
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Exploring poisoning attacks
against a face recognition system

Supervisor:
prof. Silvia Anna Chiusano

Candidate:
Giuseppe Garofalo

Academic year 2017-2018

Summary

Face recognition systems are being widely adopted today as identification tools.
The main reason for this trend is the rise of machine learning algorithms, which
allows for efficient and usable authenticators. However, intelligent adversaries may
target these algorithms, and prior works have underlined the effectiveness of such
attacks. One example is the poisoning of the training set, where the attacker
changes the input on which the model re-trains to modify the learned function.

In this work, we apply an existing poisoning attack against an authentication
system based on a state-of-the-art face recognition technique. In particular, we
target a SVM classifier which extends a deep neural network for feature extraction.
Moreover, we present a novel reverse mapping technique to craft real-world image
starting from a feature vector. Our attack shows a drop in the accuracy of ~45%
by just adding one sample to the training set.

This work underlines that poisoning poses a real threat to face authenticators
and that security vulnerabilities should be considered when designing such systems.

ii

Acknowledgements

I thank my promotor, Prof. Wouter Joosen, and my co-promotor, Dr. Davy
Preuveneers, for giving me the opportunity to work on this topic. I am also grateful
to my supervisors, Tim Van hamme and Vera Rimmer. Their guidance was of the
utmost importance throughout the entire year.

I would like to thank my promotor in Polytechnic University of Turin, Prof.
Silvia Chiusano.

I am grateful to my parents and to my friends for their endless support. Lastly,
my sincere thanks go to Mariaida, for being always with me.

iii

Contents

Summary ii

Acknowledgements iii

1 Introduction 1

2 Background 5
2.1 The Learning Model . 5
2.2 Support Vector Machines . 7
2.3 Artificial Neural Networks . 9
2.4 Adversarial Machine Learning . 12

3 Related Work 15
3.1 Face Recognition . 15

3.1.1 Deep Architectures . 16
3.1.2 OpenFace . 16

3.2 Adversarial Machine Learning . 17
3.2.1 Poisoning against SVMs . 17

3.3 Gap in the Related Work . 18

4 Authentication System 21
4.1 OpenFace for Feature Extraction 21
4.2 Classification with SVMs . 23

5 Poisoning Attack Methodology 25
5.1 Threat Model . 25
5.2 Poisoning Attack against SVM . 26

5.2.1 Methodology . 26
5.2.2 Stochastic Gradient Ascent 27

5.3 Inverse Feature-Mapping . 30
5.3.1 CNN Analysis . 30

iv

5.3.2 Random Sliding Window 32

6 Evaluation 37
6.1 Setup . 37

6.1.1 Dataset . 37
6.1.2 Software . 37
6.1.3 Metrics . 38

6.2 Results . 38
6.2.1 Linear Binary SVM . 39
6.2.2 One-Class SVM . 47

7 Discussion and Future Directions 57

8 Conclusion 59

Bibliography 61

v

List of Tables

6.1 Percentage of the validation set below a fixed probability threshold
Pr. 40

6.2 Evasion scenario posterior probabilities. 47
6.3 Validation set mean classification error across all the batches. . . . 48
6.4 Test set mean classification error across all the batches. 49
6.5 Validation set false positive rate across all the batches. 49
6.6 Validation set mean classification error for the first batch. 50
6.7 Test set mean classification error for the first batch. 51
6.8 Validation set false positive rate for the first batch. 51

vi

List of Figures

2.1 The predictive learning model [17]. 6
2.2 Two different separation hyperplanes for the learning task [30]. . . 8
2.3 Biological neuron (a) and its mathematical model (b) [35]. 10
2.4 Multi-layer perceptron [35]. 11
2.5 Triplet Loss function [29]. 12
2.6 Reactive arms race scheme [8]. 13
2.7 Proactive arms race scheme [8]. 13
4.1 Face-based authentication system workflow. 22
4.2 The 65 landmarks used for the alignment step [3]. 22
5.1 The output of the first 39 convolutional filters. 30
5.2 The initial aligned image (a) and the pixels heatmaps of the first

three features, after the addition of a constant value (b). 31
5.3 The non-overlapping sliding window path with l = 48 pixels and

side = 96 pixels, starting from the top-left corner. 33
6.1 Example training data set for class -1 (a) and class 1 (b). 39
6.2 Starting from the first row, attack points: (a) 2, (b) 13, (c) 15 of

class -1. Mean L (left) and corresponding classification error increase
(right). 41

6.3 Starting from the first row, attack points: (a) 18, (b) 19, (c) 20 of
class 1. Mean L (left) and corresponding classification error increase
(right). 42

6.4 Percentage of elements below a posterior probability threshold two
points: (a) attack point 13 (class -1); (b) attack point 20 (class 1).
The validation set is divided into attacked class (left) and attacking
class (right) with different thresholds. 43

6.5 Multi-point attack using a sequence of images up to 15% of the
training set. Training sets of different sizes, from left to right: 30
samples, 50 sample, and 100 samples. 44

6.6 Initial attack point: (a) raw; (b) pre-processed. 45

vii

6.7 Sequence of images generated by the random addition function to
minimize the mse. 45

6.8 mse throughout the SGA process (left) and the inversion (right). . 46
6.9 Mean L (left) and CE (right) while minimizing mse. 46
6.10 Evasion scenario: sequence of images generated by the random ad-

dition function to minimize the mse. 47
6.11 Mean classification error fixing nu=0.1 (left) and training set size=50

(right) for validation and test sets across different settings. 52
6.12 Classification error and ROC for the worst (a), the average (b) and

the best attack point (c) across 10 iterations, considering the best-
behaving batch. The CE is computed w.r.t to the validation set
(blue) and the test set (red). 53

6.13 Initial attack point: (a) raw; (b) pre-processed. 54
6.14 Sequence of images generated by the sliding window procedure. . . 54
6.15 mse increase during the attack process (left); mse decrease during

the reverse-mapping (right). 54
6.16 Comparison between the hinge loss computed during the attack

(left) and the hinge loss of the reverse embedding, during the mod-
ification (right). 55

6.17 Comparison between the classification error computed during the
attack (left) and the classification error of the reverse embedding,
during the modification (right). 55

viii

Chapter 1

Introduction

Face recognition systems have gained a lot of attention among researchers in the
last decade. Both the huge progress in the algorithm development and the broad
variety of potential applications contribute to this trend. Due to ease of use,
security research focused on face recognition systems over other biometrics for the
purposes of identification and authentication [2]. However, they still remain less
accurate than other mechanisms. Furthermore, their implementation for real-world
tasks poses many challenges to researchers.

As described by Tolba et al. [34], the face recognition process can be divided into
four steps: first, the face detection from a source image. Then, a pre-processing
step that transforms the image with respect to illumination and pose. Thereafter,
the extraction of facial features which describe a single face and allows to perform
the matching task. Finally, the use of the extracted features to learn how to classify
a newcomer, which defines a face authenticator.

Biometric-based authentication systems are threatened by adversaries that aim
to impersonate the user by forging the authentication material. For this reason, a
vast amount of research has focused on protecting the input to the authenticators
(e.g. via anti-spoofing techniques [16] and liveliness check [1]). However, relying
only on security mechanisms installed at the entry point of the system may turn
out insufficient. In fact, an intelligent adversary may well target the algorithms
placed at the core of the system. Thus, the Machine Learning algorithms that
implement the authentication process can also be exploited as an attack vector.

Today, Machine Learning algorithms have been broadly adopted as a tool for
solving decision-making problems in security-sensitive contexts. These algorithms
rely on data provided by the user to learn real-world patterns, with applications
ranging from malware detection to biometric recognition. However, they were
originally implemented for controlled environments, where the training data comes
from a known underlying distribution. This unrealistic assumption is exploited by

1

1 – Introduction

intelligent adversaries that carefully craft malicious data points. For this reason,
Adversarial Machine Learning has emerged in the recent years as a research field.
Huang et al. [17] identifies its three main objectives: to classify, anticipate and find
countermeasures to possible attacks against machine learning algorithms. This
underlines the importance of studying the security of face recognition systems.

One possible attack against ML algorithms is the poisoning attack. It is based
on the injection of a malicious data point into the training set to affect the classifi-
cation rule of the model. As a result, the attacker needs access to the training set
to carry out this attack. Face authentication systems represent vulnerable targets
to poisoning attacks in that they exploit machine learning and user-data to learn
a human-face template. One commercial example is the FaceId technology by Ap-
ple [5]. It comprises several re-training steps such that it learns how to recognize
one person through time and facial changes. This continuous-learning process gives
to the attacker the possibility to affect the training set.

Several poisoning examples are present into the research literature, but none of
them targets face authentication systems. Our contribution is represented by the
adaptation of an existing poisoning attack against a face authenticator. In partic-
ular, we target the state-of-the-art face recognition library OpenFace [3] extended
with a Support Vector Machine (SVM). We divide the attack into two phases:
attack point computation and feature-mapping inversion. In the first phase, we
compute an attack point which targets the SVM. To do so, we apply the Gra-
dient Ascent technique developed by Biggio et al. [10]. In the second phase, we
reverse the feature extraction process to obtain a real-world image which embodies
the adversarial point. The experiments demonstrate that the injection of a single
training point produces a 45% drop in the classification accuracy. Furthermore,
the inversion process shows that we can produce a face image without loss in the
effectiveness of the attack.

The three key contributions of this thesis can be summarized as follows:

1. provide a security assessment of a machine learning algorithm, i.e. the SVM,
in the context of a state-of-the art face recognition system, i.e. OpenFace.

2. perform a first execution of a poisoning attack against a face-based authen-
tication system, showing that it poses a real threat.

3. develop a novel technique to reverse the feature extraction function, aimed
at crafting a real-world image.

The work is organized as follows: Chapter 2 provides preliminary knowledge
about machine learning algorithms and adversarial machine learning theory. Chap-
ter 3 presents most relevant works: OpenFace and prior research on poisoning at-
tack against SVM. We present the authentication system design in Chapter 4. In
Chapter 5 we discuss the threat model and the approach to perform the attack,

2

dividing the process into attack point computation and feature-mapping inversion.
We present the experimental results in Chapter 6, and we further discuss them in
Chapter 7 which highlights limitations and challenges. Chapter 8 concludes the
work.

3

4

Chapter 2

Background

In this section, we introduce the basic foundation of the concepts presented in
Chapter 1. We start by presenting an overview to machine learning and the problem
of learning from data. Then, we dive into the Support Vector Machine supervised
learning problem and we discuss the Artificial Neural Network model for learning.
Finally, we introduce the Adversarial Machine Learning research field.

Throughout the chapter, we formalize the assumptions that and intelligent
adversary would break, pointing out the importance of focusing on security aspects
of machine learning algorithms. The reader which is familiar with these topics can
jump to Related Work (Chapter 3).

2.1 The Learning Model
According to Shalev-Shwartz and Ben-David [30], the term machine learning "refers
to the automated detection of meaningful patterns in data". This process typi-
cally involves observing a phenomenon and constructing a hypothesis on that phe-
nomenon that will allow one to make predictions or decisions. For computers, the
experience to learn is given by the data, thus we can define machine learning as
the process of extracting knowledge from data [22].

Our goal is to learn a model which is able to make predictions about future
events. This task is referred as predictive learning and it is shown in Figure 2.1.
The learner H is requested to output a prediction rule f , also called a hypothesis
or a classifier. This rule maps an input space, the domain set D, to an output
space, the label set T . The task of extracting such a mapping is called training and
it is performed over the training set Dt. Assuming that exists a "perfect" labeling
function h, Dt is composed by sampling an instance x from D and labelling it
according to h. As a result, we assume that the the training set is the only view

5

2 – Background

Figure 2.1: The predictive learning model [17].

the learner has on the real world.
This model for the learning task is also called statistical machine learning frame-

work. As stated above, this model is based on the assumption that real-world sam-
ples that form Dt are drawn from a probability distribution Pz the learner does not
know. From a security point of view, problem arises when the adversary’s model
provides for a complete knowledge of Dt. That is, if the intelligent adversary were
able to craft a malicious point that diverges from the underlying distribution, the
final output would be driven toward a specific learning function. We will come
back to this in section 2.4.

Evaluation The evaluation set De (drawn from the same distribution) is used
to asses the performance of our classifier. This is used to determine how good
the learnt function f behaves with respect to the real labelling function h. Thus,
another goal of our learning algorithm is the minimization of the classification
error, or loss function L. The latter function is defined as the probability to draw
a random instance x, according to the distribution D, such that f(x) does not
equal h(x).

