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Summary

In this thesis, a recently proposed urn-based model with triggering, describing how novel-
ties and innovations emerge in real systems, is studied. Through the urn process a sequence
of elements is generated. Relevant statistics can be studied such as how many distinct ele-
ments appear in the sequence until a certain time or the frequency with which each of the
elements has been observed. These statistics turn out to follow the Heaps’ and Zipf’s law,
respectively. Some heuristic arguments have been proposed in the literature to justify the
emergence of these laws.

One of the main contributions of this thesis consists in providing rigorous proofs for
these results. This is achieved using stochastic approximation techniques, that allow one to
approximate certain classes of stochastic processes through ordinary differential equations.

A second contribution consists in the extension of these results, including the analysis
of the number of elements that have appeared at least k times in the sequence, for arbitrary
k. Such extensions allow one to consider design problems where the two main parameters
of the model are chosen in such a way to optimize meaningful objectives.

These analytical results are then supported and validated by numerical simulations,
which also allow one to observe other possibly interesting emerging behaviors and patterns.
Finally, some modifications of the model are proposed in order to address specific issues
that could better match certain phenomena observed in real systems.
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Chapter 1

Introduction

In the world every day, every hour and even every second novelties emerge. Some of these
novelties are only new in the perspective of the observer, while others are real innovations,
which appear in the world for the first time. The processes leading to these discoveries
are complex and heterogeneous among the different aspects of life where novelties and
innovations are observed. However there are some general patterns that have been observed
in nature and two of the most important ones are described by Heaps’ and Zipf’s laws. The
first law states that the number of distinct elements in a time sequence grows at sub-linear
rate. It was intended at first to describe the number of distinct words appearing in a text,
where "time", in the specific case, represented the order at which each word appears in the
text. The second law states that the tail of the rank-size distribution, which describes how
many times an element is observed as a function of its rank, is a power law of order α,
i.e., the i-th most observed element, when i is sufficiently large, has frequency f(i) ¨ i−α,
for some α ∈ R+.

In the literature, some models have been proposed to justify the emergence of these
empirically observed laws from first modeling principles or mechanisms, see, e.g., MIT
Technology Review [1]. However, most of them failed to replicate the concept of adjacent
possible, theorized for the first time by Kauffman ([2],[3]). By adjacent possible it is meant
the idea that new innovations open the way to the discovery other ones. The crucial point
is the difficulty of creating a model for the unknown, or better, to describe something that
has not appeared yet in the real world.

An important class of models used for the emergence of these laws are urn-based
models. These are able to reproduce richer-gets-richer mechanisms, which means that
most frequent items are more likely to be observed again. Some models have been proposed
in literature: the latest ones are based on urns that contain colored balls, each color
representing a different item, and then the focus is to study the sequence of colors drawn.
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1 – Introduction

The most common and generic model is Polya’s urn: the basic rule is that inside there
are some initial balls of different colors and, when one of them is drawn, it is replaced
with some copies of the same color. In the model introduced by Hoppe there is also a
heavier ball that is drawn with probability proportional to its weight and if it is drawn it
is replaced together with a brand new color. This procedure allows to explore the space but
it does not really take into account the concept of adjacent possible. This can be achieved
through the Polya urn with triggering model, in which every time a ball is drawn for the
first time a defined number of balls of brand new colors are inserted into the urn, i.e. the
draw of new colors triggers the possible draw of further new colors.

The thesis starts from the work of Loreto et al. (2016) [4], which is a review on the more
or less recent models proposed in literature for modeling the emergence of innovations. In
particular the model based on a specific Polya urn is highlighted and modified in order to
give the concept of adjacent possible a practical representation.

Some of the main works that focused on studying models reproducing Heaps’ and Zipf’s
laws are described by Loreto et al. [4]; the common goal is to find a way to generate a
sequence of elements S(t), t ∈ N, represented by positive integer numbers, with the aim of
calculating D(t) and f(i) as described before, with t representing the index of the element
in the sequence. They include:

• Simon-like models, in which at each time a new element appears with probability p,
or one among the already appeared ones is drawn again with probability proportional
to its frequency;

• the sample-space reducing model, in which the number of distinct elements has an
upper bound, we call it N , and each element is sampled with uniform probability
among the integer numbers between 1 and the preceding number in the sequence;

• the Hoppe urn;

• the Polya urn with triggering, main focus of this thesis.

The article from Tria et al. [5] introduced for the first time the last model in the list, with
further modifications in which they take into account the correlations between elements
that are semantically similar; Monechi et al. [6] also model how elements that appear
later in time can be successful as the already present in the sequence. Another completely
different work, based on edge-reinforced random walks, was proposed by Iacopini et al.
[7].

The objectives of the thesis are the following.

• To review the state of the art with particular focus on the before stated Polya urn
with triggering.
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1 – Introduction

• To formalize some heuristic arguments introduced in the article: the stochastic ap-
proximation will give a tool to study the model with formal arguments and extend
the results for a more general analysis. The main points of interest are two: how the
number of distinct drawn elements increases in time and, given the rank based on
the number of draws for each distinct element (color), how that number depends on
the rank and on the time of first appearance.

• To extend the model with some modifications to the original one, with the specific
aim of changing some characteristics in order to give a better model of the real
systems.

In Chapter 2 the model is presented in details, together with state of the arts and
some applications that motivated it. In Chapter 3 the stochastic approximation, whose
fundamentals are presented in Appendix A, is applied to the model; as a result of that the
ODE that should formally predict the behavior of some statistics of the model is studied.
In Chapter 4 the previous analysis of the ODE is used in order to retrieve expressions for
Heaps’ and Zipf’s laws. It is also shown that it is possible to find the fraction of balls of
colors with at least k draws, k ≥ 1, and give an optimum value to maximize it. In Chapter
5 the analytical results are verified with numerical simulations of the model and some data
and plots are shown, in order to give a better understanding on how the model behaves
even in a finite, but large enough, time. In Chapter 6 some changes are applied to the
model, with specific motivations, and it is observed how some patterns change or remain
the same: in one case a different number of balls is reintroduced depending on the color,
while in the other one the balls in urn can disappear, since each of them has geometric
distributed life. In Chapter 7 the conclusions of the work are presented together with some
suggestions for future work.
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Chapter 2

Mathematical models for the
emergence of innovations

In this chapter, the motivation and state of the art regarding the modeling of emergence
of innovations is presented, together with the important definitions of Heaps’ and Zipf’s
laws. After that, the main focus will be the description of Polya’s urn with triggering and
the heuristic results in literature.

2.1 Motivation

In the world, it continuously happens to observe novelties in different aspects of life: new
songs, new scientific publications, new start-ups and many others. Some of them are just
new for the one who observes them, some others are real innovations never seen before
by anyone. Generally processes of innovations are observed in biological systems, human
society, and technology but it is quite difficult to understand the mechanisms through
which some novelties get more success than others, since they are quite complex and
heterogeneous among different system. The randomness plays a big role in the innovation,
even though there are some global statistics of many considered system that present general
patterns. The statistics of interest are mainly two:

1. How many different innovations (novelties) from the beginning of the process have
been observed until a specific time? At what rate do they appear?

2. Given a measure of popularity of innovations (novelties), and a ranking based on
this measure, what is the dependence of the popularity of an innovation on its rank?

Regarding the first question it is necessary to clarify what is considered as time, while
on the second one we need to define a measure of popularity: the answer is that they
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2 – Mathematical models for the emergence of innovations

depend on the system considered. For example if we consider a user perspective in a
music streaming service the time can be represented by a listening of any song, ordered
in time, while the measure of popularity can be the number of plays of each distinct song;
considering instead a global perspective the time can be identified with the time of release
of each song and create a time sequence, with the popularity based on total plays of a song.
A similar consideration can be done for scientific articles, using their time of publication
to create a time sequence and using the number of citations received as a measure of
popularity. Regarding start-ups instead we can consider a regional ecosystem since about
the date of its foundation e define time-steps: at each of them we can count the number
of different start-ups that are present and give a measure of popularity based on the total
funding received in its history. The examples could be many more, and in most of them
the two statistics previously presented generally assume the form power laws: specifically
the answer to the former question is the Heaps law, while to latter is the Zipf law.

Definition 1. The Heaps law, introduced by Heaps in 1978 [8], is an empirical law that
describes the number of different elements dn occurring in a sequence of length n when n

is large, with the following rule:

dn ¨ nβ, β ∈ (0,1).

Definition 2. The Zipf law is an empirical law, described by Zipf in 1949 [9], which
describes the frequency-rank distribution f(j) of some quantity: the element at position j

in the rank has frequency that follows a power law:

f(j) ∝ j−α, α > 0

and clearly this is decreasing in j. If α = 1 we call it "exact" Zipf’s law, while if α /= 1 it
is called "generalized".

There is also a relation between the two laws: in general, if we estimate α in the tail
of the distribution, i.e. for low ranks, it should hold α = 1

β , where β is the estimated
coefficient for Heaps’ law.
Heaps’ law was first introduced to describe the rate at which distinct words appear in
a text: in this case the novelties are from the text perspective, the time is the order of
appearance of a word and the popularity is clearly based on the number of times it appears
in the text. The case of texts is a bit different, since we have a predefined vocabulary and,
even though there may be neologisms, the number of distinct elements has an upper bound.
Finding a model that could reproduce Heaps’ and Zipf’s laws has been the objective of
many studies, however the problem of modelling some future event whose probability is
not zero but it has not been observed yet was an issue, as Zabell stated [10]:

This is not the problem of observing the ‘impossible’, that is, an event whose
possibility we have considered but whose probability we judge to be 0. Rather,
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2 – Mathematical models for the emergence of innovations

the problem arises when we observe an event whose existence we did not even
previously suspect; this is the so-called problem of ‘unanticipated knowledge’.

2.1.1 Review of models for the emergence of innovations

Reviewing the models proposed in literature, already presented in the introduction of this
thesis, some of them tried to model the unanticipated knowledge introducing a probability
of observing a never-seen-before element. The purpose of each model is to create a sequence
in which the position of the element represents the time and then observe the rate at
which the number of distinct elements in the sequence increase in time and, at the end,
studying the frequency-rank distribution of the elements. The common pattern of all
the models is the one called richer-gets-richer, which determines a major popularity for
elements already among the most popular, through different reinforcement mechanisms.
The following models have different ways to reinforce the most common elements in the
sequence and to insert new ones.

• The Simon-like models [11] were among the first ones proposed to study frequency-
rank distribution in texts: the sequence starts with a single element and at each
time a new element is recorded with probability p, otherwise an element among the
ones already drawn is randomly chosen, proportional to its frequency, such that the
richer-gets-richer mechanism is reproduced. In the original version p was a constant
probability, while following upgrades made it decreasing in time or introduced factors
that increased the probability of choosing most recent elements in the sequence than
older ones.

• The Hoppe urn model [12], based on generic Polya urn ([13],[14],[15]) and already
used in genetics, is based on a urn that, at the beginning, has some colored balls of
weight 1 and a black ball of weight θ. At each time n a ball is drawn from the urn
proportional to its weight: if it is a regular ball it is replaced with a copy of the same
color (richer-gets-richer since each color has a probability of being drawn based on
its frequency in the urn); if it is the black one it is replaced in the urn together with
a ball of brand new color. Instead of recording a sequence we are here interested in
determining how the number of distinct colors in urn increases with time and the
frequency-rank distribution in it.

• The Polya urn with triggering, fully described in the next section.

• The sample-space reducing model [16] is quite different from other models: it has
instead an upper bound N to the number of maximum distinct elements and does
not directly reproduce the richer-gets-richer mechanism, however it has been used
to represent power law frequency distributions. It starts sampling an integer number
from 1 to N and, after that, the following recursion is used: the n-th element in
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2 – Mathematical models for the emergence of innovations

the sequence is uniformly sampled among the integers between 1 and the preceding
number in the sequence. Once number 1 appears, the process starts again from N .
There is also a case in which we can consider at each step a probability λ of sampling
again from 1 to N instead of looking at the previous number.

Another concept developed in literature is the already cited adjacent possible: it makes a
step beyond the dichotomy between the actual and the possible [17], defining an abstract
space where we find innovations that are just one step from appearing in the reality.
The ideal model is to represent the world of innovations as a graph in which each node
represents a single element: imagining a random walker on a graph, the nodes are divided
in two different categories, visited and unvisited ones (figure 2.1). Once one of the second

Figure 2.1: Visual representation of adjacent possible: grey nodes are the already visited
ones, while the white ones are unvisited. (Source: Loreto et al. [4])

category is visited, new nodes connected to it (and maybe to other nodes) become visible
and the graph expands. As Steven Johnson [18] stated:

The strange and beautiful truth about the adjacent possible is that its boundaries
grow as one explores them.

Network dynamics of innovation processes

The idea of representing the emergence of novelties as graph was recently used by Iacopini
et al. [7] but their limit is still the fact that the number of nodes, which gives an upper
bound to the the number of maximum elements observable, and links is predefined and
there is no expansion of the graph during the process. They proposed a model based on a
edge-reinforced random walk on a small-world network: the graph is represented as a ring
in which each node is connected to all its closest m left neighbors and m right neighbours,
and any other couple of nodes is connected with a small probability p. Each link has the
same initial weight and the process starts on a generic node: the next node is chosen
among the neighbors of the actual one, with probability proportional to the weight of the
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2 – Mathematical models for the emergence of innovations

link; once the link is crossed it receives a reinforcement on its weight, which is incremented
by a tunable quantity δw. At first they empirically showed that the number of distinct
visited nodes followed Heaps’ law, in which the estimated exponent β was a decreasing
function of δw. After that, they used the model in order to reproduce the growth of science
knowledge analyzing the text of scientific articles published in years from 1991 to 2010,
focusing on four distinct disciplines: astronomy, ecology, economy and mathematics. They
observed for each of them the growth of new concepts through time and then, instead of a
small-world network, they extracted the one underlined by the specific field and tuned the
parameter δw such that could reproduce the same exponent of observed Heaps’ law. At
last they showed that this model intrinsically takes into account the correlations between
similar concepts, using the distribution of inter-event times and the normalized entropy:
the first one shows that, considering the time between two consecutive appearances of the
same concept the distribution is concentrated in lower times with respect to the reshuffled
sequence; the second one shows that the average entropy, a measure that counts how much
equally distributed in time is each element a after the first appearance in the sequence,
is lower than in the reshuffled sequence. It is interesting to notice that this model is not
Markovian: indeed, due the edge-reinforcement mechanism, the number of visits of each
nodes at a certain time is dependent on the whole history of the process and not only to
the number of visits at the preceding time.
Therefore the correlations in this model are intrinsically determined by the network struc-
ture of the model, while in the extension of Polya’s urn with triggering proposed by Tria
et al. [5] the correlations are created with an artificial system based on labels and weight
to the balls. In the thesis we will keep the simple definition of this model, as explained in
the next section.

