
POLITECNICO DI TORINO

Master of Science in Computer Engineering

Master Thesis

Towards a faster Iptables in eBPF

Supervisor
Prof. Fulvio Risso

Candidate
Massimo Tumolo

PoliMi Supervisor
Prof. Antonio Capone

Academic year 2017-2018

To my family.
You did more then you could for me to get here, I hope I will be as great to my

children as you were to me.

Alla mia famiglia.
Avete fatto oltre il possibile per farmi arrivare qui, e spero di poter essere per i

miei figli quanto voi siete per me.

i

Acknowledgements

I would like to acknowledge my supervisor, or my mentor, Prof. Fulvio Risso. He
trusted me to work on this project, he believed in me and helped me through all
the steps. This thesis has been a wonderful opportunity to grow personally and
professionally, and everything I learned was thanks to the opportunities he opened
for me.

A huge acknowledgment goes to Matteo Bertrone. He developed this thesis with
me, we had (very) long chats on problems, possible solutions, and consequent prob-
lems. We had some coffee just to talk. He was a really nice friend and collaborator.
Thanks.

Thank you to Sebastiano Miano, for being a good friend and a source of precious
tips. I owe him a bunch of coffees that he offered during our chats. And thank you
for suggesting me my favorite pizza place in Turin.

Thank you to Mauricio Vásquez Bernal, for teaching me a lot on eBPF, and for
being always available to provide me with help and informations.

Last but not least, thank you to Simona. Every time I chose the work over you,
every time I spent our time to do this or that activity, you were always there to
support me, you were always there to bring me back from my mind deadlocks. I owe
you so much.

ii

Abstract

Iptables is the de-facto standard Linux firewall. Features are its strength, but
its low scalability and poor performance can represent the bottleneck of network
systems. This thesis describes the challenges encountered and the choices made
while developing a prototype to replace Iptables back-end, the Netfilter, improving
performance but keeping the same syntax and semantics. The implementation is
based on the separation of the fast and thin data plane in charge of the traffic
processing and the slow and fat control plane, in charge of managing the overall
logic. While the latter leverages on the possibilities offered by C++, the former is
implemented in eBPF, a technology recently added to the Linux kernel, that allows
fast in-kernel packet processing. The results show a great gain over Iptables, and
the architecture modularity opens opportunities for further algorithmic improvement
and features development.

iii

Contents

Acknowledgments ii

List of Figures vii

1 Introduction 1

1.1 Security through firewalls . 3

1.2 The Linux firewall: Iptables & Netfilter 4

1.3 Motivation . 6

2 Tools 9

2.1 Technologies . 9

2.1.1 BPF . 9

2.1.2 eBPF . 9

2.2 Frameworks . 13

2.2.1 BCC . 13

2.2.2 Polycube . 15

3 Related work 17

3.1 Ipset . 17

3.2 Nftables . 18

iv

3.3 Bpfilter . 19

3.4 The packet classification problem . 20

3.4.1 Algorithms for packet classification 21

4 Design 25

4.1 Semantic . 25

4.2 Matching algorithm . 27

4.3 Architecture . 29

4.3.1 Pipeline architecture . 30

4.3.2 Chain . 31

4.3.3 Connection tracking . 33

4.3.4 Counters . 38

4.4 Dataplane optimizations . 40

4.4.1 Tailored dataplane . 40

4.4.2 Leveraging on connection tracking 41

4.4.3 Atomic update . 42

5 Implementation 45

5.1 Syntax . 45

5.2 eBPF Maps . 46

5.3 Code structure . 48

6 Benchmarking 55

6.1 Methodology . 55

6.1.1 Rule set . 56

6.2 Results . 57

v

6.2.1 Nic-To-Nic setup . 58

6.2.2 Host firewall setup . 61

6.2.3 Rule insertion . 63

7 Conclusions 67

7.1 Future work . 67

7.2 Final remarks . 68

A Firewall data model 71

References 75

vi

List of Figures

1.1 Firewall . 4

1.2 Netfilter architecture . 6

2.1 eBPF Tracing . 11

2.2 eBPF TC vs XDP benchmarks . 12

2.3 eBPF overview . 14

3.1 Bpfilter performance . 20

4.1 Linear Bit Vector Search example . 29

4.2 Overview of the main components. 30

4.3 Data plane architecture TODO CITARE 31

4.4 Matching chain . 33

4.5 TCP Connection tracking . 36

4.6 UDP Connection tracking . 36

4.7 Tracking counters . 38

4.8 Tailored data plane . 41

4.9 Atomic update . 43

5.1 User interface architecture . 46

vii

5.2 Flags management . 48

5.3 Code structure . 49

6.1 NIC-to-NIC Benchmark setup . 56

6.2 Throughput UDP (64B frames) . 59

6.3 Throughput UDP (512B frames) . 59

6.4 Throughput UDP (512B frames, no Linux routing) 60

6.5 Latency ICMP . 60

6.6 Host firewall setup . 61

6.7 Input UDP Throughput . 62

6.8 Input TCP Throughput . 64

6.9 Input TCP Throughput . 64

6.10 Latency ICMP . 65

6.11 Rule appending time . 66

6.12 Rule insertion time . 66

7.1 Tree and LBVS . 67

viii

Chapter 1

Introduction

Every system connected to a network, from a smartphone to enterprise data centers,
have to employ some protection mechanism when connected to a network to avoid
potential attacks.

