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Abstract 

       Many efforts were done by the oil Industry to develop damage detection 

methods for offshore platforms since the offshore structures are widely used for 

different functions and in a variety of environments across the globe mainly in the 

petroleum industry for offshore drilling, exploration and production activities. 

Platforms faces many practical problems and difficulties occurred in harsh 

environment, in addition to other problems including mass variation and varying 

fluid storage that usually occurs on the deck of the platform. These problems 

affect the dynamic response of the structure and cause higher vibrational modes. 

Also, damage detection in offshore platforms considered very difficult in some 

parts of the structure that is covered by sea water especially in deep sea-beds. In 

addition, damages caused by environmental and operational conditions can 

affects health, environment, and economics. Structural health monitoring is 

implemented to check the health of the structure and how the structure is 

responding to various loading conditions and determine whether it is susceptible 

to failure. The Vibrational based techniques developed for damage detection 

are based on the natural frequency and dynamic response variations but are not 

capable to distinguish between environmental and operational condition and 

structural damage.  

          In this study the non-linear Co-integration method is presented with the aim 

of an early stage damage detection in offshore platform structures. This based 

method has advantage over other techniques that it is capable to deal with 

structures subjected to different operational conditions and differentiate 

effectively between the normal operating conditions due to difference in oil 

storage and damage conditions. Moreover, the Co-integration is a technique 

used to analyze non-stationary time series where its variables are co-integrated, 

and the linear combination of the time series must be stationary. The difference 

between the real data and the estimated ones is the stationary residual, where 
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this residual that is created from co-integration is used as a damage-sensitive that 

is independent of environmental and operational conditions. In Chapter 1, an 

introduction to structural health monitoring is presented followed by introduction 

to the damage detection and different techniques available are outlined. 

Chapter 2 consists of a comprehensive Data normalisation and a definition of the 

Co-integration technique. To apply this method, a case study (Chapter 3) is 

performed by developing a general finite element model of an offshore platform 

structure on the software ANSYS and simulated for 21 different normal operational 

conditions due to change in the oil storage mass and for damage conditions due 

to stiffness reduction. The dynamic response of the structure in terms of frequency 

is monitored for each normal condition and levels of damage in first normal 

condition and inserted in a non-stationary dataset of 500 observations with 

different normal conditions and level of damage where implemented and 

presented in chapter 4. Finally, Co-integration were applied through multiple 

regression techniques, Support Vector Machine(SVM) and Relevance Vector 

Machine(RVM), are generated on MATLAB for analysis and discussion for damage 

detection of the structure presented in Chapter 5. 
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Chapter 1: Introduction 

        Offshore Platforms are widely spread all over the world and plays a very 

important role in the petroleum industry with its variety of the function in drilling, 

production and upstream activities. Mainly, these structures due to its position are 

designed to sustain the stresses that can be exerted on it due to the harsh 

environments with different environmental and operational conditions such as 

wind, tides, and variation of masses on structure that can affect the environment, 

health, and economics. Offshore platforms are manufactured from steel or 

concrete structures used for exploration or extraction of petroleum products from 

the earth’s crust. There are many types of offshore structures, depending on their 

use or on the water depth on which they will work. Oil and gas are produced, 

separated, stored on the platform, and then transported through pipelines or by 

tankers. [1]    

 Damage detection occurs in offshore structures is fundamentally different from 

other structures due to such environment where the damage location cannot be 

detected by eye especially in the parts covered by the sea-water. Many very 

practical problems were encountered including measurement difficulties caused 

by platform machine noise, difficulties faced in hostile environments, changing 

mass caused by marine growth and varying fluid storage levels(tanks), temporal 

variability of foundation conditions and the inability of wave motion to excite 

higher vibration modes [2]. The Structural Health Monitoring become an important 

component to structural engineering practices. The need to monitor the health 

of our infrastructure and maintain it has never been more necessary than now 

with most of the infrastructure being structurally deficient. Structural health 

monitoring is essential for safe operations. These techniques make measurements 

locally, where the damage of the whole structure is extremely time-consuming, 

expensive, and prone to human loss. The main objectives of the SHM are to 

monitor the loading conditions of a structure, to assess its performance under 
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various service loads, to verify or update the rules used in its design stage, to 

detect its damage or deterioration, and to guide its inspection and maintenance. 

[3] 

          Structural health monitoring research for offshore oil platforms has been 

widely spread due to economic, life-safety and environmental issues. As an 

example, deep water platforms can represent over a billion US dollar capital 

investment before any revenues are generated from the platform. In addition, 

these structures can have many people working and living on the platform at any 

time. There have been numerous cases where damage of these platforms has 

resulted in the loss of life of all those on the platform as can be seen in figure 1. 

                      

    Figure 1: BP Offshore Drilling Platform in Gulf of Mexico damaged by Hurricane Dennis. 

           There are many damage detection techniques where used in the recent 

years, but many of these existing methods neglect the important effects of the 

Environmental and/or operational variations(EOVs) on the structures. Data 

normalisation procedure, as it is applied to SHM, is defined as the operation that 

separates the changes of the features derived from sensors that caused by 

damages from those caused from EOVs. Many methods where used to apply 

data normalisation will be discussed later while in this paper I will be focusing on 

non-linear co-integration approach where evidence of the damage is not 
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projected out. Recently this method has been developed, based on a concept 

derived from the world of econometrics. Cointegration is used to remove 

common trends in SHM data, the purpose is to detect a feature that can provide 

information on the health of the structure. 
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Chapter 2: Structural Health Monitoring  

          This chapter present a general review on Structural Health Monitoring (SHM). 

To do this, a brief introduction on SHM is presented, description of damage 

detection, damage definition, damage detection approaches, review for 

damage detection techniques where recently used and finally environmental 

effects on SHM are described. 