Data In most cases, we cannot present real-world objects directly to the learning
algorithm. Therefore, we need a transformation to map the structured object
into a set of measurements, called tuple. However, measurement is only the first
phase in the overall process of data extraction. A further transformation is called
feature selection and it involves information related to the object. This is a data-
dependent process that maps the original measurements into a space of relevant
features. The primary assumption is that the data contains many features that are
either redundant or irrelevant, and can thus be removed without losing information.

6

2.2 – Support Vector Machines

We will investigate this in the context of facial feature selection.

Generalization The ability of the learner to reproduce the underlying distribu-
tion on unlabelled data is called generalization. As stated above, we want to learn
a model that captures the underlying distribution starting from the training set.
However, if the training step is too long or contains few samples, the learner will
adjust to very specific random features of the training data that have no causal
relation to the target function. This phenomenon is called overfitting and it pro-
duces an increase in the performance on known data (Dt) while the performance
on unseen data (De) fall down. Simply put, the model starts to memorize the
training data instead of learning how to generalize the underlying trend.

Taxonomy The task of finding a mapping given a set of pair (element, label)
is called supervised learning. In this context, we can have either a categorical
or a continuous output for our model. In the first case, we are dealing with a
classification problem, while the second one is known as a regression problem.
However, we can have a different application which aims to extract hidden patterns
from unlabelled data. This is the unsupervised learning set of algorithms. By
contrast with the supervised learning pattern, there are no target function, and
thus no evaluation of the final accuracy.

2.2 Support Vector Machines
Support Vector Machine (SVM) is a paradigm for learning linear predictors in
high-dimensional features spaces. It is a supervised learning algorithm based on a
labelled training set where each point is p-dimensional tuple. Given that each of
the training point belongs to one of two categories, the main goal is to find (p-1)-
dimensional hyperplane which separates the aforementioned categories. The output
hyperplane, if there exists one, should allow to classify new samples depending on
the side of the gap they fall. This behavior falls within the definition of a linear
classifier.

Margin We can define the best separation hyperplane as the one which maxi-
mizes the distance between the nearest points on each side of the hyperplane itself.
Looking at Figure 2.2, we can intuitively assess that the black hyperplane (which
is a line in two dimensions) can be considered the best one. Formally speaking, we
need a metric to measure such a distance, taking into account that the measure is
associated to the generalization capability of the output classifier. That distance is
called margin, and, as a result, the higher the margin the lower the generalization
error.

7

2 – Background

Figure 2.2: Two different separation hyperplanes for the learning task [30].

Kernel Function It may happen that the initial sets are not linearly separable.
In this case, it is possible to do a mapping of the finite-dimensional space into
an higher-dimensional space which is likely to make the separation task easier.
The main idea behind this concept is to avoid the explicit computation of the
coordinates in the higher-dimension space, which is considered a computationally
expensive task. This operation is called kernel trick. In order to perform this step,
it was proposed the introduction of a kernel function: the function whose product
with a vector in that space returns a constant. In this way, the computational load
is kept low, despite the fact that working in a higher-dimensional feature space
increases the generalization error of the SVM.

Linear-SVM Let xi be the input p-dimensional vector and yi the associated
binary label. Then, we define the separation hyperplane as þw ·þx− b = 1. Where w
is the normal vector with respect to the hyperplane. As a result, b

ë þwë is the offset
of the hyperplane from the origin along the normal vector þw. We will refer at the
hyperplane as the decision function or decision boundary.

Hard-SVM The Hard-SVM is the the learning rule which returns a hyperplane
that separates the training set with the largest possible margin, or maximum-
margin hyperplane. We can see this hyperplane as the halfway between two separa-
tion hyperplanes on opposite ends. These are described by the equations þw·þx−b = 1
and þw · þx − b = −1. Now, we want to minimize the distance between these hy-
perplanes, namely 2

ë þwë . That is, a minimization problem with respect to ëþwë.
Therefore, we add a constraint to enforce that none of the point lies into the mar-
gin space: yi(þw · þxi − b) ≥ 1, for each training point. Finally, the w and the b
which determine the solution of our constrained optimization problem will define

8

2.3 – Artificial Neural Networks

the final linear classifier f(x) = sign(þw · þx− b).

Soft-SVM Unfortunately, data is not always linearly separable, so we need a
problem statement for the situation when some of the training point lies on the
wrong side of the margin. This is done by introducing a hinge loss function which
assigns a value in the range [0,1] which is proportional to the distance from the
margin: max (0,1− yi(þw · þxi − b)). Clearly, the output will be 0 if the point lies
on the right side. The new optimization problem aims to minimize the average
maximum distance of each wrong-labelled point. Then, a regularization term allows
to tune parameters in a way to select the trade-off between the margin size and
the correct labelling of each point.

One-Class SVM A specific case of binary SVM classifier is the One-Class SVM,
first introduced by Schölkopf et al. [28]. The main idea behind this model is the
learning of a subset S of the original feature space. Given that we start from a
dataset with a probability distribution P , we select S such that the probability
of a point to lie inside S is greater than a user-defined threshold ν ∈ [0,1]. Since
no negative class points are provided to the model, the origin is exploited as an
artificial member. Thus, the distance is maximized between the origin and the
kernel-mapped training vectors, according the following definition [28]:

min
1
2ëþwë2 + 1

νn

nØ
i=1

ξi − ρ, subject to

(þw · Φ(þxi)) ≥ ρ− ξi i = 1,2, ..., n ξi ≥ 0
If w and ρ are found, then we obtain the following decision function:

f(x) = sign((þw · Φ(þx))− ρ)

Here, the parameter ν represents an upper bound the number of training errors
as well as a lower bound the the number of support vectors of the learnt model.
In other words, it determines a trade-off between the usability of the system and
its robustness.

2.3 Artificial Neural Networks
Artificial Neural Networks (ANN) are systems inspired by biological neural net-
works. Given a model for a neuron, they aim to propagate information and learn
concepts in a similar way w.r.t. the human brain. However, the known models
are a rough approximations of a real neuron and the actual focus is on matching a
specific machine learning tasks rather than slavishly imitate the complex structure
of the brain.

9

2 – Background

(a) (b)

Figure 2.3: Biological neuron (a) and its mathematical model (b) [35].

Model A popular mathematical model for a neuron is the McCulloch-Pitts (Fig-
ure 2.3b). Following the biological analogy, a single input xi is received through
the dendrite and is multiplied by the interconnection weight wi. All the signals
get summed in the cell body, where a threshold b is added. This threshold is the
value that need to be reached in order to trigger the fire along the output termi-
nation, that is the axon. Since the neuron carries information through the firing
rate, we need a correspondent model for it. This model is a static non-linearity f
which output is y = f (

q
wixi + bi). This non-linear element is usually referred

as activation function.

Network If considered alone, a single neuron is not very powerful. Instead,
a network of neurons is a very strong tool for solving machine learning tasks.
The common structure is a set of layers fully interconnected in a forward chain,
as in figure Figure 2.4. This scheme is also called feedforward neural network
and it consists of an input layer, one or more hidden layers and an output layer.
Connections within one layer are not allowed and the last layer is the only one
without an activation function. In fact, this layer is commonly used to output a
score value for classification purposes.

There are at least two reasons for using a ANN: they are efficiently evaluated
using matrix vector operations and they are proved to approximate general non-
linear continuous function 1. Assuming a linear output, a two-layers network (one
hidden layer and one output layer) in matrix vector notation is y = Wσ (V x + β).
Here, the interconnection weights vectors W and V , and the bias vector β are the

1Given certain assumptions on the activation function, the universal approximation the-
orem states that a feed-forward network with a single hidden layer can approximate continuous
functions on compact subsets of Rn [4].

10

2.3 – Artificial Neural Networks

Figure 2.4: Multi-layer perceptron [35].

unknowns; x is the input vector and σ is the activation function of to the hidden
layer. What is needed now is a way to valorize the unknowns, learning a meaningful
model.

Loss Function As stated above, the neural network output could be interpreted
as a class score. However, we still need a loss function to asses the performance of
our classifier in a supervised learning problem context. The Mean Squared Error
(MSE) is a conventional choice for feedforward neural networks: it is computed
through the squared differences between the predicted output and the desired out-
put. Once we have the loss function, we can formulate the optimization problem
for the training step: we want to find the combination of weights and biases so that
the model approximates a given function f as closely as possible (the loss function
of the output is minimized).

Backpropagation One conventional algorithm for the training of a feedforward
NN is backpropagation. This is a supervised learning technique based on propa-
gating the error estimation to adjust weights and minimize the output error. In
order to achieve its goal, backpropagation exploits the gradient descent approach
for optimization: first, the inputs are propagated forward to generate the output
and compute the error. Then, the backpropagation of the error allows each neuron
to compute its own delta, namely the difference between the desired output and
the actual one. At this point, the gradient is computed by multiplying the delta
by the inputs. The gradients are computed iteratively, for each layer, according
to the chain rule. Finally, the weight is subtracted by a percentage of the gradi-
ent called learning rate. The latter value is a key parameter to obtain a trade-off
between speed and accuracy of the entire process. Usually, the learning process
is repeated until an error threshold is reached. However, the gradient descent is

11

2 – Background

Figure 2.5: Triplet Loss function [29].

not guaranteed to find the global minimum of the error function, but only a local
minimum.

Convolutional Neural Network The Convolutional Neural Network (CNN)
is a NN with one hidden layer, or more than one layer, that explicitly constraints
input to be images. As a result, some structural choices can be made to improve the
performance of the process. These networks usually exploits the local connectivity
of their inputs to reduce the number of training parameters: neurons are arranged
in 3 dimensions and connected to small regions of the image.

One concept introduced in this area is the Triplet Loss as a loss function. As
shown in Figure 2.5, this function minimizes the distance between an anchor point
and a positive point and maximizes the distance between the anchor point and a
negative point. Given a face recognition system, this loss function can be used to
train a learner which minimizes distances between faces of the same person and
maximizes distances between faces of strangers.

2.4 Adversarial Machine Learning
In the previous section we introduced the assumption that a motivated attacker
would break: the stationarity of the underlying distribution. Since the increasing
use of machine learning algorithms in adversarial environments [17], it becomes
necessary the development of a framework that could address such security vulner-
ability. The research area that studies these threats (and their countermeasures)
is called Adversarial Machine Learning.

Here we introduce recurrent definitions and well-established taxonomies.

Arms Race Biggio et al. [8] first introduced the concept of Arms Race. In
analogy with security problems, Adversarial Machine Learning could be a reactive
arms race (Figure 2.6) or a proactive arms race (Figure 2.7) between a designer
and an adversary.

12

2.4 – Adversarial Machine Learning

Figure 2.6: Reactive arms race scheme [8].

The reactive scheme represents the response of each of the actors to the op-
ponent’s move. First, the opponent analyzes the learning algorithm. Then, a
malicious sample is crafted to achieve an objective (e.g. evade the classification).
The designer reacts by analyzing the attack and developing countermeasures. For
instance, the classifier is trained with malicious samples to become more robust.
Given that this model is reactive, one important limitation is that it does not take
into account resources and capabilities of the attacker.

Figure 2.7: Proactive arms race scheme [8].

On the other hand, the proactive scheme tries to anticipate the adversary. In
this scheme, the first step involves the generation of a model of the adversary’s
resources and capabilities. Then, appropriate countermeasures are developed and
the process is repeated until a security goal is reached. In this case, the whole
process precedes the deployment phase. Thus, the model of the adversary can be
used to simulate and prevent future attacks. As a result, it becomes harder for
the opponent to carry out the attack or even gain knowledge about the learning
algorithm.

13

2 – Background

Threats Model Huang et al. [17] have introduced a qualitative categorization
for modeling threats. This categorization differentiates attacks against a supervised
algorithm by three properties:

• Influence An attack can be either Exploratory or Causative. In the first
case, the attacker can only craft samples and send them to the classifier to
observe its response. In this way, he can analyze the output in order to
extract information about the learner. In the second case, the attacker is
able to alter the training process and, consequently, the final classifier.

• Security violation An Integrity attack is focused on the classification of a
malicious sample as a rightful one, while an availability attack aims to make
the classifier unusable because of the misclassification of legitimate samples.
A third case is the privacy violation that involves inference of user-data.

• Specificity An attack can have a very specific set of target points, namely
a targeted attack. On the contrary, we refer to an indiscriminate attack if
there is no specific target.