2.2 The Polya urn with triggering (PUT) model

The case of our interest is Polya’s urn with triggering model, from now on indicates as
PUT, introduced by Tria et al. [5] and whose process works with the following steps and
rules:

1. the urn is represented as a set U , in which at time n = 0 there are N0 initial balls
of different colors;

2. at each time n ∈ N (n > 0) a ball is drawn from U and replaced in it with ρ copies
of the same color;

3. S is the ordered sequence that records all the draws, i.e. S(n) represents the color
drawn at time n;

4. if the drawn ball has never appeared in S, i.e. S(n) /= S(k) ∀k ∈ {1, . . . , n − 1}, then
ν + 1 balls of brand new colors are added to U ;

9



2 – Mathematical models for the emergence of innovations

5. in another version of the model the ρ copies are placed in the urn only starting from
the second draw of each color.

A graphical representation of the process is pictured in figure 2.2. The process is intended

Figure 2.2: PUT model: visual representation of the reinforcement and triggering mecha-
nisms. (Source: Loreto et al. [4])

to reproduce the richer-gets-richer mechanism for which the colors with more draws are
more likely to be drawn, since the probability is proportional to the presence in the urn.
While the parameter ρ empowers the reinforcement of the drawn colors, the parameter ν is
intended to explore the adjacent possible, since every new color that appears in S triggers
new colors and gives them the possibility to be drawn, expanding the space to explore.
This last feature is quite different from all the other models presented: in Simon’s models
or Hoppe’s urn the expansion of the explored space is obtained with some sort of artificial
tools, while here it tries to reproduce what happens in reality, where each discovery opens
the path to new ones.
Our interest now is to study two statistics of the process just described:

•
1
D

(k)
n

2
n≥0

, which counts the number of distinct colors appeared in S up to time

n, drawn at least k times: notice that
1
D

(1)
n

2
n≥0

represents the number of different
colors drawn and the main focus will be on this one, which will be simply written
as (Dn)n≥0;

• (Kj
n)n≥0, which counts the number of times the j-th color ever appeared in S up to

time n has been drawn.

The first one clearly will be used to prove that the model reproduces Heaps’ law, while
the second will need more discussion in order to prove Zipf’s law.

2.3 Some heuristic results

While Iacopini et al. [7] only numerically showed their result for the process (Dn)n≥0,
Loreto et al. [4], together with the definitions, also gave heuristic arguments to prove Heaps’
and Zipf’s law for the models presented. Defined Dn, the number of distinct elements
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2 – Mathematical models for the emergence of innovations

counted at time n in the specific model, and f(r), the frequency of the element in position
r of the rank, we have, for n → ∞:

• for simple Simon’s model
Dn ∼ pn;

f(r) ∝ r1−p;

• for Hoppe’s urn model
Dn ∼ θ log

3
1 − n

θ

4
;

f(r) ∝ e− r−1
θ ;

• for classic sample-space reducing model

Dn ∼ N −
NØ
i=1

e−nA
i ;

f(r) ∝ r−1;

where A is a normalization constant satisfying

A−1 =
nØ
i=1

i−1.

Regarding PUT model, the following results were presented in the article, which we will
formalize and slightly correct in next chapters. Setting the parameter a = ν + 1 in the
original version of the model and a = ν + 1 − ρ in the case where there is no reinforcement
at the first draw of a color we have, for n → ∞:

• ρ > ν: Dn ∼ (ρ − ν)
ν
ρ n

ν
ρ ;

• ρ < ν: Dn ∼ ν−ρ
a n;

• ρ = ν: Dn ∼ ν
a

n
log(n) .

The frequency-rank distribution instead is always

f(r) ∝ r− ρ
ν .

We have observed that PUT is conceptually suitable for our modeling, since it reproduces
richer-gets-richer mechanism and explores the adjacent possible, and also seems to present
results that could reproduce Heaps’ and Zipf’s laws; for this reason we will focus on this
model in the following chapters.
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Chapter 3

Stochastic approximation of the
PUT model

In this chapter, the stochastic approximation [20], whose lemma is shown in appendix A,
is applied to the already presented urn model in order to study the behavior of two specific
statistics of the process. It will be obtained an ODE, whose stability will be studied in the
second part of the chapter.

3.1 Stochastic approximation

In this section the stochastic process (D(1)
n )n≥0, counting the number of distinct colors

appeared in S up to time n, will be considered. For simplicity we will use the lighter
notation Dn = D

(1)
n .

At first it is useful to calculate the total number of balls in the urn at time n that is
given by

|U |n = N0 + ρn + (ν + 1)Dn;

Indeed, after each draw, ρ balls are added to the urn, while every time a new ball is drawn
(it happens Dn times), further ν + 1 balls are inserted. For the variant of the model in
which the copies of the drawn ball are only inserted from the second draw of that color,
in that case

|U |n = N0 + ρ(n − Dn) + (ν + 1)Dn = N0 + ρn + (ν + 1 − ρ)Dn.

In a general case it will be considered

|U |n = N0 + ρn + aDn

where a = ν + 1 or a = ν + 1 − ρ, depending on the model used.
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3 – Stochastic approximation of the PUT model

Focusing on (Dn)n≥0, it is a discrete time Markov chain, since the probability distri-
bution at each time n of Dn depends only on its value at the previous time n − 1 and not
on the whole path {D0, D1, . . . , Dn−1}. It is non-homogeneous since it depends also on the
time n. The process clearly starts with D0 = 0, then the probability that at the (n + 1)-th
draw a ball with a never-seen-before color is drawn is

P (Dn+1 = Dn + 1|Dn, n) = N0 + νDn

N0 + ρn + aDn
.

At denominator there is the total number of balls in the urn while at the numerator there
is the total number of balls of colors that have never been drawn: indeed, at the beginning,
there are only N0 never drawn balls and every time a new color is drawn it immediately
becomes "old", decreasing by one this quantity, but it triggers the insertion of ν + 1 new
balls, with a net increase of ν new colors, therefore obtaining N0 + νDn.
Indeed the number of distinct drawn colors increases by one at time n + 1 if a ball whose
color has not appeared yet up to S(n) is drawn. It can also be rewritten:

Dn+1 = Dn + ξn+1, n = 0,1, . . . (3.1)

where ξn+1 is a {0,1}-valued random variable such that

E[ξn+1|Fn] = p(Dn, n) = P (Dn+1 = Dn + 1|Dn, n) ,

where Fn is the σ-algebra generated by the events of the process. Deterministically it will
be obtained D1 = 1, but after that the process will be completely stochastic.

After this part, it is our purpose to consider the number of times that the j-th color
ever occurred in the sequence S has been drawn. This is a more complex issue, since the
time of first occurrence of a color, the starting point of the process, is a random variable
itself, except for j = 1, since the first color clearly appears at the first draw, at time n = 1.
Therefore assume that Dn ≥ j − 1 and the j-th color has at least one ball in the urn U

(just one if Dn = j − 1 since it has not appeared yet, more balls if Dn > j − 1) and define
the stochastic process (Kj

n)n≥0 that counts the number of times the color has been drawn;
due to the previous observations Kj

n > 0 ⇔ Dn ≥ j and also Dn ≥ j ⇒ n ≥ j. Following
the same reasoning as for Dn it can be written

P (Kj
n+1 = Kj

n + 1|Kj
n, Dn, n) = ρKj

n + 1
N0 + ρn + aDn

, j ≤ Dn + 1.

At the numerator this time there is the total number of balls of j-th color in the urn: the
first one, which was present from the beginning or added with triggering, and ρ copies
of it every time it has been drawn. In the case when at the first draw the copies are not
introduced that probability is different:

P (Kj
n+1 = Kj

n + 1|Kj
n, Dn, n) = ρ(Kj

n − 1) + 1
N0 + ρn + aDn

, j ≤ Dn, Kj
n ≥ 1;
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3 – Stochastic approximation of the PUT model

if Dn = j − 1 then Kj
n = 0, then the expression before is not correct while the following is

valid:
P (Kj

n+1 = Kj
n + 1|Kj

n = 0, Dn, n) = 1
N0 + ρn + aDn

, j = Dn + 1.

Of course, if j > Dn + 1, it is always true

P (Kj
n+1 = Kj

n + 1|Kj
n, Dn, n) = 0.

As done before, it will be useful to write the more general form

Kj
n+1 = Kj

n + δn+1, j ≤ Dn + 1, n = 0,1, . . . (3.2)

where δn+1 is a {0,1}-valued random variable such that E[δn+1|Fn] = q(Kj
n, Dn, n), with

q(Kj
n, Dn, n) = P (Kj

n+1 = Kj
n + 1|Kj

n, Dn, n) and Fn is the σ-algebra generated by the
events of the process.

Considering alone the process (Kj
n)n≥0 it is not a Markov chain since the conditional

probability depends also on Dn, but considered together with (Dn)n≥0, the whole process
is a non-homogeneous Markov chain, as it can be deduced from the previous discussion.

Let us now consider the stochastic process (Xn)n≥0, where Xn = Dn
n ; it represents

the fraction of distinct colors appeared in S with respect to all draws up to time n and
due to this definition Xn ∈ [0,1]. Now, taking the expression in (3.1) and using the same
approach described in Appendix A we can obtain the same form as in (A.2):

Xn+1 = Xn + 1
n + 1 [p(Dn, n) − Xn + ξn+1 − p(Dn, n)] . (3.3)

Using the conditional expectation in the (3.3) it is possible to write

E
5

Xn+1 − Xn

(n + 1)−1 |Fn

6
= E [p(Dn, n) − Xn + ξn+1 − p(Dn, n)|Fn] = p(Dn, n) − Xn;

this expression is an expected increment and we would like to have a formal proof that, in
order to asymptotically study the process (Xn)n≥0, it can be approximated by the solution
x(t) of an ODE of the form

ẋ = p(x) − x.

The stochastic approximation presented in Appendix A gives a formal proof of that and
we are going to show that the process considered satisfies the assumptions needed. This
allows us to state and prove the following result.

Proposition 1. Consider the process of PUT model and the normalizations of Dn and

Kj
n, namely Xn and Y j

n . Consider the function b̄(t) =
A

x̄(t)
ȳ(t)

B
, which is a piecewise linear

15



3 – Stochastic approximation of the PUT model

function such that x̄(t(n)) = Xn and ȳ(t(n)) = Y j
n , ∀n ≥ 0, with t(n) = qn−1

k=0
1

n+1 ; finally

consider bm(t) =
A

xm(t)
ym(t)

B
and bm(t) =

A
xm(t)
ym(t)

B
, m ∈ N, the solutions of the ODE system


ẋ(t) = f(x(t), y(t)) = x(t)(ν − ρ − ax(t))

ρ + ax(t) ;

ẏ(t) = g(x(t), y(t)) = −ax(t)y(t)
ρ + ax(t)

(3.4)

respectively ’starting’ and ’ending’ at t(m) with the condition b(t(m)) = b̄(t(m)).
Then, for any T > 0 it holds

lim
m→∞

sup
t∈[t(m),t(m)+T ]

||b̄(t) − bm(t)|| = 0 a.s. (3.5)

lim
m→∞

sup
t∈[t(m)−T,t(m)]

||b̄(t) − bm(t)|| = 0 a.s. (3.6)

Proof. First of all we observe that p(Dn, n) = N0+νDn
N0+ρn+aDn depends on Dn and also on n;

it is possible to substitute Dn with Xn very easily: p(Dn, n) = p(Xn, n) = N0/n+νXn
N0/n+ρ+aXn .

However for our purpose we need p not dependent on n, but it is useful to rewrite (3.3)
as follows:

Xn+1 = Xn + 1
n + 1

5
νXn

ρ + aXn
− Xn + ξn+1 − p(Xn, n) + Ô1(n)

6
(3.7)

where

Ô1(n) = p(Xn, n) − νXn

ρ + aXn
= N0(ρ + (a − ν)Xn)

(ρ + aXn)(N0 + n(ρ + aXn)) −→ 0, n → ∞.

Now the (3.7) can be rewritten in the form which is useful in order to apply stochastic
approximation:

Xn+1 = Xn + 1
n + 1

è
f(Xn) + M

(1)
n+1 + Ô1(n)

é
,

where f(Xn) = νXn

ρ + aXn
− Xn and M

(1)
n+1 = ξn+1 − p(Xn, n).

Following the same approach used for Dn, define Y j
n = Kj

n
n ∈ [0,1] ∀n and rewrite the

(3.2) in the following way, considering q(Xn, Y j
n , n) instead of q(Dn, Kj

n, n), just dividing
numerator and denominator by n:

Y j
n+1 = Y j

n + 1
n + 1

è
g(Xn, Y j

n ) + M
(2)
n+1 + Ô2(n)

é
where

g(Xn, Y j
n ) = ρY j

n

ρ + aXn
− Y j

n ,

16



3 – Stochastic approximation of the PUT model

M
(2)
n+1 = δn+1 − q(Xn, Y j

n , n),

Ô2(n) = q(Xn, Y j
n , n) − ρY j

n

ρ + aXn

and again it possible to show that Ô2(n) → 0 when n → ∞.
Clearly the second process depends on the first one, so they can be considered as a whole
process C

Xn+1
Y j
n+1

D
=
C
Xn

Y j
n

D
+ 1

n + 1

AC
f(Xn, Y j

n )
g(Xn, Y j

n )

D
+
C
M

(1)
n+1

M
(2)
n+1

D
+
C
Ô1(n)
Ô2(n)

DB
(3.8)

where f in fact depends only on the first variable.
We can now prove that the process described in (3.8) is of the form from equation (A.4),
Bn+1 = Bn + a(n)[h(Zn) + Mn+1 + Ô(n)], and satisfies all the hypothesis necessary for
Lemma 1.

1. The map h should be Lipschitz: in this case h(x, y) =
C
f(x, y)
g(x, y)

D
, h : [0,1]2 → R2,

can be proved to be a Lipschitz function in its domain. In fact since x and y should
reproduce the behavior of Xn and Y j

n it is sufficient to consider a domain in [0,1]2.
The functions f and g are fractional with polynomials at numerator and denominator
so h is Lipschitz on a compact domain which does not include its discontinuity points
(the zeros of denominator), which happens only when x = −ρ

a . It remains then to
check that −ρ

a /∈ [0,1], which is true either when a = ν + 1 or a = ν + 1 − ρ, with ρ

and ν positive integers.

2. The step-sizes { 1
n+1}n≥0 are positive scalars such that

∞Ø
n=0

1
n + 1 = ∞,

∞Ø
n=0

3 1
n + 1

42
< ∞

so they satisfy the requirement.

