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Abstract

The effect of hydraulic resistance on the downstream evolution of the water surface profile
h in a sloping channel covered by a uniform dense rod canopy following the instantaneous
collapse of a dam was examined using flume experiments. Near the head of the advancing
wave front, where h meets the rods, the conventional picture of a turbulent boundary layer was
contrasted to a distributed drag-force representation. The details of the boundary layer around
the rod and any interferences between rods was lumped into a drag coefficient Cd. The study
demonstrated the following: In the absence of a canopy, the Ritter solution agreed well with the
measurements. When the canopy was represented by an equivalent wall friction as common
when employing Manning’s formula with constant roughness, it was possible to match the
measured wave front speed but not the precise shape of the water surface profile. However,
upon adopting a distributed drag force with a constant Cd, the agreement between measured
and modeled h was quite satisfactory at all positions and times. The measurements and model
calculations suggested that the shape of h near the wave front was quasi-linear with longitudinal
distance for a constant Cd. The computed constant Cd(≈0.4) was surprisingly much smaller
than the Cd(≈1) reported in uniform flow experiments with staggered cylinders for the same
element Reynolds number. This finding suggested that drag reduction mechanisms associated
with unsteadiness, non-uniformity, transient waves, and other flow disturbances were more
likely to play a role when compared to conventional sheltering effects.
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1. Introduction

Over the centuries agriculture has been one of the most important form of sustenance for all the
populations across the entire world. The first pioneers soon realized that the systematic request
of water from the plants could not be supplied by the random nature of the rains. In order to
have water supplies all year, independently that it was a rainy period or not, the first artificial
reservois were built. Historically, the first certified dam was built around the 4000 B.C. in
Egypt. It was followed by more dams built by the Babylonians. These dams, constructed with
compacted soil, had the main purpose of storing water to power the irrigation systems.
Nowadays there are hundreds of thousands dams all over the world and, to the initial goal of
storing water, it’s been added up the purpose of generate electricity with the birth of the so
called "Hydroelectric". The dams are also the main supplier of water for domestic as well as
industrial use.
The dams, which are barriers built across the rivers, have different sizes. The smallest ones,
known as "small dams" count less than 15 meters of height or a million cube meters of water
stored. All the others are labeled as "big dams". For example one of the most famous dams
in Africa is the Aswan Dam, built across the Nile River. It is 3,830 m long, 980 m wide at
the base, 40 m wide at the crest and 111 m tall. It holds 169 millions cubic meters of water
and has an installed power of 2100 MW. Another historically remarkable dam is the "Hoover
Dam", with its 19 turbines and an installed capacity of 2080 MW provides power in Arizona,
California and Nevada. The reservoir has a capacity of 35.2 millions cubic meters of water.
Although the good sides, the building of a dam comes with dangerous consequences too. In
fact, the collapse or even a partial break of the dam would generate the spillage of a great
amount of water with devastating consequences for the downstream localities. The collapse
of the dam, hereafter referred to as dam-break, even if it is not a common event has attached
great importance because it results in life losses as well as environmental and urban damages.
Despite the fact that the "big dams" have larger amounts of water, the failure of "small dams"
is way more recurrent resulting in more human losses and higher costs for renovations. In par-
ticular the collapse of the "small dams" is even more frequent for the privately-owned dams
[60]. According to a study conducted in China in 2009 in the last two centuries more than 900
hundreds dams collapsed. About the 66% of the 593 cases collected are represented by earth
dams [79]. It is shown that the "small dams" appear to have a higher probability to collapse,
in fact the 50% of the failures concern the dams with an height less than 15m. Moreover the
47% of failures is about the first 20 years after the construction. For example the "Coedty dam"
in the United Kingdom with a 0.32 millions cube meters reservoir failed on 1925 causing the
death of 16 people [55]. The Kelly Barnes, with his 11.6m height, failed on 1977 causing the
death of 39 people [9], [60].
Moreover, interest in the dam-break problem in hydrology and hydraulics have exponentially
proliferated given their similarities to surging or flash/outburst floods in streams [64], glacial
lake bursts [13], tsunami run up on coastal plains [14], intense rainfall induced overland flow
over vegetated surfaces in dryland ecosystems [41, 71, 6, 59], peatlands [28] and tropical re-
gions [1], inflow into weltands and marshes [38, 51], among others. More broadly, the shallow
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1 – Introduction

water equations describing water flow after dam-break encompass diverse phenomenon such
as thin-film flows, gravity currents, and the non-linear Fokker-Planck equation widely used in
engineering, physics, chemistry, and biology [20].
In order to reduce the risk linked to the dam-break is crucial to comprehend the features of the
flow outcoming from the dam. The dam-break problem is associated to a sudden release of
water behind a vertical wall [76]. The salient features of such shallow flows are unsteadiness
and inertia being balanced by hydrostatic pressure gradients and resistive forces.
Hence, the work here has the main goal to add to the experimental literature benchmark flume
experiments where the static water level behind the dam as well as bed slope are varied for a
channel uniformly covered by a dense rod canopy. It is envisaged that these experiments can
be used in testing future simulations (LES or DNS) as well as theories and models aimed at
describing dam-break wave propagation in situations where the resistance to the flow is not
originating from side or bed friction. The majority of applications listed in the introduction fall
in this aforementioned category.
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2. Literature Review

For many years the dam-break problem has been a central theme in hydrology and hydraulics
research. This interest led to the accomplishment of a great number of run tests and analytical
studies useful to describe the behavior of the wave following the sudden release of water be-
hind the dam. In this section will be reported the main results achieved for horizontal prismatic
channels as well as sloping. Furthermore will be examined all the prior literature comprehend-
ing both the cases where the bed-ground is smooth as well as highly vegetated.

2.1 Flow over a smooth concrete channel

2.1.1 Experiments

The huge loss of human lives and money due to the dams collapsing over the last century has
resulted in many experimental studies of the dam-break problem.
Most of the experiments were reviewed by Lindsey Ann LaRoque [49]. The experiments above
mentioned were conducted between 1960 and 2014 and involved smooth concrete sloping
channels. The characteristics of the flow were captured by measuring the free water level
profile as well as the velocity of the flow by image analysis techniques. On the other hand it is
difficult to find direct measurement of the flow velocity. Among them, for example, Stansbly in
1998 [68] exclusively focused on the initial stages of the instantaneous dam-break over smooth
surfaces and Janosi in 2004 [36] studied the frictional reductions via additions of polymers.
At last is worth mentioning the experimental studies conducted by Schoklitsch in 1917 [66]
which will be compared with the analytical solutions proposed in the next section.

Fasanella (2017)

In 2017 Giovanni Fasanella analyzed all the major experimental literature [25], with particular
attention to non-prismatic and not straight channels, they will not be repeated here.
In his work he conducted experiments on dam-break over a smooth concrete bed-ground chan-
nel using the same facility which will be used in this thesis proving the validity of the Ritter
Solution.
The test runs were performed using a flat channel and involved four differing water levels be-
hind the dam (Ho = 0.15m, 0.20m, 0.25m, 0.30m) resulting in a total of 4 configurations. The
displaying of the adimensional results demonstrates the collapsing of the data on the Ritter
Solution as shown in figure 2.1.
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Figure 2.1. A comparison between measured normalized water surface hn (red circles) and
modeled hn (black line) using the Ritter Solution for So = 0 against normalized velocity
un for all 4 configurations (and x > 0, t > 0). Panels from left to right indicate increasing
Ho = 0.15, 0.20, 0.25, 0.30m. The horizontal dashed line in all panels indicates the water level
beneath which it is impossible to detect the surface.

2.1.2 Analytical Studies

Well known analytical studies of the dam-break problem include frictionless flows over a flat
rigid surface [65] and simplified frictional corrections to such flows [23, 76, 30, 32, 31] dis-
cussed elsewhere [27]. Moreover, extensions to steep slopes [5] as well as gradual dam breach-
ing [52, 11, 72, 14, 73] instead of instantaneous dam breaks have also been proposed.
In 2009 Chanson [14] developed an analytical solution for the dam-break wave using the
method of characteristics. The results obtained by Chanson, for horizontal and sloping chan-
nels, are compared with the most important previous studies by Ritter [65], Dressler [23]
,Whitham [76] and Hunt [30, 32, 31].
For the 1D Dam-Break problem the wave produced by the instantaneous collapse of the dam is
represented by the SVE:

∂d

∂t
+ d

∂V

∂x
+ V

∂d

∂x
= 0, (2.1)

∂V

∂t
+ V

∂V

∂x
+
∂d

∂x
+ Sf − So = 0, (2.2)

where d is the dimensionless water level, V is the dimensionless velocity, Sf is the Friction
Slope, So is the channel slope, t is the dimensionless time and x is the dimensionless distance
from the dam. The Friction Slope Sf is represented in function of the Darcy-Weisbach factor
f :
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Sf =
f

2V ′2gD′H
, (2.3)

where D′H is the dimensional hydraulic radius and V ′ is the dimensional velocity. Chanson
proposed to solve the SVE with the method of characteristic which set the following system of
equations:

∂

∂t
(V + 2C) = So − Sf , (2.4)

∂

∂t
(V − 2C) = So − Sf , (2.5)

where the celerity C is equal to 1.
If a frictionless case is considered, Sf = 0, for a horizontal channel equations 2.4 and 2.5 give
Ritter’s solution (C = 1):

x

t
= 2− 3

√
d, (2.6)

V =
2

3
(1 +

x

t
), (2.7)

In 1995 Whitham introduced the concept that, in case of Dam-Break, the fluid can still be
considered as ideal (Sf = 0) except for the wave-tip zone dominated by resistance. Experi-
ments by Dressler [23] showed that in the wave-tip zone the velocity could approximately be
considered constant. Follows that equation 2.2 yields to:

∂d

∂t
+
f

8

U2

2d
= 0, (2.8)

The integration of the previous equation gives the shape of the wave-tip:

d =

√
f

4
U2(xs − x), (2.9)

For turbulent motion the flow resistance f can be approximated with Altsul formula:

f = 0.1(1.46
k′s
D′H

+
100

Re
)1/4, (2.10)

where k′s is the equivalent sand roughness height. Therefore the equation describing the free
water surface was presented by Chanson as follows:

d =
1

9
(2− x

t
)2 − t ≤ x ≤ (

3

2
U − 1)t (2.11)

and

d = (
9

32
(3.65x10−5ks +

2.5x10−3

RedU
)1/4U2(xs − x))4/9 (

3

2
U − 1)t ≤ x ≤ xs. (2.12)
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Figure 2.2. Dam Break Wave in a dry horizontal channel.

The analytical solutions (Ritter, Whithman, Dressler) as well as experimental data obtained
in large facilities by Schocklitsch are compared in figure 2.3 with the equation proposed by
Chanson.

Figure 2.3. Dimensionless water profile. Comparison between Chanson (2009), Whitham
(1955), Dressler (1952) and experimental data (Schoklitsch 1917).

The main result achieved by Chanson (see figure 2.3) was to obtain a formula able to reproduce
the features of the 1D dam-break problem. It was further demonstrated the validity of the Ritter
solution with the exception of the shape of the wave-front tip. Furthermore Chanson extended
the Ritter Solution in the case of a dam-break for a frictionless sloping channel.
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2.2 – Flow over a rod dense canopy

2.2 Flow over a rod dense canopy

2.2.1 Experiments

Despite vast life and economic losses commonly associated with dam-breaks, controlled lab-
oratory experiments on this topic remain surprisingly limited with the exception of the cases
where a vegetation pattern is not considered [49]. All the experiments found in literature fo-
cused on non-uniform flow over vegetion such as Kobayashi in 1993 [44], Poggi in 2004 [61],
Tanino and Nepf in 2008 [70] and Wang in 2015 [74]. These experiments, described after-
wards, were performed by setting a steady-state condition for the flow, hence without taking
into account the main features of the dam-break such as unsteadiness and inertia.
Some laboratory studies are now considering single isolated obstacles [67] as may be encoun-
tered in an urban environment at high Froude numbers but not an array of obstacles.
Hence, the work here has the main goal to fill the knowledge gap by adding to the experimental
literature benchmark flume experiments where the static water level behind the dam as well as
bed slope are varied for a channel uniformly covered by a dense rod canopy.

Poggi et al. (2004)

In 2004 Poggi [61] conducted flume experiments to seek a phenomenological theory able to
describe the key flow statistics in terms of canopy density.
The experiments were carried out at the Hydraulics Laboratory, sited in Politecnico di Torino.
The re-circulating prismatic channel was 18 m long, 0.90 m wide and 1 m deep. The walls
were made of glass in order to permit the passage of the laser Doppler Anemometer (LDA)
light. The facility is shown in figure 2.4.

Figure 2.4. Plan and lateral view of the channel flow facility.

The vegetation was represented by an array of vertical stainless steel cylinders, 0.12m high and
with a diameter of 0.004m. Five canopy roughness densities were analyzed: 67, 134, 268, 536,
and 1072 rods per square meter. The velocity was measured by using two-component laser
Doppler Anemometry (LDA). The experiments were conducted in a steady-state condition, in
fact the flow Reynold’s number was preserved by mainteining a constant water level equal to
0.6m. Moreover a fluorescent dye solution (Red Rhodamine) was mixed to the water. The
Rhodamine is a red dye that becomes metallic green when excited by the laser. A cylindrical
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lens allowed to split the laser beam into a thin sheet and provided a planar illumination at the
section considered.
The Drag Coefficient, function of the Reynold’s number and influenced by the Sheltering Effect
was calculated by the following formula:

Cd(z,Re, a) = −2(
∂(u′w′)

∂z
+
∂p

∂x
)(au2)−1. (2.13)

The u′w′ profiles were measured as well as u.
In figure 2.5 are plotted with a dashed line the Cd expected for a single cylinder (Cd = Re0.5,
Bachelor 1954) and the Cd obtained with equation 2.13.

Figure 2.5. Drag Coefficient versus the cylinder Reynold’s number.

The tendency showed was a decreasing of Cd with the Reynold’s number in contrast with a
constant value (for lower Reynold’s numbers) showed by the isolated case cylinder. This de-
crease was attributed to the sheltering effect which employed a Reynold’s number dependency
even for Re > 1000. Hence it was proposed a new formulation for Cd:

Cd(Red) = 1.5− 8.5Red10−4 (2.14)

Tanino and Nepf (2008)

In 2008 Tanino and Nepf investigated the drag generated by a random dense and rigid canopy
represented by rods, when crossed by a flow in a steady-state condition. The main goal was to
study the relation between the Drag Coefficient Cd and the cylinder Reynold’s number Rep =
Ud/ν when several canopy densities φ were considered.
Starting from the numerical and experimental studies already produced in literature (see figure
2.6) were investigated the cases yet unexplored, for a two dimensional array of cylinders, where
φ > 0.05 for Rep > 100 and φ < 0.05 for Rep < 1000.
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2.2 – Flow over a rod dense canopy

Figure 2.6. Summary of studying about the Drag Coefficient. (N), (F) and (L) indicate Numer-
ical, Field and Laboratory Results. (N/A) indicate information Not Available.

The Drag Coefficient Cd was calculated operating in steady-state conditions by modelling the
coefficients α0 and α1:

Cd = 2(
α0

Rep
+ α1). (2.15)

The Results were compared to the empirical expression proposed by White (1991) [48]:

Cd ≈ 1 + 10Re−2/3p . (2.16)

The Experiments were performed in two Plexiglass recirculating flumes. The flow rate Q was
measured with an in-line flow meter. The run test were executed taking into account several
vegetation densities such as φ = 0.091, φ = 0.1, φ = 0.20, φ = 0.27, and φ = 0.35 and Rep
from 25 to 685.
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Figure 2.7. Plan view of the Rods Canopy for φ = 0.27.

The Drag Coefficient estimated parameters α0 ans α1 are shown in figure 2.8 as well as the
correlation coefficient r and the number of data points included in the regression n.

Figure 2.8. The Coefficients estimated with a linear regression for Tanino and Nepf study
compared with Petryk and Koch results.

The most important result achieved in this paper is shown in in figure 2.9. Cd decreases as
Rep increases for all φ investigated. The data also demonstrate that drag exerted by an array of
cylinders is bigger than an isolated cylinder.
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Figure 2.9. Cd represented in function of φ and Rep.

Wang et al. (2015)

Wang in 2015 studied the flow redistribution on flat ground from crusted bare soil to vegetated
patches following intense rainfall events. In order to mimic this phenomenon several flume
experiments were carried out using plastic rods to represent the vegetation. The measured
H(x) obtained by image processing were used for testing different models to represent the
roughness. If a rectangular channel with a constant width B, water depth H(x), cross-sectional
area A(x) is considered, the flow Q(x) among the rod canopy can be described using the SVE
obtained rearranging the friction slope definition:

Sf = −∂E
∂x

= − ∂

∂x
(zg +

P

γ
+ α

U2

2g
), (2.17)

U
∂U

∂x
+ g

∂H

∂x
− g(So − Sf ) = 0. (2.18)

The momentum equation, associated to the continuity equation, provides the relation between
U and H(x), unknowns of the problem. In order to know the characteristics of the flow (U and
H(x)) a closure is required for Sf . Wang, starting from the past literature, used several closing
in order to reproduce the experimental water depth. For Sf , according to the past literature,
were proposed two closures:

Sf =

(
2gn2

R
4/3
h

)
U2

2g
, (2.19)

and

Sf =

(
CdmDαs
1− αsφv

)
U2

2g
. (2.20)
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The first one is carried out by considering a local uniform flow, starting from Manning’s for-
mula. The second one is obtained by considering a force balance between the flow driving
mechanism and resistance along the stream direction. In the second case the Friction Slope
Sf is a function of the Drag Coefficient Cd. An expression for Cd,iso describing the data for
isolated cylinders for Red < 105 was given by Cheng in 2012 [16]

Cd,iso = 11(Red)
−0.75 + 0.9Γ1 (Red) + 1.2Γ2 (Red) , (2.21)

where

Γ1 (Red) = 1− exp

(
−1000

Red

)
, (2.22)

and

Γ2 (Red) = 1− exp

[
−
(
Red
4500

)0.7
]
. (2.23)

In the case of an array of cylinders a formulation for Cd,a derived from a large synthesis of
experiments on emergent vegetation and was given by Cheng in 2010 [18]:

Cd,a =
50

Rev
+ 0.7

[
1− exp

(
− Rev

15000

)]
. (2.24)

The linkage between the vegetation-array and a stem related Reynolds number is

Rev =
π (1− φv)

4φv
Red. (2.25)

Moreover a new Cd,new was inferred with the flume data:

Cd,new =
2g(1− φveg)

mD
(P ∗ −A∗) (2.26)

where P* and A* are respectively the pressure and the advection component.
The experiments were conducted in China using a flume 15m long and 0.3m wide. The channel
sides were made of glass to permit optical access in order to image the water surface. The
vegetation was represented by an array of plastic cylinders, the diameter was D = 0.008m and
the height h = 0.25m. The cylinders were accommodated on a plastic board with uniformly
spaced holes which permitted to change the position hence the density of the vegetation as
shown in the next figure.
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2.2 – Flow over a rod dense canopy

Figure 2.10. Experimental Setup.

Eight vegetation densities were investigated, labeled Runs A to H throughout and summarized
in the next table. The most important characteristic of this experiments is that a steady flow
was set Q = 0.003m3/s.

Figure 2.11. Parameters of the Experimental Runs.

In figure 2.12 is shown the experimental water profile and the profile provided by SVE Equa-
tions associated to the Sf closures mentioned before. This comparison demonstrated that the
use of SVE with Cdiso overestimated the water level while the use of Cdarray underestimated
it.
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Figure 2.12. Comparison between measured and predicted normalized water level. Dots indi-
cate measured values from the experiments, the green lines represents the water level calculated
using Cdiso, the red lines are predictions made using Cdarray and the black lines represent the
new Drag Coefficient proposed Cdnew. 14
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In figure 2.13 is shown the comparison between the Drag Coefficients formulations.

