
Politecnico Di Torino

Dipartimento di Elettronica e Telecomunicazioni

Corso di Laurea Magistrale in Ingegneria Elettronica

Master Degree’s Thesis

Machine Learning and Big Data Processing

in a Human-Vehicle Interaction System

Relatore: Danilo De Marchi

Correlatore: Manolo Dulva-Hina

Autore: Andrea Ortalda

Anno Accademico 2017-2018

i

ii

A chi da una vita corre al mio fianco.

E che continuerà a farlo. Sempre.

iii

iv

Abstract

Machine Learning and Big Data processing are the key points in the de-

velopment of an Advanced Driving Assistance System (ADAS) and in general

of an Autonomous or Semi-Autonomous vehicle. With the rising of the In-

ternet Of Things (IoT) every object in a road environment will be connected

and will interact with all the other components in the scenario. In this sce-

nario, intelligent vehicles will be the linking point for human beings with

the general system. Taking all these data coming from the environment, the

vehicle will acquire knowledge by means of Machine Learning techniques, in

order to improve safety, that is the final goal of the ADAS. In this project all

these considerations were taken into account: the creation of a Big Data sim-

ulated environment, the processing of these data by means of the Ontologies

creation and finally the application of 2 ML techniques thought for obstacle

identification, classification and avoidance. This thesis shows all the results

achieved, highlighting the previous system problems with the correspond-

ing solutions. As a research thesis, the contribution is related to the ADAS

and ML anatomy comparison and analysis, Ontology creation for different

scenarios and ML application for the obstacle context. This thesis was a con-

tribution to the artificial intelligence sub-system of a complete ADAS. Final

goal of the project is the real implementation of the complete Autonomous

Driving system, where the AI sub-system will play a key-role together with a

communication intra-vehicle one and a general networking based sub-system.

v

vi

Ringraziamenti

In primis desidero ringraziare la Mimma e il Taddo per tutto il supporto

che mi hanno sempre dato, aiutandomi in ogni aspetto della mia vita. Tutto

ciò che sono oggi è solo grazie a loro. Sono stati molto più che un esempio

da seguire: sono ciò che io miro a diventare nella vita. Un ringraziamento

speciale a mio fratello Bob Stefano, che mi ha sempre sostenuto, sopportato

e incitato dandomi i più preziosi consigli possibili. Grazie a Marcolino, il

mio migliore amico, perché avere un gemello diverso nel mondo è qualcosa

di unico e bellissimo. Ringrazio gli amici di una vita: The Bobons e le

Cacche per il supporto datomi in questi anni di Politecnico, specialmente

durante il mio Erasmus, perché trovare delle persone cos splendide su cui

fare affidamento per ogni cosa possibile era al di là di ogni mia più rosea

previsione. Grazie Signo, Sala, Dario, Giamma, Mora, Spita, Febio e Riki.

Ringrazio immensamente i miei nonni Maria e Mario e Angelo ed Elisa:

ogni volta che penso alla parola angelo penso a voi. Un ringraziamento

grande come il bene che voglio loro ai miei zii Laura e Maurizio, Fulvio e

Carla, Aldo e Rosy e Nino e Monica, che negli anni hanno sempre creduto

in me crescendomi come se fossi un figlio ed essendo molto più che semplici

parenti. Un grazie enorme alle Mantwins perché il legame che ci unisce

rimane qualcosa di unico. Ringrazio gli scarsi Gauzo e Savio, gli asini Mastro,

Messi, Pado e Rinaldi, i cuginetti Lollino e Davidino, il torinese acquisito

Samu, la bionda Ferre e gli amici di Laigueglia Mat, Ste, Ludo, Amber,

Liuk, Silvia e Gigio: mi avete riempito la vita e vi devo molto. Ringrazio i

vii

singori Zielo e Longano, Davide Poggi, Andrea Copia e Gian perché hanno

reso i miei anni al Politecnico incredibilmente leggeri e pieni di divertimento.

Un grazie particolare a Triple G e alla Sarjenta Canti per aver reso il mio

primo semestre a Parigi qualcosa di unico: siete parte di me nonostante

la lontananza che ci separa. Grazie alla Pink Lady Gang: Wouter, Dane

e Adrien: siete stati come dei fratelli per me e spero di rivedervi presto.

Grazie a tutti gli amici del residence Restignat e in generale a tutti coloro

che ho conosciuto durante il mio fantastico periodo parigino. Grazie al prof.

Danilo Demarchi per la pazienza e la disponibilità con cui mi ha seguito nel

mio Erasmus e nella stesura della tesi e al prof. Manolo Dulva-Hina per

tutti i risultati che abbiamo conseguito insieme. Grazie all’equipe dell’ECE

de Paris e in particolare ad Aakash e a Francesco per i consigli e i pranzi

insieme. Grazie anche al mon ami Nicholas, a cui auguro il meglio nella vita.

Grazie a Rebecca, Sha e vale, perché sono state parti importanti della mia

vita. Grazie a Martina e alla famiglia Buso per i bei momenti passati insieme

e per aver accolto Stefano come un figlio. Ve ne sono davvero grato. Ringrazio

inoltre i professori Zamboni, Piccinini, Maddaleno, Venesio e Michelone per

avermi fatto capire cosa sia la stima nel mondo accademico. Grazie anche ai

miei compagni del liceo per i 5 splendidi anni passati insieme.

Tutto questo non sarebbe stato possibile senza di voi.

viii

Contents

1 Introduction 1

1.1 Aims and Motivation . 2

1.2 Document Structure . 3

2 State Of The Art 5

2.1 ADAS . 5

2.1.1 Longitudinal Control 6

2.1.2 Lateral Control . 6

2.1.3 Driving Vigilance Monitoring System 7

2.1.4 Parking Assistance . 7

2.2 Machine Learning . 8

2.2.1 Supervised Learning 10

2.2.2 Unsupervised Learning 10

2.2.3 Reinforcement Learning 12

2.2.4 Deep Learning . 13

2.3 ADAS & Machine Learning 16

3 Methodology 19

3.1 System Structure . 19

3.2 Unity 3D . 22

ix

3.2.1 Machine Learning Agents 23

3.2.2 TensorFlow & TensorBoard 31

3.3 Ontology . 33

3.3.1 Protégé . 33

3.3.2 JAVA . 34

3.4 Python . 35

4 Initial project state 37

4.1 Unity Scenario . 37

4.2 Ontology . 38

4.3 Machine Learning . 41

5 Application & Results 43

5.1 Introduction . 43

5.2 Unity Environment . 43

5.2.1 Road System . 44

5.2.2 Moving Objects . 51

5.2.3 Static Objects . 57

5.3 General Ontology . 61

5.4 Instantiated Ontology . 62

5.4.1 General Road Object 62

5.4.2 Close Road Object . 64

5.4.3 Obstacle . 66

5.5 Supervised Learning . 70

5.5.1 Decision Tree . 71

5.5.2 K-Nearest Neighbours (KNN) 74

x

5.5.3 Random Forest . 75

5.5.4 Multilayer Perceptron (MLP) 77

5.6 Reinforcement Learning . 79

5.6.1 Issue On the Training Scene 80

5.6.2 The Reinforcement Learning scene 81

5.6.3 Results . 83

6 Conclusions 91

6.0.1 Results . 91

6.0.2 Future Works . 93

A Building the Ontology: Data & Methodology 95

B Supervised Data: format & collections 97

C Agent Observations & Training Parameters 99

C.1 Observations . 99

C.2 Training Parameters . 100

xi

xii

List of Figures

2.1 Longitudinal and lateral control example 7

2.2 Driver vigilance monitoring system 8

2.3 Parking assistance system . 9

2.4 Supervised Methods . 11

2.5 Reinforcement Learning Model 13

2.6 General Neural Network . 14

3.1 Global System Architecture 20

3.2 Unity Logo . 23

3.3 ML-Agents structure . 25

3.4 Multi-brain agents scenario . 27

3.5 TensorBoard Graphic Example 32

3.6 Ontology represented with OntoGraf [1] 35

4.1 Starting Unity Scenario . 38

4.2 Instantiated Vehicle Ontology 39

4.3 Instantiated Environment Ontology 40

4.4 Decision Tree for the event recognition 41

4.5 Reward . 42

5.1 The new global road . 44

xiii

5.2 Straight segment . 45

5.3 Curved segment . 45

5.4 Crossing segment . 46

5.5 Traffic Light System . 47

5.6 Speed signs . 48

5.7 Crossing signs . 49

5.8 Stop signs . 49

5.9 Work signs . 50

5.10 Car SE Path . 54

5.11 Car NE Path . 54

5.12 Car SO Path . 55

5.13 Car NO Path . 55

5.14 Pedestrian and generation parameters 56

5.15 Generic Rock . 58

5.16 Static Car . 58

5.17 Work On The Road . 59

5.18 Tree On The Road . 59

5.19 General Road Scheme . 60

5.20 General Objects Ontology . 61

5.21 Environment E and the entire road objects set R 63

5.22 The ontological representation of road object collection R . . . 64

5.23 Unity 3D Close Road Object scenario 65

5.24 Ontological representation of C 66

5.25 Unity 3D Obstacle scenario 68

5.26 Ontological representation of O 70

xiv

5.27 Obstacle classification using decision tree. 72

5.28 Obstacle classification using decision tree. 73

5.29 Decision Tree Score. 73

5.30 KNN predictions accuracy result 75

5.31 Random Forest Score . 76

5.32 Random Forest Feature Importance 76

5.33 MLP Classifier . 78

5.34 MLP Score . 78

5.35 Reinforcement Learning scene 82

5.36 Cumulative Reward, carSj scene 85

5.37 Entropy, carSj scene . 86

5.38 Cumulative Reward, carSj20 scene 87

5.39 Entropy, carSj20 scene . 87

5.40 Cumulative Reward, carSTime25 scene 88

5.41 Entropy, carSTime25 scene . 89

xv

xvi

List of Tables

3.1 Unity key components . 24

5.1 One Traffic Light System period (22 seconds) 47

6.1 Summary of ML results . 92

xvii

xviii

List of Algorithms

1 The ManageTrafficLight() function 53

2 The getObstacles() function . 69

3 The getLane() function . 71

xix

xx

Chapter 1

Introduction

The Advanced Driver Assistance System (ADAS) is the system thought for

helping the driver in the driving process and involved in safety improvement

in a vehicle. This system could have several depths of invasion in the driving

process, starting from the lightest way (simple warning message) and arriving

to the autonomous driving system, where ideally the driver would not act.

ADAS is composed of several sub systems, each one concerning a different

aspect of the driving experience. For this reason, the Big Data problem raised

recently in the ADAS design, considering the big impact of the Internet

of Things (IoT), whose continuous amount of data is used by the ADAS

subsystems. The term Big Data can be defined as data that becomes so

large that cannot be processed using conventional methods, because of their

characteristics: Velocity, Variety, Value, Volume and Veracity.

1

1.1 Aims and Motivation

In the last two decades, transportation systems have seen a big transforma-

tion from simple mechanical entities to advanced intelligent interconnected

platforms. This transformation gave rise to ADAS that are mainly motivated

by the following reasons:

• Safety considerations: in European Union, the year 2013 has regis-

tered 25,400 road traffic accident. Among people killed, 44.7% were car

drivers or their passengers and 21.9% were pedestrians with a signifi-

cant mortality rate gap between low, middle and high-income countries

[2].

