
Politecnico di Torino

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

Study and implementation of a SpaceWire
data-handling network for reconfigurable

vision-based navigation systems

Relatore: Candidato:
Prof. Luca Sterpone Adriano Caponio

Tutor aziendale:
Ing. Antonio Tramutola

AA. 2017-2018

Study and implementation of a SpaceWire
data-handling network for reconfigurable

vision-based navigation systems

Adriano Caponio

Acknowledgements
During the last six months, I had the opportunity to perform my master thesis
project in cooperation with Thales Alenia Space, investigating electronic systems
based on FPGA for image processing and data communication. Now that this work
is completed it is the time to reflect and express my appreciation to those who sup-
ported me along the way.

Firstly, I would like to express my sincere gratitude to my advisor Prof. Luca Ster-
pone for allowing me have this great opportunity. Secondly, I would like to thank
my industrial tutor Antonio Tramutola who has been a great supporter of all the
thesis activities, always believing I could overcome any difficulties. Special thanks
must go out to Daniele Rolfo, that with its expertise in FPGAs, has always been
my reference point: he has forced me asking the right questions and with patience
has sat nearby debugging VHDL code. Finally, I am for sure indebted to Davide
Paltro, always present in the Avionic laboratory and available for any questions
regarding SpaceWire packets.

Last, but certainly not least, I would like to thank my family. Mum and Dad, if it
weren’t for your continuous support and all the opportunities you gave me, I could
have never gotten this far. For sure I couldn’t have made it without my brothers,
who have always supported me bearing my complaints. Really thanks! Finally,
I have to thank my dear friend Aldo, my electronic classmates, my friends and
everyone who has allowed me accomplishing such huge goal.

3

Abstract
In the present thesis, I studied and prototyped a SpaceWire data-handling network
for communication inside a vision-based navigation system designed by Thales Ale-
nia Space for a space exploration mission on Mars and in particular during the final
Entry, Descending and Landing (EDL) phase on the planet.

The network is composed of several Codecs for interfacing with external world, one
Router used to connect several sub-systems together and one RMAP block for per-
forming read and write operations into a target RAM memory according to ECSS
standards. All the three cores have been designed by a Japanese development team
which made available open-source only their VHDL codes claiming compliance with
ECSS standard.

Therefore, during this thesis some missing parts have been recostructed and their
working behaviour has been understood by means extensive simulations. In the
end, the network has been implemented on hardware using a space qualified FPGA
platform and functionally tested in a Hardware-in-the-loop system employing a
Leon-3 processor. In the next future, this SpaceWire network can thus be used to
exchange data and controls between feature extractor and matcher IP cores, camera
and the on-board computer after additional testing on the implemented prototype.

Contents

List of Figures 7

List of Tables 9

1 Introduction 11
1.1 Vision-based navigation systems . 12

2 SpaceWire Standard 15
2.1 Overview . 15

2.1.1 Physical level . 16
2.1.2 Signal level . 17
2.1.3 Character level . 19
2.1.4 Packet level . 20
2.1.5 Network level . 21

2.2 Remote memory access protocol (RMAP) 24
2.2.1 RMAP commands and fields 25
2.2.2 Cyclic Redundancy Code . 28

3 Field Programmable Gate Arrays 31
3.1 FPGA technology . 31
3.2 FPGA design flow . 36
3.3 Space-grade FPGAs: Xilinx Virtex devices 37
3.4 GR-CPCI-XC4V board . 39

4 SpaceWire network architecture 41
4.1 General structure . 41
4.2 SpaceWire Codec IP core . 42

4.2.1 Core architecture . 43
4.2.2 Link state machine . 45

4.3 SpaceWire Router IP core . 48
4.3.1 Core architecture . 48

5

4.3.2 CRC and Routing table generation 51
4.4 SpaceWire RMAP IP core . 53

4.4.1 Core architecture . 54
4.4.2 Working behaviour dataflow 56
4.4.3 FIFOs generation . 58

4.5 Target RAM memory . 59

5 Cores Simulations 61
5.1 Codec simulation . 61
5.2 Router simulation . 65

5.2.1 Routing table configuration 66
5.2.2 Path addressing mode . 69
5.2.3 Logical addressing mode . 71

5.3 RMAP simulation . 71

6 Experimental results 75
6.1 Hardware implementation . 75

6.1.1 Pin assignment . 76
6.1.2 Clock management . 78
6.1.3 FPGA synthesis and implementation 79
6.1.4 Timing constraints . 81

6.2 Hardware testing . 82
6.2.1 Testing setup . 82
6.2.2 Test procedure and results 83

6.3 Summary . 87

7 Conclusions and future work 89

List of acronyms 91

Bibliography 93

6

List of Figures

1.1 System architecture of VisNav EDL project (by courtesy of Thales). 12

2.1 Spacecraft architecture based on SpaceWire network. 16
2.2 SpaceWire connector and wire assembly. 17
2.3 LVDS signal levels. 17
2.4 LVDS driver and receiver configurations. 18
2.5 Example of Data and Strobe encoding. 18
2.6 Data and control characters and control codes. 20
2.7 Structure of a SpaceWire packet. 21
2.8 An example of network. 22
2.9 Path and logical addressing in SpaceWire network. 23
2.10 Write command packet and bits of the instruction field. 26
2.11 Write command reply packet and bits of the instruction field. 27
2.12 Write command and reply sequence. 27
2.13 Read command packet and bits of the instruction field. 28
2.14 Linear Feedback Shift Register for CRC computation [15]. 29

3.1 Picture of Xilinx Virtex-4 FPGA [1]. 31
3.2 General architecture of a modern FPGA. 32
3.3 Basic structure of an FPGA Configurable Logic Block. 33
3.4 Structure of a switch matrix for a pass-transistor-based FPGAs. . . 34
3.5 FPGA programming through JTAG scan chain 35
3.6 Typical FPGA design flow. 36
3.7 Roadmap of the Xilinx space-grade Virtex families FPGAs. 37
3.8 Internal architecture of Virtex-4 CLB. 38
3.9 GR-CPCI-XC4V board block diagram. 39

4.1 High level architecture of SpaceWire network 41
4.2 SpaceWire Codec IP core block diagram 43
4.3 Timing diagram of writing into Transmit FIFO. 44
4.4 Synchronization mechanism inside Codec receiver. 45

7

4.5 SpaceWire Interface State machine. 46
4.6 SpaceWire State machine in Auto-start mode. 47
4.7 SpaceWire Router IP core block diagram 48
4.8 Structure of the Routing table . 50
4.9 Use of Block memory generator to generate RAM/ROM. 51
4.10 Generation of crcRomXilinx single-port ROM memory. 52
4.11 Generation of RamXilinx32x256 single-port RAM memory. 53
4.12 SpaceWire RMAP IP core block diagram 54
4.13 Dataflow representation of RMAP IP core working behaviour. . . . 57
4.14 Generation of FIFO8x2KXilinx standard FIFO. 58
4.15 Graph of Target RAM memory Finite State Machine. 59

5.1 Architecture of first Codec simulation testbench. 61
5.2 First SpaceWire Codec IP core simulation 62
5.3 Second SpaceWire Codec IP core simulation 63
5.4 Architecture of second Codec simulation testbench. 64
5.5 Architecture of Router testbench. 65
5.6 Snapshot of the RMAP Decoder present inside Router Port 0. . . . 67
5.7 SpaceWire Router core simulation and routing table configuration. . 68
5.8 SpaceWire Router simulation for path addressing mode 69
5.9 SpaceWire Router core simulation in logical addressing mode. . . . 70
5.10 Architecture of RMAP simulation testbench. 71
5.11 SpaceWire RMAP core plus target memory simulation. 72

6.1 Picture of the Gaisler GR-CPCI-XC4V board employed. 75
6.2 Picture of the SpaceWire mezzanine board GR-SER2-SPW4. 76
6.3 Electrical schematic of mezzanine board with SpW and GENIO signals 77
6.4 FPGA Clock different frequencies generation using a DCM. 78
6.5 Generation of DCM called Clockbuffer. 79
6.6 Device utilization estimation after synthesis phase. 80
6.7 Device utilization summary after Mapping and Place&Route phase. 80
6.8 Test Hardware setup (by courtesy of Thales Alenia Space). 83
6.9 Link analyzer when a SpaceWire connection is established 84
6.10 Packets transmitted during link initialization. 85
6.11 Screenshot of the test program final results. 87

8

List of Tables

2.1 An example of routing table in logical addressing. 24

4.1 Maximum data length handled by RMAP IP core. 55

5.1 RMAP packet fields for routing table dynamic configuration. 66

6.1 Timing settings for complete FPGA project. 81
6.2 Summary of the obtained results. 87

9

10

Chapter 1

Introduction

Vision-based navigation is a technology widely used to support space exploration
missions especially in presence of an harsh environment on the planet to reach.
Some of its scenarios are: fly-bys, interplanetary cruise, rendezvous and docking,
entry, descent, landing and planetary surface mobility. Thales Alenia Space have
a long history of study and development of space exploration mission: one of this
projects, which this thesis project is part of, is the "VISion based NAVigation sys-
tem" or briefly called VISNAV previously designed for the Moon exploration and
then upgraded for the Mars scenario.

The objectives of this European Space Agency-funded program is the development
and validation of building blocks of a Vision Based Navigation system for the Mars
Entry, Descent and Landing (EDL) phases. As in all missions, data exchange be-
tween modules plays a crucial role. VisNav system communication is based on
the SpaceWire protocol which allows to achieve high data-rate links between the
different building blocks composing the systems. The SpW protocol is a standard
developed by ESA, fully detailed in several European Cooperation for Space Stan-
dardization (ECSS) documents and implemented in dedicated IP cores under ESA
and Industry property right.

This thesis aims at studying and implementing a SpaceWire network starting from
partial open-source cores found on the web that could be inserted in this context.
Each core composing the network has been reconstructed and simulated in order
to assess the compliance with ECSS standards. Finally the whole design has been
implemented on a space qualified FPGA platform and tested successfully to verify
that the intended functionalities are deployed.

Such open-source SpaceWire network can also replace custom-tailored IP cores
providing more flexibility to the system and also a significant costs reduction.

11

1 – Introduction

1.1 Vision-based navigation systems
Before going on with the description of the SpaceWire standard, it is worth briefly
talking about the system architecture of VISNAV project. Figure 1.1 shows the
designed configuration for EDL scenario.

Figure 1.1: System architecture of VisNav EDL project (by courtesy of Thales).

Building blocks composing the systems are:

• a Camera, part of the Optical Unit (OU), interfacing with an Optical/Elec-
trical stimulator for images acquisition;

• the Image Processing Board (IPB) component included in the Image Process-
ing Unit. It hosts an FPGA which implements the FEIC (an integrated cir-
cuit for features extraction and matching designed by University of Dundee)
and a processor for running the software part of the image processing algo-
rithms;

• the On-Board Computer (OBC),based on a Leon-2 processor, where GNC
(Guidance, Navigation and Control) algorithms are hosted. Moreover, it
interfaces with different sensors (Altimeter, IMU...), communicates with the
Ground segment and drives the different actuators.

As it is visible from figure 1.1, every component has its redundant conterpart in
order to achieve an hardware-implemented single failure tolerance. VisNav system
communication is based on a SpaceWire router implemented in the FPGA present
on the IPB. The images taken from the camera are passed to the IPB via SpW
link; inside this last component, the FEIC extracts the feature list and pass it to
the On-Board Computer through the router which then performs hazard detection
and GNC operations. Moreover the OBC, always through the router, is able to
configure the FEIC and read its status via SpaceWire RMAP protocol.

12

1.1 – Vision-based navigation systems

All the SpW communication sub-system has been dealt in this thesis. In particular:

Chapter 2 provides some background informations which are relevant to this the-
sis work. Main features of the SpaceWire standard and the RMAP protocol are
presented from a theoretical point of view using the ECSS as a reference source.

Chapter 3 deals with the SpaceWire network giving a detail description of the
internal architecture and working behaviour of each single IP core which can be
found inside it; moreover the way how some internal blocks have been generated,
using automatic VHDL tools, will be presented.

Chapter 4 describes all the ModelSim simulations performed to assest the ECSS
compliance and the FPGA development flow followed to get an hardware imple-
mentation.

Chapter 5 gives details about the board and method used to prototype the design
with the test procedures employed to verify the hardware functionalities were the
ones desired.

Finally chapter 6 addresses the conclusions presenting the implementated design
and possible future follow-up.

13

14

Chapter 2

SpaceWire Standard

In this chapter a general overview of SpaceWire standard principles will be given
as background information for this thesis work. Details will be given spanning all
the ISO/OSI network model from the physical electrical level up to the high level
packet transmission covering also most important RMAP features.

