: Random Road Inputs

The frequency response was analyzed through the fast FFT and all the relative plots are
show in Figures 5.35a, 5.35b, 5.36a, 5.36b, 5.37a, 5.37b, 5.38a, 5.38b, in which the FFT of
the hydraulic top mount model is used as reference. FFT plots for sprung and unsprung
mass relative to the quarter car model with the rubber top mount are very similar to
those relative to the quarter car model the hydraulic top mount and, the most important
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Figure 5.34: Displacement of the unsprung mass due to single asperity input for the quarter car
model with the rubber top mount.

Table 5.13: RMS and range values for the acceleration of sprung and unsprung mass in the case of
the nonlinear quarter car model with the rubber top mount due to a single asperity signal. Values
in parentheses refer to the hydraulic top mount

ẍs,RMS ẍu,RMS ẍs,range ẍu,range ηrh

m/s2 m/s2 m/s2 m/s2 (−)

0.741 (0.731) 10.82 (10.52) 6.76 (6.62) 134.9 (132.33) 0.136 (0.135)

frequency contributions occur between 0 and 15 Hz. The contributions beyond this value
are practically null.
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Table 5.14: Primary and secondary ride components of RMS sprung and unsprung mass accel-
eration of the quarter car model with the rubber top mount for single asperity input. Values in
parentheses refer to the hydraulic top mount.

0 − 5 Hz 5 − 20 Hz 0 − 5 Hz 5 − 20 Hz

ẍ′
s,RMS ẍ′′

s,RMS ẍ′′
u,RMS ẍ′′

u,RMS

(m/s2) (m/s2) (m/s2) (m/s2)

0.251 (0.258) 0.692 (0.669) 0.668 (0.657) 8.15 (7.98)
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Figure 5.35: Fast Fourier Transform of the sprung mass displacement for the nonlinear quarter car
model with the rubber top mount.
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Figure 5.36: Fast Fourier Transform of the unsprung mass displacement for the nonlinear quarter
car model with the rubber top mount.
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Figure 5.37: Fast Fourier Transform of the sprung mass acceleration for the nonlinear quarter car
model with the rubber top mount.
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Figure 5.38: Fast Fourier Transform of the unsprung mass acceleration for the nonlinear quarter
car model with the rubber top mount.
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Fast Fourier Transform: Single Asperity Input

The last results coming from the simulations of the quarter car model in standard config-
urations are those relative to the frequency domain signals in the case of a single asperity
input. In Figures 5.39a, 5.39b, 5.40a and 5.40b, FFT plots relative to the single asperity
signal are displayed with reference to the hydraulic top mount case. Very few differences
can be noticed with respect to the hydraulic top mount case. Therefore, similar conclu-
sions to those drawn for the quarter car model with the hydraulic model can also be drawn
for this configuration.
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Figure 5.39: Fast Fourier Transform of sprung and unsprung mass displacement for the nonlinear
quarter car model with the rubber top mount.
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Figure 5.40: Fast Fourier Transform of sprung and unsprung mass displacement for the nonlinear
quarter car model with the rubber top mount.
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5.2.4 Quarter Car Model with the Hydraulic Top Mount in Series with
the Suspension Strut

The last model that was developed, comprises the hydraulic top mount in series with the
whole suspension strut. As was the case of the previous models, both time and frequency
domain results were generated by means of the A-class and D-class random road inputs
as well as by means of the single asperity input. This different configuration was tested
in order to explore the synergy between different suspension elements. Because of the
innovative nature of the present project, it is important to try to go out of the conventional
schemes to look for any possibility of improvement.

Time Simulation: Random Roads Input Signal

In Figures 5.41a, 5.41b, 5.42a and 5.42b, time histories of sprung and unsrpung mass
displacement are presented. As expected, the A-Class input generated much smaller dis-
placements and accelerations than the D-Class input. Nevertheless, it is worth noting that
this configuration assures lower values of RMS acceleration for sprung mass and unsprung
mass, not only with respect to the model comprising of the rubber top mount, but also
with respect to the model with the hydraulic top mount in standard configuration. This
can be seen in Tables 5.15 and 5.16.
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Figure 5.41: Sprung mass displacement in function of time for the quarter car model with the
hydraulic top mount in series with the strut in the case of A-class road input (a) and D-class road
input (b).

It is worth noting that this configuration for the quarter car model assures a higher
degree of improvement with respect to both configurations seen in Sections 5.2.2 and 5.2.3
in the case of the sprung mass acceleration. In particular, considering D-class input, an
improvement of 3.9 % and 4.5 % for the RMS sprung mass acceleration was recorded
with respect to the hydraulic top mount in normal configuration and with respect to the
rubber top mount. Moreover, the improvement is not restricted to the secondary ride, but
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Figure 5.42: Unsprung mass displacement in function of time for the quarter car model with the
hydraulic top mount in series with the strut in the case of A-class road input (a) and D-class road
input (b).

Table 5.15: RMS values and range of sprung and unsprung mass acceleration for the quarter car
model with the hydraulic top mount in series with the strut. Values in parentheses refer to standard
configuration.

ẍs,RMS ẍs,range ẍu,RMS ẍu,range ηrh,RMS

(m/s2) (m/s2) (m/s2) (m/s2) (−)

A-Class 0.272 (0.285) 2.04 (2.16) 0.972 (0.922) 7.40 (7.02) 0.0256 (0.0266)

D-Class 1.72 (1.79) 10.10 (10.65) 10.64 (10.15) 106.3 (104.11) 0.183 (0.183)

Table 5.16: RMS components of sprung and unsprung mass acceleration for the quarter car model
with the hydraulic top mount in series with suspension strut. Values in parentheses refer to
standard configuration.

0 − 5 Hz 5 − 20 Hz 0 − 5 Hz 5 − 20 Hz

ẍ′
s,RMS ẍ′′

s,RMS ẍ′
u,RMS ẍ′′

u,RMS

(m/s2) (m/s2) (m/s2) (m/s2)

A-Class Input 0.202 (0.216) 0.183 (0.185) 0.273 (0.272) 0.928 (0.868)

D-Class Input 1.14 (1.21) 1.26 (1.29) 2.11 (2.09) 10.23 (9.65)

a certain improvement can be appreciated in the primary ride as well. Conversely, the
data relative to the unsprung mass shows a slight performance degradation; nevertheless
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this is not a significant problem since only the sprung mass vibrations directly affect the
vehicle occupants’ experience.

Time Simulation: Single Asperity Input

Lastly, this configuration of the quarter car model was simulated with the single asperity
input. In Figures 5.43 and 5.44, the displacement time histories of sprung and unsprung
mass are reported, while Tables 5.17 and 5.18 contain the information about the RMS
accelerations and road holding index.
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Figure 5.43: Displacement of the sprung mass due to single asperity input for the quarter car
model with the hydraulic top mount in series with the strut.
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Figure 5.44: Displacement of the unsprung mass due to single asperity input for the quarter car
model with the hydraulic top mount in series with the strut.
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Table 5.17: RMS and range values for the acceleration of sprung and unsprung mass in the case
of the nonlinear quarter car model with the hydraulic top mount in series with the strut due to a
single asperity signal.