3. {Mn}, with Mn =
A

M
(1)
n

M
(2)
n

B
is a martingale difference sequence with respect to the

increasing family of σ-fields

Fn = σ(Xm, Y j
m : m ≤ n),

which is easy to check:

E[Mn+1|Fn] = E

CA
M

(1)
n+1

M
(2)
n+1

B
|Fn

D
= E

CA
ξn+1 − p(Xn, n)

δn+1 − q(Xn, Y j
n , n)

B
|Fn

D

=
A

p(Xn, n) − p(Xn, n)
q(Xn, Y j

n , n) − q(Xn, Y j
n , n)

B
=
A

0
0

B

17



3 – Stochastic approximation of the PUT model

a.s., n ≥ 0. Indeed for both ξn+1 and δn+1 the conditional probability distribution is
a Bernoulli of parameters p(Xn, n) and q(Xn, Y j

n , n), which are Fn-measurable and
also represent the conditional expected values.
{Mn} are also square-integrable:

E[||Mn+1||2|Fn] = E[ξ2
n+1 − 2ξn+1p(Xn, n) + p(Xn, n)2

+ δ2
n+1 − 2δn+1q(Xn, Y j

n , n) + q(Xn, Y j
n , n)2|Fn]

= p(Xn, n) − p(Xn, n)2 + q(Xn, Y j
n , n) − q(Xn, Y j

n , n)2 ≤ 2
≤ 2(1+ëXnë2 + ëY j

n ë2) = 2(1 + ëBnë2)

then K = 2.

4. It should hold supn ëBnë = supn

.....
A

Xn

Y j
n

B..... < ∞, which is true since Xn and Y j
n are

between 0 and 1 for definition.

5. The last condition is that Ô(n) =
A

Ô1(n)
Ô2(n)

B
−→ 0 when n → ∞ and it follows directly

from the construction of Ô1(n) and Ô2(n), as seen before.

This shows that Assumption 1 in Appendix A is satisfied so that the claim follows from
Lemma 1.

By studying the equilibria of the ODE system (3.4), which tracks the values of Xn and
Y j
n , it should be possible to give an approximation of the behavior of two processes when

n is large, and consequently of Dn and Kj
n.

3.2 Analysis of the approximating ODEs

The aim of this section is to study the equilibria of the ODE (3.4) with respect to the
possible values of ν and ρ.
At first let us focus on analyzing the equilibrium points of the first ODE of the system
(3.4) and their stability, which is autonomous and does not depend on y.

ẋ = x(ν − ρ − ax)
ρ + ax

= f(x). (3.9)

The zeros of f(x) are x = 0 and x = ν−ρ
a and the points both do not create problems with

the denominator, which is positive in both cases.
In order to determine their stability it is necessary to calculate the derivative of f(x):

f Í(x) = ρ(ν − ρ) − 2ρax − a2x2

(ρ + ax)2 ;

18



3 – Stochastic approximation of the PUT model

it results f Í(0) = ν−ρ
ρ and f Í(ν−ρ

a ) = ρ−ν
ν . In the first case x = 0 is an asymptotic

equilibrium point if and only if ν < ρ, while in the second one x = ν−ρ
a is an asymptotic

equilibrium point if and only if ν > ρ. In this last case it is convenient to check whether
ν−ρ
a ∈ [0,1]: indeed either if a = ν + 1 or a = ν + 1 − ρ the condition is satisfied when

ν ≥ ρ are positive integers.
What happens instead when ν = ρ?

f(x) = −ax2

ν + ax
f Í(x) = −2νax − a2x2

(ν + ax)2 ;

the only equilibrium point is x = 0 but it is not possible to determine its stability from
the first order derivative since it is equal to 0. It is necessary then to calculate the second
order derivative:

f ÍÍ(x) = −2aν2

(ν + ax)3 .

In order to check the stability we observe that f ÍÍ(0) = −2a
ν < 0 since either a = ν + 1 > 0

or a = ν − ρ + 1 = 1 > 0; therefore even in this particular case x = 0 is an asymptotically
stable point.
Summarizing:

• if ν ≤ ρ the only asymptotically stable point is x = 0, then for any initial condition
x0 ∈ [0,1] the solution of the Cauchy problem will converge to 0 (figures 3.1 and
3.2);

• if ν > ρ the only asymptotically stable point is x = ν−ρ
a ∈ (0,1], then for any initial

condition x0 ∈ [0,1] the solution of the Cauchy problem will converge to ν−ρ
a (figures

3.3 and 3.4).

Regarding the second ODE in (3.4), it is necessary to study the whole system since the
second equation depends also on x:

ẋ = x(ν − ρ − ax)
ρ + ax

;

ẏ = −axy

ρ + ax
.

(3.10)

The first equation has already been studied, so we can use the obtained results for finding
equilibria for both. First of all it is necessary to calculate the Jacobian matrix Jh(x, y), in
order to check that the eigenvalues in the equilibrium points are negative:

Jh(x, y) =
C
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

D
=


ρ(ν − ρ) − 2ρax − a2x2

(ρ + ax)2 0
−ay(ρ + ax) + a2xy

(ρ + ax)2
−ax

ρ + ax

 (3.11)
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3 – Stochastic approximation of the PUT model

Figure 3.1: Time plot of solutions of the ODE in (3.9) in the case ρ > ν: for any initial
condition x(0) ∈ [0,1], x(t) exponentially goes to 0.

Figure 3.2: Time plot of solutions of the ODE in (3.9) in the case ν = ρ: for any initial
condition x(0) ∈ [0,1], again x(t) goes to 0, but slower.
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3 – Stochastic approximation of the PUT model

Figure 3.3: Time plot of solutions of the ODE in (3.9) in the case ν > ρ: for any initial
condition x(0) ∈ (0,1], x(t) converges to ν−ρ

a ; in this case a = ν + 1 and ν−ρ
a = 1

3 .

Figure 3.4: Time plot of solutions of the ODE in (3.9) in the case ν > ρ: for any initial
condition x(0) ∈ (0,1], x(t) converges to ν−ρ

a ; in this case a = ν + 1 − ρ and ν−ρ
a = 2

3 .
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3 – Stochastic approximation of the PUT model

• When ν > ρ, in x = ν−ρ
a there is the only stable equilibrium for the first equation;

for this reason the only way to have also the second equation equal to zero is to set
y = 0. The stability is checked calculating the Jacobian in the equilibrium point and
observing that both eigenvalues are negative, since ρ < ν:

Jh

3
ν − ρ

a
,0
4

=
C
ρ−ν
ν 0
0 ρ−ν

ν

D
.

We can see the result from the phase plot in figure 3.5.

Figure 3.5: Phase plot in the case 5 = ν > ρ = 3 and a = ν + 1: for any initial condition
(x(0), y(0)) ∈ (0,1] × [0,1], the solution of the ODE in (3.10) converges to (ν−ρ

a = 1
3 ,0).

The red lines are some trajectories, which are linear.

• When ν ≤ ρ the only stable equilibrium for the first equation is when x = 0, which
leads to an equilibrium also for the second one, for any value of y. The Jacobian
gives only one negative eigenvalue, while the other is equal to zero:

Jh (0, y) =
C
ν−ρ
ρ 0

−ay
ρ 0

D
.

For this reason it is expected that the asymptotic value of y(t) depends on the
initial condition (x0, y0); therefore it is necessary to determine the equilibrium value
as a function of the initial point. In order to determine the trajectories observe that
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3 – Stochastic approximation of the PUT model

substituting x
ρ+ax in the second equation using the first one, that the latter ODE

can be rewritten as
ẏ = −ay

ẋ

ν − ρ − ax

from which we obtain
ẏ

ẋ
= dy

dx
= −ay

ν − ρ − ax
. (3.12)

This is a Cauchy problem where the result is a function y(x) and the initial condition
is y(x0) = y0.
It follows that the solution for the trajectory is y(x) = y0(ν − ρ − ax)

ν − ρ − ax0
. It is inter-

esting to notice that this trajectory is also valid for the case ν > ρ and it is easy to
check that y(x = ν−ρ

a ) = 0 ∀(x0, y0) ∈ [0,1] × [0,1], as found before.
When ν ≤ ρ the value of x converges to 0, therefore the asymptotic value of y is
given by y(x = 0) = y0(ν − ρ)

ν − ρ − ax0
. When ν = ρ then y(x = 0) = 0, otherwise the

numerator is negative and we need to verify that y(x = 0) ∈ [0,1].
We should check that y0(ν−ρ)

ν−ρ−ax0
∈ [0,1] and since we are considering the case ν < ρ

the numerator is negative and it should be larger (smaller absolute value) than the
denominator:

y0(ν − ρ) > ν − ρ − ax0 ⇐⇒

y0 ≤ 1 + a

ρ − ν
x0. (3.13)

This condition is always true when a ≥ 0, but in the case where a = ν+1−ρ < 0 there
are some initial conditions that lead to an asymptotic value of y which is greater
than 1: we will see later that for our purpose the initial conditions, which are at
sufficiently large times, cannot be considered among all values (x0, y0) ∈ [0,1] × [0,1]
and therefore this condition will hold. The phase plots in figures 3.6, 3.7 and 3.8
show three different cases for this result.

The analysis and discussion of this section can be summarized in Proposition 2.

Proposition 2. Consider the dynamical system described by the ODE (3.4), then:

(i) if ν > ρ, E = {ν−ρ
a } × {0} is the set of equilibria of the system and ∀(x(0), y(0)) ∈

[0,1]2 the solution converges to the point
1
ν−ρ
a ,0

2
;

(ii) if ν = ρ, E = {0}×{0} is the set of equilibria of the system and ∀(x(0), y(0)) ∈ [0,1]2
the solution converges to the point (0,0);

(iii) if ν < ρ, given an initial condition (x(0), y(0)) ∈ [0,1]2 the solution converges to3
0,

y(0)(ν − ρ)
ν − ρ − ax(0)

4
, therefore E = {0} × [0, ρ − ν] is the set of equilibria of the

system; in order to have y(t) ∈ [0,1] ∀t ≥ 0 the initial condition should satisfy
y(0) ≤ 1 + a

ρ − ν
x(0), which is always true only in the model where a = ν + 1.
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3 – Stochastic approximation of the PUT model

Figure 3.6: Phase plot in the case ν = ρ = 5: for any initial condition (x(0), y(0)) ∈
[0,1]× [0,1] the solution of the ODE converges to (0,0). The red lines are some trajectories,
which are linear.

Figure 3.7: Phase plot in the case 3 = ν < ρ = 5 and a = ν + 1 = 4 > 0: based on the
initial condition (x(0), y(0)) ∈ [0,1]× [0,1] the solution of the ODE converges to a different
value, where x = 0 and y ∈ [0,1]. The red lines are some trajectories, which are linear.
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Figure 3.8: Phase plot in the case 3 = ν < ρ = 5 and a = ν − ρ + 1 = −1: based on the
initial condition (x(0), y(0)) ∈ [0,1]× [0,1] the solution of the ODE converges to a different
value, where x = 0 and y ∈ [0,1] only when the initial condition is in the yellow region.
We will show that for our purpose the initial condition will be in that area. The red lines
are some trajectories, which are linear.
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Chapter 4

Main results

In this chapter, we build on the results obtained in Chapter 3 in order to find an approx-
imation for the asymptotic behavior of the number of distinct elements Dn and on the
frequency distribution Kj

n (j >> 1). After this, we generalize these results by studying
the behavior of the variable D

(k)
n , counting the distinct colors drawn at least k times, for

arbitrary k. In the last section, there is a study with the aim of maximizing D
(2)
n and D

(3)
n ,

in the case ν > ρ and the sum ν + ρ is fixed.

4.1 Heaps’ law

Due to the results in Chapter 3 it is now possible to describe the asymptotic behavior of
the process (Dn)n≥0.

Theorem 1. Consider the process of PUT’s model with parameters ν, ρ ∈ N. The statistic
(Dn)n≥0, which counts the number of distinct colors drawn up to each time n, has the
following asymptotic behavior:

(i) when ν > ρ

Dn ∼ ν − ρ

a
n, as n → ∞;

(ii) when ν < ρ

Dn ¨ n
ν
ρ as n → ∞;

(iii) when ν = ρ

Dn ¨ ν

a

n

log(n) as n → ∞.

Proof. Proposition 1 states that for very large times the function that interpolates the
process Xn = Dn

n is approximated by x(t), where x(t) is the solution of the Cauchy
problem described by (3.9) with an initial condition at time t(m), m >> 1, such that
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4 – Main results

x(t(m)) = Xm. Moreover Proposition 2 states that, for any initial condition in [0,1], x(t)
converges to a fixed equilibrium point, therefore we can just consider

Xn = x̄(t(n)) ∼ x(t(n)), n → ∞

It is very important to notice that, as n → ∞, t(n) = qn−1
k=0

1
k+1 ∼ log(n), so Xn ∼

x(log(n)) and
Dn = nXn ∼ nx(log(n)).

Now we can use results from the analysis of ODE’s convergence, from which we can infer
the behavior of Dn when n is large. We distinguish again three cases based on the values
of ρ and ν:

• When ν > ρ the asymptotic equilibrium point for the ODE in (3.9) is x = ν−ρ
a which

means that, for large values of t, x(t) ∼ ν−ρ
a . Then

Dn ∼ ν − ρ

a
n,

which means that the number of distinct colors drawn increases linearly with respect
to time.

• When ν < ρ, since the asymptotic equilibrium is in x = 0, it is convenient to use the
McLaurin series to study how fast x(t) goes to zero. Since f(x) = f(0)+f Í(0)x+o(x),
as x → 0, we solve then the ODE

˙̃x = f(0) + f Í(0)x̃ = ν − ρ

ρ
x̃, (4.1)

where x̃ is just to indicate that we are not really calculating x(t) but an approxima-
tion when it is close to 0. The general solution is

x̃(t) = x̃(0)e
ν−ρ
ρ
t
.

Therefore, we may write
x(t) ¨ e

!
ν
ρ

−1
"
t

where the symbol "¨" has been given the following meaning:

c1 ≤ lim
t→+∞

x(t)

e
!
ν
ρ

−1
"
t

≤ c2

where c1 and c2 are positive constants. We have then an expression for the asymptotic
behavior of Dn:

Dn ¨ ne
!
ν
ρ

−1
"

log(n) = n
ν
ρ

The behavior in this case is sub-linear, which is exactly what Heaps’ law states.
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• When ν = ρ the equilibrium is again in x = 0; we follow the same approach as the
previous case but now the McLaurin series is until second order since f Í(0) = 0:

f(x) = f(0) + f Í(0)x + f ÍÍ(0)x2

2 + o(x2), x → 0.

The approximating ODE is

˙̃x = f(0) + f Í(0)x̃ + f ÍÍ(0)x̃2

2 = −a

ν
x̃2

whose solution is x̃(t) = ν

at + c
for some constant c ∈ R. It results then x(t) ¨ ν

at
for large values of t. In this case we obtain

Dn ¨ νn

a log(n) ;

the behavior is slower than the linear case, but faster than the case ν < ρ, as one
could expect.