Attack Scenario Given the taxonomy described above, two different attack sce-
nario are identified: poisoning and evasion. They diverge because of the under-
neath adversary’s model. In fact, the former is mainly focused on a modification
of the test set such that malicious samples are misclassified as legitimate. While
the latter are based on the injection of an attack point that causes the classifier to
learn a wrong decision-making function.

Many systems are vulnerable to poisoning attack because of the re-training step
on which they depend. In fact, an application usually re-train over a set containing
the new input to adapt to changes of the data. For instance, in a face recognition
system a person need to be authenticated even if changes of the facial features
occur during time.

Considering the learning scheme in Figure 2.1, the evasion attack scenario en-
ables the attacker to control De, while the poisoning scenario makes it possible to
alter Dt too. Coordinating De and Dt, the attacker can achieve the best results
with respect to his own goal function.

14

Chapter 3

Related Work

The main objective of this work is to perform a security assessment of a specific
classification algorithm in the context of a state-of-the-art face recognition system
extended with a SVM classifier. In this chapter, we explain the most relevant works
in this area. First, we review the state-of-art in the face recognition field, focusing
on the our target system (Section 3.1). Then, in Section 3.2, we present prior work
in the adversarial machine learning area as a precondition for deepening poisoning
attacks against SVMs.

3.1 Face Recognition
Face recognition systems are biometric-based techniques widely used nowadays.
Following the taxonomy by Jafri et al. [18], they are used for two main tasks:
verification of a claimed identity and identification of a known identity. In order to
address these problems, one can follow two approaches: the featured-based approach
and the holistic one. Holistic approaches attempt to perform the recognition by
means of a global image descriptor. For example, the image can be seen a two-
dimensional array of intensity values (HOG) that are used to compare different
images. However, the high computational-cost and the difficulty of apply this idea
on a larger scale, make this approach unfeasible in most cases. For this reason,
featured-based approaches have been preferred in the past. These systems use
algorithms to analyze an image and extract a descriptor as a set of the most
relevant features. As a result, a compact representation of a face is extracted in a
robust way. Nevertheless, automatic feature detection represents a limitation that
a robust system should be able to cope with. The use of Convolutional Neural
Network (CNN) has emerged as a possible solution for this problem.

In this section, we present a brief review of some state-of-the-art techniques

15

3 – Related Work

based on CNN features extraction.

3.1.1 Deep Architectures
Taigman et al. [33] exploited deep learning to obtain high-level feature representa-
tions. Given an ensemble of CNNs, their goal is to minimize the distance between
two images that belong to the same person while maximizing the distance between
images showing different people. To do so, they use a L1-distance metric between
images features. In order to achieve their goal, they proposed an effective way
to align faces to an explicit 3D model during the pre-processing phase. Further-
more, they exploited a Principal Component Analysis (PCA) for dimensionality
reduction and, finally, a SVM for the classification step. As a result, the CNN is
trained on a four million facial images dataset, reaching an accuracy of 97.25% on
the Labeled Faces in the Wild benchmark (LFW) [6], and reporting the result of
91.4% on the YouTube Faces dataset (YTF) [36].

Sun et. al [32] expanded the previous work with a more complex CNN-ensemble.
Despite the fact that they use a simpler 2D align transformation, they derive a
more complex model composed by hundreds of CNNs. As before, a PCA is used
for dimensionality reduction and a SVM is exploited for the classification step.
They obtain an accuracy score of 99.15% on the LFW benchmark.

Schroff et al. [29], from Google’s research laboratories, extended previous works
by means of a Triplet Loss function for image comparison. The main idea is the
use of a CNN to directly learn a mapping between real images and a compact Eu-
clidean space of features. Thus, the space embeds the notion of similarity without
applying any post-processing step. In order to generate the space, they define the
Triplet Loss function to take into account a third image, associated to a certain
identify, while minimizing the distance between images embedding a different iden-
tity. In this way, a relative distance constraint between images is enforced. For
this approach, the classification benchmark (LFW) gives an accuracy of 99.63%.

3.1.2 OpenFace
Regarding the purpose of our attack, it was important to identify a biometric
system with openness characteristics, which would allow the tuning of system pa-
rameters and the formulation of certain assumptions on the attacker model. For
this reason, we selected the OpenFace [3] recognition system as an attacking target.

OpenFace is a general-purpose library based on the work by Schroff et al. [29]
mentioned above. In this sense, they train a CNN for features extraction using a
non-proprietary dataset at least two orders of magnitude smaller than other state-
of-the-art systems. However, competitive results (92.92%) are shown on LFW
verification benchmark. In addition, they introduce a classification benchmark on

16

3.2 – Adversarial Machine Learning

a subset of the LFW dataset, showing better performance w.r.t. previous open-
source techniques based on the OpenCV library [11].

Regarding the classification step, the authors have proposed the use of a linear
SVM, demonstrating that it behaves consistently better, in terms of performance,
compared to more complex classification algorithms. As a consequence, their clas-
sification model, namely the SVM, will be the target of our poisoning attack.

3.2 Adversarial Machine Learning
Adversarial Machine Learning is the research area analyzing the security of ma-
chine learning algorithms within adversarial environments. Two different attack
scenario can be identified in this setting: poisoning and evasion. They diverge
because of the underneath adversary’s model. In fact, the former is mainly focused
on a modification of the test set such that malicious samples are misclassified as
legitimate. While the latter are based on the injection of an attack point that
causes the classifier to learn a wrong decision-making function.

An evasion attack by Lowd et al. [21] aims to evade a spam filter system. The
attack is carried out impersonating an attacker which sends a number of requests to
discover which words are blocked and which not. Another example by Srndic and
Laskov [31] avoids the classification mechanism exploiting structural meta-data of
PDF files. A further example by Biggio et al. [7] investigates the spoofing of a
biometric system which templates are re-trained periodically.

The main focus of this work is the poisoning scenario. Existing attacks include
intrusion detection systems (IDS), where the adversary’s goal is to make the system
learn a wrong model for granting access to non-authorized people. Usually, specific
machine learning algorithms are targeted for carrying out the attack. This section
provides an overview of three works focused on poisoning a SVM classifier.

3.2.1 Poisoning against SVMs
Different works have examined poisoning attacks against SVMs. The common
thread is how they model the adversary for carrying out the attack: they made a
worst-case assumption of perfect knowledge of the training set and of the learning
algorithm.

Xiao and Eckert [37] have formalized the so-called adversary label flips attack
(alfa). Here, the adversary tries to contaminate the training set by flipping its
labels. Specifically, the attacker aims to find the best combination of labels to
flip in a way that the SVM’s classification error is maximized under the original
classifier but minimized under the contaminated set. As a result, the goal of this
attack is to deviate the SVM’s decision boundary preserving the generalization of
the tainted distribution. The iterative approach followed for the resolution of the

17

3 – Related Work

problem is bounded to the maximum number of modifiable samples. Given 20
fixed samples for the evaluation task, they have demonstrated the effectiveness of
this strategy compared to a random label flip. In particular, they show an increase
in the error rate from 23.5% to 48%.

A further work by Biggio et al. [9] extends the solution described above by
introducing a continuous relaxation. In that way, labels associated to malicious
samples go from being discreet z ∈ {−1, +1}n to assume continuous real values
[zmin, zmax] ⊆ Rn. This approximation exploits the gradient descent algorithm to
maximize the objective function: first, the best set of continuous label is found
computing the gradient. Then, each label is mapped to the correspondent discrete
counterpart and added to the training set. Since the SVM’s decision boundary will
change at each new label flip, the re-computation of the classifier will be necessary
in order to guarantee the optimal solution of the learning algorithm.

As demonstrated by the aforementioned attacks, the choice of the label flip
which maximizes the classification error can be of crucial importance to maximally
degrade the SVM classification performance. We will handle this problem when
dealing with the attack point choice.

Biggio et al. [10] analyzes the effect of breaking the assumption that the training
data comes from a well-behaved distribution. In this context, the attacker knows
the underlying data distribution and manages to craft a malicious point to be
injected into the training set. This attack can be seen as an extension of the
previous ones with a stronger assumption about the capability of the adversary.

In order to perform the attack, they use the gradient descent algorithm to
maximize the classification error. The first step is the computation of the gradient
of the hinge loss function over a validation set. Then, the gradient is used to
modify the features of the attack point. In this way, the gradient drives the learner
towards the maximum increase direction of the error function. These steps are
repeated by means of re-train step until an error threshold is reached.

For this attack, the initial point is obtained by means of a random flip into
the attacked class. As a consequence, they were able to show an increase in the
error rate between the random flip of a label (first iteration) and the features
modification: from 2− 5% to 15− 20%.

3.3 Gap in the Related Work
To the best of our knowledge, no attempts of attacks against modern face authen-
tication system have been proposed. Biggio et al. [7] investigates for the first time
face recognition systems in the adversarial ML area. However, their PCA-based
system does not rely on modern machine learning algorithms. We contribute by
attacking a state-of-the-art system which exploits algorithms used by real-world
mobile authenticators, like CNN and SVM.

18

3.3 – Gap in the Related Work

Furthermore, we consider the full-stack by inverting the obtained malicious
sample to a real-world image. Thus, we extend the methodology developed by
Biggio et al. [10] where real-world data was not considered.

Finally, many authentication systems based on linear one-class SVM have been
proposed. We provide an empirical analysis of this algorithm from a security per-
spective. Important insights about the relationship between the hyper-parameter
tuning and the resilience to external entities are given.

19

20

Chapter 4

Authentication System

In this chapter we present our target authentication system. Figure 4.1 shows the
two main components of the system: the OpenFace library for feature extraction
(Section 4.1) and the SVM classifier for learning the human-face template (Section
4.2).

4.1 OpenFace for Feature Extraction
The OpenFace library [3] involves several steps to transform an input image into
a 128-dimensional feature vector, namely the embedding. This system is based
on a Convolutional Neural Network (CNN) to extract the most relevant informa-
tion from a face image. This information will be then used by the classifier to
authenticate the user.

The three main steps of the process are as follows:

1. Face detection with pre-trained models from dlib [19] or OpenCV [11] open-
source libraries.

2. Face image pre-processing involving the libraries one more time.

3. Feature extraction using a CNN to obtain the 128-dimensional representation
of the face image.

The first two steps aim to enhance the efficiency of the process. First, face
detectors are exploited to verify the presence of one or more faces into the image.
Then, the faces are pre-processed by applying a 2D affine transformation. During
this step, the image is aligned w.r.t. 68 specific landmarks (Figure 4.2) such that
the eyes and the nose appear always in the same location. Finally, the input is

21

4 – Authentication System

SVM Authentication

96

96

3

128

Input Image Pre-processing CNN Feature Extraction Embedding

OpenFace

Figure 4.1: Face-based authentication system workflow.

Figure 4.2: The 65 landmarks used for the alignment step [3].

resized and cropped to 96x96 pixels. This process takes place during the CNN
training as well.

After the pre-processing, the image is forwarded through the core component
of the library, i.e. the CNN. This network is composed by several layers which
encapsulate the notion of a face into their weights. This is due to the training
phase, where thousands of labelled input images are presented to the network.
In this phase, a specific loss function is exploited to optimize the process, i.e.
FaceNet’s Triplet Loss [29] function. As explained in Chapter 2, this function is able
to cluster face images of one person into the new feature space while it separates
different identities from each other. In this way, they introduce a similarity concept
to be used during classification: the closer two images representation are, the most
likely they represent the same person. Furthermore, an L2-normalization layer is
present at the network output. This layer constrains the representation to be on
a hypersphere and the euclidean distance between samples to be within the range
[0,4]. As a result, the encoded embeddings are particularly prone to separate face
images either with faces that have contributed to the training process or with fresh

22

4.2 – Classification with SVMs

identities.

4.2 Classification with SVMs
The classification of the extracted features is the final stage of the authentication
system. This model is trained to recognize one or more identities by using input
images. In this way, during the deployment phase, the model will be able to decide
if a newcomer is who he claims to be. In our experiments, we consider two learning
models: a linear binary SVM and a linear one-class SVM.

In a preliminary phase, the binary SVM is considered due to performance and
low complexity. This model is trained and tested by using two sets of examples
by two different people. This means that the authenticator is constrained to a
world where only two faces exist and it needs to decide if the input belongs to the
positive class or to the negative one. However, thresholds can be used to model
the external world, i.e. the outliers.

