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by Simone RUMAC

Since discovery of the slow negative electroencephalographic (EEG) activity
preceding self-initiated movement by Kornhuber and Deecke, many stud-
ies arose to investigate the relationship between this signal, called Readiness
Potential or Bereitschaftspotential, and free will; in the early 80’s, Benjamin
Libet designed an experiment that allowed him to demonstrate that the in-
tention to perform a movement begins about half a second before the actual
movement is initiated. Therefore, if it were possible to narrowly detect the
presence of intention, we could gain important information about the state of
consciousness of patients that present the locked-in syndrome (LIS) and ulti-
mately it could be useful to discriminate between these patients and patients
in a vegetative state.
In order to do so, the present thesis work proposes a general framework
for the analysis of movement intention from the EEG signal; specifically,
we meant to retrieve the Readiness Potential both from the average over
many trials and from a single trial recording. Given the very low signal-to-
noise ratio, single-trial analysis represents a challenging task: in this work,
we present a detector, based on the Empirical Mode Decomposition (EMD)
framework coupled with spatial and Savitzky-Golay filters, that allowed for
a better characterization of the RP, and resulted in significant noise reduc-
tion.

HTTP://WWW.POLITO.IT
http://faculty.university.com
http://department.university.com




v

Contents

Abstract iii

1 Introduction 1
1.1 The Central Nervous System (CNS) . . . . . . . . . . . . . . . 1

1.1.1 Anatomy of the Central Nervous System . . . . . . . . 1
Glial Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Cerebrospinal fluid (CSF) . . . . . . . . . . . . . . . . . 2
Blood-Brain Barrier . . . . . . . . . . . . . . . . . . . . . 3
White and Grey Matter . . . . . . . . . . . . . . . . . . 3
Cerebral Cortex . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The EEG Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 How the EEG is generated . . . . . . . . . . . . . . . . . 5
1.2.2 The EEG Rhythms . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Recording the EEG Signal . . . . . . . . . . . . . . . . . 7
1.2.4 The 10-20 Electrode Placement System . . . . . . . . . . 7
1.2.5 Main Problems of the EEG Recording . . . . . . . . . . 8

1.3 Event-Related Potentials (ERP) . . . . . . . . . . . . . . . . . . 9
1.3.1 Movement-Related Cortical Potentials (MRCP) . . . . . 10
1.3.2 The Readiness Potential (RP) . . . . . . . . . . . . . . . 10

The Lateralized Event-Related Potentials (LRP) . . . . 11
The Contingent Negative Variation (CNV) . . . . . . . 11

1.3.3 RPs Relationship to Free Will . . . . . . . . . . . . . . . 12
Libet’s Experiment . . . . . . . . . . . . . . . . . . . . . 13

1.4 The Event-Related Desynchronization (ERD) . . . . . . . . . . 14
1.4.1 Time course of ERD/ERS . . . . . . . . . . . . . . . . . 15

1.5 Our Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Materials 17
2.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 First Dataset Acquisition . . . . . . . . . . . . . . . . . . 17
2.1.2 Second Dataset Acquisition . . . . . . . . . . . . . . . . 18

2.2 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 The GalileoNT . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 GalileoNT Software . . . . . . . . . . . . . . . . . . . . 18
2.3.2 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 EEGLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



vi

3 Methods 21
3.1 EMG Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Teager-Kaiser Energy Operator (TKEO) . . . . . . . . . 21
3.1.2 EMG onset detection . . . . . . . . . . . . . . . . . . . . 22

3.2 ERD Detection Methods . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Band Power Method . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Continuous Wavelet Method . . . . . . . . . . . . . . . 24
3.2.3 The Morlet Transform . . . . . . . . . . . . . . . . . . . 25

3.3 Single-Trial Estimation . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Spatial Filtering . . . . . . . . . . . . . . . . . . . . . . . 26

Large Laplacian Filter . . . . . . . . . . . . . . . . . . . 27
3.3.2 Empirical Mode Decomposition (EMD) . . . . . . . . . 27
3.3.3 EMD-Based Signal Denoising . . . . . . . . . . . . . . . 28

The Savitzky-Golay Filter . . . . . . . . . . . . . . . . . 29
3.3.4 Matched Filter . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Work-flow and Results 31
4.1 EMG Onset Detection . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 EEG preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Event-Related Synchronization and Desynchronization . . . . 33

4.3.1 ERD and ERS Plots . . . . . . . . . . . . . . . . . . . . . 34
Grand Averages . . . . . . . . . . . . . . . . . . . . . . . 36
Subject 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Subject 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Subject 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Subject 18 . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Subject 20 . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Subject 27 . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Averaged Readiness Potential . . . . . . . . . . . . . . . . . . . 43
4.4.1 Averaged RP Results and single-trial subset selection . 43

Grand averages . . . . . . . . . . . . . . . . . . . . . . . 44
Subject 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Subject 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Subject 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Subject 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Subject 23 . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Subject 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Matched Filter and Single Trial . . . . . . . . . . . . . . . . . . 52
4.5.1 Select the Template . . . . . . . . . . . . . . . . . . . . . 52
4.5.2 Train the Linear Classifier . . . . . . . . . . . . . . . . . 52

Random Epoch 1 . . . . . . . . . . . . . . . . . . . . . . 56
Random Epoch 2 . . . . . . . . . . . . . . . . . . . . . . 57
Random Epoch 3 . . . . . . . . . . . . . . . . . . . . . . 58

5 Conclusions 59

Bibliography 61



vii

List of Figures

1.1 The principal cellular components of the CNS. By CNX Open-
Stax , via Wikimedia Commons. . . . . . . . . . . . . . . . . . . 2

1.2 Grey and White Matter distribution. . . . . . . . . . . . . . . . 4
1.3 The Brain Lobes and their main functions. . . . . . . . . . . . . 5
1.4 A graphic representation of the five EEG Rhythms. Source:

K.Blinowska et al., 2012 . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Electrode placement according to the 10-20 system. . . . . . . 8
1.6 An example of an EEG simulated signal, corrupted by the ECG

and EOG artefacts [8]. . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 The averaged BP. [27] . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 The lateralized readiness potential, computed with the double

subtraction method [9]. . . . . . . . . . . . . . . . . . . . . . . . 12
1.9 A schematic representation of the clock used by Libet in his

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.10 The time course of a Readiness Potential highlighting the time

when the awareness of intention appears. Figure adopted from:
informationphilosopher.com/freedom/libet_experiments.html 14

1.11 Averaged plot of ERD and ERS phenomena [22] . . . . . . . . 15

2.1 The GalileoNT Machine. . . . . . . . . . . . . . . . . . . . . . . 19

3.1 EMG onset detection using TKE Operator [28]. . . . . . . . . . 23
3.2 Averaged plot of ERD and ERS phenomena [22]. . . . . . . . . 24
3.3 A graphica representation of the Morlet Wavelet Transform,

adapted from [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Geometrical arrangement of four different spatial filters [18]. . 26
3.5 Example of empirical mode decomposition applied to the EEG

signal: the first two IMFs were extracted, and a residue. The
red line depicts the basal activity, the blue line is the motor
activity (µV) [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Example of EMD-based de-noising applied to artificial signals
[6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Example of a MF-based detector output [1]. . . . . . . . . . . . 30

4.1 One epoch of the EMG is plotted, together with the peak and
onset point found by our algorithm. . . . . . . . . . . . . . . . 33

4.2 Low-Pass FIR filter: impulse response and phase. This filter
was used to process the EEG. . . . . . . . . . . . . . . . . . . . 34