• Ecological considerations: experiments conducted using same vehicle,

same cycle and similar traffic conditions showed a gap ranging from -

11% to 14% L/100 km of fuel consumption between 33 different drivers.

• Vehicle market considerations: the needs of consumers have evolved.

The consumers prefer functional source of transportation with options

and features to enhance the driving experience.

In the data given by the European Automobile Manifacturers Association

(ACEA), it is possible to see that the european automobile industry invests

50.1 billion in R&D annually [3], more than 5% of its total industry turnover.

Many important innovators in this field, such FCA, Ford and GM, are at the

top with respect to the others leading one. Actually, the automobile industry

was in the second place in 2014 for the Research & Development [4], with

almost 120 billions $. With the rising of Machine Learning [5] and Big Data

2

[6], Advanced Driver Assistance Systems (ADAS) have-taken a primal role

in the safety industry [7]. Example like Tesla [8] and Waymo [9] self-driven

vehicles show the future direction in this field, but at the current state of the

art a medium-range vehicle has already some ADAS components embedded

in it [10]. Considering that 95% of all accidents are caused by driver error,

such as poor anticipation, inappropriate reaction to a hazard and violation

of road traffic laws [11], driver’s behavior, emotion and distraction analysis

has acquired a starring role in the safety domain, giving to ADAS a key role

in the automotive field.

1.2 Document Structure

This document is composed of 6 sections and 3 appendices. First section is

the introduction, presenting main definitions and motivations. Second sec-

tion is dedicated to the state of the art, analysing ADAS and Machine Learn-

ing anatomies in order to link them. Third section introduces the Methodol-

ogy, describing all the software and tools used for the project development.

Fourth section shows the initial project state, highlighting weaknesses and

which part of the previous work was re-used. Section Five is the actual ap-

plication of the software presented in section three, with the results achieved,

Section six presents conclusions and future works. Finally, 3 appendices show

the data formats (A and B), while C presents learning parameters used in

the Reinforcement Learning application.

3

4

Chapter 2

State Of The Art

This chapter reports the work done in the ICACCE article [12], done at ECE

de Paris with Dr. Assia Soukane, Mr Moujahid and Prof. Hina. It presents

the ADAS and Machine Learning state of the art, showing the relations

between the two anatomies.

2.1 ADAS

Since the development of the crash test in a vehicle, safety improvement is

one of the main concerns in the automotive field [13]. In the USA, in 2017

over 37000 people died in road crash accidents [14] and around 90% of the

current ones can be attributed to human errors [15]. These errors are nor-

mally undetected dangers due to the driver distractions or low reaction time.

In such scenario, ADAS is becoming more and more important for big car

manufacturers, especially for safety and emission improvement. For these

two reasons, many manufacturers are developing an own ADAS. Driving vig-

5

ilance monitoring system, lateral/longitudinal control and parking assistance

are normally the four main components that modern ADAS [10] implement.

Machine Learning techniques and Big Data processing in an IoT scenario

are the key points in the ADAS development [16]. Main ADAS components

description is given below in the following subsections.

2.1.1 Longitudinal Control

Longitudinal control is a sub-system sensor based whose goal is to detect

danger situations in front of the car [17] and to control vehicle speed [17].

This is done thanks to sensors embedded on the front part of the car, allowing

the system to calculate distance from other vehicles and their speed. The

first version of this system was created in 1995 by Mitsubishi [18]. At the

current state of the art, mid-range cars [19] are still not implementing evasive

actions to avoid the dangers detected by this sub-system.

2.1.2 Lateral Control

Lateral control is strictly related to the Longitudinal one: it is a sub-system

that uses embedded sensor to detect danger coming from lateral lanes. Figure

2.1 shows the two areas covered by the two sub-systems. Lateral control

system is usually composed of 2 sub-systems: change-lane, whose goal is to

detect danger due to the lane changing actions, and lane-keeping, whose goal

is to keep the vehicle on the actual lane. As for the longitudinal control, this

system is not taking evasive action in order to avoid the dangers.

6

Figure 2.1: Longitudinal and lateral control example

2.1.3 Driving Vigilance Monitoring System

With the raise of the smart phones, distraction analysis is becoming one of

the key aspect in the ADAS development [20]. A complete Driving Vigi-

lance Monitoring System would be able to detect not only distraction due

to the phone usage, but also stress level in a driver and fatigue situation.

In addition, the system would also be able to detect if a driver is drunk or

not. At the current state of the art, only high-end car are implementing a

basic version of this system: Mercedes-Benz attention assist system [21] is

an example. This system is based on real-time image recognition, thanks to

cameras pointed on the driver face.

2.1.4 Parking Assistance

Parking Assistance system uses lateral and longitudinal sensors and cameras

positioned on the vehicle back part to evaluate and operate the parking

action. At the current state of the art there are already some working evasive

systems, like BMW x6 and Audi A8 that are able to park itself without the

driver actions. Mid-range car are only implementing cameras that help the

7

Figure 2.2: Driver vigilance monitoring system

driver in the action, without the artificial intelligence part. In Figure 2.3 it

is possible the see an example of the Parking Assistance system.

2.2 Machine Learning

Machine learning is based on create knowledge based on the previous events

encountered by the system [5]. This is thought to emulate the way that hu-

mans do: learning from past experience they can build knowledge and trans-

mit it. The common division for the ML world is: Reinforcement Learning,

Supervised Learning and Unsupervised Learning. Deep Learning is a partic-

ular part of the Machine Learning world: until 2014, it has been considered as

a part of Supervised Learning, but Generative Adversarial Networks (GANs)

and Variational Auto Encoders (AES) have challenged that view. At the cur-

rent state of the art, Deep Learning is commonly seen as a set of tools of

algorithms that can be used to solve significant problems in Supervised and

8

Figure 2.3: Parking assistance system

9

Unsupervised Learning. Machine Learning is a discipline strictly connected

to Data Mining [22] and Big data [6]: nowadays intelligent systems have to

manage large Volume, Velocity, Value, Veracity and Variety of Data (Big

Data 5V) and find the useful ones in between them (Data Mining) in order

to train the system in the best possible way.

2.2.1 Supervised Learning

Supervised Learning is based on knowing both data input and final output,

creating a model that can predict a response, reasonable but uncertain, to

new data that are coming. The best example is given in [5]: imagine a

medic that wants to predict if a person is going to have a heart attack in

a determined period of time: he could analyse previous patients and find

similar cases. In this way he can be able to give a reasonable prediction

(output) about the possibility of the heart attack, knowing the situation of

the patient (input). For example age, family history, stress level and other

analysis. A more mathematical definition is given in [23]: taking into account

an input set, x, a determined output y is given by a function f . Supervised

goal is to find another function h that give a similar output for the the given

x, knowing in advance what will be the y value.

2.2.2 Unsupervised Learning

Unsupervised Learning basic concept is that it is not possible to know in

advance what there is inside the data[5]. Unsupervised Learning is strictly

related to the clustering and data mining concepts: in a unknown data set,

10

Supervised
Learning

Classification
ex/Stop

Regression
ex/Speed

Discrete Continuous

Figure 2.4: Supervised Methods

the machine has to find a possible classification way extracting common and

useful features. Basic point and main difference with respect to Supervised is

that the data structure is not known and Unsupervised final goal is basically

to find one of the possible structures for the data. From a mathematical

point of view the input data set X correspond to infinite f , so the goal is

to find the best one to create a useful y set. An example of a unsupervised

application is the description of what there is inside a jungle: tree, plants,

animals and so on. One way of acting is to divide and cluster different kind

of animals: spiders, monkeys, snakes and so on. Key point is that the system

does not know what the jungle contains; the system will just see that the

animal features are different with respect to the ones that characterize the

plants: for example they can move; the decision of calling them ”animals”

is only one of the infinite possible classification method. It is because of all

these considerations that it is important to talk about feature extraction: it

is the science of extract and detect the most important and useful features in

a scenario. At the end the system will find unseen patterns or labels, extract-

ing common features between all the individuals that are being considered.

11

Taking a look at the previous example, the ability of moving is a feature for

animals and humans that has been extracted for this application [24].

2.2.3 Reinforcement Learning

Reinforcement Learning is slightly distant from the other Machine Learning

techniques. If SL and UL have something in common, RL is based on a

different concept: in a particular ruled-world, named environment, an agent

has to take some actions. These actions led it into a particular state with a

numerical reward [25]. A good example of how reinforcement learning works

is to think about a chess game: if the final goal is very clear, the agent does

not exactly if its moves, named action a, are good or bad until he reaches

the end of the game. He only knows that some actions a lead him to some

situations of the environment, named state s, and every time he performs

an action a that has lead him into a state s he obtained a reward r. Key

point in RL is that the agent knows the rule of the environment, but does

not know in advance which actions give positive reward. At the end of the

training, the agent should be able to take the actions that will give it the

highest reward.

From a mathematical point of view, Markov decision process (MDP) are

the best way to formalize a RL problem [25]. Markov decision process allows

to describe and represent decision-making problems and solutions. Basically,

a MDP is composed of 5 elements:

• S is the finite set of states.

• A is the possible set of action available for a state S.

12

Agent Environment

Action

State

Reward

Figure 2.5: Reinforcement Learning Model

• T(S,A,S0); P(S0|A,S) T represents the environment model: it is a

function that produces the probability P of being in state S’ taking

action A in the state S.

• R(S,A,S0) is the reward given by the environment for passing from S’

to S as a consequence of A

• π(S; A) is the policy of the state i.e. the solution of the problem that

takes as input a state S and gives the most appropriate action A to

take.

Other 2 key property in the MDP are the Markovian property and the

stationarity property. The former is simply assuring that previous states

do not influence current state S. The latter instead assures that during the

process these properties remain the same.

2.2.4 Deep Learning

Deep Learning is a way to create and represent artificial intelligence. The

most used techniques in Deep Learning is the Artificial Neural Network

13

(ANN). ANN are inspired by the human and animal brain structures, i.e.

a network that is composed by many neurons that communicate with each

other. An ANN could be composed of several layers, depending on the model

depth or complexity. The depth of a model can be usually defined in two

different ways: the former consists in evaluating the longest path during the

computation, the latter in considering the depth of the relation between lay-

ers [26]. Usually in the ANN world a network depth is evaluated on the worst

critical path or counting the number of hidden layers. In between the input

and output layers, several intermediate layers could be present, which are

responsible of the deep learning algorithm implementation. A general NN is

shown in Figure 2.6

Figure 2.6: General Neural Network

Neural network output computations are based on the conception of

14

weights and activating function [27]. The activating function is a concept

strictly related to the threshold one: if the computation of the input gives

a value greater than the threshold, the activation function will give a result,

otherwise another one is produced. The activation function could be com-

plex of very simple, depending on the network application. Weights play a

key role in the output computation, because the network has to take into

account more than one inputs and some of these may have a greater impact

on the final computation. This is also a key point in the learning process of

the network: if the input produces an incorrect output, the correspondent

weight is reduced. This process is also known as ”back propagation”. From

an algebraic point of view, defining wi as the weight that the node i has and

xi as the ith input:

output =


0 if

P
i xiwi

≤ threshold

1 if
P

i xiwi
> threshold

(2.1)

The most used example of neural networks application is about image

recognition: for example we can give many image examples about a vehicle

and the machine will learn to recognize other vehicle images without knowing

how a vehicle works or what are its main components. The network learn

from past experience (example images) changing the input weights when a

new image is given as input.