ẍs,RMS ẍu,RMS ẍs,range ẍu,range

(m/s2) (m/s2) (m/s2) (m/s2)

0.705 (0.731) 10.59 (10.52) 6.31 (6.62) 132.3 (132.3)

The data relative to the single asperity input, in accordance with those obtained by em-
ploying random road inputs highlights a general improvement in performance with respect
to the other models. Furthermore, a lower value for the unsprung mass RMS accelera-
tion was obtained despite the fact that both the components of RMS at the primary and
secondary rides are higher. This strange behaviour can be attributed to an improvement
given by the hydraulic top mount at higher frequencies: the primary and secondary ride
components refer to a frequency range between 0 Hz and 20 Hz, while in the case of single
asperity input, significant frequency contributions occur even at higher frequencies, as it
was shown in Section 5.2.4.

Fast Fourier Transform: Random Road Inputs

The analysis of the frequency domain was made in the same way as it was for previous
models, i. e., by using the FFT algorithm. Frequency domain plots are shown in Figures
5.45a, 5.45b, 5.46a, 5.46b, 5.47a, 5.47b, 5.48a and 5.48b. The FFT of the standard
configuration of the hydraulic top mounts were used as a reference in this case as well. All
the signals had similar as those discussed above, with a significantly high peak for both
displacement at low frequency and a wider spectrum for the acceleration with a cutoff
around 15 Hz. Moreover, the most important sprung mass acceleration contributions fall
in the secondary ride region, while two different peaks at the primary and secondary rides
were observed in the case of sprung mass displacement.

Table 5.18: Primary and secondary ride components of RMS of sprung and unsprung mass accel-
eration for the quarter car model with the hydraulic top mount in series with the strut. Values in
parentheses refer to standard configuration.

0 − 5 Hz 5 − 20 Hz 0 − 5 Hz 5 − 20 Hz

ẍ′
s,RMS ẍ′′

s,RMS ẍ′
u,RMS ẍ′′

u,RMS ηrh,RMS

(m/s2) (m/s2) (m/s2) (m/s2) (−)

0.239 (0.258) 0.614 (0.669) 0.651 (0.657) 8.11 (7.98) 0.137 (0.135)
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Figure 5.45: Fast Fourier Transform of the sprung mass displacement for the nonlinear quarter car
model with hydraulic mount in series with the suspension strut.
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Figure 5.46: Fast Fourier Transform of the unsprung mass displacement for the nonlinear quarter
car model with hydraulic mount in series with the suspension strut.

Fast Fourier Transform: Single Asperity Input

Figures 5.49a, 5.49b, 5.50a and 5.50b show the frequency domain data for the single
asperity input. As was the case for the other quarter car models, the spectrum of the signal
in the case of a single asperity input is wider than in the case of random inputs. This is
especially true in the case of unsprung mass acceleration, which confirms that lower values
of RMS components in the primary and secondary rides are caused by the contributions
at frequencies higher than 20 Hz, in spite of the higher overall values. Additionally, a peak
around 1 Hz can be easily noticed in the displacement plots, while both acceleration plots
have a peak in the secondary ride range around 12 Hz.
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Figure 5.47: Fast Fourier Transform of the sprung mass acceleration for the nonlinear quarter car
model with hydraulic mount in series with the suspension strut..
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Figure 5.48: Fast Fourier Transform of the unsprung mass acceleration for the nonlinear quarter
car model with hydraulic mount in series with the suspension strut.
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Figure 5.49: Fast Fourier Transform of sprung and usnprung mass displacement for the nonlinear
quarter car model with hydraulic mount in series with the suspension strut.
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Figure 5.50: Fast Fourier Transform of sprung and unsprung mass acceleration for the nonlinear
quarter car model with hydraulic mount in series with the suspension strut.
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5.3 Concluding Remarks

In this chapter, all the most relevant results given by the simulations have been shown.
The comparison between data relative to the hydraulic top mount and the data relative
to the rubber top mount underlined that the employment of the new device introduces a
benefit in terms of vertical acceleration, although in many cases it is difficult to appreciate.

However, it is important to keep in mind that all the data about hydraulic top mounts
is relative to the baseline parameters: no kind of optimization was made in this phase. The
basis for the optimization work is discussed in Chapter 6, in which a sensitivity analysis
is discussed considering the standard configuration for the quarter car model with the
hydraulic top mount, although a deeper insight into this topic is out of the scope of the
present project.
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CHAPTER 6

Design of Experiments and Sensitivity
Analysis

The employment of the Design of Experiments (DOE) tool in relation to the hydraulic
top mount model is aimed at the individuation of the most influential parameters for the
RMS acceleration of sprung and unsprung mass. The advantage of this methodology lies
in the ability to perform different tests by changing more than one parameter at a time.
In this way, potential interactions can be also taken into account; however, the completion
of a full experimental plan can be time-consuming.

6.1 Design of Experiments Methodology

Any different phenomena is influenced by a certain number of factors. In order to discern
among their significance and impact on the response, it is necessary to perform different
experiments under different conditions. The DOE allows to efficiently create an exper-
imental plan to perform different tests and analyze their results [28]. Indeed, this tool
allows for the set up of an experiments plan in which more than one factor at time vary
and then to analyze the significance of each single factor and interaction by means of the
Analysis of Variances (ANOVA).

In the scope of the present project, the DOE method with full factorial plan has
been applied to the parameters of the secondary rubber and hydraulic component of the
hydraulic top mount. In particular, their effect on the RMS value of sprung and unsprung
mass acceleration were evaluated, which correspond to the responses of the experiments.
In other words, the factors are the parameters k2, c2, c3, and m3, while the responses
are ẍ′′

s,RMS and ẍ′′
u,RMS since it was found that the top mount contributes most to the

secondary ride frequency range.
Since the experiments are only different simulations of the model, and model differential
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Table 6.1: Values of each Factor at different levels in the DOE plan.

Level c2 k2 c3 m3

(-) (Ns/mm) (N/mm) (Ns/mm) (kg)

1 0.02 2 0.12 1
2 0.08 8 0.40 4
3 0.14 14 0.84 7
4 0.20 20 1.20 10
5 0.65 65 3.90 32.5
6 1.10 110 6.60 55
7 1.55 155 9.30 77.5
8 2.00 200 12 100

equations directly depend on the aforementioned factors, it was expected that most of the
factors and also some interactions would have been significant, but, in this case, it was
necessary to understand which factors had the highest influence on the response and how
each factor influenced the output. In this way, the physical characteristics of the top
mount bringing a comfort performance improvement could be analyzed.

The number of levels for each factor were chosen as a trade-off between accuracy and
simulation time. The number of experiments depends on the number of factors (n) and
on the levels number (k) according to the expression kn in case of a full factorial plan.
Therefore, the amount of tests rapidly increases as the number of levels increases. In
this project, 8 levels were selected and, because of the 4 factors, 4096 experiments were
necessary to complete the DOE plan. The values of each level was chosen using the
reference value as the middle value (level 4), and then each factor was made to increase
and decrease to generate each level. Thus, the lowest value was one order of magnitude
lower than the reference and the highest was one order of magnitude higher than the
reference. In Table 6.1, the values of each factor at each different level are shown.

Once the DOE plan had been created, the nonlinear quarter car model with the hy-
draulic top mount was simulated in time using the D-class road input in order to have
considerable RMS values of acceleration that made the successive analysis easier. Only
one replicate for each test was performed.