4.3 High-Pass FIR filter: impulse response and phase. This filter
was used to process the EEG. . . . . . . . . . . . . . . . . . . . 35

informationphilosopher.com/freedom/libet_experiments.html


viii

4.4 The ERD and ERS grand averages across all experiments. . . . 36
4.5 ERD and ERS plots on subject 1. . . . . . . . . . . . . . . . . . . 37
4.6 ERD and ERS plots on subject 2. . . . . . . . . . . . . . . . . . . 38
4.7 ERD and ERS plots on subject 3. . . . . . . . . . . . . . . . . . . 39
4.8 ERD and ERS plots on subject 18. . . . . . . . . . . . . . . . . . 40
4.9 ERD and ERS plots on subject 20. . . . . . . . . . . . . . . . . . 41
4.10 ERD and ERS plots on subject 27. . . . . . . . . . . . . . . . . . 42
4.11 Grand Average RP plots; we can see from both figures that

removing three components has the best performances. . . . . 44
4.12 Grand Average plot of the Readiness Potential; the onset time

is highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.13 RP plot on subject 4. . . . . . . . . . . . . . . . . . . . . . . . . 46
4.14 RP plot on subject 7. . . . . . . . . . . . . . . . . . . . . . . . . 47
4.15 RP plot on subject 13. . . . . . . . . . . . . . . . . . . . . . . . . 48
4.16 RP plot on subject 17. . . . . . . . . . . . . . . . . . . . . . . . . 49
4.17 RP plot on subject 23. . . . . . . . . . . . . . . . . . . . . . . . . 50
4.18 RP plot on subject 25. . . . . . . . . . . . . . . . . . . . . . . . . 51
4.19 The average over 70 randomly chosen epochs, filtered with the

EMD process. The matched filter coefficients were chosen as
the section from -2s to 0s. . . . . . . . . . . . . . . . . . . . . . . 53

4.20 Plot of the average matched filter output on 150 epochs: the
averaged result confirms what we expected, with a maximum
of intensity corresponding to the EMG onset. . . . . . . . . . . 54

4.21 The confusion matrix of the linear classifier. The output la-
belled as 1 are the RP containing windows, and vice versa. . . 55

4.22 Single-trial RP detection. . . . . . . . . . . . . . . . . . . . . . . 56
4.23 Single-trial RP detection. . . . . . . . . . . . . . . . . . . . . . . 57
4.24 Single-trial RP detection. . . . . . . . . . . . . . . . . . . . . . . 58



ix

List of Tables





1

Chapter 1

Introduction

1.1 The Central Nervous System (CNS)

The central nervous system is the responsible organ for everything we per-
ceive, do, feel, think and sense; it gives to each one of us its personality and
the active consciousness of our personal identity. It also coordinates the ac-
tivity of all the other organs, and is fundamental in the maintaining of the
homoeostases.

1.1.1 Anatomy of the Central Nervous System

The CNS consists of the encephalon (or brain) and the spinal chord. Because
of its jelly-like tissue, it is a very vulnerable part of our body: therefore, it is
protected by glial cells, bones, connective tissue and fluid.

Glial Cells

When we think about the nervous system, we think of neurons; nonetheless,
about 75-90% of the CNS is made by the glial cells, which not only serve a
supporting function to the neurons, but also play an active role in the com-
munication between them. Many studies showed that the glial cells have an
important role in some neurodegenerative diseases, like multiple sclerosis,
Alzheimer’s disease and Parkinson’s disease.
There are five types of glial cells: oligodendrocytes, astrocytes, ependymal
cells, Schwann cells and microglia.
Glial cells have multiple physiological functions: astrocytes are the most dif-
ferentiated glial cells: they are, for instance, involved in the normal devel-
opment of a special kind of capillaries that limit the movements of some
molecules between the blood and the CNS, forming a system known as blood-
brain barrier. To a lesser degree, oligodendrocytes and Schwann cells con-
tribute also to the normal development of the nervous system.
Astrocytes guide the neurons development to their correct destination, and
control the development and maintaining of synapses. They support axon
regeneration and have a key role in the maintaining of the normal extracel-
lular environment that surrounds the neurons, and especially the synapses.
In particular, they maintain the correct level of potassium outside the synapses,
and remove some neurotransmitters; moreover, they synthesize and store
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FIGURE 1.1: The principal cellular components of the CNS. By
CNX OpenStax , via Wikimedia Commons.

substances (like glycogen) that will be later used by the neurons. Astrocytes
and microglia both have a protective function from toxic substances.

Cerebrospinal fluid (CSF)

The cerebrospinal fluid is a clear liquid that wets the CNS; it has a very sim-
ilar composition to plasma, albeit not identical. The cerebrospinal fluid not
only surrounds the CNS, but infiltrates it as well, surrounding neurons and
glial cells, and filling some cavities that are present in the brain and spinal
chord.
The encephalon contains four of these cavities, called ventricles, that com-
municate between each other. The total amount of CSF is varies from 125
to 150 ml; it covers numerous functions, like protecting the delicate nervous
tissue from impacts.
Moreover, it contributes to keep constant the ionic composition outside the
cells, which is a key factor to the correct excitability of tissues. Like the extra-
cellular fluid, it provides the correct nutrients to glial cells and neurons, and
removes waste products.



1.1. The Central Nervous System (CNS) 3

Blood-Brain Barrier

In most tissues, glucose, oxygen and other substances can diffuse through
the capillaries, the thinnest blood vessels of our body; small molecules like
gasses, non-organic ions, monosaccharides and amino acids can all freely
penetrate the walls of the capillaries. While hydrophobic molecules pass
through the plasmatic membranes, hydrophilic molecules pass through pores
that are present in-between endothelial cells. Bigger molecules, however,
cannot move with this system: in the majority of tissues, they are exchanged
in a process known as transcytosis - the movement of one molecule from one
cell to another via endocytosis followed by esocytosis.
In the CNS, many hydrophobic molecules pass trough the endothelial cells
of the capillaries, but transcytosis does not happen, and the exchange of
hydrophilic molecules between the CNS cells is limited by the blood-brain
barrier. This physical barrier between the blood and the cerebrospinal fluid
protects the brain from toxic substances that can be present in the blood: hy-
drophilic substances that must be actively passed through the endothelial
membrane by mediated transport - like sugars and amino acids - do not pen-
etrate the blood-brain barrier, because of the high selectivity of the specific
carriers of the brain cells.
Therefore, the brain is only selectively penetrable, which makes it more re-
silient to infections, but also harder to reach with pharmaceutical drugs.

White and Grey Matter

The Central Nervous System presents a highly ordered structure; the cellular
bodies, the dendrites, the axons end-plates create structures known as clus-
ters, that macroscopically appear of grey colour. The axons are also grouped
together, but, on the other hand, appear white. Therefore, we talk of grey
(about 40% of the brain) and white (the remaining 60%) matter .
Looking at the whole brain structure from outside, it appears grey: this is
due to the fact that it is almost entirely covered by a thin layer of grey matter,
called Cerebral Cortex. The white matter resides inside the brain, with the
exception of some small areas of grey matter, known as nuclei, that reside in
deeper areas. In the spinal chord, this disposition is inverted, with the white
matter on the external layer, and the grey matter on the inside.

Cerebral Cortex

The cerebral cortex represents the most recent (in evolutionary terms) area
of our brain; it is situated on its most external layer, and consists of a thin
layer of grey matter, whose thickness varies between 1.5 mm and 4 mm. On
the cerebral cortex, more than a billion of neuron are contained, with up to a
thousand billion (1012) of synapses.
The grey matter of the cerebrum is deeply folded to give a convoluted ap-

pearance, and can be divided in two hemispheres (left and right), which can
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FIGURE 1.2: Grey and White Matter distribution.

be further divided in four regions, known as lobes. Each lobe contains func-
tionally specialized areas, which roughly link to particular tasks performed
by the brain.

1. Frontal Lobe
The frontal lobe contains the primary motor cortex, which is of special
interest to our work: the Readiness Potential, in fact, demonstrates the
involvement of the motor cortex and supplementary motor area in the
pre-motor planning of volitional movement; for this reason, as we will
see later, the electrodes that pick up the activity of this two particular
areas are of primary importance. This area contains also regions that
are specialized in speech elaboration and personality determination.

2. Temporal Lobe
The temporal lobe contains the areas that allow us to elaborate the hear-
ing and smelling senses; it is also involved in processing this sensory
inputs into derived meanings for the appropriate retention of visual
memory, language comprehension, and emotion association.

3. Parietal Lobe
The parietal lobe contains a region known as the somatosensory cortex,
which is related to the elaboration of stimuli such as pain, tact, tem-
perature; some areas of the parietal lobe are also important in language
processing.