2.1 Introduction: 

           The health of the structure in terms of failure is determined by structural 

health monitoring, and in this project an offshore platform. It is known that the 

failure of such structure, cause a very high loss in economics, where the failure of 

offshore structures will lead to the interruption of the operations done on platform 

(drilling, production, transportation, etc.). SHM is used in order to reduce the cost 

invented for the inspection of such structures. Also, the use of SHM sensors will help 

understand the state of a structure after a certain damage. To determine whether 

a structure was safe minutes after a natural disaster occurred would be very 

beneficial not only to the structure but also could save lives, in case of offshore 

structures as an example. The localization and severity of the damage occurred 

on a structure is determined by measuring the model parameters like 

acceleration, curvature, temperature and natural frequencies. This method is 

based on historical cases measurements such as average failure and damage 

rates of a similar structures. 
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                               Figure 2: Structural Health Monitoring System 

         Therefore, there is a vital need to monitor the health of the offshore structures 

and the reliability. However, the local tests occurred on offshore structures are 

very costly due to the size of the structure, difficulties of replacement of sensor 

and the depth of the structure. These damages usually effects the dynamic 

response of the structure, therefore structural health monitoring is introduced and 

the dynamic responses are measured through different techniques. Researchers 

focused on many ways to identify damage location or damage intensity on the 

element structure. One of the most used method is finite element model, applying 

it on different civil infrastructures. This method is used as an optimization method 

which aims to correlate the measured modal properties extracted from sensors 

and the outputs from the finite element model in order to minimize the error 

between them. [4] 

2.2 Loads Acting on Offshore Platforms  

         Many loads usually acts on offshore platforms that affect the dynamic 

response of the structure. The loads that may be applied on the platform are 

necessary to be studied for the design of the structure. These loads can be 

classified into several categories such as permanent loads (dead), operating 
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loads (live), environmental loads, construction – installation loads and accidental 

loads.  

          Starting with permanent loads are the loads including the weight of the 

structure in air, weight of equipment or structures permanently mounted on the 

platform, and the hydrostatic forces on the various members below the waterline. 

While operating loads, the live loads, arise from the operations such as the weight 

of all non-permanent equipment (e.g. workover rig), consumable supplies, and 

liquids, ori t can be forces generated during operations, e.g. drilling, vessel 

mooring, helicopter-landing and crane operation. 

           Environmental issues are very important in offshore structures that plays an 

major role in influencing the structure and can lead to the damage of it. The 

environmental loads can be classified into wind, waves, current tides, 

earthquakes, tempreture, ice, sea bed movement, and marine growth. Figure 3 

shows some examples of the damage of the offshore platforms due to 

environmental loads. [5] 
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                           Figure 3: Examples of environmental loads acting on offshore structures 

2.3 Damage Detection  

2.2.1 Damages 

There are several definitions for “damage” in structures depending on the case. 

Pawar [6] defines damage as “a deficiency or deterioration in the strength of a 

structure, caused by external loads, environmental conditions, or human errors”. 

Worden [7] defines damage as “when the structure is no longer operating in it 

sideal condition but can still function satisfactorily”. Farrar [8] defines damage as 

“changes to the material and/or geometric properties of these systems, including 

changes to the boundary conditions and system connectivity, which adversely 

affect the system’s performance”. Crossetal. [9] consider any gradual or sudden 

change in structure as a damage. And generally speaking, damage can be 

defined as “changes introduced into a system that adversely affect its current or 

future performance”. The term damage does not necessarily imply a total loss of 
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system functionality, but rather that the system is no longer operating in its optimal 

manner. Physically, damages may be visible as a crack, de-lamination, de-

bonding, reduction in thickness/cross section, or exfoliation. 

          The majority of offshore oil-production platforms are jacket type, welded, 

steel tubular, space frames. In these structures periodic inspections are 

mandatory, because offshore structures during their service life continually 

accumulate damage as a result of the action of various environmental forces 

and operating conditions. For instance fatigue and corrosion damage, collisions 

with supply ships and objects dropped from the platform decks, member 

overload during intense storms, and Installation and maintenance activities. [2]  

2.2.2 Damage Detection Approach 

           According to Pawar [6], damage detection is defined as “the identification 

of existence of an anomalous condition in a system”. Most damage detection 

and localization methods that have been proposed are based upon comparing 

signals damaged and undamaged structures [7]. Detection can be defined 

passing through these main 4 steps that are subdevided also to other procedures 

[13]: 

1. Operational evaluation,  

2. Data acquisition,  

3. Feature selection 

4. Statistical modelling for feature discrimination. 

 Operational evaluation 

Mainly, operational evaluation can be sammurized by answering 4 questions: 

A) Economical and safety benefits of applying SHM? 
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B) Type of damage, or multiple damages available, which cases are most 

concern? 

C)The operational and environmental conditions while structure is monitored? 

D)Limitations on acquiring data of the operational environment? 

By setting these questions it will be clear how the system will be monitored. 

Data acquisition 

The data acquisition process is related to the selection of the excitation method, 

types, number and location of sensors used, and type of the data transmitted. In 

damage identification techniques, data normalisation is considered an important 

issue due to the measurement of the data under several environmental and 

operational conditions. Data normalisation is the process used in SHM to separate 

the data extracted from the sensors that are affected from the EOVs from those 

affected by damage occurred on structures. The main procedure used is to 

normalize the measured outputs from the measured inputs data, it will be 

discussed briefly in the next chapter. Data cleansing is a selective process used 

to check if the data can pass or it must be rejected from this feature selection 

process. The data cleansing process is dependent on the commands selected by 

individuals based on their knowledge and directly connected to data acquisition. 

Feature selection 

Feature selection technique is used for the data condensation and selection of 

the feature that allows to distinguish between damaged and undamaged 

structures. Most of the damage detection studies that were done previously on 

cites, offshore oil platforms examine changes in basic modal properties 

(resonance frequencies and mode shapes) that are extracted from measured 

acceleration response time histories. In many cases numerical modelling 

approaches were used, comparing the changes in the predicted modal 

properties simulated within the finite element approach and the estimated modal 
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properties from measured system response. In theory, this approach allows one to 

detect, locate and estimate the extent of damage.  

Statistical modelling for feature discrimination 

Statistical model development is used with the implementation of the algorithms 

that are used to check the damage state of the structure based on the extracted 

data feature. These algorithms used in statistical model development are 

classified into two categories, supervised and unsupervised learning machines. 

