
POLITECNICO DI TORINO

Master of science in Mathematical Engineering

Master's thesis

A top-down approach for the

Dynamic Vehicle Routing Problem

Author:

Eleonora Vardè

Supervisor:

Paolo Brandimarte

Co-supervisor:

Giulio Zotteri

Academic year 2017-2018

Vorrei ringraziare tutti coloro che in un modo o nell'altro mi sono stati

vicini durante questo percorso, e che mi hanno aiutata a superare i

(numerosi) momenti di di�coltà. E vorrei dedicare questa tesi anche alla

persona che ha forse creduto in me meno di chiunque altro, ma che alla �ne,

forse, si dovrà ricredere. Quella persona sono io.

Contents

Introduction 5

1 Vehicle routing problem 7

1.1 Basics of the VRP . 7

1.2 Variants of the VRP . 9

1.2.1 Constraints . 9

1.2.2 Objectives . 9

1.3 Mathematical formulation . 10

1.4 Extensions . 12

2 Solution Methods 13

2.1 Classical VRP heuristics . 14

2.1.1 Constructive heuristics 14

2.1.2 Two-phase heuristics 14

2.1.3 Improvement heuristics 18

2.2 Meta-heuristics . 18

2.2.1 Tabu Search . 18

2.2.2 Ant Colony Optimization 19

2.2.3 Genetic Algorithms . 19

2.2.4 Simulated Annealing 20

3 The proposed algorithm 21

3.1 Problem description . 21

3.2 The proposed algorithm . 22

3.3 Learning phase . 23

3.4 Dispatching phase . 25

3.4.1 Notations . 25

3.4.2 Algorithm description: the Dispatcher Top−Down . . 26

3

3.4.3 Dispatcher DEM . 28

3.5 Routing phase . 29

4 Implementation 33

4.1 Used software . 33

4.2 Main components of the program 34

4.2.1 Parameters and data 34

4.2.2 Learning phase . 34

4.2.3 Dispatchers . 34

4.2.4 Routing . 35

4.2.5 Daily simulation . 35

5 Analysis of the simulation results 37

5.1 Assumptions, parameters and data 37

5.1.1 Parameters of the router 38

5.2 Scenario 1 . 39

5.2.1 Tuning of the threshold 40

5.2.2 Comparison with the benchmarks 43

5.3 Scenario 2 . 48

5.3.1 Comparison with the benchmarks 48

Conclusion 51

Bibliography 53

Introduction

The use of software based on operation research and mathematical program-

ming has become more and more popular over recent years, as part of the

resource management.

The numerous real-world applications have shown that "The use of comput-

erized procedures for the distribution process planning produces substantial

savings (generally from 5% to 20%) in the global transportation costs." [22]

The impact on the overall economy is thus substantial, as the transportation

process is a major component of the �nal product cost (up to the 20%).

The main reasons of the increasing success of these techniques are the in-

troduction of more sophisticated models, and the technological development

from both a software and a hardware point of view. While the former are

able to describe more and more precisely the features of real-world problems,

the second one has allowed a greater e�ciency and speed in �nding solutions

to those models.

The aim of this thesis is to develop an algorithm for the solution of a dynamic

vehicle routing problem, and it is motivated by a real-world application con-

cerning the last-mile logistic of a big furniture distributor.

The Vehicle Routing Problem (VRP) involves �nding the optimal routes that

a �eet of vehicles has to perform in order to deliver the goods to a set cus-

tomers, and it is one of the most important and thus studied optimization

problems.

The thesis focuses on the dynamic VRP, where customers make their orders

dynamically over time, and each day it is necessary to decide the pool of

clients that are going to be served and the ones that should be left for a later

day. Despite there are plenty of researches about the VRP, only few of them

deal with the dynamic problem, which only in the recent years started being

studied more deeply.

The approach we decided to take is denominated Top-Down, as it starts from

5

6 INTRODUCTION

the whole daily queue of customers and then eliminates the least convenient

ones, using a certain criterion. The remaining customers are those that will

be served.

The �rst chapter describes the main features of the VRPs, its variants and a

possible mathematical formulation. The second one focuses on the solution

methods distinguished in the classical heuristics and the more recent meta-

heuristics. The third one is dedicated to the description of the proposed

algorithm and its three phases, compared to some benchmarks solutions.

Chapter 4 describes the software used in the implementation and the main

components of the program, while chapter 5 contains the analysis of the re-

sults obtained. Finally, in the conclusion, the limitations and the possible

extensions of the proposed algorithm are outlined.

Chapter 1

Vehicle routing problem

The Vehicle Routing Problem (VRP) consists in �nding the optimal set of

routes that a �eet of vehicles has to perform in order to serve a given set

of customers (see �gure 1.1). Due to the numerous applications (and con-

sequently its practical relevance) and its remarkable di�culty, it is one if

the most important and studied combinatorial optimization problems. The

problem was introduced by G. B. Dantzig and J. H. Ramser in 1959 [4]. They

described a real-world application dealing with the delivery of gasoline from

a bulk terminal to a large number of service stations, and they proposed

the �rst mathematical programming formulation. Some years later, in 1964,

Clarke and Wright [3] proposed a greedy heuristic improving the Dantzig-

Ramser approach. Following those two articles hundreds of models and al-

gorithms were developed in order to exactly or approximately solve di�erent

versions of the VRP. Thanks to the tecnological development, numerous soft-

ware packages which implement these algorithms are now available.

1.1 Basics of the VRP

As introduced before, the aim of VRP is determining a set of routes on a

given road network, each of them performed by a single vehicle starting and

ending in its own depot, such that the customers' demands are ful�lled, the

operational constraints are satis�ed and the transportation cost is minimized.

The road network is usually described through a graph G = (N,A) in which

nodes N = {0, ..., n} correspond to the customers (i = 1, ..., n) and depot lo-

cations (i = 0, when there is only one depot), and arcs A = {(i, j) : i, j ∈ N}

8 VEHICLE ROUTING PROBLEM

Figure 1.1: A picture illustrating the vehicle routing problem.

to roads. Each customer i orders a certain amount of goods (demand) usu-

ally denoted with qi and often speci�es a period of the day and/or a set of

days (time window) in which he or she would like the goods to be delivered.

Arcs can be directed or undirected depending on if the road can be traveled

in only one or both directions. Each arc has a cost cij, that usually re�ects

its length, and it is associated with a travel time tij. Sometimes there is

also a time associated to the delivery of goods (for example when a piece of

furniture has to be assembled at the customer's house).

Routes are performed by a �eet of vehicles V . Each of them (k = 1, ...,m)

is based in one of the depots and has a �xed capacity Ck, which can be

expressed in terms of volume, weight or number of pallets. In some cases a

�xed cost is associated to the use of a vehicle.

1.2. VARIANTS OF THE VRP 9

1.2 Variants of the VRP

There are numerous di�erent variants of the VRP, born in order to re�ect

the di�erent features of real world problems. They mainly di�er according

to the type of constraints or objective functions that they contain.

1.2.1 Constraints

According to the nature of operational constraints, the vehicle routing prob-

lems are divided in di�erent categories. The basic version of VRP is the

Capacitated VRP (CVRP) in which each vehicle has a �xed capacity, known

in advance. If the capacity constraint is substituted with a maximum route

length/time constraint we talk about Distance-Constrained VRP (DVRP).

The VRP with Time Windows (VRPTW) is a variant of the CVRP in which

each customer i speci�es a time interval [ai, bi] to be served in (time window).

Another extension of CVRP is the VRP with Back-hauls (VRPB), in which

a certain amount of goods has to be delivered to the so-called Line − haul
customers, while other products have to picked-up from the Back − haul

customers. The VRP with pick-up and delivery (VRPPD) is similar to the

previous one, but in this case each customer can both order some products

and requires some others to be picked-up.