1.2. The EEG Signal 5

FIGURE 1.3: The Brain Lobes and their main functions.

4. Occipital Lobe
Also known as visual cortex, the occipital lobe is deputed to the elabo-
ration of visual stimuli, visuospatial processing, colour differentiation,
and motion perception.

1.2 The EEG Signal

The electroencephalogram is the direct measure of the electrical activity of
the brain. Usually, in standard EEG, the electrodes are posed on the scalp,
and therefore it is a non-invasive procedure. Invasive EEG (electrocorticogra-
phy) is also possible, but much less common. EEG is most often used to diag-
nose epilepsy, which causes abnormalities in EEG readings, but can also be
used to indicate sleep disorders, measure the depth of anaesthesia or coma,
diagnose encephalopathy and brain death.

1.2.1 How the EEG is generated

The electrical activity recorded by the EEG depends on the total sum activity
of many different neurons inside the brain. In particular, the electric field
generates from the pyramidal neurons located in the third and fifth strata
of the cerebral cortex; normally, the visible oscillations of an EEG recording
are generated by the post synaptic potentials, which are of very small ampli-
tude (fractions of mV), but last considerably longer than the action potentials:
consequently, they are much more likely to create a spatial and temporal sum
[19] [18].
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FIGURE 1.4: A graphic representation of the five EEG Rhythms.
Source: K.Blinowska et al., 2012

1.2.2 The EEG Rhythms

As previously said, the EEG reflects the activity of multiple brain regions
and cells. For this reason, it is usually difficult to infer from its time repre-
sentation and many studies focused on its frequency content, which reflects
the overall activity of the brain: when many different areas of the brain are
activated simultaneously (i.e. the brain is working), their synchronization is
reduced, and thus, the resulting electric field has higher frequency and lower
amplitudes.
It has been observed, mainly during sleep analysis, that the EEG signal presents
five typical frequency bands: delta, theta, alpha, beta and gamma waves
(plus Mu waves).

1. Delta (< 4 Hz)
Delta waves have the greatest amplitude (75-200 µV) and are usually
found during dreamless sleep (third and fourth phase of Slow-Wave
Sleep) or in deep meditation states.

2. Theta (4-7 Hz)
Theta rhythms are found during sleep, deep meditation, drowsy and
hypnotic states.

3. Alpha (8-15 Hz)
Alpha waves present amplitudes of 30-40 µV, and arise from under the
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visual cortex. They are found during wake states with closed eyes, in
relaxed environment, or during the moments that precede sleep.

4. Mu (8-11 Hz)
These waves have the same frequency range as the alpha waves, but
are mainly found over the motor cortex and depend primarily on its
synchronization; therefore, during movement, their amplitude is re-
duced. This phenomenon is known as Event Related Desynchroniza-
tion (ERD), and was first investigated by Gert Pfurtscheller in his works
[25] [21] [24].

5. Beta (16-30 Hz)
Beta waves appear in states of normal waking consciousness and dur-
ing task performances. They present low levels of synchronization and
amplitude, meaning a state of high cerebral activity.

6. Gamma (> 30 Hz)
Frequency components above 30 Hz are called gamma waves; to this
day, their role is still not completely understood, but many have hy-
pothesized that these waves are related to conscious awareness and at-
tentive focus.

1.2.3 Recording the EEG Signal

As previously said, the EEG is obtained by directly measuring the electric
potential on the scalp; the first human EEG recording was obtained in 1924
by Hans Berger, using normal radio equipment to amplify the electrical ac-
tivity on the scalp [30].
Nowadays, the recording system consists mainly of four components: up
to 256 electrodes (or electrode cap), the amplification system (with or with-
out analog filters),the A/D converter and the recording device. Since 1958,
the International Federation in Electroencephalography and Clinical Neuro-
physiology adopted a standardized method for electrode positioning, called
10-20 placement system.

1.2.4 The 10-20 Electrode Placement System

The 10-20 International System of Electrode Placement (IS 10-20 ) is an inter-
nationally recognized method to describe the location of scalp electrodes.
The label 10-20 designates the proportional distance in percentages between
ears and nose where the points for the electrodes are chosen. Electrode place-
ments are labelled according to the adjacent brain areas: F (frontal), C (cen-
tral), T (temporal), P (posterior), and O (occipital). The letters are accompa-
nied by odd numbers at the left side of the head, and by even numbers on
the right side.
The system is based on the relationship between the location of an electrode
and the underlying area of cerebral cortex.
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FIGURE 1.5: Electrode placement according to the 10-20 system.

1.2.5 Main Problems of the EEG Recording

The recorded signal amplitudes usually vary from 10 µV to 100 µV, which is
fairly close to the order of magnitude of the electrical noise generated from
the device. In addition, all external electrical sources may interfere with such
a sensitive recording system, making th EEG signal typically very difficult
to clean. In this section, we will briefly enumerate the main sources of noise
and artefacts present in most recordings.

1. Power Line Interference
This phenomenon is due to the capacitive coupling that occurs between
the power line supply and the cables used to extract the signal. The
resulting artefact has the form of a sinusoidal wave whose frequency is
the same as the AC frequency of the source (i.e. 50 Hz in most countries,
60 Hz in the USA and a handful of others). Usually, this artefact is
easy to eliminate using different types of notch filters during the pre-
processing phase.

2. Muscle Movements
The electric fields generated by the muscles are usually much stronger
than the EEG signal is, and therefore any small movement occurring
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during the recording is reflected as an artefact on the signal traces.
These artefacts are much more difficult to remove, but usually reside
in a frequency band which is of lesser interest, and can be removed by
simply low-pass filtering the signal.

3. Electrode detachment
As previously stated, the EEG is a non-invasive procedure: this means
that none of its components are inserted inside the subject’s body, and
thus he or she is not sedated during the recording.
The electrodes are fixed on the scalp with adhesive materials and the
subject can move and breathe during the whole test; these movements
can often cause the temporary detachment of some electrodes, with a
subsequent increase of the impedance. In these cases, the resulting sig-
nal is heavily compromised and the corresponding trials must be dis-
carded.

4. Ocular Movement Artefact
Due to their positioning close to the electrodes, the eyes can interfere
with the electrical signal picked up by the EEG electrodes. These arte-
facts can be quite visible, and to reduce this problem many experimen-
tal set-ups record separately the EMG derived from the eye area; during
the pre-processing phase, this recorded information is used to reduce
the interference, with the aid of various techniques (such as PCA, ICA
etc.).

5. ECG - Pulse, Pacemaker
Sometimes, the EEG traces contain spikes that reflect the heart (or pace-
maker) electrical activity. This artefact is particularly problematic be-
cause of its variability over multiple cardiac cycles.

1.3 Event-Related Potentials (ERP)

Event-related potentials (ERPs) are very small voltages that can be seen in
the EEG recording in response to specific stimuli or events. They are thought
to be caused by the summed activity of post-synaptic potentials produced
when a large number of similarly oriented cortical pyramidal neurons (thou-
sands or millions) are simultaneously activated, while processing informa-
tion. These EEG changes are time locked to sensory, motor or cognitive
events that provide safe and non-invasive approach to study psychological
and physiological correlates of mental processes [29].
ERPs in humans can be divided into two categories: the early waves, or com-
ponents - peaking roughly within the first 100 milliseconds after stimulus -
are called ‘sensory’ or ‘exogenous’ as they depend largely on the physical
parameters of the stimulus. In contrast, ERPs generated in later parts reflect
the manner in which the subject evaluates the stimulus and are termed ‘cog-
nitive’ or ‘endogenous’ ERPs as they examine information processing.
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FIGURE 1.6: An example of an EEG simulated signal, corrupted
by the ECG and EOG artefacts [8].

Event-related potentials can be elicited by a wide variety of sensory, cogni-
tive or motor events; in the following sections we will focus on some ERPs
that are related to movement intention.