Figure 2.13. Drag Coefficients comparison.
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2.2.2 Analytical Studies

Nian-Sheng and Cheng (2012)

In 2012 Nian-Sheng and Cheng proposed new formulations to parametrize the Drag Coefficient
Cd for flows through an isolated cylinder and arrays of emergent cylinders.
In this work were considered only rigid circular stems as vegetation model. Many previous
experimental studies were taken into account such as Cheng and Nguyen in 2011 [19], Tanino
and Nepf in 2008 [70], James et al. in 2004 [35] as well as analitycal studies.
The objective was to investigate the flow dynamics such as flow separation and vortex shedding
when an array of cilynders was considered. In particular the main challenge was to understand
how the single-cylinder drag coefficient could be modified by the presence of a dense rod
canopy. In order to represent the Drag Coefficient Cd for a wide range of Reynold’s number
and fit the experimental data an empirical formula for Cd,iso was proposed (see equation 2.21).
Figure 2.14 shows the perfect fitting of equation 2.21 with the experimental data.

Figure 2.14. Variation of the Drag Coefficient Cd with the cylinder Reynold’s number for
an isolated cylinder. Comparison between the experimental data and the formula proposed by
Cheng and labeled as Equation1 in the figure.

When an array of cylinders was considered (see figure 2.15) a new empirical formula for the
Drag Coefficient was derived.

Cda =
π

2

1

λ

gDS

V 2
v

, (2.27)

where g il the gravitational acceleration, S is the average energy slope of the flow, Vv is the
velocity through the emergent vegetation and λ is the average solid fraction occupied by the
stems. For a rare vegetation equation 2.27 yields to equation 2.21. The wide database used to
evaluate equation 2.27 is summarized in figure 2.15.
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Figure 2.15. Summary of previously collected experimental data.

The next figure shows the variation of Cda with the cylinder Reynold’s number Ra. When the
average solid fraction occupied by the stems λ is small, Cda and Ra merge to Cd,iso and Re as
expected. The curves plotted were calculated by using equation 2.27 for λ = 0.03, λ = 0.1,
λ = 0.2, λ = 0.3 and λ = 0.4. The diameter considered for the rods was D = 0.006m. Also
represented in figure 2.16 are the experimental data showed in figure 2.15.

Figure 2.16. Variation of Drag Coefficient Cda with Reynold’s number Ra.

It is shown that the formula proposed by Cheng well fits the experimental data. Moreover it
confirmed that the Drag Coefficient increases with increasing rods density.

Etminan (2017)

One of the most relevant study about the influence of vegetation canopies on rivers, streams
and floodplains was carried out by Etminan in 2017.
As demonstrated by previous publications, the flow structure is influenced by the drag forces
exerted by the vegetation. LES were performed in order to study the role played by the three
mechanisms able to modify the drag, such as blockage, sheltering and early separation. In the
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LES the spatially-filtered, three-dimensional Navier-Stokes Equations are solved numerically.
The equations in tensor notation are:

∂ui
∂xi

= 0, (2.28)

∂ui
∂t

+
∂

∂xj
(ujui) = −1

ρ

∂p

∂xi
+ 2ν

∂2Sij
∂xi∂xj

− ∂τij
∂xj

, (2.29)

where i and j are set from 1 to 3. The velocities u1 and u2 are in the streamwise direction, ν is
the kinematic viscosity and p is the pressure. Sij has the following form:

Sij = (
∂ui
∂xj

+
∂uj
∂xi

). (2.30)

The turbulence was modeled with a standard Smagorinsky closure:

τ ij = −2νtSij +
2

3
kδij . (2.31)

The simulations were conducted in OpenFOAM version 2.3.0 and the incompressible solver
pimpleFoam was used. The model vegetation chose was a staggered array of cylinders with a
spacing S (see figure 2.17).

Figure 2.17. Cylinders arrangement.

In this study six array densities were explored (λ = 0.016, λ = 0.04, λ = 0.08, λ = 0.012,
λ = 0.020 and λ = 0.25). The grid chose for the simulation consisted in four sets of cells.
Each set was represented by an O-grid block around the cylinder and an H-grid block in the far
field. The simulations were performed for four Reynold’s numbers Rep = Upd/ν as shown in
figure 2.18.
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Figure 2.18. LES and model configuration.

The simulation were carried out by considering four velocities to which corresponded for
Reynold’s number and Drag Coefficient (see figure 2.19). Ub is the bulk velocity, Up is the
pore velocity, they are related by Up = Ub/(1 − λ). Us is the velocity at the boundary of
the wake region and Uc is the constricted cross-section velocity. Ub, Us and Uc relation is
expressed by the following formula:

Uc =
1− λ

1−
√

2λ
π

Up ≡
1

1−
√

2λ
π

Ub. (2.32)

Figure 2.19. Representation of the bulk velocity Ub, constricted velocity Uc and
pore velocity Up. Reference velocity used in the study and correspondent Reynold’s
Numbers and Drag Coefficients.

The next figure shows the Drag Coefficients Cdc and Cdp calculated by taking into account
the constricted velocity Uc and the pore velocity Up.
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Figure 2.20. Drag Coefficients representation in function of the pore velocity Up and
the constricted velocity Uc.

The Cd,c values collapse onto the same curve while the Cd,p values seem to be more spread
around a single curve. This pointed out that the constricted velocity Uc was the one able to
explain better the drag exerted by a rod canopy in the range of Reynold’s number considered.
Hence Etminan proposed a Drag Coefficient Cd,c formulation as follow:

Cd,c = 1 + 10Re−2/3c . (2.33)
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The problem treated in this thesis is the instantaneous collapse of a dam in a long sloping
prismatic channel covered by a dense rod canopy chosen as a model vegetation. The goal is to
describe the water level h(x, t) downstream from the dam for various So and initial water level
Ho behind the dam.
The outflow subsequent the collapse of the Dam is a ’non-uniform flow’ and, in fact, can be
represented through the SVE which are derived from the Navier-Stokes Equations assuming (i)
constant water density, (ii) the water depth h is small compared with other length scales such
as the wave length of the water surface or the channel width, and (iii) the pressure distribution
is hydrostatic so that vertical acceleration can be ignored, and (iv) the bed-slope is not too steep
[21]. With these conditions the SVE can be written as follows:

∂A

∂t
+
∂Q

∂x
= 0, (3.1)

∂Q

∂t
+

∂

∂x

Q2

A
+ gA

(
∂h

∂x
− So

)
+ gASf = 0. (3.2)

Where A is the cross-section area, Q is the discharge flow, x is the spatial coordinate, t is
the temporal coordinate, g is the gravitational acceleration, h is the water level, Sf is the
Friction Slope and So is the Bed Slope. These equations describe the temporal and spatial
change of the physical quantities representing the unsteady flow. The first equation is known
as Continuity Equation, it represents the ‘Law of Conservation of Mass’, which means that
the inflow, outflow and the variation of mass in a control volume are balanced. The second
equation is the Momentum Equation, it is an extension of Newton’s second law applied to fluid
dynamics. Due to the fact that the width of the facility is constant, the cross-section area can
be expressed by the following formula:

A = bh. (3.3)

The SVE can be rearranged as follows:

∂h

∂t
+ h

∂v

∂x
+ v

∂h

∂x
= 0, (3.4)

1

g

∂v

∂t
+

v

g

∂v

∂x
+
∂h

∂x
= So − Sf . (3.5)

Where h is the water level, x is the spatial coordinate, t is the temporal coordinate, Sf is the
Friction Slope, So is the Bed Slope, v is the mean velocity and g is the gravitational accelera-
tion. The second formula takes the form of the Dynamic Wave Equation.
In order to describe the water level h(x, t) downstream from the dam play an important role
the choice of how the Friction Slope Sf is modeled. In almost all applications, the resistance
law used to describe Sf is based on a locally steady and uniform flow [8, 49]. Unsurprisingly,
Manning’s formula [53] with a constant roughness coefficient n remains popular given the
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voluminous literature on n and its connection to the so-called Strickler scaling [10] or momen-
tum roughness height [40]. The flow velocity in an open channel can be described by Chezy’s
formula:

U =
AR

1/6
h

n

√
RhSo, (3.6)

where So is the bottom slope.
In a steady and uniform flow the EGL slope coincides with the bottom slope resulting in So =
Sf . Such approximation yields an Sf given by

Sf =

(
2gn2

R
4/3
h

)
U2

2g
, (3.7)

where Rh is the hydraulic radius.
When the channel cover is densely vegetated, there is consensus that such a closure may be
too simple even for steady-uniform flow thereby necessitating further inquiry into the ex-
plicit inclusion of a distributed drag force by vegetation elements at high Reynolds numbers
[57, 77, 50, 26, 33, 62, 29, 46, 56, 24]. Equation 3.7 assumes that frictional losses occur
through bed and side stresses (i.e. Rh) rather than a distributed drag force that can be emergent
or entirely submerged [62, 39, 56, 54]. The work here explores experimentally and numeri-
cally the effects of canopy drag on Sf for unsteady inertial flow over a rigid dense cylindrical
vegetation covering a large flume base where the slope So is also varied. A number of for-
mulations that have been proposed to link Sf to the vegetation drag coefficient Cd are also
evaluated. These formulations have been shown to partly capture blockage, sheltering, angle
of separation, among others [47, 37, 12, 35, 7, 70, 22, 18, 43, 45, 80, 17, 15, 74, 75, 24].
Hence the theory section will be organized as follows: the case where Sf = 0 is first reviewed
as this case sets the choice of the normalizing variables for the data analysis and model runs.
Next, various formulations linking Sf to the drag by a rod canopy are provided. This represen-
tation for the drag force is then contrasted to a Manning type formulation to highlight plausible
effects on the shape of h(x, t) in the advancing wave front region.

3.1 The Frictionless Case and Choice of Normalizing Variables

Since the work here considers the effects of vegetation on Sf , it is instructive to establish a
reference solution for an ideal flow whereby Sf ≈ 0. Although this ideal case implies no
energy losses along the channel, it allowed the foundation of the Ritter Solution [65] which
represents a milestone of the dam-break scenario. Ritter, assuming a horizontal channel and a
initially dry ground ahead of the dam, proposed the following solution to equations 3.1 and 3.2

U(x, t) =
2

3

(x
t

+
√
Hog

)
, (3.8)

and
h(x, t) =

1

9g

(
2
√
Hog −

x

t

)2
, (3.9)

where Ho is the water level at rest just behind the dam.
Equations 3.8 and 3.9 can also be expressed in dimensionless form as

hn =
1

9
(2− un)2 , (3.10)

where hn = h/Ho is the dimensionless water depth, un = (x/t)(Hog)−1/2 is the dimension-
less wave speed, tn = t(Ho/g)−1/2 is dimensionless time, and xn = x/Ho is dimensionless

22



3.2 – Canopy Drag and Friction Slope

longitudinal position downstream from the dam.
This fundamental relation shows that in the case of a frictionless channel the dimensionless
water level hn and the dimensionless wave speed un are linked by a parabolic relation. This
means that for a fixed hn corresponds a unique un. Ritter’s solution to equations 3.1 and 3.2
was extended to the case of a sloping channel [14, 49] and can be expressed as follows

U(x, t) =
2

3

(x
t

+
√
Hog + Sogt

)
, (3.11)

and

h(x, t) =
1

9g

(
2
√
Hog −

x

t
+

1

2
Sogt

)2

, (3.12)

where Ho is the water level at rest just behind the dam and the initial conditions is a dry stream
bed.

3.2 Canopy Drag and Friction Slope

To arrive at an expression resembling equation 3.7 to be used in the SVE, a locally steady-
uniform flow within or above the dense canopy is considered. With this assumption a local
balance between the flow driving forces and the drag forces is required:

ρgSfVw = CdAvρ
U2

2g
+Bdx (1− φv) τground + 2Hdxτwallg, (3.13)

where τground is the ground friction per unit area, τwall is the side friction, B is the width of the
channel and dx is the infinitesimal length of channel where the initial conditions are respected.
The ground and side friction contribution to the total stress are ignored relative to the distributed
drag force acting on the flow by the canopy elements [74]. Equation 3.13 yields to:

ρgSfVw = CdAvρ
U2

2g
, (3.14)

where ρ is the density of water, Vw is the volume of water, Av is the frontal area of the veg-
etation contained in Vw and Cd is the drag coefficient. It is convenient to examine the force
balance per unit ground area so that Vw = h(1 − αsφv) and Av = mDhαs, where φv is the
solid volume fraction per ground area determined by φv = mπD2/4, m is the rod density
determined from the number of rods per unit ground area, and αs depends on whether the
vegetation is emergent (h/hc > 1) or submerged (i.e. h/hc < 1). For an emergent canopy ,
αs = 1 whereas for a submerged canopy, αs = hc/h and varies with h. The Sf can now be
directly determined from equation 3.14 as

Sf =

(
CdmDαs
1− αsφv

)
U2

2g
. (3.15)

In virtually, for all studies dealing with shallow flow within vegetation, Cd is assumed to vary
with a Reynolds number Re = V L/ν, where V and L are characteristic velocity and length
scales respectively, and ν is the kinematic viscosity of water. In terms of possible choices for
L, the rod diameter or spacing, and the hydraulic radius (or water level) have been proposed.
Likewise, in terms of possible choices for V , bulk velocity, pore-scale velocity or a variant on
it such as the constricted velocity, and separation velocity are commonly employed. Models
for Cd that vary V instead of L are now reviewed.
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3.2.1 The Isolated Cylinder Case

For an isolated cylinder, the local Cd,iso can be determined from the bulk velocity and rod
diameter by forming an element Reynolds number Red = UD/ν. In this case the variation of
drag is related to the flow separation that occurs when the water hits the rods. An expression
for Cd,iso that describes data for isolated cylinders for Red < 105 is given by [16, 74]

Cd,iso = 11(Red)
−0.75 + 0.9Γ1 (Red) + 1.2Γ2 (Red) , (3.16)

where

Γ1 (Red) = 1− exp

(
−1000

Red

)
, (3.17)

and

Γ2 (Red) = 1− exp

[
−
(
Red
4500

)0.7
]
. (3.18)

This expression assumes that the drag from each cylinder operates in isolation assuming the
same U acts upon all cylinders which means no shelter or blockage.

3.2.2 The Array of Cylinder Case

Several studies found that Cd in a vegetated array (hereafter referred to as Cd,a) differs from
Cd,iso and these variations depend on the Reynolds number and φv. At a given Red, increasing
vegetation density (or φv) appears to initially increase Cd [70, 69] and then to decrease it [57,
51] for emergent canopies [24]. Such adjustment was partly accommodated by an empirical
formulation for Cd,a derived from a large synthesis of experiments on emergent vegetation and
is given as [18]

Cd,a =
50

Rev
+ 0.7

[
1− exp

(
− Rev

15000

)]
. (3.19)

The linkage between the vegetation-array and a stem related Reynolds number is

Rev =
π (1− φv)

4φv
Red. (3.20)

Once again, this linkage allows for direct comparisons between Cd,iso and Cd,a for a set φv.

3.2.3 The Staggered Canopy Case

For a staggered cylindrical canopy, [24] comparedCd for various Reynolds numbers definitions
by using differing characteristic velocity scales but maintaining L = D. The aforementioned
work showed that typical Cd formulation for a single cylinder case can still be employed when
using a constriction velocity Uc as the reference V to form Res = UcD/ν. Their resulting
expression, applicable for Res < 6000, can be summarized as

Cd,s = 1 + 10Re−2/3s , (3.21)

where Res = UcD/ν, and Uc, the constriction velocity imposed by the vegetation, is related
to U through the conservation of mass using

Uc =
1

1−
√

2λ
π

U, (3.22)

where λ = (πD2/4)/(0.5S2
s ) is the volume fraction for a staggered cylindrical array, and Ss

is the rod spacing along the flow. For uniformly spaced vegetation, φv = λ but for a staggered
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3.2 – Canopy Drag and Friction Slope

array, the two quantities differ because the lateral spacing of rods differ from the longitudinal
spacing. Using the staggered configuration in [24], λ = (1/2)

√
3φv. Equation 3.22 suggests

that Res = (1−
√

2λ/π)−1Red given that both utilize L = D in their definition of Re. In the
limit of large Res(> 5000), Cd,s → 1 and may be treated as a constant independent of Re.

3.2.4 Blockage and Sheltering Effects on Cd

BecauseCd,iso ignores sheltering and blockage, it is convenient to compare the aforementioned
equations forCd (isolated, array and staggered) to assess theRed range where sheltering (Cd <
Cd,iso) and blockage (Cd > Cd,iso) are anticipated to dominate. Sheltering indicates that some
vegetation elements are located in the wake region of the upstream elements [63], resulting in
a lower velocity than their upstream counterparts and generate a lower drag compared with the
isolated cylinder case. Delayed separation can be explained by the enhancement of the mean
separation angle that is larger than that for the isolated cylinder, resulting in a decreasing drag
coefficient compared with the isolated cylinder [24]. Both sheltering and delayed separation
reduce Cd when compared to the isolated cylinder case. Blockage effects, which lead to local
increases in Cd, are explained by two main factors [24]: (i) the velocity between cylinders is
enhanced by the presence of vegetation; and (ii) wake pressure increases drag [78].

Figure 3.1. A comparison between Cd as a function of Red = UD/ν for an isolated
cylinder (i.e. equation 3.16), an array (i.e. equation 3.19) of cylinders [18] with φv =
0.03 (the experiment here), and staggered (i.e. equation 3.21) cylinders [24] with λ =
(1/2)

√
3φv . At Red = 0.7 × 104, the array and staggered Cd models suggest a switch

from ’blockage’ to ’sheltering’ with increasingRed. Also, forRed > ×105, theCd models
become weakly dependent on Red.

The expressions for Cd,a and Cd,s are compared to Cd,iso in Figure 3.1 for φv = 0.03 corre-
sponding to the flume experiments to be discussed. This comparison is enabled by the fact that
Rev and Res have been related to Red once φv or λ are specified for a given rod density (m
or Ss). Roughly, when Red > 0.7 × 104, Cd,a and Cd,s are reduced when compared to Cd,iso
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suggesting that sheltering dominates. Conversely, when 100 < Red < 0.5 × 104, both Cd,a
and Cd,s exceed Cd,iso suggesting that blockage dominates. All three formulations agree that
for large Red (i.e. Red > ×105), Cd becomes weakly dependent on Red or almost entirely in-
dependent of Red altogether. The operational Red for the flume experiments exceed 0.5× 104

in the vicinity of the advancing wave front.