6.2 Analysis of Variances and Percentages of Contribution

The Analysis of Variances (ANOVA) is a tool aimed at assessing the variation of the
output of the DOE in relation to the variation of the input factors or interactions. Once
the response of the DOE is known, the effect of any single factor or interaction has to be
analysed. Therefore, for each factor and interaction level, the mean between the corre-
sponding value of the response is evaluated [29]. In order to perform the ANOVA on the
above DOE, MiniTab® was used. The elements taken into account in the ANOVA are the
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single factors and the second level interactions.
As it has been affirmed, 8 levels for each factor were selected, then each factorial

mean was evaluated among 512 different values, obtaining 8 different means. Then, 64
different combinations were individuated among the levels of two factors, therefore each
one of the interaction means has been evaluated between 64 different response values.
Similarly, 512 means were calculated for the third order interactions. Once the mean
values corresponding to each single factor and interaction level had been evaluated, the
variance between the different mean values of the response at each level was calculated.

The variance of a set of data gives information about the variability on the set it-
self. In this case, it gives information about the variance caused by each single factor
or interaction. However, the variance itself is not enough to make any sort of conclusion
on factors and interactions: it is also necessary to evaluate the so-called “error variance”
(σ2

err), which is the variance of the response caused by all those factors and interactions
not included in the ANOVA. Since the ANOVA performed in this project has only one
replicate, σ2

err corresponds to the variance caused by the fourth order interactions that
were not considered significant a priori.

The following step for the ANOVA is the evaluation of the F-ratios (ϕ) for each factor
and interaction. They are the reference values in the understanding of the significance of
each factor. It is evaluated by means of the formula shown in Eqiuation (6.1) and they
are compared to a limit value which depends on the chosen confidence level and on the
degrees of freedom of the denominator and the numerator of Equation (6.1) [29].

ϕy = σy

σerr
(6.1)

The confidence level determines the risk of error of considering a factor not statistically
significant, while the degrees of freedom correspond to the number of values of a set of
data necessary in order to reconstruct the set itself [29].

The degrees of freedom of the factor’s variance is equal to the number of values used to
calculate the variance decreased by one. Instead, in the case of interactions, the number
of degrees of freedom is equal to the product between the degrees of freedom of the factors
comprising the interaction. Finally, the degrees of freedom of the error is evaluated as
the difference between the total number of degrees of freedom, which is given by the total
number of experiments decreased by one, and the sum of the degrees of freedom of the
factors and the interactions included in the ANOVA.

For the present project, each factor has 7 degrees of freedom while each second order
interaction counts 49 degrees of freedom and each third order interaction has 343 degrees
of freedom. Since 4096 experiments were performed and the total number of the degrees
of freedom is 4095, the number of degrees of freedom of the error is 2401.

By knowing the degrees of freedom of each factor and interaction, it is possible to
evaluate the limit F-Ratio (ϕlim) at 95% of a two-sided confidence level. These values are
shown in Table 6.2.
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Table 6.2: Factors and interactions limit value for the F-Ratios at 95% confidence level.

ϕlim,f ϕlim,i2 ϕlim,i3

(−) (−) (−)

2.01 1.35 1.00

The percentages of contribution method is aimed at estimating the sensitivity of the
output of a DOE plan due to a particular factor or interaction. The reference parameter
in order to perform this analysis is the Sum of Squares (Q), which can be evaluated, in
the scope of the ANOVA, as the product between the degrees of freedom and the variance,
but it is thoretically defined as the sum of the squared difference between each element of
a certain set of data and its mean as it is shown in Equation (6.2). Its importance derives
from the ability to understand the different impact of each different factors on the model
[29].

Qy =
n∑

i=0
(y − ȳ)2 (6.2)

Since the sum between factors, interactions and error sums of squares (Qy, Qy−z and
Qerr) is equal to the total sum of squares (Qtot), an estimation of the percentages of con-
tribution can be given by the ratio between the sum of squares of each single factor and
interactions and the total sum of squares. However, to have better results, it is convenient
to employ the corrected Sum of Squares after having performed the “pooling” operation.
Pooling is performed by including the variance of factors that are not statistically sig-
nificant into the error variance (σ2

err). Therefore, the variance (σ′2
err), the sum of squares

(Q′
err) and the degrees of freedom of the error after pooling (df ′

err) vary according to Equa-
tions (6.3), (6.4) and (6.5), where the degrees of freedom and the sum of squares of factors
that are not statistically significant are defined (dfns and Qns) as well as the degrees of
freedom and the sum of squares of the error (dferr and Qerr).

df ′
err = dferr + dfns (6.3)

Q′
err = Qerr + Qns (6.4)

σ′2
err = Q′

err

df ′
err

(6.5)

In order to evaluate the corrected sum of squares (Q̂y), it is necessary to eliminate
the variability caused by the error from the sum of squares. Formulas to evaluate the
corrected sum of squares of the factors and of the error (Q̂err) are presented in Equation
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(6.6), (6.7).

Q̂y = Qy − dfy · σ2
err (6.6)

Q̂err = Qerr +
∑

(dfns) · σ2
err (6.7)

6.3 ANOVA and Percentages of Contribution Results

The output of the ANOVA is summarized in Tables 6.3 and 6.4, showing the degrees
of freedom (df), sum of squares (Q), variance (σ) and F-Ratio (ϕ) for each factor and
interaction. Another relevant output of the ANOVA is represented by the main effects
plots, which are shown in Figures 6.1a, 6.1b, 6.2a, 6.2b, 6.3a, 6.3b, 6.4a and 6.4b, and
by interaction plots, presented in 6.5a, 6.5b, 6.6a, 6.6b, 6.7a, 6.7b, 6.8a, 6.8b, 6.9a, 6.9b,
6.10a and 6.10b.

These plots show the variability of the output according to the different level of each
factor and also the nature of the interactions between different factors. In particular, if the
different lines of the interaction plots are parallel, interactions between two factors do not
occur. However, if they cross or diverge, a negative or positive interaction occurs, respec-
tively [29]. The effect and interaction plots also show how the variation of a parameter
affects the output.

Statistical practice requires that all those factors or interactions whose F-Ratio (ϕ)
is higher than the corresponding limit value ϕlim) are considered as significant with the
established confidence level, otherwise no conclusion can be made. In this particular case,
all the factors would have been considered significant, as expected, since the experiments
are simulations of a model built on the same parameters considered as factors and in-
teractions. For this reason, the significance of a factor or interaction is not really the
most relevant result in this case; the most explanatory result of the DOE is the relative
importance of factors and interactions. The F-Ratios shown in Tables 6.3 and 6.4 allow
one to hypothesize which are the most important factors. For both outputs, F-Ratios of
k2, m3 and c3 are higher than those of the factor c2 and the interactions. Referring to the
interactions, only those between c3 and m3 in the case of ẍu,RMS and between k2 and c3

actually have a role in the variability of the relative outputs, but in both cases their con-
tribution seems to be smaller than the single factors k2 and m3. Nevertheless, the analysis
performed through the percentages of contribution method gives a more complete picture.