1.3.1 Movement-Related Cortical Potentials (MRCP)

MRCPs denote a series of potentials that occur in close temporal relation with
movement or movement-like activity. These may occur before, during or af-
ter the movement and they refer to movement preparation or intention, lo-
calized in the motor cortex.
Kornhuber and Deecke (1965) distinguished four components of the MRCPs:
(1) Readiness potential (RP), (2) Reafferent potential, (3) Pre-motion Positiv-
ity and (4) Motor Potential. In this work we are mainly interested in the
potentials that occur before movement, in particular to the RP, and we may
occasionally refer to it as MRCP, LRP or ERP.

1.3.2 The Readiness Potential (RP)

As discussed previously, the EEG signal-to-noise ratio is typically small, and
therefore small fluctuations are difficult to see from its temporal representa-
tion; the most common method used to improve the SNR is the averaging
technique: by computing the average of many epochs relative to one or more
time-locked events, the noise component can be significantly reduced, and
the underlying variations can be exposed.
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In 1964, using this technique, Kornhuber and Deecke discovered a small
depolarization in the EEG signal recorded under the motor cortex that pre-
ceded movement by 2-1.5 seconds; they called this time-locked event Bere-
itschaftspotential (BP), or Readiness Potential (RP). Subsequently, the BP has
been found to be composed of - at least - two distinct components: around
400 ms prior to the movement onset, the BP shows a significant increase in its
gradient: the BP before this change is called ’early BP’, while the remaining
signal before the onset is called ’late BP’.

FIGURE 1.7: The averaged BP. [27]

The Lateralized Event-Related Potentials (LRP)

The lateralization of the scalp potential is a phenomenon that concerns the
event-related potentials that precede limb movements. The LRP is assumed
to be related to selective response activation processes [9].
The Readiness potential is initially equally distributed over both hemispheres,
but begins to lateralize before the onset of the muscular response, with larger
amplitudes found over the contra-lateral hemisphere.

The Contingent Negative Variation (CNV)

In 2013, P.Ahamadian et al. [26] discovered another similar negative deflec-
tion: the Contingent Negative Variation.
In particular, the CNV occurs in specific trials, when the subject is warned
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FIGURE 1.8: The lateralized readiness potential, computed with
the double subtraction method [9].

by a stimulus that she is going to perform the movement in a short time. Be-
tween the warning stimulus and the imperative stimulus, we can observe a
slow potential, which becomes lateralized, having larger amplitudes in the
contra-lateral hemisphere.

1.3.3 RPs Relationship to Free Will

We stated in previous sections that the readiness potential precedes the actual
movement by more than half a second; this discovery lead important scientist
to question the relationship between RPs and free will. In particular, one of
the first neuroscientists to investigate this field was Benjamin Libet.
In the early 80’s, Libet designed an experiment with the aim of answering the
question of how does a voluntary act arise in relation to the cerebral processes
that mediate it. Ultimately, he was able to demonstrate "that voluntary acts can
be initiated by unconscious cerebral processes before conscious intention appears,



1.3. Event-Related Potentials (ERP) 13

but that conscious control over the actual motor performance of the acts remains
possible" [15].

Libet’s Experiment

For his experiment, Libet designed a particular clock using a cathode ray
oscilloscope 1.9. The oscilloscope was arranged to have its spot of light re-
volving near the outer edge of its screen, in order to simulate the sweep of
the second hand of a clock. The light dot circled around 25 times faster than
a normal 60 seconds clock; thus, each marked second corresponded to about
43 ms.

Subjects were asked to keep looking at the centre of the oscilloscope, at a

FIGURE 1.9: A schematic representation of the clock used by
Libet in his experiment.

distance of about 2.3 meters; then, they were asked to perform a voluntary
and not pre-planned flexion of the wrist, at chosen time, and simultaneously
take note of the dot position in the moment they were aware of the conscious
decision to move.



14 Chapter 1. Introduction

At the end of 40 trials, the average RP was computed with standard pro-
cedure, and compared to the onset of intention as reported by the subject.
The first important discovery regarded some series of trials, in which sub-
jects reported to having pre-planned a range of time in which they would
have acted (subjects were instructed not to do so). In these cases, the gen-
erated ERPs had onsets ranging from 800 ms to 1 second before movement:
this lead to the conclusion that, with some constrictions imposed, self-paced
movements involved some pre-planning by the subject regarding the instant
in which to act. Vice versa, in successful trials, the ERP onsets were found to
be around 550 ms before the movement.

On the other hand, the average times reported regarding the intention to act
were around the -200 ms mark. This substantial difference - minimum 300
ms - lead to the conclusion that the cerebral initiation of a spontaneous vol-
untary act begins unconsciously. Put another way, the brain evidently decides
to initiate or, at the least, prepare to initiate the act at a time before there is
any reportable subjective awareness that such a decision has taken place.
However, subjects have reported that some recallable conscious urges to act were
’aborted’ or inhibited before any actual movement occurred; in such cases the subject
simply waited for another urge to appear which, when consummated, constituted the
actual event whose RP was recorded [16]. In this case, free will may manifest
itself as a veto possibility, that we appear to maintain during the 150 ms or so
remaining after the specific conscious intention appears.

FIGURE 1.10: The time course of a Readiness Potential high-
lighting the time when the awareness of intention appears.
Figure adopted from: informationphilosopher.com/freedom/

libet_experiments.html

1.4 The Event-Related Desynchronization (ERD)

A number of papers, written between 1975 and 1977 by Gert Pfurtscheller
and his group [25] [21] [24], demonstrated for the first time the presence of

informationphilosopher.com/freedom/libet_experiments.html
informationphilosopher.com/freedom/libet_experiments.html
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an event-related de-synchronization occurring in the alpha band of an EEG
recording during sensorimotor stimulation.
This time-locked event, occurring about 2 seconds before the related stimu-
lus (in our case, the onset of a finger movement), can be viewed as a decrease
in synchrony of the underlying neuronal populations: on the other hand,
when the synchronous activity increases, we have a specular phenomenon
called Event-Related Synchronization (ERS), which has also been found in
later studies, particularly regarding the last interval of the beta band (26-30
Hz).
In the instantaneous power plot (of a particular frequency band), this syn-
chronization/desynchronization has the form, respectively, of a positive or
negative slope: synchronization, in fact, means that the neuronal activity is
more likely to add up (in space and time), and therefore the resulting EEG
will present higher amplitudes, with consequent increase of its power, and
the opposite phenomenon occurs when the activity desynchronizes.
Both ERD and ERS can be explained as generated by changes in one or more
parameters that control oscillations in neuronal networks; in particular, they
could reflect changes in the activity of local interactions between main neu-
rons and inter-neurons that control the frequency components of the ongoing
EEG. [22]

1.4.1 Time course of ERD/ERS

Usually, ERD and ERS phenomena are displayed as a relative variation in
power (percentage), with respect to a baseline or reference power level mea-
sured before the event. The classic method for its computing, together with
another - more recent - one, will be later explained in detail. An averaged
time course representation of both phenomena is shown in figure 1.11.

FIGURE 1.11: Averaged plot of ERD and ERS phenomena [22]

1.5 Our Goal

The present thesis work is inserted in a greater research project whose goal is
to perform differential diagnosis between two clinical conditions: Vegetative
State (VS) and Locked-In Syndrome (LIS).
These two syndromes are very often misdiagnosed, as they present the same
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symptoms: VS patients are insensitive to any external stimulus, and differ
from comatose patients just because they have their eyes open; patients that
present locked-in syndrome, on the other hand, only appear insensitive to
any stimulus, but are actually conscious: their non-responsiveness is due to
the total paralysis, that includes the eyelids movement and breathing mus-
cles.
Unfortunately, the discrimination between these two conditions is a very dif-
ficult task, as the majority of tests rely on a verbal or muscular response from
the subject, which is of course impossible in these cases; some studies, like
the one performed by Andrews et al. in 1996 [5], reported a misdiagnosis
percentage between VS and LIS up to 43%.
Another pertinent clinical condition is called Minimal Consciousness State
(MSC), a possible evolution of the coma state. Patients in MSC only show
consciousness (intended as self-awareness and awareness of the environ-
ment) in response to specific stimuli, and on rare occasions. However, MSC
patients cannot communicate reliably with the external environment, as they
are unconscious most of the time, and therefore it would be useful to dis-
criminate this clinical condition too.