A widely used system is the firewall, usually representing the first layer of defense.
A firewall is a traffic filter that allows only a specific and customizable class of traffic
to be exchanged with or by the protected device. Firewalls are widely used due to
their effectiveness and low overhead, as they allow with a relatively reasonable cost
to reduce the attack surface of a network by discarding most of the malicious traffic.

Linux, the most widely employed operating system on data centers, accomplishes
security through the Netfilter subsystem and its widely used frontend, Iptables.
This software suite is a firewall that allows the inspection of the traffic to modify,
redirect, drop or allow each packet.

The system consists of a kernel part, the Netfilter, organized as a collection of
tables which exploits the hooks provided by the framework to apply the security
policies. The second part represents a user-level utility that allows to configure and
create these chains/rules appropriately. For brevity, this thesis will refer to the entire
system as Iptables.

Iptables has been used for over twenty years and many Linux-based systems
still use it to enforce security. Nevertheless, with the advance of the technologies

1

1 – Introduction

and the increase of the networks speed, its limits are becoming evident. Stricter
requirements expect the firewall to keep up with the performance needs of the data
centers, without the possibility to sacrifice the configuration complexity.

Such a scenario is not favorable to Iptables, that is not scalable enough to satisfy
the demands. To answer to this problem, in 2014 a new firewall was included in
the kernel, nftables, with the aim of replacing the existing Iptables framework.
Although this yields advantages over its predecessor, Nftables has not yet had the
desired success: system administrators are reluctant to migrate to new solutions due
to the difficulties and the risks related to reconfigure their systems with different
tools, without any notable gain.

Recently, the extended BPF technology has been introduced into the Linux ker-
nel, offering the possibility to process outgoing or incoming traffic by executing code
directly in the kernel. This premise, together with the potential showed by the bp-
filter, a proof of concept to replace Iptables proposed in the kernel [1], makes eBPF
a perfect candidate to fully reimplement Iptables, keeping both its semantics and
syntax.

Such an approach would allow customizing the in-kernel internals of Iptables
introducing improvements both by the algorithmic and the filtering point of view,
leveraging on the possibility offered by eBPF to inject code at runtime without re-
compiling the kernel. Moreover, programs could be offloaded to hardware, obtaining
an even greater performance benefit.

This thesis presents an eBPF-based prototype cloning Iptables. The goal of the
prototype is to show that it is possible to achieve high performance without disrupt-
ing the users’ security configurations and without requiring the user to recompile
custom versions of the kernel with external modules.

The description will scroll through the main background topics, from firewalls
in general to the internals of Iptables. It will then present the other attempts to
replace Iptables, the lessons learned from them and why they did not succeed.

A detailed presentation is then provided on the developed prototype with em-
phasis on the design choices that have been made to succeed in the goal, first from

2

1.1 – Security through firewalls

the architectural perspective and then from the implementation one, highlighting
the differences between eBPF and Iptables, and the adopted solutions in order to
correctly emulate the filtering semantics while improving the classification algorithm.

By the end, the eBPF prototype will be evaluated by comparing it with the
current implementation of Iptables, showing how the replacement would lead to
higher performance particularly when a high number of rules is involved.

1.1 Security through firewalls

In the past, terraced houses were built using wood. This meant that if one house got
on fire, all other houses would have been affected as a chain reaction. The answer
was to build stone walls between them to prevent fire propagation: the firewalls.

The firewall network function takes the name from those brick walls, as its aim
is to enforce security and prevent attacks to go from one network to another, acting
exactly as a wall (figure 1.1). To do so, a firewall is put between two networks and
configured to select which traffic should pass through them and which should not.
Ideally, this should prevent malicious traffic to pass, practically is not always easy
to foresee from where the malicious traffic will come from, and firewalls are only a
first protection against attacks.

There are two ways to classify firewalls, one based on the traffic they observe,
the other based on the granularity on which they can inspect the traffic [2].

The first classification distinguishes Ingress firewalls from Egress ones. The form-
ers filter incoming connections and usually allows them based on the services offered
to the external networks. The latter filter outgoing traffic, and are usually used to
prevent certain applications to be used in a network (e.g. to prevent employees to
go on social networks).