Figure 1.2 shows a graphical summary of the main VRP classes and their

interconnections. This is only a simple and reductive description, as each of

the above cited classes can be further divided and detailed, and many other

variants are known.

1.2.2 Objectives

The objective of the VRP is determining the minimum cost routes. This cost

can take into account of di�erent aspects, the most common are: distance,

time and customer satisfaction. Usually the most relevant purpose is �nding

routes of minimum length or such that the total traveling time is minimum.

Other times, it can be important to minimize the customers' waiting time,

the number of delays in the deliveries or the number of orders that are lost.

Another example of cost could be the number of drivers' extra hours, as they

are paid more than usual.

The objective function can take into account only one of this costs or many

of them appropriately combined.

10 VEHICLE ROUTING PROBLEM

Figure 1.2: Classi�cation of VRPs.

1.3 Mathematical formulation

Lots of di�erent mathematical models describing the routing of vehicles have

been proposed since the problem was �rst introduced. As an example, I

will brie�y describe a possible formulation of the VRP with time windows

(VRPTW) as a multi-commodity network �ow problem [15]. The main fea-

tures of the VRPTW are a a set of customers C, a directed graph G = (N,A)

and a �eet of vehicles V . The graph consists of |C| + 1 nodes, where nodes

1, ..., n represents customers' locations, while node 0 represents the depot.

The set of arcs A describes the connections between the depot and the cus-

tomers and among the customers. A cost cij and a travel time tij > 0 is

associated to each arc (i, j). All vehicles have the same capacity Q > 0 and a

demand di ≥ 0 is associated to each customer i. Customer i must be served

in a time window [ai, bi] (ai, bi > 0), if the vehicle arrives before, it has to

wait until ai to deliver the goods. There are two sets of decision variables in

the model: xijk and sik. xijk = 1 if vehicle k passes through the arc (i, j) and

xijk = 0 otherwise. The decision variable sik denotes the time when vehicle

k starts serving customer i, s0k = 0 ∀k ∈ V .
The objective is to �nd a minimum cost route for each vehicle, starting and

ending at the depot, so that all customers are visited exactly once during

1.3. MATHEMATICAL FORMULATION 11

their service time window. The mathematical model is the following:

min
∑
k∈V

∑
i∈N

∑
j∈N

cijxijk (1.1)

subject to∑
k∈V

∑
j∈N

xijk = 1 ∀i ∈ C, (1.2)

∑
i∈C

di
∑
j∈N

xijk ≤ Q ∀k ∈ V, (1.3)

∑
j∈N

x0jk = 1 ∀k ∈ V, (1.4)

∑
i∈N

xi0k = 1 ∀k ∈ V, (1.5)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0 ∀h ∈ C, ∀k ∈ V, (1.6)

xijk(sik + tij − sjk) ≤ 0 ∀k ∈ V, ∀i, j ∈ N, (1.7)

ai ≤ sik ≤ bi ∀k ∈ V, ∀i ∈ N, (1.8)

xijk ∈ {0, 1} ∀k ∈ V, ∀i, j ∈ N. (1.9)

Constraint (1.2) indicates that each customer is served exactly once and

(1.3) is the vehicles capacity constraint. (1.4), (1.5) and (1.6) assure that

all vehicles leave the depot, that after having reached a customer they leave

for another one and �nally they return to the depot. (1.7) describes the fact

that a vehicle cannot visit a customer if it has not �nished to deliver the

goods to the previous one, it can be linearized as:

sik + tij −Mi,j(1− xijk) ≤ sjk ∀k ∈ V, ∀i, j ∈ N. (1.10)

Here Mij is a large positive constant. (1.8) and (1.9) are respectively the

constraint on the service time and the integrality constraint.

In order to set an upper bound on the number of vehicles, a constraint of the

following type can be added [5]:∑
k∈V

di
∑
j∈N

x0jk ≤ |V | ∀k ∈ V, ∀J ∈ N. (1.11)

Setting ai = 0 and bi =M whereM is a large scalar for all i ∈ C the problem

turns to a classical CVRP, while if |V | = 1 the model relaxes to a traveling

salesman problem (TSP).

12 VEHICLE ROUTING PROBLEM

1.4 Extensions

The classical formulation of VRP doesn't take into account of two important

aspects, which are relevant in real world application: evolution and uncer-

tainty of information. For example, usually information is not known in

advance: customers' requests arrive dynamically over time and for each of

them a decision must be taken. In this case we talk about Dynamic VRP

(DVRP). In other cases information is not deterministic but stochastic, for

example we know that there will be a certain number of requests, in a cer-

tain area, at a certain time, with a certain probability. This is the case of

Stochastic VRP (SVRP).

Obviously there are also versions that combines uncertainty and dynamicity.

The table in �g.1.3 shows the taxonomy of VRPs by information evolution

and quality [20].

Figure 1.3: The taxonomy of VRPs by information evolution and quality.

Chapter 2

Solution Methods

The classical CVRP (and therefore its variants) belongs to the class of NP-

Hard problems, which implies that there's no algorithm that is able to �nd a

guaranteed optimal solution, in a polynomial time with respect to its size. For

this reason, it's almost impossible to determine an exact solution for large-

scale problems. Some algorithms can �nd optimal solutions to problems with

about 50 or less customers; larger instances have been solved to optimality,

but after a signi�cant computing time. In practice, variations and additional

constraints that must be taken into account in real-life contexts, make the

vehicle routing problem even more di�cult to be solved exactly.

These considerations explain why researchers focused on developing solution

procedures based on heuristic algorithms. Heuristics are in fact designed to

provide good feasible solutions within an acceptable computing time, but

without a guarantee of global optimality. The families of heuristics for the

VRP can be divided in two main classes: classical heuristics, developed

mostly between 1960 and 1990, and meta-heuristics, the more recent ones

[17]. The main di�erence among the two classes is that the �rst methods

perform a limited exploration of the solution space, while the second ones

deeply explore the regions of the search space, where a solution is more

likely to be found. Since classical heuristics are able to produce good quality

solutions within acceptable computing times and can be easily extended in

the presence of additional constraints, they are still commonly used. On the

contrary, meta-heuristics take signi�cant computational times and can be

hardly extended to di�erent situations, but they are able to provide much

higher quality solutions.

13

14 SOLUTION METHODS

2.1 Classical VRP heuristics

Classical VRP heuristics can be classi�ed into three categories: Constructive

heuristics, two-phase heuristics and improvement methods.

2.1.1 Constructive heuristics

Constructive heuristics gradually build a feasible solution trying to keep the

global cost as low as possible. They can be further divided in:

• parallel algorithms, in which routes are built together,

• sequential algorithms, in which routes are built one by one.

The two most used criteria to grow a route or merging routes are (see �g.

2.1)

• the savings criterion. It is based on the idea that if two customers i and

j are served in two separate routes the total cost is ci0 + c0i+ cj0 + c0j,

while it is ci0 + cij + cj0 if they are served by the same vehicle, with a

saving sij = c0i+cj0−cij. The larger is this value, the more convenient
is placing the two customer in the same route.

• the extra-mileage criterion. The extra-mileage is the incremental cost

of inserting customer k between customer i and j, that is eikj = cik +

ckj − cij. The best insertion is the one which leads to the minimal

extra-mileage.

The earliest and maybe most known example of constructive heuristic is the

Clarke and Wright's algorithm [3], which uses the savings criterion in or-

der to merge routes. Many variants and extensions [17] have been proposed

since the creation of this algorithm, because it tends to form good routes at

the beginning and worse ones towards the end, in particular circumferential

routes.