4.2 Zipf’s law

Our purpose is now to show that the tail of the frequency-rank distribution of the colors
drawn from the urn, i.e. when j is large, follows Zipf’s law with α = ρ

ν .
We start then considering the j-th distinct color ever occurred in S, j >> 1; we start from
the following approximation, obtained with the same considerations already done for Xn:

Kj
n

n
= Y j

n = ȳ(t(n)) ∼ y(log n),

and then we want to describe it as a function of j (and possibly n and Dn). In order to
do that it is necessary to define the random variable

Nj = min{n ≥ 0 : Dn = j},

i.e. the time of first appearance of j-th color; using this definition it is possible to define
an initial condition for the ODE solutions x(t) and y(t) for large times (the t(m) of the
Proposition 1). From the definition of Nj it follows

XNj =
DNj

Nj
= j

Nj
;

Y j
Nj

=
Kj
Nj

Nj
= 1

Nj
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and observing XNj = x(t(Nj)) ∼ x(log Nj) and Y j
Nj

= y(t(Nj)) ∼ y(log Nj) it is possible
to set the initial conditions x(log Nj) = j

Nj
;

y(log Nj) = 1
Nj

.
(4.2)

Now we can analyze the three cases depending on the respective values of ν and ρ. It
is important to remember that those initial conditions are considered for j large, which
means also the starting time Nj large.

Case ν > ρ.

From the previous section we know that Dn ∼ ν−ρ
a n. By the definition of Nj , it results

j = DNj ∼ ν−ρ
a Nj and consequently we have that

Nj ∼ a

ν − ρ
j

When y → 0, i.e. it converges to the equilibrium, the Taylor series for g(x, y) is

g(x, y) = g

3
ν − ρ

a
,0
4

+ ∇g

3
ν − ρ

a
,0
4

·
C
x

y

D
+ o

A.....xy
.....
B

where ∇g is the second row of Jh in (3.11). Considering now x̃(t) and ỹ(t), approximations
of x(t) and y(t) when they are close to the equilibrium point (ν−ρ

a ,0), we need to solve

˙̃y =
è
0 ρ−ν

ν

é
·
C
x̃

ỹ

D
= ρ − ν

ν
ỹ,

whose solution is
ỹ(t) = ỹ(0)e( ρν−1)t.

Using initial condition from (4.2), intended for y but suitable also for its approximation
ỹ, we can rewrite

ỹ(t) = 1
Nj

e( ρν−1)(t−log(Nj))

It follows that, for sufficiently large n and j,

Y j
n ∼ y(log(n)) ∼ ỹ(log(n)) = n

ρ
ν

nN
ρ
ν
j

and then, substituting Nj with a
ν−ρj and n with a

ν−ρDn, we obtain the expression

Y j
n ∼

1
a

ν−ρ

2 ρ
ν D

ρ
ν
n

n
1

a
ν−ρ

2 ρ
ν j

ρ
ν

= 1
n

3
j

Dn

4− ρ
ν

∝ j− ρ
ν . (4.3)
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Case ν < ρ.

Using again the results from Section 4.1 and the definition of Nj we want to solve the same
ODE for x̃(t) as the one in (4.1), but with the initial condition for x in (4.2), obtaining

x̃(t) = j

Nj
e
!
ν
ρ

−1
"

(t−log(Nj)),

which leads to
Dn ∼ nx(log n) ∼ nx̃(log n) = j

N
ν
ρ

j

n
ν
ρ .

Therefore it results Nj ∼
1

j
Dn

2 ρ
ν n. Moreover, we know that y(t) converges to the value

y0(ν−ρ)
ν−ρ−ax0

, and using initial conditions from (4.2) we obtain

Y j
n ∼

1
Nj

(ν − ρ)
ν − ρ − a j

Nj

= 1
Nj − a

ν−ρj
∼ 1

j
ρ
ν D

− ρ
ν

n n − a
ν−ρj

= j− ρ
ν

D
− ρ
ν

n n − a
ν−ρj1− ρ

ν

.

As j grows large the term at denominator a
ν−ρj1− ρ

ν goes to zero and becomes neglectable

since c1 ≤ D
− ρ
ν

n n ≤ c2 for c1, c2 positive constants, therefore we can conclude again that

Y j
n ∼ 1

n

3
j

Dn

4− ρ
ν

∝ j− ρ
ν . (4.4)

Special case a = ν + 1 − ρ < 0

Previously, in the analysis of the ODEs, it was stated that only some initial condition in
[0,1] × [0,1] led to an equilibrium value for y in the range [0,1]. Considering now initial
conditions from (4.2) it can be proved that inequality in (3.13) is always verified even
when a = ν − ρ + 1 < 0.

y0 ≤ 1 + a

ρ − ν
x0

1
Nj

≤ 1 + ν − ρ + 1
ρ − ν

j

Nj
;

ρ − ν ≤ Nj(ρ − ν) + (ν − ρ + 1)j;
0 ≤ (Nj − 1)(ρ − ν) + (ν − ρ + 1)j;

(ρ − ν − 1)j ≤ Nj(ρ − ν);

1 − 1
ρ − ν

≤ Nj

j
∼ j

ρ
ν

−1D
− ρ
ν

n n

which is true for j sufficiently large, since D
− ρ
ν

n n is bounded (Dn ¨ n
ν
ρ ).
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Case ν = ρ.

In this case both x(t) and y(t) converge to 0. The asymptotic behavior for the former has
already been calculated for Dn but without initial condition, while for the latter we need
to proceed in the following way. Since we are considering the ODE ẏ = g(x, y), in order to
get the Taylor approximation we need again to calculate the ∇g(x, y). It corresponds to
the second row of Jh(x, y) (3.11), calculated in (0,0): however it results to be null in both
components, requiring the use of the Hessian matrix of g:

Hg(x, y)|(0,0) =


−2a3xy

(ν + ax)3 + 2a2x

(ν + ax)2
a2x

(ν + ax)2 + −a

ν + ax
a2x

(ν + ax)2 + −a

ν + ax
0


|(0,0)

=

 0 −a

ν−a

ν
0

 .

We now have to consider Taylor series of second order

g(x, y) = g (0,0) + ∇g (0,0) ·
C
x

y

D
+ 1

2

C
x

y

DT
Hg(0,0)

C
x

y

D
+ o

.....xy
.....

2


and solve

˙̃y = 1
2

C
x

y

DT  0 −a

ν−a

ν
0

Cx

y

D
= −a

ν
x̃ỹ

with initial conditions from (4.2). Solving again ˙̃x = −a
ν x̃2 but also with conditions from

(4.2) it becomes
x̃(t) = ν

at + ν
Nj
j − a log(Nj)

and it follows that
ỹ(t) = 1

j

ν

at + ν
Nj
j − a log(Nj)

= 1
j

x̃(t).

The value of Dn ∼ nx̃(log(n)) is

Dn ∼ νn

a log(n) + ν
Nj
j − a log(Nj)

(4.5)

We can write then

Y j
n ∼ y(log(n)) ∼ ỹ(log(n)) = 1

j
x̃(log(n)) ∼ 1

j

Dn

n

obtaining again

Y j
n ∼ j−1

D−1
n n

= 1
n

3
j

Dn

4− ρ
ν

∝ j− ρ
ν . (4.6)

The analysis and discussion of this section gives a proof to the following theorem.
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Theorem 2. Consider the process of PUT’s model with parameters ν, ρ ∈ N. The statistic
(Kj

n)n≥0, which counts the number of balls of the j-th distinct color ever drawn up to time
n, j >> 1, has the following asymptotic behavior:

Kj
n = nY j

n ∼
3

j

Dn

4− ρ
ν

∝ j− ρ
ν , as n, j → ∞.

Remarks and normalization

In every case we found out that the relative frequency of j-th color is proportional to j− ρ
ν .

In the definition, j refers to the order at which a color is drawn for the first time with
respect to the others. Indeed it can be observed in the aftermath that Y j

n is decreasing
in j, therefore j can also be considered as the rank of the color. This result suggests an
important, maybe trivial, observation for the model: the sooner a color appears in the
sequence, the more likely it is to be drawn with respect to the ones that appear later. This
is a consequence of the richer-gets-richer mechanism.

At time n the maximum value that can be assumed by j is Dn (the lowest rank); then
it should be true that qDn

j=1 Y j
n = 1. In order to check that we should see that the sumqDn

j=1 j− ρ
ν is equal to the normalization factor found in expressions (4.3), (4.4) and (4.6),

i.e. (D− ρ
ν

n n)−1. We will see that the results are not exactly the same but not completely
different either; in fact the approximations considered only j large and the model is not
reliable for principal ranks.

Let us define

HDn,
ρ
ν

=
DnØ
j=1

1
j
ρ
ν

the generalized harmonic number of order Dn with exponent ρ
ν . We should have

Y j
n ∼ j− ρ

ν

HDn,
ρ
ν

(4.7)

and therefore we have to check that normalization factors are at least similar to HDn,
ρ
ν
.

• When ν > ρ and n is large we have

HDn,
ρ
ν

∼
Ú Dn

1
j− ρ

ν dj =
C

j1− ρ
ν

1 − ρ
ν

DDn
1

= ν

ν − ρ

3
D

1− ρ
ν

n − 1
4

∼ ν

ν − ρ
D

1− ρ
ν

n ∼ ν

a
D

− ρ
ν

n n

which is similar to what we expect but not the same. Observe that, as n → ∞ (and
so Dn), Y j

n goes to zero for each j: it is an expected behavior due a larger triggering
with respect to reinforcement.

33



4 – Main results

• When ν < ρ and n is large we have

HDn,
ρ
ν

∼
Ú Dn

1
j− ρ

ν dj =
C

j1− ρ
ν

1 − ρ
ν

DDn
1

= ν

ν − ρ

3
D

1− ρ
ν

n − 1
4

∼ ν

ρ − ν
.

Here the normalization factor converges to a finite value and therefore also the
frequencies ∀j: the effect of a larger reinforcement than triggering is highlighted by
this behavior.

• When ν = ρ and n is large we have

HDn,1 ∼
Ú Dn

1
j−1dj = [log j]Dn1 = log(Dn);

now we should check, comparing to (4.6), that log(Dn) ∼ D−1
n n. Since Dn ¨ ν

a
n

log(n)
it results

log(Dn) ¨ log
3

ν

a

4
+ log(n) − log (log(n)) ∼ log(n)

and
D−1
n n ¨ a

ν
log(n) ¨ log(n).

It follows that log(Dn) ¨ D−1
n n, which means that the inverse of normalization

factor has a logarithmic behavior. Here again the frequency of j-th element goes to
zero as n grows large, but slower than the case ν > ρ, since there is a logarithmic
term at denominator, instead of sub-linear.

4.3 Distinct colors with at least k draws

We will see in numerical simulations that, especially in the model with a = ν + 1 − ρ, in
which the copies of a color are inserted only starting from the second draw, there are a lot
of colors drawn only once. These elements can be interpreted as unsuccessful innovations,
whose discovery did not lead to further attention from the agent. For this reason it was
developed the idea of minimizing the number of elements drawn only once or, better,
maximizing the number of distinct elements drawn at least 2, 3 or more times.

Therefore we can consider the stochastic processes (D(k)
n )n≥0, k = 1,2, . . . , that count

the number of distinct colors drawn at least k times: these are generalizations of (Dn)n≥0 =
(D(1)

n )n≥0, the process that represents the number of colors drawn at least once. At first
we are interested in observing how the two processes (D(2)

n )n≥0 and (D(3)
n )n≥0 behave with

large n, and after that we will give a recursion for D
(k)
n as a fraction of D

(k−1)
n .

Let us consider now the process (D(2)
n )n≥0: it starts with D

(2)
0 = 0 and then it increases

by one every time a ball in the urn, whose color has been drawn only once, is drawn again.
The number of distinct colors drawn only once is given by the difference between the ones
drawn at least once, Dn, minus the once drawn at least twice, D

(2)
n ; for each of these colors
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there is only one ball in the urn, since we are considering the model in which after the
first draw there is no reinforcement and only the drawn ball is replaced in the urn. We can
then define the conditional probability that the number of elements drawn at least twice
increases by one with the next draw:

p2(Dn, D(2)
n , n) = P (D(2)

n+1 = D(2)
n + 1|Dn, D(2)

n , n) = Dn − D
(2)
n

N0 + ρn + aDn
;

Regarding D
(3)
n we can use the same approach, reminding that it increases by one

every time a color with exactly two draws is drawn again. This time we have to take into
account that, with the second replacement, we introduce ρ copies of the same color into
the urn, which means that every color with exactly two draws has ρ + 1 copies in the urn.
The conditional probability that D

(3)
n increases by one is

p3(Dn, D(2)
n , D(3)

n , n) = P (D(3)
n+1 = D(3)

n + 1|Dn, D(2)
n , D(3)

n , n) = (D(2)
n − D

(3)
n )(ρ + 1)

N0 + ρn + aDn
.

Notice that the whole process
1è

Dn, D
(2)
n , D

(3)
n

é2
n≥0

is a again a non-homogeneous discrete
time Markov chain.

The idea now is to use the stochastic approximation again, but omitting all the details
and formal proofs used before, summarized by the following steps for obtaining the ODE
that track the process:

• define X
(1)
n = Dn

n , X
(2)
n = D

(2)
n
n , X

(3)
n = D

(3)
n
n ;

• rewrite p2 and p3 as functions of X
(1)
n , X

(2)
n , X

(3)
n and eliminate the term N0

n , ne-
glectable when n is large:

p2(X(1)
n , X(2)

n , n) = X
(1)
n − X

(2)
n

N0/n + ρ + aX1
n

∼ X
(1)
n − X

(2)
n

ρ + aX1
n

;

p3(X(1)
n , X(2)

n , X(3)
n , n) = (X(2)

n − X
(3)
n )(ρ + 1)

N0/n + ρn + aX
(1)
n

∼ (X(2)
n − X

(3)
n )(ρ + 1)

ρ + aX
(1)
n

;

• consider the corresponding continuous functions x1(t), x2(t) and x3(t) and define
the ODE system, where each equation is of the form ẋi = pi(x1, xi−1, xi) − xi and
the first one is the same studied for Dn alone:

ẋ1 = νx1
ρ + ax1

− x1 = f1(x1)

ẋ2 = x1 − x2
ρ + ax1

− x2 = f2(x1, x2)

ẋ3 = (x2 − x3)(ρ + 1)
ρ + ax1

− x3 = f3(x1, x2, x3).

(4.8)
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ODE analysis

In order to study the stability points it is defined the Jacobian matrix of the right term
of the ODE system (4.8):

J[f1 f2 f3](x1, x2, x3) =



ν(ρ + ax1) − aνx1
(ρ + ax1)2 − 1 0 0

ρ + ax2
(ρ + ax1)2 − 1

ρ + ax1
− 1 0

−a(x2 − x3)(ρ + 1)
(ρ + ax1)2

ρ + 1
ρ + ax1

− ρ + 1
ρ + ax1

− 1

 (4.9)

The different interesting cases, ν > ρ and ν < ρ, are then analyzed.

• When ν > ρ it has already been found the equilibrium x1 = ν−ρ
a and, substituting

in (4.8), the resulting equilibrium point is
x1 = ν−ρ

a ;
x2 = ν−ρ

a · 1
ν+1 ;

x3 = ν−ρ
a · 1

ν+1 · 1+ρ
1+ρ+ν .