2.1 Overview

One of the most important needs inside a satellite spacecraft is having a bus system
to allow internal subsystems and electronic components to communicate exchang-
ing informations. Due to the harsh space environment and high computational
needs this communication system should also provide several features, namely be-
ing fast, fault-tolerant and reusable among different space missions. In order to
meet this requirements a spacecraft communication protocol called SpaceWire was
developed by ESA (European Space Agency) in collaboration with international
space agencies including NASA, JAXA and Roscosmos. It has been standardized
inside ECSS-E50-12A document with the important contribution of University of
Dundee in overcoming the IEEE 1355 standard which SpaceWire is based on.

SpaceWire provides a unified high speed data-handling infrastructure for connect-
ing together sensors, processing elements, mass-memory units, downlink telemetry
subsystems and EGSE equipment. The standard defines a full-duplex, point-to-
point, serial data communication link capable of data rates between 2 Mbps and
400 Mbp [13]. Below in Fig.2.1 is shown an example of a SpaceWire based archi-
tecture inside a satellite data-handling section. SpaceWire has been developed to
allow the compatibility between different space equipment and subsequent reuse
into different scenarios increasing the flexibility within limited budget space mis-
sions. As can been seen below kernel of network system is given by packet switching

15

2 – SpaceWire Standard

wormhole routing switches which can be stand-alone components or can be inte-
grated into the memory or other modules and could possibly be bypassed using
target logical addressing.

Figure 2.1: Spacecraft architecture based on SpaceWire network.

The scope of the Standard is the description of the working behaviour of physical
connectors and cables, focusing on electrical properties and logical protocols that
comprise the SpaceWire data link. Moreover, SpaceWire provides a means of
sending packets of information from a source node to a specified destination node
covering also error detection and recovery throught specific code bits set inside the
packet; however standard does not specify packet contents.

2.1.1 Physical level

The physical level of the SpW protocol covers cables, connectors and printed circuit
board tracks. Moreover it describes the actual interface between nodes including
both the mechanical and electrical interfaces [13]. Each SpaceWire cable is made
up by four twisted pair wires namely DataIn, StrobeIn, DataOut and StrobeOut
that can run in both directions and working in a differential mode: therefore eight
wires are present inside a cable. In addition, the ground wire runs in the middle
of the connector as shown in Fig.2.2.

16

2.1 – Overview
14 CHAPTER 2. SPACEWIRE PROTOCOL AND REMOTE MEMORY ACCESS PROTOCOL

Din+

Sin+

Ground

Sout-

Dout-

Din-

Sin-

Sout+

Dout+

1

shell shield

low impedance
connection

4 twisted-pair linesMDM connector

2

3

4

5

6

7

8

9

Figure 2.2: SpaceWire connector and ca-
ble assembly. D and S represent ”Data” and
”Signal”, respectively.

Data

1 0 0 1 1 0 1 1 0

Strobe

Recovered
Clk

Recovered
Data

Figure 2.3: An example of signal encoding in
the SpaceWire protocol. ”Data” and ”Strobe”
are actually transmitted signals. ”Recovered Clk”
and ”Recovered Data” are recovered in a receiver
node.

8-byte so that each node can prevent a buffer overflow. The EOP and EEP is a delimiter of a
packet, expressing normal end of a packet and erroneous abortion of a packet, respectively.

Control Codes The Control Codes are NULL and Time-code. The NULL is a character that is
sent when there is no Data Character or Control Character to be transferred. The Time-code
is used to broadcast the 8-bit time from a node to all the other nodes of a SpaceWire network.

In Figure 2.5, we show a typical packet format defined in the exchange level of the SpaceWire
protocol. Each packet consists of three parts; a destination address, cargo, and EOP. The desti-
nation address part designates the address of a node to which the packet is delivered. The cargo
contains main body of data, and it is followed by the EOP that is a terminal symbol of the packet.
The address part and cargo part consists of a series of Data Characters.

The destination address part of a packet is important in a SpaceWire network, which as shown
in Figure 2.6, generally consists of SpaceWire nodes and routing switches. When a routing switch
receives a packet from a certain port, it interprets the destination address and selects the port to
which the packet should be delivered. As illustrated in Figure 2.6, there are two ways to describe
the destination address; Path Addressing and Logical Addressing, which are in a sense relative and
absolute addressing, respectively. In the Path Addressing mode, a Destination Address part of a
packet consists of a series of ”port numbers” of SpaceWire routing switches that the packet will run
through. On the other hand, in the Logical Addressing mode, ”Logical Address” of the destination
node is written in a Destination Address part. A Logical Address is a unique number allocated to
each node, and each routing switch has to know the correspondence between its port number and
the Logical Address connected to it; namely a routing table. When the Logical Addressing mode is
used, a ”master” node configures the routing table of each routing switch before the actual packet
transfer starts.

Figure 2.2: SpaceWire connector and wire assembly.

Each single twisted pair wire is coated with a polymer jacket while the whole cable
is silver-shielded from the outside to reduce interference and for further protection.
The ECSS standard also sets the maximum length of a SpaceWire cable to 10
meters, to keep the disturbances on the link at acceptable safety margins as well
as defines the connector as a nine contact micro-miniature D-type.

2.1.2 Signal level

The signal level part of the SpaceWire standard covers signal voltage levels, noise
margins and signal encoding [22]. In particular the technique adopted by the
protocol is the Low Voltage Differential Signaling (LVDS) which allow to achieve
very high-speed connections with a low voltage swing (generally 350 mV).

Figure 2.3: LVDS signal levels.

The adoption of this differential technique allows to reduce noise margins while us-
ing low voltages levels in information transmission ensuring furthermore relatively

17

2 – SpaceWire Standard

low power consumption at high speed rates. Levels used in LVDS are shown in
Fig.2.3.

Generally, a typical LVDS driver has on its top a constant current source of 3.5 mA
which flows out of it into the transmission medium (a wire or a PCB trace) through
a 100 Ω termination impedance and then back to the driver via the transmission
medium. Two pairs of transistors in a differential configuration control the direc-
tion of the current flowing through the termination resistor as shown in Fig.2.4
(taken from [22]). For all this features, LVDS technique provides nearly constant
drive current (+3.5 mA for logic 1 and -3.5 mA for logic 0) which decreases in-
duced noise on power supplies and provides high immunity to interference due to
its differential nature and reduced power consumption (50 mW) with respect to
other techniques (120 mW for ECL/PECL).

Figure 2.4: LVDS driver and receiver configurations.

SpaceWire adopts just two signals for information encoding: Data and Strobe.
Both of them make use of LVDS.

Figure 2.5: Example of Data and Strobe encoding.

While Data signal should follow normal data bit stream, the Strobe one instead

18

2.1 – Overview

changes state whenever the Data does not change from one bit to the next. An
example of Data-Strobe (DS) encoding is shown in Fig.2.5.
This is a coding scheme which encodes in itself the transmission clock along with
the transmitted data: in fact, the clock can be recovered by simply using an XOR
gate with the Data and Strobe lines as inputs. The reason for using this Data-
Strobe encoding is to improve the skew tolerance to almost 1-bit time, compared
to the 0.5-bit time for normal used encoding [22].

A SpaceWire link comprises two pairs of differential signals, one pair transmitting
the Data and Strobe signals in one direction and the other pair transmitting Data
and Strobe in the opposite direction.

2.1.3 Character level

SpaceWire protocol makes use of two different kinds of characters: data and control
characters. In details:

• Data characters are referred to normal data generally sent in byte packets
with the least-significant bit sent first. Standards defines that data characters
contain also a parity bit and a data-control flag. The parity-bit covers the
previous eight-bits of data and it is set to produce odd parity so that the
total number of 1’s in the field covered is an odd number. The data-control
flag is normally set to zero indicating that the transmitted character is of
data type being instead equal to one in opposite case.

• Control characters on the other hand, are not referred to data but to special
informations. They are formed from a parity bit, a data-control flag and
a two-bit control code; in this case as previously specified data-control flag
set to one. The two-bit control code defines four possible control characters
namely a flow control token (FCT), end of packet (EOP), error end of packet
(EEP), and escape (ESC). While the latter may be used to form longer
control codes, the flow control token (FCT) has the function of alerting the
receiver that another 8-bit packet may arrive so that buffer overflow never
occurs. The EOP and EEP are instead end of packet markers signaling if
either an error or no error has occurred.

Data and control characters are shown in Fig.2.6. In addition to these characters,
standard defines also two control codes: NULL and time-codes.

• NULL is a code sent when there is no Data character or Control character to
be transferred across medium. It is formed by an ESC followed by the flow
control token (FCT). NULL has the main function to keep the SpaceWire
link between two nodes still active or to detect any link disconnection.

19

2 – SpaceWire Standard

• The Time-Code is instead used to support the distribution of system time
across a network. A Time-Code is formed by an ESC code followed by a
single data-character.

In all cases the parity bit is in charge of detection of an error occurred during
transmission. It generally covers the previous eight bits of a data character or two
bits of the control character plus the current parity bit and the current data-control
flag. As previously stated this bit is set to define an odd parity.

Figure 2.6: Data and control characters and control codes.

2.1.4 Packet level

The packet level of the protocol defines the simply defines the content divided in
fields of a SpaceWire packet: destination address, cargo and end of packet marker,
as illustrated in Figure 2.7.

20

2.1 – Overview

Figure 2.7: Structure of a SpaceWire packet.

The first part of the packet is the destination address of the node to which the
information has to be sent. This field is crucial inside the standard since it repre-
sents either the identity of the destination node or the path that the packet has
to take through a SpaceWire network to reach to the destination node. In the
case of a point-to-point link directly between two nodes (so there is no routers in
between) the destination address is not necessary [22].

The content of information to be transferred from source to destination is located
inside the cargo field. SpaceWire standard does not specifies either the packet con-
tent or a limit length so in principle any number of data bytes can be transferred
inside a single packet.

Finally a SpW packet ends with an EOP which delimits where a packet ends up and
its subsequent begins. Sometimes an EEP marker may take place of normal EOP
to indicate that the packet has been terminated prematurely because of an error
that occurred while the packet traversed a SpaceWire network. In this case cargo
is incomplete or contains corrupted information which will be later discarded as
soon as receiver decodes the end of packet marker. In this case the error recovery
procedure is dealt by a specific Finite State Machine (FSM) defined inside the
ECSS standard.

2.1.5 Network level

As previously mentioned, SpaceWire protocol has been introduced in order to
connect into a wider network different nodes like memories or sensors by means
of SpaceWire links and routers so that they can exchange information and work
together to perform some required function. An example of such network is shown
in Fig.2.8.

Links provide the means for passing packets from one node to another with the
assumption that each single node can support only a limited number of links (e.g.
up to six links). Routing switches, also called wormhole routers, can instead con-
nect together many nodes and route packets from one node to another placed in

21

2 – SpaceWire Standard

Figure 2.8: An example of network.

another area of the network.

There are two possible kinds of routers: static and dynamic. A static routing
switch establishes connections between nodes and does not change them with re-
spect to time. On the contrary, dynamic switches change the routing frequently,
usually on a packet by packet basis, and are consequently also known as packet
routing switches. SpaceWire routers are generally of the second kind.

Data are split into packet units to make easier their transmission across the net-
work. Their structure has been described previously. Moreover, flow control (FCT)
is employed to manage the movement of packets across a link connecting a node
or a router to another node or router. In fact, a node or a router accepts an in-
coming data stream only if the receiving buffer for that data is available or empty
otherwise the receiver stops the transmitting node from sending any more data.
The destination address at the beginning of packet is used to route the packet
through a network from the source node to the destination one. There are two
forms of addressing methods which can be used: path addressing or logical ad-
dressing. Both of them can be easily explained with the analogy (taken from [22])
of giving directions to car driver as shown in Fig. 2.9.

The sequence of directions to provide the driver defines the path from the source
node to the destination one. In case of path addressing, this direction is simply

22

2.1 – Overview

Figure 2.9: Path and logical addressing in SpaceWire network.

a data character that specifies which port of the router the packet should be for-
warded through. Since each router can have a maximum of 31 external ports (plus
one internal needed for configuration) the leading data character of each SpW
packet is a number in this range.

In a SpaceWire network using instead logical addressing, each destination is given
an identifier, which is a number in the range 32 to 255. This number represents
a logical address. Each routing switch in the network has an internal table called
routing table (like the sign at a roundabout) which specifies a matching between
what port the packet should be forwarded through and each possible destination
logical address. The leading data character of each packet is then set to the re-
quired destination identifier and the packet is forwarded inside the network. While
in path addressing the leading data character is always discarded after forwarding,
in logical addressing instead it is not, since it will be needed to look up the path
to follow at the next router encountered.

An example of a routing table is shown in Tab.2.1. In this example, when a packet
is received with a logical address of 20 as packet header it is forwarded to output
port 1 of the router. A packet with logical address of either 3 or 15 is routed to
output port 7 and a packet with logical address 31 is sent instead to port 4.

23

2 – SpaceWire Standard

Routing Table
Logical destination Physical output port

20 1
3 7
31 4
15 7
... ...

Table 2.1: An example of routing table in logical addressing.

As can be understood for a medium and large network the routing table can be-
come quickly large involving higher complexity in single routers and higher mem-
ory spaces needed. That’s because when using logical addressing the complexity
of packet addressing is handled by the routing switches rather than by the source
node, as it is instead the case when using path addressing method.