Ideally, we would hope for a non-invasive and relatively not expensive
detection method to discriminate between those conditions. Some patients
that have lived a period in LIS condition, and were then able to recover, re-
ported the feeling of wanting to move or speak, but not being able to do
so as if body and brain were ’disconnected’, in a similar state as what hap-
pens during REM sleep. On the contrary, patients in VS condition cannot
plan voluntary movements, as they are completely unconscious. For this
reason, given that involuntary movements occur in both states, one possible
method to perform the correct discrimination would be to detect the intention
of movement, regardless of the muscular outcome.
In conclusion, the idea of this project is to exploit the Readiness Potential
to perform the discrimination, and in particular the first of its components,
that seems to be related to movement intention and starts about one second
before the actual movement onset.
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Chapter 2

Materials

In this chapter we will briefly describe the materials, recording devices and
software that were used to perform the analysis. In addition, we will also
describe the experimental protocol that was used during the recording phase,
on voluntary test subjects.

2.1 Experimental Protocol

All subjects were required to perform three different tasks:

1. the first task was completely arbitrary: subjects were instructed to vol-
untarily - not in a stereotypical way - press a button after an acoustic
signal was given; they could perform the movement at any time in a 10
second window after the signal;

2. during the second task subjects were instructed to perform the act in an
automatic fashion: this trial was label as semi-voluntary;

3. the third task was completely involuntary: the EEG signal was recorded
after stimulating the patellar tendon with a reflex hammer. During this
experiment all subjects were blinded so that they could not see when
the stimulus was happening.

Every task was composed of 40 trials. The audio signal was given at random
intervals. In this first phase of study, we only considered the completely
voluntary movements.

2.1.1 First Dataset Acquisition

The first dataset was acquired during a study about Disorders Of Conscious-
ness at the "Centro Puzzle" of Turin (centropuzzle.org), using the Galileo
NT instrumentation and its software. For our purposes, we only considered
the 15 recordings coming from healthy subjects: 4 males, 11 females, all right-
handed, aged between 21 and 26.
The sampling frequency was set to be of 512 Hz, and it was not possible to
acquire the electro-oculogram (EOG), usually used in order to improve the
removal of artefacts. We used a total of 7 electrodes, placed over the frontal,
pre-frontal and parietal cortex: the precise location according to standard 10-
20 placement were: : Cz, C3, C4 on the central lobe; Fcz, Fc3, Fc4 on the

centropuzzle.org


18 Chapter 2. Materials

frontal lobe; Pz on the parietal lobe and Oz on the occipital lobe.
Ag/AgCl bridge electrodes were used, as long as an EEG electrode fixing
belt, with unipolar derivation. The correct electrode placement and impedance
was tested using the Galileo NT software package. The same instrumenta-
tion was used to obtain the EMG signal: two electrodes were placed on the
first phalanx of the right forefinger and on the palm of the hand, at the base
of the right thumb.

2.1.2 Second Dataset Acquisition

The second acquisition proceeded using the same parameters, but, instead of
using only 7 electrodes, an EEG cap with 64 electrodes was used. The EOG
signal was also recorded, which will render eye-artefact removal easier to
implement in future analysis.

2.2 Instruments

2.2.1 The GalileoNT

The EEG measurements are acquired using GalileoNT (EEGNT), B8300033000,
EBNeuro. During the acquisition, its parameters were set as follows:

• EEG acquisition

– Range: ± 4 mV;

– Pass-band filter cut-off frequencies: [50 ÷ 0.015] Hz;

– Sampling frequency: 512 Hz;

– Notch filter: 50 Hz.

• EMG acquisition

– Range: ± 65 mV;

– Pass-band filter cut-off frequencies: [500 ÷ 5] Hz;

– Sampling frequency: 512 Hz;

– Notch filter: 50 Hz.

2.3 Software

2.3.1 GalileoNT Software

As briefly stated above, the GalileoNT embedded software allows the user to
view the EEG raw data in real-time during the acquisition, to export the EEG
file in different formats, to verify the electrode positioning and impedance.
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FIGURE 2.1: The GalileoNT Machine.

2.3.2 MATLAB

MATLAB is a fourth-generation programming language and numerical anal-
ysis environment.It is used by engineers and scientists in many fields such as
image and signal processing, communications, control systems for industry,
smart grid design, robotics as well as computational finance.

2.3.3 EEGLAB

EEGLAB is an open-source MATLAB toolbox maintained by the Swartz Cen-
tre for Computational Neuroscience (SCCN). This program contains a large
number of visualization and processing functions, specifically designed to
work with the EEG signal; it also provides an interactive graphic user in-
terface (GUI), allowing users to flexibly and interactively process their high-
density EEG and other dynamic brain data using independent component
analysis (ICA) and/or time-frequency analysis (TFA), as well as standard av-
eraging methods. We also used the EEGLAB plugin FIRfilt, which allows the
user to apply a variety of linear filters to EEGLAB data.
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Chapter 3

Methods

The following sections briefly summarize all the methods and algorithms
used to perform the analysis. They were divided into three categories, based
upon the goal of their implementation regarding our analysis.

3.1 EMG Signal Analysis

Surface electromyogram (EMG) recording is a widely used approach to ob-
tain physiological or clinical information about neuromuscular functions.
One its most important applications is the precise detection of motor events;
in many cases, such as ours, it is needed to detect the exact onset of a move-
ment. However, due to the stochastic characteristics of the EMG signal, onset
detection is a challenging task, especially when the signal to noise ratio (SNR)
is very low; in these situations, most common techniques like visual inspec-
tion or amplitude threshold are prone to false detections.
To overcome this difficulty, several methods such as double threshold de-
tector, Wavelet template matching or statistical criterion determination have
been proposed to improve the performance of onset detection. However,
these methods are computationally intense, and a good performance is pos-
sible only when a priori knowledge of the processed signal is known.

3.1.1 Teager-Kaiser Energy Operator (TKEO)

In 2006, Xiaoyan et al. from the University of Illinois [14] proposed a simple
method to enhance onset detection performances in EMG signals, that ex-
ploits the Teager-Kaiser Energy (TKE) non-linear operator.
The discrete TKE operator (Ψ) in time domain is defined as follows:

Ψd[x(n)] = x2(n)− x(n + 1)x(n− 1) (3.1)

For a given signal:
x(n) = A cos(ω0(n) + θ) (3.2)

where n is the sequence index, ω0 the angular frequency, A is the amplitude
and θ is the initial phase.
We can write:

x(n± 1) = A cos[ω0(n± 1) + θ] (3.3)
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and since:
cos(α + β) cos(α− β) =

1
2
[cos(2α) + cos(2β)] (3.4)

cos(2α) = 1− 2 sin2(α) = 2 cos2(α)− 1 (3.5)

It follows:

x(n + 1)x(n− 1) = A2 cos[ω0(n− 1) + θ] cos[ω0(n + 1) + θ] (3.6)

and ultimately:

x(n + 1)x(n− 1) = x2(n)− A2 sin2(ω0n) (3.7)

Therefore, we can write the following relationship:

Ψd[x(n)] ≈ A2 sin2[ω0(n)] (3.8)

3.1.2 EMG onset detection

Regarding the EMG signal, we know that when a motor unit action potential
fires, it usually generates an increase in signal amplitude and instantaneous
frequency; as we can see from equation 3.8, the output of the TKE operator
is proportional to both those parameters (A and ω0), and we can take ad-
vantage of this property to improve the detection system performances: the
output will have sharper and narrower spikes corresponding to muscle ac-
tivity, an it will be easier to implement a thresholding algorithm for onset
detection [28].
Usually, the threshold is set to be proportional to the mean of the signal dur-
ing idle state, plus a multiple (j) of its standard deviation, according to the
following equation:

threshold = µ + jσ (3.9)

with µ as the mean, σ as the standard deviation, and j to be determined. The
algorithm is explained in figure 3.1.