2.1.2 Two-phase heuristics

In the two-phase heuristics the problem is decomposed in the two sub-

problems that characterize it: the clustering component and the routing

2.1. CLASSICAL VRP HEURISTICS 15

Figure 2.1: The two criteria to grow a route

component. The former deals with the division of customers into groups,

each of which is performed by a di�erent vehicle. The routing component

instead, aims at �nding the best route for each vehicle, that is the sequence in

which customers have to be served and it implies solving a TSP problem for

each vehicle. In according to the order in which these tasks are performed,

two-phase heuristics are classi�ed in:

• Cluster-�rst, route-second : customers are �rst divided into clusters and

then a route for each vehicle is chosen.

• Route-�rst, cluster-second : �rst a tour including all customers is built,

then it is divided into feasible vehicle routes.

The earliest implementations of the �rst approach are mainly based on geo-

metrical considerations (one typical example is the sweep heuristic [10]), but

these methods are satisfactory only if the distances between the points in the

network are close to the Euclidean ones.

To overcome the above limitation, some more recent implementations rely

on a partial mathematical formulation of the VRP, modeling the clustering

component. I will outline the idea proposed by Fisher and Jaikumar in 1981

[8] that uses a combinatorial optimization model known as generalized as-

signment. The main features of this problem are: a set of n jobs and a set

of m machines, and usually m < n (less machines than jobs). Each machine

j = 1, ...,m is available for Rj units of time, and takes pij units of time and

cij units of money to perform the job i = 1, ..., n. The objective is to �nd the

16 SOLUTION METHODS

set of jobs to assign to each machine in order to minimize the overall cost.

The mathematical formulation is the following:

min
m∑
j=1

n∑
i=1

cijyij (2.1)

s.t.
m∑
j=1

yij = 1 i = 1, ..., n (2.2)

n∑
i=1

yijpij ≤ Rj j = 1, ...,m (2.3)

yij ∈ {0, 1}

The variable yij is 1 if job i is performed by machine j, 0 otherwise. The

objective (2.1) is the overall cost, constraint (2.2) guarantees that each job

is done by one machine only, while (2.3) that the machines time capacity is

not exceeded.

This model can be used in the VRP setting interpreting the machines as the

vehicles, and the jobs to do as the customers to serve. If the �eet of vehicles

is homogeneous, that is all vehicles have the same capacity, Rj = R for all

j = 1, ...,m. We denote the customers' demand as di for all i = 1, ..., n. In

principle we have the following formulation:

min
m∑
j=1

f(yj) (2.4)

s.t.
m∑
j=1

yij = 1, i = 1, ..., n, (2.5)

n∑
i=1

diyij ≤ R, j = 1, ...,m, (2.6)

yij ∈ {0, 1}.

Where yj is the vector whose components are yij, i = 1, ..., n. In the objective

(2.4), the function f(yj) represents the cost associated to the optimal tour of

each vehicle j. As it is impossible to analytically write this function, it has

to be approximated. A possible way could be:

f(yj) ≈
n∑
i=1

gijyij, (2.7)

2.1. CLASSICAL VRP HEURISTICS 17

where gij describes the cost of assigning customer i to vehicle j. If we assume

to have chosen m seeds σj (they have to be su�ciently distant from the

deposit and one from the others), the cost coe�cients can be approximated

with the extra mileage of inserting customer i between the seed and the

deposit, that is:

gij = c0i + ciσj − c0σj . (2.8)

Once this problem is solved, using Branch-and-bound for example, the TSP

associated to each vehicle has to be solved in order to give a complete solution

to the VRP problem.

Bramel and Simchi-Levi [1] proposed an approach based on a concentrator

location formulation in order to avoid the manual choice of the seeds. We

need the following variables:

xj =

{
1 if customer j is selected as a seed,

0 otherwise;
(2.9)

yij =

{
1 if customer i is in the route whose seed is j,

0 otherwise.
(2.10)

The model is the following:

min
m∑
j=1

n∑
i=1

gijyij +
n∑
j=1

vjxj (2.11)

s.t.
n∑
j=1

yij = 1, i = 1, ..., n, (2.12)

n∑
j=1

xj ≤ m, (2.13)

n∑
i=1

diyij,≤ R, j = 1, ...,m, (2.14)

yij ≤ xj, i, j = 1, ..., n, (2.15)

yij, xj ∈ {0, 1}.

The coe�cients gij = c0i + cij − c0j are the extra mileages, while vj = 2c0j,

which is the cost of the round-trip from the location of j to the deposit, is

used as the cost of selecting j as a seed.

18 SOLUTION METHODS

Constraint (2.13) guarantees that at most m seeds are chosen, (2.14) is the

usual capacity constraint, while (2.15) relates to the fact that a customer

which is not a seed cannot be assigned other customers. The objective is

again to minimize the total cost of routing.

2.1.3 Improvement heuristics

Improvement heuristics aim at improving a current solution by a sequence

of exchanges of nodes or edges. They can work on one route at time or on

many route at the same time, in the �rst case improvement heuristics for the

TSP can be used. Most of the TSP improvement procedures are related to

the λ-opt technique developed by Lin in 1973, which consists of removing λ

edges and rearranging the remaining segments [18]. If a better con�guration

is found, it is implemented, and the procedure goes on until a local optimum

is reached or no more improvements are available.

The distinction between improvement methods and constructive methods is

actually subtle, because often constructive heuristics include improvement

steps at di�erent stages.

2.2 Meta-heuristics

A meta-heuristic is a "master strategy that guides and modi�es other heuris-

tics to produce solutions beyond those that are normally generated in a quest

for local optimality" (Glover and Laguna 1997 [13]). They are problem-

independent techniques, that is they do not take advantage of any speci�city

of the problem. Usually they are not greedy and they may accept a temporary

deterioration of the solution, which allows them to explore more deeply the

solution space and thus to get a hopefully better solution. Meta-heuristics

usually require a signi�cant computational e�ort, but lead to solutions of

better quality.

I will outline some examples of techniques that are commonly used in the

VRP setting.

2.2.1 Tabu Search

The term tabu search was coined by Fred Glover in 1986 [12]. It is an

intensive local search technique that uses memory of the information collected

2.2. META-HEURISTICS 19

during the search, in order to e�ectively explore the solution space. Tabu

search permits moves that deteriorate the current objective function value

and that are chosen from a modi�ed neighborhood of the current solution.

The elements that are excluded from the original neighborhood are called

tabu, and they are inserted into a tabu list, this procedure is useful to avoid

cycling. In large scale problems, the tabu lists could save a signi�cant amount

of computing time, leading to improvements in search e�ciency.

2.2.2 Ant Colony Optimization

Ant Colony Optimization was proposed by Marco Dorigo in 1992 [7], and it

is based on the cooperation mechanisms that real ant colonies implement for

�nding short paths towards the food sources. In order to communicate they

use pheromone, a chemical compound that attracts ants. If an ant �nds a

food source it will mark it, and the path to and from it, with pheromone.

In addition, if an ant detects pheromone, it will follow it with a certain

probability, which increases according to the number of ants that previously

followed it. This leads to a growth in the number of ants that follow the

same route, that becomes the favourite one, and that usually is the shortest

or more convenient one.

This behaviour is imitated in the ant colony optimization algorithms, in

which arti�cial ants moves inside the solution space marking the solutions

with a weight, representing the amount of pheromone released.

2.2.3 Genetic Algorithms

Dating back to the early 1960s [9], the Genetic Algorithms (GA) are one

of the most known examples of evolutionary algorithms, and they try to

emulate the way in which the natural species evolve from one generation to

another. Thanks to a certain scheme, the solutions are encoded as arrays of

bits or character strings (chromosomes), which are then modi�ed by genetic

operators. The chromosomes are then selected according to the their �tness to

be the solution to the given problem, in this way a new population is created.