15

2.3 ADAS & Machine Learning

• Supervised Learning application in ADAS is strictly related to longitu-

dinal and lateral control. These two systems in fact face classification

problems, such as incoming cars from other lanes or sudden deceleration

actuated by vehicle in front of the current car. Significant examples of

SL in ADAS can be found in [28] and [29]. Parking assistance system

and driving vigilance monitoring are more works of Reinforcement and

Deep Learning, also if Supervised and Unsupervised can be used as

preprocessing phase for featuring extraction and reduction.

• Deep Learning main application is related to the world of the image

processing and recognition. Using ANN, Deep Learning algorithm are

able to analyse and classify different type of roads and situation: for

these reason the Driving Vigilance Monitoring System uses DL algo-

rithms for the driver face analysis. DL can also play a key role in the

parking action: back cameras can be used to evaluate in a precise way

the distances of the parking spot, building a much clearer scenario.

• RL is used wherever a decision has to be taken. For this reason, at the

current state of the art it is only involved in the parking action, since it

is the only system that implements evasive actions, but longitudinal and

lateral control are moving in the same direction. The parking action

can be formalized as a MDP: environment, state, agent and reward are

respectively the parking spot, the vehicle position, the vehicle itself and

the correct positioning during the action.

16

• As mentioned in the introduction, with the raise of the IoT, the Big

Data concept has assumed a key role in the ML applications. For

this reason, feature selection is a mandatory pre-processing phase, as

happened in Arash Jahangiri and Hesham A. Rakha [30] work or in C.

Miyajima et al. [31] one. UL finds its main applications in this field,

since its goal is to label and cluster huge amount of raw data. It can

find usages in every ADAS sub-system, since at the current state of

the art each of them has to manage large volume of data with different

characteristics.

17

18

Chapter 3

Methodology

3.1 System Structure

As already mentioned in chapter 1, this project is a contribution to the ECE

de Paris research project Autonomous Smart Secured Interactive Automobile

(ASSIA). It is developed in collaboration with Laboratory of Insitut Univer-

sitarire de Technologie of Versailles (LISV) and has as contributors PhD

researchers and master degree’s students. The entire project is about the

construction of a complete intelligent ADAS, looking at new fields of the tech-

nology like 5G communications intra-vehicles and Machine Learning. This

work is a contribution to the construction of the artificial intelligence part.

The scheme representation of the global ADAS architecture is shown in

Figure 3.1. In particular, this work will focus in the area delimited by the

dotted rectangle, which is the artificial intelligence part in the global system.

The entire ASSIA system, interacting with the environment, is then com-

posed of 4 main components:

19

Figure 3.1: Global System Architecture

• Sensors: A sensor for definition is a ”transducer that transforms a

physical property into an electrical measure, which one desires to digi-

tize.” The sensors are the components that generate the system input

data set, capturing informations about the environment. This work

will not focus on real sensor analysis, but on simulated one. Since the

creation of instantiated ontologies, supervised and reinforcement ap-

plications need data, this work will consider the input from sensor as

given, working on simulated one. More detail on the data processing

and collection are given in the 3 appendix:

– A: concerning the ontology data processing.

– B: concerning the Supervised Learning data processing.

– C: concerning the Reinforcement Learning agent observation .

• Context: All the data received can be divided into 3 different contexts,

representable by means of Ontologies. This work will main focus on

20

the environment context, creating the specific ontologies thanks to the

sensor data. The three contexts are:

– Driver context : it stores all the information about the driver sit-

uation, as stress level, mental state and fatigue level. This work

will not focus on this context, but in [32] a related work was done

at ECE.

– Vehicle context : it stores all the data concerning the vehicle itself,

where the ASSIA system is installed. Main components here are

vehicle velocity, distances from other objects, acceleration and

break pedal usage.

– Environment context : this is the biggest and most various data

set. It contains all the informations coming from the external

world and IoT: communication intra-vehicles, other objects posi-

tions and physical properties.

• Knowledge Base: a Knowledge Base (KB) is where the system knowl-

edge is sorted, in order to be used by the computer for the applications.

The main difference with respect to a normal database is that , start-

ing with general possessed data, it will be able to merge them creating

new knowledge. All of this can be done thanks to the reasoning pro-

cess existing in the system. The KB communicates with two system

components:

– Data Fusion: it consists in the combination of different data com-

ing from different sensors and contexts. This phase is mainly a

21

work of classification: this work will be focused on a Supervised

Learning application where the obstacles are classified looking at

physical properties.

– Data Fission: once the data fusion phase is completed, its out-

puts will be the fission input. In this phase the system, with the

KB help, will decide and actually build the best actions, sending

signals to the actuators in order to perform these actions. In this

work this phase is performed by mean of Reinforcement Learning,

where the obstacle avoidance is performed.

• Actuators: These components are where the decisions taken in the Fis-

sion phase are actually performed, influencing the environment. Steer-

ing, accelerate and break actions are the best examples. As for the

sensor, this work will interact with a simulated environment, in which

the car will detect, classify and avoid an obstacle. The actions per-

formed would be the same of a future real-case scenario, in which the

agent will be able to accelerate, steer and break in order to avoid ob-

stacles.

3.2 Unity 3D

Unity is a cross-platform game engine developed by Unity Technologies [33],

which is primarily used to develop both three-dimensional and two-dimensional

video games and simulations for computers, consoles, and mobile devices. In

the research field softwares like unity are used to simulate systems before the

22

real implementation.

Figure 3.2: Unity Logo

Unity 3D possibility to write into JSON standard csv files, collecting real

world data like velocity or size, allows to create good simulations and testing

environment. In table 3.1 is it possible to see the most important components

usually used when a scene is created.

3.2.1 Machine Learning Agents

Unity Machine Learning Agents (ML-Agents) is an open-source Unity plug-

in that enables games and simulations to serve as environments for train-

ing intelligent agents. Since the Supervised Learning can be done off-line,

analysing the data collected in advance, the Reinforcement Learning is most

of the time an on-line application, because the actions taken by the agent

have to receive a reward in real time in order to update the state.

The ML-Agents is composed of 6 components, that allow the on-line

implementation of an intelligent systems:

1. Academy.

2. Brain.

3. Agent.

23

Component description

Collider

Allows physical collisions with
other objects and the possibility
to detect them. Useful for the

creation of moving object
interactions.

Rigibody.velocity
In a 3D scene, allows to have a
real-time 3-dimensional Vector

storing the object velocity.

Transform

Define the position, the rotation
and the scale of a game object in

the scene. Each of this
component is a 3-D Vector

(x-y-z).

C# Script

Allows to define variables,
influence other components and
communicate with other game

objects.

Cameras

Can be attached to an object in
order to follow it. A scene can
have several cameras, so that it
is possible to monitor different

game objects.

Child/Parent

A game object can have a child,
becoming its parent. This follows

the common class/subclass
relation in an object oriented

environment.

Tag
Allows to group game objects, in

order to collect them in the
scripts

Table 3.1: Unity key components

24

Figure 3.3: ML-Agents structure

4. Python API: It is, with the external communicator, the component

that allows the communication between the learning algorithms and

the learning environment components.

5. External communicator: Unity provides a socket implementation for

the communication with the Python API. It is embedded in the Academy

object and it is responsible for the learning data exchange with the

API, sending the decision made by the brain and receiving the learning

algorithm updates.

6. Environment: It is the totality of the Unity scene, composed of both

ML-Agents components and normal Unity editor game object. This big

environment allows the learning of a self-created Unity project, whose

application can be very different.

25

Academy

The Academy is the object in charge of managing the other two key objects:

the brain and the agents. Its main roles are to initialize the environment,

reset the scene when needed and manage the changes in the scene. For

example in a scenario in which when an agent reaches the target, this should

be randomly reallocated; this action should be managed by the Academy.

The Academy manages also the scene dimensions where training, the quality

of the graphic and the frame number. Its main methods are:

• InitializeAcademy() : method for any logic normally performed in the

standard Unity Start() or Awake() methods. These methods allow the

event to start and the object management.

• AcademyReset() : method called when the environment has to be reset.

• AcademyStep() : function that is called at every simulation step, before

any agents are updated.

It is important to notice that a scene can have multiple brains and agents,

but it has always only one Academy, that handles all the brains and agents

interactions and behaviour. In Figure 3.4, the multi-brain agents scenario is

shown.

It is important to notice that a brain can be attached to different agents,

while there is only a single academy, that has a specific external commu-

nicator that communicates with only a Python API. The brains moreover

can be of different types: a combination of external and internal brains is

26

Figure 3.4: Multi-brain agents scenario

possible, allowing the training phase while an internal brain is run to show

the training result.

Brain

The brain is the component that encapsulates the decision making process.

It decides what action the agent has to take, thanks to the data coming from

the agent and the learning algorithm. It has 3 really important parameters:

1. Vector Observation: It is a Vector containing the observation made by

the agent. The brain will analyse these observations and take actions

thanks to these data. Observations usually are distances from objects,

agent velocity and other physical measures.

2. Vector Action: It contains all the possible actions that can be given to

an agent. For example a car agent could have 3 actions: steer, break

or accelerate. The brain at every step will tell to the agent how much

it has to steer, break or accelerate according to its decisions.

27

3. Type of brains: Currently there are 4 brain types:

• Player: No training phase has been done. It allows the player

to take actions in order to test the reward function, the agent

observations and if the academy reset the scenario in the correct

way. In this phase, the learning algorithm is not playing any role.

• External: In order to train the agent, the brain has to be set as

External. That means that the brain will take the rewards from

an external learning algorithm, sending to the agent the action

taken looking at the rewards. Setting the brain as external allows

the brain to receive the vector observation from the agent, follow-

ing the general scheme of a reinforcement learning scenario. An

External brain simply passes the observations from its agents to

an external process and then passes the decisions made externally

back to the agents.

• Internal: Once the training phase is completed, ML-Agents plug-

in creates a scheme using TensorFlow [34] (an open-source software

developed by Google Brain). The internal brain will read the

training results and actually take decision, sending the actions by

the agent. An Internal brain uses the trained policy parameters

to make decisions (and no longer adjusts the parameters in search

of a better decision).

• Heuristic: It is an experimental brain that allows the programmer

to code by hand an agent’s decision making process. An Heuris-

tic brain requires an implementation of the Decision interface to

28

which it delegates the decision making process.

Agents

An agent is the Reinforcement Learning actor. Its main role in a ML-Agents

scene is to collect observations from the environment and pass them to the

brain object. The most important coding part in the agent creation is the

reward function, that allows to estimate the value of the agent’s current state

toward accomplishing its tasks. An agent passes its observations to its brain.

The brain, then, makes a decision and passes the chosen action back to the

agent. Agent scripts are based on two key functions:

• CollectObservation() : To make decisions, an agent must observe the

environment to determine its current state. A state observation can

take the following forms:

– Continuous Vector : A feature vector consisting of an array of

numbers.

– Discrete Vector : An index into a state table (typically only useful

for the simplest of environments).

– Visual Observations : one or more camera images. For this type of

observation the creation of a camera object attached to the agent

is required.