Finally, as previously mentioned, SpaceWire routers employ generally wormhole
routing. When a packet starts to arrive at an input port of a router, its destina-
tion address is looked at immediately. If the requested output port is free, then
the packet is routed immediately to that port marking it as busy until an end of
packet marker is identified. The packet then flows through the router as soon as
it is received at the input port [13].

In case a requested output port is busy then the input port stops the incoming
packet until it becomes free by not transmitting the flow control tokens (FCT). In
this way the link connecting the source node to the routing switch is then blocked
until the port returns free to transmit the new packet.

2.2 Remote memory access protocol (RMAP)

Together with SpaceWire, another communication protocol called RMAP (Re-
mote memory access protocol) was proposed and standardized by ESA inside
ECSS-E-ST-50-52C. RMAP can be used to configure a SpaceWire network, con-
trol SpaceWire nodes, and to transfer data to and from SpaceWire nodes [14].

In particular RMAP proves to be useful when dealing with memories or register
files to perform writing operations in order to configure SpaceWire nodes internal
registers (for example writing switches routing table) therefore creating or chang-
ing the desired network configuration. Similarly, RMAP also allows to perform

24

2.2 – Remote memory access protocol (RMAP)

reading operations from embedded memories or FIFOs to collect status informa-
tions and sharing data between different network nodes.

2.2.1 RMAP commands and fields

An RMAP transaction is generally composed of two packets: a Command one
(Write/Read/Modify) and an optional Reply packet from the target memory node.
The possible commands defined inside the standard are:

• Write command allow one node inside the network, defined as initiator,
to write one or more bytes of data inside one or several memory locations of
another node defined as target, provided that this write operation is allowed.
Write commands can be acknowledged or not by the target when they have
been received correctly. If the write command is acknowledged and there
is an error with the write command, the target replies with an error/status
code to the initiator (or other node) that sent the command [14];

• Read command allow one node inside the network, defined as initiator
node, to read one or more bytes of data present inside one or several memory
locations of another node defined as target, provided that this read operation
is allowed. Data been read is returned back to the initiator node by means
of a reply packet inside cargo field as later described;

• Read-modify-write command is used instead to allow one node inside
the network, defined as the initiator, to read the memory location of another
node, the target one, modifying the value read and then writing a new value
back to the same memory location. Only the value originally written inside
the memory is returned back to the initiator by means of a reply packet.

Each single packet is codified using different fields, as can be seen for instance in
Fig. 2.10 in case of a write command, in order to define which kind of command
is willing to be used, the packet route inside the network, its content etc...
Picture also shows the content of the Instruction field which is in charge of defin-
ing if the packet to be sent contains a command or not (in this case packet type
is 0b01), its nature (Write/read), if the reply packet is requested, its length and
other kind of information.

Since the RMAP can be seen as an upper layer of the SpaceWire protocol, an
RMAP packet is compliant with SpW standard. It begins with target node ad-
dress in order to be routed inside the network and its structure resembles the one

25

2 – SpaceWire Standard

Figure 2.10: Write command packet and bits of the instruction field.

of a SpaceWire packet as defined in section 2.1.4; however since it deals with mem-
ory operations it adds new features such as CRC fields both for the header and
data content in order to verify the packet integrity.

In case a reply to the write operation is requested, the ECSS standard defines also
the setting of the related packet as can been seen in Fig. 2.11.
The reply in particular is used to indicate the outcome of the write operation as
codified inside the Status field. The complete handshaking mechanism between
the Initiator node and the target one is instead shown in Fig.2.12.

The write command sequence starts when the initiator is requested to perform a
write operation. The latter sends a write packet through the network to the target
node codifying it as previously mentioned. The target on his end scans it for
errors by analyzing the CRC field and if no error occurred during transmission the
permission to perform the intended operation is asked and granted by both actors

26

2.2 – Remote memory access protocol (RMAP)

Figure 2.11: Write command reply packet and bits of the instruction field.

sending afterwards the real packet with content to write inside memory location
inside data field. Once data has been written inside memory some information
back to the initiator can been sent such as an acknowledgement (if requested) or
more frequently a reply packet. Once the write reply is received, the initiator node
indicates successful completion of the write request.

Figure 2.12: Write command and reply sequence.

The read command packet has a similar structure to the write one as can been
seen in Fig.2.13. In this case the Read bit is set to 0 and the reply packet is not
optional anymore more as it was for the Write command, therefore relative bit

27

2 – SpaceWire Standard

Figure 2.13: Read command packet and bits of the instruction field.

must be set to 1 in the instruction field. In this case the reply, whose structure is
similar to the previous command, can contain either the data read from the target
or an error code indicating the reason why reading was not performed.

The other command Read-Modify-Write have both command and reply packet
structures similar to the write/read command previously reported; also its RMAP
sequence is quite the same, therefore they will not be presented hereafter but can
been found inside the ECSS standard.

2.2.2 Cyclic Redundancy Code

As previously mentioned, RMAP distinctive feature is to operate a check on data
received by means of an error detecting code such as the CRC (cyclic redundancy
code). The ECSS standard [14] uses the same methods for computing the CRC
for both data and header as CRC forms a field in both parts of a packet.

CRC is one of the most common codes used in networks since is easy to be im-
plemented on hardware and it exploits polynomial divisions. The standard adopts
Galois implementation so in practice a code is computed over 8 bits with a Linear
Feedback Shift Register (LFSR) implementing in the forward representation the

28

2.2 – Remote memory access protocol (RMAP)

polynomial g(x) = x8 + x2 + x1 + 1 as shown in Fig.2.14.

Figure 2.14: Linear Feedback Shift Register for CRC computation [15].

Since first value to be used inside the Shift register (the seed) is crucial in de-
terming its output, the standard sets 00h value as first one. Moreover, SpaceWire
sends the LSB bit first on the link so the code computation starts from the LSB.

A polynomial m(x) is created out of the bits transmitted over the link (always
LSB first as previously stated) considering also the control bit (always set to 0)
and, if present, the parity bit according to the equation:

m(x) = mn−1x
n−1 + mn−2x

n−2 + ... + m0x
0

At this point the remainder polynomial r(x) is created by following the equation:

r(x) = [m(x) · x8] modulo g(x)

where r(x) = r7x
7 + r6x

6 + ... + r0x
0 and ri are binary coefficients.

The two header and data CRC fields are formed from the 8-bit vector r(x); the
least significant bit b0 of the CRC is coefficient r7 with the highest power of x,
while the most significant bit b7 is coefficient r0 with the lowest order.

If the RMAP decoder of target node finds the exact correspondence between both
data and header CRC of the received packet and the internally computed codes,
it allows the memory operation (write/read/modify) to be performed. Otherwise
a CRC error is generated and sent back to the initiator node.

29

30

Chapter 3

Field Programmable Gate Arrays

In this chapter it will be given an explanation of the Field Programmable Gate
Array (FPGA) technology from a theoretical perspective as well as a brief overview
of the space-grade FPGAs and the board used in the hardware implementation.

3.1 FPGA technology
The technology used to implement the project described in this thesis has been
the FPGA one. FPGAs (which stands for Field Programmable Gate Arrays) are
electronic integrated circuit that can be configured by the user to implement any
type of hardware digital system through an electrically programming operation.

Figure 3.1: Picture of Xilinx Virtex-4 FPGA [1].

FPGAs are often preferred nowadays in the electronic industry as a good com-
promise between the flexibility (generally provided by software) and performances
(which is a typical feature of hardware) both coupled with an accessible cost.

31

3 – Field Programmable Gate Arrays

Moreover FPGAs are being constantly used as viable alternatives to ASICs due to
shorter development phase and time-to-market and because together with micro-
processors can form a System-on-chip (SoC) with high computing capabilities.

FPGA world market can be divided up into two main player: Intel (former Altera)
and Xilinx. Their FPGAs can be found in most different contests and sectors such
as AI, telecommunication, automotive, high performance computing, consumer
electronics, military and aerospace and many more (Xilinx is particularly active in
these last two fields). In general FPGA market has been one of the most dynamic
in the past 20 years with new models being released periodically with increasing
density, increasing performace and reduced power consumption.

The device used in this thesis is Xilinx Virtex-4 as shown in Fig.3.1. The use
of this commercial FPGA is due to the fact that only space-grade Xilix devices
are Virtex 4 and 5 which employ a radiation hardened technology and are more
convenient, for all the reasons above mentioned, than space qualified ASICs.

Figure 3.2: General architecture of a modern FPGA.

Figure 3.2 shows the architecture of a modern FPGA (taken from [16]). It is gen-
erally referred as an "islands structure into a sea of programmable interconnecs".
In fact these logic arrays are organized in terms of:

• Configurable logic blocks (CLB) which are clusters of logic cells capable

32

3.1 – FPGA technology

of implementing any logic function and therefore creating circuits of several
gates. One CLB contains 4 smaller structures called slices each made up of
2 logic cells;

• Programmable interconnects which are basically wires reconfigurable
through switches to connect together the different logic blocks I/Os creating
therefore larger circuits.

Moreover, since modern FPGAs are becoming more complex, inside each single
chip it is possible to have several RAM blocks, multipliers to form Multiply-and-
Accumulate units (MAC) and even transceivers for different communication stan-
dards (for example Ethernet).

Figure 3.3: Basic structure of an FPGA Configurable Logic Block.

As we know any digital circuit implements a Boolean function which can be ex-
pressed by means of its truth table, a table summing the outputs value according
to each combination of circuit inputs. The idea therefore consists into writing this
table inside a memory, a SRAM so that by rewriting the memory the logic circuit
to be implemented can be changed: this results into the Look-up table (LUT).
LUT are present inside an FPGA logic block; moreover, modern FPGA can have
from 2-input up to 6-input look-up table which are therefore capable of imple-
menting any combinational circuits with a number of inputs from 2 up to 6.

Since combinational circuits are not enough to create complex circuit (which are
sequential ones) each logic block has one flip-flop to possibly store the LUT out-
put as shown in Fig.3.3 ([2]). This sequential element can be skipped using a
multiplexer whose selection signals are stored into a latch (set by the user in the
configuration bitstream as later described).

33

3 – Field Programmable Gate Arrays

The second important element inside an FPGA is the programmable intercon-
nects matrix. Interconnects become very relevant since occupy larger area with
respect to logic blocks and may affect directly performances and power consump-
tion (longer are the wires, bigger is the delay and power dissipated), becoming
the bottleneck in FPGA technologies. Moreover, together with wires there are
switches which allow to connect interconnects together.

Depending on the nature of this switches we can have different types of FPGA
technologies:

• Antifuse-based FPGAs : here the connection between different wires is achieved
through a fuse which can become an open connection if a high current is
forced across it. In this way it is possible in an electrical way to program
the interconnections configuration. Although this method allows to achieve
denser switches it can be used only once.

Figure 3.4: Structure of a switch matrix for a pass-transistor-based FPGAs.

• EPROM/EEPROM/Flash-based FPGAs : they are an evolution of the pre-
vious technology to achieve high re-programmability. They are based on a
EPROM /EEPROM /FLASH cell where it is possible to find a transistor
with a second gate, called floating gate. Using UV light (for EPROM) or an
high voltage (for EEPROM/FLASH) it is possible to erase the cell.

• Pass transistor-based FPGAs : in this case two wires are linked by means
of a pass-transistor controlled by the bit stored into a memory, generally
an SRAM. This allows to achieve higher re-programmability since to change
configuration it is sufficient to write the memory a second time but uses
larger area since an SRAM cell is made up by 6 transistors.

34

3.1 – FPGA technology

The FPGA used in this thesis work, the Xilinx Virtex-4, is an SRAM-based
FPGA so it belongs the last type, the one using pass-transistor for interconnec-
tions. An example of the structure of the switch matrix, located every 4 logic
blocks, can be seen in Fig. 3.4 ([3]).

Figure 3.5: FPGA programming through JTAG scan chain

It is worth remembering that SRAM-based FPGAs are a volatile technology there-
fore as soon as the device is without power supply, memory loses the stored in-
formation and the device has to be reconfigured again. For this reason, generally
the FPGA is associated to a Flash which is non-volatile memory and contains the
configuration file (a binary file called bitstream which stores the bit to configure
every pass-transistor) to be downloaded inside the FPGA at power-on.

The bitstream is downloaded inside the FPGA using the scan chain which is some-
thing generally used for testing purposes (known as JTAG). Basic idea is that all
the millions of RAM cells described so far (for the LUTs or the memories associ-
ated with interconnections) are connected together to form a long shift register as
shown in fig 3.5 (taken from [16]).

Each bit of the bitstream is inserted inside the chain one after the other from the
outside of the chip by means of a serial input and a small state machine. The
uploading and subsequent configuration may take several seconds. Bitstream is
generated by means of CAD tools as described in next section.

35

3 – Field Programmable Gate Arrays

3.2 FPGA design flow

The typical design flow followed in this thesis for FPGA technology as the final
hardware implementation, can be seen in Fig. 3.6 (from [16]).