The second classification is based on how far in the packet a firewall can see:

1. Packet filter: inspects packets at the network level, with basic support for
transport headers. Simple and fast, but it may be easily tricked using packet
spoofing.

3

1 – Introduction

2. Stateful packet filter: same support of a packet filter, but state-aware. Can
track connections and take decisions based on them.

3. Application-level gateway: explores the traffic up to the application layer. Usu-
ally, it’s a packet filter with modules that can be attached, each module spe-
cific to an application protocol. It’s the most secure choice but introduces high
overhead on the traffic processing.

4. Local firewall: A firewall that is directly installed on the node to be protected,
usually filters the traffic that reaches or comes from applications running on
it.

External
Network

Internal
Network

Figure 1.1: Visual representation of the firewall job.
Brick wall by Creative Stall from the Noun Project. Flaming skull by Andrew
Cameron from the Noun Project.

1.2 The Linux firewall: Iptables & Netfilter

The Iptables/Netfilter firewall is the most used Linux firewall. It is a local ingress
and egress firewall, as it is installed locally on the host, and it can work as a stateful
packet filter or an application-level gateway, based on the configuration.

The system is split into two components: Iptables, and Netfilter.

Iptables is a frontend application, it offers an API to the clients (other appli-
cations or human users) to configure the underlying Netfilter. This configuration is
expressed as a sequence of rules that associate some properties of the traffic with
the action to be taken. For example,

4

1.2 – The Linux firewall: Iptables & Netfilter

iptables -A INPUT -p tcp --dport 22 -s 192.168.0.0/24 -j DROP

prevents hosts outside the network with addresses ranging from 192.168.0.0 to
192.168.0.255 to open SSH connections with the host that is behind the firewall.

Moreover, Iptables can configure the Netfilter to perform Network Address Trans-
lation and packet mangling. The syntax is very similar to the filter one. For example,

iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to 10.0.0.1

changes all the outgoing traffic’s source address in 10.0.0.1.

The Netfilter is the backend component. It runs only in the kernel, and it is
in charge of processing the traffic. It is not only a firewall, but instead a complex
cooperation between components like a NAT (as hinted in the previous paragraph),
a Router, a Bridge, and a Firewall. A packet that reaches a Linux host is processed
by each one of this components before it can proceed to the destination.

The Netfilter exposes hooks, interfaces on which functions can be attached to
process the traffic in the kernel. Iptables attaches the firewall functionalities in the
Netfilter in three hooks: input, output, and forward. The first one is in charge of
processing the traffic directed to applications running on the host; the second one is
in charge of the traffic coming from these applications; the third one is reserved for
packets traversing the host as if it was a router or a bridge, i.e. just traversing from
one interface to another. The forwarding chain is used for traffic between namespaces
(and so, containers), too.

The Netfilter behavior and functionalities are strongly based on the cooperation
of these components, chained together to process the traffic. The traffic is first
received by the NAT, that possibly changes the addresses, then it is processed by
the routing and switching system and, at this point, there is enough knowledge to
filter the packet in the proper hook.

The Netfilter offers the possibility to configure a different set of policies for
packets captured on the input, output, or forward hooks. These policies are chained
as a linked list and each time a packet is received they are scrolled linearly until the
first one matching the packet is found.

5

1 – Introduction

Figure 1.2 depicts a simplified version of the Netfilter structure, with emphasis
on the main components and particularly on the filtering functionalities.

Netdevice

NAT

BRIDGING &
ROUTING

FILTER

LOCAL PROCESSES

FILTER

NAT

NAT

FILTER

Netdevice

Input hook

Output hook

Forward hook

Iptables

Figure 1.2: Overview of Netfilter’s main components.

1.3 Motivation

The NetGroup1 at Politecnico di Torino is exploring the eBPF technologies to de-
velop high-performance network functions on Linux systems, in collaboration with
Huawei and in the framework of the European ASTRID project.

Every network function, however, needs a layer of protection. During the re-
search, Iptables was found as a bottleneck in service chains, where most of the over-
head was coming from letting Linux enforce security. As an example, the Kubernetes
orchestrator is strongly limited as it requires to inject rules in Iptables.

1http://netgroup.polito.it/

6

http://netgroup.polito.it/

1.3 – Motivation

A first attempt to develop a lightweight security tool was a Policy-based

forwarder, developed by the author of this thesis. Such a tool was just a way
to stress the limits of the technologies to explore if it was suited for a more complex
use case, a firewall.

The positive outcome lead to the development of this thesis, with the more
ambitious aim of replacing Iptables and possibly the entire Netfilter architecture.
The project gained the interests of the kernel developers thanks to the Netdev [3]
and SIGCCOM [4] conferences, and it may represent a connection with the Linux
community to start a collaboration.