It is important to notice that for more stable training processes a nor-

malization of the observation is needed. This means that the values

should be [-1, 1]. For example a possible code for observe a ball veloc-

ity could be:

29

public GameObject ball;

public override void CollectObservations()

{

Vector3 speed = ball.transform.

GetComponent<Rigidbody>().velocity;

AddVectorObs(speed.x / maxVelocity);

AddVectorObs(speed.y / maxVelocity);

AddVectorObs(speed.z / maxVelocity);

}

Normally the observations are distances between objects, velocity, col-

lider bounds and object positions.

• AgentAction(float[] vectorAction) : the vector vectorAction contains all

the actions that an agent can take and it can be of two types:

– Continuous : When an agent uses a brain set to the Continuous

vector action space, the action parameter passed to the agent’s

AgentAction() function is an array with length equal to the Brain

Vector Action Space Size property value. The individual values in

the array have whatever meanings that the programmer ascribe

to them. If one element in the array is assigned as the speed of

an agent, for example, the training process learns to control the

speed of the agent though this parameter.

– Discrete : When an agent uses a brain set to the Discrete vector

30

action space, the action parameter passed to the agent’s AgentAc-

tion() function is an array containing a single element. The value

is the index of the action in the table or list of actions. With the

discrete vector action space, Vector Action Space Size represents

the number of actions in your action table.

Actions are influenced by the most important parameters in the re-

inforcement learning scenario: the Reward. It is possible to allocate

rewards to an agent by calling the AddReward() method in the Agen-

tAction() function. The reward assigned in any step should be in the

range [-1,1], otherwise this could lead to an unstable training. The

reward value is reset to zero at every step.

3.2.2 TensorFlow & TensorBoard

TensorFlow [35] is an open source software library for high performance nu-

merical computation. It has its main usage in the ML and DL world, orig-

inally was created by the Google’s AI organization. The flexible numerical

computation core is used across many other scientific domains, as Big Data

and Data Mining. As Machine Learning is becoming more and more im-

portant, TensorFlow is following the same trend, with several innovating

companies that started to use the software: Goggle, AMD and Intel are

some examples. The ML-Agents plug-in uses this software to compute the

learning results, analysing at each step the parameters of the application.

TensorBoard is a TensorFlow tool for graphical visualization. Tensor-

Board operates by reading TensorFlow events files, which contain summary

31

data that could be generated when running TensorFlow. In figure 3.5 is it

possible to see a fully configured scenario for the graphical visualization of

the learning system entropy.

Figure 3.5: TensorBoard Graphic Example

TensorBoard is a powerful tool, in which it is possible to plot simple 2-D

graphics showing the evolution of the learning parameters, but also more

complex graphs showing the system structure and debug it. In addition,

it is possible to create Histogram displaying how the distribution of some

Tensor in the chosen TensorFlow graph has changed over time. It does this

by showing many histograms visualizations of the tensor at different points

in time.

32

3.3 Ontology

Ontology is an object-oriented way of representing an environment. It is a

tool used not only for scientific systems, but also for other domains. Philos-

ophy, artificial intelligence, systems engineering, information management,

computational linguistics, and cognitive psychology could use ontologies for

the knowledge representation [36]. Knowledge representation is a field of ar-

tificial intelligence that tries to deal with the problems that surround the

system design and the usage of formal languages suitable for capturing hu-

man knowledge. Any artificial intelligence is dependent on knowledge, and

thus a representation of that knowledge in a specific form is mandatory. The

usage of ontologies is an understandable, fast and efficient way of doing that.

Ontologies found their most famous application in Semantic Web, where Web

pages are annotated by ontology-based meta-data. The W3C Web Ontology

Language (OWL) is a Semantic Web language designed to represent rich and

complex knowledge about things, groups of things, and relations between

things. In this project OWL will be used first for the generic environment

representation, second to build more specific ones useful for the obstacle

detection.

3.3.1 Protégé

Protégé is a free, open-source ontology editor and framework for building

intelligent systems [37]. It is a software used to build and represent ontology

in OWL. The Protégé most used tools are:

• OWLViz: used for representation has graph.

33

• OntoGraf: used to instantiate class objects with individuals, subclasses

and properties

• VOWL: Visual Notation for OWL Ontologies (VOWL) provides graph-

ical representations for elements of the OWL Web Ontology Language.

The OntoGraf tool allows to create specific ontologies that represent spe-

cific environments with defined individuals belonging to generic classes. Ev-

ery individual will then have some private and unique properties, instantiated

thanks to the data collected. In Figure 3.6 it is possible to see an instantiated

ontology with OntoGraf, taken by the article for the KEOD conference [1].

Here the Rock object is a subclass of the generic class thing. Rock class has

a unique individual with unique properties; in this case

• HasLanePosition

• HasPhysics

are the two simple properties characterizing the object, with some indi-

viduals belonging to these properties.

3.3.2 JAVA

JAVA is a general purpose, object oriented programming language [38]. In

this project NetBeans Integrated Development Environment (IDE) for Java is

used for the formal creation of the ontologies, through the OWL specification.

The program written in JAVA will be able to read the csv file produced

in Unity and extract the data contained in it. Thanks to these data, the

34

Figure 3.6: Ontology represented with OntoGraf [1]

program will create an ontology for each frame caught in Unity. The program

has a server-client implementation for future on-line application, such as

Reinforcement Learning. The server reads the csv file and send a single

frame, while the client is able to extract data from the frame and create the

correspondent ontology.

3.4 Python

Python is an interpreted high-level programming language for general-purpose

project. It is based on the the idea that the programming languages have to

be intuitive, simple and understandable. In the 1999 document The Zen of

Python, these concept are highlighted:

• Beautiful is better than ugly.

35

• Explicit is better than implicit.

• Simple is better than complex.

• Complex is better than complicated.

• Flat is better than nested.

• Sparse is better than dense.

• Readability counts.

Despite the simplicity goal, python is a powerful language with libraries

dedicated to Machine Learning applications. The most important library in

this domain is Scikit-Learn, usable mainly for data mining and data analy-

sis. It implements several learning algorithms for Classification, Regression

and Clustering such as Support Vector Machine (SVM), Decision Tree and

Random Forest. Scikit-Learn is mainly used for Supervised Learning and Un-

supervised Learning applications, while for Reinforcement Learning it does

not exist a dedicated library because of the application variety and software

usage.

36

Chapter 4

Initial project state

This work is a contribution in the ASSIA intelligent system, whose starting

state is presented in this chapter, together with the issues that it was pre-

senting. As for the whole work, this chapter is composed of 3 parts, in order

to highlight the different progresses achieved: Unity Scenario, Ontology and

Machine Learning.

4.1 Unity Scenario

The unity scenario was composed of a global road, one static car, one moving

car, two pedestrian crossings and 2 stop signs. A stylized scheme is shown

in Figure 4.1.

The moving car was only able to turn to its left and then go straight,

behaving in a non natural way after the turn. The controlled vehicle was

complete for the application, since it was able to record and write the data in

a csv file. Since the application was the event recognition and classification,

37

Figure 4.1: Starting Unity Scenario

the most important data, written also in the csv file were:

• Global road building, including in which road segment the car was.

• Vehicle physical properties, such as velocity, position and orientation.

The main issue in this part was the lack of road objects, the road di-

mension and the strange behaviour of the moving car. In addition, some

changes had to be done in the data collection phase, since the system was

not including an object collection part. However, the work done for the road

building an data recording was used in this work application.

4.2 Ontology

The global structure of the JAVA application for the ontology creation was

completed. In the same way that this project is thought, the single ontology

38

instantiation and global creation were separated. The main issue were the

coding errors in the JAVA programs, with the server-client application that

did not work in the correct way. The ontology merging process developed to

create general ontology was re-utilised, with improvement regarding the road

object. The instantiated ontology creation process was fixed and amplified,

adding the creation of the needed individuals. In Figure 4.2 it is possible to

see the instantiated ontology used in [39] for the vehicle and in Figure 4.3

for the environment.

Figure 4.2: Instantiated Vehicle Ontology

It is important to notice that the ontology describing the vehicle was

much more complete with respect to the one describing the environment. As

far as this work will be focused on the obstacle detection, classification and

avoidance the vehicle ontology will not be modified, but the environmental

one will be expanded with individuals and properties.

39

Figure 4.3: Instantiated Environment Ontology

40

4.3 Machine Learning

In the previous work done on the ASSIA system the two Machine Learning

applications were made on the event recognition, classification and action

decision. The Supervised Learning showed good result in the event classifi-

cation: the turn left, turn right, stop and normal actions were classified with

a mean score of 94.56% for the Decision Tree and 94.07% for the KNN. In

Figure 4.4 it is possible to see the final decision tree. For these reason the

SL application in this work was done taking in consideration these results,

even if at the end the code was build from scratch.

Figure 4.4: Decision Tree for the event recognition

Instead the Reinforcement Learning application showed bad results, with

basically a not working neural network. The reinforcement learning applica-

tion was build from scratch using the ML-Agents plug-in. Figure 4.5 shows

the reward function results.

41

Figure 4.5: Reward

42

Chapter 5

Application & Results

5.1 Introduction

In this chapter the application of the tools presented in chapter 3 is shown

in details, along with the results. It is divided in 3 sections: first section is

dedicated to the modification applied to the Unity environment, second one

dedicated to the ontologies instantiation and finally the two machine learning

applications.

5.2 Unity Environment

This section presents all the addition made in the environment, including

static objects, moving objects and the global road system. Once the scenario

is completed, the data collection made in Unity is presented, since it rep-

resents the start for the ontological creation and for the Machine Learning

application.

43

5.2.1 Road System

These modifications were applied in order to create a more realistic scenario.

The creation of a traffic light system, a more complete road and the imple-

mentation of many road signs were the choice made to achieve that.

Road

The first action was the amplification of the road. Since the goal was to have

a bigger scenario that embedded a traffic light system and moving cars, the

road was basically doubled, with the addition of 2 Horizontal segments and

3 Vertical ones. In order to connect them, a Road Center with 4 entries was

build, in parallel with two Road Center with 3 entries, put in the other two

intersections. Figure 5.1 show the final road, highlighted in green/orange.

Figure 5.1: The new global road

The intelligent vehicle has to build in his KB a map representing the

road, so every road segment has a script attached that allows to build the

44

connection to other game objects. The vehicle will be able to build the

correspondent map thanks to the TAG: Road attached to every segment.

Figures 5.4, 5.2 and 5.3 show the three different types of road segments:

crossing, straight and curved.

Figure 5.2: Straight segment

Figure 5.3: Curved segment

It is possible to see that the straight segment has as parameters the two

elements which they are connected with, plus the possibility to turn in the two

directions and to go straight, while the curved one has only the connections.

45

Figure 5.4: Crossing segment

The crossing center has in addition the intersection connection, managing

the segments that it has to connect. Each road center has a size, that allows

to define the correspondent number of segments connected.

Traffic Light

Second step is the Traffic Light System implementation. It implements two

different types of traffic light, in order to have the correct behaviour of the

lights. Since the traffic light are 4, they were named with respect to the

cardinal signs; the North and South have the Traffic Light A script attached

while the West and East have the Traffic Light B. The light behaviour is

resumed in Table 5.1, while Figure 5.5 shows a frame captured from a running

scene.