Figure 3.6: Typical FPGA design flow.

First phase consists into hardware design and its subsequent description at RTL
level using hardware description languages (HDL) like VHDL or Verilog. In or-
der to be sure that the HDL code completely meets hardware functionalities and
specifications, it is generally simulated with a logic simulator (like Mentor Mod-
elSim, the one used in this thesis). The passage between design and simulation
and viceversa can requires several iteration cycles until the HDL code describes
the desired system with all its functionalities.

After these first two phases follows the Logic Synthesis. During this step the CAD
tool compiles the VHDL files and is able to create the synthesized circuit netlist
using the different gates and inferring memory elements, providing moreover some
first optimizations and a preliminary resources estimation. Synthesis phase ends
also with a preliminary performance analysis: the maximum frequency at which
the design can run (without any physical implementation yet performed) is pro-
vided by the tool used in this phase called Synthesizer which is generally part of
a single CAD tool used in all the design flow of Fig. 3.6.

Subsequently the tool proceeds with theMapping. In this step the program decides

36

3.3 – Space-grade FPGAs: Xilinx Virtex devices

which physical FPGA resources to use: it basically maps the boolean equations of
the synthesized gates to LUT or chooses which FFs or memory blocks to use.

Then the tool goes on to the Placement so it arranges the system into the different
slices inside CLBs. After that, it passes to the Routing step in which configures
the programmable interconnections to link everything together. At this point the
resource estimation provided is generally the final one. Moreover also in this last
step a timing analysis is performed to provide performance estimations as in the
synthesis step or to check if timing constraints, imposed by the user, are met.

3.3 Space-grade FPGAs: Xilinx Virtex devices

FPGA technology, as already said, is one of the best choice for computing intensive
applications: their wide use has lead to the creation of the term Reconfigurable
computing. However, not all FPGA devices can be adopted into the space en-
vironment since ionizing radiation particles are the cause of Single Event Upset
(SEU) faults. In particulary the SEU is a fault model corresponding to the bit
stored in a memory element to flip its value resulting into a device failure: this is
critical since memories are at the core of FPGA devices.

Figure 3.7: Roadmap of the Xilinx space-grade Virtex families FPGAs.

Xilinx is the main producer offering space-grade FPGAs and Virtex devices are
commercialized for space oriented applications. From the roadmap (taken from
[4]) shown in Figure 3.7 it is possible to see the presence of two different families:

37

3 – Field Programmable Gate Arrays

Xilinx Virtex-4 QV and Virtex-5 QV.

The main difference between these two families is the rad-hard feature of the
Virtex 5 QV family: in fact to prevent the radiations effects, the device is realized
with an epitaxial layer to prevent latch-up phenomena and it is Rad-Hardened By
Design (RHBD) exploiting the TMR (Triple modular redundancy). Moreover, the
Virtex 4 FPGA is realized with 90 nm Copper CMOS process while the Virtex
5 FPGA employs the 65 nm Copper CMOS one: this results into a performance
slight difference since Virtex 4 maximum frequency is 400 MHz while Virtex 5 can
reach 450 MHz (features taken from [20] and [21]).

Figure 3.8: Internal architecture of Virtex-4 CLB.

Figure 3.8 shown how a CLB is structured inside a Virtex 4, which is the device
used in this thesis work. Most important element is the slice which internally is
equal to structure of Fig. 3.3 but it presents two LUT and two registers. Moreover,
local routing provides feedback between slices in the same CLB while a switch ma-
trix provides access to general routing resources of the FPGA. As visible from Fig.
3.8, a single CLB of a Virtex-4 is made up by 4 slices each containing two 4-input
LUTs while in Virtex-5 we can find 4 slices each containing four 6-input LUTs.
Except for this, the two families don’t differ for the other resources: as visible from
figure, a CLB presents running vertically a carry-in (CIN) and carry-out (COUT)

38

3.4 – GR-CPCI-XC4V board

to create, for example, faster adders. Additional device resources are Block RAMs
(BRAMs), Rugged DSPs, Clock Management Tiles (CMT) containing PLLs and
Digital Clock Managers (DCM) and High-performance parallel IO banks ([21]).

3.4 GR-CPCI-XC4V board

In order to implement the design on hardware, the GR-CPCI-XC4V board, pro-
duced by Aeroflex Gaisler, has been employed since present inside Avionic labo-
ratory. This board has been developed as a fast way to prototype either Leon 3
processor using Gaisler Research IP cores or new designs and can be also inserted
in GR-Rasta systems (employed for testing) using the PCI plug-in interface.

Figure 3.9: GR-CPCI-XC4V board block diagram.

The board architecture is shown in Fig. 3.9 (images and technical features have
been taken from [18]). We can immediately find the Xilinx LX200 Virtex-4 FPGA
used in this thesis, though other versions exist equipped with Virtex-5, together
with on-board 128 Mbit Flash memory and several expansion sockets to connect
SRAM/SDRAM.
Additional important features of this development board are:

• the power supply input which operates at 5V. It can come either from an
external power supply source or from 5V PCI power supply via PCI connector
pins. The board can also be configured to operate at 3.3V;

• the JTAG interface used for both programming and debug purposes. We can
find a connector for a standard JTAG interface (TMS, TDI, TDO, TCK) that

39

3 – Field Programmable Gate Arrays

can be used to program either directly the FPGA (in a volatile way) or to
act on the Flash for making the design permanent. In this thesis, FPGA has
been directly configured using iMPACT tool (part of the Xilinx ISE CAD);

• a standard serial UART 3 pins interface for the debug and a standard 9 pin
D-type connector allowing direct interface to RS232 transceiver;

• a user expansion (called GENIO) which allow to attach to the main board
specific mezzanine boards which are then linked to I/O connectors J8, J9,
J10 and J11. These connectors provide access to the memory interface (J9)
and up to 172 user I/O signals (connectors J8, J10, J11). In this thesis,
the connector J10 has been used for connecting the SpaceWire mezzanine as
described later;

• the main oscillator for the Virtex-4 which is a (50 MHz) precision oscillator
soldered on the board. Then, in order to generate any desired frequency
using this clock input, several internal DCM/DLL modules (they are present
inside the Virtex-4 and have been generated as described in next sections)
have been employed;

• an on-board push button switch used to reset the board and erase the FPGA.

40

Chapter 4

SpaceWire network architecture

In this chapter the SpaceWire network will be presented in terms of IP core block
components, describing in details their structure, their working behaviour and in
some cases how some crucial pieces have been generated.

4.1 General structure
The general architecture of the implemented network is shown in Fig. 4.1.

Figure 4.1: High level architecture of SpaceWire network

As can be seen the network is made up by four different blocks:

41

4 – SpaceWire network architecture

• SpaceWire Codec: it allows to establish a SpaceWire link compliant with
ECSS standard to communicate with the outside world (in Fig 4.1 is called
SpW I/F). It is embedded inside router or RMAP cores as an external inter-
face or can be used as standalone component. In the following, first option
has been preferred.

• SpaceWire Router: it provides five SpaceWire external links and two in-
ternal ones. In particular Port 0 is used for the configuration of the router
using RMAP protocol. Router port 6 is used instead to access the target
memory (or another IP’s internal register file) for writing or reading infor-
mations with the aim of configuration, control and status acquisition.

• RMAP block: as described in ECSS-E-ST-50-52C it is used as a standard
method for both Router configuration and memory operations; it has been
used in the Target version.

• Target memory: in this thesis it is a simple single port SRAM memory
using an FSM to manage successfully both write and read operation and im-
pementing an acknowledge handshake to be compliant with RMAP interface.
In more advanced project it can be replaced by register files or configuration
memories of more complex IP cores.

The first three of these cores have developed by Masaharu Nomachi, Takayuki
Yuasa, and Shimafuji Electric in collaboration to JAXA and have been used in this
thesis to build the SpaceWire network after their reconstruction and simulation,
using Xilinx ISE and Mentor ModelSim environments, to verify the declared
compliance with ECSS standards.

4.2 SpaceWire Codec IP core

SpaceWire Codec is a VHDL IP core (found at [5]) aimed at implementing the
SpaceWire communication protocol between the on-board components. It is de-
clared to be compliant with the ECSS-E-ST-50-12C standard. It was intended to
be implemented on either Xilinx or Altera FPGA.

The core is able to convert any data information over single or multiple bytes
(considering the data over 9 bits to include also the control character as described
in the previous chapter) into the SpaceWire format employing only the two Data
and Strobe bits.

42

4.2 – SpaceWire Codec IP core

Originally the codec was intended to be used only in a simulation environment to
emulate communication from the outside environment (on-board processor or cam-
era for instance) towards the SpW network. However, a further analysis showed
that the core had to be synthesized since it was embedded as part of the Router
and RMAP cores to allow also internal conversions from SpW signals. This core
supports a communication rate up to 200 Mbps. Codec technical features and
following images have been taken from [23].

4.2.1 Core architecture

SpaceWire CODEC IP block diagram is shown in Figure 4.2.

Figure 4.2: SpaceWire Codec IP core block diagram

Block diagram shows that the receiver decodes the input from SpaceWire and
writes it to Receive FIFO presenting it at the output over 9 bits. Transmitter on
the other hand, converts the data written in Transmit FIFO into data and strobe
signals and outputs them to SpaceWire.

Both Transmitter and Receiver are connected to a SpaceWire Machine which de-
fines timing of any action and the list of subsequent steps to allow transmission or
reception. Moreover, a timer (basically a counter) is interfaced to the State ma-
chine providing the generation of 6.4 µs or 12.8 µs timer as indicated in the ECSS

43

4 – SpaceWire network architecture

standard in case of NULL or zero data reception. Finally, a Statistical Information
block provides information about the current state of I/O transmission.

Transmit and Receive FIFOs

These two blocks are a 9 × 64 FIFOs in which the host side writes N-Char that have
to be sent or received by the SpW Codec. Up to 56 N - Char can be written, FULL
interface signal becomes "H" when 56 data are written in case of the TransmitFIFO
while in case any data is not written inside the FIFO, the Empty signal transit to
"H". The timing chart of a write operation inside FIFO is shown in fig.4.3.

Figure 4.3: Timing diagram of writing into Transmit FIFO.

Transmitter

Only when there is transmission permission from the State Machine, data written
in Transmit FIFO is converted into data and strobe signals. When instead there
is no data to be transmitted, the Transmitter block outputs a NULL SpaceWire
character. The transmission rate of the block is determined by the Transmit-Clock
and the transmit-Clock-Divide-Value defined both as inputs values over respec-
tively one bit and 6 bits. After the initial Link up phase the transmission rate can
be changed by varying the value of transmit-Clock-Divide-Value, provided that the
block will operate anyway at 10 Mbps during Link initialization.

Receiver

The Receiver behaviour is a little bit more complicated than the Transmitter one.
One of the main differences lies into the necessary I/O synchronization. The data
and the strobe signal are synchronized with the internal clock before decoding.
Synchronization mechanism of data and strobe signals is shown in Fig. 4.4.

44

4.2 – SpaceWire Codec IP core

Figure 4.4: Synchronization mechanism inside Codec receiver.

When N-Char (data, EOP or EEP) is received, data is written to Receive FIFO
and notified to State Machine. Even when NULL, FCT or TimeCode are received,
State Machine is notified. In case instead only FCT is received, then in this case
also the Transmitter is notified. All data other than N-Char (data, EOP, EEP)
that will be received by SpaceWire Codec will not be written into Receive FIFO.

When an escape error or parity error is computed from the received data due to
a CRC error or a not matching sequence, the data is discarded and the error is
notified to State Machine resulting into stopping the reception behavior. Finally,
if the data and strobe signal does not change for 850 ns, State Machine will be
notified as a disconnection error.

4.2.2 Link state machine

The State Machine is a crucial actor into the Codec correct working behaviour. It
basically manages link interface initialization, normal operation and error recovery
processing as described in [22] (from where FSM graphs have been taken).

Link initialization is the first step into letting two actors which want to exchange
data over the link to start the transmission after having reached synchronization
and ready to transmit data, FCT and EOP characters. Synchronization consists
of decoding the data and strobe signal to produce the bit clock, as mentioned in
previous chapter, through an XOR operation. In order to begin the communica-
tion the two transmitters at the ends of the link have to be synchronized otherwise
the FSM does not move from the reset state and several attempts to resynchronise
will be tried until connection is established.

The State machine moves along the following states as shown in Fig.4.5:

• ErrorReset: in this state both EnableTransmitter and EnableReceiver be-
comes "L". In this case both Transmitter and Receiver stop any operation

45

4 – SpaceWire network architecture

Figure 4.5: SpaceWire Interface State machine.

previously undertaken being in reset. After 6.4 µs the State Machine will
automatically transit to ErrorWait state.

• ErrorWait: this state makes the signal EnableReceive becoming "H" and
the lets the Receiver to operate. After a time of 12.8 µs the State Machine
will automatically transit to Ready state. In case the Receiver detects any
error, the machine will transit to ErrorReset state.