7

8

Chapter 2

Tools

2.1 Technologies

2.1.1 BPF

The Berkeley Packet Filter (BPF) is an in-kernel virtual machine for packet filtering,
initially introduced in FreeBSD and in Linux 2.1.75. It is shipped with its own
instruction set to be interpreted by the virtual machine.

BPF was initially used in packet capture tools like tcpdump or wireshark. Its
purpose is to perform fast in-kernel packet filtering without the overhead of the
context switch needed to process packets in the user space. Moreover, being run on
a VM, BPF is platform independent and can be executed on any architecture, from
the home router to an enterprise Linux server.

2.1.2 eBPF

BPF was deeply revisited by Alexei Starovoitov and proposed in 20131 under the
name of eBPF. It was officially introduced in Linux since kernel 3.15. From this
moment, BPF was referred to as cBPF (classic BPF) and eBPF as BPF.

1https://lkml.org/lkml/2013/12/2/1066

9

https://lkml.org/lkml/2013/12/2/1066

2 – Tools

eBPF introduced deep architectural improvements:

• Reacting to generic events in the kernel. eBPF is not only a packet filtering
mechanism but instead, it can be used to react to a range of system calls
(shown in figure 2.1). This mechanism is really powerful and pushed a lot the
development of the technology, as shown by one of the main developers of
eBPF tracing tools, Brendan Gregg [5].

• Networking hook points. Further explained later, eBPF introduced the possi-
bility to trace and mangle packets at the TC and XDP hooks.

• Stateful processing. eBPF programs are event-driven, each execution is in-
dependent of the other. However, eBPF introduced maps, data structures to
preserve the state and share it between executions and the userspace.

• Tail calls. eBPF introduced a mechanism to connect programs. Tail calls are
long jumps, i.e. function calls that do not return to the caller.

• Helpers. From eBPF code it is not possible to invoke kernel routines through
system calls. This is a strong limit in the interaction with the kernel, however,
some functionalities are exposed through helper functions. These functions
are considered safe can be used by eBPF programs to perform operations like
accessing the maps, retrieving the time, modifying the packets, execute tail
calls and so on [6].

• 64 bit architecture and Just-In-Time compilation for increased performance
and flexibility.

eBPF allows an user-space application to inject code in the kernel at runtime
without the need to recompile it or add some module. However, programs have to be
already in the kernel tree [7]. This limitation has been mitigated by BCC, presented
in section 2.2.

Natively, eBPF offers its own assembler. Programs can be written using it and
converted to bytecode using the Linux command bpf_asm. However, a much more

10

2.1 – Technologies

Figure 2.1: System calls that eBPF can intercept. From [5].

user-friendly approach to the technology is writing programs in restricted C, and let
the Clang/LLVM compiler suite handle the translation to the bytecode.

Independently from how the code has been written, the assembly code has to be
injected into the kernel. The bpf() system call allows to do so, but the code has to
go through a number of strict checks before it can start running. The eBPF verifier
checks every memory access and pointers to guarantee that no memory leak can
happen, to do so it simulates the execution and ensures that after it the registers
and the memory are in the right state. Moreover, it walks through the code flow
graph to ensure the termination.

After a successful load, the execution of an eBPF program is event-driven. A
program is hooked to a particular type of event, and every manifestation will cause
the program to be executed. Based on the event category, it may be possible to alter
the event itself.

When an eBPF program is attached to a networking event, i.e. the arrival of a
packet, it can intercept packets and modify, forward or drop them. The traffic can

11

2 – Tools

be captured in three points of its lifecycle in the kernel, namely in three hooks:

1. Socket filter. It intercepts packets after the IP routing. However, no modifi-
cations can be made to the traffic, that can only be observed.

2. Traffic Control (TC). The Traffic Control hook intercepts incoming and
outgoing traffic (namely ingress and egress) right before it is passed to the
Netfilter.

3. eXpress Data Path (XDP). The XDP hook is located right after the net-
working card driver. It can intercept traffic in the Driver (or Native) mode and
in the Generic (or skb) mode. The first mode has to be supported by the
particular driver, it’s the closest point to the card and it has high-performance
benefits as the kernel does not create any data structure, so there is practi-
cally no overhead. The second mode is a way to use XDP on drivers that do
not support it. In both modes, XDP hooks can only operate on RX traffic
(i.e. the traffic received by the card from outside the host). A comparison of
the performance of these hooks against a program run in the control plane is
depicted in 2.2, from [8].

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Traffic Control XDP Generic XDP Native

T
hr

ou
gh

pu
t (

M
pp

s)

Fast path
Slow path

Figure 2.2: Performance of a bridge service running in TC or XDP (in the figure,
fast path). From [8].

The overall eBPF architecture is depicted in figure 2.3, from the code injection
to the run-time processing.