A more meaningful system is considered in a later stage: the one-class SVM.
This model extends the classic SVM by considering a single training identity. As
a result, it embodies the definition of external world even though other identities
are not provided during the training phase. For this reason, the one-class SVM fits
with the authentication problem of modern mobile devices. Our authenticator is
inspired to IDNet [15], which also exploits DNN feature extraction and one-class
SVM to build a gait-based recognition system.

The most important training parameter of one-class SVM is ν, which defines
the percentage of training errors. Higher ν values determine higher false positive
rate (FPR) of the authenticator, i.e. an higher number of accepted strangers. On
the other hand, lower ν values correspond to higher false negative rate (FNR) of
the authenticator, i.e. an higher number of good samples that are misclassified by
the model. Thus, this parameter represents a trade-off between the usability and
the security of the authenticator.

In both cases we refer to the decision function which is the distance from the
separation hyperplane learned by the model. This function return a positive value
when the sample belongs to the positive class, and a negative value is returned for
negative class samples. Technical details about SVMs are discussed in Chapter 2.

23

24

Chapter 5

Poisoning Attack
Methodology

In this chapter, we present the poisoning attack by first discussing the threat model
(Section 5.1) and then describing the attack methodology (Section 5.2 and 5.3).

5.1 Threat Model
The adversarial model is strictly related to the kind of attack we want to perform,
i.e. the poisoning of the training data. For this we adapt the assumptions made
by Biggio et al. [7] [10].

Goal The goal of the attacker is to undermine the availability and the integrity
of the authentication system. The first goal is achieved when the system is no
longer able to work properly, i.e. a false negative rate (FNR) rise. The second goal
refers to the acceptance rate of external identities, i.e. a false positive rate (FPR)
increase. Our adversary tries to reach both his goals by increasing the number of
total errors of the model.

Resources A worst-case scenario where the adversary knows the details of the
model is considered. We assume that he knows the training hyper-parameters
as well as the training data used for the classifier. Given an attacked identity,
we also consider an attacker which is able to craft data representing that specific
identity. Nowadays, retrieving one’s images can be regarded as a feasible task (e.g.
social network). Therefore, the attacker is able to perform the image detection and
alignment processes as in the OpenFace framework. Given the cropped and aligned

25

5 – Poisoning Attack Methodology

version of the image, the adversary uses the OpenFace’s CNN as a black-box for
feature extraction.

Capabilities To perform the poisoning of the training set, the attacker should be
able to inject carefully crafted feature vectors. This means that the attacker needs
the classifier to be re-trained over a set containing the new sample. The re-train
step on which modern authenticators rely can be exploited by the adversary for
this task. In fact, it is common for a face authenticator to be re-trained on new
images in order to learn facial changes. As a result, we assume that the attacker
is able to inject a labelled image trusted by the system. Then, the system will
naturally re-train using the features extracted from the image.

5.2 Poisoning Attack against SVM
In this section, we present the poisoning attack strategy. We split the attack
into two parts: in the first one we compute the attack point as the ideal feature
vector to inject into the training set, based on the SGA technique developed by
Biggio et al. [10]; in the second one, we propose a solution to the inverse feature-
mapping problem, inverting the attack point into an image to be injected into the
authentication system.

In this section, we present the first phase of the attack introduced by the attack
methodology, while in Section 5.3 the inverse feature-mapping is tackled.

5.2.1 Methodology

The full attack methodology is composed by the following steps:

1. retrieve images used for training the model as well as images used for the
validation set.

2. compute the embeddings exploiting the OpenFace CNN and pre-processing
tools.

3. train a parallel model and exploit the SGA technique to compute the attack
point.

4. invert the attack point using the inverse feature-mapping function.

5. inject the final image on which the model will re-train.

26

5.2 – Poisoning Attack against SVM

5.2.2 Stochastic Gradient Ascent
The Stochastic Gradient Ascent (SGA) is the algorithm involved for obtaining the
attack point. This technique is based on the iterative computation of the gradient
of a loss function.

Here, we assume that the attacker controls the training set. To do so, he trains
an exact copy of the attacked model exploiting his knowledge about the hyper-
parameters and the training data. Then, he computes the attack point by changing
the features of one embedding and performing several re-trainings to maximize the
his objective, i.e. the loss function.

We separate this section in problem statement, gradient computation and high-
level algorithm.

Problem Statement

The problem is formalized as follows: the training data for the initial SVM is
Dtr = {xi, yi}n

i=1, where xi ∈ R128 is a feature vector, yi ∈ [−1, +1] is the class
label associated to the vector and n is the total number of training points. We define
the initial attack point xc as the data point the attacker aims to modify, either into
the training set or from the validation set. This choice is made once during the
first iteration, and it differentiates the attacking class yc from the attacked class
−1 ∗ yc.

At this point, the attacker needs a metric to determine how well the learnt
model behaves. As demonstrated by Biggio et al. [10], a good estimation of the
classification error is the Hinge Loss function:

Lxc(xk) =
mØ

k=1
(1− ykfxc(xk))+ (5.1)

Where fx is the decision function associated to the SVM and xk is the k-th
point of the validation set drawn by the attacker: Dval = {xk, yk}m

i=1, where m is
the total number of validation samples. The loss function depends on xc through
the decision function f .

We can now define the optimization problem as the maximization of the Hinge
Loss with respect to the attack point:

maxxc
L(xc) (5.2)

The gradient of L will provide us with the information about the direction
of maximum increase of the function. This direction is used during the iterative
process to modify the attack point.

27

5 – Poisoning Attack Methodology

Gradient Computation

Following the notation by Biggio et al. [10], K represents the matrix of kernel
values and αi is the dual variable corresponding the i-th training point. The
αi value differentiates among margin support vectors, error support vectors and
reserve points, and they refer to them using the lower-case letters s, e, r. Given
that Q is the label-annotated version of K, Qss refers to to the margin support
vector submatrix of Q.

We can re-write L to make explicit the terms affected by the xc

Lxc
(xk) =

mØ
k=1

(−gk)+ (5.3)

where

gk =
Ø

j

(Qkjαj + ykb− 1) =
Ø
j /=c

(Qkjαj(xc) + Qkcαc(xc) + ykb− 1) (5.4)

They overcome the non-differentiability of the convex L by exploiting the points
which lead to −gk > 0:

∂gk

∂u
= Qks

∂α

∂u
+ ∂Qkc

∂u
αc + yk

∂b

∂u
(5.5)

where u is a norm-1 vector representing the attack direction. They extend this
definition of the gradient by considering that the step size should preserve the
optimal SVM solution. Following the technique proposed by Cauwenberghs and
Poggio [12], the optimal solution for the training point i-th is:

gi =
Ø

j∈Dtr

Qijαj + yib− 1 (5.6)

h =
Ø

j∈Dtr

yjαj = 0 (5.7)

The effect of xc on the optimal solution depends on the preservation of the
composition of the margin vectors set (gi = 0), error vectors set (gi < 0) and reserve
points set (gi > 0). If this condition holds, than we can predict the modification
of the SVM solution. The final gradient formula obtained by the authors is:

∂L

∂u
=

mØ
k=1

(Mk
∂Qsc

∂u
+ ∂Qkc

∂u
)αc (5.8)

where the gradient of the matrix Q depends on the kernel function, which in
this case is the linear kernel, such that:

28

5.2 – Poisoning Attack against SVM

∂Kic

∂u
= ∂(xixc)

∂u
= txi (5.9)

Algorithm

Algorithm 1 describes the iterative process. Initially, the attack point x
(0)
c is se-

lected and its label flipped. The initial SVM solution is computed along with the
gradient. Then, the attack point is modified according to the positive direction of
the gradient, scaling its value w.r.t. a fixed step size t. After the modification,
we enforce the L2-norm of x

(p)
c as in the final layer of the CNN (Chapter 4). The

latter operation allows us to craft an embedding which lives into the euclidean
feature space generated by the network forward procedure. Finally, the SVM is
re-computed over the modified training set and the stopping condition is checked.
We refer to the stopping condition as a threshold Ô for the hinge loss increase,
during a time window w.

Algorithm 1 Poisoning attack against SVM
Input: Dtr, the training data; Dval, the validation data; yc, the class label of
the attack point; x

(0)
c initial attack point; t, the step size.

Output: x
(p)
c final attack point

1: {ai, b} ← learn a SVM on Dtr.
2: repeat
3: Re-compute the SVM solution on Dtr ∪ {x(p)

c , yc}
4: Compute ∂L

∂u on Dval according to the Incremental SVM [12]
5: Set u to a unit vector aligned with ∂L

∂u x
(p)
c ← x

(p−1)
c + tu

6: x
(p)
c ← normL2(x(p)

c)
7: until L(x(p)

c)− L(x(p−w)
c) < Ô

8: return xc = x
(p)
c

To be able to find an effective local maxima in the loss function space, the
parameter tuning phase assumes a crucial role. Here we describe the initial attack
point choice x

(0)
c and the step size t.

Initial Attack Point The initial attack point choice depends on the set from
which the attacker selects the sample. As stated above, the attacker may either
flip a label from the training set Dtr or select a sample from his own validation
set Dval. In the first case, we use an heuristic: we select 10 support vectors of
the SVM solution and compute the attack point for each of them, retaining the
best one. The reason behind this is that the we aim to pick a point which is far

29

5 – Poisoning Attack Methodology

Figure 5.1: The output of the first 39 convolutional filters.

away from the separation hyperplane, otherwise the point will become a reserve
point for the SVM solution and the process would halt. In the case when the
attacker selects the attack point from the validation set, we pick 15 random points,
retaining the best one w.r.t. the classification error increase. Increasing the number
of random samples would require an higher computational power for the attack but
also increase the probability that the space exploration will be effective.

Step Size The step size selection determines the convergence rate: if t is small
then the convergence towards a local maxima can be slow, while selecting a t
which is too large can lead to a poor local maxima in the validation loss space. In
fact, t should preserve the optimal solution of the SVM for us to able to compute
the accurate gradient. As suggested by Biggio et al. [10], we keep the value of t
sufficiently small to preserve this condition.

5.3 Inverse Feature-Mapping
In this section we present the solution to the inverse feature-mapping problem.
Starting from an attack point derived from the SGA technique, we aim to modify
an initial image to obtain an embedding as close as possible to the attack point.
The problem of finding such modification can be referred as a function inversion
problem w.r.t. the CNN forward function.

We start by presenting some black-box analysis of the CNN layers, then we
introduce a novel technique for solving the inversion problem.

5.3.1 CNN Analysis
The CNN produces an output that depends on the initial input forwarded through
several layers. Given that we want to invert this process, it is essential to analyze
what features the network has learned to extract. Figure 5.1 depicts the output of
the first 39 filters of the first convolutional layer, given an 96x96 pixels input. We
notice that some parts of the image are preserved while others are discarded. For

30

5.3 – Inverse Feature-Mapping

(a) (b)

Figure 5.2: The initial aligned image (a) and the pixels heatmaps of the first three
features, after the addition of a constant value (b).

instance, the bottom corners can be interpreted as a zone carrying less informative
content.

We extend the analysis by studying the input-output relationship. As in the
threat model (Section 5.1), the CNN is seen as a black-box and the input is modified
according to a constant value. In this way, we wonder if the final embedding can
be correlated to something visible by humans, like in Figure 5.1, and if it is possible
to exploit such correlation within our inversion problem.

The following sections present the analysis divided into input generation, anal-
ysis procedure and evidences.

Input Generation

We start by selecting one raw image of a face which is cropped and aligned. The
obtained pre-processed image is a 96x96 pixels matrix. Each pixel follows the
RGB color model: three color channels represented by integers within the range
[0,255]. For the purpose of this analysis we exploit only the red (R) channel since
no evidence of a relationship between colors and the final embedding was found.
As a consequence, our initial image is a 96x96 integers matrix.

Analysis Procedure

We provide a modified version of the initial input to the CNN to extract some
useful information by looking at the output embedding. We apply the addition of
a small constant n = 5 to each of the cells, where each modification is independent
from the others. The value of the cell is bounded to 255 before giving it as input
to the CNN. For each of the 9216 (96x96) images generated, we perform a CNN
forward pass to obtain the embedding. Finally, we subtract each of the output
embedding to the initial one in order to evaluate how much one cell has affected
each of the 128-features of the output vector.

31

5 – Poisoning Attack Methodology

Evidences

We visualize the results as 128 scaled color graphs where each cell is correlated to
its effect on a specific feature. Figure 5.2 shows the effect on the first three features
(b) using an aligned image as initial input (a). Even with a negligible perturbation
we are able to appreciate the "notion of a face" encapsulated in the CNN layers
weights. In fact, we can spot the greatest changes (i.e., yellow and blue in the
color graph) along with the landmarks used for the alignment step (Figure 4.2):
the eyes, the nose, and the mouth play an important role.