These results are in accordance with the information given by effects and interaction
plots, which show how the variation of c2 only causes a very subtle variation on both
outputs. The only relevant interactions are: the second order interactions c3 – m3 and
k2 – c3 namely for ẍ′

u,RMS and ẍ′
s,RMS and the third order interactions k2 – c3 – m3 for

both outputs. The ANOVA states that all the analyzed factors are relevant, however it
is worth noting that most of them have little effect on the output. For this reason, it is
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possible to consider the high importance factor as an initial approximation. The weight
of any factor or interaction of the model can be estimated through the percentages of
contribution analysis.
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Figure 6.1: Effect of factor c2 on the variation of ẍu,RMS and ẍs,RMS .
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Figure 6.2: Effect of factor k2 on the variation of ẍu,RMS and ẍs,RMS .
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Figure 6.3: Effect of factor c3 on the variation of ẍu,RMS and ẍs,RMS .
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Figure 6.4: Effect of factor m3 on the variation of ẍu,RMS and ẍs,RMS .
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Figure 6.5: c2 – k2 interaction plots for ẍu,RMS and ẍs,RMS
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Figure 6.6: c2 – c3 interaction plots for ẍu,RMS and ẍs,RMS
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Figure 6.7: c2 – m3 interaction plots for ẍu,RMS and ẍs,RMS
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Figure 6.8: k2 – c3 interaction plots for ẍu,RMS and ẍs,RMS
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Figure 6.9: k2 – m3 interaction plots for ẍu,RMS and ẍs,RMS
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Figure 6.10: c3 – m3 interaction plots for ẍu,RMS and ẍs,RMS
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Since all the factors and interactions were found to be statistically significant, no
pooling was performed. In Tables 6.5 and 6.6, the values for the corrected sum of squares
(Q̂) can be seen, while in Figures (6.11) and 6.12, the result of Percentages of Contribution
analysis is shown in graphical form.

In particular, Figures 6.11 and 6.12 provide evidence that factors k2 and m3, i. e.
the stiffness of the secondary rubber and fluid inertia, have an important contribution
on the variability of the RMS acceleration and then on the performance of the hydraulic
top mount. Other than these two parameters, the viscosity of the fluid, represented by
c3 especially on the unsprung mass, should not be disregarded. Moreover, the analysis
provides evidence that the interactions c3 − m3 and k2 − c3 affect the performance of
the mount for the unsprung mass and the sprung mass, as well as that the third order
interaction between k2, c3 and m3 is relevant for both outputs.

It is also important to underline that the contribution of the error is higher than that
of some parameters; this is caused by the presence of many factors and interactions whose
contributions are significant according to the F-test, but they are not relevant with respect
to other factors. Because of this, it would not make sense to take into account all those
parameters whose contributions are less than that of the error, since it would not be
possible to distinguish among the two. For this reason, Figures 6.11 and 6.12 only show
the contribution of the most relevant parameters, excluding the least relevant factors.

Thanks to the DOE, it was possible to start the analysis leading to the optimization of
the hydraulic mount: it was possible to provide a picture of the most influential parameter.
However, this analysis is not enough to fully understand the behaviour of the mount.
Before proceeding with the optimization, it is essential to understand how the considered
factors and interactions affect the physics of the hydraulic top mount and eventually in
which way they impact the quarter car model.

The physics of the top mount is clearly summarized by its dynamic stiffness. Therefore,
it is essential to understand how the different parameters modify the shape of the dynamic
stiffness in frequency and which shape gives more benefit to the vehicle performance. The
effect of the dynamic stiffness on the vibration absorption performance of sprung and
unsprung mass is a topic for Chapter 7.
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Table 6.5: Sums of Squares and their corrected values for ẍu,RMS .

df Q̂
Percentages

of contribution
(-) ((m/s2)2)) (%)

c2 7 0.31 0.23
k2 7 436.89 31.11
c3 7 239.35 17.05
m3 7 57 162 4.07

c2 − k2 49 6.09 0.43
c2 − c3 49 0.15 0.011
c2 − c3 49 0.31 0.022
k2 − c3 49 184.37 13.13
k2 − m3 49 95.17 6.78
c3 − m3 49 160.37 11.42

c2 − k2 − c3 343 0.88 0.063
c2 − k2 − c3 343 1.11 0.079
c2 − k2 − c3 343 0.55 0.178
c2 − k2 − c3 343 2.50 0.35

Error 2401 4.98 0.42

Total 4095 1404.42 100.00

Figure 6.11: Bar chart for the contribution of the significant factors and interactions for the
unsprung mass acceleration.
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Table 6.6: Sum of Squares and their corrected values for ẍs,RMS .

df ′ Q̂
Percentages

of contribution
(-) ((m/s2)2) (%)

c2 7 8.5 × 10−3 0.21
k2 7 1.86 46.43
c2 7 1.26 × 10−1 3.13
m3 7 5.23 × 10−1 13.05

c2 − k2 49 2.28 × 10−2 0.57
c2 − c3 49 6.73 × 10−4 0.017
c2 − m3 49 4.2 × 10−3 0.11
k2 − c3 49 2.04 × 10−1 5.10
k2 − m3 49 4.52 × 10−1 11.26
c3 − m3 49 4.94 × 10−1 12.31

c2 − k2 − c3 343 1.2 × 10−2 0.030
c2 − k2 − c3 343 5.8 × 10−33 0.14
c2 − k2 − c3 343 2.9 × 10−3 0.73
c2 − k2 − c3 343 2.90 × 10−1 7.23

Error 2401 1.40 × 10−2 0.35

Total 4095 4.010 100.00

Figure 6.12: Bar chart for the contribution of the significant factors and interactions for the sprung
mass acceleration.
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CHAPTER 7

Top Mount Dynamic Stiffness Influence
on Performance

The physics of the mount is described by its dynamic stiffness amplitude and phase;
Chapter 6 discussed the impact of different parameters on the overall performance of the
quarter car model, while the aim of this chapter is to go more in depth with the frequency
analysis in order to point out feasible opportunities for improvement. In particular, the
different effects of the significant parameters and interactions, pointed out in Chapter 6,
on top mount dynamic stiffness are investigated in this chapter.

7.1 The Role of the Hydraulic Top Mount Dynamic Stiff-
ness on the Sprung Mass Acceleration

The starting point of the analysis of the DOE result is the sprung mass acceleration
since it is the most relevant performance parameter inasmuch as it is directly felt by
vehicle occupants contrary to the unsprung mass acceleration. Chapter 6 discussed which
parameters of the model are the most influential. In particular, it is clear that k2 is the
parameter that gives the highest variation in terms of sprung mass acceleration. In Figures
7.1, 7.3 and 7.5, variation in amplitude of dynamic stiffness according to k2, m3 and c3 is
reported, while in Figures 7.2, 7.4 and 7.6, the variation in phase can be appreciated.

By joining the information contained in these plots and the plots relative to the factorial
effects presented in Chapter 6, it is possible to predict which are the most suited physical
characteristics of the hydraulic top mount in order to assure the best performance.

According to the ANOVA, the highest values of k2 give the most important benefit.
Looking at the plots in Figures 7.1 and 7.2, it is possible to note that the highest benefit
should be caused by the lowest stiffness amplitude in the frequency range of interest
(5 − 20 Hz), while the phase of the transfer function is higher than that given by the low
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Figure 7.1: Variation of the dynamic stiffness amplitude according to the variation of the secondary
rubber stiffness k2.
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Figure 7.2: Variation of the dynamic stiffness phase according to the variation of the secondary
rubber stiffness k2.

k2 values, although it is pretty similar among the curves related to the high k2 values. It
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Figure 7.3: Variation of the dynamic stiffness amplitude according to the variation of the fluid
viscosity c3.
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Figure 7.4: Variation of the dynamic stiffness phase according to the variation of the fluid viscosity
c3.

is important to underline that by increasing this parameter, the frequency at which the
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Figure 7.5: Variation of the dynamic stiffness according to the variation of the fluid inertia m3.
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Figure 7.6: Variation of the dynamic stiffness phase according to the variation of the fluid inertia
m3.

step in dynamic stiffness amplitude occurs is moved forward and its amplitude becomes
increasingly higher.