12

2.2 – Frameworks

While eBPF presents the advantage of allowing fast and early in-kernel packet
processing, using it to create complex network services presents a number of chal-
lenges to the programmer due to the constraints forced on the coding paradigms.
Following, these limits and possible solutions will be explained based on the article
written by the authors behind the eBPF firewall [8].

• Limited program size. An eBPF program can’t be longer than 4096 assem-
bly instructions. The reason behind this choice is that programs are executed
in the kernel, and are meant to perform fast processing and terminate in a
bounded amount of time. When complex functions are needed, this program
size can be a severe limit. However, this limitation can be circumvented by de-
signing the programs in a modular way, splitting them into multiple programs
connected through tail calls.

• Limited number of tail calls. Strictly connected to the limited program size,
this limitation prevents the programmer to chain more than 32 programs.

• Unbounded loops. Since eBPF programs are run in the kernel, it is necessary
that they are checked to avoid infinite loops, that may result in the kernel
being blocked and possibly crashing. The solution adopted is to refuse any
backward jump, in this way it is ensured that the program will terminate. As
a consequence, unbounded loops can’t be implemented. In the next section, a
partial solution will be presented by using the LLVM directive pragma unroll

that unrolls the (bounded) loop in a sequence of instructions. This allows the
programmer to write loops, but at the expense of a greater program size.

2.2 Frameworks

2.2.1 BCC

The developed eBPF firewall leverages on the eBPF Compiler Collection (BCC).

13

2 – Tools

Linux host
netdevice

tc ingress

netdevice

tc egress

eBPF sandbox

[skb]

XDP hook

eBPF control
plane program

eBPF sandbox

eBPF program
(e.g. Bridge)

Kernel space

User space

Network applications
(e.g., web server, etc)

Network stack

TC hook

eBPF program
(e.g. DDoS
mitigator)

eBPF program
(e.g. Firewall)

Tail call

CLANG + LLVM

JIT+Verifier

eBPF dataplane
source code

eBPF dataplane
binary code

MAPS

Figure 2.3: eBPF overview, from [8].

BCC is a toolkit for creating efficient kernel tracing and manipulation pro-
grams [9]. In practice, it is a framework acting as a frontend for eBPF that offers
abstractions to the developer to ease the development of eBPF programs.

The toolkit provides a mechanism to write eBPF programs using a restricted
version of C. Through Python scripts it is possible to let BCC handle the cycle of
the restricted C code from the user space to the kernel. Internally, BCC leverages on
Clang to translate to an intermediate representation that is then provided to LLMV
for compilation, and the output is eBPF assembler that can be directly injected in
the kernel. All this process is transparent to the user.

Moreover, BCC encapsulates eBPF functionalities and LLVM features offering
easy-to-use macros and directive to the user. For example, to create a hash map
from an eBPF program it is enough to write the following line:

BPF_HASH("MapName",struct key*, struct value*);

An example of directive is pragma unroll, that can be used before bounded

14

2.2 – Frameworks

loops (i.e. loops in which the number of iterations is known at compile time) to tell
LLVM to unroll that loop in a sequence of instructions, hence overcoming the limit
of not being able to use backward jumps.

2.2.2 Polycube

The Netgroup group from Politecnico di Torino is building a framework for the
development of network services based on BCC, Polycube, not yet public. The aim
of the projects is to allow the development of fast and dynamically loadable network
functions running in the Linux kernel through the eBPF technology.

The framework allows the user to split the logic of the application between a
fast simple data plane and a complex slow control plane. The first one handles the
traffic, the second one handles the management and the configuration. The division
is reflected in the technology used by the two components: the data plane requires
to be written in restricted C, to be later translated in eBPF, the control plane is
entirely in C++.

All services running on this framework expose an API to the framework itself in
order to handle the client commands. The framework receives commands through a
REST API or a command line.

To build a service using the framework, the first step is building a data model
that defines the structure, syntax, and semantics of the service data. From it, the
framework will automatically handle the code scaffolding through Swagger2. The
model of the developed firewall, written in YANG, is attached in the Appendix A.

Moreover, a number of abstractions are offered to the developer to load, unload,
reload (that is, unloading and loading the program without losing the state) the
eBPF programs. These functionalities are very handy for handling code optimiza-
tion, as the code can be written by the control plane and dynamically injected in
the kernel.

2https://github.com/swagger-api/swagger-codegen

15

16

Chapter 3

Related work

The Iptables/Netfilter firewall has been around for many years, and in the Linux
community some attempts to improve the system or replace it have been made.
Some projects were just front-end to ease the configuration, like ufw [10], without
any internal change. Others were trying to deeply deal with the architectural limits,
either by adding functionalities, like Ipset, or by proposing a complete alternative
to the Netfilter, like Nftables or Bpfilter.

This section will shortly provide a description of these projects to highlight their
limits, as they were thoroughly considered during the development of the eBPF
firewall.