• Ready: in this state the machine makes the signal LinkEnable to go "H".
This makes the machine to transit to Started state. Again, in case the
Receiver detects any error, it transits to ErrorReset state.

• Started: in this state both the signals EnableTransmit and SendNULLs
go to "H" and the Transmitter sends a NULL character. When Receiver
receives NULL, it transits to Connecting state of the State Machine. In
case the Receiver detects Error or transits to the Started state and 12.8 µs
is elapsed without any receiving, it transits to ErrorReset state therefore
resetting the State Machine.

• Connecting: in this state the signal SendFCTs becomes "H", and the trans-
mitter transmits FCT. When Receiver receives FCT, it moves to the Run

46

4.2 – SpaceWire Codec IP core

state. As in previous state in case the Receiver detects an error or any trans-
mission/reception activity does not take place after 12.8 µs FSM transits to
ErrorReset state.

• Run: in this state the two signals SendTimeCode, SendNChar becomes
"H" so the Transmitter activates the internal time code block and it will
be possible to send the N-Char data. In case Receiver detects any Error,
the machine will transits again to ErrorReset state. From now on the FMS
remains into this state until one end of the link is disabled by properly
asserting the Link-Disable bit at the input interface of one SpaceWire Codec.

Another procedure to automatically establish the connection consist into setting
one of the codec at one end of the link to the Auto-Start mode. This results
into a slightly different state machine. A SpaceWire link set in this mode will
automatically transit from the Ready state to the Started state when it receives
a bit (gotBit) at the receiver. This feature requires the FSM to be modified by
adding a second condition in OR operation with the normal one on the transition
between the two previous mentioned states. It is possible to see this in Fig. 4.6.

Figure 4.6: SpaceWire State machine in Auto-start mode.

This Auto-start functionality has been used during the experimental implementa-
tion of the network on FPGA.

47

4 – SpaceWire network architecture

4.3 SpaceWire Router IP core

SpaceWire Router IP core is a VHDL core (found at [6]) aimed at implementing a
6 port router able to be configured both in path and logical addressing by means
of RMAP protocol. It is designed to conform to ECSS-E-ST-50-12C standard
supporting a communication rate up to 200 Mbps. As before, this core is intended
be synthesized on both Altera or Xilinx FPGA targeting the routing function
to allow communication between different actors inside the SpaceWire network.
Router technical features and following images have been taken from [25].

4.3.1 Core architecture

SpaceWire Router IP block diagram is shown in Figure 4.7.

Figure 4.7: SpaceWire Router IP core block diagram

The router presents 6 external SpaceWire ports and an internal port, defined as
port 0 which allow router configuration through RMAP protocol. Data received

48

4.3 – SpaceWire Router IP core

by any SpaceWire Port is sent to the Arbiter with the request of transmitting the
relative packet to the destination port. When connection permission from Arbiter
is approved, data transmission starts to the destination port.

RMAP Port 0 is in charge of analyzing the received packet and accessing the
internal Router Control Register, updating in writing mode the Routing Table. It
is also possible to read or to write the Routing table from outside by acting on the
internal bus which will be arbitrated as a normal input along with any SpW port.

SpaceWire Port

An important part of the router is the SpaceWire port. In total 6 external
spacewire ports are implemented; however they can be increased acting both on
SpaceWireRouterIPPackage parameter and on modification of Arbiter or Routing
Table attributes. Inside each SpW port module, it is embedded a Codec IP core in
charge of converting any incoming information from the 2-bit SpW format into a
9-bit information. I / O from each port is multiplexed by the Arbiter. In particular
receiveFIFOs inside each Port send a transmission request to Arbiter, and when
they are allowed to transmit, they send the packet to the port of the destination
address. Of course in this process a pivot role is played by the routing table (a
BRAM) since the destination address is matched with the destination port by a
reading operation into this write-and-read memory.

RMAP Port

RMAPPort is a top module that incorporates RMAPDecoder, TimeOutCount,
TimeOutEEP sub-modules. The RMAP decoder, which is also present into the
RMAP Target IP core, analyzes RMAP packets and accesses the Router Control
Register which consists of a set of registers and a routing table.

When the SpaceWire timeout is enabled, each port of the SpaceWire Router IP
counts the time from the reception of the first data of the packet until the recep-
tion of the packet end (EOP). This is implemented by a counter embedded into
the TimeOutCount block. If completion of packet reception is longer than the set
time, a timeout error will be generated and therefore the RMAP packet will be
discarded leading the state machine into the idle/reset state. The timeout value
is written inside the Router timeout control register which belongs to the Router
Controls Register.

TimeOutEEP block performs instead a different task. If a timeout error occurs
on the source port while the source port is sending packets to the destination one,

49

4 – SpaceWire network architecture

an EEP is added to the Transmit FIFO of the destination port to complete the
packet. For instance: when a timeout error occurs in Port 1 while sending a packet
from Port 1 to Port 2, an EEP is added to Transmit FIFO of Port2 which will
result into an error in the packet reception with the consequent packet discard.

Arbiter

It is a 7x7 Arbiter which follows a round-robin arbitration between the SpaceWire-
Port, RMAPPort, and an external bus called UserAccess which can access the
Routing Table from outside. Each of them therefore is given no priority since
thanks to this arbitration strategy, time is divided in slots and assigned equally
to each of the actors involved in a circular order. The condition to follow is writ-
ten inside the Arbiter Table to generate the control signals Requested, Granted
and Occupied. Only after Arbiter authorization, packet transmission/reception
between SpaceWirePort can be established.

Router Control Register and Routing Table

Router control register block is a sort of register file made up by a collection
of different registers used for storing both setting parameters and status of the
different Space Wire ports. Inside this block the Routing Table is allocated as a
RAM memory area storing the association between logic address and SpaceWire
port.

Figure 4.8: Structure of the Routing table

The Routing Table is a collection of 32-bit wide registers where each bit corre-
sponds to an output port number, and the number associated to each register
corresponds to a logical address. When logical addressing is performed, data is
read from the address corresponding to the logical address and received data is
put in output to the port where "1" is written. For example, if we want to route
to port 4 when logical address 32 (0x20) is specified, we need to write 0x00000010
value inside register number 32 which correspond, into Router memory map, to
register at address 0x0080.

50

4.3 – SpaceWire Router IP core

4.3.2 CRC and Routing table generation

SpaceWire Router IP core needs of two additional sub-blocks in order to work
correctly. The first is a ROM memory which has to store coefficients needed to
compute, time by time, CRC code as defined into ECSS-E-ST-50-12C standard.
In case CRC field of the transmitted SpaceWire packet, is not coincident with the
one computed internally the packet is discarded since an error had occurred. The
block name used for this memory has been crcRomXilinx.

The second block needed is the one actually implementing the Routing Table. To
achieve the purpose, a RAM has been used to build the 32 ∼ 254 registers where
single word is 32 bits wide. This block has been called RamXilinx32x256.

Figure 4.9: Use of Block memory generator to generate RAM/ROM.

Both sub-blocks have been generated using Xilinx Core generator tool. Since
both blocks are pretty standard R or W/R memories this tool has been used to
generate both netlist (.vhdl) and implementation (.ngc) files while only the last
one has been used in the synthesys phase. A correct setting of memory system
parameters, such as data or address width, has been performed as requested by
SpaceWire Router and Codec technical documentation.

Values of CRC coefficients have been provided already memorized during the cre-
ation of the core and passed to Core Generator using .coe file which basically

51

4 – SpaceWire network architecture

resembles a CSV file. Also default values memorized in the routing table have
been embedded in the same way, respecting the association between logical ad-
dress and destination ports providing the router an initial static configuration.

After launching Core Generator, the Memory Block generator tool has been used
to generate the two blocks: it has been chosen among the memory options menu
as shown in figure 4.9.

As far as crcRomXilinx is concerned a Single Port ROM has been chosen among
the different memory types available; the memory had 9 bit address field and 8
bit of data width as shown in fig. 4.10. The guided procedure followed with the
.coe file addition and ended with block generation. As previously said only the
implementation file was used (.ngc file) checking in the synthesys report that the
memory block inferred by the ISE synthesizer was the desired one.

Figure 4.10: Generation of crcRomXilinx single-port ROM memory.

The RamXilinx32x256 block was created using exactly the same procedure though
it was a Single Port RAM kind. For this reason it presented an input and an output
ports both 32 bits wide and an address port of 8 bits. The operating mode chosen

52

4.4 – SpaceWire RMAP IP core

was the write-first while the write-enable input was set to a single bit which allowed
to define the R/W mode. This process is shown in figure 4.11.

Figure 4.11: Generation of RamXilinx32x256 single-port RAM memory.

All the other additional features for memory blocks provided by Xilinx Core Gen-
erator such as ECC options or the additional reset signal were not considered since
Router and Codec IP cores contained memories wrapper not specifying these ad-
ditional inputs. The creation process, as before, requested the .coe file and finally
terminated with the generation of the core block.

4.4 SpaceWire RMAP IP core

SpaceWire RMAP Target IP core is a VHDL core (found at [7]) aimed at im-
plementing the RMAP (Remote Memory Access Protocol) protocol to support
reading and writing into the memory of a remote SpaceWire node. It can be
hence used for SpaceWire network configuration, SpaceWire node control, and for
information transfer between SpaceWire nodes.

53

4 – SpaceWire network architecture

It performsWrite, Read, Read-Modify-Write on the memory through aWISHBONE-
like bus for the RMAP packet received from the SpaceWire network. Three types
of bus widths are available: 32 bits, 16 bits, and 8 bits which can be selected
by setting accordingly the generic parameters inside the package file. This core
is designed to conform the ECSS-E-ST-50-11C standard targeting both Altera or
Xilinx platform and supporting a transfer rate of up to 200 Mps. RMAP core
technical features and following images have been taken from [24].

4.4.1 Core architecture

RMAP Target IP core block diagram is shown in Figure 4.12.

Figure 4.12: SpaceWire RMAP IP core block diagram

SpaceWire Codec is in charge of decoding any information into usual 9 bit data,

54

4.4 – SpaceWire RMAP IP core

acting thus as an interface module. RMAP decoder receives data packet and
following a FSM state evolution, it recognizes a valid RMAP format information.
It pass over the packet to an interface module (DMA controller) which transfers
information over a bus-based system.

RMAP Decoder

This is a module that analyzes RMAP Command packet and generates Reply
packet. It is also embedded inside the SpW Router Port 0 since it decodes infor-
mation to configure the router.

RMAP decoder reads received data from Receive FIFO and analyze Command
packet. When parsing the packet, it pass the logical address, key, command,
address, data length (all contained inside the packet itself) to the user side and
wait for the access permission/refusal response from the external memory.
The table of the maximum data length that can be handled by RMAP core for
each command type is shown in Table 4.1.

RMAP
Command Read/Write

Presesence
of pre-write
verification

Reply Address

Maximum
data-lenght
that can be
handled

"0010" Read None Present Fixed 16 Mbyte
"0011" Read None Present Increment 16 Mbyte
"0111" RMW None Present Increment 4 byte
"1000" Write None None Fixed 16 Mbyte
"1001" Write None None Increment 16 Mbyte
"1010" Write None Present Fixed 16 Mbyte
"1011" Write None Present Increment 16 Mbyte
"1100" Write Present None Fixed 2048 byte
"1101" Write Present None Increment 2048 byte
"1110" Write Present Present Fixed 2048 byte
"1111" Write Present Present Increment 2048 byte

Table 4.1: Maximum data length handled by RMAP IP core.

RMAP DMA Controller

This module outputs the address and data of RMAP packet, analyzed by the
RMAP decoder, to the internal bus and performs read/write access to memory.

55

4 – SpaceWire network architecture

When receiving Write command from RMAP decoder, it writes the data in a
writeBuffer (a FIFO queue) and then transmit it to the external memory via an
internal bus. When receiving Read command from RMAP decoder, it reads data
from external memory through this internal bus and write it to the readBuffer (a
FIFO queue). The internal bus is used for data transfer between RMAP Target
IP core and the external memory. The VHDL generic cBusWidth can be changed
inside the RMAPTargetIPPackage.vhdl file, so that bus width in output of the
DMA module, can be varied between 32 bits, 16 bits or 8 bits.

4.4.2 Working behaviour dataflow

The correct sequence of steps, in case a command data is processed, consists into:

1 When SpaceWire CODEC IP receives SpaceWire data, data packet is stored
in Receive FIFO.

2 The RMAP Decoder module reads and subsequently deletes the 9 bits (Data
Control Flag + data) from Receive FIFO. It then extracts the data and
decodes the RMAP Command.

3 Until the header CRC is checked by RMAP decoder, the information (Logi-
calAddress, Command, Key, Adddress, Data Length) and transaction request
signal (requestAuthorization) is not send to the other side.

4 Until the transaction approval signal (authorizeIn) is returned from the user
side (the target memory), the RMAP packet is temporarily stopped.