We repeat the process for the same image but increasing the constant value.
The results suggest that the pattern cannot be considered fortuitous, but instead
there is a linear relationship between the constant increase and the output change:
the higher the constant the greater the change. However, it is worth to notice that
this result is preserved as long as we keep the amount sufficiently low (~10).

5.3.2 Random Sliding Window
Starting from the observations derived from the CNN analysis, we derive an ap-
proach for solving the inverse feature-mapping problem. In this section, we present
the devised approach, namely the Random Sliding Window.

System Model

We retain the threat model discussed in Section 5.1. The attacker is able to use
the CNN as a black-box to evaluate the output for a given input; moreover, the
attacker can choose any image from among the training set and the validation set
raw images. For instance, one choice could be the image that is used to produce the
initial attack point. The chosen image is pre-processed using the aforementioned
OpenFace tools. We also assume that the initial image is a 96x96 pre-processed
version of a raw image, as in the analysis section.

Algorithm

The final objective of this process is to minimize the distance between two em-
beddings, the objective embedding xobj and the initial embedding xinit. For the
purpose of the attack xobj will be the attack point xc from the SGA technique,
while xinit will be a carefully chosen raw image. In order to achieve our objective,
we apply a random modification to xinit by sliding a squared window of side l
across the original pre-processed image imginit. The l value should be a divisor
of the image side size (96 for our attack) in order to cover the entire space of the
image, like in Figure 5.3. During the iterative process, the window corresponds to
a squared matrix of positive random values that is bounded to a threshold h.

32

5.3 – Inverse Feature-Mapping

Figure 5.3: The non-overlapping sliding window path with l = 48 pixels and side =
96 pixels, starting from the top-left corner.

We need to define a proper metric for the distance measure. Given that the
embedding values can be either positive or negative, we select the mean squared
error (MSE) as a distance metric for our optimization problem:

mse(objective, initial) = 1
N

NØ
k=1

(objectivek − initialk)2 (5.10)

with N the number of features in each vector, i.e. 128.

The process works as follows: given imginit, we compute the initial embedding
by forwarding the image into the CNN xinit = forward(imginit). Then, we com-
pute the initial distance d = mse(xobj , xinit), where xobj is also referred as the ideal
embedding. For each column i = 0 . . . 96/l, row j = 0 . . . 96/l and color channel
k = [1,2,3] we compute a random matrix mh of size lxl which is bounded to h.
Therefore, each iteration is divided into three steps: first, the random matrix is
added to the initial image imgtmp1 = imginit + mh, the CNN forward step is per-
formed xtmp1 = forward(imgtmp1) and the output is used to evaluate and store the
new distance dtmp1 = mse(xobj , xtmp1); secondly, the random matrix sign is flipped
mh = mh ∗ (−1) to retain a second distance measure dtmp2 = mse(xobj − xtmp2).
Finally, d is assigned to the minimum value among d, dtmp1, dtmp2, and the image
is re-initialized to the corresponding image imginit = imgbest

tmp.

Algorithm 2 shows the iterative process. The stopping condition for the cycle
can be the number of iterations, a distance threshold or a time constraint. Here,
we consider the number of iterations as a sufficient condition.

33

5 – Poisoning Attack Methodology

Algorithm 2 CNN Embedding Inversion
Input: imginit, the initial image; xobj , the final objective; l, window side; iter
number of iterations.
Output: imgk

init, modified image at iteration k.
1: xinit ← forward(imginit).
2: d = mse(xobj , xinit)
3: k ← 0
4: repeat
5: mh ← random matrix bounded to h
6: imgtmp1 ← imginit + mh

7: xtmp1 ← forward(imgtmp1)
8: dtmp1 ← mse(xobj − xtmp1)
9: imgtmp2 ← imginit −mh

10: xtmp2 ← forward(imgtmp2)
11: dtmp2 ← mse(xobj , xtmp1)
12: d← min(d, dtmp1, dtmp2)
13: imageinit ← mind(xinit, xtmp1, xtmp2)
14: k ← k + 1
15: until k < iter
16: return imgk

init

The most important parameters for the algorithms are the initial image img0
init,

the number of iterations iter, the perturbation h and the window side l.

Initial Image The distance metric can be used to define a starting point which
is close enough to our goal. There are two possibilities: either the attacker selects
the closest attack point among all the face images, or the attacker crafts a random
image. This problem is linked to the exploration of the CNN function space: we
are not sure that the current direction is driving us to an effective optimum, but
we trust the modification that leads us closer to the final point.

In our experiments we select two images: the raw image which produces the
target attack point (during SGA), and a random raw image which represents the
attacked identity. The first choice is justified by experimental evidence showing
that the raw image linked to the attack point is more likely to be closer in terms
of mse. In this way, we avoid exploring the whole space for the closest image. The
second choice is linked to the possibility of having a human-labelling oracle that
checks the correctness of training images. If we modify a face image representing
the victim, it will be hard for a human to verify that the image embodies an attack
point.

Even if the attacker is not able to modify the training set, we can also use
the devised approach to evade the classification. This is done by minimizing the

34

5.3 – Inverse Feature-Mapping

distance between a victim’s image and a image representing a different identity.
Experiments are shown in the Chapter 6.

Window Size - Perturbation The window size impacts the final image in both
visibility of the modification and distance. We can not associate large windows with
high h values since the final result will be poor. In fact, increasing h leads to a
modification which is easily spottable by a human oracle. On the other hand,
selecting a small window size leads to a slower convergence rate. For solving this
problem, we apply a decreasing window size approach: we start from a small h and
a large l, then we decrease l while increasing h until a threshold iter is reached.

In Chapter 6 different combinations of (h, l) are considered.

35

36

Chapter 6

Evaluation

In this chapter, we present the empirical evidence by first describing the experi-
mental setup and then presenting the results.

6.1 Setup

6.1.1 Dataset

To perform the attack we use images from the FaceScrub dataset [23] which re-
trieves raw face images from the Internet, in uncontrolled conditions. Among 562
celebrity identities, we select 46 identities with a sufficient number of samples to
obtain roughly 5000 raw images. Then, the pre-processing tools are used compute
the aligned 96x96 image, which is the CNN input.

6.1.2 Software

We use OpenFace [3] Python [27] library to perform the pre-processing step which
relies on OpenCV [11] for computer vision primitives and dlib’s [19] pre-trained
face detector. Torch for Luajit [14] is exploited for the training and inference of
the neural network; Numpy [24] is used for arrays and linear algebra operations.

We have developed a Python’s script to build the classification model using
scikit-learn [26] and we use OpenFace’s nn4.small2.v1 CNN model for computing
the low-dimensional embedding. We have also tested our results on the Matlab
code developed by Biggio et. al [10] which depends on the libsvm library [13] for
the model implementation.

37

6 – Evaluation

6.1.3 Metrics
Classification Error We use the false negative rate (FNR) and the false posi-
tive rate (FPR) to asses the performance of our target one-class SVM. Given an
authenticated user, the FNR refers to the percentage of images depicting the au-
thenticated user that are misclassified by the model. On the other hand, the FPR
is linked to the percentage of images depicting strangers that are classified as the
authenticated user. The number of false positives (FP) and the number of false
negatives (FN) contribute to the definition of the Classification Error (CE)

CE = FP + FN

TP + TN + FP + FN
(6.1)

where TP and TN represent, respectively, the number of true positives and the
number of true negatives.

Posterior Probability We make use of the posterior probability as an evaluation
metric for the binary SVM. For its computation, we rely on the implementation
provided by the libsvm library [13].

The probability that x has class label 1 Pr(y = 1|x) is approximated by a
sigmoid function, as proposed by Platt:

P (sj) = 1
1 + exp(Asj + B) (6.2)

where sj corresponds to the score of observation j, while A and B are parameters
that are optimized during the training phase. This implementation follows Platt’s
probabilistic outputs for SVM by Lin et. al [20].

As we can see, this information depends on the decision function, i.e. the
distance from the separation hyperplane. We exploit this notion as a confidence
value for the prediction of a particular embedding, highlighting the correlation
between the posterior probability and the hinge loss increase.

6.2 Results
As discussed in Chapter 4, we define two different target models for our experi-
ments: a linear binary SVM and a linear One-Class SVM. In the first case, the
model discerns between two identities, while in the second case the model is trained
to recognize a specific identity. In both cases the attack is finalized to the increase
of the classification error. For each model, we apply the inverse-feature mapping
function to obtain a real-world image to inject into the system.

The next sections present the main experiments against the two classification
models, following the adversarial model defined in Chapter 5.

38

6.2 – Results

(a)

(b)

Figure 6.1: Example training data set for class -1 (a) and class 1 (b).

6.2.1 Linear Binary SVM
Here, we present the results for the attack of a linear Linear Binary SVM. We start
by presenting the model and the data involved, and then we discuss the two phases
of the poisoning attack: attack point computation and inverse feature-mapping.

Model We select a linear SVM with unitary regularization value as the attacker’s
target. As explained in Chapter 5, the attacker is able to build an exact copy of
the target model, given his contextual knowledge. This model is used to compute
the attack point which is lately reversed by means of the reverse mapping function.
Finally, the injection of the adversarial image into the training set of the target
system allows the user to achieve the desired goal.

Data Split For the binary classifier, we select the two biggest identities in our
dataset, obtaining 150 and 145 aligned images. Then, the images are forwarded
through the CNN to obtain the 128-dimensional embeddings. These embeddings
are divided into two separate sets: the training set, composed by 15 random samples
per-class, and the validation set, comprising the remaining embeddings. As a
result, the approximate proportion of the non-overlapping sets is 1:10, but further
extension of the training set are considered during the experiments. Figure 6.1
depicts an example of a training set: (a) samples belonging to class -1; (b) samples
labeled as +1.

Attack Point Computation

Parameter tuning We discuss the main parameters for the SGA technique:
initial attack point, step size and stopping condition.

39

6 – Evaluation

For these experiments, we select the initial attack point from the training set. It
is worth to notice that comparable results are retained when the other initial point
strategy is followed, and we will show the results when dealing with the one-class
SVM.

We use the heuristic to build a set of initial attack points: we select 10 support
vectors of the target SVM. For each of the initial points we evaluate the correlation
between the hinge loss L and the classification error CE. Moreover, we present a
discussion about the posterior probability decrease.

For these experiments, the SGA step size is tuned to 0.1, while the stopping
condition checks the decrease of L in a time window of 20 iterations.

Experiments We show the results for the most representative points of each
class.

Figure 6.2 depicts the relationship between L and the CE for three attack points
of class -1. As we maximize L, the CE increases till 10 misclassified samples. Since
the initial attack point is selected from the training set, we can see that the attack
strategy overcomes the adversarial label flip (iteration 2). In fact, at most 1 error is
appreciated when flipping the label of the attack point. Remarkably, attack point
20 (c) shows a decrease of L during iteration 2.

Figure 6.3 depicts the classification error and the L increase for three attack
points of class 1. The performance decrease w.r.t. the previous case underlines
that the effectiveness of the attack is correlated to the validation set and to the
training set composition. In this case, we have many images with an high decision
function score in the validation set. This means that few candidates can be moved
to the other side of the separation hyperplane because most of them are far away
from it.

Attack Point Class Pr First Iter Label Inversion Best Result
-1 Attacked 80 11% 28% 39%
-1 Attacking 95 62% 66% 77%
1 Attacked 85 8% 34% 52%
1 Attacking 95 61% 62% 84%

Table 6.1: Percentage of the validation set below a fixed probability threshold Pr.

An authentication system could make use of the posterior probability as a
threshold to deny access to strangers. Thus, we investigate the effectiveness of
the attack w.r.t. the probability that an embedding x belongs to its class y, i.e.
Pr(y|x). For this purpose, we select two samples from the previous attack: one
from class -1 (Figure 6.2a) and the other one from class 1 (Figure 6.3b). In this
way, we compare an attack point that increases the classification error from 0 to

40

6.2 – Results

2 25 50 75 100 125

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

Iteration

M
ea
n
H
in
ge

Lo
ss

2 25 50 75 100 125

0

1

2

3

4
·10−2

Iteration

C
la
ss
ifi
ca
tio

n
Er

ro
r

(a)

2 25 50 75 100 125

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

Iteration

M
ea
n
H
in
ge

Lo
ss

2 25 50 75 100 125

0

1

2

3

4
·10−2

Iteration

C
la
ss
ifi
ca
tio

n
Er

ro
r

(b)

2 25 50 75 100 125

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

Iteration

M
ea
n
H
in
ge

Lo
ss

2 25 50 75 100 125

0

1

2

3

4
·10−2

Iteration

C
la
ss
ifi
ca
tio

n
Er

ro
r

(c)

Figure 6.2: Starting from the first row, attack points: (a) 2, (b) 13, (c) 15 of class
-1. Mean L (left) and corresponding classification error increase (right).