The binary value for the light shows when the lights are active (1) or

disabled (0). It is important to highlight the period for the green, yellow and

red states:

• Green: on for 11 seconds and then off for 11 seconds.

46

Figure 5.5: Traffic Light System

Traffic Light Light 7s 4s 7s 4s

Traffic Light A
Green
Yellow

Red

1
0
0

1
1
0

0
0
1

0
0
1

Traffic Light B
Green
Yellow

Red

0
0
1

0
0
1

1
0
0

1
1
0

Table 5.1: One Traffic Light System period (22 seconds)

47

• Yellow: on for 4 seconds and then off for 18 seconds.

• Red: on for 11 seconds and then off for 11 seconds.

The traffic light system simply manages the rotation of this life-cycles.

Signs & Road Object Class

In this work 4 types of traffic sings were implemented: Speed, Stop, Work

In Progress and Pedestrian crossing. Figure 5.6, 5.7, 5.8 and 5.9 show these

different traffic signs. Each of these sign types has a script attached that

allows them to behave as a RoadObject and a Tag ”RoadObject”. Being a

RoadObject means that they will inherit all the functions present in this class.

The Tag instead allows the intelligent vehicle to collect them knowing that

they are RoadObject game objects.

Figure 5.6: Speed signs

The RoadObject class has some important functions implemented in it:

48

Figure 5.7: Crossing signs

Figure 5.8: Stop signs

49

Figure 5.9: Work signs

• float getSize(), float getPosition(), float getSpeed(): classic functions

that return the correspondent value for the size, the position in the

scenario and the current object speed.

• void getLane(GameObject vehicle, RoadSegment objectRoad, string ori-

entation) : it is a void function that updates the value of the global

variable isOnLineRealtive. This variable has 3 possible values:

– 1: if the vehicle and the object are on the same road and lane.

– -1: if the vehicle and the object are on the same road, but on

different lane.

– 0: if they are on different road or the game object is not on a road

segment.

• GameObject isHitting() : return the GameObject that the object is

hitting. For example the road signs are hitting the terrain since they

50

are on it, while the moving cars or the work on the road are hitting

different road segments.

• string toJson(GameObject vehicle): this function returns a string con-

taining all the informations standardized in the format required for the

application. More informations about these formats can be found in

appendix A and B.

5.2.2 Moving Objects

In this project there are two different moving objects: Moving cars and

Pedestrians. They belong to the same RoadObject class, but as for the Traffic

Light System, a specific behaviour is implemented.

Moving Cars

The moving cars implement a pre-defined AI : this means that the car will

accelerate and steer by itself, avoiding obstacles, but following a predefined

path [40]. The pre-defined AI is mainly composed of 3 actions that can be

performed:

• Drive: this function let the car accelerate till the speed limit imposed

by the current road, steer in order to follow the path and break when

there is an over speeding situation or an obstacle has to be avoided.

• Avoid the obstacle: the obstacle avoidance is possible thanks to the

implementation of in game created sensors, positioned in the front part

of the car. These sensors detect if an object is in front of the car, calling

51

the steer function when needed. After an avoidance, the car will return

to follow the path, returning to the correct lane.

• Manage Traffic Light : the 3 possible states of a traffic light has to be

managed by a moving car that is approaching the road center. If the

situations related to the state green and red are simple to manage, in

the case of the yellow light the situation is more complicated. Basically

there two cases:

– The yellow light becomes on when the car is going to approach

the center.

– The yellow light become on when the car is crossing the center.

The algorithm for the void ManageTrafficLight() function is presented

in Algorithm 1. The variables passing and passed are boolean and both

initialized as false.

Basically the car will consider the light states only if the distance is

less than 7 meters and the vehicle is not passing trough the center of

the road. In this case, the car has to continue to follow the path, in

order to avoid to stop in the middle of the road. The second part of the

function is necessary in order to avoid the influence of the new closest

traffic light, that has not to be taken into account until the next road

center approach.

Figure 5.10, 5.11, 5.12 and 5.13 show the 4 different path followed by the

moving cars. It is important to notice that every moving car will have to

manage the traffic light system.

52

Data: The four Traffic lights (TL)
Result: Actions to take
for each Traffic Light (TL) do

if TL is the closest OR car is passing the TL OR (passed the TL
AND has not passed the other TLs) then

Look at the lights;
if distance > 15 meters AND not passed then

update distance and minimum distance;
else

if minium Distance > distance from TL then
if RED on OR (YELLOW on AND distance < 7
meters) then

break
else

continue without breaking
end

end
Passing = true;
update distance and minimum distance;

end
else if TL is the closest OR car is passing the TL OR (passed
the TL AND has not passed the other TLs) then

Look at the lights;
if distance from TL < 60 meters then

Passed = true;
update distance;

else
Passed = false;
Update distance and minimum distance;

end

end

end

end
Algorithm 1: The ManageTrafficLight() function

53

Figure 5.10: Car SE Path

Figure 5.11: Car NE Path

54

Figure 5.12: Car SO Path

Figure 5.13: Car NO Path

55

Pedestrians

The pedestrian generation, movements and destruction are managed by the

Pedestrian Generator object. This script allows to create the Pedestrian

game object and it has 4 important parameters that have to be set, as shown

in Figure 5.14:

Figure 5.14: Pedestrian and generation parameters

• Delay: determine the delay in seconds for the activation of the gener-

ator.

• Size: fixes the number of pedestrians that will be generated.

• Interval: The time interval in seconds between each generation.

• Up to: How many pedestrians can exist at the same time.

The moving objects are considered as normal RoadObject by the vehicle,

whose management would be explained in the next sections.

56

5.2.3 Static Objects

The Static objects are the second type of Obstacles that the vehicle can find

on the road. As for the Moving Objects, they belong to the RoadObject class,

inheriting all the functions described in the previous section. There are 4

different types of Static objects in this work:

1. Rocks: 7 rocks are present in the scenario. They affect the moving

cars and they are the most common and easiest obstacle to manage

present in the scenario. They can be put in the middle of the lane, in

the middle of the road or at the border of a lane.

2. Static Car: It is a game object identical to the other 4 moving cars,

but it does not have attached the script CarEngine that allows the

movements. It can be considered as a Rock with the shape of the

moving car.

3. Tree on the road: As for the static car, only one object belonging to

this class is present in the scenario. It simulates a tree that felt on the

road with the top part. It is affecting only one lane, without taking

the entire road.

4. Work On the Road : It is a game object composed of several common

work objects, such work cones and roadblocks. A single game collider

is attached to the game object, allowing it to be identifiable as a single

obstacle.

Figures 5.15, 5.16, 5.18, 5.17 show the objects with the attached script,

57

while in the general scheme, shown in Figure 5.19, it is possible to see the

actual position of all the objects present on the scene.

Figure 5.15: Generic Rock

Figure 5.16: Static Car

58

Figure 5.17: Work On The Road

Figure 5.18: Tree On The Road

59

Figure 5.19: General Road Scheme

60

5.3 General Ontology

The general Ontology represents all the classes that could be present in the

scenario. An individual would always be a member of one of those classes.

Starting from this general ontology, the instantiated ones will be then created.

Figure 5.20 shows the general object ontology.

Figure 5.20: General Objects Ontology

It is important to notice that there are some classes that in this project

are not present, like Bike and animal. Next step in this project could be

another expansion of this general ontology. Another important point about

the general ontology is that all the instantiated ones will be a smaller version

of this one, because the classes with no individuals present in the scene will

not exist. The general ontology was actually almost complete and only few

changes were done. The most important one was a general subclasses re-

61

organization, together with the addition of new classes, i.e. Work On The

Road, Tree On The Road, etc.

5.4 Instantiated Ontology

This section presents the 3 instantiated ontologies created thanks to the

JAVA application. These 3 ontologies represent the stages required for the

obstacle collection, showing how ontology is a fast and simple way for repre-

senting the scene frame. Each ontology was created thanks to a corresponding

List in Unity, collecting different data. These Lists were made following 3

simple algorithms, presented in the following subsections. This work is pre-

sented in KEOD [1] article, done at ECE with Prof. Hina and Dr. Soukane.

Let R be the set of all the road objects present in the environment E, C the

set of the close road objects and O the set of the obstacles. Mathematically:

• E = {e1, e2, . . . , en}

• R = {r1, r2, . . . , rn}, R ⊂ E

• C = {c1, c2, . . . , cn}, C ⊆ R

• O = {o1, o2, . . . , on}, O ⊆ C

5.4.1 General Road Object

Every e related to the driving environment has a tag t, the notation used

for identification purposes. For all e in E, if an element e has a tag of

62

RoadObject, then such e (denoted ei) is a road object ri. Mathematically:

∀e ∈ E, if ∃ei with t = ”RoadObject” =⇒ ri = ei ∧R 6= ∅

In figure 5.21 it is possible to see the environment E with all the r ∈ R

highlighted.

Figure 5.21: Environment E and the entire road objects set R

In figure 5.22, it is possible to see the R ontological representation. The

subclasses describe the different r and every sub classes of Thing can have

one or more individuals. The arrows hasSubClass and hasIndividual show

how this is done in Protégé.

The List is created thanks to the Unity function FindGameObjectsWith-

Tag() that allows to find the corresponding tag in the scene (environment

E).

63

Figure 5.22: The ontological representation of road object collection R

5.4.2 Close Road Object

The nearby road objects are those elements that are within the vicinity of

the referenced vehicle. They are parts of the road objects collection. An

element has to be considered ”near” if it is located within the referenced

radius (example: 50 meters) of the referenced vehicle. Let m be the radius

of the referenced sphere (as it is the case in Unity 3D), and d the distance

between the vehicle and a road object. If the distance d of the road object

is less than m then such road object r is considered a nearby road object c.

Mathematically, ∀r ∈ R, if ∃ri with d < m =⇒ ci = ri ∧ C 6= ∅.

Figure 5.23 shows the sphere collecting a specific part of E, with all

elements c ∈ C highlighted. It has to be noted that this one is just one of

the possible c that can be considered. Nearby road objects may be in front,

64

at the back, on the left or on the right side of the referenced vehicles. Some of

the nearby road objects may be obstacles while some may be not. Ontology

creation is therefore important because it allows to have a good vision of the

closest road objects that may be considered as road obstacles.

Figure 5.23: Unity 3D Close Road Object scenario

Figure 5.24 shows all elements c ∈ C. As shown, the ontology is much

smaller than the previous one, given that we only consider objects that are

present in the specified radius of a sphere with the vehicle as the point of

reference, with radius = m.

65

Figure 5.24: Ontological representation of C

5.4.3 Obstacle

The nearby road objects are obstacles if they are in front of the vehicle

(located in the same lane), the distance between it and the referenced vehicle

is ”small”, and the time to collision is ”near”. A formal definition for this

scenario is given below.

Let v be the variable describing the current speed of the vehicle, d the

one describing the distance between the vehicle and the road object r, t the

time to collision limit, m the radius of the sensor sphere, l the one describing

if the vehicle and the object are on the same lane and p the cardinal point

direction of the vehicle. From a mathematical point of view, O is build as:

∀c ∈ C, if ∃ci with d < m ∧ v/d < t ∧ l = 1 ∧d > 0 =⇒ oi = ci ∧O 6= ∅

p is used in the l computation, since the system is dealing with 3D coor-

dinate system, the orientation is necessary in order to define if s and c are

66

on the same lane. Let dcr be the distance from the center of the road.