5 When the transaction acknowledgment signal (authorizeIn) is returned from
the user side, in the case of a write operation, the decoding of the data part
begins. If the user does not allow access to memory at the address or data
length specified in the RMAP packet, the user side returns a transaction
reject signal (rejectIn). In this case a status code (replyStatusIn), which is
an error code, is put in output and packet is discarded.

6 In the case of the write command, after decoding the RMAP data, the data is
passed to the DMA module via writeBuffer signal and written to the memory
through the internal bus. If there is a reply request, the target memory then
replies with a status information. In the case of the read command instead,
the DMA module reads data from the memory or register at the specified
address through the bus. The read data is then passed to the RMAP Decoder
module via readBuffer and the Reply packet is generated.

Any reply processing requires the further step:

56

4.4 – SpaceWire RMAP IP core

Figure 4.13: Dataflow representation of RMAP IP core working behaviour.

57

4 – SpaceWire network architecture

7 In the RMAP Decoder module, reply packet is generated from reply des-
tination address field, status information field, reply data field, etc., and
written to Transmit FIFO block of the SpaceWire CODEC. The data writ-
ten into Transmit FIFO is then transferred by CODEC to the Transmitter
block which converts it into SpW format and transmits it on the other side.

The graphical data flow representation of these steps is shown in Fig. 4.13.

4.4.3 FIFOs generation

For correct behaviour of RMAP block, the two sub-blocks readBuffer and write-
Buffer play a crucial role since act as queues for I/O communication between
RMAP core and target memory.

Figure 4.14: Generation of FIFO8x2KXilinx standard FIFO.

They are basically two 8-bit FIFOs which are 2 Kbytes wide and have been gen-
erated, as before, resorting to the Xilinx Core Generator tool. However, dif-
ferently from the previous case, instead of using Block memory generator, the tool
FIFO Generator has been employed as shown in Fig.4.14. The guided procedure

58

4.5 – Target RAM memory

generated both netlist (.vhdl) and implementation (.ngc) files where also here
only the last one has been used in the synthesys phase. No .coe file for predefined
initialization of FIFO content was needed in this case.

4.5 Target RAM memory
The RMAP IP core has the main aim of performing reading and writing operation
from or into the Target memory. In this thesis, a single port SRAM memory has
been employed though in more advanced projects it can be replaced by register
file or internal memory of more advanced IP cores such as feature extractor and
matcher integrated circuits. In this case the SpaceWire network has the main aim
of configuring this ICs, checking status and exchange informations between them
and other components present inside the network (such as camera, OBC, etc...).

IDLE

WRITE
READ

WAIT

Reset=1
S

ACK=1
S

ACK=0
S

WE=0
S

WE=1
S

OUT <= RamDataOut
S

RamDataIn<=IN
S

Figure 4.15: Graph of Target RAM memory Finite State Machine.

Target memory has been automatically generated by means of the Xilinx Core
Generator tool, presenting the same features of the RamXilinx32x256 therefore
an address length of 8 bit and a data length of 32 bit. This means that the
memory employed had a size of

M = 28 · 32 bit = 23 · 25 · 25 bit = 210 bytes = 1 Kbyte

though the RMAP IP core with its interface is able to support a 32 bit address
length so that memory size can be expanded up to

M = 232 · 32 bit = 230 · 22 · 25 bit = 24 Gbytes = 16 Gbyte

59

4 – SpaceWire network architecture

Moreover, in order to stay compliant with RMAP IP core interface, a simple FSM
has been built in order to manage the acknowledge and the write enable signals so
that the writing operation into memory would follow the handshake protocol put
in place by the RMAP core.

A graphical representation of the implemented FSM is shown in Fig. 4.15. As can
be seen, the FSM manages the transition of the Write enable (WE) and Acknowl-
edge (ACK) among the four different states. The machine, controlled by RMAP
IP core, can act on the Target RAM input and output (RamDataIn, RamDataOut)
and transit to idle by means of an asynchronous reset.

60

Chapter 5

Cores Simulations

In this chapter all the different IP cores simulations and test cases will be presented
together with synthesis and implementation process targeting FPGA technology.

5.1 Codec simulation
Simulation and validation of the SpaceWire Codec core was carried out with the
aid of Mentor ModelSim environment. The aim was the verification of the core
capability to transmit and receive any kind of information in accordance with SpW
component technical specification.

Figure 5.1: Architecture of first Codec simulation testbench.

A first simulation test bench was made up by a single Codec block which output
signals were connected directly as input to the same block as shown in Fig.5.1.

61

5 – Cores Simulations

(a
)
Sp

ac
eW

ir
e
pa

ck
et

fie
ld
s
at

C
od

ec
in
pu

t

(b
)
Sp

ac
eW

ir
e
pa

ck
et

fie
ld
s
at

C
od

ec
ou

tp
ut

F
ig
ur
e
5.
2:

F
ir
st

Sp
ac
eW

ir
e
C
od

ec
IP

co
re

si
m
ul
at
io
n

62

5.1 – Codec simulation

(a
)
Sp

ac
eW

ir
e
pa

ck
et

fie
ld
s
at

C
od

ec
in
pu

t

(b
)
Sp

ac
eW

ir
e
pa

ck
et

fie
ld
s
at

C
od

ec
ou

tp
ut

F
ig
ur
e
5.
3:

Se
co
nd

Sp
ac
eW

ir
e
C
od

ec
IP

co
re

si
m
ul
at
io
n

63

5 – Cores Simulations

The testbench behaves like a wrapper arount the IP core to be tested as shown
in Fig. 5.1. It stimulates the core with some input sets, collecting the results
and analyzing them: specifically for Codec’s test the successful condition is met if
transmit data is equal to the received data due to the wrap around configuration
previous imposed. The dataset used (number of data used in the test) was orga-
nized into a SpW packet and consisted of ten different data values (in Fig.5.3 data
used is 08h) which were reused in all the subsequent simulations.

Moreover, in all the simulations it is possible to see some red signals which are
XXX waveforms. In ModelSim these XXX are present if multiple sources drive
the same waveform (therefore the simulator is not capable of assigning to it an
electrical level). They are produced because both the testbench and the core are
driving the I/O in the simulation. In hardware instead, the electrical level is as-
signed by the the strongest driver (intended in terms of currents) therefore this
effect is not an issue.

So it was verified that the single block was capable of transmitting and receiv-
ing correctly at the same time an equal piece of information and that the syn-
chronization mechanisms was properly working. The simulation was successful.
Screenshots of this first ModelSim simulation are shown in Fig. 5.2.

Figure 5.4: Architecture of second Codec simulation testbench.

Subsequently a second simulation testbench was set up to verify that the Codec
IP core was able to work in transmission or reception mode at two different time
intervals. The system employed two Codec blocks, one enabled as transmitter and
the second one enabled as receiver as shown in Fig.5.4.
Also this second simulation has proved to be successful, as shown in Fig.5.3.

Finally, a third simulation, almost equal to the second one, has been performed
using two codecs and allowing the contemporary transmission and reception of two
different data packet in a cross-connection. Also this last simulation showed the

64

5.2 – Router simulation

component performed correctly the intended operations.

The SpaceWire Codec core simulation was thus successfully carried out. Moreover,
it gave a general understanding on the core working behavior since this core is used
in the other two SpW IP Cores (Router and RMAP).

5.2 Router simulation

Also the SpaceWire router was tested using the HDL simulation environment
(ModelSim). The simulation aimed at checking the Router behavior for both
Path and Logical Addressing modes.

Figure 5.5: Architecture of Router testbench.

Simulation can be divided into three different parts:

• Router configuration via RMAP protocol or through external bus-access of
the routing table;

• Application of SpaceWire packet to one input port to be routed to a different
port using the two different addressing modes;

• Check of correct routing behavior.

In order to apply any data to the router a Codec is needed since router external
interface is in SpaceWire format; therefore each of the 6 router ports is first con-
nected to a SpW Codec as shown in Fig. 5.5 where this configuration is reported
only for one port for sake of simplicity.

65

5 – Cores Simulations

5.2.1 Routing table configuration

First phase is generally performed by the on-board software which has to config-
ure the entries of the routing table in order to establish a link between two actors
inside the logical network. Configuration of the router is performed by a RMAP
32 bit acknowledge-requested write operation via configuration Port 0.

The write operation has the aim of associating a logical address to a port number.
In particular, as explained previously, all bits of a valid logical address table entry
must be reset except for the bit corresponding to the port on the router that the
logical address corresponds to.

RMAP packet bytes RMAP packet fields

00 Leading byte is 00h to
route the packet to port 0.

FE Target logical address equal
to Port 0 default logical address

01 Protocol ID
78 Instruction for a reply command packet
02 RMAP Key router default value
F1 Initiator logical address set arbitrary.

00 00 Transaction Identifier (MS byte first)
00 Extended address

00 00 03 F4 Address of location to write into
00 00 04 Data length (expressed in bytes)

2E Header CRC code
00 00 00 02 Data field

E3 Data CRC code
40 End Of Packet

Table 5.1: RMAP packet fields for routing table dynamic configuration.

Let’s suppose for example we want to connect the camera which is at the logical
address FDh to port 1 of the router. Then we would have to write in the routing
table at the logical address FDh (in decimal 253) setting to 1 only the bit cor-
responding to port 1. Register 253 of the routing table, as can been seen from
routing table memory map in [25], corresponds to address 0x03F4 while 32 bit
word to be written correspond to 0x00000002 (position 0 corresponds to Port 0).

An RMAP non-incrementing verified-write with no reply command packet to have
this is behaviour (in hexadecimal bytes) is:

66

5.2 – Router simulation

00 FE 01 78 02 F1 00 00 00 00 00 03 F4 00 00 04 2E 00 00 00 02 E3 40

Notice that since each input is on 9 bit, each byte has to be preceded by the control
character (for normal data 0). Only for the end of packet EOP (in hexadecimal 40)
this doesn’t hold so we have a 1 as control character therefore the concatenation
will produce a 140h input data as visible in ModelSim screenshots in Fig. 5.7.

In Table 5.1 single RMAP packet fields are explained more in detail.

The expected replied packet, at the output of the same port, which indicate suc-
cessful writing inside the Routing table is: F1 01 38 00 FE 00 00 D8

This has been observed in the simulation as visible in Fig.5.7. Therefore the simu-
lation has been successful since, once applied the input packet previously described,
the output answer has been the one expected. It is also possible to see the content
of the routing table and check its configuration, by reading this memory through
the external User-access bus: the reading cycle to achieve this can be found in [25].

A screenshot of the behaviour of the RMAP decoder inside Port 0 is instead shown
in Fig.5.6.

Figure 5.6: Snapshot of the RMAP Decoder present inside Router Port 0.

It is possible to see here, that each field composing the SpaceWire packet is rec-
ognized thanks to the RMAP State Machine whose dataflow has been explained
in the previous chapter. In this last screenshot, it is possible to see that no XXX
signal is present. In Fig. 5.7 this is instead clearly visible because both testbench
and UUT (the router) are driving inputs/outputs.

67

5 – Cores Simulations

(a
)
Sp

ac
eW

ir
e
pa

ck
et

fie
ld
s
at

R
ou

te
r
P
or
t
1
in
pu

t

(b
)
Sp

ac
eW

ir
e
pa

ck
et

fie
ld
s
at

R
ou

te
r
P
or
t
1
ou

tp
ut

F
ig
ur
e
5.
7:

Sp
ac
eW

ir
e
R
ou

te
r
co
re

si
m
ul
at
io
n
an

d
ro
ut
in
g
ta
bl
e
co
nfi

gu
ra
ti
on

.

68

5.2 – Router simulation

5.2.2 Path addressing mode

Subsequently, one packet has been routed to another port by simply applying as
leading byte the destination port number (path addressing) as visible in Fig. 5.8.

Figure 5.8: SpaceWire Router simulation for path addressing mode

69

5 – Cores Simulations

(a
)
Sp

ac
eW

ir
e
pa

ck
et

fie
ld
s
at

R
ou

te
r
P
or
t
5
in
pu

t

(b
)
Sp

ac
eW

ir
e
pa

ck
et

fie
ld
s
at

R
ou

te
r
P
or
t
1
ou

tp
ut

F
ig
ur
e
5.
9:

Sp
ac
eW

ir
e
R
ou

te
r
co
re

si
m
ul
at
io
n
in

lo
gi
ca
la

dd
re
ss
in
g
m
od

e.

70

5.3 – RMAP simulation

5.2.3 Logical addressing mode

An example of logical addressing can be instead seen from Figure 5.9.

Once having assigned in the routing table to Port 1 logical address FDh a packet
is sent from Port 5 to Port 1 specifying as leading byte the target logical address.
The second byte is equal to 01 which is the target port number so that this can
be seen as a logical addressing mode joint with path one. Actually, configuration
via software is very likely using this double approach which can be seen as logical
addressing strengthened by path one.

From the picture 5.9 b), we can clearly see that packet is correctly routed to the
output port and the first two bytes used for routing purposes are removed. Of
course the complete validation of the Router required all ports were tested using
both path and logical addressing modes. Results of these tests met completely
the expectations therefore the component prove to work compliant with ECSS
standards and technical specifications.