3.3 Wall friction versus distributed drag force: The advancing front
region

The water level shape of an advancing wavefront for a vegetated canopy is now contrasted to
conventional Manning (or wall friction) representation of Sf using a simplified SVE. The SVE
simplifications to be employed here are common to all analytical approaches describing the
advancing wavefront. What is different here is the link between Sf and (U2)/(2g). Within the
wavefront region, the front speed is assumed to be roughly constant so that ∂U/∂t and ∂U/∂x
are small relative to the remaining terms in the SVE [14]. Also, the simplest case of a flat
channel (So = 0) is considered for analytical foresight only. For these simplifications, the SVE
reduces to its steady-non inertial (diffusive wave) version given by

g

(
∂h

∂x
+ Sf

)
= 0, (3.23)

and the continuity equation simplifies to

∂h

∂t
+ U

∂h

∂x
= 0. (3.24)

At very high Red to be expected following a dam-break, Cd is likely to be dominated by
sheltering and becomes weakly dependent onRed as shown in Figure 4.10. Hence, to a leading
order in equation 3.15, Cd may be treated as a constant with a numerical value that is smaller
than Cd,iso at high Red. Hence, the reduced SVE yields

U =

√
−2g(1− φv)

CdmD

∂h

∂x
, (3.25)

which upon insertion into the reduced continuity equation (i.e. equation 3.24) and solving the
corresponding partial differential equation for h yields

h(x, t) = C1 + C2t−

[
C2

√
CdmD

2g(1− φv)

]2/3
x. (3.26)

The C1 and C2 are integration constants to be determined from initial and boundary conditions
or other constraints such as conservation of water mass or asymptotic matching to a solution
near the dam location. Hence, the precise value of C1 and C2 vary with the specifics of the
dam-channel setup. Hovewever, main finding here that for a constant Cd, h(x, t) is linear in
x with a slope that depends on the (CdmD)/(1− φv) in the wave-front region is independent
of C1 and C2. If the same analysis is repeated with equation 3.7 and a constant n instead of a
constant Cd, the resulting U is given by

U =

√
h4/3

n2
∂h

∂x
, (3.27)
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3.3 – Wall friction versus distributed drag force: The advancing front region

(i.e. non-linear in h unless ∂h/∂x scales with h−4/3 to ensure constant U ) and the general
solution of the reduced continuity equation (i.e. equation 3.24) is now given by

h(x, t) =

[
7

3

(t+A1x+A2)

A3
1

n2
]3/7

. (3.28)

Again, A1 and A2 are integration constants to be determined similar to C1 and C2. Upon
inspecting the two general solutions in equations 3.28 and 3.26, differences between constant
n and constant Cd (expected to prevail at high Red) become evident. For a constant Cd, h
scales linearly with x whereas h scales as a power-law with a sub-unity exponent (i.e. x3/7)
for the constant n near the advancing wavefront. Numerical solution to the full SVE confirm
these differences and are to be discussed in comparison with experiments proposed here.
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4.1 Flood wave channel

The experiments were conducted using a flood wave channel situated at the Giorgio Bidone
hydraulics Laboratory in Politecnico di Torino, Italy. The 11.6m long prismatic channel has
a rectangular cross-section that is 0.5m (=B) wide and sides that are 0.6m in height. The
smooth concrete channel bottom is elevated 1.27m from the ground floor. The channel sides are
made of glass to permit optical access. The glass sides are enforced using a steel structure. A
mechanical wheel allows the channel to rotate around a pin that can be switched so as to vary So
from 0% to 3%. The channel is filled directly with water from below by a pipe and the outflow
from the channel discharges into a tank after passing over a rectangular weir. The vegetation
immediately ahead of the dam is composed of an array of a polymeric resin cylinders. The
cylinders are fixed on six plastic boards 15cm wide and 1.75m long. In order to fill all the
cross-section, the boards are positioned side-by-side three at a times for a total length of 3.5m.
The panels are attached to the channel bottom using silicon. This attachment allowed the rods
not to move during the runs. The cylinders comprising the rod canopy are rigid with uniform
diameter D=0.006m and height hc=0.10m. The rods are arranged in a staggered configuration
with a spacing of 0.035m transversely and longitudinally, while the distance to the diagonal is
0.0175m. This arrangement resulted in a density m = 1206 rods m−2.
A wooden cofferdam with an instantaneous opening is used to represent the dam-break sce-
nario. The wood is waterproofed as this treatment allows the wood not to deteriorate during
the lengthy experimental duration. The cofferdam is fixed on an aluminum double T-support
and is free to move upward and downward through a vertical railing structure sustained by the
steel body of the facility. A Pneumatic cylinder is fixed on top of the vertical structure and
powered by a compressor located on the floor. The compressor directs an 11bar pressure to
the pneumatic cylinder forcing a disc to move upward quickly. The disc is connected to the
piston rod, which in turn is fixed to the framework of the cofferdam. This system uplifts the
cofferdam at a speed of 0.86 m s−1 thereby mimicking the instantaneous release of water into
the flume following dam break.
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Figure 4.1. Overview and later view of the experimental setup showing the channel, the cam-
eras, the dam and the dyed water behind the dam, and a sample image used to determine the
water surface profile at one instant in time shortly after the dam break.

30



4.1 – Flood wave channel

11 1 1

Laser

Cofferdam

Piston

Rods

Figure 4.2. Detailed later view of the experimental setup, sample image of the rods canopy
from above and image the setup ready for a run test.
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Figure 4.3. Frontal, rear and lateral vision of the cofferdam.
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4.2 Water Level Measuring Equipment

The main variables measured here are water level h(x, t) variations along the channel at reg-
ular temporal intervals. In order to get the water heights without influencing the flow three
Sony Handycam HDR-XR500 were used. Each camera is equipped with a 3-3/16" widescreen
touchpanel LCD, a Sony’s premium G Lens and a remote control to start all the cameras con-
currently. This model is able to record high-definition AVCHD video and store it in a 120GB
hard disk. The resolution used in the experiment is the best available that is 1920x1080, which
at the same time allows to get 29,97 frames per second.
The cameras are fixed on a horizontal bar at a distance of 1m from each other. They are aligned
with the bottom of the channel when the slope is 0%. The distance between the cameras and
the glasses is 1.5m, which grant the camera to record a movie of the full glass in front of it. It
follows that the three cameras consent to cover a length of 3m starting from 0.5m upstream of
the dam as it is shown in figure 4.5.

Figure 4.4. Sony Handycam HDR-XR500.

Figure 4.5. Cameras Setup.
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To avoid any kind of reflection coming from the windows of the laboratory, two black cloths
have been placed behind the cameras and behind the flood wave channel. As stated above, the
motivation of using cameras to get movies of the flow is to determine the water profile without
flow interferences. Since water is transparent, it is difficult to automate the detection of the
water surface profile from images without additional markers. That’s why the water was mixed
with Rhodamine. Rhodamine is a dye which becomes fluorescent and emits red light when
being excited with light at a different wavelength, in particular by green light. The green light
is emitted by two laser generators, with 200 mW power, fixed over the channel on two supports
welded to the metallic frame of the facility. Each laser emits a narrow beam of green light
which crosses a glass cylinder with a diameter of 3mm. When the light crosses the cylinder
is refracted and generates a plane of light perpendicular to the bottom of the channel and with
the same direction of the flow. During each experiment in fact the water is red colored and the
laser generate a plane of light that gives to a longitudinal section of the water an orange color as
shown in figure 4.6. The addition of such a dye enhances the imaging and automated detection
of the water surface.

Figure 4.6. Laser functioning.

4.3 Run tests

The test runs were performed using four differing water levels behind the dam (Ho = 0.15m,
0.20m, 0.25m, 0.30m) and four differing bed slopes (So = 0%, 1%, 2%, 3%) resulting in a total
of 16 configurations. The experiment regarding the 0% slope were completed ten times for each
water level allowing to obtain statistically robust data or rather not affected by outliers. The
outcome of the analysis showed a low standard deviation between the different water profiles.
This led to the decision to perform only 5 experiments per water level for the remaining slopes
to a total of other sixty trials.
The trials were completed following a rigorous procedure according to a robust precision
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needed for the case in question. At first the gate is closed so that a reservoir is set up be-
hind the dam. The reservoir is filled from below until the desired water level is reached. The
water levels is measured by a hydrometer fixed on a glass panel of the facility. The water is then
mixed with a precise amount of Rhodamine calculated in relation of the volume stored behind
the dam. The goal is to reach a color that has same shade of red for each experiment. Once
the wave channel is set the next step is to prepare the measuring equipment. The two lasers are
started up by turning their activation key. The compressor, connected to the hydraulic piston,
is in the mean time turned on with a special switch that allows it to get to the required 11bar
pressure. The three cameras are turned on at the same time with a remote controller. The re-
quirement of getting a precise water profile, which is obtainable only with a clear difference
of color between the water and the background, led to perform the experiments only between
8a.m. and 6 p.m. and with the lights of the laboratory always turned on. The trial starts when
the compressed air is pumped into the piston through a rubber pipe and ends when all the water
is discharged. The movies, taken with three Sony Handycam HDR-XR500, recorded with a
High Quality resolution and 29.97 frames per seconds, are analyzed with MATLAB. The anal-
ysis allows to transform the detected water level from pixel coordinates to metric coordinates
thereby providing h(x, t) for each run and all 16 configurations. Roughly each run lasted from
7s to 10s with the flood wave passing the imaged sections in 4s-5s.

4.4 Movies analysis

The subsequent step after the run tests is the movies analysis. The goal here is to obtain the
pixel coordinates of the water surface starting from the movies taken by the cameras.
Each test run is recorded in high quality by three cameras and stored in a 120GB hard disk.
First of all the movies are converted in MP4 format and cut to a length of 30 seconds. After
that each movie is loaded into MATLAB where the video frames are extracted. The cameras
record 29.97 frames per second. This number of frames is overabundant in the topic studied
here. Due to this fact only one out of three frames are extracted resulting in a storing of about
one image every 0.1 seconds.
The first movies examined are the ones with the 0% slope. The beginning of the time axis
(t = 0) is set at the time when the cofferdam starts to move while the end is set 7.2 seconds
after that moment resulting in a total of 81 frames. In the case of the others slopes (1%, 2%
and 3%) the beginning of time is the same while the end is set at 10.8 seconds. It results in a
bigger computation load represented by 121 frames.
In order to detect the water profile each image is analyzed separately. The digital images are
represented by the combination of a discrete number of elementary unit called pixel. Each
pixel is characterized by a variable luminosity intensity or rather a different color. Every color,
according to the RGB coding, can be represented with the combination of the colors Red, Green
and Blue. A color can be ideally defined by an infinity of color depths. In this case the Red,
Blue and Green colors are defined by 8 bit each resulting in 256 tonalities for each color. The
8-bit system is the most common in the digital images storing. MATLAB stores every frame
as a tridimensional matrix of dimension MxNx3, where M and N and are the number of pixels
in the x and y direction and the third dimension represent the tonality of Red, Green and Blue.
Each image is analyzed by looking for the pixels forming the water surface. The MATLAB
code, starting from the first pixel positioned in the upper left part of the picture, permits to
move downwards in the same columns until the pixel of the water surface is found. The pixel
belonging to the water surface is detected by setting a precise range of color. The choice of
using Rhodamine to color the water and the laser to illuminate it reduces the quest to a unique
shade of red. If the color of the pixel is inside a precise range of red then the point is saved as
part of the profile and the research continues with the next column until all the horizontal and
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vertical dimensions of the image are explored. This process is repeated for each frame.
This method is applied for each of the three cameras. The complete water surface profile,
which takes into account all the three cameras, is assembled later once the profiles are all in
metric coordinates.
Figures 4.7, 4.8 and 4.9 show how the laser and the Rhodamine are able to generate a color
difference between the water and the black background. The pixels belonging to the water
surface are detected and colored in green to show the millimetric precision of the code.

Figure 4.7. Sample image used to determine the water surface profile for Ho =
0.3m, So = 2%, t = 0.5s.

Figure 4.8. Sample image used to determine the water surface profile for Ho =
0.3m, So = 2%, t = 1s.

Figure 4.9. Sample image used to determine the water surface profile for Ho =
0.3m, So = 2%, t = 1.5s.
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4.5 Camera Calibration

The ’Camera Calibration’ is the process used to assess the Camera Parameters. The Camera
Parameters are the criterions which allow to describe the features of a camera. They are divided
in Extrinsic Parameters, Intrinsic Parameters and Lens Distorsion. The Intrinsic Parameters are
seven and express the relation between geometric coordinates and pixel coordinates in the
digital image produced. They are contained inside the “Intrinsic Matrix”.

K =

fx 0 0
s fy 0
cx cy 1

 .
Where:
-F is the focal length, expressed in world units [mm];
-cx,cy are the pixel coordinates of the optical center;
-sx, sy are the number of pixels per world unit in the x and y direction respectively.
-fx=F ∗ sx;
-fy=F ∗ sy;
-s is the skew. If the x and the y axes are exactly perpendicular, then the skew is 0.

The Extrinsic Parameters are six, they allow to switch from the world reference system [X Y
Z] to the camera reference system [x y z] through a “Rototranslation”. The Rototranslation is
expressed by the following formula:[

x y z
]

=
[
X Y Z

] [
R
]

+ t.

Where:
-R is the 3-D rotation matrix;
-t is the translation vector.
The lens distortions are the radial and tangential distortion.

The purpose of the calibration is using the Camera Parameters to turn the water profile, rep-
resented in pixel coordinates, into metric coordinates. To do so it’s been used “Single camera
calibrator app”, a toolbox provided by MATLAB that allows to estimate the camera param-
eters. “Single Camera Calibrator App” requires you to create a checkerboard pattern. The
size of the squares is free. The smaller is the side of the square the more accurate will be the
assessment of the parameters. The chosen size for the squares is 5x5 centimeters. Moreover
the checkerboard pattern can’t be a square, this implies that the number of rows should be even
while the number of columns should be odd. This grant the app to define the orientation of
the checkerboard, assigning the x-direction to the one which has more squares. After that, the
checkerboard pattern is fixed to the three glasses of the facility (see figure 4.10) taking care to
set the checkerboard as flat as possible in order to reduce to a minimum the imperfections.
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Figure 4.10. Image of the checkerboard pattern fixed to one of the three glasses of the channel.

Once the checkerboard is fixed the next step is to take 20 pictures of the checkerboard pattern.
The pictures are taken from approximately 1.5 meters, which is the same distance chosen to
make the movies. The images are taken with an angles less than 45 degrees between the plane
of the checkerboard and the camera. Those images enable the toolbox to calculate the camera
parameters with more accuracy. The images are added in the toolbox, which automatically
finds the checkerboard pattern in each image and rejects those which don’t have a certain level
of accuracy. For example are rejected those where the angle between the checkerboard and the
camera is more than 45 degrees.

Figure 4.11. Automathic detection of the checkerboard points.

The checkerboard origin is set in the upper left corner of the checkerboard. In order to have the
x-coordinate decreasing along the direction of the flow and the y-coordinate increasing when
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the flow grows, in this phase, the center of the reference system is manually changed to the
lower left corner. The toolbox computes the parameters by using the function “Calibrate” and
shows the accuracy of the calibration. It is possible then to improve the accuracy removing the
images out of focus.

Figure 4.12. Mean Reprojection Error per Image.

Figure 4.13. Extrinsics Parameters Visualization.
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The accuracy of this process can be evaluated by making a simple test. At first it is needed to
create a matrix which contains the x-coordinate and the y-coordinate of the intersection points
of the checkerboard. This points will be called “World Points” and they are represented in
millimeters. Knowing that the Checkerboard is made by 20 squares along the x-direction and
9 squares along the y-direction it results that there will be 144 “World Points” coordinates.

x (mm) y (mm)
0 0
0 50
0 100
0 150
0 200
0 250
0 300
0 350
50 0
... ...

Table 4.1. Points of the checkerboard in metric coordinates known as "World Points".

After that, it is used the MATLAB function called “Detect Checkerboard Points”. The function
analyzes the provided checkerboard image and returns the detected points of the checkerboard
intersections in pixel coordinates as well as the total size of the checkerboard. Once the pixel
coordinates of the checkerboard are known, it is used the MATLAB function “PointsToWorld”
which, utilizing the translation vector and the rotation matrix, allows to generate the World
coordinates in millimeters of the checkerboard from the pixel coordinates of the same. This set
of coordinates is called “New World Points”.

x (mm) y (mm)
0.26 0.22
0.17 50.16
0.22 100.26
0.43 150.47
0.28 200.38
0.51 250.51
0.59 300.44
0.65 350.35
50.16 0.07

... ...

Table 4.2. Reprojected points of the checkerboard in metric coordinates known
as "New World Points"

If the two sets of coordinates are compared it is highlighted that the accuracy reached is about
half of a millimeter. The following image is a representation of the “World Points” and the
“New World Points”.
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Figure 4.14. Presentation of the reprojecting precision.

4.6 Data Processing

In the previous section was discussed the process used to assess the Camera Parameters that
are those parameters which allow to switch from a pixel coordinated system to a metric coor-
dinates system. Once those parameters are known it is possible to use the MATLAB function
"PointstoWorld" that, starting from the pixel coordinates and the camera parameters, allows to
calculate the metric coordinates of each profile.
For each run test the water profile is split because the movies coming from the three different
cameras are processed separately. In figures 4.15, 4.16 and 4.17 is represented a run test for a
1% slope, Ho = 0.20m and t = 3.24s after the gate opening.
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Figure 4.15. Water surface profile for So = 1%, Ho = 0.20m, t = 3.24s recorded by Camera 1.

Figure 4.16. Water surface profile for So = 1%, Ho = 0.20m, t = 3.24s recorded by Camera 2.
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Figure 4.17. Water surface profile for So = 1%, Ho = 0.20m, t = 3.24s recorded by Camera 3.

The center of the reference system is set, in each of the three cameras, in the lower left checker-
board point detected by the camera. This means that for each camera are known the metric
coordinates of the water profile, but in a local reference system which can only be associated
to the camera used to determine the profile itself.
The goal here is to obtain a unique profile referred to a global reference system whose origin is
set in the point where the downstream side of the cofferdam touches the bottom of the channel.
The distance of the center of the local reference system from the cofferdam and the bottom
of the channel depends on how the checkerboard pattern was attached to the glass in the first
place. This distance is know for each camera and with simple mathematics operations the com-
plete profile is arranged.
This process is repeated for each experiment about a precise slope. When the slope changes,
the reference system set by the checkerboard changes consequently and this process must be
repeated with all the four slopes.
In figure 4.18 is showed the assembled profile for a 1% slope, Ho = 0.20m and t = 1.17s
seconds after the gate opening. The profiles are flipped mirror in order to have the center of the
global reference system on the lower left part of the graph.
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Figure 4.18. Assembled water surface profile for So = 1%, Ho = 0.20m, t = 3.24s with the
presence of several outliers. The horizontal dashed line indicates the water level above which
the water level profile h(x, t) can not be detected.

The water level profile manifests a discrete number of outliers mostly due by the splashes of
water caused by the instantaneous opening of the cofferdam. To avoid those points to cause
interferences in the next phase where the profiles will be interpolated they must be eliminated.
In order to eliminate the outliers it is used an interpolating polynomial. In the case of the 1%
slope run tests there are 121 frames, each of them with several outliers, mostly in the first 2/3
seconds after the gate opening. The profile is interpolated with a polynomial function whose
grade changes based on the number of outliers and their proximity to the real water surface.
The outliers are treated by setting that if the distance between a point of the interpolating
polynomial and the point with the same abscissa of the detected water surface is bigger than
3mm, this point must be eliminated. This process allows to remove a large part of outliers as
shown in figure 4.20.
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Figure 4.19. Assembled water surface profile for So = 1%, Ho = 0.20m, t = 3.24s with the
presence of several outliers and interpolating polynomial function.The horizontal dashed line
indicates the water level above which the water level profile h(x, t) can not be detected.

Figure 4.20. Assembled water surface profile for So = 1%, Ho = 0.20m, t = 3.24s once all
the outliers are removed.The horizontal dashed line indicates the water level above which the
water level profile h(x, t) can not be detected.
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The remaining outliers will be treated later.
In order to have statistically robust results the run tests are performed several times. As men-
tioned before the 0% slope configuration was performed ten times for eachHo thereby allowing
the acquisition of statistically robust water level data not affected by outliers. In figure 4.21 are
represented all the ten profiles for 4 different times (t=0.5s, t=1.8s, t=3.1s and t=4.3s) for all
the four water levels. The outcome of the analysis showed a low standard deviation between
different water profiles after 10 replicas. This led to a decision of performing only 5 replicas for
the remaining Ho and So. Hence, water level data for So = 0% are presented as the averages
of 10 water level replicas while the last 12 configurations are presented as the averages of the
5 water level replicas.

Figure 4.21. Representation of the water surface profile, derived from the superim-
position of ten run tests, for So = 0%, Ho = 0.15m, at for different times (t=0.5s,
t=1.8s, t=3.1s and t=4.3s).
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Figure 4.22. Representation of the water surface profile, derived from the superim-
position of ten run tests, for So = 0%, Ho = 0.20m, at for different times (t=0.5s,
t=1.8s, t=3.1s and t=4.3s).