3.2 ERD Detection Methods

In the following section, we will give a brief explanation of two methods for
the computation of ERD/ERS from an epoched EEG signal. The first one is
the classic algorithm used by Pfurtscheller in many of his early publications
[24]; the second was chosen from two comparison reviews of many modern
methods, one made by Allen et al. [3], the other made by Pfurtscheller in
1999 [22].
Based on these reviews, we choose to implement one of the more promising
techniques, which exploits the Continuous Wavelet Transform (CWT).
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FIGURE 3.1: EMG onset detection using TKE Operator [28].

3.2.1 Band Power Method

The classical method to compute the time course of ERD and ERS includes
the following steps:

1. bandpass filtering of all trials;

2. squaring of the amplitude samples to obtain power samples;

3. averaging of power samples across all trials;

4. averaging over time samples to smooth the data and reduce the vari-
ability.

As previously specified, the ERD − ERS is then computed as a percentage
relative to a reference interval (e.g. 4 to 3 seconds before the movement on-
set):

ERD% = 100
(A− R)

R
(3.10)

where R is the mean power computed in the reference interval and A is
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FIGURE 3.2: Averaged plot of ERD and ERS phenomena [22].

the instantaneous power sample. The complete procedure is summarized in
figure 3.2.

3.2.2 Continuous Wavelet Method

The Continuous Wavelet Transform (CWT) is a time-frequency representa-
tion method used to improve both temporal and spectral resolution com-
pared to standard Short-Time Fourier Transform. This improvement is ob-
tained by expanding the signal of interest onto a set of variable-length basis
functions, that are called wavelets.
The mother-wavelet length varies according to the spectral components of
the signal, and is no longer fixed as for normal STFT; this technique poten-
tially allows for an improvement of spectral and temporal resolution, as low
frequencies are decomposed using longer wavelets, while higher frequency
components are analysed using shorter versions of the mother-wavelet, bet-
ter suited for capturing fast-moving oscillations [3].
The CWT of a signal x(τ) is defined in equation 3.11 where ψ∗ is the complex
conjugate of the mother wavelet function and b and a are the translation and
scale parameters, respectively.
As we can see, this method computes - for every time sample - the correlation
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between the object signal and the wavelet function, delayed by b and scaled
by a.

CWTx(a, b) =
1√
a

∫ ∞

−∞
x(τ)ψ∗

(
τ − b

a

)
dτ (3.11)

After applying the transform, we obtain the energy density of the signal as
follows in 3.12:

Pχ(a, b)CWT = |CWTχ(a, b)|2 (3.12)

3.2.3 The Morlet Transform

By matching the wavelet basis function to the object signal characteristics,
we can obtain the wavelet transform which is better suited for its analysis.
For ERD and ERS analysis, the complex Morlet Wavelet has been found to
have good performances, due to the oscillatory features of its basis functions
[3] [31].
As defined in 3.13, the basis function is equivalent to a complex sinusoid with
Gaussian envelope:

ψ(t) =
1

π1/4 exp (i2π f0t) exp
(
− t2

2

)
(3.13)

Ψ̂( f ) = π1/4

√
2 exp

(
−1

2
(2π f − 2π f0)

2
)

(3.14)

In Wavelet Analysis, there is no physical relationship between a and Fourier
Frequency, but for the Morlet Transform the central frequency f0 at each scale
can be loosely interpreted as a localised Fourier frequency. This comes from
the fact that, if the mother wavelet is localised at a given frequency f0, then a
scaled version ψ(ax) is localised at frequency f0/a by the scaling property of
the Fourier transform [7].
Therefore, we can perform a conversion from time-scale axes of the scalo-
gram to a time-frequency representation: the complex CWT becomes as per
3.15:

CWTx(t, f ) =

√
f
f0

∫ ∞

−∞
x(τ)ψ∗

(
f (τ − t)

f0

)
dτ (3.15)

We can then calculate its energy density distribution using 3.12.

3.3 Single-Trial Estimation

In this section, we will briefly describe some of the procedures and tech-
niques used during the single trial analysis. As stated previously, the goal
of these methods is to find whether the Readiness Potential is present or not
in a single trial recording (i.e., four seconds before and after the movement
onset).
To obtain this result, three different techniques have been implemented: first,
we applied a Laplacian spatial filter, used to enhance the spatial resolution
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FIGURE 3.3: A graphica representation of the Morlet Wavelet
Transform, adapted from [7].

of the signal; secondly, to further improve the SNR, we used the EMD tech-
nique and - in cascade - the Savitzky-Golay filtering technique.

3.3.1 Spatial Filtering

Many studies [18] have demonstrated that it is possible to improve the SNR
of the EEG signal by implementing a spatial filter; in EEG analysis, four dif-
ferent filters are commonly used, and were compared by McFarland et al.
[18] [13] [20] in 1997: Common Average Reference (CAR), large and small
Laplacian, and ear reference.
The principle of spatial filtering is quite simple: by combining the signals
from different channels, one can either reduce the non-common component
(noise reduction), or enhance the common component: in both cases, the re-
sults hopefully lead to a better signal-to-noise ratio.

FIGURE 3.4: Geometrical arrangement of four different spatial
filters [18].
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Large Laplacian Filter

The selected spatial filter was the Large Laplacian (LLSF), which has been
proven to be very useful by the above-mentioned papers (among many oth-
ers). Its very simple implementation follows the subsequent formula, where
xi is the filtered (combined) signal and Nch is the number of channels, which
depends on the acquisition system: i refers to the selected central channel,
while the other components are shown in figure 3.4.

xi =

{
1, i = 1
− 1

(Nch−1) , i 6= 1 (3.16)

3.3.2 Empirical Mode Decomposition (EMD)

The empirical mode decomposition (EMD) is a signal decomposition method
that decomposes non-periodic and non-stationary signals into a finite num-
ber of intrinsic mode functions (IMFs).
The original signal x(t) can be re-obtained as the sum of every IMF and a
residual. Each IMF must only satisfy two conditions:

1. it must have an equal number of extremes and zero crossings, or differ
by no more than one;

2. the mean value of the two envelopes resulting from the interpolation of
local maxima and minima is zero at any point [11] [4].

Given an input signal x(t), to perform empirical mode decomposition, the
following algorithm must be followed [12]:

1. Find the local extrema of x(t);

2. generate the upper (em(t)) and lower (el(t)) envelopes, by interpolating
all maxima and minima;

3. compute the local mean as m1(t) =
el(t)+em(t)

2 ;

4. extract the details h1(t) = x(t)−m1(t);

5. verify that h1(t) satisfies the two conditions mentioned above;

6. if the conditions are not met, repeat 1 to 4 until an IMF is obtained.

When the algorithm converges, we have extracted the first IMF from our
signal; we can now repeat this procedure to find the next IMF, by using as a
new input signal the residual r1 = x(t)− IMF1(t). This can be repeated until
the residual signal becomes monotonic, signalling the end of decomposition.
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FIGURE 3.5: Example of empirical mode decomposition ap-
plied to the EEG signal: the first two IMFs were extracted, and
a residue. The red line depicts the basal activity, the blue line is

the motor activity (µV) [4].

3.3.3 EMD-Based Signal Denoising

To perform signal de-noising, when the noise component is transient, non-
stationary and wide-band, linear methods often do not suffice; to overcome
this issue, many non-linear methods like the wavelet-based ones have been
developed.
In recent papers [19] [6], Empirical Mode Decomposition has been proposed
as part of a non-linear framework to perform denoising in these cases. The
major advantage of the EMD is that the basis functions are derived from
the signal itself, therefore making the analysis adaptive, in contrast to the
wavelet method where the basis functions are predetermined [19].
To perform denoising using the EMD technique, the recovered IMF can be fil-
tered before reconstruction with methods such as the Savitzky-Golay smooth-
ing technique [2]
We can write the noisy signal y(t) as:

y(t) = x(t) + η(t) (3.17)

with x(t) as the original signal and η(t) as the addictive noise; by applying
the EMD, we will obtain noise corrupted IMFs, cηi(t).
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It is possible to reduce the noise component by performing different kinds of
filtering, in order to obtain "cleaner" IMFs (ĉi(t)); the de-noising signal x̂(t)
can then be reconstructed as in figure 3.6, with rN(t) as the signal residue :

x̂(t) =
N

∑
i=1

ĉi(t) + rN(t) (3.18)

FIGURE 3.6: Example of EMD-based de-noising applied to arti-
ficial signals [6].