Supervised learning machine, is illustrated by the availability of the data from both 

damaged and undamaged structure, group classification and regression analysis 

are categories of supervised learning algorithms. However, when the algorithms 

are applied to data that does not contain examples from damage structure, this 

referred to as unsupervised learning. Outlier or novelty detection algorithms 

applied in unsupervised learning applications. [25] 

 2.2.3 Comprehensive Review of Damage Identification Methods 

        A comprehensive review on the modal parameter-based damage 

identification methods of structures is necessary and presented in this section. 

Damage identification methods are widely used by engineers to predict the 

failure of the structure that may cause catastrophic, economic, and loss of lives 

especially in offshore platforms. The main idea behind the vibration-based 

damage identification is the influence on the structure in the physical properties 

(mass, damping, and stiffness) due to environmental and operational 

parameters. Damage can be detected by analyzing the changes in the vibration 

features of the structure. The vibration- based damage detection methods can 

be divided into four categories: natural frequency-based methods, mode shape-

based methods, curvature mode shape-based methods, and methods using 

both mode shapes and frequencies. 
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       Natural frequency-based methods are effective because it requires just a few 

points on the structure that are measured compared to other methods. The 

change of the natural frequency is important for damage detection due to some 

parameters that influence the structure. Damage location and severity are 

determined by the natural frequencies changes. Usually, the determination of 

damage is done using the forward problem or the inverse problem. In our study, 

the natural frequency-based method is used and discussed briefly for damage 

detection and localization. However, this method still has several common 

limitations. One of the main limitations is that this method is applicable only for 

beam-structures with small cracks, and modelling of crack as rotational spring 

based in fracture mechanics will lose its credibility in high frequency modes or 

deep crack cases. 

         Mode shape-based methods is more effective compared to the natural 

frequency-based methods because it is more sensitive to local damages and 

more useful in case of multiple damages. However, it is less sensitive to the 

environmental parameters such as temperature, that is difficult to be measured. 

Furthermore, mode shape-based method requires a series of sensors and mode 

shape measurements are more prone to noise contamination compared to 

natural frequency-based method. 

         Mode shape-method, based on many researches, is known that it is not 

sensitive to small damages. Curvature/strain mode shape-based method is used 

instead to enhance the sensitivity for smaller damage identification. This method 

is classified into two categories, the traditional modal curvature change method 

that is summarized by the localization of the damage by the difference of 

curvature mode shapes from intact and damaged structure, and the modern 

signal processing methods using modal curvature by measuring the difference of 

strain mode shape of different points. 
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          To locate and size precisely the damage occurred on the structure other 

methods are used based on modal parameters by measuring the natural 

frequencies and mode shapes of the damaged structure. [12] 
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Chapter 3: Data Normalisation 

3.1 Introduction  

       As mentioned before, many structural damage techniques have been used 

for monitoring the health of the structures. Some of these techniques are based 

on the change of the dynamic response recorded due to external loads exerted. 

However, many of these structures are exposed to environmental and 

operational conditions apart from the forces that leads to the damage of the 

structure. Even though, such EOVs can significantly affect the structure in terms of 

its dynamic response such as acceleration and natural frequencies. For a better 

development of SHM techniques where the EOVs are result in changing the 

dynamic response as function of time-varying, data normalisation must be 

introduced. 

         Data normalisation, is a process applied to SHM data extracted from the 

sensors separating the data changes caused by EOVs from those changes due 

to the damage. This chapter will focus on the data normalisation, its approaches, 

with a brief explanation of an approach to data normalisation that is used in this 

paper, non-linear co-integration. 

       In some cases, data normalisation can be achieved without measuring the 

parameters causes the changes, it is applicable when the damage produces the 

changes in the dynamic response data are in some way orthogonal to changes 

produced by EOVs. However, it is difficult to know the influence of the EOVs on 

the structure when there is available initially only the data of the undamaged 

conditions, as most cases in SHM. [13] 
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3.2 Approaches to Data Normalisation 

 This chapter presents six approaches that provides the way of separating the 

changes of the measured dynamic response caused by EOVs from the changes 

caused by damages. [13] 

1. Experimental approaches 

2. Regression Modelling 

3. Look-up Tables 

4. Machine Learning approaches 

5. Intelligent feature selection 

6. Co-integration 

           Starting with the experimental approaches, many environmental 

conditions can affect the model structure response due to hydrodynamic 

loadings, varying temperature, varying wind conditions, humidity and 

moisture. Usually, all structures are subjected to more than one EOV and the 

influence of the environmental conditions must be assessed. Many structures 

were studied carefully, and measurements were extracted from different types 

of sensors to check the changes of the dynamic response due to the variability 

of the environmental conditions. The main reason behind this is to apply the 

data normalisation and minimize the effect of EOVs on the dynamic response 

of the structure by separating the experimental data of the damage 

conditions from the environmental one.  

          When all the environmental and operational conditions measurements 

are available, many methods can be used to predict the influence of the 

measured parameters on the dynamics response of the model. Firstly, 

regression technique is used to link the environmental and operational 

parameters with the associated damage-features. Linear regression is 

considered the simplest method that can be used to predict the relationship 

between the measured environmental and operational parameters, ti (e.g. 
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loads, temperature) on a vector of damage-sensitive features, {f}i. This model 

is described by linear function of the form: 

                                            {f}i={a} + {b}ti                                                                (1) 

           This equation is used for one feature vectors and the corresponding EOV 

parameters, and the coefficient {a} and {b} can be estimated through a linear 

least-squares process. While this equation can be extended to the more 

general polynomial relationship. The model can increase in complexity, more 

coefficients are needed and therefore more data must be collected in order 

to extract the coefficients accurately.  