41

6 – Evaluation

2 25 50 75 100 125

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

Iteration

M
ea
n
H
in
ge

Lo
ss

2 25 50 75 100 125

0

1

2

3

4
·10−2

Iteration
C
la
ss
ifi
ca
tio

n
Er

ro
r

(a)

2 25 50 75 100 125

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

Iteration

M
ea
n
H
in
ge

Lo
ss

2 25 50 75 100 125

0

1

2

3

4
·10−2

Iteration

C
la
ss
ifi
ca
tio

n
Er

ro
r

(b)

2 25 50 75 100 125

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

Iteration

M
ea
n
H
in
ge

Lo
ss

2 25 50 75 100 125

0

1

2

3

4
·10−2

Iteration

C
la
ss
ifi
ca
tio

n
Er

ro
r

(c)

Figure 6.3: Starting from the first row, attack points: (a) 18, (b) 19, (c) 20 of class
1. Mean L (left) and corresponding classification error increase (right).

42

6.2 – Results

2 25 50 75 100

0.2

0.3

0.4

0.5

0.6

Iteration

Pe
rc
en
ta
ge

of
el
em

en
ts

Posterior Probability = 80

2 25 50 75 1000.6

0.7

0.8

0.9

Iteration

Pe
rc
en
ta
ge

of
el
em

en
ts

Posterior Probability = 95

(a)

2 25 50 75 100

0.2

0.3

0.4

0.5

0.6

Iteration

Pe
rc
en
ta
ge

of
el
em

en
ts

Posterior Probability = 85

2 25 50 75 1000.6

0.7

0.8

0.9

Iteration

Pe
rc
en
ta
ge

of
el
em

en
ts

Posterior Probability = 95

(b)

Figure 6.4: Percentage of elements below a posterior probability threshold two
points: (a) attack point 13 (class -1); (b) attack point 20 (class 1). The validation
set is divided into attacked class (left) and attacking class (right) with different
thresholds.

7 misclassifications with an attack point that is able to trigger just 2 misclassifi-
cations. We set a threshold Pr to verify the number of elements that go below
Pr itself: 80% and 85% are considered as common sense choices for a real-world
authenticator. We present the results over the validation set dividing between the
attacked class and the attacking class.

Figure 6.4 shows the percentage of elements below the threshold during the
attack. During the first iterations, the attack point from class -1 (a) triggers
a number of elements below the threshold Pr, but this value lately fall as CE
increases (a). On the contrary, the second attack point shows an important increase

43

6 – Evaluation

2 50 100 150

0

5 · 10−2

0.1

0.15

Iteration

C
la
ss
ifi
ca
tio

n
Er

ro
r

2 150 300
0

5 · 10−2

0.1

0.15

Iteration

C
la
ss
ifi
ca
tio

n
Er

ro
r

2 150 300 450

0

5 · 10−2

0.1

0.15

Iteration

C
la
ss
ifi
ca
tio

n
Er

ro
r

Figure 6.5: Multi-point attack using a sequence of images up to 15% of the training
set. Training sets of different sizes, from left to right: 30 samples, 50 sample, and
100 samples.

in the percentage of elements below the threshold, despite the minimal increase of
L and CE (Figure 6.3b). The first effect can be explained as an overfitting-like
phenomena, where some points become more representative than others in order
to maximize the misclassifications, i.e. reduce the generalization ability of the
system. On the other side, we appreciate how the second point may affect greatly
the usability of the system, even if fewer misclassifications are triggered. These
results are summarized in Table 6.1.

Lastly, we take into consideration the multi-point attack. To perform the at-
tack, we select one support vector of the SVM, flip its label, compute the attack
point and repeat the process up to a percentage of the training set has been poi-
soned. To validate our results, we extend the training set to 50 samples and 100
samples. For each training set size, up to 15% of the training set is modified.

Figure 6.5 depicts the results for the multi-point attack. Even though we select
the initial point randomly, the attack demonstrates the link between the percentage
of training points modified and the final performance worsening. We report a CE
of 14% when the training set is composed by 50 images.

Inverse Feature-Mapping

Given the best attack point from the SGA technique, we use the reverse mapping
procedure to obtain a real-world image. This image is used by the adversary to
poison his target model.

Parameter Tuning For these experiments, we select the attack point which
leads to the highest CE from the SGA technique: point 2 of class -1, retained
at the second to last iteration (Figure 6.2a). Figure 6.6 depicts the raw starting
image (a) and its pre-processed version (b). We consider the same raw image that
generates the initial attack point as a starting image for the inversion function.
Given experimental evidence, this starting image will likely be the most similar

44

6.2 – Results

(a)
(b)

Figure 6.6: Initial attack point: (a) raw; (b) pre-processed.

Figure 6.7: Sequence of images generated by the random addition function to
minimize the mse.

to our objective. Figure 6.7 depicts the sequence of images generated through the
process, for each l.

To optimize the results, the function is applied four times with a decreasing
window size l and an increasing upper-bound h. The values for the pairs (h, l) are
found empirically: (32,2), (16,6), (8,10), (4,14). Since we repeat three times the
sliding over an image, the total number of iterations for each l is, respectively: 27,
108, 432 and 1728. To visualize the results, we store the embedding associated to
the modified image at the end each row: 135 embeddings are retained during the
procedure.

Experiments Figure 6.8 compares the distance increase during the SGA tech-
nique with the reverse mapping distance minimization. Starting from a mse equal
to 9e−3, we observe how the modified image approach the objective, till a mse
of 2e−5. Figure 6.9 shows the correlation between the distance and L: within
60 iterations, we retain the same results computed analytically by using the SGA
technique.

The results demonstrate the possibility to obtain a real-world image by mini-
mizing the distance between an objective and an initial image. Given the threat

45

6 – Evaluation

0 50 100 150

0

0.2

0.4

0.6

0.8

1
·10−2

Iteration

m
se

0 50 100 150

0

0.2

0.4

0.6

0.8

1
·10−2

Iteration
m
se

Figure 6.8: mse throughout the SGA process (left) and the inversion (right).

0 50 100 150

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

Iteration

M
ea
n
H
in
ge

Lo
ss

0 50 100 150

0

1

2

3

4
·10−2

Iteration

C
la
ss
ifi
ca
tio

n
er
ro
r

Figure 6.9: Mean L (left) and CE (right) while minimizing mse.

model described in Chapter 5, the attacker would choose the attack point as an
objective and another image as a starting point for the reverse function. Then, he
would perform the poisoning by injecting the resulting adapted image.

In a broad sense, the reverse mapping function can be used to minimize the
distance between any pair of embeddings. A different scenario regards the classi-
fication evasion. By modifying an image of class −1 we resemble an image of class
+1.

Figure 6.10 shows the images produced to minimize the distance between the
objective (Figure 6.1a; second image) and the initial image (Figure 6.1b; first
image). As shown in Table 6.2, we are able to achieve lower mse values than
before. This is due to the fact that the embeddings are produced from real-world
faces rather than maliciously crafted points, and thus it becomes easier to minimize

46

6.2 – Results

Side mse Pr(y = −1|x)
Initial 1.3e-2 9%
32 1.1e-2 20%
16 7.3e-3 60%
8 7.7e-4 88%
4 7.1e-6 94%

Table 6.2: Evasion scenario posterior probabilities.

Figure 6.10: Evasion scenario: sequence of images generated by the random addi-
tion function to minimize the mse.

their distance. The table also shows the posterior probability measures for each of
the images: the attacker is able to fool the classifier into thinking that the modified
sample belongs to the wrong class with an increasing Pr value, up to 94% for the
last image of Figure 6.10.

6.2.2 One-Class SVM
Here, we present the results for the attack of a linear One-Class SVM, considered
as an authenticator for a specific identity. As above, the poisoning attack is split
into two phases: attack point computation and inverse feature-mapping.

Model The hyper-parameter of the One-Class SVM is ν, which is both an upper-
bound to the fraction of training errors and a lower-bound to the fraction of support
vectors of the model. For our experiments, we consider different ν values, looking
for a trade-off between the usability of the authentication system and its security.
In fact, lower values correspond to an higher false positive rate (FPR), while higher
values lead to an increase of the false negative rate (FNR).

Dataset The entire dataset (46 identities) is considered for this setup. The
dataset is partitioned into training set, validation set and test set: the training set
is the training set of the target model, known by the attacker; the validation set is
crafted by the attacker which knows the attacked identity; the test set is used by

47

6 – Evaluation

the attacker to evaluate the scalability of the results obtained over the validation
set.

Fo these experiments, we fix one attacked identity and we select 9 attacking
identities for the validation set. The 10 folds are used to cross-validate the model
by randomly shuffling the points assigned to each set, keeping the proportions.
We consider several training set sizes, while the remaining embeddings are equally
divided between validation and test set: within one batch, approximately 500
points are retained for each set. To generalize the results, we repeat this process
5 times by selecting a new set of attacking identities. During the experiments, the
attacked identity remains fixed.

Attack Point Computation

Parameter Tuning For the SGA technique, we consider the following setting:
step size equal to 0.1 and a stopping condition that checks the hinge loss increase
over 40 iterations.

We train a parallel model which resembles the target one and we search an
effective local maxima into the validation loss space. As described in Chapter 5,
15 random points are selected for the initial attack points set.

nu size initial injection attack
0.05 30 3.46 ±0.44 8.86 ±1.59 41.04 ±6.45
0.05 50 2.84 ±0.68 7.63 ±1.09 35.07 ±3.79
0.05 70 2.65 ±0.57 6.31 ±2.81 24.69 ±3.82
0.05 90 2.16 ±0.65 4.39 ±1.11 15.82 ±1.97
0.1 30 3.09 ±0.17 4.67 ±0.88 23.22 ±3.89
0.1 50 2.29 ±0.20 2.91 ±0.39 9.76 ±2.49
0.1 70 1.89 ±0.27 2.44 ±0.59 5.73 ±0.91
0.1 90 1.45 ±0.24 1.58 ±0.40 3.89 ±0.62
0.15 30 3.29 ±0.34 4.12 ±0.67 10.94 ±3.31
0.15 50 2.30 ±0.14 2.59 ±0.27 4.50 ±0.82
0.15 70 1.69 ±0.17 1.93 ±0.24 3.16 ±0.49
0.15 90 1.47 ±0.09 1.62 ±0.14 2.44 ±0.36
0.2 30 3.57 ±0.16 3.61 ±0.07 6.42 ±1.93
0.2 50 2.58 ±0.18 2.73 ±0.22 3.68 ±0.50
0.2 70 1.92 ±0.12 2.01 ±0.13 2.58 ±0.29
0.2 90 1.59 ±0.10 1.67 ±0.13 1.98 ±0.27

Table 6.3: Validation set mean classification error across all the batches.