If p = North∨p = South =⇒ dcr is taken on the x plane, else =⇒ dcr

is taken on the z plane. Let dcrs be the distance system-center of the road,

dcrc = be the distance close object-center of the road:

• l = 1, if dcrs > 0 ∧ dcrc > 0 ∨ dcrs < 0 ∧ dcrc < 0

• l = −1 if f dcrs > 0 ∧ dcrc < 0 ∨ dcrs > 0 ∧ dcrc < 0

In figure 5.25 it is possible to see the o detection scenario. As for the close

road object collection phase, it is important to highlight the fact that this is

only one of the possible O. Here the ontology representation details are very

important, since it is possible to see that all the conditions are verified.

In figure 5.26, it is possible to see every o ∈ O. Here the ontology is

presented in details because there is only o1 ∈ O. The legend on the right

allows to show the obstacle characteristics such as speed or size.

In algorithm 2 it is possible to see the 3 situations described before.

Targets, maxDistance and timeToCollision are the 3 parameters passed as

argument to the function getObstacles(). The Targets variable is the List

storing all the RoadObject r ∈ R.

The lane determination is presented in the next section, where the get-

Lane() algorithm will be explained since it is a feature used in the Supervised

Learning application.

67

Figure 5.25: Unity 3D Obstacle scenario

68

Data: Targets, maxDistance, timeToCollision
Result: Obstacle List
Store initial state: position, acceleration and velocity. for each Target
do

Calculate distance;
if Distance < maxDistance then

if Speed / acceleration < timeToCollision then
Determine which object the target is hitting;
if ObjectTag = Road then

store the road in the currentRoad variable;
else

currentRoad = NULL;
end
if currentRoad != NULL then

Determine the lane;
if same lane then

Target is an obstacle;
end

end

end

end

end
Algorithm 2: The getObstacles() function

69

Figure 5.26: Ontological representation of O

5.5 Supervised Learning

This section presents the Supervised Learning application for the RoadOb-

jects classification. Appendix B shows in details the data collection phase,

highlighting the data format and processing.

There are 12 different objects present in the scene and each of them

has 7 features. The different RoadObjects are the one described in previous

sections, while the features are:

1. Speed : calculated directly in Unity, given in real-time.

2. Acceleration: calculated looking at the speeds in a ∆t.

3. Distance From vehicle: calculated looking at the 3 different planes.

4. Is On The Same Lane: function shown in algorithm 3, used also in the

70

obstacle classification.

5. Size: each object has a game Collider component, whose bounds are

used to determine its size.

6. Colour : this feature is usually set as ”off”, expect for the traffic light

object, whose value changes during time.

Data: Vehicle, RoadObject, orientation
Result: Is on Lane
if orientation == NORTH OR SOUTH then

distance on the x plane;
else

distance on the z plane;
end
if Vehicle and Object are hitting the same road then

if (Object distance from road center < 0 AND Vehicle distance
from road center < 0) OR (Object distance from road center > 0
AND Vehicle distance from road center > 0) then

Same Road and Lane;
Is On Lane = 1;

else
Same road, but different Lane;
Is On lane = -1;

end

else
Different Road;
Is On lane = 0;

end
Algorithm 3: The getLane() function

5.5.1 Decision Tree

Decision tree learning algorithm uses a decision tree as a predictive model. A

decision tree is a flowchart-like structure in which each internal node repre-

71

sents a test on an attribute, each branch representing the outcome of the test

while each leaf representing a class label for classification tree. A tree can be

created by splitting the training set into subsets based on an attribute value

test and repeating the process until each leaf contains a single class label or

the desired maximum depth is reached. There are multiple criterion that can

be used to divide a node into two branches, such as the information gain,

which consist of finding the split that would give the biggest information gain,

based on the entropy from the information theory. Figure 5.27 shows the de-

cision tree created for the object classification. Gini impurity parameter is

a measure of how often a randomly chosen element from the set would be

incorrectly labelled if it were randomly labelled according to the distribution

of labels in the subset. The value signifies various obstacles considered and

in this case: value = [crossingSign, movingCar, pedestrian, rock, speedSign,

workOnroad, stopSign, traffickLightA, traffickLightB, treeOnRoad, static-

Car, workSign].

Figure 5.27: Obstacle classification using decision tree.

72

Figure 5.28 shows the feature importance of the decision tree. As shown,

the features that are the most important for the decision-tree classification

algorithm, as per simulation result, is the obstacles size and speed; all others

are not even considered, due to the Decision Tree simplicity.

Figure 5.28: Obstacle classification using decision tree.

Figure 5.29 shows the decision tree score in the identification of an ob-

stacle. It uses the data as 80% for training, 20% for testing. Accordingly, it

obtains 97.8% accuracy in identifying obstacles in the training set and 97.1%

in identifying the obstacles within the test set, showing a good results for

this application.

Figure 5.29: Decision Tree Score.

73

Decision tree is normally used for its implementation simplicity and read-

ability. It suits for simple application, like in this case, but if in future works

new features or road objects will be added this could not be the best al-

gorithm. Decision tree is often used as first algorithm to evaluate more

complicated ones.

5.5.2 K-Nearest Neighbours (KNN)

kNN categorize data based on the class of the nearest object already present

in the dataset: kNN is based on the assumption that near object belongs to

the same class and acts in the same way. k value is defined as the number of

neighbors that have to be considered for classify a new object. kNN weak-

nesses start to appear when a new data is good for one or more classes or

can be part of another class if we consider more neighbors. The distance can

be computed in different ways, such as the Euclidian distance for continuous

variables like ours. The importance of each neighbor can be weighted; often

the weight used is inversely proportional to the distance to give more impor-

tance to closer neighbor. Figure 5.30 shows the scores for different k values,

with k = [0, 10], k ∈ Z.

In this case it is possible to see how the kNN is not very suitable for this

application, since many road objects have similar characteristics, hence the

neighbours are sometimes very close and not really impacting.

74

Figure 5.30: KNN predictions accuracy result

5.5.3 Random Forest

One of the main drawbacks of Decision Trees is the trend of overfitting the

data. Random Forest algorithm is usually a solution to this problem. It is

essentially a collection of decision trees, but each tree composing the forest

is slightly different from the other ones. Basic idea is to use the decision

tree overfitting property to create many trees that overfit in different ways

different part of the data. The average of all the results will reduce the

complex overfitting. Since this work is not really complex, the n estimators

parameter, that allows to define the number of tree created, is set to 3. Figure

5.31 shows the random forest score in the identification of an obstacle. It uses

70% of the data for training, and 30% for testing. Accordingly, it obtains

99.7% accuracy in identifying obstacles in the training set and 99.4% in

75

identifying the obstacles within the test set. The results are better than the

ones obtained using decision-tree learning algorithm. Figure 5.32 shows the

feature importance for the Random Forest, highlighting that other features

can concur for the final classification. Colour and acceleration are not very

important since are used to distinguish traffic lights and moving objects,

while the size is always the most important feature.

Figure 5.31: Random Forest Score

Figure 5.32: Random Forest Feature Importance

Random Forest obtained results show that it is a suitable algorithm also

for simpler problems, giving good results with respect to a simple implemen-

76

tation.

5.5.4 Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) is a deep, artificial neural network [41] com-

posed of more than one perceptron. A perceptron is a binary classifier that,

taking an input vector x, is able to return a f(x) output value. The most

common implementation of a perceptron is given in equation 5.1, where w is

the weight vector, assuming real values, h·, ·i operator corresponds to the dot

product, b corresponds to the common bias and χ(y) is the output function,

whose value is usually χ(y) = sign(y), giving only -1 and 1 as output.

f(x) = χ(hw, xi + b) (5.1)

MLP are composed of an input layer to receive the signal, an output layer

that makes a decision or prediction about the input and, in between those

two, an arbitrary number of hidden layers that are the true MLP computa-

tional engine. Training involves adjusting the parameters, or the weights and

biases, of the model in order to minimize error. Back-propagation is used to

make those weigh and bias adjustments relative to the error, and the error

itself can be measured in a variety of ways, including by root mean squared

error.

Figure 5.33 shows the weights that were learned connecting the input to

the first hidden layer. The 6 features represent the rows, while the columns

correspond to the 100 hidden units. On the right, the heat map legend

shows that light colours correspond to positive values while dark colours to

77

negative values. Features with very small weights are the less important ones,

while increasing the weight of a feature means increasing its importance. For

example the Is On The Same Lane feature is not really important in the

obstacle classification, while speed and size cover a key role in it. Figure 5.34

Multilayer perceptron score (70% training, 30% test).

Figure 5.33: MLP Classifier

Figure 5.34: MLP Score

MLP is a good alternative to Random Forest, but it is more difficult to

interpret and has a bigger computational cost.

78

5.6 Reinforcement Learning

Once the vehicle has detected an obstacle, the intelligent system has to man-

age the situation, taking actions in order to act in the right way. As il-

lustrated in chapter 2, Reinforcement Learning main application is in the

decision-taking domain. In this work, Reinforcement Learning will be used

to teach the car to avoid an obstacle, returning to the right lane once the

obstacle is overcome. This problem will be formulated as a MDP, where:

• The vehicle is the Agent a.

• The environment E is the simulated unity 3D scene.

• The states set S is composed of the vehicle positions at each frame.

• The actions set A is composed of the steer, break and accelerate actions.

• The policy π will be the overcome action.

• The reward function r based on the vehicle lane and collision with

obstacles.

The reward function r would be based on the position of the vehicle with

respect to the lane and on the collision with obstacles:

• Positive reward if the vehicle stays on the road and no collision occurs.

• Negative reward if the vehicle is no longer on the road and a collision

is detected.

79

5.6.1 Issue On the Training Scene

The first action was to implement the ML-Agents components in the com-

plete scene, where the ontology creation and Supervised Learning application

where made. Since the ML-Agents plug-in is still an experimental tool, it

was not possible to use it in the scene. The problem was related to the fact

that a complex scene like the one created, with lot of imported assets, raised

a socket problem communication between Unity and Python. This was also

because of the vehicle implementation: the brain is not yet capable of take

actions for the car wheels, leading to a non-moving situation. The problem

was exposed to the Unity community and developers, opening a discussion

on the issue that will be maybe solved in future updates. The problem raised

was the following:

Exception

ArgumentException: An item with the same key has already been

added.

System.ThrowHelper.ThrowArgumentException (System.ExceptionRe

source resource) (at :0)

System.Collections.Generic.Dictionary2[TKey,TValue].Insert (T

Key key, TValue value, System.Boolean add) (at <a90417619fac4

9d5924050304d0280bb>:0) System.Collections.Generic.Dictionary2

[TKey,TValue].Add (TKeykey, TValue value) (at :0)

Brain.SendState (Agent agent, AgentInfo info) (at <4282bb72582

e4d569cd9952b328765a8>:0)

Agent.SendInfoToBrain () (at <4282bb72582e4d569cd9952b328765a8

80

>:0)

Agent.SendInfo () (at <4282bb72582e4d569cd9952b328765a8>:0)

Academy.EnvironmentStep () (at <4282bb72582e4d569cd9952b328765

a8>:0)

Academy.FixedUpdate () (at <4282bb72582e4d569cd9952b328765a8>:

0)

It is important to notice that with a Player brain the scene was perfectly

working, with a satisfying reward function response and a working Vector

Observation. The problem raised in the training phase, when the brain was

set to External so it was impossible to train the model and come to a result

for the original unity scene.