         When all the measurements of the influence of EOVs on the damage-

sensitive features are not available, look-up tables may be considered a 

simple approach to data normalisation to monitor the structure under EOVs 

when it is undamaged and create a table of feature vectors that were 

acquired under these varying conditions. When data is available from a 

damage condition structure, the damage-feature vector is extracted from 

these new data is compared to the one in the look-up tables that is closest to 

it in terms of Euclidean distance metric. Figure 3 illustrates the look-up table 

approach to data normalisation where the test data feature vector acquired 

under unknown EOV is found to be closest to the undamaged data acquired 

under EOV T3.  
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                              Figure 4: Look-up table approach to data normalisation 

         Machine learning algorithms can be used for data normalisation, and the 

algorithms are implemented in a manner that allows for direct comparison of their 

relative data normalisation performance. Firstly, each algorithm is trained using 

the same feature vectors extracted from time series data acquired from 

undamaged structure. Secondly, in the test phase all the machine learning 

algorithms will transform each input feature vector into a scalar feature referred 

to as a damage index DI, and then perform the damage classification using a 

novelty detection approach applied to the damage index. If adequate data 

normalisation has been achieved, the DIs should be nearly invariant when 

calculated from feature vectors corresponding to the undamaged condition 

when EOVs are present. Additionally, robust data normalisation will allow the DIs 

to be classified as outliers when the features correspond to the damaged 

condition even with EOV present. The four main machine learning algorithms that 

are used for data normalisation are listed below. 

a) Auto-Associative Neural Networks 

b) Factor Analysis 

c) Mahalanobis Squared-Distance (MSD) 

d) Singular Value Decomposition 

        Intelligent feature selection is summarized by selecting the damage-sensitive 

features that are insensitive to the EOVs while retaining their sensitivity to damage. 

The measured data of the features related to the damaged state can be used 

as an index to the damage presence compared to the undamaged one. [13] 

Finally, Co-integration is the method used in our study for data normalisation and 

is discussed briefly in the following chapters. 

           

 



26 
 

3.3 Non-Linear Co-integration 

3.3.1 Definition 

         Co-integration has become an important property in time-series analysis. 

Co-integration is used usually in econometrics, useful for non-stationary data in 

long term-scales. This method is considered very important in data normalisation 

and especially in SHM since EOVs are often applied on a structure in a long time-

scale more than the dynamic response due to damage. 

         Co-integration is a non-stationary time series property. A time series is 

considered co-integrated only when the combination of two or more time series 

that are non-stationary is stationary. Time series in econometrics is usually linear, 

however, passing to engineering structures the time series become more complex 

and non-linear. Moreover, the EOVs occurred on a structure are known to be non-

linear with respect to the dynamic response sensitive to damage. In this case, the 

linear combination of the time series is no longer useful, and therefore non-linear 

co-integration is introduced. This section provides a brief introduction to non-linear 

co-integration used in engineering structures as a damage detection technique. 

[16][17] 

         In general, in econometrics, it is considered more interesting to know if a 

relationship among different time series exists, and to estimate its parameters. 

However, for SHM purposes, engineers are interested to find a relationship 

between dynamic variables of a system, which is sensitive to damage presence 

but is not disturbed by environmental and operational variations; the residual error 

of the relationship can be used as health indicator [16].  In this project, the main 

idea is passing from the non-linear co-integration to non-linear multiple regression 

on a time series generating a residual that can be used later as a damage 

indicator. 
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         For a better understanding of the non-linear co-integration, integration order 

phenomena must be introduced. 

 3.3.1 Integration Order 

         Time series a(t) that is non-stationary is said to be integrated of order x (i.e. 

I(x)), when the x-th difference is stationary. For instance, a time series a(t) 

integrated of order 1 (e.g. a(t)~I(1)), the difference is only once to get a stationary 

trend, which will be later I(0). While, two or more time series are co0integrated 

when the combination of these time series is stationary. More specifically, an 

example is introduced to clarify the process, given {a}i, a non-stationary time 

series, they are co-integrated when the vector {β} is introduced where ui is 

stationary, the form is: 

                                                   ui={β}T{a}I                                                                    (2) 

The vector {β} is called the cointegrating vector. This case is used in linear 

combination while the case where the non-linear stationary combination exists 

will be addressed later. At this point, in order to apply the concepts just analyzed, 

ADF test is introduced in order to apply the integration of a time series. [16][17] 

3.3.2 Augmented Dickey Fuller (ADF) Test 

          The first step in co-integration is checking the integration order of the 

variables needed in the analysis. The process is achieved in econometrics by 

checking each for a corresponding unit root, if the unit root is present in the 

equation of the time series, then the time series is stationary. This unit root used is 

called ADF test and the steps are described in this section. 

         Augmented dickey fuller (ADF) test is a statistical test used to determine if a 

time series is stationary or not and, in this last case, how many times one must 

difference a time series to make it stationary [16]. The ADF test used to fit each 

variable to a model type of the following form: 
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                                                 ∆𝑦𝑖 = 𝜌𝑦𝑖−1 + ∑ 𝑏𝑗∆𝑦𝑖−𝑗 + 𝜀𝑖
𝜌−1
𝑗−1                                      (3) 

Where the difference operator Is defined as yi−j = yi−j − yi−j−1. A suitable number 

of lags p should be included to ensure that εi becomes a white noise process 

(Anderson, 1971). In Equation (3.3.2.1), the value ρ determines the stationarity of 

the model, if this value is close to the null value the process will be non-stationary 

and integrated of order 1, I(1).  this form, the stability (and therefore stationarity) 

of the model in Equation (3) is determined by the value of ρ; if it is statistically close 

to zero the process will be nonstationary and integrated order 1, I(1). The concept 

behind the ADF test is to check the null of ρ =0 by comparing the statistic of the 

test according to this formula: 

                                                   𝑡𝜌 =
𝜌′

𝜎𝜌
                                                                           (4) 

Where ρ’ is the least-squares estimate of ρ and 𝜎𝜌 is the variance of the 

parameter, with the critical values that can be found in Fuller (1996) [19], in much 

the same way one would when conducting a t-test. The hypothesis is can be 

rejected or accepted, it is rejected when tρ < tα. However the hypothesis is 

accepted, if the time series has a unit root and integrated of the first order I(1). 

When the hypothesis is accepted yi is I(2) non-stationary sequence, while If the 

when it is rejected, the test should be repeated for yi. This process is continued  

until the integrated order of the time series is found. Other hypotheses and tests 

are necessary in case of a complex model that include shifts or deterministic. [20] 

[21] 

3.3.3 Multiple Regression 

          To define the relationship among several variables, Regression is a process 

that is used for this purpose. The relation between the dependent and one or 

more independent variables are analyzed using many techniques in regression 

analysis. Usually in the system the flaws are categorized into inputs and outputs, 
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the inputs are considered as dependent variables, while the independent 

variables (predictors) are the outputs that have been studied previously. 