The Savitzky-Golay Filter

The Savitzky-Golay (SG) filter method is time-domain smoothing method
that was originally designed to preserve higher moments within time-domain
spectral peak data. It can be used to smooth data signals, and therefore in-
crementing the signal-to-noise ratio, without distorting the original shape fo
the signal.
In order to achieve this result, the algorithm replaces successive sub-sets of
adjacent data points with a corresponding low-degree polynomial, fitted to
the data using the linear least square method.

3.3.4 Matched Filter

The previous methods served the purpose of reducing the signal noise; as we
will see later, when a sufficiently clean signal is obtained, it is possible to use
it as a template in order to construct a reliable detector for similar signals. To
perform the actual comparison between the template and the target signal,
the matched filter (MF) supervised approach can be used [20] [1] [10].
The output of a matched filter is given by equation 3.19: we can notice that,
given the template h, the filter performs a linear convolution between the
signal x and a time-inverted version of the template itself:

y[n] =
∞

∑
i−∞

h[n− t]x[t] (3.19)
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In other words, the output y is a measure of the correlation between the tem-
plate and a portion of the signal, and therefore the MF can be used to search
for similarities between two different signals (if one is used as a template).
In particular, y will have values that are proportional to this similarity, and
thus, in order to establish if the template signal is present or not, a simple
thresholding method can be applied; the output is plotted in figure 3.7.

FIGURE 3.7: Example of a MF-based detector output [1].
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Chapter 4

Work-flow and Results

In this chapter we will go over each part of our processing, and show the
result of each phase; the goal of the whole process was to go from the raw
EEG recording to the single trial evaluation of the Readiness Potential to find
its presence inside a considered interval. In order to do so, we first had to
make sure that our recordings contained the Readiness Potential at least by
averaging over all trials: to verify this, we developed a simple algorithm to
define the exact instant in which the movement started; then, we applied a
simple threshold detector, improved by the TKEO operator as defined in [14]
that was proven to increase the onset detection performances. After a simple
band pass filter to remove the DC drift and very high frequency components,
we verified - for each subject - the presence of the averaged Readiness Poten-
tial.
The RP was computed both as a simple average and by implementing the
Empirical Mode Decomposition ([19] [6]) technique coupled with the Savitzky-
Golay smoothing filter, which is the framework we developed for the single
trial analysis.
The presence of an Event-Related Synchronization and Desynchronization
were also verified in this preliminary phase: these two phenomena were
computed both by using the standard method and a more recent technique
that exploits the better frequency resolution offered by the wavelet trans-
forms. In this case, no significant difference was found between the two
methods, and both were sufficient to verify the ERD and ERS presence in
most of our subjects.
The contemporary presence of these three signals, that were all demonstra-
bly found in this type of experiments, was used to define a subset from all
our acquisition to use as a basis for the single trial analysis: this analysis
was done by the means of the above mentioned EMD-based filtering pro-
cess, which was able to enhance the RP and improve the signal-to-noise ratio,
coupled with a matched filter based classifier [20]. In particular, we used the
enhanced RP template to find the optimal set of matched filter coefficients,
so that its output would be proportional to the probability of a Readiness Po-
tential to be present in a selected time interval.
The detailed process for each step is reported in the sections below, together
with the obtained results.
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4.1 EMG Onset Detection

Given the raw EEG signal, the first step of our process was to determine the
exact instant in which the finger movement was initiated. In order to do so,
we applied techniques mentioned in chapter 3.1 to the raw EMG recording.
First, we used algorithm 1 to remove slow trends and high frequency noise

Algorithm 1 EMG filtering

1: Resample @128Hz;
2: Remove mean and slow trends;
3: Notch filter @50Hz to remove power line interference;
4: Low pass filter @40Hz.

from the EMG; secondly, we implemented a simple threshold detector after
applying the TKEO operator and computing its derivative. The threshold in
algorithm 2 was determined as follows:

Threshold = u0 + j · δ0 (4.1)

where u0 and δ0 were respectively the mean and standard deviation of the
signal, computed in a baseline period, which was determined as the first half
second of our window; j was set at 1.5.
After the detection, each onset time-point was stored as a property of the
EEG structure and will be later used to epoch the continuous recording. An
example of onset detection is reported in figure 4.1.

Algorithm 2 Onset Detection

1: Apply the TKEO operator;
2: Find the EMG peaks;
3: Extract [−2s÷ 0s] windows referring to each peak;
4: Compute the first derivative of each window;
5: Find the first sample above threshold, mark it as onset.

4.2 EEG preprocessing

After marking the onset time of each epoch, we proceeded to filter the EEG
recordings; for each channel, we implemented a high pass filter with cut-off
frequency of 0.01 Hz, in order to eliminate the slow DC drifts, and a low-pass
filter at 30 Hz. The filters’ impulse responses are reported in figures 4.2 and
4.3.
In accord with most literature, both filters were chosen as linear phase FIR
filters. By doing so, we could easily compensate the filter-introduced delay,
by simply computing the linear phase delay and shifting the signal accord-
ingly; this step was necessary, as we are interested in a very specifically time-
locked event, and therefore we had to be careful not to introduce any phase
shift during the filtering process.



4.3. Event-Related Synchronization and Desynchronization 33

1.64 1.66 1.68 1.7 1.72 1.74 1.76 1.78 1.8 1.82 1.84

10
4

-2

0

2

4

6

8

10

12

EMG

Onset

Peak

FIGURE 4.1: One epoch of the EMG is plotted, together with
the peak and onset point found by our algorithm.

Algorithm 3 EEG Filtering

1: Resample @128Hz;
2: Apply high-pass FIR filter, with cut-off frequency of 0.01 Hz;
3: Linear delay compensation;
4: Apply low-pass FIR, with cut-off frequency of 30 Hz;
5: Linear delay compensation.

4.3 Event-Related Synchronization and Desynchro-
nization

After filtering the EEG, we studied its event-related synchronization and de-
synchronization; to do so, we applied and confronted two methods: the clas-
sic band power method as described by Pfurtscheller in his original papers
[25] [24] [21] [23], and a more recent method based on the Morlet Wavelet
Transform [3]. Algorithm 4 and algorithm 5 synthesize these procedures.
From literature, we expected to find a de-synchronization in the alpha band
(between 8 Hz and 12 Hz), with corresponding decrease in power, and a
synchronization in the beta band (between 26 Hz and 30 Hz), with a corre-
sponding increase in power. The ERD is expected to start about two seconds
before the onset, while the ERS should start immediately after the movement
is initiated.
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FIGURE 4.2: Low-Pass FIR filter: impulse response and phase.
This filter was used to process the EEG.

As we can see from the grand average plots in figure 4.4, the results are over-
all coherent with what was expected, with a decrease in alpha power starting
about 2 seconds before the onset and a subsequent increase in the beta band.
Reported below is a list of plots showing the ERD and ERS for some of our
subjects, plus the grand average plot across all subjects.

Algorithm 4 ERD/ERS Band Power Method

1: for each epoch do:
2: Band pass between low f requency and high f requency;
3: Squaring of the amplitude samples to obtain power samples;
4: Averaging of power samples across all trials;
5: Averaging over time samples to smooth the data and reduce the vari-

ability.
6: end for
7: Compute the mean power of the reference interval R (−3.5s÷−2.0s);
8: ERD/S% = 100 (A−R)

R .

4.3.1 ERD and ERS Plots
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FIGURE 4.3: High-Pass FIR filter: impulse response and phase.
This filter was used to process the EEG.