In order to further generalize the results, different settings are considered: ν ∈
[0.05, 0.10, 0.15, 0.20] and training set size s ∈ [30, 50,70, 90]. For each setting and

48

6.2 – Results

nu size initial injection attack
0.05 30 3.33 ±0.11 8.28 ±1.35 40.11 ±6.78
0.05 50 2.93 ±0.63 7.20 ±1.18 34.67 ±3.64
0.05 70 2.52 ±0.68 6.38 ±2.70 24.19 ±3.57
0.05 90 2.18 ±0.43 4.33 ±1.11 15.46 ±1.57
0.1 30 3.33 ±0.26 4.85 ±0.86 22.41 ±4.15
0.1 50 2.51 ±0.19 3.17 ±0.55 9.91 ±2.43
0.1 70 1.85 ±0.27 2.31 ±0.55 5.87 ±1.18
0.1 90 1.41 ±0.19 1.49 ±0.34 3.71 ±0.65
0.15 30 3.27 ±0.27 4.00 ±0.52 10.42 ±2.85
0.15 50 2.38 ±0.16 2.61 ±0.34 4.38 ±0.72
0.15 70 1.84 ±0.09 2.08 ±0.19 3.15 ±0.51
0.15 90 1.36 ±0.08 1.43 ±0.09 2.16 ±0.48
0.2 30 3.53 ±0.28 3.69 ±0.16 6.26 ±1.44
0.2 50 2.76 ±0.14 2.81 ±0.13 3.51 ±0.39
0.2 70 2.19 ±0.15 2.21 ±0.16 2.67 ±0.17
0.2 90 1.48 ±0.07 1.55 ±0.12 1.83 ±0.17

Table 6.4: Test set mean classification error across all the batches.

nu size initial FPR injection FPR attack FPR
0.05 30 0.71 ±0.86 7.52 ±1.56 43.62 ±7.71
0.05 50 1.71 ±1.09 7.12 ±1.29 37.16 ±4.24
0.05 70 1.89 ±0.85 5.97 ±3.16 25.70 ±4.23
0.05 90 1.64 ±0.85 4.06 ±1.24 16.17 ±2.05
0.1 30 0.35 ±0.38 2.60 ±0.94 22.91 ±4.87
0.1 50 0.43 ±0.44 1.47 ±0.51 8.70 ±2.72
0.1 70 0.62 ±0.52 1.27 ±0.68 4.60 ±1.34
0.1 90 0.68 ±0.38 0.86 ±0.47 3.17 ±0.96
0.15 30 0.51 ±0.63 1.65 ±1.11 8.84 ±4.11
0.15 50 0.32 ±0.31 0.66 ±0.40 2.35 ±1.52
0.15 70 0.28 ±0.30 0.57 ±0.38 1.77 ±0.85
0.15 90 0.29 ±0.19 0.45 ±0.25 1.16 ±0.72
0.2 30 0.15 ±0.19 0.49 ±0.35 2.34 ±2.84
0.2 50 0.14 ±0.28 0.31 ±0.37 0.76 ±1.17
0.2 70 0.14 ±0.18 0.30 ±0.24 0.50 ±0.80
0.2 90 0.17 ±0.20 0.28 ±0.29 0.45 ±0.57

Table 6.5: Validation set false positive rate across all the batches.

49

6 – Evaluation

for each batch, the 10-fold cross-validation is applied.

Experiments First we discuss the accuracy of the classifier over all the batches.
To this end, the mean CE is evaluated in three different moments: before com-
puting the attack point, after the injection of adversarial point and, finally, after
the attack. Table 6.3 and Table 6.4 show the mean CE for each of the settings
over all the batches for, respectively, the validation and the test set. Not surpris-
ingly, the most important decrease is found by setting ν = 0.05 and size = 30:
the CE reaches 40.11%±6.78% while the injection error is roughly 5 times smaller
(8.28%±1.35%). Two different trends are identified by looking at the tables: fixing
the ν value, the initial error consistently decreases with the training set size; on
the other hand, fixing the training set size, the best ν is identified between 0.10
and 0.15. This is due to the linear relationship between ν and the FNR. Moreover,
the effectiveness of the attack is amplified for small training set sizes and ν values,
as in the most successful scenario.

Next, we discuss FPR over the validation set by looking at Table 6.5. As
expected, the ν increase corresponds to a decrease in the FPR, i.e. to a more
resilient system. In all cases we can observe a link between the sensitivity of the
system to the adversarial injection and the final attack point effectiveness: the
validation loss space exploration is boosted by a proper starting point.

nu size initial injection attack
0.05 30 3.01 ±0.45 11.44 ±3.50 61.21 ±7.91
0.05 50 1.99 ±1.05 9.89 ±5.48 49.24 ±12.38
0.05 70 2.41 ±0.63 11.93 ±8.14 39.49 ±10.44
0.05 90 1.49 ±0.95 4.43 ±3.15 26.54 ±7.35
0.1 30 2.71 ±0.92 4.38 ±1.84 33.26 ±12.33
0.1 50 2.04 ±0.64 3.33 ±1.50 15.55 ±7.51
0.1 70 1.24 ±0.57 1.86 ±0.92 6.70 ±2.88
0.1 90 0.94 ±0.35 1.28 ±0.70 2.73 ±1.86
0.15 30 3.23 ±1.06 4.80 ±2.46 15.78 ±9.40
0.15 50 2.04 ±0.71 2.46 ±0.74 3.78 ±1.23
0.15 70 1.47 ±0.50 1.65 ±0.64 2.29 ±1.06
0.15 90 1.31 ±0.41 1.28 ±0.43 1.63 ±0.70
0.2 30 3.33 ±0.87 3.60 ±1.08 7.25 ±5.73
0.2 50 2.64 ±0.43 2.64 ±0.42 3.30 ±0.57
0.2 70 1.68 ±0.73 1.70 ±0.60 1.95 ±0.73
0.2 90 1.51 ±0.56 1.40 ±0.51 1.49 ±0.51

Table 6.6: Validation set mean classification error for the first batch.

50

6.2 – Results

nu size initial injection attack
0.05 30 3.20 ±0.80 10.84 ±4.76 58.20 ±6.39
0.05 50 2.22 ±1.16 9.24 ±5.71 49.36 ±12.03
0.05 70 2.25 ±0.93 12.19 ±8.04 38.06 ±10.51
0.05 90 1.54 ±1.04 4.64 ±3.26 26.43 ±5.82
0.1 30 3.31 ±1.12 5.15 ±2.29 32.73 ±12.75
0.1 50 2.22 ±0.97 3.99 ±2.08 16.79 ±7.92
0.1 70 1.56 ±0.62 2.19 ±1.16 7.31 ±3.71
0.1 90 1.12 ±0.57 1.41 ±0.53 3.06 ±1.94
0.15 30 2.70 ±0.74 4.68 ±1.30 14.78 ±8.51
0.15 50 2.20 ±0.64 2.33 ±0.79 3.44 ±1.42
0.15 70 1.62 ±0.43 1.58 ±0.41 2.23 ±0.88
0.15 90 1.27 ±0.39 1.37 ±0.41 1.39 ±0.42
0.2 30 3.99 ±1.00 4.12 ±1.20 7.45 ±4.80
0.2 50 3.15 ±0.71 2.94 ±0.56 3.56 ±1.00
0.2 70 2.23 ±0.72 2.23 ±0.73 2.43 ±0.73
0.2 90 1.33 ±0.51 1.29 ±0.52 1.43 ±0.59

Table 6.7: Test set mean classification error for the first batch.

nu size initial FPR injection FPR attack FPR
0.05 30 0.30 ±0.45 10.20 ±3.86 66.31 ±8.94
0.05 50 0.97 ±0.91 9.65 ±6.19 52.84 ±13.55
0.05 70 1.49 ±1.00 11.97 ±9.11 41.47 ±11.86
0.05 90 1.03 ±1.08 4.14 ±3.42 27.49 ±7.85
0.1 30 0.08 ±0.10 2.54 ±2.12 34.31 ±14.56
0.1 50 0.41 ±0.67 2.20 ±1.65 15.35 ±8.43
0.1 70 0.27 ±0.24 1.05 ±0.99 6.28 ±3.55
0.1 90 0.17 ±0.19 0.62 ±0.59 2.08 ±1.83
0.15 30 0.46 ±0.83 2.48 ±3.26 14.84 ±11.50
0.15 50 0.12 ±0.10 0.53 ±0.56 1.34 ±1.73
0.15 70 0.13 ±0.13 0.38 ±0.28 0.90 ±1.12
0.15 90 0.11 ±0.10 0.13 ±0.13 0.11 ±0.10
0.2 30 0.06 ±0.10 0.22 ±0.39 2.98 ±7.52
0.2 50 0.08 ±0.10 0.19 ±0.30 0.23 ±0.54
0.2 70 0.08 ±0.10 0.10 ±0.10 0.06 ±0.09
0.2 90 0.09 ±0.10 0.09 ±0.10 0.06 ±0.09

Table 6.8: Validation set false positive rate for the first batch.

51

6 – Evaluation

30 50 70 90

Training set size

0

5

10

15

20

25

M
e
a
n
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

 = 0.10

Initial Validation Error

Injection Validation Error

Attack Validation Error

Initial Test Error

Injection Test Error

Attack Test Error

0.05 0.1 0.15 0.2

5

10

15

20

25

30

35

M
e
a
n
 C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r

Training set size = 50

Initial Validation Error

Injection Validation Error

Attack Validation Error

Initial Test Error

Injection Test Error

Attack Test Error

Figure 6.11: Mean classification error fixing nu=0.1 (left) and training set size=50
(right) for validation and test sets across different settings.

We now focus on the best-behaving batch to provide some insights about the
effectiveness of the attack. Table 6.6 and 6.7 show the mean CE for, respec-
tively, the validation and the test set. We can appreciate the outstanding result
of 58.20%± 6.39% with ν = 0.05 and size = 30. This example demonstrates that
choosing the right set of identities may substantially increase the final error. On
the other hand, it also underlines the importance of using a large set of identities
to increase the likelihood of finding an effective attack point.

We notice an interesting result by considering Table 6.8, showing the FPR over
the validation set. The effectiveness is enhanced for smaller values of ν and size if
compared to the average result across all the batches; on the contrary, this batch
is demonstrated to be more resilient in safer settings (ν>=0.15 and size>=50).
This trend, together with the high standard deviation values, can be explained in
two ways: the relatively small size of the sets, and the dependency between the
attacked identity and the attacking identities. In the best case, the local maxima
found by the attack procedure is tied to specific identities into the batch, allowing
them to access the system with high confidence after the injection. On the other
side, weak local maxima are likely tied to a FNR increase, making the system
unusable rather than affecting its security.

Fixed the best batch, we consider a particular setting for further considerations:
ν = 0.1 size = 50. Figure 6.11 shows the CE decrease as a function of the size
(left) and as a function of the parameter ν (right) for both validation and test sets.

Given our fixed setting, we extract three attack points among the 10 runs of the
algorithms: the worst, the average and the best attack point w.r.t to CE increase.
These points are shown in Figure 6.12: on the left, the CE increase; on the right,
the associated ROC graph. We compute the latter by exploiting the decision score
function as a threshold between FPs and TPs. In the average case, the decrease in
the performance appears to be significant, even though we can observe a negligible
decrease in the worst case. The main reason for this is the limited sampling of

52

6.2 – Results

020406080Iteration33.544.555.5Mean Hinge Loss10-3

0 20 40 60 80

Iteration

0.01

0.015

0.02

0.025

0.03

0.035

0.04

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

validation

test

val injection

test injection

val attack

test attack

(a)

020406080Iteration0.0050.010.0150.020.025Mean Hinge Loss

0 20 40 60 80 100

Iteration

0

0.05

0.1

0.15

0.2

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

validation

test

val injection

test injection

val attack

test attack

(b)

020406080100Iteration00.0050.010.0150.020.0250.03Mean Hinge Loss

0 20 40 60 80 100

Iteration

0

0.05

0.1

0.15

0.2

0.25

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

validation

test

val injection

test injection

val attack

test attack

(c)

Figure 6.12: Classification error and ROC for the worst (a), the average (b) and
the best attack point (c) across 10 iterations, considering the best-behaving batch.
The CE is computed w.r.t to the validation set (blue) and the test set (red).

initial points from the validation set. An attacker may run the algorithm multiple
times or increase the number of initial points to increase the probability to find an
effective local optimum. Even with reasonable design choices, the model is shown
to be vulnerable to the attack: the CE increases till 23% in the best case.

53

6 – Evaluation

(a)
(b)

Figure 6.13: Initial attack point: (a) raw; (b) pre-processed.

Figure 6.14: Sequence of images generated by the sliding window procedure.

Inverse Feature-Mapping

To reverse the final attack point, we change the setting w.r.t the binary model.
We consider a smaller initial window side l and an higher initial threshold h: the
pairs (l, h) are (16,8), (8,12), (4,16) and (2,20). The starting image is an image
from the training set identity, as shown in Figure 6.13. As in the binary classifier

0 20 40 60 80

Iteration

0

0.002

0.004

0.006

0.008

0.01

m
s
e

0 50 100 150 200 250 300

Iteration

0

0.005

0.01

0.015

0.02

0.025

m
s
e

Figure 6.15: mse increase during the attack process (left); mse decrease during
the reverse-mapping (right).

54

6.2 – Results

0 20 40 60 80 100 120

Iteration

0.005

0.01

0.015

M
e
a
n
 H

in
g
e
 L

o
s
s

0 50 100 150 200 250 300

Iteration

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

M
e

a
n

 H
in

g
e

 L
o

s
s

Figure 6.16: Comparison between the hinge loss computed during the attack (left)
and the hinge loss of the reverse embedding, during the modification (right).