           In order to estimate the independent variables corresponding to only one 

dependent variable, multiple regression must be taken into consideration. 

Multiple regression is a technique used to evaluate the predictors from the 

response variables, for instance supposed that the predictor variable is {ai} and 

the dependent variable is {bi}. Furthermore, this technique can check the 

relationship between both variables and dependency of {bi} on {ai} [16]. 

           Damage indicator is necessary for data normalisation approach, that is 

considered as error residual, can be detected by finding out the difference 

between the predicted data and the measured ones. Multiple regression is used 

to predict the predictors according to the measured data, in order to achieve 

the co-integration approach by estimating the residuals between both data  

3.3.3.1 Support Vector Machine 

           Support vector machine is a very successful approach to supervised 

learning, usually applied for classification problems and regression. A set of input 

vectors (e.g. {𝑥𝑖}𝑖=1
𝑁 ) are given in supervised learning with corresponding targets 

(e.g. {𝑡𝑖}𝑖=1
𝑁 ) that can be real values in regression or class labels in classification. 

The main objective is to make accurate predictions of t for previously hidden 

values of x, to build a model from the dependency of the targets on the input 

values. For real data, the it is necessary to avoid over-fitting of the training set due 

to the presence of noise in regression and class overlap in classification. 

Support vector Machine makes predictions based on a function summarized by 

this form:  

                                     𝑦(𝑥) = ∑ 𝑤𝑖𝐾(𝑥, 𝑥𝑖)
𝑁
𝑖=1 + 𝑤0                                                       (5)                   
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where {wi} are the weights and K(x,xi) is a kernel function. The main target function 

in SVM is to minimize the number of errors done on the training set and maximizing 

the “margin” between the classes in case of classification (in feature space 

defined as kernel). The advantages behind SVM is that avoiding over-fitting leads 

to generalization, and results in sparse model depends only on subset of kernel 

functions. [18] 

         In case of regression, minimizing the functional risk can be done using several 

types of risk function such as the least-squares empirical risk that works when the 

errors have a Gaussian distribution, or risk error in other cases. Risk is assumed to 

be ε-insensitive function, 

                                 𝑅ⅇ𝑚𝑝
𝜀 ({𝑤}) =

1

𝑁
∑ |𝑡𝑖 − 𝑦(𝑥)|ε

𝑁

𝑖=1
                                                        (6) 

Where, 

                               |𝑡𝑖 − 𝑦(𝑥)|ε = {
|𝑡𝑖 − 𝑦(𝑥)| , 𝑖𝑓 |𝑡𝑖 − 𝑦(𝑥)| >  ε

ε, else
}                                  (7) 

Minimizing 𝑅ⅇ𝑚𝑝
𝜀  with respect to the weight {w} is linked to the minimization of the 

function of the slack variables that replaces the inequality constraints with 

equality constraints pointed out. The support vectors are later defined as the 

limited numbers that will be different from zero. [17] 

           Support vector machine suffers from different disadvantages: 

• Not probabilistic predictions and estimation of SVM outputs in regression. 

• SVM requires numbers of kernel functions which grows with the size of 

training set 

• Necessary the estimation of the error, ε-insensitive function in case of 

regression, which considered a waste of data and computation. 

• Kernel function K(x,xi) must satisfy Mercer’s condition.  
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                     Figure 5: One-dimensional linear regression with epsilon intensive band 

 Figure 6 shows similar situation but for non-linear regression. 

                                      

                     Figure 6: One-dimensional non-linear regression with epsilon intensive band 
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3.3.3.2 Relevance Vector Machine 

         Relevance vector machine (RVM) is another kernel model approach that is 

similar to SVM in terms of the functional form and based on probabilistic sparsity. 

In this method, a Bayesian approach is adopted, where hyperparameters are 

introduced, one corresponding to each weight, whose most values are estimated 

from the data. RVM is capable for generalisation compared to SVM and it requires 

fewer kernel functions. Furthermore, RVM does not suffer from the limitations that 

SVM suffers from. 

         Given an example with data set of inputs and targets, {xi} and {ti} 

respectively, by following the standard formulation we assume that 𝑝(𝑡|𝑥) is 

Gaussian 𝑁(𝑡|𝑦, 𝑥′, 𝜎2). As defined previously in equation (5), the x is modelled by 

y(x). the likelihood of the dataset is written as:  

                           𝑝(𝑡|𝑤, 𝜎2) = (2𝛱𝜎2)−𝑁
2⁄ exp {−

1

2𝜎2
‖𝑡 − 𝜙𝑤‖2},                                   (8) 

where t is the N target, {w} is weight and 𝜙 is a matrix of dimension N*(n+1) that is 

called the “design matrix” with 𝜙𝑛𝑚 = 𝑘(𝑥𝑛, 𝑥𝑚−1) and 𝜙𝑛1 = 1. The estimation of w 

and 𝜎2will lead to overfitting, so we define a Gaussian prior over the weights: 

                                         𝑝(𝑤|𝛼) = ∏ 𝑁(𝑤𝑖|0, 𝛼𝑖
−1)

𝑁

𝑖=0
,                                                 (9) 

with 𝛼 a vector of N+1 hyperparameters. Therefore, there is a hyperparameter 

corresponding for each weight and is the key feature of the model and is 

responsible for its sparsity properties. Then, the prior over the weight is given by 

Bayes’s rule: 

              𝑝({𝑤}|{𝑡}, {𝛼}, 𝜎2) = (2𝜋)−
(𝑁+1)

2 |𝛴|−
1

2exp {
−1

2
({𝑤} − {𝜇})𝑇𝛴−1({𝑤} − {𝜇})},       (10) 

where,  

                                                           𝛴 = (𝜙𝐵𝜙𝑇 + 𝐴)−1                                             (11) 
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                                                           {𝜇} = 𝛴𝜙𝑇𝐵{𝑡}                                                    (12) 