5.6.2 The Reinforcement Learning scene

In order to face this issue, a new scene was created. This scene was built

following the same scale for the starting road of the original one, creating an

obstacle with the dimension of a rock. The car was substituted by a Sphere

game object, able to move thanks to a force applied to its RigidBody. Figure

5.35 shows the new unity scene, in which it is possible to see the 3 main

actors:

• The light blue Sphere Agent.

• The red obstacle.

• The green target.

81

Figure 5.35: Reinforcement Learning scene

In this scenario, the sphere has to pass the obstacle staying on the road

and collide with the green target returning to the correct lane.

Reward Function

The reward function was built considering this application, whose goal is to

reach the object target. Equations 5.2 and 5.3 show the reward functions

structure, where collision is a variable whose value is 1 if the sphere collides

with the target and 0 if collides with the obstacle, isOnLane is a variable

whose value is 1 as long as the sphere hits the road, otherwise its value is 0.

distanceToTarget and previousDistance are variables updated every frame,

representing the current and the previous distance between the target and

the vehicle.

82

r =



+1 if collision = 1

+0.1 if distanceToTarget < previousDistance

-0.05 if distanceToTarget > previousDistance

-0.05 if ti < ti+1

-1 if collision = 0 || isOnLane = 0

(5.2)

r =



+1 if collision = 1

+0.05 if distanceToTarget < previousDistance

-0.05 if distanceToTarget > previousDistance

-0.01 if ti < ti+1

-1 if collision = 0 || isOnLane = 0

(5.3)

A key point in the reward function is the time penalty factor: -0.05 for

function 5.2 and -0.01 for function 5.3. This small reward is added at every

frame, expressed with mathematical condition ti < ti+1. The time penalty

factor is very used in the RL reward function implementation, encouraging

the agent to move and reach the target. The best performances were achieved

with function 5.2, while function 5.3 showed high values of the reward func-

tion, but worst performances.

5.6.3 Results

This subsection presents 3 different training results, showing graphs concern-

ing the most important statistics for the training phase:

83

1. Cumulative Reward : The mean cumulative episode reward over all

agents (in this case, only one). It should increase during a success-

ful training session.

2. Entropy : How random the decisions of the model are. It should slowly

decrease during a successful training process.

All these 3 training were made using almost the same training parame-

ters, explained in detail in Appendix C, with only two changes: the reward

function used and the max step parameter, that fixes the maximum number

of step for the training phase. Next subsubsections will highlight problems

and strength point in the training phase.

CarSimpleJ

The first good performances were accomplished using the following parame-

ter, using the 5.3 reward function:

default:

trainer: ppo

batch_size: 4096

beta: 1.0e-4

buffer_size: 40960

epsilon: 0.1

gamma: 0.99

hidden_units: 256

lambd: 0.95

learning_rate: 1.0e-5

84

max_steps: 2.5e6

memory_size: 256

normalize: false

num_epoch: 3

num_layers: 2

time_horizon: 64

sequence_length: 64

summary_freq: 1000

use_recurrent: false

Figure 5.36 and 5.37 show the 2 graphs for the parameters Cumulative

Reward and Entropy. Key point is that the reward is overall increasing, but

has lot of peaks, both high and low. This is linked to the Entropy parameter

that is not decreasing in the right way. This leads to a behaviour that

sometimes gives a good results, sometimes not, with the agent that collides

with the road or with the obstacle.

Figure 5.36: Cumulative Reward, carSj scene

85

Figure 5.37: Entropy, carSj scene

With respect to previous simulations, this one was the first one giving a

reward that was overall increasing, accomplishing the task. However, that

was because of the small number of iterations, 2.5 millions. This result was

the starting point for other simulations, since the parameters for the learning

phase were suitable for the application.

carSimpleJ20

The only change that was made on the max steps parameter, that was fixed

to 20 millions, in order to see if the reward and entropy would have followed

the correct behaviour. Figure 5.38 and 5.39 show the behaviour of the pa-

rameters, highlighting the correct trend, even with some low peaks for the

reward.

From a numerical point of view, the results were very satisfying, but the

problem was linked to the agent behaviour. It was going too slow, taking

positive reward thanks to the fact it was getting closer to the target, but

86

Figure 5.38: Cumulative Reward, carSj20 scene

Figure 5.39: Entropy, carSj20 scene

87

after have avoided the obstacle it was not able to return on the correct lane.

This overfitting behaviour was caused due to the fact that the reward given

for the target approaching was too high respect to the one given for the final

goal accomplishment.

carSimpleTime25

The behaviour obtained in the previous simulation suggested a change in

the reward function. Equation 5.2 was adopted, changing the value assigned

for the target approaching and time penalty. In Figure 5.40 and 5.41 it is

possible to notice the immediate stabilization of the reward function, while

the entropy is decreasing in the correct way.

Figure 5.40: Cumulative Reward, carSTime25 scene

The behaviour is almost perfect, with the agent that is basically always

able to avoid the obstacle and return in the correct lane, hitting the target.

In this simulation the max steps parameter was set to 25 millions.

88

Figure 5.41: Entropy, carSTime25 scene

89

90

Chapter 6

Conclusions

6.0.1 Results

The biggest challenge in this project was to create a useful and re-usable ap-

plication for Unity 3D, Ontology in Protégé and both Supervised Learning

and Reinforcement Learning. This work contributed in the global system

giving an improved road environment for the simulations, a new ontological

building phase regarding the Road Context and two Machine Learning ap-

plications. As seen in previous sections, the final work presents satisfying

results, both for the Supervised and Reinforcement Learning applications:

this results are resumed in Table 6.1. In addition to this, the improved scene

showed a working traffic light system, that is correctly handled by the 4 dif-

ferent moving cars. The Ontological representation phase also presented a

correct behaviour, creating the right individuals representing the Unity3D

objects.

Among the 4 algorithms used for the Supervised Learning technique, De-

91

Machine Learning

Type
Algorithm/Scene Result

Supervised
Learning

Decision Tree
97.8% for the training set

and 97.1% for the test
set.

kNN
Ratio decreasing with the
k increase: not suitable.

Random Forest
99.7% for training set and

99.4 % for the test set.

MLP
99.7 % for the training set

and 99.4 % for the test
set.

Reinforcement
Learning

carSj

Good reward trend, not
the entropy one.

Behaviour correctness
borderline.

carSj20
Perfect reward and

entropy trend. Training
lead to unusable model.

carSTIme25

Perfect reward and
entropy trend. Perfect

model for simulated
obstacle avoidance.

Table 6.1: Summary of ML results

92

cision Tree and Random Forest are the most suitable ones. At the current

state of the work, Decision Tree is the best one, because of simplicity, read-

ability and computational time, even if MLP and Random Forest are giving

better results. However, MLP and Random Forest are not really suitable

because of the scenario simplicity, leading to an high overfitting probability.

6.0.2 Future Works

The complexity and the dimension of the global system allow several future

works to be done. The most important future work will be the real implemen-

tation of the system, passing from the simulated data collection to real ones.

Related to this, the ontology creation for the last context, with a deep analysis

of the driver status, will complete this part of the system. One of the problem

in the current state is the amount of data and road object variety. Future

works should be focused on other real road object implementation, in order

to create a more realistic environment; Animals and Bikes implementations

would be one of the possible addition that could be made in the environment.

Future works related to the Supervised Machine Learning would be focused

on the individuation of the best algorithm with respect to the system grow,

focusing also on the validation part for the algorithms. Reinforcement Learn-

ing is the part the most improvable: future works should be focused not only

on the real implementation, but also to create a working training scenario

for the complete simulated scene. Next big step in the ML application would

be the implementation of a Deep Learning image recognition, with the usage

of cameras in order to collect more and different data. This implementation

93

would mean a more realistic and complete system, giving more useful data

to the SL and RL applications.

94

Appendix A

Building the Ontology: Data &

Methodology

The data used for the ontology creation has to follow a specific format. In

the csv file each screenshot representing the environment is saved in a unique

string, that is then processed by the JAVA program. After the precessing

phase, the JAVA program create and instantiate a real ontology for screen-

shot in the csv file. An example of a string showing only the objects saved

in a csv file is shown below:

”0”:”type”:”WorkSign”,”speed”:0,”acceleration”:0,”distance”:44.11644,

”position”:”(3.0, -79.9, -49.0)”,”rotation”:”(270.0, 180.0, 0.0)”,”rotationRel-

ative”:”175.1878”,”directionRelative”:

”2.732076E-05”,”isOnLane”:0,”isOnLaneRelative”:0,”roadAngle”:0,

”weight”:0,”size”:0.08708858,”color”:off,

”1”:”type”:”SpeedSign”,”speed”:0,”acceleration”:0,”distance”:74.77336,

95

”position”:”(33.7, -78.8, -49.4)”,”rotation”:”(0.0, 0.0, 0.0)”,”rotationRela-

tive”:”177.023”,”directionRelative”:

”-89.99989”,”isOnLane”:0,”isOnLaneRelative”:0,”roadAngle”:0,

”weight”:0,”size”:0.1856232,”color”:off,

”2”:”type”:”WorkOnRoad”,”speed”:0,”acceleration”:0,”distance”:51.33749,

”position”:”(10.3, -80.5, -46.4)”,”rotation”:”(0.0, 90.0, 0.0)”,”rotationRela-

tive”:”133.4264”,”directionRelative”:

”-0.337466”,”isOnLane”:1,”isOnLaneRelative”:1,”roadAngle”:0,

”weight”:0,”size”:13.79253,”color”:off,

”3”:”type”:”Rock”,”speed”:0,”acceleration”:0,”distance”:59.54245,

”position”:”(-58.2, -79.0, -103.3)”,”rotation”:”(270.0, 0.0, 0.0)”,”rotationRel-

ative”:”73.23051”,”directionRelative”:

”2.732076E-05”,”isOnLane”:1,”isOnLaneRelative”:0,”roadAngle”:0

,”weight”:0,”size”:3.143028,”color”:off,

”4”:”type”:”TreeOnRoad”,”speed”:0,”acceleration”:0,”distance”:23.036,

”position”:”(-44.3, -80.2, -69.1)”,”rotation”:”(90.0, 270.0, 0.0)”,”rotationRel-

ative”:”81.84576”,”directionRelative”:

”-1.366038E-05”,”isOnLane”:1,”isOnLaneRelative”:0,”roadAngle”:0,

”weight”:0,”size”:16.20387,”color”:off

Here the data are collected only in the CarController function, adding

in the string the totality of the objects present in the list. As it is possible

to see, there are 14 different variables collected (type, speed, acceleration,

distance, position, rotation, rotationRelative, directionRelative, isOnLane,

isOnLaneRelative, roadAngle, weight, size and color) plus the id variable,

used just for a checking purpose.