(4.10)

In order to check the stability of the point we substitute these values in the Jacobian
(4.9):

J[f1 f2 f3]
1
ν−ρ
a , ν−ρ

a
1

ν+1 , ν−ρ
a

1
ν+1

1+ρ
1+ρ+ν

2
=


ρ
ν − 1 0 0
ρ

ν(ν+1) − 1
ν − 1 0

(ρ+1)(ρ−ν)
ν(ν+1)(ν+1+ρ)

ρ+1
ν −ρ+1

ν − 1

 .

The eigenvalues, represented by the elements on diagonal of the matrix, are all neg-
ative, therefore the equilibrium is asymptotically stable and for any initial condition
the solution converges to the point in (4.10).
The three quantities Dn, D2

n and D3
n are obtained with the usual approach, knowing

already that Dn ∼ ν−ρ
a n:

D(2)
n = nX(2)

n ∼ nx2(log(n)) ∼ ν − ρ

a
· 1

ν + 1n ∼ 1
ν + 1Dn;

D(3)
n = nX(3)

n ∼ nx3(log(n)) ∼ ν − ρ

a
· 1

ν + 1 · 1 + ρ

1 + ρ + ν
n

∼ 1 + ρ

1 + ρ + ν
D(2)
n ∼ 1

ν + 1 · 1 + ρ

1 + ρ + ν
Dn.

• When ν < ρ, it has already been found the equilibrium x1 = 0, with asymptotic
behavior, as t → ∞,

x1(t) ¨ e
!
ν
ρ

−1
"
t
.
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x1 = 0 implies also x2 = x3 = 0, which substituted in (4.8) give the equilibrium
point. Checking the stability with the Jacobian matrix:

J[f1 f2 f3] (0,0,0) =


ν
ρ − 1 0 0

1
ρ −1

ρ − 1 0
0 1

ρ + 1 −1
ρ − 2

 .

Again, on the diagonal there are negative eigenvalues. It confirms that, for any initial
condition, the solution of ODEs in (4.8) converges to (0,0,0).
In order to study the asymptotic behavior of x2(t) and x3(t) we introduce again
x̃1, x̃2 and x̃3 that approximate the function when their values are close to the
equilibrium point. The system to solve is

 ˙̃x1
˙̃x2
˙̃x3

 = J[f1 f2 f3](0,0,0) ·

x̃1
x̃2
x̃3


that becomes 

˙̃x1 =
1
ν
ρ − 1

2
x̃1;

˙̃x2 = 1
ρ x̃1 −

1
1
ρ + 1

2
x̃2;

˙̃x3 =
1

1
ρ + 1

2
x̃2 −

1
1
ρ + 2

2
x̃3;

the generic solutions, written in a convenient recursive and approximated form, are


x̃1(t) = c1e

!
ν
ρ

−1
"
t;

x̃2(t) = 1
ν+1 x̃1(t) + c2e

−
!

1
ρ

+1
"
t ∼ 1

ν+1 x̃1(t);
x̃3(t) ∼ ρ+1

ρ+1+ν x̃2(t) + c3e
−
!

1
ρ

+2
"
t ∼ ρ+1

ρ+1+ν x̃2(t)

where c1, c2 and c3 are constants depending on the initial condition.
Again here we observe that the fraction of elements drawn at least two or three times
with respect to all the distinct elements, is the same found for ν > ρ:x2(t) ∼ 1

ν+1x1(t)
x3(t) ∼ 1+ρ

1+ρ+ν · x2(t) ∼ 1+ρ
1+ρ+ν · 1

ν+1 · x1(t)
(4.11)

as t → ∞.

In the next section we are going to find a formula for D
(k)
n ∀k ≥ 1, focusing on the case

ν > ρ.
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General case k ≥ 1 when ν > ρ

From now on we decide to focus on the case ν > ρ, since the behavior of Dn, D
(2)
n and

D
(3)
n is more predictable than the other case, in which everything becomes neglectable

as n grows large. We want now to generalize the expression for the number of distinct
elements drawn at least k times D

(k)
n . The aim is to find a recursion that gives the fraction

of elements with k draws minimum with respect to the ones drawn at least k − 1 times,
as the following theorem states.

Theorem 3. Consider the process of PUT’s model with parameters ν, ρ ∈ N, in the case
ν > ρ and a = ν + 1 − ρ. The statistic (D(k)

n )n≥0, which counts the number of distinct
colors with at least k draws up to time n, is approximated by the recursion

D(k)
n ∼ (k − 2)ρ + 1

(k − 2)ρ + ν + 1D(k−1)
n , as n → ∞ (4.12)

and, considering D
(1)
n = Dn ∼ ν−ρ

a n, it has the non-recursive formula:

D(k)
n ∼ Dn

kÙ
i=2

(i − 2)ρ + 1
(i − 2)ρ + ν + 1 ∼ ν − ρ

a
n

kÙ
i=2

(i − 2)ρ + 1
(i − 2)ρ + ν + 1 , as n → ∞. (4.13)

Proof. The conditional probability that D
(k)
n increases by 1 at time n is

P (D(k)
n+1 = D(k)

n + 1|Dn, D(k−1)
n , D(k)

n , n) = (D(k−1)
n − D

(k)
n )((k − 2)ρ + 1)

N0 + ρn + aDn
;

indeed at the numerator there is the number of balls of colors with exactly k − 1 draws,
replaced with ρ copies only from the second draw, i.e. k − 2 times. Defining X

(k)
n = D

(k)
n
n ,

X
(k−1)
n = D

(k−1)
n
n and their respective approximating functions xk(t) and xk−1(t), the

corresponding ODE for X
(k)
n with the stochastic approximation is

ẋk = (xk−1 − xk)((k − 2)ρ + 1)
ρ + ax1

− xk = fk(x1, xk−1, xk). (4.14)

The asymptotic equilibrium point for x1 is always ν−ρ
a . Supposing to have an asymptotic

equilibrium also for xk−1, it results that, in order to have an equilibrium for the ODE
(4.14),

xk = (k − 2)ρ + 1
(k − 1)ρ + 1 + ax1

xk−1 = (k − 2)ρ + 1
(k − 2)ρ + ν + 1xk−1.

The stability is checked just calculating the partial derivative of fk in (4.14) with respect
to xk . It just remains to check that the derivative is negative in the equilibrium point. In
fact, since fk does not depend on xm with m > k, the resulting Jacobian matrix is lower
triangular and the elements on the diagonal are eigenvalues:

∂fk
∂xk

= −((k − 2)ρ + 1)
ρ + ax1

− 1 = −((k − 2)ρ + 1)
ν

− 1 < 0.
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We can infer then that

D(k)
n = nX(k)

n ∼ nxk(log(n)) ∼ n
(k − 2)ρ + 1

(k − 2)ρ + ν + 1xk−1(log(n))

∼ n
(k − 2)ρ + 1

(k − 2)ρ + ν + 1X(k−1)
n ∼ (k − 2)ρ + 1

(k − 2)ρ + ν + 1D(k−1)
n .

Since, when ν > ρ, Dn ∼ ν−ρ
a we obtain also the full expression in (4.13).

4.4 Optimization

In PUT’s model, the success of a color is clearly defined by the number of times it is drawn;
in a broad view, for example considering an ecosystem of start-ups, it can be useful to find
a way to measure the global success of the model. An idea is then to consider D

(k)
n , k ≥ 2,

again in the model with a = ν + 1 − ρ and ν > ρ. It is expected that the larger D
(k)
n is,

the better PUT generates "successful" colors.
The aim is now to optimize D

(2)
n , since the crucial point for a color is to be drawn for a

second time, because with the first one there is no replacement of further copies. Moreover
the first draw can be interpreted as the first discovery of an innovation, while the second
one determines its ability to receive attention again. It will also be analyzed the case for
D

(3)
n , while there will be only a general consideration for the cases with k > 3.

Considering D
(2)
n , the objective is

max
ν>ρ

D(2)
n ∼ max

ν>ρ

1
ν + 1Dn ∼ max

ν>ρ

1
ν + 1 · ν − ρ

ν − ρ + 1n, ν, ρ ∈ N.

Since n is just a measure of time, the real optimization problem is

max
ν>ρ

ν − ρ

(ν + 1)(ν − ρ + 1) , ν, ρ ∈ N,

whose solution, without any further constraints, can be found empirically and it is ν = 1,
ρ = 0 that give an optimum of 1

4 . This is not a very interesting result, since the colors
do not receive reinforcement and the richer-gets-richer mechanism is not reproduced. We
decide then to introduce another constraint, in order give a fixed value for the sum ν + ρ.

We would like to define some sort of budget C to use, determining a trade-off between
reinforcement and triggering. The optimization problem becomes, given C ∈ Z+,

max
ν>ρ

ν+ρ=C

ν − ρ

(ν + 1)(ν − ρ + 1) , ν, ρ ∈ N,

which becomes, substituting ρ = C − ν,

max
C
2 <ν<C

2ν − C

(ν + 1)(2ν − C + 1) = max
C
2 <ν<C

obj(2)
C (ν), ν ∈ Z+. (4.15)
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The continuous optimal point, as a function of C, is easy to find analytically and it
corresponds to

ν̃(2)
max(C) = 1

2
1
C +

√
C + 2

2
; (4.16)

The integer solution is obtained by checking the values of floor and ceiling and choosing
the one that gives the maximum value for the objective, as the following corollary states.

Corollary 1. Consider the process of PUT’s model with parameters ν, ρ ∈ N, when ν > ρ

and a = ν +1−ρ. Fixing ν +ρ = C ∈ Z+, the statistic (D(2)
n )n≥0, which counts the number

of distinct colors with at least two draws up to time n, is maximized by ν and ρ such that

ν(2)
max(C) = arg max{obj(2)

C

1ê
ν̃(2)

max(C)
ë2

, obj(2)
C

1ì
ν̃(2)

max(C)
í2

}. (4.17)

and ρ
(2)
max(C) = C − ν

(2)
max(C), where ν̃

(2)
max(C) is the one in (4.16) and obj

(2)
C is defined in

(4.15).

The plots of of obj(2)
C (ν) for two different values of C are shown in figures 4.1a and

4.1b.

(a) ν(2)
max(8) = 6. (b) ν(2)

max(20) = 12.

Figure 4.1: Plots of obj(2)
C (ν) when C = 8 and C = 20: the purple stars represent respec-

tively the global maxima with continuous ν: ν̃
(2)
max(8) = 5.58 and ν̃

(2)
max(20) = 12.35; the

colored dots are the closest integer points and the red one is the solution to the integer
optimization problems: ν

(2)
max(8) = 6 and ν

(2)
max(20) = 12.
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The same approach can be used now for D
(3)
n in order to calculate the maximum

fraction, with respect to n, of elements with 3 or more draws. The optimization problem
to solve is

max
ν>ρ

ν+ρ=C

(ν − ρ)(ρ + 1)
(ν + 1)(ν − ρ + 1)(ν + ρ + 1) , ν, ρ ∈ N;

and, with the substitution ρ = C − ν, it becomes

max
C
2 <ν<C

(2ν − C)(C − ν + 1)
(ν + 1)(2ν − C + 1)(C + 1) = max

C
2 <ν<C

obj(3)
C (ν), ν ∈ Z+ (4.18)

In this case the continuous optimal point is

ν̃(3)
max(C) = (C + 2)(2C +

ð
2(C + 3)) − 2

4C + 10 (4.19)

The integer solution is obtained again by checking the values of floor and ceiling and
choosing the one that gives the maximum value for the objective.

Corollary 2. Consider the process of PUT’s model with parameters ν, ρ ∈ N, when ν > ρ

and a = ν +1−ρ. Fixing ν +ρ = C ∈ Z+, the statistic (D(3)
n )n≥0, which counts the number

of distinct colors with at least 3 draws up to time n, is maximized by ν and ρ such that

ν(3)
max(C) = arg max{obj(3)

C

1ê
ν̃(3)

max(C)
ë2

, obj(3)
C

1ì
ν̃(3)

max(C)
í2

}. (4.20)

and ρ
(3)
max(C) = C − ν

(3)
max(C), where ν̃

(3)
max(C) is the one in (4.19) and obj

(3)
C is defined in

(4.18).

The plots of obj(3)
C (ν) for the same values of C as figure 4.1 are shown in figures 4.2a

and 4.2b.
The analysis could continue for D

(k)
n , k ≥ 4, but it becomes less interesting. We already

observed that the optimal value for ν decreases from the case k = 2 to the case k = 3.
This pattern is due to the general term of the product in (4.13): in fact, from k − 1 to k,
the objective to maximize is multiplied by (k−2)ρ+1

(k−2)ρ+1+ν . This value is penalized by large ν

and it is increased by large ρ, bringing the the optimal values of the two parameters closer
and closer to each other.
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4 – Main results

(a) ν(3)
max(8) = 5. (b) ν(3)

max(20) = 11.

Figure 4.2: Plots of obj(3)
C (ν) when C = 8 and C = 20: the purple stars represent respec-

tively the global maxima with continuous ν: ν̃
(3)
max(8) = 4.88 and ν̃

(3)
max(20) = 11.41; the red

and blue dots are the closest integer points and the red one is the solution to the integer
optimization problems: ν

(3)
max(8) = 5 and ν

(3)
max(20) = 11. Moreover here we can observe

that the shape of the objective functions is more concentrated with a peak on smaller
values of ν, closer to ρ with respect to obj(2)

C (ν).
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Chapter 5

Numerical simulations of the PUT
model

In this chapter, there are the results and plots from the numerical simulations of the
PUT model, with the aim of observing that the analytical results of Chapter 4 are really
observable once the model is applied. We need at first to point out that the results have
asymptotic validity while the simulations have finite time. However, setting a number of
draws large enough, it is possible to observe the expected generic patterns that do not
depend on the single run.
The simulations were run on Matlab: the urn is represented by a vector whose index
represents the color and the value the number of balls; the dimension of the vector increases
every time new colors are added into the urn. The number of draws nmax was set from 104

to 106, depending on the time required from the specific model: generally when ν > ρ the
computation is slower due to the increasing size of vectors that store informations about
each color.

5.1 Heaps’ law

First of all we show that the fraction of distinct elements with respect to the time, Xn,
converges to 0 when ν ≤ ρ, while it goes to ν−ρ

a when ν > ρ, as it was predicted from the
analysis of ODEs. The plots are shown in figures 5.1, 5.2 and 5.3.
After that we would like to observe how Dn increases in time; the cases of main interest
are when ν /= ρ, while the case ν = ρ is quite border-line and less interesting to plot. The
following observations can be made:

• in the case ν < ρ

Dn ∼ cn
ν
ρ =⇒ log10(Dn) ∼ log10(c) + ν

ρ
log10(n)
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5 – Numerical simulations of the PUT model

Figure 5.1: Evolution of Xn = Dn
n after 106 draws, when ν < ρ: as expected from the

analysis of the ODE it converges to 0; we observe that on the left image when a = ν + 1,
and therefore the reinforcement starts from the first draw, the convergence is slightly faster
than the case in which a = ν + 1 − ρ.