5.3 RMAP simulation
Similarly, to the previous two cores, also the RMAP one was tested using Model-
Sim. A test bench around the core was created providing correct signal stimuli to
observe the core answer to an RMAP command packet as visible in Fig. 5.10.

Figure 5.10: Architecture of RMAP simulation testbench.

Such packet was given, via a Codec block attached to the external SpW inter-
face. Authorization signal were given by target memory also present inside the
testbench. An important part for the inclusion of memory inside the simulation
was use of the UNISIM library generated from Xilinx ISE project.

71

5 – Cores Simulations

(a
)
Sp

ac
eW

ir
e
pa

ck
et

fie
ld
s
at

R
M
A
P

te
st
be

nc
h
in
pu

t

(b
)
Sp

ac
eW

ir
e
pa

ck
et

fie
ld
s
at

at
R
M
A
P

te
st
be

nc
h
ou

tp
ut

F
ig
ur
e
5.
11

:
Sp

ac
eW

ir
e
R
M
A
P

co
re

pl
us

ta
rg
et

m
em

or
y
si
m
ul
at
io
n.

72

5.3 – RMAP simulation

In picture 5.11 a), we can see that packet sent at the input is similar to the one
used for router configuration described in Tab.5.1: it corresponds to a write-with-
no-reply RMAP packet to assess the capability of recognizing all RMAP fields and
setting the bus accordingly. Target logical address was defined as before as FEh
while initiator logical address has been defined arbitrarily as F1h. The value to be
written inside Target memory at location of address 03F4 is 02.

At this point bus access starts and writing operation has been performed by means
of the DMA controller. The system is then stuck in the Wait_bus_Access_End
state until the downstream block sets all the internal memory registers using bus
delivered information. The memory then asserts the Bus_master_Acknowledge_in
signal to terminate bus access. In conclusion, RMAP block responds to the outside
with a reply packet, as experienced in the router validation, which acknowledge
the correctly writing in the downstream memory as shown in the picture 5.11 b).

Once having written inside the memory, to complete RMAP verification also read-
ing mode operation was checked by means of a specific purpose RMAP packet.
Results matched expectations proving component worked correctly in all possible
situations.

73

74

Chapter 6

Experimental results

In this chapter a description of the experimental implementation on real hardware
of the project described in this thesis will be presented together with the test
procedures and equipment adopted which led to final results.

6.1 Hardware implementation

In order to implement the project and experimentally validate it, it has been used
the development board GR-CPCI-XC4V produced by Aeroflex Gaisler in collabo-
ration with Pender Electronic Design. Its architecture has already been explained
in chapter 3; a picture of it is instead shown in Fig. 6.1 ([8]).

Figure 6.1: Picture of the Gaisler GR-CPCI-XC4V board employed.

75

6 – Experimental results

6.1.1 Pin assignment

To connect the design implemented on the board with the outside environment by
means of SpaceWire cables, it has been used the mezzanine board GR-SER2-SPW4
shown in Fig.6.2 (images and technical features taken from [17]).

Figure 6.2: Picture of the SpaceWire mezzanine board GR-SER2-SPW4.

As visible from the picture the mezzanine provides two serial D-type RS232 (not
employed in this project) and four SpaceWire (LVDS) electrical interfaces. The
mezzanine has been mounted on the development board J10 connector so that
SpaceWire signals were connected to GENIO expansions signals.

At this point the pin assignment phase was performed. It practically consisted
into linking together the I/O of the project (basically the router ports) to the
SpW mezzanine outputs by correctly assigning the FPGA pins to the GENIO sig-
nals. In order to do so, the mezzanine and GR-CPCI-XC4V board’s schematics
have been employed which can be found in [18] and [17]. In this process, since
SpW protocol is a differential one, only positive signals of Data and Strobe have
been considered. GENIO signals corresponding to SpW I/Os visible in Fig.6.3
have been connected to pins present on one of FPGA I/O banks by means of as-
signment directives inside the User Constraint File (.ucf).

In this process also the clock input has been assigned to the on-board oscillator
pin (P20) while for reset it has been preferred to employ an internal signal (simply
obtained using a counter resetting the system for 1000 clock cycles). An extract
of the .ucf file performing this operation is reported below:

76

6.1 – Hardware implementation

Figure 6.3: Electrical schematic of mezzanine board with SpW and GENIO signals

NET "CLK" LOC = "P20" | IOSTANDARD=LVTTL;

NET "spaceWireDataIn1" LOC = "AA34" ; # | IOSTANDARD = LVDS_25 ;
NET " spaceWireStrobeIn1 " LOC = "AA31" ; # | IOSTANDARD = LVDS_25 ;
NET "spaceWireDataOut1" LOC = "Y29" ; # | IOSTANDARD = LVDS_25 ;
NET "spaceWireStrobeOut1" LOC = "AC35" ; # | IOSTANDARD = LVDS_25 ;

NET "spaceWireDataIn2" LOC ="AC38" ; # | IOSTANDARD = LVDS_25 ;
NET " spaceWireStrobeIn2 " LOC ="AE34" ; # | IOSTANDARD = LVDS_25 ;
NET "spaceWireDataOut2" LOC ="AD31" ; # | IOSTANDARD = LVDS_25 ;
NET "spaceWireStrobeOut2" LOC ="AE39" ; # | IOSTANDARD = LVDS_25 ;

NET "spaceWireDataIn3" LOC ="AF38" ; # | IOSTANDARD = LVDS_25 ;
NET " spaceWireStrobeIn3 " LOC ="AG37" ; # | IOSTANDARD = LVDS_25 ;
NET "spaceWireDataOut3" LOC ="AB27" ; # | IOSTANDARD = LVDS_25 ;
NET "spaceWireStrobeOut3" LOC ="AJ39" ; # | IOSTANDARD = LVDS_25 ;

NET "spaceWireDataIn4" LOC ="AK38" ; # | IOSTANDARD = LVDS_25 ;

77

6 – Experimental results

NET " spaceWireStrobeIn4 " LOC ="AK36" ; # | IOSTANDARD = LVDS_25 ;
NET "spaceWireDataOut4" LOC ="AM36" ; # | IOSTANDARD = LVDS_25 ;
NET "spaceWireStrobeOut4" LOC ="AJ35" ; # | IOSTANDARD = LVDS_25 ;

6.1.2 Clock management

Clock has been dealt in a specific way. In fact on the board a 50 MHz clock was
available while clock frequencies used in the thesis design are reported in Tab. 6.1.
Therefore a Digital Clock Manager (DCM) inside the FPGA has been employed.

Figure 6.4: FPGA Clock different frequencies generation using a DCM.

Figure 6.4 (taken from [16]) describes basic principle of a DCM. The clock man-
ager can be seen as a predefined block which generates some daughter clocks out
of the main one coming from the external pin. These daughter clock can be hence
used to drive the internal clock trees or external pins with an overall significant
reduction of skew and jitter. In fact as we know, though generated by means of an
high-precision crystal oscillator, clock signal is never an ideal squarewave and can
be affected directly out of the external pins/pads of such problems. Digital Clock
Manager instead can clean the signal from jitter by means of internal feedback
mechanism while skew is removed through tree or H distribution schemes present
inside the chip.

Moreover the DCM can implement phase shifters or for example frequency synthe-
sizers which multiply and divide original signal producing a clock whose frequency
is exactly the one needed inside the project. Such last feature has been employed
in this thesis project.
Fig.6.5 showns how a DCM has been generated using Xilinx Core Generator. The
guided procedure requested to insert the input clock frequency and allowed to set
the freedback mechanism as internal or external (first option was used). Then

78

6.1 – Hardware implementation

Figure 6.5: Generation of DCM called Clockbuffer.

Transmit Clock frequency was obtained by dividing the input clock by a factor of
16. Receive Clock was instead created using a frequency synthesizer with a multi-
plier factor M = 6 and a division factor of D = 9.

The guided procedure ended with the generated netlist inside a .vhdl file and the
constraints .ucf file. Both had to be included inside the project to correctly drive
the synthesis and implementation process as described in previous chapter.

6.1.3 FPGA synthesis and implementation

As previously stated, CAD tool used for FPGA development has been Xilinx ISE
targeting a Virtex-4 FPGA (specifically the XC4VLX200 model, the largest of this
family). The design flow, already explained in Fig. 3.6, has consisted into several
steps. After IP cores (whose block diagrams have already been shown in Fig. 4.2,

79

6 – Experimental results

4.7 and 4.12) analysis, reconstruction and successful testing (both separately and
altogether) the first phase has been Logic Synthesis where a first resources estima-
tion was given as shown in Fig. 6.6.

Figure 6.6: Device utilization estimation after synthesis phase.

Synthesis phase has ended also with a preliminary performance analysis: a maxi-
mum frequency of 132 MHz has been estimated. Subsequently the tool proceeded
with the Mapping , then to the Placement step (slices arrangment) and finally it
passed to the Routing where it dealt with connections. At this point the resource
estimation is final one and can be seen fig. 6.7.

Figure 6.7: Device utilization summary after Mapping and Place&Route phase.

As it is possible to see from Fig. 6.7 only the 10% of the device has been used.

80

6.1 – Hardware implementation

The complete design occupies only a small portion of the FPGA which, being
the VLX200 model, comprises 200000 logic cells: therefore either additional cores
can be implemented together with current design (such as feature extracting and
matching cores) or a smaller FPGA can be employed.

6.1.4 Timing constraints

The very last stage of FPGA implementation consists into Post P&R static timing
analysis where there is the design timing checks using informations that are tech-
nology dependent. The CAD tool then annotates the delay informations inside a
Standard Delay Format file (.sdf).

In all the previous steps and in particular in this last stage a very important ele-
ment is the user assignment of timing constraints so that implemented design
matches the desired performances. These constraints refers mainly to clock signals
and are used by the synthesizer and router tool during their operations and opti-
mization. Of course, constraints have to be coherent with the possible achievable
performances otherwise in the last step of FPGA design flow, an error will be
raised for a not met timing constraint. For the project described in this thesis the
following timing settings have been used:

System Clock 50 MHz
Transmit Clock 3 MHz
Receive Clock 33 MHz

Table 6.1: Timing settings for complete FPGA project.

Though the maximum achievable performance after P&R is of 87.27 MHz, the
implementation was runned at a lower frequency due to testing equipment con-
straints. In fact, testing rack transmission drivers were bound to transmit at
3 MHz: it was therefore necessary to lower also other clock frequencies to values
described in Tab. 6.1 as suggested in Codec’s datasheet [23].

Timing constraints have been passed to the CAD tool by means of an edit file that
for the Xilinx development environment is called User Constraints file (.ucf). An
extract of it is reported below:

NET "CLK" PERIOD = 20.000 ; #board c l o ck at 50MHz

NET " c lock " TNM_NET = "SYS_CLK" ;
NET " transmitClock "TNM_NET = "TX_CLK" ;

81

6 – Experimental results

NET " rece i v eC lock " TNM_NET = "RX_CLK" ;

TIMESPEC TS_SYS_CLK_to_TX_CLK = FROM "SYS_CLK" TO "TX_CLK" TIG ;
TIMESPEC TS_TX_CLK_to_SYS_CLK = FROM "TX_CLK" TO "SYS_CLK" TIG ;
TIMESPEC TS_TX_CLK_to_RX_CLK = FROM "TX_CLK" TO "RX_CLK" TIG ;
TIMESPEC TS_RX_CLK_to_TX_CLK = FROM "RX_CLK" TO "TX_CLK" TIG ;
TIMESPEC TS_SYS_CLK_to_RX_CLK = FROM "SYS_CLK" TO "RX_CLK" TIG ;
TIMESPEC TS_RX_CLK_to_SYS_CLK = FROM "RX_CLK" TO "SYS_CLK" TIG ;

TIMESPEC TS_clk = PERIOD "SYS_CLK" 20 ns HIGH 50%;
TIMESPEC TS_txclk = PERIOD "TX_CLK" 333 ns HIGH 50%;
TIMESPEC TS_rxclk = PERIOD "RX_CLK" 33 ns HIGH 50%;

6.2 Hardware testing

6.2.1 Testing setup

At this point a test on the implemented design was carried out. The test aim was
to verify whether the design had been correctly implemented on hardware and if
the development board was able to communicate using SpaceWire protocol.

In order to perform the test a Hardware-in-the-loop system was build which ,apart
from the development board, was composed of:

• a Leon 3 processor which was used to feed the board with test vectors (ba-
sically SpW packets to perform memory operations via RMAP) and collect
the results coming back, checking and displaying them on video. In order
to do so it was used a GR-RASTA present inside the Thales Alenia Space
Avionics Laboratory shown in Fig.6.8 a). GR-RASTA is a fast Leon proto-
typing platform produced by the Aeroflex Gaisler employing Actel FPGAs
which are also pre-programmed with interface drivers for SpaceWire I/Os.