Algorithm 5 ERD/ERS Morlet Wavelet Method

1: for each epoch do:
2: Perform the Morlet CWT decomposition;
3: Find all frequencies lying in the selected frequency band;
4: Square the absolute value of the result to obtain instantaneous power

samples;
5: end for
6: Compute the mean power in the reference interval R (−3.5s÷−2.0s);
7: ERD/S% = 100 (A−R)

R .
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FIGURE 4.4: The ERD and ERS grand averages across all exper-
iments.
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FIGURE 4.5: ERD and ERS plots on subject 1.
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FIGURE 4.6: ERD and ERS plots on subject 2.
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FIGURE 4.7: ERD and ERS plots on subject 3.
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FIGURE 4.8: ERD and ERS plots on subject 18.
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FIGURE 4.9: ERD and ERS plots on subject 20.
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Subject 27
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FIGURE 4.10: ERD and ERS plots on subject 27.
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4.4 Averaged Readiness Potential

Together with the ERD and ERS study, we also computed the averaged sig-
nal on the acquired dataset; computing the average had two main purposes:
first, we needed to assess the validity of our acquirements, and second we
could begin to evaluate our EMD method by comparing the simple average
with the EMD average.
Algorithm 6 summarizes the processing method: the Empirical Mode De-
composition was applied on a surrogate channel created by running a large
laplacian filter on the central electrode (for our purposes, Fc3); the spatial fil-
ter was demonstrated to reduce the spatial noise [17].
The most important step of our analysis was the removal of the first three
EMD components; this method was proven to enhance the SNR, without
removing important information regarding the RP signal [11] [4]. To fur-
ther reduce the noise, each component retrieved by the EMD technique was
smoothed using a Savitzky-Golay filter before reconstructing the signal, as
suggested by [6].

Algorithm 6 Spatial Filter + EMD + Savitzky-Golay Framework

1: Select the central channel (Fc3);
2: Compute the surrogate channel by applying the large laplacian spatial

filter 3.16;
3: for surrogate epoch do:
4: Compute the EMD modes (algorithm 3.3.2);
5: Apply the Savitzky-Golay filter on every mode to further reduce

noise;
6: Sum all modes minus the selected first few to obtain a filtered epoch;
7: end for
8: Average over all epochs.

4.4.1 Averaged RP Results and single-trial subset selection

These plots offer a first example of the effectiveness of our framework: from
visual inspection we could verify that, in most cases, the EMD - coupled
with the spatial filter - was able to enhance the RP. To proceed with single
trial evaluation, we selected a subset from both our datasets (old and new
protocol): the RP was clearly visible in 13 out of 22 acquisition from the new
database, and in 15 out of 19 from the old database.
As we can see from the plots, removing four EMD components renders the
signal quite unclear, while removing three appears to be the best case, con-
cordant with the results found in [11] and [4].
All Readiness Potentials are conventionally plotted upside-down.



44 Chapter 4. Work-flow and Results

Grand averages

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

-10

0

10

m
ic

ro
V

Averaging

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

-20
-10

0
10

m
ic

ro
V

EMD -1

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

-20
-10

0
10

m
ic

ro
V

EMD -2

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

-20
-10

0
10

m
ic

ro
V

EMD -3

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

-10

-5

0

5

m
ic

ro
V

EMD -4

FIGURE 4.11: Grand Average RP plots; we can see from both
figures that removing three components has the best perfor-
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FIGURE 4.13: RP plot on subject 4.
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FIGURE 4.14: RP plot on subject 7.
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FIGURE 4.15: RP plot on subject 13.
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FIGURE 4.16: RP plot on subject 17.
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FIGURE 4.17: RP plot on subject 23.
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FIGURE 4.18: RP plot on subject 25.
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4.5 Matched Filter and Single Trial

4.5.1 Select the Template

In order to create the matched filter detector, we first need to extract its coeffi-
cients from our training data. These coefficients are nothing but the signal we
want to detect, and the matched filter output is a measure of the correlation
between our template and the filtered window, as explained in section 3.3.4.
We created the template - the filter coefficients - as an average of a number of
epochs randomly selected from our training set.
The algorithm below was developed to find the minimum number of epochs
to average in order to compute a reliable template. We used the euclidean
distance as a measure of fitness to quantify the diversity between templates
created by an increasingly high number of epochs: imposing a maximum
distance of 0.01%, we found that no more than 45 epochs were needed. Thus,
we decided to use 70 epochs in order to create the template, and the remain-
ing epochs could be used as a validation set.
By averaging 70 randomly chosen epochs from our database, we obtain the

Algorithm 7 Template Selection

1: for epoch do:
2: Compute the EMD filtered signal as per 6;
3: for i = 5 : 5 : NumEpochs do
4: for j = 1 : NumValid do
5: Randomly select i epochs;
6: Average the selected epochs to create a possible template;
7: Save the template;
8: end for
9: Compute the euclidean distance between all NumValid templates;

10: Select the first i with a fitness value lesser than 0.05%.
11: end for
12: end for
13: Save i.

template reported in figure 4.19: as we can see, despite using only a limited
number of epochs, the template appears to be much similar to the grand av-
erage 4.11. Thus, we selected the last 2 seconds before the EMG onset as
coefficients of the matched filter.

4.5.2 Train the Linear Classifier

Now that we obtained the coefficients of the matched filter, we can run it
through our database and train a basic linear classifier to discriminate be-
tween windows containing the RP and windows without the RP.
In order to do that, we ran the matched filter on the remaining database (the
epochs used to create the template were eliminated); then, we took 30% of
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FIGURE 4.19: The average over 70 randomly chosen epochs,
filtered with the EMD process. The matched filter coefficients

were chosen as the section from -2s to 0s.

it as training set and divided each epoch in 2 second windows. We consid-
ered as positives the windows before the EMG onset, and as negatives the
remaining areas. Then, for each window, we saved 5 time-samples, 0.5 sec-
onds apart, and trained a simple linear classifier using the time-samples as
features.

The confusion matrix in figure 4.21 shows the ability of our classifier to
discriminate between positives and negatives, as defined above; the results
are obtained after running the linear classifier on the other 70% of our initial
data. As we can see, the overall accuracy is close to 70%.
Below we reported the detected RPs on some single trial epochs: as we can
see, the number of false positives is still quite high, but the majority of them
is located in the second part of the epoch, after the movement. These false
positives are less important than FPs found in the first half, as they could pick
up cerebral activity related to the movement itself, that shouldn’t be present
in paralysed patients.
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FIGURE 4.20: Plot of the average matched filter output on 150
epochs: the averaged result confirms what we expected, with a

maximum of intensity corresponding to the EMG onset.
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FIGURE 4.21: The confusion matrix of the linear classifier. The
output labelled as 1 are the RP containing windows, and vice

versa.
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FIGURE 4.22: Single-trial RP detection.
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FIGURE 4.23: Single-trial RP detection.
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Random Epoch 3
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Chapter 5

Conclusions

The Empirical Mode Decomposition technique has proven to be an effective
method to remove most of the noise from the EEG signal, in order to enhance
the presence of Readiness Potentials; we were able to find the RP deflection in
60% of the new acquisition database, and 78% of the old dataset. In all cases,
even when the RPs were visible by simple averaging, the EMD allowed for a
better signal quality.
The Event-Related Synchronization and De-synchronization was also present
in most of the trials that clearly contained the RPs, with no significant differ-
ence between the two proposed methods (band power technique and Morlet
Wavelet technique); the simpler band power method had proven to be suffi-
ciently accurate to perform this analysis.
As far as the single-trial analysis, our proposed method based on a matched
filter classifier was able to discriminate correctly the 68% of 2 seconds win-
dows in our validation set, which in an encouraging result. Overall, the
task of accurately detect the RP presence without the means of an averaged
technique remains a challenging problem, and the following considerations
should be made as a suggestion to improve the performances compared to
our work.
First, the need for a sophisticated preprocessing paradigm emerged: our ba-
sic filtering scheme had adequate performances when it came to analyse av-
eraged quantities and signals, but, in order to enhance the single-trial effi-
ciency of any method, the preprocessing phase should include state-of-the-
art artefact removal procedures.
Secondly, we should highlight an intrinsic limit of a matched filter technique
based on a template RP: the ultimate goal of our study is to detect the RP
in Vegetative State (VS) and Locked-In Syndrome (LIS) patients: the RPs
present in these conditions are not guaranteed to be identical to those found
in healthy patients, and therefore a model-based approach could not be best
suited for this kind of inquire.
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