Figure 5.2: Evolution of Xn = Dn
n after 105 draws, when ν = ρ: as expected from the

analysis of the ODE, it seem to go to 0, even though we don’t observe it yet because
the convergence is slow. Again, on the left image, when a = ν + 1 and therefore the
reinforcement starts from the first draw, the convergence is faster than the case in which
a = ν + 1 − ρ.
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5 – Numerical simulations of the PUT model

Figure 5.3: Evolution of Xn = Dn
n after 105 draws, when ν > ρ: as expected from analysis

of the ODE it converges to ν−ρ
a . On the left image, when a = ν + 1, the convergence value

is ν−ρ
a = 1

3 , while on the right a = ν + 1 − ρ and the convergence value is ν−ρ
a = 2

3 .

for some constant c;

• in the case ν < ρ

Dn ∼ ν − ρ

a
n =⇒ log10(Dn) ∼ log10

3
ν − ρ

a

4
+ log10(n).

If in the simulation, for each color j, the point
1
log10(Nj), log10(DNj )

2
, j = 1, . . . , Dnmax ,

is recorded, we can use linear regression to estimate the coefficients. When ν > ρ the
intercept should be about log10

1
ν−ρ
a

2
while the angular coefficient about 1; when ν < ρ

the angular coefficient should be instead ν
ρ . Since the analytical proof was for n → ∞,

the regression is done considering only the 15% of most recently appeared colors, in order
to avoid initial uncertainty that could considerably change the results. Plots 5.4 and 5.5
show the the evolution of Dn in logarithmic scale for both the cases ν < ρ and ν > ρ.
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5 – Numerical simulations of the PUT model

Figure 5.4: Evolution of Dn after 106 draws, when ν < ρ: the scale of the plots is loga-
rithmic, therefore they appear as lines. The blue line is fitted through linear regression on
the latest 15% of colors. The predicted exponents are 0.5924 for the left plot and 0.5855
for the right one, which means that both of them are closer to the value ν

ρ = 3
5 = 0.6. We

observe a larger intercept on the right, when a = ν + 1 − ρ, since without reinforcement
at the first draw, more colors are drawn and Dn initially grows faster.

Figure 5.5: Evolution of Dn after 105 draws, when ν > ρ: the scale of the plots is logarithmic
and also here they are lines. The blue line is fitted through linear regression on the latest
15% of colors. The predicted exponents are 0.9950 for the left plot, and 0.9992 for the
right one, both of them close to 1 as expected. In order to calculate the estimate of ν−ρ

a we
calculate 10 to the power of the intercept: in the case of a = ν+1 we have 10−0.4401 ≈ 0.3630
(expected 1

3 ≈ 0.33), while for the case a = ν + 1−ρ we have 10−0.1699 ≈ 0.6762 (expected
2
3 ≈ 0.67).
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5 – Numerical simulations of the PUT model

5.2 Zipf’s law

At first it is interesting to observe that the frequency of each color, after an initial un-
certainty, goes to zero when ν > ρ, while it stabilizes on a constant value when ρ > ν.
For this reason in figure 5.6 there are the plots of the five colors with most draws in both
cases, for which we can observe the theoretic behavior.

Figure 5.6: Evolution of the frequency of the five top-most drawn colors: when ν < ρ
each color reaches a constant frequency, while in the case ν > ρ that fraction goes to zero
for each color. Another interesting pattern is that on the right plot the lines are dotted:
indeed the times between two consecutive draws of the same color are more interleaved,
as expected.

The analysis in the previous section stated that the frequency of each color depends on
the order it has been drawn for the first time and we would like to observe this pattern:
however this is a stochastic model, therefore we can observe in figure 5.7 that the observed
frequency has a great amount of noise with respect to the expected one.
This pattern does not contradict Zipf’s law: if the frequencies are sorted and plotted against
their rank we observe a power law in the tail of the distribution (figures 5.8 and 5.9). In
order to estimate the exponent of the power law we use again a the linear regression on
the logarithm of the frequencies: since the analysis described the tail of the distribution
(j large), the first 100 elements in the rank have not been considered in the regression,
and neither the elements with less than 4 draws. This last is a common practice due to
the fact that the colors with few draws are too many and they could distort the result.
The plots in figure 5.9 represent the cases where a = ν + 1 − ρ and they have a singu-
lar pattern: there is a huge tail of elements drawn only once; this pattern was the main
motivation of sections 4.3 and 4.4.
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5 – Numerical simulations of the PUT model

Figure 5.7: The blue dots represent the frequencies of each color plotted against their order
of appearance, while the red ones are theoretical, proportional to j− ρ

ν . It is interesting to
observe that when ν > ρ there is much more noise, since there are more colors and with
very little frequency.

Figure 5.8: The red dots represent the frequencies of each color plotted against their rank,
while the blue line is the fitting through the regression described. The exponent of the
power law should be − ρ

ν : on the left plot we have − ρ
ν = −5

3 ≈ −1.67 and the estimate is
equal to -1.6884; on the right one − ρ

ν = −3
5 = −0.6 and the estimate is equal to -0.6618.

5.3 Distinct colors with at least k draws

We now compare the formula obtained in expression (4.13) of Chapter 4 with numerical
simulations. However we will see that, given D

(1)
n = Dn, the recursion (4.12) will be valid
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5 – Numerical simulations of the PUT model

Figure 5.9: The red dots represent the frequencies of each color plotted against their rank,
while the blue line is the fitting through the regression described. The exponent of the
power law should be − ρ

ν : on the left plot we have − ρ
ν = −5

3 ≈ −1.67 and the estimate is
equal to -1.6533; on the right one − ρ

ν = −3
5 = −0.6 and the estimate is equal to -0.5968.

Since a = ν + 1 − ρ and there is no reinforcement at the first draw, many elements get to
be drawn only once and it is clearly observable from the plots.

also for ν < ρ. In order to verify the result, the usual simulation was run with ρ = 3 and
ν = 5 with 105 draws. The theoretic values of D

(k)
n , k = 1, . . . ,10, were compared with the

observed one and the results are shown in table 5.1, confirming the analysis done.

k 1 2 3 4 5
D

(k)
n observed 67035 11184 5054 2950 1978

D
(k)
n predicted from (4.13) 66667 11111 4938 2881 1920

k 6 7 8 9 10
D

(k)
n observed 1441 1056 809 654 559

D
(k)
n predicted from (4.13) 1387 1058 837 682 568

Table 5.1: Comparison between expected D
(k)
n , k ∈ {1, . . . ,10}, and the observed values.

As announced before, the recursion (4.12) can be observed also when ν < ρ and given Dn

it is possible to predict D
(k)
n ∀k ≥ 2. Running the usual simulation with ρ = 5 and ν = 3

with 106 draws the results in the table 5.2 were observed.
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5 – Numerical simulations of the PUT model

k 1 2 3 4 5
D

(k)
n observed 9148 2273 1503 1182 999

D
(k)
n obtained from (4.12) - 2287 1525 1198 1009

k 6 7 8 9 10
D

(k)
n observed 872 784 714 664 621

D
(k)
n obtained from (4.12) 883 791 722 666 621

Table 5.2: Given D
(1)
n , comparison between expected D

(k)
n , k ∈ {2, . . . ,10}, and the ob-

served values.

5.4 Optimization

Now it is possible to show that the results of Chapter 4, in which the number of element
with at least 2 or 3 draws were maximized, are mainly correct. In order to show that,
different simulations were run, for all the possible values of ν and ρ such that ν > ρ > 0
and ν + ρ = C. The parameter C was set equal to 8 or 20, as in examples of figures 4.1
and 4.2. The number of total draws was set to 104, since large values of ν, for example 19,
really slow down the computational time.

The results are shown in the tables 5.3 and 5.4: even though there is a different value as
the one expected for D

(2)
n in the case C = 20, they are coherent with analysis performed.

ν 5 6 7
ρ 3 2 1

D
(2)
n 1098 1140 1067

D
(3)
n 476 368 212

Table 5.3: Values of D
(2)
n and D

(3)
n for all possible combinations when C = 8; in bold the

maximum values for each of them: they are as expected.

ν 11 12 13 14 15 16 17 18 19
ρ 9 8 7 6 5 4 3 2 1

D
(2)
n 590 604 613 592 542 541 519 470 469

D
(3)
n 288 262 241 190 156 122 108 68 49

Table 5.4: Values of D
(2)
n and D

(3)
n for all possible combinations when C = 20; in bold

the maximum values for each of them. We observe that the maximum value for D
(2)
n is

obtained when ν = 13 instead of ν = 12, the one predicted, but we have seen in figure
4.1b that the difference is very small between the two values for calculating the objective.
In order to observe the expected behavior it may be necessary to run the simulations for
more draws.
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Chapter 6

Extensions of the model

In this chapter, the aim is to introduce some changes to the PUT model studied until now,
in order to reproduce some different phenomena of the real world. In the first section the
reinforcement of a color is no more constant from one color to another, but each element
i has its own ρi that represents the number of balls to reintroduce. A different parameter
for each color should represent its capacity to attract further attention, making it more
likely to be drawn with respect to colors appeared before, but with smaller ρi.
The other section instead focuses on the urn, imagining a limited life with geometric
distribution for each ball inside it: the analysis focuses on what happens inside the urn
and what are the consequences for the draws and for the already analyzed statistics.

6.1 Reinforcements depending on colors

In the original model every color receives the same reinforcement once it is drawn, without
considering a measure of quality for the color. The idea behind the model we are going
to propose is that each innovation should receive a reinforcement based on how good it is
evaluated, and its success should also depend on the quality and not only on how much
early it is discovered. Monechi et al. [6] proposed a model that made possible what they
call waves of novelties, in which even younger innovations could become popular. Their
approach is a more sophisticated extension of the PUT model, taking into account corre-
lations between semantically related innovations and modeling a multiple agent instead of
an average one with the introduction of weights on balls based on some functions.
Our approach goes in another direction: it proposes the elimination of the constant rein-
forcement parameter ρ and it introduces a different parameter λ, the mean of a generic
distribution from which reinforcement parameters ρi, i ∈ {1,2, . . . }, are sampled. The
proposed model works in the following way:
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6 – Extensions of the model

• there are N0 initial balls in the urn, each one with a different color and every color
i has its own ρi, sampled from a random distribution with mean λ;

• at each time n, n ≥ 1, a ball is drawn from the urn and, based on color i, ρi copies
of the ball are inserted together with the drawn ball;

• if it is the first draw for a ball, ν + 1 balls of new colors are placed into the urn and,
concurrently, each new ball’s ρi is determined by random sampling from the given
distribution.

The goal now is to study again the behavior of (Dn)n≥0 and (Kj
n)n≥0. Specifically, we would

like to determine the behavior of the former, while, for the latter, show that the frequency
does not depend only on the order of draw j, but also on the specific reinforcement
parameter ρj . The model is more interesting to study through by simulations, anyway
it was tried to explain it analytically, as done in Chapter 2, but with some heuristic
arguments.
At first, the total number of balls in the urn is different from PUT:

|U |n = N0 +
DnØ
j=1

ρjK
j
n + (ν + 1)Dn; (6.1)

in fact, instead of considering ρ balls introduced at each time n, we should consider the
number of time each color has been drawn and for each of them its own ρj . At first it is
interesting to observe:

|U |n
n

= N0
n

+
DnØ
j=1

ρj
Kj
n

n
+ (ν + 1)Dn

n
∼

DnØ
j=1

ρjY
j
n + (ν + 1)Xn

∼ ρavg + (ν + 1)Xn, as n → ∞,

where ρavg is the weighted sum of the ρj , based on the fraction of times their color has been
drawn, since qDn

j=1 Y j
n = 1. This approach is useful to approximate the usual probabilities

that Dn or Kj
n increase by one, which would depend both on all Kj

n, j ∈ {1, . . . , Dn}, since
at the denominator there would be the expression in (6.1). The use of ρavg is clearly a
further approximation, since it is considered as a constant while it is not, but we will make
some assumptions on the value it takes, based on the distribution and on ν. Therefore the
approximated probabilities are

P (Dn+1 = Dn + 1|Xn) ∼ νXn

ρavg + (ν + 1)Xn
;

P (Kj
n+1 = Kj

n + 1|Xn, Y j
n ) ∼ ρjY

j
n

ρavg + (ν + 1)Xn
.
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6 – Extensions of the model

Using the stochastic approximation in the same way as in Chapter 2 the ODE system to
study is 

ẋ = νx

ρavg + (ν + 1)x − x = x(ν − ρavg − (ν + 1)x)
ρavg + (ν + 1)x ;

ẏ = ρjy

ρavg + (ν + 1)x − y = y(ρj − ρavg − (ν + 1)x)
ρavg + (ν + 1)x .

(6.2)

The study of the first equation is the same already done in Chapter 2, except that ρ is
substituted with ρavg. When n → ∞ it follows:

• in the case ρavg > ν

Dn ¨ n
ν

ρavg ;

• in the case ρavg < ν

Dn ∼ ν − ρavg
ν + 1 n.

Regarding instead the number of occurrences of each color, the result is presented without
any proof since it is not exact, but in general it should hold

Kj
n ∼

3
j

Dn

4−
ρj
ν

. (6.3)

It follows that the occurrences of a color are again penalized by larger j, but now they are
also increased by larger values of ρj .
It is necessary to make some assumptions about the value ρavg: it is the weighted average
of the reinforcement parameters of the drawn colors and it is not a constant set from the
beginning, but we would like to consider it as if it were, when n is large. We would try
to understand which is its convergence value: since we know that each ρj , j ≥ 1, is a
non-negative integer random variable with mean λ, we expect ρavg ≥ λ, assuming that
the colors with larger ρj are more likely to be drawn and therefore their reinforcement
parameter will have heavier weight in the average. For these reasons the result (6.3) is
reported without a clear proof: the procedure is similar to the one in Chapter 2 (studying
equilibria and approximating the ODE solution asymptotically), but it is based on some
assumptions about ρj , j ≥ 1, that are not always true. In fact the assumptions made in
order to have stable equilibria in (6.2) are:

• if ρavg < ν it should hold ρj < ν ∀j ≥ 1, which may be not true if λ is not much
smaller than ν;

• if ρavg > ν it should hold ρj < ρavg ∀j ≥ 1, which may be true for most of the colors,
but of course, being ρavg a weighted average, there should be at least one color j

with ρj ≥ ρavg.
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6 – Extensions of the model

Due to this uncertainty in the analytical study, it becomes necessary to study the simu-
lations of this model. Three different distributions for the sampling of the reinforcement
parameters have been proposed: Poisson, discrete uniform and rounded log-normal, since
non-negative integers are needed. We would like to observe again how the number of dis-
tinct elements increases in time, check if the frequency-rank distribution is still la power
law, and if it is possible for late innovations to emerge and reach high positions in the
rank.

6.1.1 Poisson reinforcements

In this case ρj , 1 ≤ j ≤ Dn, are i.i.d. random variables with Poisson distribution with
parameter λ, corresponding to mean and variance. First of all we show the evolution of
ρavg at each draw. We observe that, in the case λ is smaller enough than ν, ρavg converges
to something little larger than λ, while in the case λ ≥ ν or little smaller, ρavg increases to
about the average value of the most drawn elements, which have quite larger values than
λ (figures 6.1a and 6.1b).