        A is matrix of N 𝛼 on the diagonal and B=𝜎−2𝐼𝑁. Moreover, 𝜎2 is 

hyperparameter that must be estimated as well from dataset. By integrating the 

weights out, the evidence for the hyperparameters can be achieved: 

     𝑝({𝑡}|{𝛼}, 𝜎2) = (2𝜋)−
𝑁

2 |𝐵−1 + 𝜙𝐴−1𝜙𝑇|−
1

2exp {
−1

2
{𝑡}𝑇(𝐵−1 + 𝜙𝐴−1𝜙𝑇)−1{𝑡}}           (13) 

        The predictors are sparse and contain few non-zero wi parameters while the 

others are set to zero during the learning process. Therefore, this approach is 

extremely effective at discerning the basis functions which are relevant for 

making better predictions. [17][18] 
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Chapter 4: Case Study: Jacket Offshore Structure 

4.1 Introduction  

         After the explanation of the methodology of non-linear co-integration, a 

case study is presented to demonstrate this method. As described in the previous 

chapter, this method is applicable for an offshore platform structure designed 

with different normal conditions and different damage conditions. The normal 

conditions related to the storage of oil tank on the deck of the platform, while the 

damage conditions are presented by a force applied on the structure and the 

damage occurs on two different elements by reducing the stiffness of the 

material. The system undergoes the variation of normal conditions as a function 

of time, then the damage is introduced later. 

4.2 ANSYS: Finite Element  

4.2.1 Modeling Procedure 

Using the software ANSYS the geometry of the structure and the element type are 

selected together. In a large structure, shell elements are used where the 

thickness is negligible with respect to the width and height. For the analysis of the 

structure, meshing is required after selecting material type, element type and the 

mesh type. Therefore, the modelling procedure consist of seven steps presented 

in the figure below. 



35 
 

                                

                                         Figure 7: Modeling Procedure 

4.2.1 Model Geometry  

The geometrical model developed has the following configuration:   

Deck: The deck was modeled with a net of beam elements and quadrilateral 

plate elements. It is considered as shell with each side length of 13 meters.  

Foundation: the foundation is 30 meters long under the soil consisting on the four  

legs which support the platform.  

Connection: a small connection having a height of 2.5 meters connects the  

foundation with the first steel layer.   

Elevation: the elevations from the deck till the first steel layer are 50 meters, 38  

meters, 30 meters, 21.7 meters, 12.5 meters and finally the connection of 2.5-meter 

height. [23] [24] 
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          The design example of the structure and the assumptions where taken from 

[23] and [24]. Based on the model properties i.e.., degree of freedom, nodes, 

beams, pipes, spring, dashpots, and all the details, following the modeling 

procedure listed above, the finite element model of the offshore platform is 

modeled.  

4.3 Structure Analysis  

The static and dynamic analysis of the finite element are performed on the 

software and the results are reported separately. 

4.3.1 Static Analysis  

The static analysis is performed on the structure choosing two elements of the 

structure and the damage occurs by reducing the stiffness of the material. The 

reduction of the stiffness is illustrated by four values, 25%, 50%, 75% and 100% which 

is considered as total removal of the element. Usually, the mass on the deck of 

the offshore platform increases as a function of storage of oil tanks. In our case 

study, the mass of the deck is 135 tons when the tank is empty and considered as 

uniformly distributed loads on the deck with 800 kg/m2. Due to the production of 

oil, the level of oil storage may vary. The normal conditions in this case were 21 

normal conditions between 800kg/m2 when the tank is considered empty and 

900 kg/m2 when the tank is full of an increment of 5 kg/m2. 

       In the static analysis, the model is run for the first operational condition when 

the tank is totally empty with a load of 800 kg/m2 and without any external forces 

that can affect the structure. The deformed and undeformed shape of the 

structure is represented in figure 8. 
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                            Figure 8: Deformed and undeformed shape in static conditions 

4.3.2 Modal Analysis  

           The modal analysis is performed in the next step on finite element model. In 

our case, due to the variation of the oil tank storage due to the production and 

transportation of the fluid, all the dynamic response of the structure must be 

extracted that is useful to our study. In the modal analysis, the natural frequencies 

were extracted for different normal conditions and different damage conditions. 

As we mentioned before, the normal conditions are related to the different 

distributed loads on the deck of the platform due to the storage of the tank 

between empty and full storage. While the damage conditions are reducing the 

stiffness of the element after introducing a force of 12000 N on node 709. The 

Tables 1 and 2 presents both normal conditions(NC) and damage conditions(DC) 

respectively. 
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Normal 

Conditions 

Distributed loads 

[kg/m2] 

NC1 800 

NC2 805 

NC3 810 

NC4 815 

NC5 820 

NC6 825 

NC7 830 

NC8 835 

NC9 840 

NC10 845 

NC11 850 

NC12 855 

NC13 860 

NC14 865 

NC15 870 

NC16 875 

NC17 880 

NC18 885 

NC19 890 

NC20 895 

NC21 900 

                                                              Table 1: Normal Conditions 

Damage 

Conditions 

Stiffness 

Reduction [%] 

DC1 25 

DC2 50 

DC3 75 

                                                              Table 2: Damage Conditions 

         All the steps were done via ANSYS software and the natural frequencies were 

extracted for all the normal conditions mentioned above with and without 

damage conditions. The first four frequencies and the model shape were 

obtained for all the conditions. 
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         The natural frequencies for the first normal condition while the oil tank is 

empty and the model shape is reported below. 

                 NC1 800kg/m2        INDEX OF DATA SETS ON RESULTS FILE 

                 SET   TIME/FREQ    LOAD STEP   SUBSTEP  CUMULATIVE 

                 1  1.0911             1         1         1                                                                                             

                 2  1.0911             1         2         2                                                                                               

                 3  1.3378             1         3         3                                                                                               

                 4  1.9481             1         4         4                                                                                             

                               Table 3: Natural Frequencies for NC1 

         All the model shape of the structure changes corresponding to the natural 

frequencies. The deformed and undeformed model for each frequency are 

presented below. 