0 20 40 60 80 100 120

Iteration

0

0.05

0.1

0.15

0.2

0.25

C
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r

0 50 100 150 200 250 300

Iteration

0

0.05

0.1

0.15

0.2

0.25

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

Figure 6.17: Comparison between the classification error computed during the
attack (left) and the classification error of the reverse embedding, during the mod-
ification (right).

case, we store the embedding corresponding to the modified version of the image
at the end of each row. In that way, we are able represent the evolution of the
distance between the modified embedding and the objective, as well as L and CE.
As before, we iterate 3 times for each l, obtaining 270 embeddings.

Figure 6.15 compares the distance between the initial attack point and the final
attack point during the SGA process (left) with the minimization of the distance
during the reverse mapping process (right). Starting from a distance of 2e−2,
we approach the final attack point with a mse equal to 5e−4. The relationship
between the distance of the embedding and L is shown in Figure 6.16: the difference
between the optimal loss and the one obtained with the reverse procedure is equal
to 2e−3. Correspondingly, the classification error increases till 21% where the
analytical result was 23%, as shown in Figure 6.17.

We conclude that the injection of the adapted image produces a comparable
detrimental effect w.r.t. the analytic computation of the attack point.

55

56

Chapter 7

Discussion and Future
Directions

In this chapter we discuss the results of this work, with an emphasis on limitations,
challenges and future directions.

Starting from a previously developed attack, we demonstrate its effectiveness
in a security-sensitive application like a face recognition system. We model an
SVM classifier as the target of an intelligent adversary, providing the latter with
the possibility to change its training set. We demonstrate the effectiveness of the
poisoning attack against a One-Class SVM by injecting a single sample into the
system. Furthermore, we show a strong dependency between the hyper-parameter
tuning of the model and the strength of the system against the attack.

The first countermeasure to this attack is the increase of the training set size.
Since todays system are re-trained over time, they are susceptible to this kind of
attack especially in the earlier deployment phases. A careful system designer would
take into account a decreasing ν value as the training set is extended, in order to
address this security issue. In this way, he can increase the usability of system with
time, without affecting the security. Further research may extend this evaluation
by addressing the ν - attack point relationship from a theoretical perspective.

The attack against the One-Class SVM relies on the search of an attacking
identity into a validation space which is a batch of 10 identities. An extension
of this work would consider a validation set composed by single identities with a
greater number of samples each. In this way, it would be possible to evaluate the
effectiveness of letting one single identity access the system after the injection of
one, or more adversarial samples.

We introduce a novel reverse mapping technique to craft real-world image start-
ing from a 128-dimensional feature vector. Despite previous work, we are relaxing

57

7 – Discussion and Future Directions

the adversarial model by considering the CNN as a black-box instead of exploiting
its internal details. Through our experiments we demonstrate the link between the
distance of two points and their respective hinge loss. This allows us to craft a
real-world image that embodies an adversarial sample while representing whichever
identity. Given the empirical nature of our technique, its effectiveness collides with
an efficient use of the resources. For this reason, heuristics may be exploited. One
example is a best-first search which performs an initial iteration to store a list of the
windows which contributes the most to the distance minimization. The windows
can be stored as pairs (x, y), identifying the first cell of the window. Then, the
real modification is applied by sorting the list in decreasing order with respect to
the distance metric. Future work may consider this path.

We extend the threat model developed by Biggio et al. [10], inheriting its
limitations. The first assumption regards the knowledge of the attacker about the
model details. The attacker should be able to train an exact copy of the target
classifier to compute the attack point. Previous work [25] demonstrates that having
access to the underlying data distribution can be enough to train a substitute of
the model, achieving comparable results. Future work may address this problem
by extending our experiments.

A second assumption is tied to the injection phase. It is unrealistic to consider
that the adversary is able to inject an image which will be used to train the model.
However, this scenario can be regarded as a starting point for future extensions.
One possibility exploits the continuos re-training mechanisms of modern face au-
thenticator. Instead of injecting the image which carries the attack point, we can
think to a continuous injection of a slightly modified image. In this way, we can
control the classification of the injected sample, keeping it always above certain
probability thresholds. The system would seemingly accept correct inputs, instead
the classification rule will move at each new re-training.

We are not considering the multi-point attack in our final analysis over the
one-class SVM. However, the binary classifier demonstrates the effectiveness of
multiple, sequential injections. Further research is needed to understand what is
the best set of points to be injected to maximize the effectiveness of the attack.

Finally, we limit our scope to linear SVMs which is not the only classification
algorithm we can consider to implement an authentication system. Future work
would tackle the other kernels already supported by the attack strategy (e.g. the
RBF kernel) as well as other classification algorithms that behaves comparably to
our target.

58

Chapter 8

Conclusion

In this work, we presented the adaptation of an existing poisoning attack against
an authentication system based on a state-of-the-art face recognition technique.
The main focus of the attack was to investigate the security of a SVM learning
model against an intelligent adversary, in the context of a face-based authentication
system.

We demonstrated the effectiveness of the poisoning attack by injecting a single
sample into the training set of the authenticator. We used 46 different identities
from a publicly available dataset, for a total of approximately 5000 images. We
cross-validated the attack by using subsets of 10 attacking identities against a
single authenticated user. In this way, we were able to show a drastic drop in the
classification accuracy up to 45%, which makes the system unusable.

Moreover, we developed a technique to reverse the black-box feature extraction
process. In this way, we demonstrated how the attacker can present real-world
images to the system instead of feature vectors. By attacking the system a second
time, we registered a comparable drop in accuracy.

In an attempt to evaluate the security of the SVM, we explored the parameter
tuning phase. Our findings underline the security risks associated with a poor
design. Based on our extensive analysis, we conclude that a careful system designer
should consider a trade-off between usability and resilience.

Machine learning algorithms represent, at the same time, the enabling-technology
and the biggest concern in the field of biometrics for authentication. This work
demonstrated that poisoning attacks represent a real threat against face-based
authentication systems. The results underlined the urge of considering adver-
sarial machine learning during the system design phase, by carefully tuning the
hyper-parameters. Thus, proactively anticipate an external adversary can make
the difference between a resilient system and a vulnerable one.

59

60

Bibliography

[1] Z. Akhtar, C. Micheloni, and G. L. Foresti. Biometric liveness detection:
Challenges and research opportunities. IEEE Security Privacy, 13(5):63–72,
Sept 2015.

[2] A. Al Abdulwahid, N. Clarke, I. Stengel, S. Furnell, and C. Reich. Continuous
and transparent multimodal authentication: Reviewing the state of the art.
Cluster Computing, 19(1):455–474, Mar. 2016.

[3] B. Amos, B. Ludwiczuk, and M. Satyanarayanan. Openface: A general-
purpose face recognition library with mobile applications. Technical report,
CMU-CS-16-118, CMU School of Computer Science, 2016.

[4] J. Suykens. Artificial Neural Networks. Katholieke Universiteit Leuven De-
partment of Electrical Engineering, ESAT-STADIUS, 2013.

[5] Apple. Face id. https://support.apple.com/HT208109. Accessed: 2018-
07-07.

[6] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. Labeled faces in the
wild: A database forstudying face recognition in unconstrained environments.
10 2008.

[7] B. Biggio, L. Didaci, G. Fumera, and F. Roli. Poisoning attacks to compromise
face templates. In 2013 International Conference on Biometrics (ICB), pages
1–7, June 2013.

[8] B. Biggio, G. Fumera, and F. Roli. Security evaluation of pattern classi-
fiers under attack. IEEE Transactions on Knowledge and Data Engineering,
26(4):984–996, April 2014.

[9] B. Biggio, B. Nelson, and P. Laskov. Support vector machines under adver-
sarial label noise. In C.-N. Hsu and W. S. Lee, editors, Proceedings of the
Asian Conference on Machine Learning, volume 20 of Proceedings of Machine
Learning Research, pages 97–112, South Garden Hotels and Resorts, Taoyuan,
Taiwain, 14–15 Nov 2011. PMLR.

[10] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector
machines. In Proceedings of the 29th International Coference on International
Conference on Machine Learning, ICML’12, pages 1467–1474, USA, 2012.

61

https://support.apple.com/HT208109

Bibliography

Omnipress.
[11] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,

2000.
[12] G. Cauwenberghs and T. Poggio. Incremental and decremental support vector

machine learning, 2000.
[13] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[14] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like envi-
ronment for machine learning. 01 2011.

[15] M. Gadaleta and M. Rossi. Idnet: Smartphone-based gait recognition with
convolutional neural networks. CoRR, abs/1606.03238, 2016.

[16] J. Galbally, S. Marcel, and J. Fierrez. Biometric antispoofing methods: A
survey in face recognition. IEEE Access, 2:1530–1552, 2014.

[17] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar. Adver-
sarial machine learning. In Proceedings of the 4th ACM Workshop on Security
and Artificial Intelligence, AISec ’11, pages 43–58, New York, NY, USA, 2011.
ACM.

[18] R. Jafri and H. Arabnia. A survey of face recognition techniques. 5:41–68, 06
2009.

[19] D. E. King. Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res.,
10:1755–1758, Dec. 2009.

[20] H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on platt’s probabilistic outputs
for support vector machines. Machine Learning, 68(3):267–276, Oct 2007.

[21] D. Lowd and C. Meek. Adversarial learning. In Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data
Mining, KDD ’05, pages 641–647, New York, NY, USA, 2005. ACM.

[22] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA,
1 edition, 1997.

[23] H. W. Ng and S. Winkler. A data-driven approach to cleaning large face
datasets. In 2014 IEEE International Conference on Image Processing (ICIP),
pages 343–347, Oct 2014.

[24] T. E. Oliphant. Guide to NumPy. CreateSpace Independent Publishing Plat-
form, USA, 2nd edition, 2015.

[25] N. Papernot, P. D. McDaniel, and I. J. Goodfellow. Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples.
CoRR, abs/1605.07277, 2016.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in python. J. Mach. Learn. Res., 12:2825–2830, Nov. 2011.

62

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Bibliography

[27] G. Rossum. Python reference manual. Technical report, Amsterdam, The
Netherlands, The Netherlands, 1995.

[28] B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt. Support
vector method for novelty detection. In Proceedings of the 12th International
Conference on Neural Information Processing Systems, NIPS’99, pages 582–
588, Cambridge, MA, USA, 1999. MIT Press.

[29] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding
for face recognition and clustering. CoRR, abs/1503.03832, 2015.

[30] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, New York, NY, USA,
2014.

[31] C. Smutz and A. Stavrou. Malicious pdf detection using metadata and struc-
tural features. In Proceedings of the 28th Annual Computer Security Appli-
cations Conference, ACSAC ’12, pages 239–248, New York, NY, USA, 2012.
ACM.

[32] Y. Sun, X. Wang, and X. Tang. Deep learning face representation by joint
identification-verification. CoRR, abs/1406.4773, 2014.

[33] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap
to human-level performance in face verification. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1701–1708, June 2014.

[34] A. Tolba, A. El-Baz, and A. El-Harby. Face recognition: A literature review.
2:88–103, 01 2008.

[35] S. University. Cs class cs231n. http://cs231n.github.io/
neural-networks-1. Accessed: 2018-07-07.

[36] L. Wolf, T. Hassner, and I. Maoz. Face recognition in unconstrained videos
with matched background similarity. In CVPR 2011, pages 529–534, June
2011.

[37] H. Xiao and C. Eckert. Adversarial label flips attack on support vector ma-
chines. 242:870–875, 01 2012.

63

http://cs231n.github.io/neural-networks-1
http://cs231n.github.io/neural-networks-1

	Summary
	Acknowledgements
	Introduction
	Background
	The Learning Model
	Support Vector Machines
	Artificial Neural Networks
	Adversarial Machine Learning

	Related Work
	Face Recognition
	Deep Architectures
	OpenFace

	Adversarial Machine Learning
	Poisoning against SVMs

	Gap in the Related Work

	Authentication System
	OpenFace for Feature Extraction
	Classification with SVMs

	Poisoning Attack Methodology
	Threat Model
	Poisoning Attack against SVM
	Methodology
	Stochastic Gradient Ascent

	Inverse Feature-Mapping
	CNN Analysis
	Random Sliding Window

	Evaluation
	Setup
	Dataset
	Software
	Metrics

	Results
	Linear Binary SVM
	One-Class SVM

	Discussion and Future Directions
	Conclusion
	Bibliography

		Politecnico di Torino
	2018-09-11T13:06:46+0000
	Politecnico di Torino
	Silvia Anna Chiusano
	S