99



The other important parameter is the fluid inertia m3. In this case, the most beneficial
values are the the lowest and the highest ones, since both give an improvement with
respect to the mid-range value in terms of RMS of sprung mass vertical acceleration.
In particular, it is worth noting that the highest values for m3 shift the frequency at
which the step in amplitude occurs at increasingly lower values. Moreover, and they
cause an undershoot and an overshoot which are increasingly relevant as m3 is increased.
Therefore, similar to the effect in k2, the highest values of m3 give a low dynamic stiffness
amplitude around 5 − 10 Hz, but they also assure a high dynamic stiffness amplitude
around 10 − 20 Hz with the peak, in amplitude and phase, properly around 10 Hz, close
to the wheel hop frequency of the quarter car model. Looking at the interaction between
k2 and m3, one can better understand the desired dynamic stiffness: according to the
ANOVA, this interaction is significant and the most relevant improvement is obtained for
high values of both parameters. Thanks to the linearity of the hydraulic top mount model,
the superposition principle can be applied. Therefore, it is possible to affirm that high
values of m3 tune the frequency step around wheel hop frequency, while high values of k2

contribute to making this step sharper and, at the same time, they increase the value of
the amplitude after the step.

The third single factor, although less significant than the other two, is c3. In this case,
mid-range values seem to assure the best performance. Similar to the previous cases, these
values assure the highest values of phase in the considered frequency range, even though
a peak can be observed only around 20 Hz if this is the only parameter that is changed.
This could also explain why its contribution is relatively small. However, considering the
interactions with the other two parameters, a low value for c3 is advisable since it is able
to enhance the characteristic shape individuated as the most suited for this problem.

In conclusion, it is possible to affirm that the most beneficial shape for dynamic stiffness
is the one whose step occurs around the resonance frequency in the secondary ride (wheel
hop frequency) and then the one reaching the peak in phase and amplitude around that
frequency. At this point, it is important to understand the physics behind this particular
shape.

7.2 The Physical Characteristics of the Hydraulic Top Mount
Dynamic Stiffness

When the hydraulic top mount is excited with a harmonic function, it is possible to
express its dynamic stiffness as in Equation (7.1), where K(ω) and C(ω) are the frequency
dependent equivalent stiffness and damping.

Kdyn(ω) = Ft

Xt
= K(ω) + jωC(ω) (7.1)

This formulation can be useful only in the case of harmonic input displacement with
constant amplitude and frequency. Therefore, it is usually only suited to frequency domain
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studies in which only the response of the system at a certain frequency is analyzed [2].
Moreover, if it is possible to overcome this assumption in the case of periodic input by
expressing it as a sum of a finite number of harmonics through the Fourier series method,
the same cannot be done in the case of a general aperiodic input since it can only be
written as the sum of an infinite number of harmonics leading to non-causal results [30].
When this assumption is not met, it is necessary to replace this formulation through the
equivalent viscous damping formulation, which consist of using a set of viscous dampers
having the same behaviour of the structural damping in frequency. For this reason, in the
scope of the present project, it was only employed to understand the frequency response of
the mount in the case that the transfer function assumes the shape mentioned in Section
7.1 in the frequency range of interest (5 − 20 HZ).

It has been affirmed that an advisable shape for the dynamic stiffness has a peak in
phase around the wheel hop resonance frequency of the vehicle. In such cases, according
to Equation (7.1), a high value of equivalent damping is obtained, which becomes the
dominating parameter of the dynamic stiffness. The high equivalent damping obtained
through this shape, then, should be able to kill the harmonics at resonance frequency and
to reduce the acceleration response of the sprung mass.

The structural damping model allows one to understand that a frequency dependent
damping is advisable in order to have the best performance of the mount since it is
relatively easy to tune the damping to be the highest when it is actually necessary. As
stated, the model is not useful for time domain evaluations. Therefore, whenever it is
necessary to make this type of comparison, the structural damping model must be replaced
with the equivalent viscous damping model.

7.3 First Attempt of Hydraulic Top Mount Parameters Op-
timization

Having recognized which shape is the best suited for the transfer function of the top
mount, it was, then, possible to make a first attempt to understand the capabilities of
the new top mount. It has been shown that it is advisable to have a peak in the the
dynamic stiffness phase in order to assure the highest value of damping around the wheel
hop frequency. Therefore, the parameters were modified to have a resonance peak in the
secondary ride range. However, it is important not to choose a transfer function where
the peak is too narrow in order to avoid robustness problems. A change in the suspension
or tire parameters of the quarter car model could influence the wheel hop frequency and
then nullify the benefit given by the hydraulic top mount or even worsen the performance.

In Table 7.1, the resonance frequency and the phase peak of the dynamic stiffness are
shown as well as the parameter values necessary to obtain this shape, together with the
results in terms of sprung mass acceleration and the road holding index.

It is noticeable that lower values of RMS acceleration can be reached by changing the
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values of k2, m3 and c3 to 550 N/mm, 80 kg and 0.5 Ns/mm, respectively. In this way,
the resonance frequency was shifted around the wheel hop frequency and the dynamic
stiffness phase increased as indicated in Table 7.1, in which the reference value of the
baseline hydraulic top mount and of the rubber top mount are reported as well. By
tuning the hydraulic top mount around a frequency close to the wheel hop, it is possible
to obtain an improvement of 7.0% for acceleration with respect with the baseline model
of the hydraulic top mount and an improvement of 8.4% with respect to the rubber top
mount quarter car model. At this point, the real problem is the translation of these
characteristics to an actual device.

Table 7.1: New values of RMS acceleration for the sprung mass after the variation of m3, k2, and
c3 to have a phase peak in secondary ride frequency range.

Parameters Outputs

νres Φres ẍs,RMS ẍ′
s,RMS ẍ′′

s,RMS ηrh,RMS

(Hz) (deg) (m/s2) (m/s2) (m/s2) (−)

Tuned
H. Top Mount 11.1 132.9 1.74 1.22 1.20 0.194

Reference H. Top Mount 1.79 1.21 1.29 0.183

Rubber Top Mount 1.80 1.21 1.31 0.181

For the sake of clarity, in Figure 7.7, the dynamic stiffness of the top mount is shown
and a really high peak at wheel hop frequency for both amplitude and phase is evident,
as it has been suggested in Section 7.1. In Figure 7.8 it is possible to appreciate the
superimposition of the sprung mass acceleration FFT for the base and the tuned hydraulic
top mount. It is noticeable that, while the lower frequencies remain untouched by the
change, while lower peaks can be appreciated in the secondary ride range.

In Figure 7.7 the displacement Fast Fourier Transform (FFT) is shown and it can
be seen that a higher displacement is present close to 10 Hz. This is the result of a low
dynamic stiffness at that frequency value. Therefore, it is also important to check that the
displacement value remains in the tolerance range before applying this type of solution.

Another negative aspect of the tuned parameters for the hydraulic top mount is the
value of road holding index, which tend to increase in case of the tuned mount along with
its RMS value. This counter-effect causes a worsening in vehicle handling, which must be
investigated before applying this new solution. In Figure 7.10, a time history of the road
holding index is presented; it noticeable that the in the case of the reference top mount,
the road holding index has lower peaks as suggested by the lower RMS values.

The last necessary check to accept the proposed model is the verification of its robust-
ness in off-design conditions. The parameter that can undergo to the largest variation is
the stiffness of the wheel (k − w): it is strictly linked to the inflation pressure of the tire.
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Figure 7.7: Dynamic stiffness Bode Plot in case of the tuned parameters.
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Figure 7.8: Comparison between the FFT of the sprung mass acceleration for quarter car model
with the hydraulic top mount before and after the tuning and for the quarter car model with the
rubber top mount.