3.1 Ipset

After the development of Iptables, a common use case was to insert long lists of rules
just requiring an exact match on IP addresses to reject the traffic from malicious
hosts. This lead to performance degradation linearly proportional to the number of
rules required. Ipset was included as a Netfilter module to address this problem [11].

As the name suggests, Ipset provides the user the possibility to gather a set of
IP addresses and then use Iptables to filter them all. Internally, instead of storing
the addresses as a sequence of rules, it stores them in a hash table [12], moving the

17

3 – Related work

complexity from linear to constant. For example, supposing the following rules are
needed in Iptables:

iptables -A INPUT -s 192.168.0.1 -j DROP

iptables -A INPUT -s 192.168.0.2 -j DROP

iptables -A INPUT -s 192.168.0.3 -j DROP

iptables -A INPUT -s 192.168.0.4 -j DROP

They can be translated in a single rule using Ipset:

ipset -N toreject iphash

ipset -A toreject 192.168.0.1

ipset -A toreject 192.168.0.2

ipset -A toreject 192.168.0.3

ipset -A toreject 192.168.0.4

iptables -A INPUT -m set --set toreject src -j DROP

However, this project helped but did not solve the problem at his root, as it
improved only a particular situation.

3.2 Nftables

Nftables started with the aim of replacing Iptables by introducing a new subsystem
in the kernel. This system uses an in-kernel virtual machine, like eBPF, from which
the userspace utility can inject raw instructions that will be compiled and executed
by the VM. The goal was to have a flexible implementation that did not require to
change the kernel to support new matching, but instead allowed to update only the
user space program.

An important innovation introduced by Nftables is the structures of the rules.
There are no default chains in which rules are linearly scanned. The user is free to
organize the rules, and a smart configuration results in Nftables using optimized
data structures for increasing performance. For example, the same thing done by
Ipset can be achieved by Nftables for any field if the rules express a group of values
to be matched.

18

3.3 – Bpfilter

From the benchmarks [13], two conclusions can be drawn. First, Nftables can
widely outperform Iptables if the entire rule set is designed for Nftables, as the
architecture allows the firewall to scale for large rule sets, so if there are no special
requirements, Nftables is the way to go. Second, if Nftables has to be just a back-
end for Iptables, using conversion tools to adapt the syntax, there is no point in
doing that, because there is no performance gain. This situation is common both
for who already has a working firewall and wants to migrate it and for who uses
software that works only on Iptables (for example, Kubernetes). Benchmarks show
that configuring Nftables with the same semantic of Iptables does not provide any
benefits, instead, it only leads to performance degradation.

For this reason, Nftables did not succeed in replacing Iptables but still, it is a
valid alternative.

3.3 Bpfilter

Recently [1], a new attempt to replace Iptables/Netfilter was proposed to the kernel
developers: bpfilter. This project is entirely based on filtering traffic through eBPF.

The first Proof Of Concept was really promising [11] from a performance point
of view. Through an userspace utility, bpfilter injects in the kernel eBPF assembler
code to create a list of addresses to filter the traffic from. Results are impressive
(figure 3.1), especially by leveraging on the XDP hook.

However, the prototype currently introduced in the kernel is far from being an
Iptables replacement. The focus was showing the technology potential, not repro-
ducing the semantics of Iptables, and simple address filtering is a use case way too
simple to be actually used in an enterprise-firewall as a standalone solution.

The latest developments in the kernel are discussions and patches proposal to
achieve compatibility with the existing systems from a syntax point of view, i.e. the
developers are trying to find the best solution to steer the rules from the user-space
to the kernel space without incourring in the same problems of Iptables and keeping
enough flexibility to support Nftables syntax, too. In this direction, two patches

19

3 – Related work

were proposed to show a possible architecture of the framework that will possibly
be in charge of this task [14] [15].

The eBPF firewall prototype developed during this thesis is working on the se-
mantics problem by trying to address the difficulties related to reproducing Iptables
behavior. Hence, the work is compatible with the one done in the kernel, and the
two projects may eventually converge in a full-fledged replacement of Iptables.

Figure 3.1: Bpfilter benchmarks, from [11].

3.4 The packet classification problem

Packet classification is the process in which given a packet and a set of rules, the
packet is associated with exactly one rule. To do so, some of the packet fields are
used to look for the matching rules, and if more than one exists, only the best (i.e.
the least-cost) is chosen.

Supposing that for the classification process the headers h0, h2, ...hN are required
(for example, source and destination IP addresses and transport protocol), and that
the rule set is composed by a set of rules R1, R2, ...RK , each rule specifies a combina-
tion of N values, one for each field, and has an associated cost. A packet will match

20

3.4 – The packet classification problem

the rule Rx if each field matches the field of Rx. The result of the classification will
be the rule with the lowest cost. A more general definition allows rules to do not
specify a field, that is therefore treated as a don not care, or wildcard.