Figure 4.23. Representation of the water surface profile, derived from the superim-
position of ten run tests, for So = 0%, Ho = 0.25m, at for different times (t=0.5s,
t=1.8s, t=3.1s and t=4.3s).
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Figure 4.24. Representation of the water surface profile, derived from the superim-
position of ten run tests, for So = 0%, Ho = 0.30m, at for different times (t=0.5s,
t=1.8s, t=3.1s and t=4.3s).
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5. Numerical Solution of the SVE

The numerical scheme used to solve equations 3.1 and 3.2 for h(x, t) and U(x, t) for x > 0
and t > 0 was described by Keskin and Agiralioglu in 1997 [42]. The mesh setup matches the
flume experiments earlier described, where So andHo are varied. In order to solve numerically
the SVE Keskin and Agiralioglu proposed the following formula

∂Q

∂t
+ α

∂Q

∂x
+ β = 0, (5.1)

where α is

α = 2
Q

A
+

gA
B −

Q2

A2

Q
A (53 −

4R
3B )

, (5.2)

and β is
β = gA(Sf − So). (5.3)

This model is based on the assumption that

∂Sf
∂x

= 0, (5.4)

which in the case studied here is self consistent. The Continuity Equation is therefore replaced
by equation 5.1. The α and β coefficient are related to the Inflow Hydrograph and the cross-
section area quantities.

5.1 Boundary Conditions

In order to solve the equation 5.1 two boundaries conditions must be set. The initial conditions
are as in the flume experiments: A dry channel with h(x,0) = U(x,0) = 0. The two boundary
conditions are the velocity U(0, t) and the water level h(0, t) calculated for a cross-section
immediately downstream of the dam. More precisely the section considered is located 1mm
ahead of the dam. The h(0, t) is directly imaged and supplied from the flume experiments
for each So and Ho. In Figure 5.1 is represented the evolution of h(0, t) for a 1% slope,
Ho = 0.25m run test. It is shown the typical wavy pattern after the dam-break.
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5 – Numerical Solution of the SVE

Figure 5.1. Evolution of h(0, t) for a 1% slope, 0.25m run test.

The U(0, t) was not directly measured but inferred starting from the Inflow Hydrograph. The
Inflow Hydrograph can be only partly determined from the imaged inflow volume Vin into
the dry channel. The inflow volume Vin is determined by calculating for each frame, starting
from t = 0s, the area under the water profile and the multiplying for the width of the channel
(B = 0.5m). The first value of the inflow rate is obtained by subtracting from the Volume at
t = 0.09s the Volume at t = 0s and dividing by ∆t = (t+ 1)− t.

Qin(0, t) =
Vin(t+ 1)− Vin(t)

∆t
. (5.5)

The inflow velocity can then be computed from the conservation of mass with the following
formula

U(0, t) =
Qin(t)

[Bh(0, t)]
. (5.6)

This process is repeated as far as the frontwave tip reaches x = 2.5m which is the maximum
length of the profile detected by the cameras. The time needed to get to x = 2.5m depends
on the slope and on the initial water level, therefore the length of the first part of the Inflow
Hydrograph will be influenced by those two factors.
Although the purpose in this thesis is to interpret the wavefront tip shape, also the recession
part of the wave is analyzed. In fact each run for the So = 0% last 7.2 seconds while for the
other slopes last 10.8 seconds which is long from the appearence of the wavefront.
In order to evaluate the mean velocity after the wave front is passed it’s been used the solution
proposed by Ritter et al. [65]. In this case the velocity can be calculated without having
to know the Inflow Hydrograph although it is calculated for the sake of completeness. The
solution proposed by Ritter implies that there is no water below the dam initially and that the
Friction Slope equals the Bed Slope. According to Ritter’s solution the velocity and the depth
are defined by the following formulas:
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U =
2

3
(
x

t

√
gHo), (5.7)

√
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x

t
). (5.8)

WhereHo is the initial water level behind the dam, x is the distance of the cross-section chosen
ahead of the dam and t is the time after the cofferdam is instantaneously lifted up. Equation 5.8
can be rearranged as follow:√

gH(t) =
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√
gHo −
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2
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√
gHo), (5.9)√

gH(t) =
√
gHo −

1

2
U, (5.10)

therefore U(t) is expressed by

U = 2(
√
gHo −

√
gH(t)). (5.11)

Once the velocity is known the boundary condition is set and the inflow hydrograph can be
calculated too. The following image shows a typical hydrograph for a 1% slope, 0.25m run
test.

Figure 5.2. Inflow hydrograph obtained by differenciating the volumes in time for the first 2
seconds, when the frontwave is visible, and with Ritter’s formula for the remaining time.

For the first two seconds the inflow hydrograph is calculated differenciating the volumes, in-
stead after that it is used the Ritter solution. Due to the limited validity range of the solution
proposed by Ritter, after 5 second the flow rate shows an increasing trend. As shown in expres-
sion 5.11 this is because when H(t) lowers Ho remains the same, consequently the velocity
increase and Qin too. The Ritter solution is valid as long as the water level follows a waviness
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5 – Numerical Solution of the SVE

pattern. Therefore the recession part of the hydrograph is modeled in a even more different
way. When the water level H(t) and the time t are plotted in a logarithmic scale stands out an
important characteristic of the hydrograph.

Figure 5.3. Logarithmic representation of the measured water level in time, the linear part
suggests a power low of h in the recession part.

The logarithmic water level drops following a straight line resulting that the real water level
follows a power low. The time when the dropping starts depends on the slope So and on the
initial water level Ho of the experiments. Presuming that the inflow drops following the same
trend of the water level it can be expressed with the following formula

Q = At−β, (5.12)

where the parameters A and β emerges from the boundary condition. Qo represents the inflow
at time t∗ which is time when the Ritter Solution fails. V is the Volume loss between the time
t∗ and t′ which is the end of the simulation. It can be calculated by the movie imaging. Solving
the following system A and β are inferred

Q = At−β, (5.13)

V =

∫ t′

t∗
At−βdt. (5.14)
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5.1 – Boundary Conditions

Figure 5.4. Inflow hydrograph obtained by differenciating the volumes first, with Ritter’s for-
mula when the frontwave is no more recorded by the cameras and with a power low with negative
exponent for the remaining time.

With these initial and boundary conditions, the numerical scheme was used to assess how
various parametrization of Sf described by equations 3.7 and 3.15 impact h(x, t). For equation
3.7, Manning’s n = 0.05, which was deemed optimal for reproducing the steady-state wave
velocity (discussed later). This value is also commensurate with many other experiments on
flow through emergent dense vegetation described elsewhere [58, 10]. For equation 3.15, the
calculations are conducted using Cd,iso, Cd,a, and Cd,s as well as a constant Cd. All these
calculations are then compared to experiments imaging h(x, t) for the varying Ho and So.
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6. Results

6.1 Data summary and comparison with the Ritter Solution

The measured h(x, t) for all 16 configurations are presented in dimensionless form and com-
pared to the Ritter Solution (i.e. equation 3.10) in Figure 6.1. The Ritter Solution (based on
Sf = So = 0) shows that the dimensionless water level hn and the dimensionless wave speed
un are linked by a parabolic relation. Follows that for a fixed hn corresponds a unique un. The
comparison between measurements for all x and t per test run and the Ritter model highlights
three results:
(i) The dimensionless variables selected to normalize the Ritter Solution do not fully collapse
the measurements. This result emphasizes the impact of the dense rods canopy on the flow
making the initial condition of ideal flow no longer valid.
(ii) The measured hn = h/Ho is larger than predictions from the Ritter Solution and the
deviations are dependent on the specific So and Ho value. This is connected to the presence of
the rods (not covered by Ritter) which, contributing to the increasing friction, makes the level
of the water deeper if compared with the Ritter Solution. In particular all the 16 configurations
show, in the first frames of the test runs, a value of the normalized water level hn of about 0.75,
which is a 50% more than the 0.5 of the Ritter Solution.
(iii) The initial decay of hn with increasing un is much steeper than predictions by equation
3.10 for all So and Ho highlighting the overall role of Sf .
The first result achieved in this thesis is the confirmation of non-applicability of the Ritter
Solution in the case studied. This result, already achieved in the past, led to a further inquiry
into the explicit inclusion of distributed drag forces by vegetation elements. The results of this
inquiry already mentioned will be presented in the next sections.
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6 – Results

Figure 6.1. A comparison between measured normalized water surface hn = h/Ho (red cir-
cles) and modeled hn (black line) using the Ritter Solution for So = 0 against normalized
velocity un = (x/t)/

√
gHo for all 16 configurations (and x > 0, t > 0). Panels from left to

right indicate increasing So = 0,1,2,3% (horizontal arrow) whereas panels from top to bottom
indicate increasing Ho = 0.15, 0.20, 0.25, 0.30m (vertical arrow).The horizontal dashed line in
all panels indicates the water level beneath which it is impossible to detect the surface.
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6.2 Determination of Cd and n

To investigate the mechanism of the wave propagation through a rod dense canopy after the
dam-break two paths can be followed.
The first approach is based on Manning’s theory which, although is considered too simple even
to describe an uniform steady flow, can be useful to understand how far an inertial unsteady
flow can be represented by a constant n value. Therefore, the first goal of this section is to find
a parametrization of a constant Manning’s value n able, at least, to reproduce the velocity of
the wavefront. A preliminary estimate n was carried out using a small subset of the water level
measurements.
Within the wavefront region, the front speed is assumed to be roughly constant so that ∂U/∂t
and ∂U/∂x are small relative to the remaining terms in the SVE [14]. The reduced SVE
equation can be written as follow:

g

(
∂h

∂x
+ Sf

)
= 0, (6.1)

and the continuity equation simplifies to

∂h

∂t
+ U

∂h

∂x
= 0. (6.2)

If Sf is inferred with a constant n value equations 3.27 and 3.28 can be deducted. For a constant
n, h scales as a power-law with a sub-unity exponent (i.e. x3/7). and n is expressed by the
following formula

n =

√
h4/3

U2
f

∂h

∂x
. (6.3)

Equation 6.3 was used to compute n thereby ensuring that at least Uf is matched on average
near the wavefront. In fact expression 3.28 showed that h scales as a power-law with x. Follows
that the wavefront tip measured can only be described in term of velocity. This finding is also
illustrated in Figure 6.2, where the wave speed matching is possible only in term of velocity
but not in term of wavefront tip shape. A more expansive analysis was conducted on other test
runs and an n = 0.05 appeared to reasonably reproduce the front speed in all of them.
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Figure 6.2. A comparison between measured water surface h and modeled h using a constant
n = 0.05. Using the linear portion of the h(x, t), a near constant Cd = 0.4 was determined
and used throughout. The horizontal dashed line in all panels indicates the water level beneath
which it is impossible to detect the surface.

On the other hand the experiments shown a clearly different shape if compared with the shape
obtained with a constant Manning’s value. Hence the necessity of further inquiry into the
explicit inclusion of a distributed drag force by vegetation at high Reynolds numbers. The
characteristic linearity of the wavefront tip drops every relation of Cd with the Reynolds num-
ber, which means that such shape can be justified only by a constant Cd value. If the same
analysis is conducted for a constant Cd, equations 3.25 and 3.26 are obtained, showing that
h(x, t) is linear in x and Cd can be obtained as follow

Cd =

(
∂h

∂x

)
2g(1− φv)
U2
fmD

, (6.4)

where ∂h/∂x andUf are respectively the slope and the mean constant velocity of the wavefront
tip. Uf is inferred by knowing the position of the wavefront at two different times and then
dividing by the time difference between the two frames considered. To do so two frames with
a time distance of one second have been chosen, both of them when the wavefront is formed
and assumed a linear shape. Although the water profile is not completely visible the movies
suggested a linear shape even in the hidden part. ∂h/∂x is deducted by calculating the slope
of the profile at two different times and averaging them afterward. This analysis, performed
for different slopes and water levels, converged to a unique Cd values around 0.4. This values
along with with the Drag Coefficient depending by the Reynolds number will be used as input
to solve the numerical SVE.
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6.3 Comparison between SVE and measurements

A comparison across all runs for constant n = 0.05 and models of Cd,iso, Cd,a, and Cd,s as
well as Cd = 0.4 is now conducted for all h(x, t).
The numerical solving of the SVE emphasized similar results in term of h(x, t) for the runs
with Cd,iso, Cd,a, and Cd,s. Therefore, from now on, will be shown only the runs with the drag
coefficient obtained for the Staggered configuration which is the most similar to the lay used
in the test runs in laboratory.
To best show the results achieved in this thesis two graphics representations have been chosen:
(i) a Color Map and (ii) and the water surface profile.
The Color Map is a chart able to exhibit three variables in the Cartesian Plane. The x-axis is
the distance from the dam expressed in meters and the y-axis is the time expressed in seconds.
The water level is represented by the different colors plotted on the map whose intensity is
connected to the water height which may be read in the color bar next to the graph. In this way
is possible to show the results for a test run from the moment when the dam collapses to a time
fixed to 7.2 seconds. The dashed red lines represent the three times chose to show the water
level surface.
The second representation is a figure of the water level surface profile. Each figure contains
three graphs regarding three significant times (t = 0.5s, t = 1.5s and t = 2.5s). In each graphs
are plotted the water profiles obtained for Cd,s, Cd = 0.4, n = 0.05 and the measured one, one
on top of each other. In the interest of giving a visual representation able to show the pattern
discovered only 4 out of 16 configuration will be set out. This runs are Ho = 0,15m with a
slope So = 0%, Ho = 0,20m with a slope So = 1%, Ho = 0,25m with a slope So = 2% and
Ho = 0,30m with a slope So = 3%. In this way every slope and every water level are shown
comprising the extreme cases.
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Figure 6.3. A comparison between measured and modeled h(x, t) for So = 0% and
Ho = 0.15m. The first panel in the first row from the left represents the measured h(x, t),
the second is modeled h(x, t) with n = 0,05. In the second row from the left is shown the
modeled h(x, t) with Cd,s and modeled h(x, t) with Cd = 0.4.
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Figure 6.4. A comparison between measured and modeled h(x, t) for So = 0% and
Ho = 0.15m. h(x, t) measured is represented with the three h(x, t) modeled (Cd,s, Cd = 0.4
and n = 0.05) for three significant times (t = 0.5s, t = 1.5s and t = 2.5s). The three time
instants are shown in figure 6.3 as a horizontal dashed red line.
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Figure 6.5. A comparison between measured and modeled h(x, t) for So = 1% and
Ho = 0.20m. The first panel in the first row from the left represents the measured h(x, t),
the second is modeled h(x, t) with n = 0,05. In the second row from the left is shown the
modeled h(x, t) with Cd,s and modeled h(x, t) with Cd = 0.4.
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Figure 6.6. A comparison between measured and modeled h(x, t) for So = 1% and
Ho = 0.20m. h(x, t) measured is represented with the three h(x, t) modeled (Cd,s, Cd = 0.4
and n = 0.05) for three significant times (t = 0.5s, t = 1.5s and t = 2.5s). The three time
instants are shown in figure 6.9 as a horizontal dashed red line.
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Figure 6.7. A comparison between measured and modeled h(x, t) for So = 2% and
Ho = 0.25m. The first panel in the first row from the left represents the measured h(x, t),
the second is modeled h(x, t) with n = 0,05. In the second row from the left is shown the
modeled h(x, t) with Cd,s and modeled h(x, t) with Cd = 0.4.
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Figure 6.8. A comparison between measured and modeled h(x, t) for So = 2% and
Ho = 0.25m. h(x, t) measured is represented with the three h(x, t) modeled (Cd,s, Cd = 0.4
and n = 0.05) for three significant times (t = 0.5s, t = 1.5s and t = 2.5s). The three time
instants are shown in figure 6.7 as a horizontal dashed red line.
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Figure 6.9. A comparison between measured and modeled h(x, t) for So = 3% and
Ho = 0.30m. The first panel in the first row from the left represents the measured h(x, t),
the second is modeled h(x, t) with n = 0,05. In the second row from the left is shown the
modeled h(x, t) with Cd,s and modeled h(x, t) with Cd = 0.4.
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Figure 6.10. A comparison between measured and modeled h(x, t) for So = 3% and
Ho = 0.30m. h(x, t) measured is represented with the three h(x, t) modeled (Cd,s, Cd = 0.4
and n = 0.05) for three significant times (t = 0.5s, t = 1.5s and t = 2.5s). The three time
instants are shown in figure 6.9 as a horizontal dashed red line.

An example of such comparisons is shown in Figures 6.3 and 6.4 for Manning’s formula with
n = 0.05, Cd,s, and Cd = 0.4. Unsurprisingly, all models reproduce h reasonably at early
times given the specified inflow hydrograph. However, the models begin to diverge at later
times as the flood wave progresses further downstream. The comparisons with measurements
are suggestive that Cd = 0.4 compares best. The usage of Cd,s without any further sheltering
or drag reductions overestimates h(x, t) at later times (especially for the largest So and Ho).
Manning’s formula with n = 0.05 captures the bulk space-time patterns of the water surface
but the details shapes of the water surface profile are not fully recovered.
Figures 6.11, 6.12, and 6.13 summarize the overall comparison between measured and modeled
h(x, t) using a constant Cd = 0.4, a constant n = 0.05, and the Cd,s formulation with no
further drag reduction. This graphs contain in the x-axis the water level normalized with Ho

ahead of the dam and in the y-axis is represented the water level of each model normalized in
this case too. Each colormap contains all the points of the 16 configurations for a total of more
than 800000 points. The color map emphasizes the zones where the points are denser.
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Figure 6.11. A comparison between measured and modeled h(x, t) using a Manning’s formula
with constant n = 0.05 for all (x, t) and all 16 runs. The colormap signifies density of points.
The one-to-one line is also shown.
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Figure 6.12. A comparison between measured and modeled h(x, t) using the staggered
Cd,s formulation for all (x, t) and all 16 runs. The colormap signifies density of points. The
one-to-one line is also shown.
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Figure 6.13. A comparison between measured and modeled h(x, t) using a constant
Cd = 0.4 for all (x, t) and all 16 runs. The colormap signifies density of points. The
one-to-one line is also shown.

Table 6.1 summarizes the regression statistics associated with Figures 6.11, 6.12, and 6.13.
The three statistics which show the well-fitting of a regression model are R-squared, the slope
and the intercept of the straight line. The coefficient of determination in the case of a linear
regression is the square of the correlation coefficient. The coefficient of determination ranges
from 0 to 1. It is acceptable for all three models suggesting that all three models reasonably
reproduce the variability in measurements. However, the model biases (interpreted here as
regression intercept differing from zero and regression slope differing from unity) differ in
how the frictional law is imposed and parametrized.
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Slope Intercept R2

Cd=0.4 0.90 0.05 0.91
n=0.05 0.76 0.08 0.87
Cd,s 1.24 -0.03 0.87

Table 6.1. Characteristics of the linear regression for Cd,s, Cd = 0.4 and n = 0.05.