For this reason, a sensitivity analysis of the RMS acceleration of the sprung mass was
carried out to verify that the proposed solution were also robust in off-design conditions.
In order to check the sensitivity of this quarter car model to variations in wheel stiffness
(kw), the quarter car model with the tuned hydraulic top mount was simulated with a
wheel stiffness that varies by ±15 %. In Figure 7.11, it is possible to see the variation of
the RMS values of the sprung mass acceleration for the reference and tuned top mount as
well as those for the rubber top mount. It is clear that in all the three cases wheel stiffness
variation causes a relevant variation for the RMS value of the acceleration, but it varies in
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Figure 7.9: Comparison between the FFT of the sprung mass displacement for quarter car model
with the hydraulic top mount before and after the tuning.
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Figure 7.10: Comparison between the Road Holding Index time histories for the two different set
of parameters for the Hydraulic Top Mount

the same way in all three cases. Therefore, the new top mount is able to assure the same
robustness as the reference hydraulic mount and, more importantly, as the conventional
rubber top mount.
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Figure 7.11: Variation of RMS values of the sprung mass acceleration due to the variation of the
wheel stiffness (kw) in the case of the reference hydraulic top mount (blue), tuned hydraulic top
mount (red) and rubber top mount (yellow).

7.4 The Role Top Mount Dynamic Stiffness on the Un-
sprung Mass Acceleration

The acceleration of the unsprung mass is the second output considered in the DOE plan,
however this performance parameter is not really relevant in the assessment of comfort
performance since it is not directly felt by vehicle occupants.

The analysis can be performed similarly to the case of sprung mass. Referring to
the plots showing the dynamic stiffness variation shown in Section 7.1 and to the main
effects plots shown in Chapter 6, it is noticeable that an increase in the dynamic stiffness
amplitude helps in the reduction of RMS unsprung mass acceleration.

In particular, according to the data shown in Chapter 6, the values of k2 that most
reduce the acceleration are the mid-range values, which cause an increase of in dynamic
stiffness amplitude without reducing its phase, bringing an overall increase in equivalent
damping and stiffness in that range.

The viscosity of the fluid c3, instead, seems to be more beneficial at the upper end
values, which, according to Figures 7.3 and 7.4, lead to an increase in amplitude and
reduction in phase of kdyn. This trend can be explained by the increase of equivalent
stiffness of the mount.

The parameter m3 is not very influential for the unsprung mass acceleration. Similar
to k2, mid-range values ensure the lowest RMS acceleration for the unsprung mass; the
resulting dynamic stiffness is the one with the lowest amplitude among the group composed
of the highest m3 values and the lowest values of phase between 5 and 10 Hz. Therefore,
also in this case, a high equivalent stiffness is assured in the first part of the frequency
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range, similar to the case of c3. The same cannot be affirmed for the remaining part of the
frequency range of interest since mid-range values of m3 makes a higher dynamic stiffness
in amplitude and phase and since, in that case, it would be tuned around lower frequency
values.

In conclusion, a high value of equivalent stiffness seems to improve the ride performance
relative to the sprung mass of the vehicle, however it is worth noting that the reduction
of unsprung mass acceleration is not the objective of ride comfort improvement since
the customer, i. e. the passenger of a vehicle, can only feel a reduction in sprung mass
acceleration.

7.5 Hydraulic Top Mount in Series with the Suspension
Strut

Once a solution for the standard configuration for the top mount and shock absorber
has been accepted, it was decided to test the same solution on the second arrangement
developed. In Chapter 5, it was shown that this solution can offer some advantages in
terms of sprung mass acceleration, but not in terms of unsprung mass. The aim of this
section is to understand if the optimized solution for the standard configuration can assure
the same performance improvements. In order to perform this task, the model described
in Chapter 4 has been simulated with the new hydraulic mount.

In Table 7.2, the results of the simulation are shown, which contains the RMS sprung
mass acceleration (ẍRMS) and its components for primary and secondary ride (ẍ′

RMS ,
ẍ′′

RMS), as well as the RMS value of the road holding index (ηrh,RMS). From the data in
the table, an improved performance can be assured with the optimized solution for the
standard configuration: a further 2.5 % in performance can be gained with respect to the
standard configuration, while the overall gain is equal to 10.7 % relative to the traditional
rubber top mount. For the other configurations, the primary ride performance remained
almost untouched, passing from the baseline to the optimized condition, but, as was seen
in Chapter 5, this configuration is also able to assure a slightly better performance in that
frequency range.

In Figure 7.12, the FFT of the sprung mass displacement for both configurations with
the hydraulic top mount and rubber mount have been superimposed. This plot confirms
the performance improvement in the whole frequency range.

In addition, Table 7.2 reports the RMS value of the road holding index, which is instead
slightly higher than the corresponding values for the other models. Therefore, prior to
accepting this configuration, it is important to verify that this drawback is not critical.

The last aspect that was verified for this solution was its robustness due to tire pressure
changes, as it was for the optimized solution for the standard quarter car model configura-
tion. In Figure 7.13, the sensitivity of the new model to the wheel stiffness in comparison
to that of the old model is shown. Since the two lines are parallel, no interaction between
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Table 7.2: RMS values of sprung mass acceleration and road holding index for the quarter car
model with optimized h. top mount in series with the strut.

0 − 5Hz 5 − 20 Hz
ẍs,RMS ẍ′

s,RMS ẍ′′
s,RMS ηrh,RMS

(m/s2) (m/s2) (m/s2) (−)

New Configuration
Tuned H. Top Mount 1.66 1.16 1.17 0.194

Std. Configuration
Tuned H. Top Mount 1.74 1.22 1.20 0.194

Rubber Top Mount 1.80 1.21 1.31 0.181
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Figure 7.12: FFT of the sprung mass acceleration for the two configurations of the quarter car
model with the hydraulic top mount and for the quarter car model with the rubber top mount.

the tire stiffness and the different position of the mount occurs.
Looking at the results obtained with this new configuration, it seems obvious to prefer

this second solution, especially considering that this hydraulic mount has been optimized
only for the standard configuration and a potential higher improvement could be achieved.
Nevertheless, before adopting this arrangement, it is als necessary to consider its impact on
handling performance, which was not analyzed in this project except for the road holding
index.
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Figure 7.13: Sensitivity of the two different configurations for the hydraulic top mount to the
variation of tire stiffness.
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CHAPTER 8

Conclusions and Recommendations

The first important result of the project was the building of a hydraulic mount model
and its subsequent integration into a quarter car model, which allowed for the systematic
comparison of the characteristics of two different top mounts. The realization of such
mathematical models was an important result on its own, since it is the first example in
literature of a quarter car model integrated with a hydraulic top mount, although different
models for the hydraulic mount can be found for other applications.

Moreover, throughout the whole project, the benefits given by the employment of the
hydraulic top mount in place of the rubber one become apparent. It has been proven
that this kind of device can improve the ride comfort performance of the vehicle in the
secondary ride range without affecting the performance at lower frequencies, i. e. at the
primary ride, which are usually filtered by other suspension components, like primary
elastic elements. This aspect is the second important result of this project: the employment
of a standard rubber device, usually results in a trade-off between the primary and the
secondary ride. The improvement obtained through the implementation of the hydraulic
top mount model in the quarter car model is presented in Table 8.1. It is possible to
note that the hydraulic mount in the new arrangement offers the highest improvement in
terms of RMS acceleration of the sprung mass according to the model developed in this
project. Clearly, it is necessary to verify the feasibility of the mount manufacturing as
well as of that of new suspension arrangement. As previously underlined, the hydraulic
mount in the new configuration is able to give not only improvements in the secondary
ride, but also a non-negligible improvement in primary ride, while a subtle worsening of
the performance occurs in the primary ride in the case of the standard configuration.