The classification problem is found in many applications (e.g. for routing, or for
QoS policies), and the firewall uses it to take actions on the traffic based on the
configured policies.

3.4.1 Algorithms for packet classification

There are many algorithms available in the literature to perform packet classification,
but there is not one considered the best, yet. Instead, each one is suited to solve a
particular declination of a problem. For example, some algorithms support only the
longest prefix matching (useful for IP addresses), others do not support wildcards,
and so on.

The choice of the most suited algorithm for the firewall was based on three
parameters: performance, flexibility, and feasibility. To evaluate performance, the
algorithm complexity is taken into account, for the flexibility it is useful to under-
stand which kind of fields are supported and if the algorithm allows for wildcard
matching, feasibility means the possibility to actually implement the algorithm given
the limits of the eBPF technology.

Following, a selection of algorithms that were evaluated as candidates for the
eBPF firewall will be presented and commented, mostly based on the extensive study
performed in Varghese’s book [16]. All these algorithms are capable of matching a
general rule set, i.e. not just based on one or two fields but on an arbitrary number.
This flexibility is mandatory to clone the Iptables semantics.

• Linear search: The straightforward solution, this algorithm consists of scrolling
through the rule set until the first one that matches the packet is found. It is
a flexible algorithm, allows for matching on an arbitrary number of fields of
any type and supports wildcard. The main drawback is performance, due to
the linear complexity, that makes it not feasible for large datasets. This is the
algorithm used by Netfilter [17].

21

3 – Related work

• Geometric View of Classification: This is more a technique that an algo-
rithm. Each value specified by a rule is a number. If a rule specifies K fields, it
can be seen as a point in a K-dimensional space. However, rules may specify
ranges or wildcards and, in both cases, this would translate in a set of values
for the same coordinate of a given rule. The resulting geometry would be a
polygon (for example, a rectangle in two dimensions) that spans over the area
that the rule matches. To classify a packet any geometric algorithm that can
detect if a point belongs to a shape can be used. These algorithms have two
drawbacks: they complex implementations that require unbounded loops (for
example, a binary search in two dimensions) that can not be used in eBPF,
and require either exponential memory or exponential time.

• Cross-Producting: This algorithm is strongly based on precomputation.
Given a rule set, it computes each possible combination of the values specified
by the rules. For each point, it evaluates the rule that will match that com-
bination. During the runtime, classifying the packet is straightforward as it is
enough to look at the point representing the packet. This algorithm can be
implemented in eBPF and is fast, but has a major memory problem: in the
worst case, given N rules with K fields, the algorithm can require memory up
to NK . This makes the algorithm unfeasible for large or complex rule sets.

• Recursive Flow Classification: This algorithm is an improvement of the
Cross-Producting. It builds cross products for pairs of fields and then combines
the results by building a cross-product of the cross products. The advantage is
that during the combination, many of the pairs are equivalent. This can be used
to optimize the memory occupation, by creating classes of cross-products that
are therefore not duplicated. This algorithm was discarded as it still requires
NK memory in the worst case, and the runtime is linear, so it does not give
any special benefit for large rulesets.

• Decision tree approaches: These algorithms are based on the idea of build-
ing trees to be walked during the classification, each node represents a value of
a field, and the leaves represent the rule matching the branch. However, these

22

3.4 – The packet classification problem

algorithms were discarded as tree exploration requires unbounded loops, that
are not allowed in eBPF.

• Linear Bit Vector Search: The Linear Bit Vector Search (LBVS) is a divide
and conquer algorithm, that splits the computation into steps and combines
the results of each step to obtain the matching rule. This algorithm can be
implemented in eBPF, has a linear complexity scaled by a factor based on
the memory parallelism, and can support an arbitrary number of fields and
wildcards. This is the algorithm that was used in the eBPF firewall and that
will be extensively presented in the section 4.2.

23

24

Chapter 4

Design

4.1 Semantic

The aim of the developed firewall is to let the user switch from Iptables to it and
notice only the performance gain, without any difference in the behavior. This means
preserving Iptables semantic, by ensuring that the action taken on each packet
would be exactly the same by Iptables and the eBPF firewall. Under the constraints
expressed in 4.3.2 and 7, the goal has been reached.

The major problem to solve was the semantic and architectural difference be-
tween eBPF and the Netfilter. As presented in the section 1.2, the Netfilter follows
the packet to take routing and mangling (i.e. NAT) decisions. However, eBPF pro-
grams can intercept the traffic on the TC and XDP hooks, and these hooks are hit
before any Netfilter component. The consequence is that during the execution of the
eBPF programs, there is no available information about the routing decision that
the Netfilter will take.