• two SpaceWire cables (the ones in blue in Fig.6.8) which connected the
SpW ports of RASTA with the two SpW connectors of the mezzanine (at-
tached on the J10 connector of the board). In the first part of the test,
cables connected RASTA and the board passing through the link analyzer
to observe how communication was put in place.

• Link analyzer which is an instrument produced by STAR-Dundee used
to analyze the transmission of a SpaceWire link at both signal and packet
levels. It is also capable of detecting an user-defined trigger event or error
and providing an estimation of transmission rate at both ends of the link.

82

6.2 – Hardware testing

(a) Aeroflex Gaisler GR-RASTA.

(b) Board test using link analyzer.

Figure 6.8: Test Hardware setup (by courtesy of Thales Alenia Space).

Of course as part of the set-up a computer present inside the laboratory was used
to program the GR-RASTA and to load inside processor memory the test pro-
gram written in C, compiled using Eclipse IDE and cross-compiled using Cygwin.
Moreover, the link analyzer was connected to the PC and the relative proprietary
software was used to configure the instrument and show the packets transmitted.

6.2.2 Test procedure and results

The test was performed into two different phases:

1. At first it was checked that the boads was able to establish a connection
with the GR-RASTA. SpaceWire link initializazion was needed as a basis
for subsequent packet transmission. In this first part the link analyzer was
inserted in between to observe the handshake protocol previously described
having set the codecs implemented on the board into the Auto-start mode.

83

6 – Experimental results

2. Then the actual testing was performed. In this part the SpaceWire link an-
alyzer was not used anymore since it proved to slow down the transmission.
Moreover, the two SpW cables connected two ports of the mezzanine with
two ports of the GR-RASTA: in fact one port was used for input packets
from RASTA towards the board while any reply from the design was routed
out of the second port in order to check router capabilities.

The test program applied was meant to emulate VHDL simulations already
performed in ModelSim environment. For this reason, it first configured the
router dynamically by assigning to the two used SpW ports two different log-
ical addresses. It then performed two RMAP writes, one was a number and
the other one some text characters, at two different memory locations. The
program finally checked what was written with two RMAP read operations
displaying onto the screen the result.

In this way all different cores of the design were checked to properly work:
codecs were constantly used as interface with external world while Router
was tested by first configuring the routing table and then by writing and
reading in the memory using different ports by means of the RMAP core.

Figure 6.9: Link analyzer when a SpaceWire connection is established

The first part of the test concerned the link initialization. The link analyzer was
inserted between the board and the GR-RASTA to observe packets exchanged dur-
ing this phase and in particular to check if the design implemented on the board
responded according to the Auto-start mode.

84

6.2 – Hardware testing

At first, a frequency mismatch in the transmission rates of the two actors impaired
the initializazion: GR-RASTA drivers in fact were were bound to transmit at a fre-
quency of about 3 MHz which was lower than the one of the board. After lowering
down the design’s Trasmit clock at that rate, link initialization was successfully
performed. At this point, link analyzer showed transmission could take place by
changing lights from red (Fig. 6.8 b)) to green as shown in Fig. 6.9.

Figure 6.10 shows more in details packets exchanged during the initialization phase.

Figure 6.10: Packets transmitted during link initialization.

It is possible to see that this is fully compliant with the Auto-start mode. In fact
End A, which is the GR-RASTA, starts the transmission by sending NULL char-
acters after a gotBit event (the one in green) waiting for a response from the other
part of the link. End B, which is the design implemented on the board, replies
with a NULL too since being set in Auto-start mode. Subsequently the two actors
continue with the exchange of a FCT character: at this point the link is established

85

6 – Experimental results

and transmission of SpaceWire packets can take place. If nothing is transmitted
both actors will continue with this handshake mechanism of NULL/FCT characters
to ensure the link stays active and fully synchronized as can been seen in Fig. 6.10.

At this point the test program was compiled and downloaded inside Leon 3 mem-
ory. It is worth mentioning that the C-program employed the SpaceWire and
RMAP predefined read and write functions which were available in the Gaisler
proprietary drivers library, included inside the Eclipse project. Therefore it was
sufficient to define correctly all the fields to execute the wanted operations. The
program:

1. Configured the two SpaceWire ports employed (SpW ports 1 and 2) and
assigned to RASTA the initiator logical address of FA (write operation in
routing table memory location 03E0);

2. Assigned to Port 6 of router (the one where RMAP IP core is attached) the
logical address F1 (write operation in routing table memory location 03C4);

3. Performed the writing into Target memory of the two strings "1234" and
"ciao" via RMAP, passing of course through the Router, at the two arbitrary
locations 00F4 and 00F8 ;

4. Performed the reading via RMAP in the same Target memory locations to
check if correct values were written and then displayed them on the screen.

Figure 6.11 shows a Cygwin screenshot displaying test results. As visible, test was
successful since all components of this thesis design have proven to correctly work
on real hardware. In particular the screenshot proves that:

• The design implemented on hardware is capable of initializing the SpaceWire
link with space standard equipment (Gaisler Research RASTA rack) other-
wise no communication would be possible;

• Convert correctly data from SpW format to normal representation (8 bits)
and viceversa since data values are the ones expected;

• Route correctly since first two RMAP writes enters Router Port 1 towards
Port 0, second two enters Port 1 and are directed to Port 6 while in the last
line, answers are in output of Port 2;

• Correctly perform writing and reading operation inside a target RAM mem-
ory through RMAP protocol since data passed via software have been found
at the output of hardware.

86

6.3 – Summary

Figure 6.11: Screenshot of the test program final results.

6.3 Summary
A short summary of features of the implemented prototype and experimental re-
sults obtained is reported in Tab. 6.2.

Table 6.2: Summary of the obtained results.

87

88

Chapter 7

Conclusions and future work

In the present thesis, a data-link based on the SpaceWire protocol has been stud-
ied and implemented for its application on the context of vision-based navigation
for Mars space exploration. All the different parts composing the communication
network have been partially developed by a Japanes research team and left open-
source online claiming compliance with ECSS standard. The main goal of this
work was therefore their study, recostruction, simulation and organization into a
single system that could be implemented in hardware. Finally, after the prototyp-
ing on a space qualified FPGA platform, the system has been tested using a Leon-3
processor to assure the correct functionalities working together with Avionic lab-
oratory equipment.

After its study and simulations, the system proved to work as expected and func-
tionally in compliance with the ECSS standards. Also the created board protype
provided the correct functionalities even though some points of improvement have
been identified: among this we can list trasmission rate speed. In fact though the
design potentially could work at quite high frequencies (90 MHz) its test was car-
ried out at low rates (3 MHz) due to the GR-RASTA’s SpW drivers which resulted
to be the limiting factor. Moreover, during the test phase, the SpW link analyzer
proved to prevent the link initialization and slow down the transmission. Further
tests should be done on this last points since without the analyzer its difficult to
debug at the packet level in case of errors or the trasmission halts.

Anyway a consolidation of the implemented prototype is needed as next step be-
fore any implementation in a space project by means of a complete test verification
activity that, for sure, cannot be considered in the scope of this thesis.

A consolidated product could become a valid alternative to the already existing

89

7 – Conclusions and future work

Intellectual Property (IP) cores providing more flexibility and budget savings es-
pecially for use within other research projects. For instance, the same SpaceWire
sub-system inside the VisNav project could be included in the FEMIP project, an
hardware accelerator for image processing developed by Politecnico di Torino in
collaboration with Thales Alenia Space.

90

List of acronyms

CRC Cyclic Redundancy Code

ECSS European Cooperation for Space Standardization

ESA European Space Agency

FIFO First-In First-Out

FPGA Field Programmable Gate Arrays

FSM Finite State Machine

IP Intellectual Property

LV DS Low Voltage Differential Signalling

OBC On-board Computer

P&R Place & Route

RAM Random Access Memory

RMAP Remote Memory Access Protocol

ROM Read Only Memory

SpW SpaceWire

TB Test Bench

UCF User Constraints File

UoD University of Dundee

V HDL VHSIC Hardware Description Language

V HSIC Very High Speed Integrated Circuit

91

92

Bibliography

[1] url: http://obsoletexilinx.com/devices/11669-XC4VLX160.

[2] url: https://en.wikibooks.org/wiki/Programmable_Logic/FPGAs.

[3] url: https://vjordan.info/log/fpga/trying-to-understand-the-
internal-encoding-of-the-routing-switch-matrix.html.

[4] url: https://www.embedded.com/print/4212259.

[5] url: https://github.com/shimafujigit/SpaceWireCODECIP_100MHz.

[6] url: https://github.com/shimafujigit/SpaceWireRouterIP_6PortVersion.

[7] url: https://github.com/shimafujigit/SpaceWireRMAPTargetIP.

[8] url: https://www.gaisler.com/index.php/products/boards/gr-cpci-
xc4v.

[9] url: http://spacewire.esa.int/content/Home/Purpose.php.

[10] url: https://www.star-dundee.com/knowledge-base/packet-addressing.

[11] url: https://www.gaisler.com/index.php/products/boards/mezzanine/
gr-cpci-ser2-spw4?task=view&id=306.

[12] url: https://www.star-dundee.com/knowledge-base/link-initialisation.

[13] European Space Agency. ECSS-E-ST-50-12C. SpaceWire – Links, nodes,
routers and networks. 2008.

[14] European Space Agency. ECSS-E-ST-50-52C. SpaceWire – Remote memory
access protocol. 2010.

[15] European Space Agency. RMAP CRC implementation. Technical note. 2006.

[16] Mentor Graphics Corp. The Design Warrior’s Guide to FPGAs. Devices,
Tools, and Flows. 2004.

[17] Pender Electronics Design.GR-CPCI-SER2-SPW4 Board. User manual. 2008.

[18] Pender Electronics Design.GR-CPCI-XC4V Dev. Board. User manual. 2013.

[19] University of Dundee. FEIC DataSheet. VisNav-EM1. 2015.

93

http://obsoletexilinx.com/devices/11669-XC4VLX160
https://en.wikibooks.org/wiki/Programmable_Logic/FPGAs
https://vjordan.info/log/fpga/trying-to-understand-the-internal-encoding-of-the-routing-switch-matrix.html
https://vjordan.info/log/fpga/trying-to-understand-the-internal-encoding-of-the-routing-switch-matrix.html
https://www.embedded.com/print/4212259
https://github.com/shimafujigit/SpaceWireCODECIP_100MHz
https://github.com/shimafujigit/SpaceWireRouterIP_6PortVersion
https://github.com/shimafujigit/SpaceWireRMAPTargetIP
https://www.gaisler.com/index.php/products/boards/gr-cpci-xc4v
https://www.gaisler.com/index.php/products/boards/gr-cpci-xc4v
http://spacewire.esa.int/content/Home/Purpose.php
https://www.star-dundee.com/knowledge-base/packet-addressing
https://www.gaisler.com/index.php/products/boards/mezzanine/gr-cpci-ser2-spw4?task=view&id=306
https://www.gaisler.com/index.php/products/boards/mezzanine/gr-cpci-ser2-spw4?task=view&id=306
https://www.star-dundee.com/knowledge-base/link-initialisation

BIBLIOGRAPHY

[20] Xilinx Inc. Space-Grade Virtex-4QV Family Overview. 2010.

[21] Xilinx Inc. Space-Grade Virtex-5QV Family Overview. 2012.

[22] Steve Parkes. SpaceWire User’s guide. STAR-Dundee. 2012.

[23] SpaceWire CODEC IP Core. User Manual - version 4. 2014.

[24] SpaceWire RMAP IP Core. User Manual - version 3. 2014.

[25] SpaceWire Router IP Core. User Manual - version 3. 2013.

[26] Springer. High-Performance Computing Using FPGAs. 2013.

[27] Xilinx Virtex-4 Family overview. Product specification.

94

	List of Figures
	List of Tables
	Introduction
	Vision-based navigation systems

	SpaceWire Standard
	Overview
	Physical level
	Signal level
	Character level
	Packet level
	Network level

	Remote memory access protocol (RMAP)
	RMAP commands and fields
	Cyclic Redundancy Code

	Field Programmable Gate Arrays
	FPGA technology
	FPGA design flow
	Space-grade FPGAs: Xilinx Virtex devices
	GR-CPCI-XC4V board

	SpaceWire network architecture
	General structure
	SpaceWire Codec IP core
	Core architecture
	Link state machine

	SpaceWire Router IP core
	Core architecture
	CRC and Routing table generation

	SpaceWire RMAP IP core
	Core architecture
	Working behaviour dataflow
	FIFOs generation

	Target RAM memory

	Cores Simulations
	Codec simulation
	Router simulation
	Routing table configuration
	Path addressing mode
	Logical addressing mode

	RMAP simulation

	Experimental results
	Hardware implementation
	Pin assignment
	Clock management
	FPGA synthesis and implementation
	Timing constraints

	Hardware testing
	Testing setup
	Test procedure and results

	Summary

	Conclusions and future work
	List of acronyms
	Bibliography

		Politecnico di Torino
	2018-09-12T12:07:40+0000
	Politecnico di Torino
	Luca Sterpone
	S