Figure 6.11 shows that Manning’s formula underestimates h in the regions where h measured
is high and overestimates h in the regions where h measured is low. The main reason is that
for n = 0.05 the wave speed is matched but not the water surface profiles. If the speed of the
front is equal, the profile for n = 0.05 will be higher than the linear profile measured as shown
in 6.2. In fact according to equation 3.28 h scales as a power-law with a sub-unity exponent
(i.e. x3/7) for the constant n near the advancing wavefront.
The staggered drag coefficient formulation clearly overestimates the Drag. The formula used
here it’s been proven valid by Etminan [24] for the case of uniform flow and becomes inconsis-
tent in this case. Figure 6.12 shows that Cd,s overestimates h in the regions where h measured
is high and underestimates h in the regions where h measured is low revealing an opposite
pattern to Manning’s formula.
The model calculations with Cd = 0.4, showed in figure 6.13 match closely the one-to-one
line, in fact R2 = 0.90 (biases are about 10%) and the slope intercept is 0.05.
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7. Discussion

The main purpose of this thesis is to capture the dam-break wave propagation in situations
where the resistance to the flow is not originating from side or bed friction. A hundred run tests
were performed for a total of 16 different configurations.
For the dam-break problem over vegetation, the presence of a uniform rod canopy appears to
simplify the description of the water surface profile in the vicinity of the advancing wavefront
because Cd becomes weakly or almost independent of the Reynolds number. This simplifica-
tion is in contrast to a Manning type representation for equivalent wall frictional effects with
a constant n. An extensive linear h(x) with x was predicted by this simplification for the ad-
vancing wave and was confirmed for all 16 configurations.
The expression for Cd is represented in Figure 3.1 for φv = 0.03. It is shown that for largeRed
(i.e. Red > ×105), Cd becomes weakly dependent on Red or almost entirely independent of
Red altogether. However all the experiments and simulations run so far to determine Cd, took
into account a steady state permanent flow characterized by Red ≤ 10000 . Thereby the right
part of the graph, for around Red ≥ 10000, is yet unexplored.
An unexpected result emerging from the experiments here is the significant reduction in Cd(=
0.4) below its array (uniform or staggered) values reported from uniform canopy flow ex-
periments. At high Reynolds number (but Red < 3 × 105), the Cd for an isolated cylinder
asymptotically approaches Cd,iso = 1.2, whereas Cd,s ≈ 1 and Cd,a ≈ 0.8.
What can be the cause (or causes) of such reduction in Cd? In this discussion will be offered
four speculation which are i) misalignment between the total velocity vector and the cylinder
axis, ii) wave effect in the flow, iii) relation between the drag and the Froude number and iiii)
flow separation. Which one of this factor has a major impact on the shape of the flow is still
unknown, but clearly every one has an important role into reducing the drag.

7.1 Misalignment between the total velocity vector and the cylin-
der axis

At high Red, form drag dominates over viscous drag and only the velocity component per-
pendicular to the individual cylinder axis must be factored into the calculations of a form-drag
coefficient. The velocity component parallel to the cylinder axis does not contribute to the form
drag. If the total velocity is UT , then the velocity component responsible for the form drag here
is UT sin(θ), where θ is the angle between UT and the cylinder axis. It directly follows that
deviations from θ = π/2 must be accounted for using a drag reduction factor set to [sin(θ)]2.
To achieve a 50% reduction in Cd requires a θ = π/4, which may not be large immediately
after the dam break but is large at the tip of the advancing wave front. If the angle formed
by the water surface profile and the vertical rods is used as a surrogate for θ, then θ ∼ π/18
(instead of θ = π/2). Resolving θ in the vicinity of the advancing wave front was beyond the
capacity of the imaging system here. Not withstanding this experimental limitation, the main
message to be conveyed is that any misalignment between the velocity vector and the cylinder
axis leads to reductions in Cd when compared to expectations from uniform flow experiments
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where θ = π/2.

7.2 Waviness

In the last two decades several studies about the wave attenuation by vegetation were made.
For example Kobayashi [44] performed many experiments in a channel equipped with a wave
maker keeping the water level fixed and changing the frequency of the waves. This studies
highlighted that in case of a waving flow a drag coefficient could be calibrated in function of
the Reynolds number as shown in Figure 7.1.

Figure 7.1. Calibrated values of the Drag Coefficient Cd as function of Reynolds number.

Hence the relation between Cd and Re is expressed by the following formula:

Cd = 0.08 + (
2200

Re
)2.4. (7.1)

Equation 7.1 is empirical but describes a range of canopy density and wave frequency. The
baseline Cd=0.08 value is small and is suggestive that at highRed, the presence of waves act to
reduce Cd versus expectations from uniform pressure or gravity driven flows at the same Red.
The physical mechanisms for the reduction in form drag are not too different from the one dis-
cussed in section 7.1 though inertial forces cannot be generally ignored in wave-driven flows.
However, at large Keulegan-Carpenter numbers (KC), the form drag dominates over inertial
forces and Cd may be interpreted as representing the total drag force acting on a cylinder. The
assumption of a large KC may be plausible here when the front wave attains a quasi-constant
Uf (i.e. ∂Uf/∂t is small). Transient waves do persist in the first 2-3s out of the 7-10s ex-
periment duration here for each test run. However, these waves are not monochromatic (as in
the case of a wave maker) and are superimposed on a rapid current entirely absent in wave-
induced flows. For the purposes of discussion only, it may be argued that the limiting Cd at
high Red (hereafter labeled as the asymptotic value) lies between 0.08 (for waves) and 0.8 (for
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uniform staggered dense canopy), with a mean value of about 0.4 as waves persisted about 50%
of the inflow hydrograph period associated with the wave front. Upstream of the rapidly ad-
vancing wave front, the Reynolds number is lower, the water depth is gradually approaching a
quasi-uniform state as evidenced by Figure 6.4, and ∂Cd/∂Red may follow expectations from
uniform flow vegetation studies for staggered cylinders. These two arguments may be naively
superimposed to yield

Cd = 0.4 + 10(Re)−2/3, (7.2)

which is labeled as Cd,s-modified. A global comparison between measured and modeled
h(x, t)/Ho for all 16 test runs is shown in Figure 7.2 and the regression statistics of this com-
parison are summarized in Table 7.1. A reduction in the asymptotic value of Cd from 1.0 to
0.4 improved the comparison between measurements and model calculations over the original
Cd,s, but this improvement is quite minor. A global comparison in the next figure show that the
water profile is well represented in the wave-front as well as in the back where the Reynolds
number values are lower.

Figure 7.2. A comparison between measured and modeled h(x, t) using a Etminan’s formula
with reduced asymptotic limit for all (x, t) and all 16 runs. The colormap signifies density of
points. The one-to-one line is also shown.
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7.3 Froude Number effects

When the flow is widely non uniform the resistance, expressed by the friction slope, is a com-
plex function of the density of the rods, the channel bed slope, the Reynolds number as well
as the Froude number. Starting from the second law of Newton it can be found that, for an
unsteady inertial flow, the drag force is directly related to the Froude number.∑ →

F = m
→
a , (7.3)

∑ →
F = m

∂
→
V

∂t
, (7.4)

∑ →
F =

∂

∂t
m
→
V , (7.5)

the mass m can be express as Volume W multiplied for ρ, hence∑ →
F =

∂

∂t
Wρ

→
V , (7.6)

ρ is constant, follow that ∑ →
F = ρ

∂

∂t
W
→
V . (7.7)

If the derived is expanded ρ is constant, follow that∑ →
F = ρ

[
W
∂V

∂t
+
→
V
∂W

∂t

]
. (7.8)

In the frontwave tip the velocity V is approximately constant and ∂W
∂t = Q , hence∑ →

F = ρ
→
V Q, (7.9)

∑ →
F = ρQ(V2 − V1). (7.10)

Taken a control volume, where Q = BV h the conservation of momentum can be expressed by

ρg
h21
2
B + ρ(V1h1B)V1 = ρg

h22
2
B + ρ(V2h2B)V2, (7.11)

dividing by ρ and B

g
h21
2

+ V 2
1 h1 = g

h22
2

+ V 2
2 h2, (7.12)

rearranging the terms

V 2
1 h1

[
gh1
2V 2

1

+ 1

]
= V 2

2 h2

[
gh2
2V 2

2

+ 1

]
, (7.13)

considering that V1 = V2 = constant in the wave front tip, the conservation of momentum
show that the water level is a function excusively of the Froude number:

h1

[
1

2

1

Fr1
+ 1

]
= h2

[
1

2

1

Fr2
+ 1

]
. (7.14)

Therefore the drag force that equilibrates the hydrostatic pressure can be wrote as a function of
Froude number.
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7.3 – Froude Number effects

For example, the Chezy expression where the resistance stress is expressed in kinematic form
as ChU2 results in

Fr =
U√
gRh

=

√
So
Ch

, (7.15)

where Ch is the Chezy constant. Re-arranging this expression yields

Ch =
So
Fr2

. (7.16)

For vegetated canopies, Ch can be related to Cd, which must then be inversely related to Fr.
The relation between the drag coefficient Cd and the Froude number Fr has already been
experimentally explored by Yoshiharu Ishikawa [34] and it is shown in the next figure:

Figure 7.3. Calibrated values of the Drag Coefficient Cd as function of Froude number.

In particular the experimental data are well fitted with a power low function:

Cd = 1.24− 0.32Fr. (7.17)

For the dam-break problem, the wave front velocity Uf approaches a near constant value with
increasing x; However,

√
Rh is decreasing resulting in Fr that increases with increasing x.

The immediate consequence of this analysis is that ∂Fr/∂x is expected to be positive with
increasing x. Based on equation 7.17, ∂Cd/∂x is negative in the vicinity of the wave front
due to depth non-uniformity. A Cd that only varies with Red = UD/ν simply cannot detect
this decline because U ≈ Uf is not changing in space whereas Rh in the vicinity of the wave
front is. The only way to accommodate this Cd decline in a Cd − Red expression is to arti-
ficially reduce Cd below expectations from uniform flow in canopies (here Cd,s). Hence, it is
conceivable that a reduced Cd = 0.4 is simply an artifact of modeling Cd by Red and h or Rh
variations cannot be accommodated. Hence, an alternative to a Cd − Red expression is now
explored based on an expression that resembles equation 7.17. To maintain tractability, it was
assumed that

Cd = a1 + a2(Fr)
a3 , (7.18)

where a1 = 1.24, a2 = −0.32, and a3 = 1 recovers the best-fit curve to the laboratory
experiment for uniform emergent canopy flow described elsewhere [34]. Using the same subset
of the data used to determine n = 0.05 and Cd = 0.4, best-fit parameters were determined to
be here a1 = 0.1, a2 = 0.25, and a3 = −0.5.
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7 – Discussion

Cd = 0.1 + 0.25(Fr)−0.5. (7.19)

Upon comparing the values determined for the dam-break problem here with those in equation
7.17, a number of clarifications must be made: (1) Equation 7.17 predicts a Cd < 0 when
Fr > 3.87 whereas the derived expression here predicts a saturating Cd ≈ 0.1 for large Fr;
(2) the derived expression here predicts a Cd ∈ [0.24, 0.36] for Fr ∈ [1, 4] (i.e. spanning the
entire super critical regime encountered in vicinity of the modeled wave front); (3) for Fr < 1,
Cd increases rapidly with decreasing Fr but remains well below predictions from equation
7.17. It appears that the best fit Cd to equation 7.18 remains well below equation 7.17 even in
the region far upstream of the wavefront where the flow is quasi-uniform.
As a final check, we used a1 = 0.1, a2 = 0.25, and a3 = −0.5 in equation 7.18 (labeled
as Cd−Froude) to predict h(x, t)/Ho for all 16 runs. A comparison between measured and
modeled water levels is summarized in Table 7.1. Overall, the performance of the model in
equation 7.18 is no worse than a Cd = 0.4 suggesting that the tendency to drop Cd below its
uniform staggered arrangement value is not an artifact of the choice of anRed that is insensitive
to Rh. A global comparison with Cd as a function of Re follows

Figure 7.4. A comparison between measured and modeled h(x, t) using Cd as a func-
tion of Fr all (x, t) and all 16 runs. The colormap signifies density of points. The
one-to-one line is also shown.
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7.4 Separation

For an isolated cylinder with Red < 3 × 105, the boundary layer attached to the cylinder is
laminar and generally separates on the front half leading to the formation of wakes behind the
cylinder. For dense canopies, sheltering is linked to interactions between those wakes. The
pressure in the separated region on the downstream side of an isolated cylinder is nearly con-
stant but still smaller than the free stream pressure resulting in a large Cd. This is the situation
that was considered in prior studies dealing with separation for uniform flow within staggered
vegetated systems [24]. For Red > 3 × 105, the aforementioned separation mechanism be-
comes far more complex. The laminar boundary layer that is just beginning to the form at the
tip of the front half of the cylinder becomes unstable over a very short distance. The shear
layer switches to a turbulent state and reattaches to the front half of the cylinder. However,
this newly formed turbulent boundary layer itself separates from the cylinder on the back-half.
The net result is that the separation region has decreased and the pressure in this region nearly
returns to its free stream value causing a major decline in Cd that is well over 70% (for isolated
cylinders).
While the Red in the wave front region of the dam-break problem is lower than 3 × 105 by
an order of magnitude, the flow is highly disturbed and unsteady. In fact, the acquired movies
show instances of water splashing around the rods. These large disturbances and flow unsteadi-
ness cause rapid destabilization of the embryonic laminar boundary forming on the front side
of the cylinder thereby eliciting an early transition to turbulence. If the turbulent shear layer
experiences late separation on the back side of the cylinder, then the overall bulk Cd can drop
by 50%. In fact, if separation occurs midway on the back side of the cylinder, then the effective
frontal area (orDeff ) will be reduced by a factor 2. This reduction fromD toDeff alone leads
to a factor of 2 reduction in CdmDeff even when setting Cd = Cd,s at the same Red. This
scenario cannot be overlooked or dismissed and may explain the weak dependence of Cd on
Red reported here. The necessary (but not sufficient) conditions for its occurrence is that Red
as well as the disturbances to the embryonic laminar boundary at the tip of the front side of the
cylinders remain large to destabilize it. As an indirect check on such a separation, the calcula-
tions are repeated for the entire 16 runs with Cd set to a Cd,s formulation using Deff = 0.5D
(to reflect a reduction in the wake region behind the cylinder). This reduction in D also re-
duces Red, and hence a lower Red and higher Cd is expected away from the advancing wave
front with such a Deff revision. The comparison between measured and modeled water levels
is also summarized in Table 7.1. Overall, the performance of the model in equation 7.18 is
a small improvement over the constant Cd(= 0.4). That is, accentuating the Red effects on
Cd confers minor benefits to the comparison between measured and modeled h/Ho and the
separation argument may be plausible.
In the next table are represented the three Cd cases discussed from the beginning and the two
new Cd values proposed. Although CdF roude globally well represents the water profile, Cd,s
with the modified baseline is the best fit proposed.
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7 – Discussion

Slope Intercept R2

Cd=0.4 0.90 0.05 0.91
n=0.05 0.76 0.08 0.87
Cd,s 1.24 -0.03 0.87
Cd,smodified 0.93 0.05 0.91
Cd,Froude 0.89 0.06 0.89
Cd,Separation 0.96 0.04 0.91

Table 7.1. Characteristics of the linear regression for Cd,s, Cd = 0.4, n = 0.05,
Cd,smodified and CdFroude
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8. Conclusions

The work here considered the effects of hydraulic resistance on the downstream evolution of
the water surface profile h(x, t) in a long sloping prismatic channel covered by a uniform
dense rod canopy following the collapse of a dam. The focus was on the link between the
sought friction slope Sf in the SVE and vegetation roughness. The 16 configurations analyzed
regarded four water levels behind the dam (Ho = 0.15m, 0.20m, 0.25m, 0.30m) and four
differing bed slopes (So = 0%, 1%, 2%, 3%) for a total of 100 test runs. In particular, the
way in which drag slows the propagation of the advancing wave front was determined using
three broad classes of friction models: a frictionless model with Sf = 0 (the Ritter solution)
was used a reference, Sf described by wall or Coulomb friction (Manning’s formula with
constant roughness n), and a distributed drag force formulation where the drag coefficient
Cd was modeled using standard equations for isolated cylinders, array of uniformly spaced
cylinders, and cylinders positioned in a staggered arrangements. The following conclusions
can be drawn from the experiments, model results, and simulations: (i) When setting Sf = 0,
the Ritter’s solution under-predicted the measured water level for a given wave front velocity as
expected. The largest difference between measured and modeled water level was immediately
after the dam but prior to the commencement of the vegetated section, where the Ritter Solution
under-predicted the water level at this point by some 30%. Also, with increasing wave front
speed, the measured drop in h was steeper than predictions by the Ritter solution suggesting
(gSf ) was a significant term in the Saint-Venant equation. (ii) When modeling Sf with wall (or
Coulomb) friction as common to Manning’s formula with constant n, it was possible to match
the measured wave front speed with plausible values of n(≈0.05) but not the precise shape of
h. The water surface profile from a Manning representation for Sf was shown to be a power-
law in x with a sub-unity exponent at any given t. (iii) When modeling Sf using a distributed
drag force with constant Cd, agreement between measurements and model calculations was
satisfactory with a coefficient of determination exceeding 0.9 and regression slopes deviating
from unity by less than 10%. The model also predicted that the shape of the water surface
profile near the wave front is quasi-linear in x and can be theoretically linked to Cd. (iv) A
computed constantCd ≈ 0.4 from such links is much smaller thanCd reported for uniform flow
experiments with staggered cylinders at the same element Reynolds number. This suggests that
drag reduction mechanisms associated with non-uniformity, unsteadiness and transient waves,
and flow disturbances are more likely when compared to conventional sheltering effects.
The broader implications of this work highlights a need for new frictional laws describing Sf
in disturbed non-steady non-uniform flow conditions beyond conventional wall or Coulomb
friction representations. These developments are likely to be imminently used when combining
such models for closing the SVE with water level data acquired from space [3, 4, 2]. There is
some urgency for progress on this front as climate change may result in more frequent flooding
events and improving flood warning and monitoring systems is of obvious societal significance.
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A. MATLAB Codes

A.1 Script to detect the water surface profile

c l e a r a l l
c l o s e a l l
c l c

%% Step 1 : D e f i n i t i o n o f image b o u n d a r i e s .

I = imread ( ’ img19_p1 . png ’ ) ;
c u t = I ( 1 5 0 : 6 4 0 , 3 5 0 : 1 6 3 0 , : ) ;

%% Step 2 : Count o f t h e number o f f r a me s .
v= VideoReader ( ’ S u r f a c e _ c u t . mp4 ’ ) ; % Movie l o a d i n g .
j =0 ;
w h i l e hasFrame ( v ) %Cycle t o c a l c u l a t e t h e number o f f r a m es .

j = j +1 ;
a= readFrame ( v ) ;

end
S= s i z e ( a ) ; % Frame d imens ion i n p i x e l .

%% Step 3 : Each f rame i s l o a d e d i n t o a s t r u c t u r e .
c l e a r v a
v= VideoReader ( ’ S u r f a c e _ c u t . mp4 ’ ) ;
Video ( j )= s t r u c t ( ’ img ’ , [ ] , ’ imgcut ’ , [ ] , ’ p r o f i l e ’ , [ ] , ’ p r o f i l e _ t o t ’ , [ ] ) ;
% Video i s t h e s t r u c t u r e c a r r y i n g t h e f r a m es .
k =0;
% Each frame i s l o a d e d i n t o a s t r u c t u r e c a l l e d " Video " .
w h i l e hasFrame ( v )

k=k +1;
Video ( k ) . img= readFrame ( v ) ;

end
f i g u r e
imshow ( Video ( 8 ) . img ) ; %The dam−b r e a k f rame i s d e t e c t e d .

%% Step 4 : Images c u t t i n g .

f o r n =1: j % Th i s c y c l e e l i m i n a t e s t h e u n u s e f u l p i x e l s i n
%each image .
Video ( n ) . imgcu t =Video ( n ) . img ( 1 5 0 : 6 4 0 , 3 5 0 : 1 6 3 0 , : ) ;

end
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f i g u r e
imshow ( Video ( 8 ) . imgcu t ) ; % The dam−b r e a k f rame i s showed
%i n a new image where t h e s i z e i s s m a l l e r .
s= s i z e ( Video ( 6 8 ) . imgcu t ) ; % Count o f t h e number o f p i x e l s
%forming t h e new image .