(a) Final ρavg = 5.8010 (b) Final ρavg = 10.1039, but we see that it is still
increasing.

Figure 6.1: The plots show how the weighted average of ρj , 1 ≤ j ≤ Dn, evolves through
time: when ν is too large ρavg converges to a value little larger than λ, here represented
with the green line, while when ν is closer to λ, ρavg is biased towards the ρj of first
positions, generally larger than ν.

Now we can also observe the evolution of Dn in the two cases and, as predicted, when
ν > ρavg we have linear growth, on the other hand when ν < ρavg the growth is sub-
linear with coefficient ν

ρavg
. The estimate of the parameters is again obtained with linear

regression on the logarithms, on the latest 15% of colors (figure 6.2).
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6 – Extensions of the model

Figure 6.2: On the left the growth should be linear and in fact the estimated exponent is
1.0058; for more precision the coefficient is just calculated with the final fraction Dn

n =
0.5131 and it is close to the expected ν−ρavg

ν+1 = 0.5142. On the right we see that the
fitting blue line fits only the last part, since ρavg evolves through time and consequently
the exponent ν

ρavg
decreases. At the end ν

ρavg
= 0.4949, while the one predicted from the

regression is 0.4953.

Regarding the frequency-rank distribution we only observe that it is again a power law,
i.e. the frequency of an element in position i is proportional to i−α, α > 0. It was also
estimated α and observed that α ≥ λ

ν (figure 6.3).

(a) Estimated Zipf’s coefficient: -0.5657 (b) Estimated Zipf’s coefficient: -1.2741

Figure 6.3: Frequency-rank distributions.
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6 – Extensions of the model

Besides these observations, the crucial point of this model is to observe that even late
colors are able to be in the first positions in the rank, if they have large reinforcement
parameters. In table 6.1 we observe informations about the first five colors, with relative
frequency, order and reinforcement parameter considering the case ν = λ = 5. Moreover
we see how they evolved in time in figure 6.4.

It interesting to observe how for early colors with smaller reinforcement parameter
the frequency is decreasing, while later ones but with larger parameter are increasing their
frequency: the most significant is the first one, appeared only as 88-th distinct element but
with very large ρj = 14 that allowed to reach the top of the rank. In order to highlight the
fact that in the first positions there are the colors with larger reinforcement there is also
the plot in figure 6.5: each point represents the non-weighted average of the reinforcement
parameter from the first up to that position in the rank; it can be observed that at the
beginning the average is around ρavg and it decreases until reaching the mean λ of the
distribution, once all the distinct drawn elements are considered.

Rank Frequency Order j ρj
1 0.3158 88 14
2 0.1612 38 10
3 0.0773 22 9
4 0.0581 8 7
5 0.0483 5 7

Table 6.1: Informations about first 5 colors in the rank.

Figure 6.4: Evolution of the frequency of the first 5 colors through time.
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6 – Extensions of the model

Figure 6.5: In the plots each point represents the non-weighted average of the reinforcement
parameters from the first in the rank up to the position indicated on the x-axis; the green
line is the value of λ.

The last analysis is intended to check if also very late elements are able to reach a significant
frequency of draws. In order to observe that it was plotted the frequency versus the order
of draw of each color (figure 6.6): we would like to see a uniform pattern instead of the
decreasing one observed in figure 5.7. Actually, more than observing the success of very
late elements, we observe more failures for the initial ones with small reinforcement.

Figure 6.6: Poisson reinforcements frequency-order plots: each point represents a color,
plotting the frequency versus the order of draw. There is still a decreasing pattern, even
though it is sparser than the PUT.
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6 – Extensions of the model

6.1.2 Discrete uniform reinforcements

In this case ρj , 1 ≤ j ≤ Dn, are i.i.d. random variables with discrete uniform distribution
among values from 0 to 2λ, therefore with mean λ and variance (2λ+1)2−1

12 . Most of the ob-
servation already done for the Poisson distribution are quite the same, the difference here
is that there is a maximum value for the reinforcement parameters and the distribution is
not concentrated around its mean: therefore larger values are less rare and the variance is
a bit larger, even though, setting for example λ = 5, they cannot be more than 10 while
before we observed a value of 14 being among the first positions. As a consequence in the
principal positions most of the colors have parameter equal to 10. This is a limit of this
model, since it does not give the possibility to exist to rare but very successful innovations.
In figure 6.7 there are the plots of the frequencies of each color against its order of ap-
pearance, trying to observe if they have a more uniform pattern than the Poisson case.

Figure 6.7: Discrete uniform reinforcements frequency-order plots: each point represents a
color, plotting the frequency versus the order of draw. There is still a decreasing pattern,
even though also here is sparser than the PUT and quite similar to Poisson case.
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6.1.3 Rounded lognormal reinforcements

In both the previous distributions the variance was uniquely determined by the mean of
the distribution, while we would like to have it larger in order to obtain very far values
from the mean that could have a breakthrough among the others. Therefore now each
ρj , 1 ≤ j ≤ Dn, is obtained sampling from log-normal distribution, with parameters
µ = 1.1094 and σ = 1 such that the mean of the distribution is λ = 5 and the variance is
sufficiently large (42.9570), and rounding to the closest integer.

We observe here that, even though we set ν = 13 and λ = 5, due to the high variance
introduced, at the end we have ρavg = 46.0816 and then a sub-linear growth for Dn. In
figure 6.8 there is the plot of the frequencies versus the order of appearance and in this
case we observe a more uniform pattern. In the first positions it is remarkable to observe
elements drawn for the first time after the 1000th distinct color (table 6.2).

Rank Frequency Order j ρj
1 0.5663 93 48
2 0.2529 363 53
3 0.0674 50 25
4 0.0327 145 36
5 0.0200 10 18
6 0.0067 1571 71
7 0.0064 2897 85
8 0.0050 1135 51
9 0.0033 55 21
10 0.0023 479 34

Table 6.2: Informations about first 10 colors in the rank.
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Figure 6.8: Rounded log-normal reinforcements frequency-order plot: each point represents
a color, showing its frequency versus the order of draw. The decreasing pattern here is
almost absent, allowing elements with late appearance to have many draws.

6.2 Elimination of balls from the urn

In the previous versions of the model the urn grows indefinitely, because ν or ρ new balls
are always added at each draw. If we want to represent the urn as a system with limited
capacity and where every ball has a limited life, we should think about something different.
Moreover the probability of drawing any color in the urn is always positive, even though
close to zero for the less represented ones. In the real world, when an innovation does not
get enough attention, it generally disappears from the world, so the possibility of drawing
again that "color" should be zero.

The idea developed for this model is to introduce the probability, for each ball, to dis-
appear from the urn between two consecutive draws: this probability could be set constant
for every ball at any time and quite small, which means that each ball has a lifetime with
geometric distribution with parameter p.

6.2.1 Inside the urn

At first it is interesting to study the behavior of the number of balls in the urn and, at this
purpose, the number of never drawn colors in the urn. Before studying analytically the
problem, some simulations have been run and two different behaviors have been observed.
A reasonable choice of p is to set it always smaller than 10−2, in our cases we generally
used 10−3 and the simulations brought the following observations.
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• When ρ > ν the number of balls in the urn fluctuates around p−1ρ, while the
number of never drawn colors goes to zero. This means that it is impossible for Dn

to increase, leading to a situation where there are just few colors in the urn and no
other novelties can arise.

• When ρ < ν the number of balls in the urn fluctuates around p−1ν, while a quite
fixed portion of them is represented by never drawn colors. In this case Dn can
always increase.

Before giving more attention to numerical simulations, we tried to get some analytical
results. Let us define two statistics: the stochastic processes (Un)n≥0 and (Vn)n≥0 that
describe respectively the number of balls in the urn and the number of balls in the urn
of never drawn colors; clearly Vn ≤ Un ∀n ≥ 0 and U0 = V0 = N0. In detail the whole
process consists of two steps at each time n:

1. The first part is the usual PUT: draw a ball from the urn and check the color, if it
is the first draw replace it in the urn with ν + 1 new colors; moreover always place
in the urn ρ further copies of that color; there is again the slightly different model
in which the copies are inserted from the second draw.

2. The second part consists of eliminating each ball in the urn with probability p. Given
a certain number u of balls in the urn before this procedure, the number of balls
surviving after this operation is a discrete random variable with binomial distribution
with parameters u and 1 − p.

Consider now that at each time n we apply together the two steps just described and
define n + 1

2 as the time between the two steps: it means that at time n − 1
2 we apply step

1, at time n we apply step 2, at time n + 1
2 we apply step 1 and so on.

Considering the processes (Un)n≥0 and (Vn)n≥0, we can describe their conditional proba-
bility distribution when first step is applied. In the model in which the ρ copies are inserted
from the first draw we have:

P (Un+ 1
2

= Un + ρ + ν + 1|Un, Vn) = Vn
Un

;

P (Un+ 1
2

= Un + ρ|Un, Vn) = 1 − Vn
Un

.

In fact, after the first step, the number of balls in the urn always increases by ρ balls, and
by further ν + 1 balls if a new color is drawn. On the other hand in the case when no
reinforcement is applied at the first draw the probabilities are

P (Un+ 1
2

= Un + ν + 1|Un, Vn) = Vn
Un

;

P (Un+ 1
2

= Un + ρ|Un, Vn) = 1 − Vn
Un

.
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For (Vn)n≥0 instead there is only one case:
P (Vn+ 1

2
= Vn + ν|Un, Vn) = Vn

Un
;

P (Vn+ 1
2

= Vn|Un, Vn) = 1 − Vn
Un

.

Here the number of never drawn colors can increase or remain the same: if one of them
is drawn, that number decreases by one but ν + 1 new colors are added, bringing the net
increase to ν; if an old color is drawn Vn stays still. These results lead to two different
conditional expectations for Un+ 1

2
:

E
è
Un+ 1

2
|Fn

é
= Un + (ρ + ν + 1) Vn

Un
+ ρ

3
1 − Vn

Un

4
= Un + (ν + 1) Vn

Un
+ ρ

when the reinforcement is from the first draw, while

E
è
Un+ 1

2
|Fn

é
= Un + (ν + 1) Vn

Un
+ ρ

3
1 − Vn

Un

4
= Un + (ν + 1 − ρ) Vn

Un
+ ρ

when the reinforcement is from the second one. Summarizing and including the conditional
expectation for Vn+ 1

2
it follows

E
è
Un+ 1

2
|Fn

é
= Un + a

Vn
Un

+ ρ;

E
è
Vn+ 1

2
|Fn

é
= Vn + ν

Vn
Un

,
(6.4)

where a = ν + 1 or a = ν + 1 − ρ depending on the model, as in the PUT, and Fn is the
σ-algebra generated by the events of the process until time n.
In the second step each ball in the urn disappears with constant small probability p;
therefore, conditional to the σ-algebra Fn+ 1

2
generated by the events of the process until

time n + 1
2 , Un+1 (Vn+1) is a binomial random variable with parameters Un+ 1

2
(Vn+ 1

2
) and

1 − p. The conditional expectations are:
E
è
Un+1|Fn+ 1

2

é
= Un+ 1

2
(1 − p)

E
è
Vn+1|Fn+ 1

2

é
= Vn+ 1

2
(1 − p).

(6.5)

The idea now is to unify the two steps of the process as a whole one, considering only
integer times. Putting together results from (6.4) and (6.5) we can summarize:

E [Un+1|Fn] =
5
Un + a

Vn
Un

+ ρ

6
(1 − p);

E [Vn+1|Fn] =
5
Vn + ν

Vn
Un

6
(1 − p).

(6.6)
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The use of stochastic approximation for this case results quite complicated, since the fact
that we expect the quantities Un and Vn to fluctuate around a constant value makes difficult
to use the same procedure as done before for Dn and Kj

n and divide them by n, which
will bring everything to zero. The approach now is heuristic, with the idea of using the
conditional expectations of the difference between two subsequent values of the process as a
discrete derivative. In this way we will define two functions that approximate the processes
(Un)n≥0 and (Vn)n≥0 and obtain an ODE system again. By studying the asymptotically
stable equilibria of that ODE it should be possible to find the values around which the
processes fluctuate or converge.

Rewriting the conditional expectations in (6.6) we obtain
E [Un+1 − Un|Fn] = −pUn +

3
a

Vn
Un

+ ρ

4
(1 − p);

E [Vn+1 − Vn|Fn] = −pVn + ν
Vn
Un

(1 − p).

(6.7)

The left term of each expression can be considered as a derivative with respect to the time
and, defining the functions u(t) and v(t), approximations of Un and Vn, the (6.7) is then
approximated by the following ODE system:

u̇ = −pu +
3

a
v

u
+ ρ

4
(1 − p);

v̇ = −pv + ν
v

u
(1 − p).

By studying the ODE convergence, it follows that the asymptotically stable equilibrium
points are

• u = 1−p
p ρ and v = 0 when ν < ρ;

• u = 1−p
p ν and v = ν−ρ

a
1−p
p ν = ν−ρ

a u ≤ u when ν > ρ.

Therefore we expect the values of Un and Vn to fluctuate around those values, except for
Vn in the case it reaches zero and does not increase anymore (case ν < ρ). These results are
confirmed by the simulations, as we can observe from figures 6.9 and 6.10; only the case
with a = ν + 1 is shown, since there is no significant difference with the case a = ν + 1 − ρ.

6.2.2 Distinct elements drawn

If now we consider Dn, the number of distinct drawn colors from the urn, we can use the
same previous approach to describe it, heuristic again. First of all we have

P (Dn+1 = Dn + 1|Un, Vn) = Vn
Un
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Figure 6.9: The plot shows how the number of balls in urn evolves in time and the number
of balls (i.e. colors) that have never been drawn. The case considered is ν > ρ and a = ν+1;
the probability p is set to 10−3. Red and blue lines show the theoretic value obtained in
the analytical analysis.

and
E [Dn+1 − Dn|Fn] = Vn

Un

that again can be thought as an ODE with corresponding approximating function d(t):

ḋ = v

u
.

From the previous analysis we know that in the case ρ > ν, v goes to zero; this means
that, after an initial increase, Dn will stay constant due to the disappearing of new colors
in the urn. When ν > ρ, at the equilibrium v

u = ν−ρ
a , which means constant derivative for

d and linear growth Dn ∼ ν−ρ
a n. This is the same result as the one obtained in the PUT

model. Again both results are observed also in the simulations, in figures 6.11a and 6.11b.
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Figure 6.10: The plot shows how the number of balls in urn evolves in time and the number
of balls (i.e. colors) that have never been drawn, which goes to zero. The case considered
is ν < ρ and a = ν + 1; the probability p is set to 10−3. Red line shows the theoretic value
obtained in the analytical analysis for Un, while the blue circle is the time at which there
are no more new balls in urn and Vn becomes 0, causing the interruption of innovations
process.