Another important aspect of the project was the identification of the best suited dy-
namic stiffness transfer function for the top mount to improve ride comfort performance.
It was found that it is necessary to assure a rather high amount of damping around the
vehicle wheel hop frequency which corresponds to the target frequency in the design of the
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Table 8.1: Summary of the improvement obtained through the implementation of the hydraulic
top mount in the quarter car model in terms or RMS of sprung mass acceleration with respect to
the rubber top mount configuration.

ẍs,RMS ẍ′
s,RMS ẍ′′

s,RMS

(m/s2) (m/s2) (m/s2)

Hydraulic mount
(Standard configuration) 3.3 % −0.83 % 8.4 %

Hydraulic mount
(New configuration) 7.8 % 4.13 % 10.7 %

top mount. It was seen that rather than the single parameter values, it is more important
to focus on the phase and on the resonance frequency of the mount. Therefore different
strategies can be adopted to reach the desired shape.

Moreover, an opportunity for future improvement was discovered by changing the po-
sition of the top mount in the suspension assembly, although further research is necessary
to study the feasibility of the new arrangement. Indeed, it could heavily impact the ge-
ometry of the suspension and, if that research were to yield positive results, it would be
necessary to optimize the mount for this different arrangement.

A relevant amount of work has been carried out in the scope of this project, but a
great many aspects must be explored before the solution were to arrive on the market.
The first step that should be performed in the future is the development of a full-vehicle
mathematical model in order to test the component from a broader point of view. A con-
sequent deeper optimization of the mount parameters could yield further improvements.
At that point, a feasibility study for the manufacturing of the mount with proper physical
characteristic should be performed and then it would be necessary to proceed with tests
on the actual device by using a full-scale vehicle. Another interesting strategy to test the
device is represented by Hardware in the Loop (HIL) techniques: they allow one to insert
the actual suspension assembly into the differential equation loop. The importance of
this technique lies in the possibility of conducting tests on actual devices like suspensions
inside a lab and then to arrive at a full-scale vehicle test with a clear idea of the potential
results. In the case that all of these tests are conducted, it would be important to analyze
handling indications other than only comfort problems.

Furthermore, it is important to carry out a cost/benefit analysis in order to verify that
the performance improvement brought on by this device is worth the potentially higher
development and manufacturing costs.

In conclusion, the realization of the hydraulic mount and quarter car models, together
with the identification of the best transfer function for the mount through simulations, the
attempt to use different arrangements for the suspension, and the reduction in the sprung
mass acceleration highlighted by simulation are some of the most important results of the
present project. However, the amount of work which should be carried on in future, as it
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has been suggested here, makes the present work only a small step toward the realization of
the highlighted results in actual vehicles underlining the pioneering nature of the project.
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Appendix A

Summary of Linear Differential Equa-
tions and Transfer Functions

In this appendix, the Linear Differential Equations (Linear Differential Equation (LDE))
and the Transfer Functions (TF) presented in chapter 3 is presented: all the equations are
summarized in Table A.1 and A.2.

Table A.1: Table containing Linear Differential Equation (LDE) and Transfer Function (TF) of
the two different types of mounts presented in Chapter 3.

Hydraulic Mount Rubber Mount

LDE ft = k1xt + c1ẋt + m3ẍ′
t + c3(ẋt − ẋ′

t) f ′
t = k′

1xt + c′
1ẋt

TF
G = Ft

Xt
= (c1s+k1)(m3s2+(c2+c3)s+k2)+(m3s2+c3s)(c2s+k2)

m3s2+(c2+c3)s+k2
G′ = F ′

t
Xt

= k1 + c1s

Gv = Ft

Ẋt
= (c1s+k1)(m3s2+(c2+c3)s+k2)+(m3s2+c3s)(c2s+k2)

s(m3s2+(c2+c3)s+k2) G′
v = F ′

t

Ẋt
= k1+c1s

s
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Appendix B

Bounce and Hop Mode

B.1 Bounce and Wheel Hop Frequencies

Bounce and hop frequencies for the quarter car model correspond to two first resonance
peaks of its frequency response. For a common vehicle, bounce frequency usually is around
1 − SI1.5Hz, while hop frequency typically lies in the range between 10 and 15 Hz.

These frequency values depend on the parameters of the quarter car model: the sprung
mass (ms), the unsprung mass (mu), the wheel rate (ks) and tire rate (kw). The equations
to evaluate the ride and hop frequencies are shown in Equation (B.1) and (B.2).

νbounce = 1
2π

√
RR

ms
(B.1)

νhop = 1
2π

√
ks + kw

mu
(B.2)

Where RR is the ride rate of the quarter car model. It is evaluated as in Equation
(B.3).

RR =
√

ks · kw

ks + kw
(B.3)

It is important to underline that there is also a nonlinear damper in the system that
affects the values of these frequencies. The effect of the damper is always to reduce the
“undamped” resonance frequency (νbounce), therefore slightly lower resonance frequencies
are expected when they are evaluated through simulations. However, the damping coeffi-
cient of shock absorbers normally employed in the automotive field does not significantly
affect the bounce and hop frequencies because of the coefficient’s relatively low value.

In order to evaluate these frequencies, it is sufficient to know the parameters of the
quarter car model. In the case of the model used in this project, values are taken directly
from a real car, and therefore it is necessary to transport the spring stiffness and the sprung
mass to the centre of the wheel by means of the motion ratio (MR), i. e. by multiplying
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Table B.1: Values of the quarter car model parameters at component level.

kspring wvehicle

(N/mm) (N)
40 6235.41

Table B.2: Values of quarter car model parameters at the centre of the wheel.

ks ms kw mu

(N/mm) (kg) (N/mm) (kg)
34.3 545 294.7 80

them by the square of the motion ratio (MR), which depends on the geometry of the
suspension.

In Table B.1, the actual value of sprung mass and spring rate are reported.
By knowing the motion ratio (MR = 0.93), it is possible to transport the value shown

in Table B.1 at the centre of the wheel. Values of the quarter car model parameters at
the centre of the wheel are shown in table B.2.

At this point, it is possible to evaluate the ride frequency and the wheel hop frequency
for the model analyzed in this project. The values of ride frequency and bounce frequency
are shown in Table B.3.

As it was affirmed, the other important element of the quarter car model is the shock
absorber which is modelled as a nonlinear and non-symmetric damper in this project. In
addition, the characteristic curve of the shock absorber refers to the component. Therefore,
it was necessary to transport its characteristic curve to the centre of the wheel by dividing
the damper stem speed by the motion ratio and multiplying the force by the same value.

Theoretical values of bounce and hop frequencies can be verified by means of the
frequency response analysis. However, since in the quarter car model used in this project,
a hydraulic top mount is present, to verify them it is first necessary to disable the module.
The same analysis can be made, then, with the enabled module to analyze its impact in
the quarter car model.

Table B.3: Theoretical values for ride and wheel hop frequencies.

νbounce νhop

(Hz) (Hz)
1.19 10.2
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Figure B.1: Fast Fourier Transform for the displacement of the sprung mass.