Each iteration, which leads to a new population, is called a generation. After

some generations, the best chromosome provides the solution to the problem.

20 SOLUTION METHODS

2.2.4 Simulated Annealing

Simulated Annealing (SA) is a probabilistic technique that draws inspiration

from the metal annealing process. The annealing in metallurgy involves

heating and controlled cooling of the material in order to increase the size of

its crystals and reducing its imperfections.

At each iteration, the SA heuristic considers a state s∗ in the neighborhood

of the current state s, and decides whether to move there with a certain

probability. This process leads the system to move to lower energy states

and it is repeated until a certain stability is reached or until some constraints

are violated.

Chapter 3

The proposed algorithm

In this chapter I will describe the real world application addressed in this

thesis and the approach that will be followed in order to solve the problem

faced. The �rst section focuses on the �rst topic, the second introduces the

algorithm while the other three are dedicated to the di�erent part of it.

3.1 Problem description

The practical application that I'm going to address in this report, is the last

mile logistics of a big furniture distributor. Last mile logistics refers to the

�nal step of the delivery process from a distribution center (the depot) to

the end user (the customers). This topic is becoming more and more im-

portant because of the growth of online commerce. Last mile delivery costs

are substantial, comprising 53% of shipping costs [6], and with the growing

of free shipping customers are less willing to pay a delivery fee. In addition

customers are becoming more demanding about the speed of the delivery.

As a result, businesses are trying to develop new technologies and innovative

supply chain models to ensure expedite deliveries, trying at the same time

to cut their costs.

Last mile delivery can be a very tough task due to many factors: the ge-

ographical dispersion of customers' locations, the tra�c and regulations in

urban areas, the management of small orders and extremely big ones, the

customers' requests,... The more constraints orders have to satisfy, the

more computationally burdensome (sometimes unfeasible) becomes the ve-

hicle routing problem that must be solved and the more expensive is the

21

22 THE PROPOSED SOLUTION

delivery for companies.

In the real application that I'm going to consider, the delivery is attended,

that is it must occur in the presence of the customer. For this reason the

company usually proposes the customer a series of time slots for the ap-

pointment and he/she must chose the one he/she prefers. For the sake of the

model simplicity I won't address this aspect and I will assume that customers

cannot choose the time slot in which they would rather be served.

I will consider one depot, located near a big city. The surrounding land is

devoid of natural barriers such as lakes or mountains, and it is provided with

a good road network. Thanks to this feature, euclidean distances can be

considered a good proxy of real distances.

Each client has a certain demand and can be served in a number of con-

secutive days that varies from one customer to the other. In the last day

customers are considered critical or urgent and must be served otherwise

the order is lost.

The �eet of vehicles is homogeneous, that is they all have the same capacity,

and there is no �xed cost associated to the activation of a vehicle. For sim-

plicity I will consider as capacity the maximum number of daily deliveries

that a vehicle can carry out.

The most signi�cant phase for the business is the choice of the daily cus-

tomers pool, because choosing the right set leads to more e�cient routes and

thus more savings. For this reason it is important to elaborate an adequate

strategy to accomplish this task.

3.2 The proposed algorithm

The approach that has been adopted consists of three phases:

• Learning phase: generation of a metric that is used in the executive

phase to choose the pool of clients to serve.

• Dispatching phase: choice of the customers to be served each day.

• Routing phase: building of the optimal routes given the clients loca-

tions.

At the beginning of a certain day, only the customers who have made their

order in the previous days are known, and no deterministic data about the

3.3. LEARNING PHASE 23

future orders are available. For this reason it is important for the dispatching

strategy to take into account of all the available information, as the choice

of each day has impact on the following days.

3.3 Learning phase

The aim of this phase is to exploit the stochastic information about orders

arrivals in order to generate a metric for the following phase. There are some

ideas at the basis of the approach that will be used, and I will outline them

using some examples. Let's suppose that a client c, who is located in an

area with high density of customers, can be served today or in one or more

following days. If today there are very few customers available near c, it is

better to leave c for later. That's because it is likely that there will be soon

some other requests in that area and they may be ful�lled together with c.

Let's instead suppose that there are two clients c1 and c2: the former can

be served today or in one of the four following days, the other one can be

served today or tomorrow. It is reasonable to think that a good decision-

maker would more likely serve c2 today rather than c1, as there are more

opportunities of future aggregation for c2.

The learning phase produces some expected values for comparison, that take

into account the customers' positions and their time left before the due-date

(last day in which the order can be delivered), also called lifespan.

The region that is considered is a rectangular area of dimensions 205km ×
215km. The information is aggregated in cells of dimension 5km× 5km. In

addition we assume that the total number of customers in the area of inter-

est follows a Poisson distribution of parameter λ, and they are assigned to a

certain cell c with probability pc. While λ is one on the parameters of the

simulation, the probabilities pc are given.

For each cell, and each value of lifespan, it is necessary to estimate the ex-

pected extra mileage of a customer to his nearest neighbour. In order to do

that, we must simulate the behaviour of the system for a time period su�-

ciently long in order to have in each cell, and for each value of lifespan an

adequate number of customers. As there are some cells in which the prob-

ability that a customer belong there is extremely low, this approach is not

feasible as it would require a really time-consuming simulation.

For this reason, we exploit the Poisson Arrivals See Time Averages (PASTA)

property. This property, valid for queuing systems with Poisson arrivals,

24 THE PROPOSED SOLUTION

states that arriving customers see on average the system in the same condi-

tion as an external observer looking at it in an arbitrary moment of time.

Accordingly, what we decide to do, is to �rst build a customers portfolio

containing the simulated queues for a certain period of time, and then com-

puting the expected values of extra-mileage by generating a new customer in

each cell. In particular, the �rst step is to build a �t-sample of the customers

queues of each day in a certain time period. The function portfolioGenerator

(see section 4.2.2) carries out this task by generating and storing the customer

queues at the beginning of the day and eliminating the customers that are

served with a certain rule (by the dispatcher). For the sake of simplicity the

chosen rule is to serve only the urgent customers. In addition, as it is needed

for the customers queues to be independent in blocks, the customers queues

are stored every second block of hmax consecutive days. The dimension of

the block hmax matches the maximum number of a customer's days-to-death,

that are the number of days remaining to the order expiration. The number

of simulated days depends on the sample size that is needed, and on the

transitory: in particular if the sample size is n and the transitory is T , the

number of simulated days will be T + 2n. In this way the �nal number of

daily queues that are stored is n.

After building the queues sample, the actual learning is performed. For each

cell and each block of consecutive days, a customer is generated and his extra

mileage (em for brevity) to the nearest neighbour in each of the queues of the

days in the block is computed. As at this point no routes are built, the em is

calculated with respect to the depot, that is we suppose that each customer

i has its own route of the kind: (0, i, 0) (where 0 represents the depot). It is

recalled that the extra mileage emikj is the incremental cost when inserting

customer k in the tour between customers i and j, in formulas:

emikj = cik + ckj − cij

where cab, in this case, is the euclidean distance between a and b.

Afterwards, for each cell and block of days, for each value h from 1 to hmax
the representative value of em is computed as the minimum value in the �rst

h days of the block. This procedure leads to values of em that are decreasing

with increased number of days-to-death (the less time remains, the more

urgent is the order).

Finally the average extra mileages for each cell and possible value of days-

to-death are computed by summing the values in the di�erent blocks and

3.4. DISPATCHING PHASE 25

dividing the total by the number of blocks.