6.2.3 Presence of a color in urn and frequency-rank distribution

Studying the presence of a general color i already present in the urn (notice that i in
this case does not indicate the i-th distinct drawn), we can define (Ci

n)n≥0, the stochastic
process that describes it. Using the same approach as before, imagining at least one ball of
color i in the urn at time n and, for simplicity, considering the model with the reinforcement
from the first draw, we obtain

E
è
Ci
n+1 − Ci

n|Fn

é
= −pCi

n + ρ
Ci
n

Un
(1 − p) = Ci

n

3
−p + ρ

1 − p

Un

4
. (6.8)

We can now make some observations. Since Ci
n ≥ 0 ∀n ≥ 0 we expect it to increase if

Un < 1−p
p ρ and decrease if Un > 1−p

p ρ, following the expression (6.8). If ρ > ν we know
that Un fluctuates around 1−p

p ρ, which brings the increment of Ci
n to zero and lets Ci

n

fluctuate around the value it has reached. What really happens in the simulations is that
some colors have a significant fraction of balls in the urn that allows them to survive and
oscillate around the same value, while most of the colors disappear from the urn. If ν > ρ

then Un ∼ 1−p
p ν, which means that as soon as Un is above 1−p

p ρ the expected increment
of Ci

n becomes negative, leading it to zero for every color i. This is also what happens in
the simulations, where each color sooner or later disappears from the urn to make space
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(a) ν > ρ (b) ν < ρ

Figure 6.11: Evolution of Dn in the two usual cases: in the case ν > ρ we still observe a
linear growth (estimated exponent 1.0397) as in the original model and a final fraction of
distinct elements Dn

n = 0.3298, close to ν−ρ
a = 1

3 . On the right ν < ρ and from about time
n = 104 we do not observe any more new elements: the time it stops is about the time Vn
becomes zero, as seen from figure 6.10.

for new colors. Figures 6.12a and 6.12b show the final number of balls of each color that
has ever been in the urn, while figure 6.13 represents the evolution in time of the number
of balls of the most frequent color in urn when ρ > ν.
The frequency-rank distribution instead has only been observed with numerical simulations
(figures 6.14 and 6.15) and not analytically. It is observed that when ρ > ν there are too
few colors to estimate the power law. Otherwise, when ν > ρ, it is observed the same
pattern of the original model with the infinite urn and alive and dead colors both seem to
follow the power law with exponent − ρ

ν .

66



6 – Extensions of the model

(a) ν > ρ (b) ν < ρ

Figure 6.12: Final number of balls in the urn: each element on the x-axis represent color
i in the urn; the value i can be also considered as an order of appearance in urn, since
every time the triggering was applied the new colors were added extending the vector
representing the urn at the end. We notice on the left that the most recent colors are
generally more than the ones appeared first; on the right instead there are only 3 colors
still alive, two of them among the initial ones, and all the other have no more balls.

Figure 6.13: The plot shows the evolution of the number of balls of the most frequent color
in urn in the case ρ > ν: it fluctuates around a value but has a more oscillating behavior
than the total number of balls.
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Figure 6.14: The plot shows the frequency-rank distribution of drawn colors when ν > ρ,
putting together elements still in urn with elements disappeared ("alive" and "dead"). The
blue line is the regression line for the elements from 10th position in the rank and with at
least 4 draws: the estimated exponent is −0.5687, close to − ρ

ν = 0.6.

Figure 6.15: The plot shows the frequency-rank distribution of drawn colors, putting to-
gether elements still in urn with elements disappeared ("alive" and "dead"). In this case
ν < ρ and the most frequently drawn elements are the ones still alive, while all the dead
ones have a very fast decay, which was not estimated due to the low number of distinct
colors ever drawn, only 45 after 105 draws.
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Final results and discussion

The PUT model, modified such that each ball in the urn has a limited random life, was
intended to represent a urn with limited capacity. We can divide the results focusing first
on the urn and then on the draws.
In the urn we have the following behavior when n is large:

(i) when ν < ρ, Un fluctuates around 1−p
p ρ and Vn goes to zero, making zero the

probability of drawing new colors;

(ii) when ν > ρ, Un fluctuates around 1−p
p ν and Vn is around a constant fraction of Un,

ν−ρ
a , giving a positive almost constant probability of drawing new colors.

Regarding the process (Dn)n≥0:

(i) when ν < ρ, after an initial increase, it remains constant on the same value due to
the disappearing of new colors in the urn;

(ii) when ν > ρ it has the same linear behavior observed in the original model:

Dn ∼ ν − ρ

a
n.

Regarding the frequency-rank distribution, the simulations highlighted this kind of behav-
ior:

(i) when ν < ρ the most frequent colors are the only few still alive, while the others
have a very fast decay;

(ii) when ν > ρ, as in the PUT, the colors seem to follow a power law with α = ρ
ν ,

without a clear different pattern between colors still alive or not anymore in the urn.
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Chapter 7

Conclusions

In this work a mathematical model for the emergence of innovations has been presented
and developed. The necessity for a model has been discussed in Chapter 2: whether a single
innovation gets more success than others generally depends on a huge number of factors,
but, globally observing many heterogeneous systems, they seem to reproduce Heaps’ and
Zipf’s law in the emerging of new items, ideas or whatever can be considered as novelty.

Many models in history tried to create mechanisms that could reproduce those laws but
they somehow failed in representing both together. Reviewing those ones, the only model
until now that have been able to reproduce those laws has been the Polya urn model with
triggering (PUT), empowering the richer-get-richer mechanism and giving the abstract
concept of adjacent possible a concrete application. Starting from this model in the thesis
the following points have been completed.

• It has been defined the process describing the PUT and of the statistics (Dn)n≥0 and
(Kj

n)n≥0: the former indicates the number of distinct colors drawn after n draws,
while the latter indicates the number balls drawn for the j-th distinct color ever
drawn.

• It has been used the stochastic approximation in order to obtain an ODE that
describes asymptotically the normalized processes

1
Dn
n

2
n≥0

and
1
Kj
n
n

2
n≥0

. This is
a remarkable result, since starting from a stochastic process it has been possible to
determine some of its characteristics with a deterministic approach.

• The study of equilibria of the ODE has determined the asymptotic points of conver-
gence of the solutions of the ODE, based on the respective values of parameters ρ

and ν, and on the initial condition in some cases.

• The results of the ODE analysis have been used in order to obtain expressions for Dn

and Kj
n: mainly it has been proved that if ν < ρ the sub-linear behavior is reproduced

as Heaps’ law states, while if ν > ρ the number of distinct elements grows linearly.
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Instead it has been always obtained, considering j large enough, Kj
n ∝ j− ρ

ν , where j

is considered as the order of draw for the color. This fact has shown that the PUT
model favors the success of early drawn colors, and the order j can approximate the
rank of the elements.

• All the results have been also observed in the analysis of the numerical simulation
of PUT, in a large finite time.

It has been assumed that the number of draws of a color could determine a measure of
success for the color itself, however the study has been focused on a global system and it
has not given any suggestions for making an element (a song, an article or a start-up) more
successful than another, since it depends on intrinsic characteristic of the idea considered.

However, if there is the possibility of managing the whole system, an idea of opti-
mization could be the one of having the the most possible elements drawn more than a
specific number k. For example in Quatrini thesis [19] the model was applied to fit the
frequency-rank distribution of start-ups in some regional ecosystem, where the frequency
was represented by the equity fundings received by the start-up, showing that in most
cases it reproduced the Zipf’s law. In a more abstract analysis the author supposed that
ρ represented the ability of the ecosystem to exploit and develop the start-ups already
present, while ν represented the ability to invest in order to explore and find new ideas
for new start-ups.

Given this idea the analysis has been extended and developed in the two following
points:

• It has been determined a recursive formula to calculate the number of distinct colors
drawn at least k times, given the ones drawn at least k − 1 times, with specific
attention on the case ν > ρ.

• Imagining a defined budget C = ν + ρ to invest in exploration and exploitation, it
has been defined a trade-off between the two parameters such that the number of
elements drawn at least twice or three times was maximized. It was considered the
case ν > ρ, which may be the case of an initial phase of life of the ecosystem in which
there is the need of exploring more than exploiting, in order to find good ideas as
fast as possible and exploit them later.

At the end the work has focused on applying some changes to the model in order to
improve some weaker points. The changes applied have been two, one independent from
the other.

• The first modification has been intended to give each color its own reinforcement
parameter to represent the intrinsic quality of the innovation. Since in the PUT
model it has been observed that the success of a color depended only on the order
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of the first draw, in this way it has been hoped to observe also a dependence on the
reinforcement parameter. After a rough analysis, numerical simulations have been
run, sampling reinforcement parameters from three different distributions: they have
confirmed that with this model even later but "better" elements could reach high
positions in the rank, even though much larger parameters with respect to others
are necessary for very late elements to get popularity. Rate of appearance of distinct
elements and frequency-rank distribution have been observed to be similar to the
PUT model, but with different coefficients.

• The second modification has been intended to represent the obsolescence of inno-
vations with time and, in the aftermath, a urn with limited capacity. The model
suggested has been the PUT with the difference that after each draw every ball in
the urn has a small constant probability of disappearing: therefore each ball in urn
has a geometric distributed lifetime. Again after a rough analysis numerical simula-
tions have been run, observing a fluctuation of the number of balls in urn around a
defined value. Regarding rate of appearance of distinct elements and frequency-rank
distribution, when ν > ρ it has been observed a similar behavior as the PUT model,
on the other hand when ν < ρ at some time the innovation process stops, keeping
"alive" only some few elements.

Future work

The future work could go in two different directions: application of models to real life
systems and improving of existing ones.

• The applications should focus on understanding what the parameters ρ and ν may
concretely represent in a real system, through some statistical analysis on the at-
tributes of the system; once determined it should be possible to apply optimization
policies for the improvement of a start-ups ecosystem for example.
The first modification of the model could be more specific, analysing how the in-
trinsic value of an innovation could be estimated and creating a specific model that
could reproduce the history of a system.
The second modification could be interesting in order to understand why some in-
novations disappear and the stagnation of some systems.

• In Chapter 2 it was presented the state of the art showing that in the last years there
has been a great development of models for the emergence of innovations. The PUT
model, together with its extensions from Tria et. al [5] and Monechi et al. [6], seems
to be one of the best to reproduce Heaps’ and Zipf’s laws in the same model; however
it would be interesting to create an expanding network model, more complex but
capable of concretely represent the adjacent possible.
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Appendix A

Stochastic approximation
fundamentals

Let us suppose to have a generic stochastic process (An)n≥0 which counts some quantity
and may or may not increase by one at each time n of the process with probability that
depends only on Bn = An

n :

An+1 = An + ξn+1, ξn+1 ∼ Bernoulli(p(Bn)), n = 0,1, . . . (A.1)

where p(Bn) : R → [0,1], ∀n ≥ 0.
Borkar, in Chapter 2 of his book [20], introduces a lemma which is useful in order to study
these kind of processes. It relates some kinds of stochastic processes, specifically for urn
models, to the study of ordinary differential equations (ODE), which are deterministic.
The following part of this appendix will present all the assumptions needed in order to
prove the lemma, enunciated at the end.
At first let us rewrite the expression in (A.1) in order to use Bn instead of An, starting
start from

An+1
n + 1 = n

n + 1 · An

n
+ ξn+1

n + 1
that becomes

Bn+1 = n

n + 1Bn + ξn+1
n + 1

and then
Bn+1 = Bn + ξn+1

n + 1 − Bn

n + 1 ,

which finally, adding and subtracting p(Bn)
n+1 leads to

Bn+1 = Bn + 1
n + 1 [p(Bn) − Bn + ξn+1 − p(Bn)] . (A.2)

In a more general context it is useful to consider multidimensional processes instead of
scalars, therefore we consider An, Bn ∈ Rd ∀n ≥ 0 while ξn+1 ∈ {0,1}d ∀n ≥ 0 and the
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map p : Rd → [0,1]d, d ≥ 1.
Now it possible to define h(Bn) = p(Bn) − Bn and Mn+1 = ξn+1 − p(Bn) and rewrite
expression (A.2), considering a general step-size a(n) instead of n + 1:

Bn+1 = Bn + a(n) [h(Bn) + Mn+1] . (A.3)

This last expression can be considered as more general form of the (A.2), but, in order to
prove Lemma 1, it should satisfy the following assumptions.

Assumption 1. 1. The map h is a Lipschitz function: ||h(x) − h(y)|| ≤ L||x − y|| for
some Lipschitz constant 0 < L < ∞.

2. The step-sizes {a(n)} are positive scalars such that
∞Ø
n=0

a(n) = ∞,
∞Ø
n=0

a(n)2 < ∞.

3. {Mn} is a martingale difference sequence with respect to the increasing family of
σ-fields

Fn = σ(Bm, Mm : m ≤ n) = σ(B0, M1, . . . , Mn), n ≥ 0,

i.e.
E[Mn+1|Fn] = 0 a.s., n ≥ 0.

Moreover {Mn} are square-integrable:

E[||Mn+1||2|Fn] ≤ K(1 + ||Bn||2) a.s., n ≥ 0,

for some constant K > 0.

4. It holds supn ||Bn|| < ∞ a.s..

5. This last condition is a generalization of the expression (A.3) in the case it presents
in the following form:

Bn+1 = Bn + a(n) [h(Bn) + Mn+1 + Ô(n)] , (A.4)

where Ô(n) is either random or deterministic. It should satisfy then limn→∞ Ô(n) = 0.

Next it is possible to define time instants t(0) = 0 and t(n) = qn−1
k=0 a(k), n ≥ 1, and

the intervals In = [t(n), t(n + 1)], giving the following definitions.

Definition 3. b̄(t) is a piecewise linear function interpolated on the values of the process
(Bn)n≥0, such that b̄(t(n)) = Bn, ∀n ≥ 0. The linear function on each interval In is

b̄(t) = Bn + (Bn+1 − Bn) t − t(n)
t(n + 1) − t(n) , t ∈ In.
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Definition 4. The functions bs(t) and bs(t) (s ∈ R) are the solutions of Cauchy problem

ḃ = h(b) (A.5)

respectively with initial condition b(s) = b̄(s), defined on [s, +∞], and with ending condi-
tion b(s) = b̄(s), defined on [−∞, s].

After presenting the assumptions and definitions needed we can enunciate the Lemma.

Lemma 1 (See Borkar, Lemma 1 [20]). Given a stochastic process in the form (A.3) or
(A.4), satisfying all the assumptions from Assumption 1, and defined b̄(t), bs(t) and bs(t)
as in definitions 3 and 4, for any T > 0 it holds

lim
s→∞

sup
t∈[s,s+T ]

||b̄(t) − bs(t)|| = 0 a.s. (A.6)

lim
s→∞

sup
t∈[s−T,s]

||b̄(t) − bs(t)|| = 0 a.s. (A.7)

Concretely Lemma 1 states that asymptotically the ODE solution b(t), given an initial
(or ending) condition at a very large time s such that has the same value as b̄(s), have the
trajectory that is tracked by the values of the process Bn almost surely; then, by solving
the Cauchy problem and through a careful analysis, it is possible to give an approximation
of the values of the process for large times.
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