%% Step 5 : Water s u r f a c e D e t e c t i n g
h =640; %h i s t h e h o r i z o n t a l d imens ion i n d i c a t i n g where
%t h e l i g h t i n g i s lower . Hence each image i s d i v i d e d i n
%two p a r t s , w i th two d i f f e r e n t c o l o r t o l l e r a n c e s .
f o r nn = 8 : 3 : 3 7 1 % Each movie i s a n a l y z e d from t h e dam−b r e a k

%frame ( number 8 ) + 7 . 2 s e c o n d s .
f o r m=1: h % H o r i z o n t a l d imens ion .

f o r l =1 : s ( 1 ) % V e r t i c a l d imens ion .
i f Video ( nn ) . imgcu t ( l ,m,1 ) <115 && Video ( nn ) . imgcu t ( l ,m,3 ) <160

%Red and b l u e t o l e r a n c e s .
Video ( nn ) . p r o f i l e ( l ,m, 1 ) = 2 5 5 ;
Video ( nn ) . p r o f i l e ( l ,m, 2 ) = 2 5 5 ;
Video ( nn ) . p r o f i l e ( l ,m, 3 ) = 2 5 5 ;

%I f t h e t o l e r a n c e i s r e s p e c t e d a b l a c k d o t
% i n a w h i t e f i g u r e i s p r i n t e d .

e l s e
Video ( nn ) . p r o f i l e ( l ,m, 1 ) = 0 ;
Video ( nn ) . p r o f i l e ( l ,m, 2 ) = 0 ;
Video ( nn ) . p r o f i l e ( l ,m, 3 ) = 0 ;
b l a p o s ( nn ,m)= l ;

% The rows i n d i c a t e s t h e f rame number ,
% t h e columns i n d i c a t e t h e a b s c i s s a o f
% t h e f rame ( s t a r t i n g from l e f t ) .
f o r x =( l + 1 ) : s ( 1 )

Video ( nn ) . p r o f i l e ( x ,m, 1 ) = 2 5 5 ;
Video ( nn ) . p r o f i l e ( x ,m, 2 ) = 2 5 5 ;
Video ( nn ) . p r o f i l e ( x ,m, 3 ) = 2 5 5 ;

end
b r e a k

end
end

end
f o r m=h +1: s ( 2 ) % H o r i z o n t a l d imens ion .

f o r l =1 : s ( 1 ) % V e r t i c a l d imens ion .
i f Video ( nn ) . imgcu t ( l ,m,1 ) <120

% From t h e h o r i z o n t a l v a l u e ’h ’
% t h e l i g h t i n g i s w o r s t .
% The r e d t o l e r a n c e i s lower .
Video ( nn ) . p r o f i l e ( l ,m, 1 ) = 2 5 5 ;
Video ( nn ) . p r o f i l e ( l ,m, 2 ) = 2 5 5 ;
Video ( nn ) . p r o f i l e ( l ,m, 3 ) = 2 5 5 ;

e l s e
Video ( nn ) . p r o f i l e ( l ,m, 1 ) = 0 ;
Video ( nn ) . p r o f i l e ( l ,m, 2 ) = 0 ;

84



A.1 – Script to detect the water surface profile

Video ( nn ) . p r o f i l e ( l ,m, 3 ) = 0 ;
pronum ( nn ) . oz ( l ,m) = 0 ; % ne ro
b l a p o s ( nn ,m)= l ;

% The rows i n d i c a t e s t h e f rame number ,
% t h e columns i n d i c a t e t h e a b s c i s s a o f
% t h e f rame ( s t a r t i n g from l e f t ) .
f o r x =( l + 1 ) : s ( 1 )

Video ( nn ) . p r o f i l e ( x ,m, 1 ) = 2 5 5 ;
Video ( nn ) . p r o f i l e ( x ,m, 2 ) = 2 5 5 ;
Video ( nn ) . p r o f i l e ( x ,m, 3 ) = 2 5 5 ;

end
b r e a k

end
end

end

Video ( nn ) . p r o f i l e _ t o t =255* ones ( 1 0 8 0 , 1 9 2 0 , 3 ) ;
Video ( nn ) . p r o f i l e _ t o t ( 1 5 0 : 6 4 0 , 3 5 0 : 1 6 3 0 , : ) = Video ( nn ) . p r o f i l e ;

end
% I t i s shown a sample image of t h e d e t e c t e d w a t e r s u r f a c e .
f i g u r e
imshow ( Video ( 6 8 ) . p r o f i l e ) ;

s ave P r o f i l i s b l a p o s

%% Step 6 : R e c a l c u l a t i o n o f t h e p i x e l c o o r d i n a t e s
%i n t h e whole image .
b= s i z e ( b l a p o s ) ;
P r o f i l e ( j )= s t r u c t ( ’ img ’ , [ ] ) ;
f o r a = 8 : 3 : 3 7 1

f o r aa =1: b ( 2 )
P r o f i l e ( a ) . img ( : , aa ) = [ aa +349 b l a p o s ( a , aa ) + 1 4 9 ] ;

end
end

save p r o _ t o _ c h e s s _ p 1 _ 3 0 _ 3 _ 1 P r o f i l e

%% Step 7 : Images P r i n t i n g .
% The d e t e c t e d s u r f a c e i s p r i n t e d i n g r e e n on t o p
% of each image . Th i s p r o c e s s i s u s e f u l
% t o a s s e s s t h e p r e c i s i o n o f t h e s c r i p t .
f o r nn = 8 : 3 : 3 7 1

f o r c =1: b ( 2 )
x= P r o f i l e ( nn ) . img ( 1 , c ) ;
y= P r o f i l e ( nn ) . img ( 2 , c ) ;
Video ( nn ) . img ( y , x , 1 ) = 1 0 ;
Video ( nn ) . img ( y , x , 2 ) = 2 5 0 ;
Video ( nn ) . img ( y , x , 3 ) = 1 0 ;

end
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c a t =Video ( nn ) . img ( 1 5 0 : 6 4 0 , 3 5 0 : 1 6 3 0 , : ) ;
f i g u r e ( nn )
imshow ( c a t ) ;
s a v e a s ( nn , s p r i n t f ( ’ FIG%d . png ’ , nn ) ) ;

end

A.2 Script to switch from Pixel Coordinates to Metric Coordinates

c l c
c l o s e a l l
c l e a r a l l

%% Step 1 : The camera p a r a m e t e r s ( " cameraParams " ) , c a l c u l a t e d
% by u s i n g " Camera C a l i b r a t o r " must be manua l ly l o a d e d .

% Images i s a v a r i a b l e c o n t a i n g t h e t wen ty p i c t u r e s o f t h e
% c h e c k e r b o a r d .
images = i m a g e D a t a s t o r e ( f u l l f i l e ( t o o l b o x d i r ( ’ v i s i o n ’ ) ,
’ v i s i o n d a t a ’ , ’ c a l i b r a t i o n ’ , ’ Camera1 ’ ) ) ;

%% Step 2 : D e t e c t i o n o f t h e c h e c k e r b o a r d c o r n e r s i n t h e images .
% The l a s t image i s l e f t f o r t e s t i n g .

[ i m a g e P o i n t s , b o a r d S i z e ]= d e t e c t C h e c k e r b o a r d P o i n t s ( images . F i l e s ( 1 : end ) ) ;

%% Step 3 : G e n e r a t i o n o f a c h e c k e r b o a r d i n m e t r i c c o o r d i n a t e s .
% w o r l d P o i n t s i s a m a t r i x c o n t a i n i n g t h e m e t r i c c o o r d i n a t e s o f
% t h e c h e c k e r b o a r d s q u a r e s .

s q u a r e S i z e = 5 0 ; % m i l l i m e t e r s
w o r l d P o i n t s = g e n e r a t e C h e c k e r b o a r d P o i n t s ( b o a r d S i z e , s q u a r e S i z e ) ;

% Reading of t h e l a s t image .
I = imread ( ’C : \ Program F i l e s \MATLAB\ R2017b \ t o o l b o x \ img19 . png ’ ) ;
imageS ize = [ s i z e ( I , 1 ) s i z e ( I , 2 ) ] ;

%D e t e c t i n g o f t h e c h e c k e r b o a r d p o i n t i n t h e l a s t image .
i m a g e P o i n t s = d e t e c t C h e c k e r b o a r d P o i n t s ( I ) ;

%C a l c u l a t i o n o f t h e R o t a t i o n m a t r i x and t r a n s l a t i o n v e c t o r .
[R , t ] = e x t r i n s i c s ( i m a g e P o i n t s , w o r l d P o i n t s , cameraParams )

% D e t e r m i n a t i o n o f t h e newWorldPoin ts . Th i s m a t r i x c o n t a i n s t h e
% c h e c k e r b o a r d c o r n e r s i n m e t r i c c o o r d i n a t e s o b t a i n e d by u s i n g
% t h e Camera P a r a m e t e r s t o t r a s fmorm t h e c o r n e r s o f t h e
% c h e c k e r b o a r d d e t e c t e d i n image19 i n p i x e l c o o r d i n a t e s .
newWorldPoin ts = po in t sToWor ld ( cameraParams , R , t , i m a g e P o i n t s ) ;

%% Fase 4 : P r e c i s i o n e v a l u a t i o n .
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p l o t ( w o r l d P o i n t s ( : , 1 ) , w o r l d P o i n t s ( : , 2 ) , ’ gx ’ ) ;
ho ld on
p l o t ( newWorldPoin ts ( : , 1 ) , newWorldPoin ts ( : , 2 ) , ’ ro ’ ) ;
l e g e n d ( ’ Ground Truth ’ , ’ E s t i m a t e s ’ ) ;

%% Fase 5 : The m a t r i x c o n t a i n i n g t h e p i x e l c o o r d i n a t e s o f t h e
% w a t e r s u r f a c e p r o f i l e i s l o a d e d .

l o a d ( ’ p r o _ t o _ c h e s s _ 3 0 _ 3 _ 1 . mat ’ )

%’ p r o _ t o _ c h e s s _ 3 0 _ 3 _ 1 . mat ’ i s t h e m a t r i x c o n t a i n i n g t h e w a t e r
% p r o f i l e i n p i x e l c o o r d i n a t e s . Each f rame i s t r a n s f o r m e d i n
% m e t r i c c o o r d i n a t e s by u s i n g t h e f u n c t i o n po in t sToWor ld .
% " m a t r i c e " i s t h e m a t r i x c a r r y n g t h e m e t r i c c o o r d i n a t e s o f
% each p r o f i l e .

m a t r i c e (241 )= s t r u c t ( ’ r e a l ’ , [ ] ) ;
f o r a = 9 : 3 : 2 4 9

p r o f =( P r o f i l e ( a ) . img ) ’ ;
mat = po in t sToWor ld ( cameraParams , R , t , p r o f ) ;
m a t r i c e ( a ) . r e a l = mat ;
m a t r i c e ( a ) . r e a l =[ m a t r i c e ( a ) . r e a l ( : , 1 ) 350−m a t r i c e ( a ) . r e a l ( : , 2 ) ] ;

end

%% Fase 6 : R e s u l t s c h e c k i n g .

% I t i s p l o t t e d t h e p r o f i l e i n m e t r i c c o o r d i n a t e s i n o r d e r
% t o check t h e s u c c e s s o f t h e p r o c e d u r e .
mat r = ( P r o f i l e ( 3 ) . img ) ’ ;
newmat r i ce = po in t sToWor ld ( cameraParams , R , t , mat r ) ;
m a t r i x = [ newmat r i ce ( : , 1 ) newmat r i ce ( : , 2 ) ]
ho ld on
p l o t ( newmat r i ce ( : , 1 ) , 3 5 0 − newmat r i ce ( : , 2 ) , ’ mx ’ ) ;
ho ld on
p l o t ( m a t r i x ( : , 1 ) , m a t r i x ( : , 2 ) , ’ bx ’ ) ;

%% Fase 7 : R e s u l t s s t o r i n g .

% The m a t r i x c a r r y i n g t h e w a t e r s u r f a c e i n m e t r i c
% c o o r d i n a t e s i s saved .
s ave cm_30_3_1 m a t r i c e

A.3 Script to assemble the water surface profiles

c l e a r a l l
c l o s e a l l
c l c
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%% Step 1 : l o a d i n g of t h e w a t e r s u r f a c e p r o f i l e s i n m e t r i c
% c o o r d i n a t e s f o r t h e t h r e e cameras .

l o a d ( ’ cm_p1_15_1_1 . mat ’ ) ;
One= m a t r i c e ( 1 : 3 6 4 ) ;
l o a d ( ’ cm_p1_15_1_2 . mat ’ ) ;
Two= m a t r i c e ( 1 : 3 6 4 ) ;
l o a d ( ’ cm_p1_15_1_3 . mat ’ ) ;
Three = m a t r i c e ( 1 : 3 6 4 ) ;

c l e a r m a t r i c e ;

%% Step 2 : Water s u r f a c e p r o f i l e a s s e m b l i n g .

% The l e f t edge o f t h e s t e e l s t r u c t u r e s e p a r a t i n g t h e f i r s t
% and t h e second g l a s s i s 40+1 .8=52 .8 cm from t h e c o f f e r d a m .
% The d i s t a n c e between t h e edge of t h e s t e e l s t r u c t u r e and
% t h e r i g h t edge o f t h e c h e c k e r b o a r d i s 1 . 2 1 cm .

% The l e f t edge o f t h e s t e e l s t r u c t u r e s e p a r a t i n g t h e second
% and t h e t h i r d g l a s s i s 1 5 0 . 6 + 1 . 8 = 1 5 2 . 4 cm from t h e c o f f e r d a m .
% The d i s t a n c e between t h e edge of t h e s t e e l s t r u c t u r e and
% t h e r i g h t edge o f t h e c h e c k e r b o a r d i s 2 . 5 7 cm .

% The d i s t a n c e s a r e r e p r e s e n t e d i n mm.
S= s i z e ( One ) ;
p r o f t o t ( S ( 2 ) ) = s t r u c t ( ’ r e a l ’ , [ ] , ’ nothou ’ , [ ] , ’ i n t e r p o l ’ , [ ] , ’ t r e c ’ , [ ] ) ;
f o r j = 1 : 3 : S ( 2 )

% G l a s s 1 .
One ( j ) . r e a l =[−(One ( j ) . r e a l ( : , 1 ) −4 1 8 ) One ( j ) . r e a l ( : , 2 ) + 5 0 ] ;
a=One ( j ) . r e a l ( : , 2 ) ;
a ( a >154)=1000; %A l l t h e p o i n t above a f i x e d h e i g h t a r e
% t r a n s f o r m e d t o 10m.
One ( j ) . r e a l ( : , 2 ) = a ;

% G l a s s 2 .
Two( j ) . r e a l =[−(Two( j ) . r e a l ( : , 1 ) −1 4 3 9 ) Two ( j ) . r e a l ( : , 2 ) + 5 3 ] ;
a=Two ( j ) . r e a l ( : , 2 ) ;
a ( a >130)=1000; %A l l t h e p o i n t above a f i x e d h e i g h t a r e
% t r a n s f o r m e d t o 10m.
Two( j ) . r e a l ( : , 2 ) = a ;

% G l a s s 3 .
Three ( j ) . r e a l =[−( Three ( j ) . r e a l ( : , 1 ) −2 4 3 7 ) Three ( j ) . r e a l ( : , 2 ) + 5 0 ] ;
a= Three ( j ) . r e a l ( : , 2 ) ;
a ( a >100)=1000; %A l l t h e p o i n t above a f i x e d h e i g h t a r e
% t r a n s f o r m e d t o 10m.
Three ( j ) . r e a l ( : , 2 ) = a ;
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% P r o f i l e s a s s e m b l i n g .
p r o f t o t ( j ) . r e a l =[ One ( j ) . r e a l ; Two( j ) . r e a l ; Three ( j ) . r e a l ] ;

end

A.4 Script to eliminate the outliers

c l c
c l o s e a l l
c l e a r a l l

%% Step 1− E l i m i n a t i o n o f t h e p o i n t s moved t o 1000mm.

f o r j = 1 : 3 : S ( 2 )
i n d =0;
s= s i z e ( p r o f t o t ( j ) . r e a l ) ;
f o r k =1: s ( 1 )

i f p r o f t o t ( j ) . r e a l ( k ,2 )~=1000
i n d = i n d +1;
p r o f t o t ( j ) . no thou ( ind , 1 ) = p r o f t o t ( j ) . r e a l ( k , 1 ) ;
p r o f t o t ( j ) . no thou ( ind , 2 ) = p r o f t o t ( j ) . r e a l ( k , 2 ) ;

e l s e
end

end

end
c l e a r k

%% Step 2 : E l i m i n a t i o n o f a l l t h e p o i n t s b e n e a t h 35 mm which
%% can n o t be d e t e c t e d by t h e cameras .

f o r j = 1 : 3 : S ( 2 )
i n d =0;
s= s i z e ( p r o f t o t ( j ) . no thou ) ;
f o r k =1: s ( 1 )

i f p r o f t o t ( j ) . no thou ( k ,2 ) >35
i n d = i n d +1;
p r o f t o t ( j ) . t r e c ( ind , 1 ) = p r o f t o t ( j ) . no thou ( k , 1 ) ;
p r o f t o t ( j ) . t r e c ( ind , 2 ) = p r o f t o t ( j ) . no thou ( k , 2 ) ;

e l s e
end

end
end

% D e f i n i t i o n o f t h r e e new s t r u c t u r e s .
p r o f i l o s o r t e d (364 )= s t r u c t ( ’ r e a l ’ , [ ] ) ;
f i t t i n g (364 )= s t r u c t ( ’ r e a l ’ , [ ] ) ;
f i n a l e (364 )= s t r u c t ( ’ r e a l ’ , [ ] ) ;

%% Step 3 : I n t e r p o l a t i n g p o l y n o m i a l .
% For each f rame t h e w a t e r l e v e l s a r e s o r t e d from t h e s m a l l e s t t o
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% t h e b i g g e s t v a l u e s ; t h i s p r o c e d u r e i s f u n d a m e n t a l i n
% o r d e r t o use P o l y f i t . P o l y f i t a l l o w s t o p l o t
% an i n t e r p o l a t i n g p o l y n o m i a l f o r each p r o f i l e .

f o r k =364:−3:1

b= s o r t r o w s ( p r o f t o t ( k ) . t r e c , 1 ) ;
p r o f i l o s o r t e d ( k ) . r e a l =b ;
p = p o l y f i t ( p r o f i l o s o r t e d ( k ) . r e a l ( : , 1 ) , p r o f i l o s o r t e d ( k ) . r e a l ( : , 2 ) , 8 ) ;
% The p o l y n o m i a l i n t e r p o l a t i n g g r a d e i s 8 .
x1 = p r o f i l o s o r t e d ( k ) . r e a l ( : , 1 ) ;
y1 = p o l y v a l ( p , x1 ) ;

f i t t i n g ( k ) . r e a l ( : , 1 ) = x1 ;
f i t t i n g ( k ) . r e a l ( : , 2 ) = y1 ;

end

%% Step 4 : O u t l i e r s e l i m i n a t i o n .
% The o u t l i e r s a r e i n v e s t i g a t e d by s e t t i n g t h a t i f t h e d i s t a n c e
% between a p o i n t o f t h e i n t e r p o l a t i n g p o l y n o m i a l and t h e p o i n t
% wi th t h e same a b s c i s s a o f t h e d e t e c t e d w a t e r s u r f a c e i s
% b i g g e r t h a n 3mm, t h e p o i n t must be e l i m i n a t e d .
% Those p o i n t s a r e t r a n s f o r m e d t o 180mm and e l i m i n a t e d l a t e r .

f o r k =364:−3:1
B= s i z e ( p r o f i l o s o r t e d ( k ) . r e a l ) ;
f o r n = 1 : 1 :B( 1 )

i f abs ( p r o f i l o s o r t e d ( k ) . r e a l ( n ,2)− f i t t i n g ( k ) . r e a l ( n , 2 ) ) > 1 2
o u t l i e r =180;
f i n a l e ( k ) . r e a l ( n , 2 ) = o u t l i e r ;

e l s e
o u t l i e r =[ p r o f i l o s o r t e d ( k ) . r e a l ( n , 2 ) ] ;

f i n a l e ( k ) . r e a l ( n , 2 ) = o u t l i e r ;
end
end
end

% D e f i n i t i v o i s t h e s t r u c t u r e c o n t a i n i n g t h e p r o f i l e s
% w i t h o u t t h e o u t l i e r s .