3.4 Dispatching phase

The objective of this phase is to de�ne the pool of clients that have to be

served day by day. In this phase no route is built, but only the set of cus-

tomers is chosen. At the beginning of each day there is a queue of customers

waiting for their order delivery. Among them, there are the critical or urgent

ones: it is impossible to leave them for later, they must be served that day.

Some simple logic that can be used to make the choice are the following two:

• serve ALL the customers until reaching the capacity,

• serve only the URGENT ones.

Both of the logic above have their limitations and can lead to high operating

costs. In particular, if we decide to serve all the customers, some of them

could be very far from the depot and very isolated, probably we are losing

future occasions of aggregating them with some other clients and the routes

that we're building are not e�cient. On the other hand it is equally not

convenient to deliver only the urgent orders, as they are probably few and

some not-urgent customers near the urgent ones could be served together

with them.

What we would like to do with the proposed algorithm is to avoid the pre-

vious limitations, trying to choose each day a pool of customers which ob-

viously contains the urgent ones but also the not-urgent ones that could be

conveniently served that day together with the urgent ones.

3.4.1 Notations

In this section I would like to brie�y introduce some notations that I will use

in the rest of the report.

We denote as:

• U the set of urgent clients in the daily queue,

• NU the set of not-urgent clients in the daily queue,

• R the capacity of each vehicle,

26 THE PROPOSED SOLUTION

• m the number of vehicles,

• nCust the total number of customers in the queue,

• nUrg the cardinality of the set U, while nNotUrg the cardinality of

the set NU,

• totCap = m×R,

• em is a shorthand for extra mileage,

• when I say take an appointment with a customer in a certain day, it

means that this customer is going to be served that day (we suppose

that customers always accept to be served in the proposed day).

3.4.2 Algorithm description: the Dispatcher Top−Down

The algorithm we propose, uses a top-down approach to de�ne the pool of

clients to serve each day, in other words, �rst all the customers are divided

into clusters, then the least convenient ones are excluded from the pool of

clients that are going to be served that day. The way in which the algorithm

works depends on the number of urgent customers:

• Case 1: nUrg = totCap. In this case only the urgent customers (all of

them) are served and the not-urgent aren't even considered.

• Case 2: nUrg > totCap. In this case we have to decide who to serve

(again only among the urgent ones), and to do this we solve the opti-

mization problem presented in chapter 2 (2.11). The solution of this

problem is the division of the customers into clusters. Afterwards, we

compute the em of each customer to his nearest neighbour in his same

cluster. If the customer is alone in his route, we suppose that his em to

the nearest is a very high value (if he is alone in his route, it means that

he's very far from the other customers, and he's maybe not convenient).

Finally the customers are ordered according to increasing value of em

to their nearest neighbour and an appointment is taken only with the

�rst totCap ones. The remaining orders are lost.

It must be noted that this situation is very rare if the parameters of

the simulation are �nely tuned.

3.4. DISPATCHING PHASE 27

• Case 3: nUrg < totCap. In this situation there are two further sub-

cases:

� Case 3.1: nCust ≤ totCap. First the optimization problem (2.11)

is solved, second for each customer i we compute the em to his

nearest neighbour in his same cluster (ni) with respect to the de-

pot (denoted with emini
).

As in the learning phase, no route is built, so the values of em are

always computed with respect to the depot (from now on, for the

sake of simplicity I will denote with emij the value emi0j).

The value of emini
is compared to the average value referring to

i's cell and days-to-death (expEmi). We denote the di�erence

expEmi − emini
as δemini

. The bigger is δemini
, the more conve-

nient is to serve the customer, as it means that in that speci�c day

his emi is much lower than the average value. The values δemini

are ordered, and the appointment is taken only with the customers

whose values are greater or equal than a certain threshold (which

is a problem parameter).

� Case 3.2: nCust > totCap. In this case we have two phases. In

the �rst one we solve the optimization problem (2.11) and then,

after computing the values of δem, we order the clients and select

the top totCap. The second phase starts at this point, and it

consists of solving another optimization problem with only the

selected customers and again computing the values δemini
for each

i = 1, ..., nCust. In order to avoid too long queues, it is possible

to �x a value for the minimum number of customers we would

like to be served in the "busy" days, as a percentage over the

total capacity (p). The customers are again ordered according

to decreasing δem, the top p × totCap are inserted in the pool

while the remaining are selected only if their δem is greater or

equal than a certain threshold, and until the capacity is still not

saturated.

The reason why the problem is solved twice and why we do a

double selection, is because the �rst clusters that are formed, as

the number of clients overcomes the total capacity, are not realistic

(the number of vehicles has to be deliberately increased).

28 THE PROPOSED SOLUTION

3.4.3 Dispatcher DEM

One of the starting points and benchmarks in developing our algorithm

has been the master thesis of F. Patrone [19], a student of Politecnico di

Torino who faced the same problem in a similar way in 2014. The main

di�erence between his work and this one, is the dispatching phase, and I

will now outline the main features of his dispatching strategy (the so-called

Dispatcher_DEM).

The idea at the basis of his strategy is to consider the urgent customers as

the seeds of the tours the are grown in parallel by adding the not urgent

ones.

The algorithm works this way:

1. First an appointment is taken with all the urgent customers, which

means that they are added to the set A, the appointed. The not-

urgent ones are put is the set NA, containing the customers that still

don't have an appointment.

2. It is determined the couple a ∈ A, k ∈ NA such that δemka is maxi-

mum. Then it is identi�ed z ∈ NA such that emkz = min
j∈NA

emkj.

3. If emkz > emka or δemkz < thresh, where thresh is a parameter of the

problem, it means that it is convenient to serve customer k together

with a, so k is added to the set A. Go back to 2.

4. Otherwise, it is better to serve the two not appointed customers k and

z together, and it is possible to form a group starting with them.

For all the customers n ∈ NA, it is computed the minimum value of

em with respect to all the members of the group (denoted with emng),

then if the value δemn = expEmn− emng > thresh, then n is added to

the group. The procedure goes on until the group dimension overcomes

the capacity limit of the vehicle. The group is then added to A only if

the total capacity constraint is not violated. Go back to 2.

This procedure has some limitations that we wanted to overcome by taking

a di�erent approach. The �rst and maybe the most signi�cant one is the fact

that there is some ambiguity related to the routes. In the dispatching phase,

according to the author, no route should be built, but in DispatcherDEM

some routes are actually built, even if they're called pseudo − routes as

3.5. ROUTING PHASE 29

they will maybe not coincide with the �nal routes built by the router. Each

pseudo-route is grown starting from an urgent customer considered as the

seed, and the number of visited customers cannot overcome the capacity

limit of a vehicle.

In addition, as there is not a phase in which routes can be merged, two or

more urgent customers cannot be visited by the same vehicle in this phase.

This is another great limitation of this algorithm as maybe the route that

are built by the dispatcher may quite di�er from the router's ones.

3.5 Routing phase

After having decided what is the group of clients we want to be served in a

certain day, we have to build the routes, which means dividing the group into

subsets and establishing the order in which the customers must be visited by

each vehicle. The routing is performed by a VRP solver which exploits the

method of ejection chains, a local search algorithm.

A fundamental aspect in all local search algorithms is the construction of

a neighborhood, through the identi�cation of all possible moves from one

solution to another. In order to increase the performance of the algorithms,

compound moves can being used. Compound moves are obtained by com-

binations of basic moves, that just consist of an insertion or exchange of

vertices/arcs on the graph of the problem.

Ejection chain procedures were introduced by Glover in 1993 [11] for the TSP,

and provide a technique to generate neighborhoods of compound moves. The

fundamental feature of this technique is that each compound move is gen-

erated by complimentary steps, introducing certain elements and ejecting

others. In other words, one step of the move creates disturbance (for exam-

ple it violates a node degree by adding one or more edges), while the following

one restores the balance.