B.2 Frequency response

B.2.1 Disabled Hydraulic Mount

As discussed, the quarter car model taken into account throughout this project is char-
acterized by the presence of a hydraulic top mount; in order to assess ride and wheel
hop frequency of the model, it is necessary to deactivate this module, thus obtaining a
well-known quarter car model.

Another important characteristic of the system is its nonlinearity due to the shock
absorber. For this reason, it is not possible to provide an analytic solution of the system
in the Laplace domain. Therefore, it was decided to numerically evaluate the frequency
response function by means of its Fast Fourier Transform (FFT) using the algorithm
implemented in MATLAB®. Thus, it is possible to understand the contribution of each
individual frequency value to the frequency response.

In Figure B.1, it is possible to see the FFT of the sprung mass displacement in the
case of the hydraulic top mount module is deactivated. It is noticeable that there is a
peak at a frequency of 1.075 Hz, which is clearly the bounce frequency of the vehicle. As
expected, this frequency is slightly lower than the theoretical one because of the presence
of the shock absorber, but it is still very near to that value.

In that same figure, it can be seen that another small peak is present around a frequency
of 10.2 Hz, which should correspond to the wheel hop frequency. Wheel hop mode can
be seen clearly in looking at Figure B.2, which shows the FFT of the unsprung mass
displacement. For frequencies higher than the bounce, the displacement of the sprung
mass becomes very small and the wheel hop mode is hardly noticeable by only analyzing
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Figure B.2: Fast Fourier Transform for the displacement of the unsprung mass.

its frequency response. Instead, the FFT of the unsprung mass displacement led a clearly
noticeable peak at a frequency of 8.35 Hz. Conversely, in only considering the frequency
response of the unsprung mass displacement, it is not possible to capture the bounce since
the low frequency vibrations are hidden by the hop mode.

B.2.2 Enabled Hydraulic mount

The same analysis made with the disabled hydraulic mount can be made once the hydraulic
mount model has been enabled. In Figures B.3 and B.4, it is possible to understand the
effect of the hydraulic top mount in bounce and hop modes. It can be seen that the
hydraulic top mount does not affect the bounce mode, but it causes an increase int the
wheel hop frequency which goes from 8.35 Hz to 10.90 Hz.

In Figures B.5 and B.6, the superimposition of the two plots is shown; a small increase
in amplitude beyond the hop frequency can be seen, but also a slightly better behavior of
the top mount for frequencies lower than the wheel hop is shown.
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Figure B.3: Fast Fourier Transform of the sprung mass displacement with the enabled hydraulic
top mount.
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Figure B.4: Fast Fourier Transform of the unsprung mass displacement with the enabled hydraulic
top mount.
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Figure B.5: Comparison between Fast Fourier Transform of the sprung mass displacement for the
two different cases.
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Figure B.6: Comparison between Fast Fourier Transform of the unsprung mass displacement for
two different cases.
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Appendix C

Quarter Car Model Plots

This appendix contains all the plots relative to the results obtained through the simulation
of different models which are shown in the main body of the thesis.

C.1 Linear Quarter Car Models with the Hydraulic Top
Mount

C.1.1 Time Simulation
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Figure C.1: Input signal for the linear quarter car models.
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Figure C.2: Time history of the sprung mass acceleration in the linear quarter car model with the
hydraulic top mount.
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Figure C.3: Time history of the unsprung mass acceleration in the linear quarter car model with
the hydraulic top mount.
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C.1.2 Bode Diagrams
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Figure C.4: Bode diagram for amplitude and phase for the transfer function between sprung mass
acceleration and input displacement in case of quarter car model with the hydraulic top mount.
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Figure C.5: Bode diagram for amplitude and phase for the transfer function between unsprung
mass acceleration and input displacement in case of quarter car model with the hydraulic top
mount.

125



0 5 10 15 20 25 30 35
-10

0

10

20

30

40

50

60

Numerical

Analytic

Figure C.6: Bode diagram for the transfer function K between the acceleration of the sprung mass
and the input signal for the quarter car model with the hydraulic top mount.
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Figure C.7: Bode diagram for the transfer function K between the displacement of the unsprung
mass and the input signal for the quarter car model with the hydraulic top mount.
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Figure C.8: Comparison between the analytic and estimated amplitude Bode diagram of the
transfer function L for the quarter car model with the hydraulic top mount.
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C.2 Linear Quarter Car Models with the Rubber Top Mount

C.2.1 Time Simulation
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Figure C.9: Sprung mass acceleration in function of time for the quarter car model with the rubber
top mount.
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Figure C.10: Unsprung mass acceleration in function of time for the quarter car model with the
rubber top mount.
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C.2.2 Bode Diagrams

-20

0

20

40

60

5 10 15 20 25 30 35

-180

-90

0

90

180

Figure C.11: Bode diagram for amplitude and phase of the transfer function J between the sprung
mass acceleration and the input signal in case of quarter car with the rubber top mount.
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Figure C.12: Bode diagram for amplitude and phase of the transfer function L between the un-
sprung mass acceleration and the input signal in case of quarter car with the rubber top mount.
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Figure C.13: Comparison between the analytic and estimated amplitude Bode diagram of the
transfer function J for the quarter car model with the rubber top mount.
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Figure C.14: Comparison between the analytic and estimated amplitude Bode diagram of the
transfer function K for the quarter car model with the rubber top mount.
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Figure C.15: Comparison between the analytic and estimated amplitude Bode diagram of the
transfer function L for the quarter car model with the rubber top mount.
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C.3 Nonlinear Quarter Car Models with the Hydraulic Top
Mount

C.3.1 Time Histories
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Figure C.16: Sprung mass acceleration in function of time for the quarter car model with the
hydraulic top mount in case of A-class road input (a) and D-class road input (b).
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Figure C.17: Unsprung mass acceleration in function of time for the quarter car model with the
hydraulic top mount in case of A-class road input (a) and D-class road input (b).
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Figure C.18: Sprung and unsprung mass acceleration in function of time for the quarter car model
with the hydraulic top mount in case of single asperity input signal.
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C.4 Nonlinear Quarter Car Model with the Rubber Top
Mount

C.4.1 Time Histories
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Figure C.19: Sprung mass acceleration in function of time for the quarter car model with the
rubber top mount in case of A-class road input (a) and D-class road input (b).
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Figure C.20: Unsprung mass acceleration in function of time for the quarter car model with the
rubber top mount in case of A-class road input (a) and D-class road input (b).
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Figure C.21: Sprung and unsprung mass acceleration in function of time for the quarter car model
with the hydraulic top mount in case of single asperity input.

C.5 Nonlinear Quarter Car Models with the Hydraulic Top
Mount in Series with Suspension Strut

C.5.1 Time Histories

0 10 20 30 40 50 60 70 80 90 100

-6

-4

-2

0

2

4

6

(a) A-Class Road Input

0 10 20 30 40 50 60 70 80 90 100

-6

-4

-2

0

2

4

6

(b) D-Class Road Input

Figure C.22: Sprung mass acceleration in function of time for the quarter car model with the
hydraulic top mount in case of A-class road input (a) and D-class road input (b).
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Figure C.23: Unsprung mass acceleration in function of time for the quarter car model with the
hydraulic top mount in case of A-class road input (a) and D-class road input (b).
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Figure C.24: Sprung and unsprung mass acceleration in function of time for the quarter car model
with the hydraulic top mount in case of single asperity input signal.
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