d e f i n i t i v o (364 )= s t r u c t ( ’ r e a l ’ , [ ] ) ;
f o r f =364:−3:1

v= p r o f i l o s o r t e d ( f ) . r e a l ( : , 1 ) ;
g= f i n a l e ( f ) . r e a l ( : , 2 ) ;
d e f i n i t i v o ( f ) . r e a l =[ v , g ] ;

end

% The o r i g i n a l w a t e r s u r f a c e p r o f i l e s a r e p l o t t e d wi th t h e
% p r o f i l e s c l e a n e d up from o u t l i e r s .
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f o r t =241:−3:1
f i g u r e
s u b p l o t ( 2 , 1 , 1 ) ;
p l o t ( d e f i n i t i v o ( t ) . r e a l ( : , 1 ) , d e f i n i t i v o ( t ) . r e a l ( : , 2 ) , ’ . ’ ) ;
a x i s ([−500 3000 0 2 0 0 ] ) ;
s u b p l o t ( 2 , 1 , 2 ) ;
p l o t ( f i t t i n g ( t ) . r e a l ( : , 1 ) , f i t t i n g ( t ) . r e a l ( : , 2 ) ) ;
ho ld on
p l o t ( p r o f t o t ( t ) . t r e c ( : , 1 ) , p r o f t o t ( t ) . t r e c ( : , 2 ) , ’ . ’ ) ;
a x i s ([−500 3000 0 2 0 0 ] ) ;

end

%% Step 5 : E l i m i n a t i o n o f t h e l a s t 3 p o i n t s o f each p r o f i l e .
% These p o i n t s , b e i n g u s u a l l y o u t l i e r s , a r e t r a n s f o r m e d t o 180mm
% and e l i m i n a t e d i n t h e n e x t f a s e .

c r e s t a (364 )= s t r u c t ( ’ r e a l ’ , [ ] , ’ d e f i n i t i v o ’ , [ ] ) ;
f o r y =364:−3:1

D= s i z e ( d e f i n i t i v o ( y ) . r e a l ) ;
f o r r = 1 : 1 :D(1)−3

c r e s t a ( y ) . r e a l ( r , 1 ) = d e f i n i t i v o ( y ) . r e a l ( r , 1 ) ;
c r e s t a ( y ) . r e a l ( r , 2 ) = d e f i n i t i v o ( y ) . r e a l ( r , 2 ) ;

end
f o r r =D( 1 ) −2 : 1 :D

c r e s t a ( y ) . r e a l ( r , 2 ) = 1 8 0 ;
c r e s t a ( y ) . r e a l ( r , 1 ) = d e f i n i t i v o ( y ) . r e a l ( r , 1 ) ;

end
end

%% Step 6 : E l i m i n a t i o n o f t h e p o i n t s w i th y=180mm.

f o r x =364:−3:1
i n d =0;
q= s i z e ( c r e s t a ( x ) . r e a l ) ;
f o r k =1: q ( 1 )

i f c r e s t a ( x ) . r e a l ( k ,2 )~=180
i n d = i n d +1;
c r e s t a ( x ) . d e f i n i t i v o ( ind , 1 ) = c r e s t a ( x ) . r e a l ( k , 1 ) ;
c r e s t a ( x ) . d e f i n i t i v o ( ind , 2 ) = c r e s t a ( x ) . r e a l ( k , 2 ) ;

e l s e
end

end
end

%% Step 7 : R e s u l t s s t o r i n g .

p r o f i l o _ p 1 _ 1 5 _ 1 (364 )= s t r u c t ( ’ r e a l ’ , [ ] ) ;
f o r j =364:−3:1
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xx= c r e s t a ( j ) . d e f i n i t i v o ( : , 1 ) ;
y= c r e s t a ( j ) . d e f i n i t i v o ( : , 2 ) ;

p r o f i l o _ p 1 _ 1 5 _ 1 ( j ) . r e a l = [ xx , y ] ;
end

save p r o f i l o _ p 1 _ 1 5 _ 1 p r o f i l o _ p 1 _ 1 5 _ 1

A.5 Script to interpolate and average the water level surface pro-
files

c l c , c l e a r a l l , c l o s e a l l

%% Step 1 : A l l t h e 10 run t e s t s a r e l o a d e d ( Ho=15cm , So = 0 ) .

l o a d ( ’ p r o f i l o 1 5 _ 1 2 . mat ’ ) ;
l o a d ( ’ p r o f i l o 1 5 _ 1 3 . mat ’ ) ;
l o a d ( ’ p r o f i l o 1 5 _ 1 4 . mat ’ ) ;
l o a d ( ’ p r o f i l o 1 5 _ 1 5 . mat ’ ) ;
l o a d ( ’ p r o f i l o 1 5 _ 1 8 . mat ’ ) ;
l o a d ( ’ p r o f i l o 1 5 _ 2 0 . mat ’ ) ;
l o a d ( ’ p r o f i l o 1 5 _ 2 1 . mat ’ ) ;
l o a d ( ’ p r o f i l o 1 5 _ 2 2 . mat ’ ) ;
l o a d ( ’ p r o f i l o 1 5 _ 2 3 . mat ’ ) ;
l o a d ( ’ p r o f i l o 1 5 _ 2 4 . mat ’ ) ;

%% Step 2 : Each w a t e r l e v e l p r o f i l e i s i n t e r p o l a t e d
%% s e p a r a t e l y .

% I n t e r p o l a t i o n
f o r j = 4 : 3 : 2 4 1

x= p r o f i l o 1 5 _ 1 2 ( j ) . r e a l ( : , 1 ) ;
y= p r o f i l o 1 5 _ 1 2 ( j ) . r e a l ( : , 2 ) ;
x i n t = ( 0 : 1 : 2 5 0 0 ) ’ ;
y i n t = i n t e r p 1 ( x , y , x i n t ) ;
p r o f i l o 1 5 _ 1 2 ( j ) . i n t e r p o l a t e d ( : , 1 ) = x i n t ;
p r o f i l o 1 5 _ 1 2 ( j ) . i n t e r p o l a t e d ( : , 2 ) = y i n t ;
Q= p r o f i l o 1 5 _ 1 2 ( j ) . i n t e r p o l a t e d ( : , 2 ) ;
Q( i s n a n (Q) ) = 0 ;
p r o f i l o 1 5 _ 1 2 ( j ) . i n t e r p o l a t e d ( : , 2 ) =Q;

end

% I n t e r p o l a t i o n
f o r j = 4 : 3 : 2 4 1

x= p r o f i l o 1 5 _ 1 3 ( j ) . r e a l ( : , 1 ) ;
y= p r o f i l o 1 5 _ 1 3 ( j ) . r e a l ( : , 2 ) ;
x i n t = ( 0 : 1 : 2 5 0 0 ) ’ ;
y i n t = i n t e r p 1 ( x , y , x i n t ) ;
p r o f i l o 1 5 _ 1 3 ( j ) . i n t e r p o l a t e d ( : , 1 ) = x i n t ;
p r o f i l o 1 5 _ 1 3 ( j ) . i n t e r p o l a t e d ( : , 2 ) = y i n t ;
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Q= p r o f i l o 1 5 _ 1 3 ( j ) . i n t e r p o l a t e d ( : , 2 ) ;
Q( i s n a n (Q) ) = 0 ;
p r o f i l o 1 5 _ 1 3 ( j ) . i n t e r p o l a t e d ( : , 2 ) =Q;

end

% I n t e r p o l a t i o n
f o r j = 4 : 3 : 2 4 1

x= p r o f i l o 1 5 _ 1 4 ( j ) . r e a l ( : , 1 ) ;
y= p r o f i l o 1 5 _ 1 4 ( j ) . r e a l ( : , 2 ) ;
x i n t = ( 0 : 1 : 2 5 0 0 ) ’ ;
y i n t = i n t e r p 1 ( x , y , x i n t ) ;
p r o f i l o 1 5 _ 1 4 ( j ) . i n t e r p o l a t e d ( : , 1 ) = x i n t ;
p r o f i l o 1 5 _ 1 4 ( j ) . i n t e r p o l a t e d ( : , 2 ) = y i n t ;
Q= p r o f i l o 1 5 _ 1 4 ( j ) . i n t e r p o l a t e d ( : , 2 ) ;
Q( i s n a n (Q) ) = 0 ;
p r o f i l o 1 5 _ 1 4 ( j ) . i n t e r p o l a t e d ( : , 2 ) =Q;

end

% I n t e r p o l a t i o n
f o r j = 4 : 3 : 2 4 1

x= p r o f i l o 1 5 _ 1 4 ( j ) . r e a l ( : , 1 ) ;
y= p r o f i l o 1 5 _ 1 4 ( j ) . r e a l ( : , 2 ) ;
x i n t = ( 0 : 1 : 2 5 0 0 ) ’ ;
y i n t = i n t e r p 1 ( x , y , x i n t ) ;
p r o f i l o 1 5 _ 1 4 ( j ) . i n t e r p o l a t e d ( : , 1 ) = x i n t ;
p r o f i l o 1 5 _ 1 4 ( j ) . i n t e r p o l a t e d ( : , 2 ) = y i n t ;
Q= p r o f i l o 1 5 _ 1 4 ( j ) . i n t e r p o l a t e d ( : , 2 ) ;
Q( i s n a n (Q) ) = 0 ;
p r o f i l o 1 5 _ 1 4 ( j ) . i n t e r p o l a t e d ( : , 2 ) =Q;

end

% I n t e r p o l a t i o n
f o r j = 4 : 3 : 2 4 1

x= p r o f i l o 1 5 _ 1 5 ( j ) . r e a l ( : , 1 ) ;
y= p r o f i l o 1 5 _ 1 5 ( j ) . r e a l ( : , 2 ) ;
x i n t = ( 0 : 1 : 2 5 0 0 ) ’ ;
y i n t = i n t e r p 1 ( x , y , x i n t ) ;
p r o f i l o 1 5 _ 1 5 ( j ) . i n t e r p o l a t e d ( : , 1 ) = x i n t ;
p r o f i l o 1 5 _ 1 5 ( j ) . i n t e r p o l a t e d ( : , 2 ) = y i n t ;
Q= p r o f i l o 1 5 _ 1 5 ( j ) . i n t e r p o l a t e d ( : , 2 ) ;
Q( i s n a n (Q) ) = 0 ;
p r o f i l o 1 5 _ 1 5 ( j ) . i n t e r p o l a t e d ( : , 2 ) =Q;

end

% I n t e r p o l a t i o n
f o r j = 4 : 3 : 2 4 1

x= p r o f i l o 1 5 _ 1 8 ( j ) . r e a l ( : , 1 ) ;
y= p r o f i l o 1 5 _ 1 8 ( j ) . r e a l ( : , 2 ) ;
x i n t = ( 0 : 1 : 2 5 0 0 ) ’ ;
y i n t = i n t e r p 1 ( x , y , x i n t ) ;
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p r o f i l o 1 5 _ 1 8 ( j ) . i n t e r p o l a t e d ( : , 1 ) = x i n t ;
p r o f i l o 1 5 _ 1 8 ( j ) . i n t e r p o l a t e d ( : , 2 ) = y i n t ;
Q= p r o f i l o 1 5 _ 1 8 ( j ) . i n t e r p o l a t e d ( : , 2 ) ;
Q( i s n a n (Q) ) = 0 ;
p r o f i l o 1 5 _ 1 8 ( j ) . i n t e r p o l a t e d ( : , 2 ) =Q;

end

% I n t e r p o l a t i o n
f o r j = 4 : 3 : 2 4 1

x= p r o f i l o 1 5 _ 2 0 ( j ) . r e a l ( : , 1 ) ;
y= p r o f i l o 1 5 _ 2 0 ( j ) . r e a l ( : , 2 ) ;
x i n t = ( 0 : 1 : 2 5 0 0 ) ’ ;
y i n t = i n t e r p 1 ( x , y , x i n t ) ;
p r o f i l o 1 5 _ 2 0 ( j ) . i n t e r p o l a t e d ( : , 1 ) = x i n t ;
p r o f i l o 1 5 _ 2 0 ( j ) . i n t e r p o l a t e d ( : , 2 ) = y i n t ;
Q= p r o f i l o 1 5 _ 2 0 ( j ) . i n t e r p o l a t e d ( : , 2 ) ;
Q( i s n a n (Q) ) = 0 ;
p r o f i l o 1 5 _ 2 0 ( j ) . i n t e r p o l a t e d ( : , 2 ) =Q;

end

% I n t e r p o l a t i o n
f o r j = 4 : 3 : 2 4 1

x= p r o f i l o 1 5 _ 2 1 ( j ) . r e a l ( : , 1 ) ;
y= p r o f i l o 1 5 _ 2 1 ( j ) . r e a l ( : , 2 ) ;
x i n t = ( 0 : 1 : 2 5 0 0 ) ’ ;
y i n t = i n t e r p 1 ( x , y , x i n t ) ;
p r o f i l o 1 5 _ 2 1 ( j ) . i n t e r p o l a t e d ( : , 1 ) = x i n t ;
p r o f i l o 1 5 _ 2 1 ( j ) . i n t e r p o l a t e d ( : , 2 ) = y i n t ;
Q= p r o f i l o 1 5 _ 2 1 ( j ) . i n t e r p o l a t e d ( : , 2 ) ;
Q( i s n a n (Q) ) = 0 ;
p r o f i l o 1 5 _ 2 1 ( j ) . i n t e r p o l a t e d ( : , 2 ) =Q;

end

% I n t e r p o l a t i o n
f o r j = 4 : 3 : 2 4 1

x= p r o f i l o 1 5 _ 2 2 ( j ) . r e a l ( : , 1 ) ;
y= p r o f i l o 1 5 _ 2 2 ( j ) . r e a l ( : , 2 ) ;
x i n t = ( 0 : 1 : 2 5 0 0 ) ’ ;
y i n t = i n t e r p 1 ( x , y , x i n t ) ;
p r o f i l o 1 5 _ 2 2 ( j ) . i n t e r p o l a t e d ( : , 1 ) = x i n t ;
p r o f i l o 1 5 _ 2 2 ( j ) . i n t e r p o l a t e d ( : , 2 ) = y i n t ;
Q= p r o f i l o 1 5 _ 2 2 ( j ) . i n t e r p o l a t e d ( : , 2 ) ;
Q( i s n a n (Q) ) = 0 ;
p r o f i l o 1 5 _ 2 2 ( j ) . i n t e r p o l a t e d ( : , 2 ) =Q;

end

% I n t e r p o l a t i o n
f o r j = 4 : 3 : 2 4 1

x= p r o f i l o 1 5 _ 2 3 ( j ) . r e a l ( : , 1 ) ;
y= p r o f i l o 1 5 _ 2 3 ( j ) . r e a l ( : , 2 ) ;
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x i n t = ( 0 : 1 : 2 5 0 0 ) ’ ;
y i n t = i n t e r p 1 ( x , y , x i n t ) ;
p r o f i l o 1 5 _ 2 3 ( j ) . i n t e r p o l a t e d ( : , 1 ) = x i n t ;
p r o f i l o 1 5 _ 2 3 ( j ) . i n t e r p o l a t e d ( : , 2 ) = y i n t ;
Q= p r o f i l o 1 5 _ 2 3 ( j ) . i n t e r p o l a t e d ( : , 2 ) ;
Q( i s n a n (Q) ) = 0 ;
p r o f i l o 1 5 _ 2 3 ( j ) . i n t e r p o l a t e d ( : , 2 ) =Q;

end

% I n t e r p o l a t i o n
f o r j = 4 : 3 : 2 4 1

x= p r o f i l o 1 5 _ 2 4 ( j ) . r e a l ( : , 1 ) ;
y= p r o f i l o 1 5 _ 2 4 ( j ) . r e a l ( : , 2 ) ;
x i n t = ( 0 : 1 : 2 5 0 0 ) ’ ;
y i n t = i n t e r p 1 ( x , y , x i n t ) ;
p r o f i l o 1 5 _ 2 4 ( j ) . i n t e r p o l a t e d ( : , 1 ) = x i n t ;
p r o f i l o 1 5 _ 2 4 ( j ) . i n t e r p o l a t e d ( : , 2 ) = y i n t ;
Q= p r o f i l o 1 5 _ 2 4 ( j ) . i n t e r p o l a t e d ( : , 2 ) ;
Q( i s n a n (Q) ) = 0 ;
p r o f i l o 1 5 _ 2 4 ( j ) . i n t e r p o l a t e d ( : , 2 ) =Q;

end

%% Step 3 : The w a t e r l e v e l s u r f a c e p r o f i l e s a r e a v e r a g e d .

f o r j = 4 : 3 : 2 4 1
f o r p = 0 : 1 : 2 5 0 0
x=p ;
y =( p r o f i l o 1 5 _ 1 2 ( j ) . i n t e r p o l a t e d ( p +1 ,2)+
p r o f i l o 1 5 _ 1 3 ( j ) . i n t e r p o l a t e d ( p +1 ,2)+

p r o f i l o 1 5 _ 1 4 ( j ) . i n t e r p o l a t e d ( p +1 ,2)+
p r o f i l o 1 5 _ 1 5 ( j ) . i n t e r p o l a t e d ( p +1 ,2)+

p r o f i l o 1 5 _ 1 8 ( j ) . i n t e r p o l a t e d ( p +1 ,2)+
p r o f i l o 1 5 _ 2 0 ( j ) . i n t e r p o l a t e d ( p +1 ,2)+

p r o f i l o 1 5 _ 2 1 ( j ) . i n t e r p o l a t e d ( p +1 ,2)+
p r o f i l o 1 5 _ 2 2 ( j ) . i n t e r p o l a t e d ( p +1 ,2)+

p r o f i l o 1 5 _ 2 3 ( j ) . i n t e r p o l a t e d ( p +1 ,2)+
p r o f i l o 1 5 _ 2 4 ( j ) . i n t e r p o l a t e d ( p + 1 , 2 ) ) / 1 0 ;
p r o f i l o 1 5 _ 2 5 ( j ) . mean ( p +1 ,1)= x ;
p r o f i l o 1 5 _ 2 5 ( j ) . mean ( p +1 ,2)= y ;
end

end

%% Step 4 : A l l p o i n t s b e n e a t h 35mm a r e e l i m i n a t e d .

f o r j = 4 : 3 : 2 4 1
i n d =0;
s= s i z e ( p r o f i l o 1 5 _ 2 5 ( j ) . mean ) ;
f o r k =1:2500

i f p r o f i l o 1 5 _ 2 5 ( j ) . mean ( k ,2 ) >40
i n d = i n d +1;
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p r o f i l o 1 5 _ 2 5 ( j ) . d e f ( ind , 1 ) = p r o f i l o 1 5 _ 2 5 ( j ) . mean ( k , 1 ) ;
p r o f i l o 1 5 _ 2 5 ( j ) . d e f ( ind , 2 ) = p r o f i l o 1 5 _ 2 5 ( j ) . mean ( k , 2 ) ;

e l s e
end

end
end

%% Step 5 : R e s u l t s s t o r i n g .
s ave p r o f i l o 1 5 _ 2 5 p r o f i l o 1 5 _ 2 5

A.6 Script to solve the SVE numerically

c l c , c l e a r a l l , c l o s e a l l

%% Step 1 : S t a r t i n g d a t a .