                        

                                    Figure 9: First Deformed and undeformed model shape for NC1 
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                             Figure 10: Second Deformed and undeformed model shape for NC1 

                      

                            Figure 11: Third Deformed and undeformed model shape for NC1 



41 
 

                     

                            Figure 12: fourth Deformed and undeformed model shape for NC1 

As listed above, the analysis were done for all the conditions but only the first 

normal condition was presented above. Similarly, the model analysis for the 

model for all the damage conditions at different normal operational conditions 

were done as well. The natural frequencies for the first damage condition while 

the oil tank is empty and the model shape are reported in table 4. 

               DC1 E=1.8E+11Pa  INDEX OF DATA SETS ON RESULTS FILE  ***** 

                 SET   TIME/FREQ    LOAD STEP   SUBSTEP  CUMULATIVE 

                  1  1.0910             1         1         1                   

                  2  1.0911             1         2         2                   

                  3  1.3378             1         3         3                   

                  4  1.9479             1         4         4  

                                  Table 4: Natural Frequencies for DC1   

All the model shape of the structure changes corresponding to the natural 

frequencies. The deformed and undeformed model for each frequency with 

damage conditions are presented below. 



42 
 

                    

                                 Figure 13: first Deformed and undeformed model shape for DC1 

                   

                             Figure 14: Second Deformed and undeformed model shape for DC1 
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                             Figure 15: Third Deformed and undeformed model shape for DC1 

                    

                         Figure 16: Fourth Deformed and undeformed model shape for DC1 
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Chapter 5: Co-Integration: Application and Results 

5.1 Study Case Explanation 

         As Described in chapter 4, the operational and normal conditions applied 

on the deck of the offshore platform as distributed loads varies between 800 

kg/m2 and 900 kg/m2 for empty and full tank respectively. An increment of 5 

kg/m2 was taken to study the response of the structure with different oil storage 

level. These 21 conditions were implemented as an example of oil storage during 

a certain interval of time where production and delivering of produced oil are 

occurring. The samples were taken for 542 observations and level of storage was 

pointed down. In some observations fluctuations of data were obvious due to the 

low rate of production and high demand of transferring stored oil. The 

implemented example of oil tank storage as distributed loads in kg/m2 as a 

function of 542 observations is presented below. 

 

 

               Figure 17: Variation of Oil Tank Storage [kg/m2] as Function of 542 Observations 

 

         Furthermore, four natural frequencies extracted from the modal analysis of 

the structure on ANSYS was set according to each corresponding normal 

condition without a reduction of stiffness for the first 457 observations. At the 

observation 458 damage was exerted, so different four natural frequencies with 
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reduction of stiffness of 25%, 50% and 75% was inserted for each corresponding 

normal condition from the 21 samples. 

         Finally, 3 examples were implemented for the same element 1 with different 

levels of damage 25%,50% and 75%. Moreover, 2 examples for element 2 for 

studying the sensitivity analysis with reduction of stiffness 25% and 20%. 

         After the distribution of the data for all observations, by using the MATLAB a 

code is generated and the non-linear co-integration is applied to distinguish the 

normal conditions from the damage conditions of offshore platform structure. Two 

approaches were applied on MATLAB, The RVM regression and the SVM 

regression. The code consisted of different steps initiated by checking the ADF 

test, SVM & RVM functions, small rate of Gaussian noise has also been added, and 

finally the risk-error and the residual model was plotted out. The process was 

repeated many times for different normal conditions and damage conditions, 

also for different training data to find the best solution. All the results are presented 

in the following part. 

5.2 Final Results: Plots and Interpretations 

After applying both techniques SVM and RVM by MATLAB code, the results of our 

observations with different operational conditions applied as distributed loads 

due to tank storage between 800 kg/m2 when its empty and 900 kg/m2 when its 

full, and with different damage conditions for different elements represented by 

reduction of stiffness with 25%, 50%, and 75% are presented in this chapter. 

However, the sensitivity of both methods on different damage conditions and 

different damage locations will be discussed as well. 

5.2.1 ADF Test Results 

ADF test was performed on four natural frequencies, and by referring to the results 

obtained by MATLAB it is possible to state that these frequencies are nonstationary 

at confidence level of 95%. As a result, all the four frequencies have an integration 
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order equal to 1 and their first differences are stationary equal to 0, and these 

values where reached by repeating the test after having the difference operator. 

Results of the ADF test are represented below on the four different frequencies of 

the structure. 

 

Time Series       ADF Test Integration order 

f1 Non-stationary f1   ~  I(1) 

∆f1 Stationary 

f2 Non-stationary f2   ~  I(1) 

∆f2 Stationary 

f3 Non-stationary f3   ~  I(1) 

∆f3 Stationary 

f4 Non-stationary f4   ~  I(1) 

∆f4 Stationary 

                     Table 5: Results of ADF test on the first four frequencies of the Offshore Platform 

 

5.2.2 SVM & RVM Plots 

       The Application of the cointegration technique is represented with the two-

regression method explained previously: SVM & RVM. The trend of the four 

frequencies exampled from the offshore structure are extracted for different 

damage conditions where these frequencies where obtained along 542 

observations. Then, the plot of the residual ε was created. The training data were 

taken in the nonlinear behavior of the natural frequencies to widen the scattering 

points between 80 and 145. After testing all the frequencies, the results were 
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obtained for the fourth frequency because it was considered more sensitive to 

damage. From ADF test, it can be stated that the residuals ε in all the cases are 

stationary. Before starting with the application, it is important to mention that the 

difference between the predicted data and the real one is considered the 

residual error. When the residual error exceeds the 3 times standard deviation of 

the measured data, it means the damage starts to occur. 

     Firstly, both regression methods where applied on Element 1 far a little bit from 

the 12000 N force applied on the node 709. Element 1 is presented below in figure 

18. 

 

                         

                                     Figure 18: Element 1 in Offshore Platform  

 

      Both the SVM and RVM approximate the data set very well; the model residual 

series are plotted for frequency f2 which considered more sensitive when 

damage occurs and shows a small decrease. Starting with reduction of stiffness 

of 25 %, both SVM and RVM regression models are represented in figures 19 and 

20 respectively. As can be seen from figure 19, a small decrease in the residual 
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errors from the zero-mean line after introducing the damage without exceeding 

the limits. While in the RVM regression model the residual error decreases more 

than SVM until it crosses the limits.  