In [21] we can �nd a possible application of ejection chains to the VRP set-

ting, I will now brie�y outline its main features.

The starting point is S = (V,X), a partial graph associated to an initial

solution. Rego, following Glover's perspective, de�nes an ejection chain as a

sequence of triplets of consecutive nodes in a route. We denote a triplet as

(v, v, v), where v ∈ V is a vertex, and v and v are respectively its predecessor

and successor in the route. An ejection chain of l+ 1 levels is de�ned over a

subgraph L = (W,T), where T is a set of of l + 1 triplets denoted by:

T =
l⋃

i=0

{(vi, vi, vi)}.

An ejection consists of changing the position of one vertex and in an ejection

chain each vertex vi ejects the vertex vi+1. The whole process transforms T

into

T ′ =
l⋃

i=1

{(vi, vi−1, vi)},

and disconnects the graph S. The transformation is not a complete transition

from a route set to another, as vl doesn't belong to any route. It can be

completed through the two following connectivity processes:

(a) Type 1 : introduction of the set

T ′1 = (v0, vl, v0);

(b) Type 2 : replacement of the set T
′
= {(vlr, vls)} with

T ′2 = {(v0, v0), ((vlr, vl, vls)}.

The two processes are illustrated in picture 3.1, in the case of a three level

ejection chain. The dotted lines represent T before the process of ejection,

the back lines are the result of the complete transition.

On the basis of the chosen connectivity process, the resulting compound

moves are named as:

(a) multi-node exchange process : represented by an ejection chain ended

with type 1 connectivity process;

(b) multi-node insert process : ejection chain ended with type 2 connectivity

process.

3.5. ROUTING PHASE 31

Figure 3.1: Connectivity processes.

Chapter 4

Implementation

This chapter focuses one the implementation of the program. All the pro-

gramming languages and tools that are used in the di�erent phases of the

algorithm are speci�ed in the �rst section. In the second and last section

instead, I will outline the main components of the MATLAB program.

4.1 Used software

The project has been developed using MATLAB, but mostly with the use

of the typical structures of Object Oriented programming. This approach

in fact, allows to manage software complexity and it is particularly useful

when developing and maintaining large applications and sophisticated data

structures. One of the numerous advantages of MATLAB is the possibility

of integrating the OOP concepts with the functionalities of procedural pro-

gramming, which sometimes are more easily manageable.

The proposed dispatching algorithm, described in the previous chapter, in-

cludes the optimization model (2.11), which aims at dividing the customers

into clusters. This problem is solved using Gurobi, a mathematical program-

ming solver, which is faster and more powerful than the one embedded in

MATLAB.

Finally the routing phase is performed by another solver, written in C++,

which is part of VRPH, an open source library of heuristics for generating

solutions to vehicle routing problems. This library was developed by Chris

Groer and it's available on the website https://projects.coin-or.org/

VRPH.

33

34 IMPLEMENTATION

4.2 Main components of the program

4.2.1 Parameters and data

The �le grid.txt contains the coordinates of each cell in the grid, and the

probability that a customer belongs to that cell.

The class Environment_parameters is used as a container for all the pa-

rameters of the problem and of the di�erent simulations.

4.2.2 Learning phase

The learning phase, described in chapter 3, is performed by the MATLAB

script learning and makes use of the function PortfolioGenerator that,

as the name says, generate the portfolio of customers queues that ais used

in the learning. The output of this phase are the maps of expected extra-

mileages, stored in �les named EMdistributionXX.txt, where XX indicates

the parameter of the Poisson distribution used for generating the customers.

The �les contain a line for each cell and each line contains the expected em

in that cell and for the di�erent values of days-to-death.

4.2.3 Dispatchers

The class Dispatcher is the more general one and includes the main fea-

ture of a dispatcher, which is the algorithm that chooses the daily pool

of clients. There are three di�erent subclasses of the class Dispatcher:

DispatcherURG, DispatcherALL, DispatcherTopDown. The �rst two ones

are the benchmark dispatchers, used to compare the performance of our so-

lution (the third one, described in section 3.4.2). The �rst chooses only the

urgent customers in the queue, the second all the customers. In both cases,

if the number of customers is greater than the total capacity, only some of

them are selected according to the following parallel heuristic.

First m clients (as many as the number of vehicles) are chosen as seeds.

Denoting with:

• σk, k = 1, ...m the seeds;

• cij the distance between nodes i and j;

σ1 is chosen as the furthest node from the depot, while the others are those

which have the greatest minimum distance from the other seeds. In formulas:

σj = argmax
i=1,...,n

(min{ci0, ciσ1 , ..., ciσj−1
}) j = 2, ...,m. (4.1)

Once the seeds are de�ned, the route are expanded in parallel, selecting

at each step the customer with minimum value of em for one of the open

routes. If the insertion saturates the vehicle capacity, the route is closed

and no other customer may be added to that route. When all the route are

closed the procedure stops. However, in the case of DispatcherALL, there

is the possibility that among the postponed orders, some one is urgent. If

that happens, each remaining urgent customer is placed in the position of a

not urgent customer that guarantees the minimum extra mileage.

4.2.4 Routing

The routing is performed by a solver named vrp_ej.exe, which is run inside

the MATLAB function V RPH. In V RPH, �rst the input �les containing

the clients' coordinates and demands are de�ned, then the actual routing

is performed (through vrp_ej). The function returns the cost (the total

traveled distance) of the routing.

4.2.5 Daily simulation

The scripts ProjectV RP_TopDown and ProjectV RP_Benchmark imple-

ment the the dispatching and routing phases day by day. In both the projects

there is a loop that simulates the time �ow, each day a set of orders is gen-

erated and is added to the residual queue from the preceding days. Then

the dispatcher (topDown in the �rst project and one of the two benchmarks

in the second) chooses the set of orders that have to be satis�ed and �nally

the router decides the vehicles routes. At the end of the time loop, all the

statistics necessary to evaluate the algorithm performances are computed

and stored in an output �le named Results_XXX, where XXX represents

the name of the dispatcher used (TopDown, URG, ALL). The considered

performance metrics are: the average queue length, the total number of or-

ders received and the number of delivered orders, the length of the residual

queue at the end of the simulation, the average customers' waiting time, the

average traveling cost per customer, and the total algorithm computing time.

Chapter 5

Analysis of the simulation results

This chapter is devoted the the experimental evaluation of the proposed al-

gorithm on some simulated scenarios. The �rst section of the chapter focuses

on the description of common assumptions parameters and data in the two

scenarios, the other two sections describe the speci�city of the two di�erent

scenarios and analyze the results obtained.

All the experiments were made with an Intel core i7-4510u 2 GHz machine.

5.1 Assumptions, parameters and data

In the two scenarios of simulation we're going to consider the region described

in section 3.2, a rectangle of dimensions 205km × 215km divided in cells of

dimensions 5km× 5km, that form a grid containing 42 vertical cells and 44

horizontal cells. The cells coordinates, and the probabilities that a customer

belongs to each of the cells, are contained in a �le named grid.txt.

We're assuming that each customer can order only one item at a time and

we're not considering its dimension, so the vehicles capacity is expressed only

in terms of number of parcels they can carry, and not in terms of volume.

It must be noted that this is not true in the case of a furniture distributor,

because furniture are sometimes very voluminous.

In the real application, each day customers are called and they can decide

whether accepting or rejecting to be visited. In the model we're assum-

ing that they always accept, because we want to analyze the impact of the

di�erent politics regardless of the variability introduced by the customers

decisions.