%S p e c i f y model c o n s t a n t s .
g = 9 . 8 1 ; % g r a v i t a t i o n a l c o n s t a n t
nu =0 .91 e−6;

%Channel p r o p e r t i e s .
B= 0 . 5 ; % Channel wid th (m)
Lx = 3 . 5 ; % Channel l e n g t h (m)
So = 0 . 0 0 0 1 ; % Bed s l o p e
Hw= 0 . 0 0 1 ; % I n i t i a l w a t e r d e p t h (m)
m=1207; % Rods p e r m2
D= 0 . 0 0 6 ; % Rod Diamete r (m)
hc = 0 . 1 0 ; % Rod h e i g h t (m)
ph i_veg =(m* p i *D*D ) / 4 ;
S = 0 . 0 3 5 ; %c y l i n d e r s p a c i n g (m)
lambda =( p i *D ^ ( 2 ) / 4 ) / ( 0 . 5 * S ^ 2 ) ;

% Manning ’ s Roughness c o e f f i c i e n t
no1 = 0 . 0 5 5 ;

%% Step 2 : Averaged w a t e r s u r f a c e p r o f i l e l o a d i n g .

l o a d ( ’ p r o f i l o 1 5 _ 2 5 . mat ’ ) ;

%% Step 3 : D e t e r m i n a t i o n o f t h e i n f l o w h y d r o g r a p h

% R e p r e s e n t a t i o n o f t h e w a t e r s u r f a c e f o r x=1mm.

f o r f = 4 : 3 : 2 4 1
i n d =0;
s= s i z e ( p r o f i l o 1 5 _ 2 5 ( f ) . i n t e r p o l a t e d ) ;

f o r k =1: s ( 1 )
i f p r o f i l o 1 5 _ 2 5 ( f ) . i n t e r p o l a t e d ( k , 1 ) = = 1

i n d = i n d +1;
p r o f i l o 1 5 _ 2 5 ( f ) . uno ( ind , 1 ) = p r o f i l o 1 5 _ 2 5 ( f ) . i n t e r p o l a t e d ( k , 1 ) ;
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p r o f i l o 1 5 _ 2 5 ( f ) . uno ( ind , 2 ) = p r o f i l o 1 5 _ 2 5 ( f ) . i n t e r p o l a t e d ( k , 2 ) ;
e l s e
end

end
end

cc =0;
h1 = [ ] ;

f o r j = 4 : 3 : 2 4 1
cc=cc +1;
h1 ( cc )= p r o f i l o 1 5 _ 2 5 ( j ) . uno ( : , 2 ) . / 1 0 0 0 ;

end
h i n i z = 0 . 1 5 ;
cc =0;

f o r j = 4 : 3 : 2 4 1
cc=cc +1;
u ( cc ) = 2 * ( s q r t ( g* h i n i z )− s q r t ( g*h1 ( cc ) ) ) ;
% t h e v e l o c i t y i s c a l c u l a t e d wi th t h e R i t t e r S o l u t i o n .

end

% t ime
t = 0 . 0 9 : 0 . 0 9 : 7 . 2 0 ;

% D e t e r m i n a t i o n o f t h e i n f l o w h y o d r g r a p h by u s i n g t h e v e l o c i t y
% e x e r t e d by t h e R i t t e r s o l u t i o n .

f o r k =1:80
Qm( k )= u ( k ) . * B. * h1 ( k ) ;

end

f i g u r e ( 1 )
p l o t ( t ,Qm, ’ . ’ )

% Double l o g a r i t h m i c r e p r e s e n t a t i o n o f t h e h y d r o g r a p h . I t can
% be seen a l i n e a r p a t t e r n .

f i g u r e ( 2 )
l o g l o g ( t , h1 , ’ . ’ )

% D e f i n i t i o n o f t h e moment when t h e R i t t e r s o l u t i o n f a i l s .
% From t h a t moment i s c a l c u l a t e d t h e volume which has l e f t
% t h e r e s e r v o i r . Th i s volume w i l l be d e t e r m i n e t h e power
% low r e l a t i o n between Q and t .

f o r j = 4 : 3 : 2 4 1
x= p r o f i l o 1 5 _ 2 5 ( j ) . d e f ( : , 1 ) ;
y= p r o f i l o 1 5 _ 2 5 ( j ) . d e f ( : , 2 ) ;
x i n t = ( 0 : 1 : 2 5 0 0 ) ’ ;
y i n t = i n t e r p 1 ( x , y , x i n t ) ;
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p r o f i l o 1 5 _ 2 5 ( j ) . p rova ( : , 1 ) = x i n t ;
p r o f i l o 1 5 _ 2 5 ( j ) . p rova ( : , 2 ) = y i n t ;

end

hmeani =( p r o f i l o 1 5 _ 2 5 ( 1 5 1 ) . p rova ( : , 2 ) ) ;
o u t = hmeani ( a l l (~ i s n a n ( hmeani ) , 2 ) , : ) ;
hmeani=mean ( o u t ) / 1 0 0 0 ;
volum=hmeani *B * 2 . 5 ;

% C a l c u l a t i o n o f t h e r e a l i n f l o w h y d r o g r a p h . The i n f l o w
% volume Vin i s d e t e r m i n e d by c a l c u l a t i n g f o r each frame ,
% s t a r t i n g from t = 0s , t h e a r e a under t h e w a t e r p r o f i l e
% and t h e n m u l t i p l y i n g f o r t h e wid th o f t h e c h a n n e l
% (B = 0 . 5m) .
volume = [ ]

f o r j = 7 : 3 : 2 4 1
hmean ( : , 1 ) = ( p r o f i l o 1 5 _ 2 5 ( j ) . p rova ( : , 1 ) ) ;
hmean ( : , 2 ) = ( p r o f i l o 1 5 _ 2 5 ( j ) . p rova ( : , 2 ) ) ;
o u t = hmean ( a l l (~ i s n a n ( hmean ) , 2 ) , : ) ;
x= o u t ( : , 1 ) ;
n=x ( end ) / 1 0 0 0 ;
hmean1=mean ( o u t ) / 1 0 0 0 ;
volume ( j )= hmean1 ( 2 ) *B*n ;

end

cc =0
f o r j = 7 : 3 : 2 4 1

cc=cc +1

p o r t a t a ( cc ) = ( 1 . 1 * volume ( j )−1.1* volume ( j − 3 ) ) / 0 . 0 9 ;
end
cc =0
f o r k =1:70

cc=cc +1
p o r t a t a ( cc ) = ( p o r t a t a ( k +1)+ p o r t a t a ( k ) ) / 2 ;

end

% In t h i s p a r t i s i n s e r t e d t h e e x p o n e n t i a l f u n c t i o n
% which mimics t h e r e c e s s i o n p a r t .

media=mean (Qm( 1 : 6 0 ) ) ;
V i n i z =media * t ( 6 0 ) ;

cc =0;
cd =60;
f o r gg = 6 1 : 1 : 8 0

cc=cc +1;
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cd=cd +1;
Qpower ( cc )= 0 .1 099 * t ( cd )^ −1 .11 ;

end

ho ld on
p l o t ( t ( 6 1 : 8 0 ) , Qpower , ’ . ’ )

% In t h i s p a r t t h e h y d r o g r a p h c a l c u l a t e d b e f o r e i s m o d i f i e d
% by ad d i ng t h e r e a l h y d r o g r a p h a t t h e b e g i n n i n g and
% t h e e x p o n e n t i a l t a i l a t t h e end .

f o r k = 1 : 1 : 4 4
Qdef ( k )= p o r t a t a ( k ) ;

end
f o r k = 4 5 : 1 : 6 0

Qdef ( k )=Qm( k ) ;
end
media=mean ( Qdef ( 1 : 5 6 ) ) ;
V i n i z =media * t ( 5 6 ) ;
cv =0

f o r k = 6 1 : 1 : 8 0
cv=cv +1
Qdef ( k )= Qpower ( cv ) ;

end

% The h y d r o g r a p h i s p l o t t e d .

f i g u r e ( 3 )
p l o t ( t , Qdef , ’ b . ’ )
s= s i z e ( Qdef ) ;

% Q and h a r e i n t e r p o l a t e d wi th t h e same pace which w i l l
% be used wor t h e n u m e r i c a l l y s o l u t i o n o f t h e SVE .
t t = ( 0 . 0 9 : 0 . 0 9 : 7 . 2 0 ) ’ ;
yy=Qdef ;
xx= t t ;
x x i n t = ( 0 . 0 9 : 0 . 0 0 0 0 1 4 2 2 : 7 . 2 0 ) ;
y y i n t = i n t e r p 1 ( xx , yy , x x i n t ) ;
h 1 i n t = i n t e r p 1 ( xx , h1 , x x i n t ) ;
Qdd ( : , 1 ) = x x i n t ;
Qdd ( : , 2 ) = y y i n t ;
h1dd ( : , 1 ) = x x i n t ;
h1dd ( : , 2 ) = h 1 i n t ;

f i g u r e
p l o t ( Qdd ( : , 1 ) , Qdd ( : , 2 ) , ’ . ’ )
f i g u r e
p l o t ( h1dd ( : , 1 ) , h1dd ( : , 2 ) , ’ . ’ )

f o r u =1: s i z e ( Qdd )
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Qg ( u , 1 ) = Qdd ( u , 2 ) ;
h 1 i n t e r p ( u , 1 ) = h1dd ( u , 2 ) ;

end

Qd=Qg ’ ;
h i n i t i a l _ c = h 1 i n t e r p ’ ;

%% Step 4 : Numer ica l s o l u t i o n o f t h e SVE

% Grid s e t u p
tmin = 0 . 0 9 ; tmax = 7 . 2 0 ; Nt =5000000; d t =( tmax−tmin ) / Nt ;
NT_pr in t = f l o o r ( Nt / 1 0 0 0 ) ;
xmin =0; xmax=Lx ; Mx=100; dx =( xmax−xmin ) / Mx;

x =[ xmin : dx : xmax ] ;
t =[ tmin : d t : tmax ] ;

M= l e n g t h ( x ) ;
N= l e n g t h ( t ) ;

%I n i t i a l c o n d i t i o n s − Assume Uniform f low b e f o r e wave e n t r a n c e
Sf=So ;

y i c =Hw* ones ( 1 ,M) ;
Aic=B* y i c ;
R=Aic . / ( 2 * y i c +B ) ;
Vi = ( 1 / no1 )*R . ^ ( 2 / 3 ) * ( Sf ^ ( 1 / 2 ) ) ;
Qic=Vi . * Aic ;

ccp =1;
Qipc ( ccp , : ) = Qic ;
y i p c ( ccp , : ) = y i c ;

f o r i =1 :N
y i c = [ ] ; Pwc = [ ] ; Vic = [ ] ; S fc = [ ] ; a l p h a c = [ ] ; b e t a c = [ ] ;
y i c =Aic / B ;
Pwc=B+2* y i c ;
Rc=Aic . / Pwc ;
Vic=Qic . / ( Aic+ eps ) ;
Uc = ( Vic ) / (1− s q r t (2* lambda / p i ) ) ;
Fr=Vic . / ( s q r t ( g . * y i c ) ) ;

% Reynolds numbers .

Re=Vic *D/ nu ;
Rec=Uc*D/ nu ;
Rv=( p i / 4 )* ( (1 − ph i_veg ) / ph i_veg )*D;
Rev=Vic *Rv / nu ;
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% Drag C o e f f i c i e n t s .

Cd_iso =11*Re .^ ( −3 /4 )+0 .9*(1 − exp (−1000 . / Re ) ) +
1.2*(1− exp (−(Re . / 4 5 0 0 ) . ^ 0 . 7 ) ) ;
Cd_ar ray =50*Rev .^ ( −0 .43)+0 .7*(1 − exp(−Rev / 1 5 0 0 0 ) ) ;
Cd_manning =(2* g*(1− ph i_veg )* no1 ^ 2 ) . / ( Rc . ^ ( 4 / 3 ) *m*D ) ;
C d _ s t a g g e r e d =1+10* Rec . ^ ( − 2 / 3 ) ;
C d _ s t a g g e r e d _ r e v i s e d =0.4+10* Rec . ^ ( − 2 / 3 ) ;
Cd_Froude =0 .1+0 .25* Fr . ^ ( − 0 . 5 ) ;
Cd= C d _ s t a g g e r e d ;

%A d j u s t f o r submergence d e p t h ;
Cd=Cd . * min ( y ic , hc ) . / ( y i c +10* eps ) ;
S fc =(Cd*m*D/(1− ph i_veg ) ) . * ( Vic . ^ 2 ) / ( 2 * g ) ;

% compute t h e f r i c t i o n s l o p e
% Sfc = ( ( no1 . * Vic ) . / ( ( Rc+ eps ) . ^ ( 2 / 3 ) ) ) . ^ 2 ;

a l p h a c =2* Vic + ( ( g* Aic / B−Vic . ^ 2 ) . /
( ( Vic +2* eps ) . * ( 5 / 3 −4 * Rc . / 3 / B ) ) ) ;
b e t a c =g* Aic . * ( Sfc−So ) ;

% Make s u r e i n f l o w h y d r o g r a p h s e t s t h e f low r a t e a t x=0
Qfc ( 1 ) = Qd ( i ) ;
% March i n t ime u s i n g t h e SVE
Qfc ( 2 :M)= Qic ( 2 :M)− d t / dx* a l p h a c ( 2 :M) . * ( Qic ( 2 :M)−Qic ( 1 :M−1))
−b e t a c ( 2 :M)* d t ;
cc1 = [ ] ;
cc1= f i n d ( Qfc < 0 ) ;
Qfc ( cc1 )= eps ;
Qic=Qfc ;

% Apply C o n t i n u i t y e q u a t i o n t o d e t e r m i n e d e p t h
Afc = [ ] ;
Afc ( 2 :M)= Aic ( 2 :M)−( d t / dx ) * ( Qic ( 2 :M)−Qic ( 1 :M−1 ) ) ;
Afc ( 1 ) = (B* h i n i t i a l _ c ( i ) ) ;
cc1= f i n d ( Afc < 0 ) ;
Afc ( cc1 )= eps ;
Aic=Afc ;

% Only s t o r e e v e r y NT_pr in t f o r g r a p h i n g
i f ( mod ( i , NT_pr in t ) < eps )

ccp=ccp +1
Qipc ( ccp , : ) = Qic ;
y i p c ( ccp , : ) = y i c ;
t p ( ccp )= t ( i ) ;

end

end
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% Step 5 : R e p r e s e n t a t i o n o f t h e measured w a t e r p r o f i l e w i th t h e same t ime
% pace of SVE n u m e r i c a l s o l u t i o n .
c l e a r k

tempo ( 3 ) = s t r u c t ( ’ r e a l ’ , [ ] ) ;
f o r i n d e x = 0 : 1 : 2 5 0 0
f o r f = 4 : 3 : 2 4 1

s= s i z e ( p r o f i l o 1 5 _ 2 5 ( f ) . i n t e r p o l a t e d ) ;
f o r k =1: s ( 1 )

i f p r o f i l o 1 5 _ 2 5 ( f ) . i n t e r p o l a t e d ( k , 1 ) = = i n d e x
i n d = i n d +1;
tempo ( f ) . r e a l ( ind , 1 ) = p r o f i l o 1 5 _ 2 5 ( f ) . i n t e r p o l a t e d ( k , 1 ) ;
tempo ( f ) . r e a l ( ind , 2 ) = p r o f i l o 1 5 _ 2 5 ( f ) . i n t e r p o l a t e d ( k , 2 ) ;

e l s e
end
end

end
end
% Remove t h e 0 .
f o r h =4:241

s= s i z e ( tempo ( h ) . r e a l ) ;
i n d =0
f o r k =1: s ( 1 )

i f tempo ( h ) . r e a l ( k , 2 ) ~ = 0
i n d = i n d +1;

tempo ( h ) . d e f ( ind , 1 ) = tempo ( h ) . r e a l ( k , 1 ) ;
tempo ( h ) . d e f ( ind , 2 ) = tempo ( h ) . r e a l ( k , 2 ) ;

e l s e
end

end
end

h = [ ] ;

f o r k = 1 : 1 : 2 5 0 1
i n d =0;

f o r j = 4 : 3 : 2 4 1
i n d = i n d +1;

h ( i n d )= tempo ( j ) . d e f ( k , 2 ) ;
end
tempo ( k ) . t o p =h ;
end

yyyy = [ ]
f o r b =1:2501
f o r k = 1 : 1 : 8 0

yyyy ( k )= tempo ( b ) . t o p ( 1 , k ) ;
end
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x x i n t = ( 0 . 0 9 : 0 . 0 0 7 1 0 2 9 : 7 . 2 0 ) ;
y y i n t = i n t e r p 1 ( xx , yyyy , x x i n t ) ;

tempo ( b ) . n e t ( : , 1 ) = x x i n t ;
tempo ( b ) . n e t ( : , 2 ) = y y i n t ;

end
y p s i l o n = [ ]
i n d =0

f o r j = 1 : 1 : 2 5 0 1
i n d = i n d +1
y p s i l o n ( : , j )= tempo ( j ) . n e t ( : , 2 ) / 1 0 0 0 ;

end

%i c s and y p s i l o n a r e t h e m a t r i x c o n t a i n i n g t h e measured w a t e r p r o f i l e s .
s ave i c s i c s
save y p s i l o n y p s i l o n

%THIS IS MAINLY FOR VISUALIZATION
V i s u a l i z e _ R e s u l t s _ w i t h M o v i e

A.7 Script to represent the measured profile and the profile ob-
tained by solving the SVE numerically

%% Step 1 : l o a d t h e w a t e r p r o f i l e s .

l o a d i c s
l o a d y p s i l o n
l o a d x
l a o d y i p c

% Thi s f i l e s im p ly views t h e s o l u t i o n
o u t p u t F i l e N a m e = ( ’ s t reamFlow . av i ’ ) ;
vw = V i d e o W r i t e r ( o u t p u t F i l e N a m e ) ;
open ( vw ) ;

f o r i i =1 : ccp

c l f

s u b p l o t ( 3 , 1 , 1 )
p l o t ( tp , Qipc ( : , 1 ) , ’ r − ’)
ho ld on
p l o t ( t p ( i i ) , Qipc ( i i , 1 ) , ’ r . ’ , ’ m a r k e r s i z e ’ , 5 )
ho ld o f f
x l a b e l ( ’ \ i t { t ( s ) } ’ , ’ f o n t w e i g h t ’ , ’ bold ’ , ’ f o n t s i z e ’ , 1 2 )
y l a b e l ( ’ \ i t {Q_{INFLOW} (m^ 3 / s ) } ’ , ’ f o n t w e i g h t ’ , ’ bold ’ , ’ f o n t s i z e ’ , 1 2 )
s u b p l o t ( 3 , 1 , 2 )
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p l o t ( x , y i p c ( i i , : ) )
ho ld on
p l o t ( i c s , y p s i l o n ( i i , : ) , ’ r ’ ) ;
x l a b e l ( ’ \ i t {x (m) } ’ , ’ f o n t w e i g h t ’ , ’ bold ’ , ’ f o n t s i z e ’ , 1 2 )
y l a b e l ( ’ \ i t {h (m) } ’ , ’ f o n t w e i g h t ’ , ’ bold ’ , ’ f o n t s i z e ’ , 1 2 )
a x i s ( [ 0 3 . 6 0 0 . 4 ] )

s u b p l o t ( 3 , 1 , 3 )
p l o t ( i c s , y p s i l o n ( i i , : ) , ’ r ’ ) ;

x l a b e l ( ’ \ i t {x (m) } ’ , ’ f o n t w e i g h t ’ , ’ bold ’ , ’ f o n t s i z e ’ , 1 2 )
y l a b e l ( ’ \ i t {h (m) } ’ , ’ f o n t w e i g h t ’ , ’ bold ’ , ’ f o n t s i z e ’ , 1 2 )

a x i s ( [ 0 3 . 6 0 0 . 4 ] )

f = g e t f r a m e ( g c f ) ;
w r i t e V i d e o ( vw , f . c d a t a )
end
c l o s e ( vw ) ;
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