 

Figure 19: SVM regression model and model residual for 25% reduction of stiffness 
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Figure 20: RVM regression model and model residual for 25% reduction of stiffness 

 

     The results, in figures 21 and 22, correlated to the both SVM and RVM regression 

models at reduction of stiffness of 50%. It is significant that in both models the ε 

crosses the limits while it is clearer in the RVM model, where it is a strong evidence 

of the damage occurrence. 
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Figure 21: SVM regression model and model residual for 50% reduction of stiffness 

 

 

                Figure 22: RVM regression model and model residual for 50% reduction of stiffness 
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       The Figures 23 and 24 presents the results of the both models at reduction of 

stiffness at 75%. In both models, it is apparent that damage occurs after 

observation 458. 

 

Figure 23: SVM regression model and model residual for 75% reduction of stiffness 

 



52 
 

 

Figure 24: RVM regression model and model residual for 75% reduction of stiffness 

 

 

         Moreover, the regression method has different sensitivity for different 

damage level and different location of damage. Element 2 was tested similarly 

to check the sensitivity of the methods with 25% reduction of stiffness, then 

different damage levels were tested for the two techniques obtaining the 

minimum damage level sensitive for SVM and RVM are 20% for both. All the results 

of the regression model and residual model of frequency 4 for Element 2 are 

presented below. 

           Element 2 was chosen very close to the node 709 where the damage force 

was applied on it to check the sensitivity of the method in location of damage. 

Figure 25 shows the location of element 2 on the offshore structure. 
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Figure 25: Element 2 in Offshore Platform 

 

   The results obtained on element 2 shows a sudden decrease in residual error ε 

at small reduction of stiffness 25%. The regression models, SVM and RVM, are 

represented below in figures 26 and 27 respectively. 
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Figure 26: SVM regression model and model residual for 25% reduction of stiffness(Element 2) 
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Figure 27: RVM regression model and model residual for 25% reduction of stiffness(Element 2) 

 

Then many trials were done to reach the minimum damage level that the method 

is sensitive to, reaching reduction of stiffness at 20%. From figure 28, it is significant 

that residual error is in the minimum point before crossing the limits that clarify that 

the method as sensitive to a minimum damage level at 20%. 

 

Figure 28: SVM regression model and model residual for 20% reduction of stiffness(Element 2) 
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Figure 29: SVM regression model and model residual for 20% reduction of stiffness(Element 2) 

 

5.2.3 Interpretations of Results 

 

         From the final results and plots presented previously it’s clear that in both 

method SVM & RVM for different normal conditions the residual model varies 

along a zero-mean value while it shows an obvious change when the system is 

damaged. The residual was found to be stationary when computed for normal 

conditions, and nonstationary when the damage is present, this means that ε is 

sensitive to damage while the environmental and operational effects are 

efficiently eliminated. When the ε exceeds ±3𝜎, it can be stated that the damage 

has been occurred. Firstly, by comparing both approaches we can conclude 

that RVM for this study case can be considered more efficient and faster in 

detecting the damage for same element and same training data, for instance 
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comparing both regression models for reduction of stiffness by 50%, detection of 

damage is more clear in RVM regression approach than SVM and the residual 

model justify that. From the above results, it’s evident that as the damage in a 

function of reduction of stiffness increases, the residual model crosses the limits 

more. 

The sensitivity of the two regression approaches was checked in terms of damage 

level and damage location where another element was tested called element 2 

which is closer to the damage force with a reduction of stiffness of 25% and by 

comparing the regression models and residual models of both elements 

summarizes that damage in element 2 was clearly visible than element 1 for same 

damage level. However, to detect the sensitivity to the damage level, different 

damage levels where tested on element 2, and the 2 approaches are sensitive 

to minimum value of reduction of stiffness 20%, so any damage level less than this 

percentage will not be visible in terms of residual model and the regression 

methods will not distinguish between environmental and operational conditions, 

and the damage conditions. 
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Chapter 6: Conclusion 

           Structural health monitoring is used to monitor the health of the structure 

and determine how the structure is responding in case of failure due to several 

loads applied on the structure. All the previous techniques and efforts were 

developed, such as the vibrational based techniques, used for damage 

detection based on the natural frequency and dynamic response variations but 

are not capable to distinguish between environmental and operational condition 

and structural damage.  

          Data normalisation has not received as much attention from the research 

community as other parts of SHM processes. Furthermore, almost all the detection 

techniques are used to investigate the effect of one or two EOV parameters 

applied on a structure. Whereas, in real-world cases there are many EOV sources 

that are applied on the same structure at the same time which can influence the 

damage feature of a structure. For instance, offshore platforms are required to 

several EOVs that effect the platform such as waves, tides, equipment 

installations, and other that can be detected at the same time. The methods listed 

in chapter 3 must be extended for such situations. 

        One of the approaches to data normalisation was presented in this study, 

non-linear co-integration, and it is applied to offshore platform with a case study 

to check the ability in detecting the damage. The method was applied on a 

designed structure based on modeling and simulation using the natural 

frequency, after applying several normal conditions with four different damage 

conditions. Two regression method were used to differentiate the effect of the 

damage on the structure from the normal conditions and results were plotted for 

both methods. The results extracted from this situation, can state several 

drawbacks: 
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The sensitivity of the non-linear co-integration is demonstrated by the results of our 

case, using the variation of different damage conditions. The minimum damage 

condition detected by this method is reducing the stiffness by 20%, this result 

indicate that a smaller damage conditions cannot be detected by this method.  

Further analysis showed that the sensitivity of the method is linked to the location 

of the damaged material. the results are a strong evidence that this method is 

not sensitive to the response of all materials location selected and cannot easily 

detect the damage. 

Many parameters can affect the format of the data measured from sensors 

located on the structure in a real-case, such as temperature, where this method 

does not require these parameters. While having only one parameter (frequency) 

available, any wrong choice of the training data will lead to wrong results. 
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