37

38 ANALYSIS OF THE SIMULATION RESULTS

Each order can have a life-span that is a number of consecutive days uni-

formly distributed in the interval [0, 5].

We assume that there are 20 vehicles, with the same capacity of 5 items per

vehicle, the maximum number of customers that can be visited in a day is

thus 100.

For all the simulations the time horizon is of 100 days, and we decided to

truncate the simulation after the 100 days are �nished. The residual queue of

customers as the ones of the �rst 10 days, are not considered in the compu-

tation of the performance metrics. The simulated time period is adequately

long for guaranteeing that this decision doesn't a�ect heavily the results.

5.1.1 Parameters of the router

As explained in the previous chapter, the chosen router is based on a local

search heuristic, the ejection chains method. The following parameters have

been set in the router.

• Initial solution: Sweep. The initial solution is obtained using the sweep

method, a cluster-�rst, route-second heuristic (see section 2.1.2). This

algorithm works this way: in the bi-dimensional map of customers and

depot locations, the depot is considered as the center of rotation of a

half-line passing through a chosen node in the map. The ray sweeps

through the nodes surrounding the depot, rotating in counter-clockwise

or clockwise direction, and assigning the encountered nodes to a clus-

ter, until the vehicle capacity is not saturated (see image 5.1). After

completing the clustering phase, a TSP is solved inside each cluster in

order to route the customers.

Figure 5.1: A picture illustrating the sweep heuristic.

5.2. SCENARIO 1 39

• Number of ejected nodes: 5. This is the number of nodes ejected at

each iteration of the ejection chain algorithm.

• Number of attempts: 700. This represents the number of attempts to

improve the current solution. Increasing this value leads to better �nal

solutions, but increases the computing time.

• Search type: Regret search. The regret represents the opportunity loss

at each step, that is the pro�t gap between the current state and a

possible future state. At each step it is chosen the direction that leads

to the minimum regret.

5.2 Scenario 1

In this scenario we consider a depot located in the area with highest concen-

tration of customers. In particular the depot coordinates are [122.75, 154.1].

Figure 5.2 shows an example of the customers' distribution in a certain day.

In particular the black square represents the depot, the green dots are the

customers chosen by the dispatcher, the red ones represent the urgent ones,

and �nally the black dots are the customers left for later.

Figure 5.2: On the left the customers' locations map, on the right a zoom of the most

crowded area.

40 ANALYSIS OF THE SIMULATION RESULTS

5.2.1 Tuning of the threshold

The DispatcherTopDown uses a threshold to decide whether the bene�t of

visiting a customer in a certain day is su�ciently high with respect to the

expected value in that area. The �rst simulations are needed to choose the

optimal value for this threshold. In order to accomplish this task, we repeat

the simulation with 3 di�erent values of λ (the Poisson distribution of arrival

parameter), and 8 di�erent values of the threshold. Figure 5.3 shows how

the average cost per customer (the average number of kilometers traveled to

reach a customer) varies with the value of the threshold in the three di�er-

ent scenarios of demand. In addition, in order to make a comparison, the

three graphs also show the prices obtained using the 'dummy' dispatchers.

From the �gures, we can observe that the minimum price is obtained by �x-

ing the threshold at -8. However, in all the cases, the price obtained using

DispatcherTopDown is lower than the one obtained with the 'dummy' dis-

patchers.

Sometimes the number of kilometers traveled is not the most important fac-

tor in a business decision, as focusing only on this value can be at the expense

of the customer satisfaction.

The additional advantage of the proposed dispatcher is that by varying the

threshold we can also set the levels of two other important parameters that

are the average customers' waiting time before the service and the average

number of customers in the queue at the end of the day. The two graphs in

�g. 5.4 show the behaviours of this two performance indicators with respect

to the di�erent values of the threshold.

We can see that with a higher threshold the average waiting time before the

service and the average level of the residual queue using theDispatcherTopDown

get higher. In the case of the DispatcherURG the two metrics tend to be

very high as the customers are left waiting for the longest time possible. On

the contrary, using the DispatcherALL, they tend to be nearly equal to zero

as customers are served as soon as possible.

5.2. SCENARIO 1 41

Figure 5.3: Sensitivity analysis for tuning the threshold

42 ANALYSIS OF THE SIMULATION RESULTS

Figure 5.4: Waiting time and residual queue with varying threshold

5.2. SCENARIO 1 43

5.2.2 Comparison with the benchmarks

In order to understand whether the top−down approach is e�cient, we com-

pare its performances with the ones obtained using the dummy strategies.

The three graphs in �gure 5.5 show the behaviour of the average cost per

customer with di�erent values of demand, using the di�erent dispatchers.

The threshold is set at -8, as in the previous section we saw that this value

is the optimal one, and the simulation is repeated with three di�erent seeds,

as we need to understand if the e�ciency is not due to particular conditions

of a speci�c simulation.

In all the graphs we can observe that the cost tends to decrease with the

increase of the average number of customers (λ). This phenomenon is due to

the fact that a higher λ leads to an increase in the concentration of customers

that get closer together, the distances in the routes are thus lower. In addi-

tion, we can see that the use of the DispatcherTopDown implies a saving of

almost 0.5 km per customer on average, with respect to the dummy dispatch-

ers. The advantage of using our algorithm gets lower with higher values of

demands, that's because the benchmark strategies are more performing with

a higher density of customers.

Using DispatcherURG or DispatcherALL results in almost the same cost.

This is probably due to the absence of any logic in the choice of customers

in both the strategies.

Figure 5.6 shows the percentage of saving usingDispatcherTopDown instead

of DispatcherURG, with the same three di�erent seeds as before to generate

the random sequence of customers. The savings are computed as:

cost(URG)− cost(TopDown)
cost(URG)

Here cost(URG) and cost(TopDown) denote the costs resulting from the use

of DispatcherURG and DispatcherTopDown respectively. From the graph

we can notice a percentage of saving that goes from a minimum of ∼ 2% to

a maximum over 6%.

In �gure 5.7 we can instead observe the behaviours of the two other perfor-

mance metrics (the average residual queue length and the average customer's

waiting time in the queue) introduced in the previous section.

The waiting time and the length of the queue tend to increase in all the

44 ANALYSIS OF THE SIMULATION RESULTS

Figure 5.5: Average costs comparisons

5.2. SCENARIO 1 45

Figure 5.6: % Saving TopDown over URG

three cases (sometimes really slightly), when the number of customers is

higher. Serving all the customers translates into almost zero waiting times

and queues, while serving only the urgent ones leads to long queues and long

waiting times and sometimes implies the loss of some orders (if the number

of urgent order overcomes the total available capacity). The advantage of

our strategy is that it combines a lower cost with very low waiting times for

the customers and thus shorter queues.

We also want to compare the performances of DispatcherTopDown with

those obtained using DispatcherDEM . In �gure 5.8 we can see the results

of the analysis. In all the simulations we used seed=8, cut-o� threshold=

-8 for the DispatcherTopDown and -4 for the DispatcherDEM . The three

graphs show respectively the behaviour of the average number of km traveled

to serve a customer, the average number of days each customer waits, the

average length of the queue at the end of the day, with varying demand. The

average cost in the case of DispatcherTopDown is a little higher than the

in the other case, but the higher cost is justi�ed by the presence of lower

customers' waiting times and shorter residual queues.

46 ANALYSIS OF THE SIMULATION RESULTS

Figure 5.7: Waiting time and residual queue with varying demand

5.2. SCENARIO 1 47

Figure 5.8: Performances comparisons (TopDown VS DEM)

48 ANALYSIS OF THE SIMULATION RESULTS

5.3 Scenario 2

In this scenario we try to change the geography by considering a di�erent

customers' distribution. In particular we assumed that customers are uni-

formly distributed (each cell has the same probability) and that the depot

coordinates are [105, 110] (in the center of the region). Figure 5.9 shows an

example of the map of customers in a certain day. The black square repre-

sents the depot, the green dots are the customers chosen by the dispatcher,

the red ones represent the urgent ones, and �nally the black dots are the

customers left for later.