96

Appendix B

Supervised Data: format &

collections

For the Supervised application the data were saved in a predefined format,

that allowed to use them in python through the panda package. Every game

object has 7 variables characterizing it: Type, Speed, Acceleration, Dis-

tance From Vehicle, Is On The Same Lane, Size, Color. Here is how the

data look like in a csv file example:

WorkOnRoad,0,0,51.33749,0,6.408485,0

Rock,0,0,59.54245,1,2.336617,0

TreeOnRoad,0,0,23.036,0,8.640416,0

SpeedSign,0,0,60.76823,0,1.337128,0

WorkSign,0,0,91.54299,0,1.064657,0

WorkSign,0,0,24.93469,0,1.064657,0

StopSign,0,0,14.46818,1,1,0

Rock,0,0,78.07341,-1,2.336614,0

97

WorkSign,0,0,58.30757,0,1.064657,0

WorkSign,0,0,44.11644,0,1.064656,0

SpeedSign,0,0,74.77336,0,1.333961,0

The data collection is composed of 2 parts, both made in C# through

Unity scripts: RoadObject and the CarController. The former one writes a

string for every game object belonging to this class, already in the correct

format, while the latter is in charge of write the csv file. The 3 lists created in

the CarController script (RoadObject, CloseRoadObject and Obstacle) write

the string for every road object with the correct characteristics.

98

Appendix C

Agent Observations & Training

Parameters

This appendix presents the Agent Observations made by the agent and ex-

plain in details the training parameters.

C.1 Observations

• AddVectorObs(isOnLane): allow to observe if the agent is still on the

Road.

• AddVectorObs(collision): observe the collision variable. 1 if obstacle,

2 if the target.

• AddVectorObs(rigidbody.velocity); AddVectorObs(rigidbody.angularVelocity):

current velocities.

• AddVectorObs(Target.position.x / maxDistanceBoundX): Target posi-

99

tion (also on the z plane)

• AddVectorObs((Target.position.x - this.transform.position.x) / maxDis-

tanceBoundX): agent position with respect to the target (also on the z

plane).

• For each obstacle: distance, position and collider bounds.

• AddVectorObs((this.transform.position.x - bound x1.position.x) / maxDis-

tanceBoundX): agent distance from the Road bounds; the same obers-

vation is made for the other 3 bounds.

C.2 Training Parameters

• Gamma : corresponds to the discount factor for future rewards. This

can be thought of as how far into the future the agent should care about

possible rewards. 0.99

• Lambda : corresponds to the lambda parameter used when calculating

the Generalized Advantage Estimate (GAE). This can be thought of as

how much the agent relies on its current value estimate when calculating

an updated value estimate. 0.95

• Buffer Size : corresponds to how many experiences (agent observations,

actions and rewards obtained) should be collected before we do any

learning or updating of the model. Should be a multiple of batch size.

40960

100

• Batch Size : is the number of experiences used for one iteration of

a gradient descent update. This should always be a fraction of the

buffer size. 4096

• Number of Epochs : is the number of passes through the experience

buffer during gradient descent. 3

• Learning Rate : corresponds to the strength of each gradient descent

update step. 1.0e-5

• Time Horizon : corresponds to how many steps of experience to collect

per-agent before adding it to the experience buffer. When this limit is

reached before the end of an episode, a value estimate is used to predict

the overall expected reward from the agent’s current state. 64

• Max Steps : corresponds to how many steps of the simulation (mul-

tiplied by frame-skip) are run during the training process. 2.5e6 -

2.5e7

• Beta : corresponds to the strength of the entropy regularization, which

makes the policy ”more random.” This ensures that agents properly

explore the action space during training. Increasing this will ensure

more random actions are taken. 1.0e-4

• Epsilon : corresponds to the acceptable threshold of divergence between

the old and new policies during gradient descent updating. 0.1

• Number of Layers : corresponds to how many hidden layers are present

after the observation input, or after the CNN encoding of the visual

101

observation. For simple problems, fewer layers are likely to train faster

and more efficiently. More layers may be necessary for more complex

control problems. 2

• Hidden Units : correspond to how many units are in each fully con-

nected layer of the neural network. 256

102

Bibliography

[1] A. Ortalda, M. D. Hina, A. Soukane, A. Moujahid, and A. Ramdane-

Cherif, “Safe Driving Mechanism: Detection, Recognition and Avoid-

ance of Road Obstacles,” KEOD, 2018, submitted: 2018-06-11.

[2] M. William, B.-B. Cristopher, and B. Lawrence, Reinventing the auto-

mobile: Personal urban mobility for the 21st century. MIT PRESS,

2010.

[3] “Research and Innovation,” 2018, URL: http://www.acea.be/industry-

topics/tag/category/research-and-innovation [accessed: 2018-03-01].

[4] “ AAPC 2016 Research and Development Report,” 2016, URL:

http://www.americanautocouncil.org/research-development-0 [ac-

cessed: 2018-03-01].

[5] Mathworks, Machine Learning with MATLAB.

Mathworks, 2018, ch. 1–4. [Online]. Avail-

able: https://mathworks.com/campaigns/products/offer/machine-

learning-with-matlab.html

103

[6] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow pre-

diction with big data: A deep learning approach,” IEEE Transactions

On Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, April

2015.

[7] S. Kaplan, M. A. Guvensan, A. G. Yavuz, and Y. Karalurt, “Driver

Behavior Analysis for Safe Driving: A Survey,” IEEE Transactions On

Intelligent Transportation Systems, vol. 16, no. 6, pp. 3017 – 3032, 2015.

[8] Tesla. [Online]. Available: https://www.tesla.com/autopilot

[9] Waymo. Accessed 22/01/2018. [Online]. Available:

https://waymo.com/

[10] INTEL. Advanced driver assistant system: Threats, re-

quirements, security solutions. Accessed 19/01/2018. [Online].

Available: https://www.intel.com/content/dam/www/public/us/en/

documents/white-papers/advanced-driver-assistant-system-paper.pdf

[11] “Safety,” 2018, URL: http://www.acea.be/industry-

topics/tag/category/safety [retrieved: june, 2018].

[12] A. Moujahid, A. Ortalda, M. D. Hina, A. Soukane, and A. Ramdane-

Cherif, “Machine Learning Solutions for ADAS,” ICACCE, 2018, sub-

mitted: 2018-03-20.

[13] New-York-Telegraph. Driving investment returns through

active safety. Accessed 19/01/2018. [Online]. Avail-

104

able: http://www.telegraph.co.uk/sponsored/finance/investments/

habitat/car-road-safety-technology.html

[14] Road crash statistics. Accessed 19/01/2018. [Online]. Avail-

able: http://asirt.org/initiatives/informing-road-users/road-safety-

facts/road-crash-statistics

[15] BOSCH. Chassis systems control — bosch study on driver

assistance systems 2012. Accessed 19/01/2018. [Online]. Avail-

able: http://www.bosch-presse.de/pressportal/de/media/migrated-

download/de/7966ks-e-Detailed-information-driver-survey.pdf

[16] I.-H. Kim, J.-H. Bong, J. Park, and S. Park, “Prediction of drivers in-

tention of lane change by augmenting sensor information using machine

learning techniques,” SAICSIT, pp. 47–55, 2013.

[17] Subaru-Forester. Pre-collision braking system.

Https://carmanuals2.com/get/subaru-forester-2014-pre-collision-

braking-system-32039.

[18] Mitsubishi-Motors. (1998, December) Mitsubishi mo-

tors develops ”new driver support system”. Accessed

19/01/2018. [Online]. Available: http://www.mitsubishi-

motors.com/en/corporate/pressrelease/corporate/detail429.html

[19] FCA. (2018). [Online]. Available: https://www.fiat.it/fiat-500x

105

[20] E. Snyder. (2015). [Online]. Available:

https://www.edgarsnyder.com/car-accident/who-was-

injured/teen/teen-driving-statistics.html

[21] Mercedes-Benz. (2017, September) What is mercedes-benz at-

tention assist? Accessed 19/01/2018. [Online]. Avail-

able: http://mercedesbenz.starmotorcars.com/blog/what-is-mercedes-

benz-attention-assist/

[22] V. Jha, “Study of machine learning methods in intelligent transportation

systems,” December 2015.

[23] Y. Hou, P. Edara, and C. Sun, “Modeling mandatory lane changing

using bayes classifier and decision trees,” IEEE Transactions On Intel-

ligent Transportation Systems, vol. 15, no. 2, pp. 647–655, April 2014.

[24] M. T. Jones and IBM. (2017, December) Unsuper-

vised learning for data classification. [Online]. Avail-

able: https://www.ibm.com/developerworks/library/cc-unsupervised-

learning-data-classification/index.html

[25] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction

(Second Edition). MIT Press, 2017.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016, http://www.deeplearningbook.org.

[27] M. A. Nielsen, Neural Networks and Deep Learning. Determination

Press, 2015, ch. 1.

106

[28] P. Tchankue, J. Wesson, and D. Vogts, “Using machine learn-

ing to predict the driving context whilst driving,” MDIP, sen-

sors 2017, 17, 1350; doi:10.3390/s17061350. [Online]. Available:

http://www.mdpi.com/journal/sensors

[29] C. DAgostino, A. Saidi, G. Scouarnec, and L. Chen, “Learning-based

driving events classification,” in Proceedings of the 16th International

IEEE Annual Conference on Intelligent Transportation Systems (ITSC

2013), The Hague, The Netherlands, October 6-9 2013.

[30] A. Jahangiri and H. A. Rakha, “Applying machine learning techniques

to transportation mode recognition using mobile phone sensor data,”

IEEE Transactions On Intelligent Transportation Systems, vol. 16, no. 5,

pp. 2406–2417, October 2015.

[31] C. Miyajima, Y. Nishiwaki, K. Ozawa, T. Wakita, K. Itou, K. Takeda,

and F. Itakura, “Driver modeling based on driving behavior and its

evaluation in driver identification,” Proceedings of the IEEE, vol. 95,

no. 2, pp. 427–437, February 2007.

[32] A. Ortalda, M. D. Hina, A. Soukane, and A. Ramdane-Cherif, “Analysis

on Distraction Factors of Young Drivers,” HUSO special track, 2018,

submitted: 2018-06-11.

[33] UnityTechnologies. Accessed 04/06/2018. [Online]. Available:

https://unity3d.com/

[34] G. Brain. Accessed 06/06/2018. [Online]. Available:

https://www.tensorflow.org/

107

[35] GoogleBrain. Tensorflow. Accessed 11/06/2018. [Online]. Available:

https://www.tensorflow.org/

[36] R. J. Hoekstra, “Ontology representation : design patterns and ontolo-

gies that make sense,” 2009, iOS press.

[37] StanfordUniversity. Protg. Accessed 04/06/2018. [Online]. Available:

https://protege.stanford.edu/

[38] Oracle. Accessed 04/06/2018. [Online]. Available:

https://developer.oracle.com/java

[39] C. Thierry, M. D. Hina, A. Soukane, and A. Ramdane-Cherif, “Onto-

logical and machine learning approaches for managing driving context

in intelligent transportation,” KEOD, 2017.

[40] EYEmaginary. Aicar. Accessed 14/06/2018. [Online]. Available:

http://www.eyemaginary.com/

[41] DL4J. Guide to multilayer perceptron. Accessed 14/06/2018. [Online].

Available: http://www.eyemaginary.com/

108

		Politecnico di Torino
	2018-09-06T17:45:47+0000
	Politecnico di Torino
	Danilo Demarchi
	S