Figure 5.9: Customers' locations map.

5.3.1 Comparison with the benchmarks

Again, in order to analyze the performances of the top − down approach in

this di�erent context, we compare the results with those ones obtained using

the dummy strategies.

As before, we perform a sensitivity analysis in order to choose the right cut-

o� threshold. The analysis is analogous to the one described in section 5.2.1,

so I won't go further into the details. The optimal threshold after the analysis

turns out to be -20.

5.3. SCENARIO 2 49

Figure 5.10: Performances comparisons (TopDown VS benchmarks)

50 ANALYSIS OF THE SIMULATION RESULTS

Afterwards, as in the preceding scenario, we analyze the behaviour of average

cost per customer, average customers' waiting time in the queue, average

length of the residual queue at the end of the day. The results are shown in

�gure 5.10 and they are similar to those obtained in scenario 1. The main

di�erence is that in this case the average costs are higher, as customers are

farther from the depot.

In �gure 5.11, again, we have the saving using DispatcherTopDown instead

of DispatcherURG in terms of percentage (computed as in scenario 1). In

this case the savings seems to be lower than in the other case, maybe because

in a more regular situation, the dummy strategies work better.

Figure 5.11: Percentage of saving (TopDown VS URG)

Conclusion

After having described the features of the vehicle routing problem (VRP),

I focused on a particular real-world application involving a dynamic VRP,

in which orders are revealed dynamically over time and it is necessary to

develop a strategy to choose each day the right pool of customers to serve.

The proposed algorithm consists of three phases: the learning, whose aim is

to develop a metric for the following phase based on the extra mileage crite-

rion, the dispatching, which consists in the choice of the customers to serve,

and �nally the routing, through which customers are allocated to di�erent

routes.

We decided to use a top-down approach to choose the customers, based on

a preliminary step in which all the customers in the queue are divided into

clusters, followed by a phase in which the service of the least promising cus-

tomers is postponed for a later day.

The performance of our strategy are compared to those obtained using two

simpler strategies (serving all the customers and serving only the urgent ones)

in two di�erent scenarios. The result of the analysis is that there is a saving

in the cost (average number of km traveled to reach a customer) up to the

6%.

The savings aren't as high as we expected, and the performances of the algo-

rithm are not totally satisfactory. One of the possible factors that contributed

to this result is the optimization model used to cluster the customers in the

dispatching phase. Probably the clusters built through this model are not

su�ciently good, and this a�ects the following choice of customers.

One possible solution could be building the routes through the router, al-

ready in the dispatching phase. This solution implies that the C++ code of

the router must be modi�ed in order to include in the output the routes and

not only the total routing cost.

Instead of using a �xed cut-o� threshold, we could use one that varies accord-

51

52 CONCLUSION

ing to some features of the customer considered, in order not to penalize the

customers located near the depot, that don't bring enough bene�t in being

chosen.

The algorithm could be extended in order to take into account the possible

rejection from the customer to the proposed delivery date and the dimension

of the orders.

Another possible next step could be to consider the delivery times, that in

the case of a furniture distributor, are extremely relevant (sometimes build-

ing a furniture is really time-consuming).

Despite the numerous limitations, the proposed approach is undoubtedly a

good starting point for the development of more sophisticated algorithms.

Bibliography

[1] J. Bramel and D. Simchi-Levi, A Location-Based Heuristic for General

Routing Problems, Working Paper, Department of Industrial Engineer-

ing and Operations Research, Columbia University, 1992.

[2] P. Brandimarte, G. Zotteri, Introduction to Distribution Logistics, New

York: Wiley, 2007.

[3] G. Clarke and J. Wright, Scheduling of vehicles from a central depot to

a number of delivery points, Operations Research, 12(4):568-581, 1964.

[4] G. B. Dantzig and J. H. Ramser, The Truck Dispatching Problem, Man-

agement Science, 6(1):80-91, 1959.

[5] J. Desrosiers,Y. Dumas, M.M. Solomon, F. Soumis, Time Constrained

Routing and Scheduling, M. O. Ball, T. L. Magnati, C. L. Monma, and

G. L. Nemhauser (eds), Handbooks in Operation Research and Manage-

ment Science: Network Routing, 8:35-139, 1995.

[6] S. Dolan, The challenges of last mile logistics & delivery tech-

nology solutions, businessinsider.com, May 10, 2018, web, August

9, 2018, <https://www.businessinsider.com/last-mile-delivery-shipping-

explained?IR=T>.

[7] M. Dorigo, Optimization, Learning and Natural Algorithms, Ph.D. the-

sis, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.

[8] M.L. Fisher and R. Jaikumar, A Generalized Assignment Heuristic for

Vehicle Routing, Networks, 11:109�124, 1981.

[9] A. Fraser, Simulation of genetic systems by automatic digital computers.

I. Introduction, Aust. J. Biol. Sci. 10:484�491, 1957.

53

54 BIBLIOGRAPHY

[10] B.E. Gillett and L.R. Miller, A Heuristic Algorithm for the Vehicle-

Dispatch Problem, Operations Research, 22:340�349, 1974.

[11] F. Glover, Ejection chains, reference structures and alternating path

methods for traveling salesman problems, Discrete Applied Mathematics,

65(1-3):223-253, 1996.

[12] F. Glover, Future paths for integer programming and links to arti�cial

intelligence, 13(5):533-549, 1986.

[13] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers,

Boston, 1997.

[14] C. Groër, B. Golden, E. Wasil, A library of local search heuristics for

the vehicle routing problem, Mathematical Programming Computation,

2:79-101, 2010.

[15] B. Kallehauge B, J. Larsen, O.B. Madsen, M.M. Solomon, Vehicle Rout-

ing Problem with Time Windows, 2005. In: G. Desaulniers, J. Desrosiers,

M.M. Solomon (eds) Column Generation. Springer, Boston, MA.

[16] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, Optimization by Simu-

lated Annealing, Science, 220(4598):671-80, 1983.

[17] G. Laporte, F. Semet, Classical heuristics for the capacitated VRP, The

vehicle routing problem, Society for Industrial and Applied Mathemat-

ics, Philadelphia, PA, 109-128, 2001.

[18] S. Lin, Computer solutions of the traveling salesman problem, 44:2245-

2269, 1965.

[19] F. Patrone, Metodi per la soluzione di problemi dinamici di routing di

veicoli, Master thesis, IV Facoltà di Ingegneria, Corso di Laurea in In-

gegneria Gestionale, Politecnico di Torino, 2014.

[20] V. Pillac, M. Gendreau, C. Guéret, A. Medaglia, A review of dynamic

vehicle routing problems, European Journal of Operational Research,

Elsevier, 225(1):1-11, 2013.

[21] C. Rego, Node-ejection chains for the vehicle routing problem: sequential

and parallel algorithms, Parallel Computing, 27(3), 201-222, 2001.

BIBLIOGRAPHY 55

[22] P. Toth, D. Vigo, An Overview of Vehicle Routing Problems, The Vehicle

Routing Problem, 1-26, 2002.

[23] R. W. Wol�, Poisson Arrivals See Time Averages, Operations Research,

30(2):223-231, 1982.

[24] Xin-She Yang, Metaheuristic Optimization, Scholarpedia, 6(8):11472,

2011.

		Politecnico di Torino
	2018-10-07T20:37:50+0000
	Politecnico di Torino
	Paolo Brandimarte
	S