This lack of information about the path that each packet will follow represents a
problem in respecting the semantics of the Netfilter. For example, a user configuring
policies on the input chain expects only the packets directed to the applications
running on the host to be filtered by these policies. A possible solution is to imple-
ment a new eBPF hook point where this information is available. However, delaying

25

4 – Design

packet processing would most probably not be the best solution: it would not require
any additional computation to simulate Netfilter’s behavior, but it would delay the
packet processing (with respect of the TC and XDP hooks) and consequently lead
to performance degradation.

The solution adopted in the eBPF firewall is to guess the choice that the Netfilter
will make before the Netfilter itself is hit. This guess provides the information on
where the packet will be forwarded, hence allowing to use the proper set of policies.
The decision of which chain should process which packet is taken by a dedicated
eBPF program that listens and processes all the incoming and outgoing traffic of
each interface.

The program is based on a map containing the IP addresses of all the network
devices (virtual or physical) registered on the host. With this information, the fol-
lowing decision process is applied based on where the packet is captured.

• On the ingress hook, where only the traffic coming from outside the interfaces
is caught, each packet may be directed either to an application running on the
host or to another network interface. To classify these packets, the firewall
checks the destination IP address against the addresses map. If a match is
found, the packet will be processed by the forward chain, otherwise by the
input one.

• On the egress hook, each packet may come from the host or from another
network device. The firewall uses the same method as for the input hook,
but by checking the source address of the packet. If it is found, the packet
is processed by the output chain. Otherwise, the packet has already been
processed by the filter chain, and so it is just forwarded without any further
check.

To always keep the address map up-to-date, the firewall control plane listens for
Netlink notifications and modifies the tables accordingly (e.g. if a new network card
is detected, its address is inserted in the map).

This solution has a strong performance benefit, as it allows to leverage on the
early packet processing, but is based only on IP addresses. Such a solution does

26

4.2 – Matching algorithm

not address the bridged traffic, that is managed by Iptables independently from the
addresses. This is a current limitation of the implementation.

4.2 Matching algorithm

This section presents a description of the chosen classification algorithm, the Linear
Bit Vector Search. Further details can be found in [18].

The LBVS is a divide-and-conquer algorithm. It requires the rule database to be
split into multiple classification data structures, based on the number of protocol
fields it is operating on. Each structure is used by a separate algorithm step, and
each step provides intermediate results that in the end are combined to obtain the
final solution.

Classification.

The classification process is based on a number of data structures that depends
on the number of supported fields. There is a table for each field, and each table
contains all the values that appear in the rule set for that field and a wildcard for
rules not requiring matching at all. Each value is mapped to a list of rules matching
it.

To link a packet with the proper rule, each of the packet fields is used to perform
a lookup on the corresponding map. Each lookup returns a list of rules that are
satisfied by that particular field. For example, in figure 4.1, the source address of
the incoming packet matches all rules (hence, the sequence of ones). By crossing
these partial results, it is possible to retrieve the set of rules matching the whole
packet, and the first one is taken. In the example, the result is that the first two
rules match the packet, and the first one is selected.

In any step of the algorithm, if a lookup fails, the algorithm can infer that no
match has been found and it can apply the default action. This may happen if
nothing is returned by a lookup in a map.

27

4 – Design

Preprocessing.

The algorithm preprocessing starts from a sequence of rules and returns a sequence
of separate maps, each one mapping all the values taken by the field in the rule set
with the list of rules matching it. The rules are tracked using bitmaps, where a bit
set means that the rule corresponding to that bit requires matching on that field.

The algorithm follows these steps for each field:

1. If a rule requires matching on the field, the value is searched in the map and,
if present, the corresponding bit vector is updated, otherwise a new entry is
created with a bit set on the position of the rule. In this step, it is guaranteed
that the value will appear exactly once in the map, and its bit vector will
track all rules. For example, starting with the first rule of the example, the
destination port map does not contain the value 80 and a bit vector is created
with the first bit set. When the second rule is elaborated, there is already an
entry for the port, and so its bit vector is updated by setting the second bit.

2. If at least one rule requires wildcard matching (e.g., a rule that does not specify
any value for the given field), a wildcard entry is inserted (based on the field)
and mapped with a bit vector where the only bit set is the one corresponding
to the current rule. In the example, the last rule has a wildcard destination
port, so a wildcard entry is inserted with the last bit set.

3. For each wildcard rule, all bit vectors in the map are updated by setting the
bit corresponding to the rule to 1, as a wildcard rule matches independently
from the value. In the example, only the last rule requires matching on the
address, so all other rules are a wildcard. Hence, both bit vectors have the first
four bits set.

In the end, for each field, the map associated to it contains a number of entries
N equal to the number of distinct values of the field itself, plus an additional entry
representing the wildcard entry (for rules that do not require a matching on this
field).

28

4.3 – Architecture

iptables -A INPUT -p tcp --dport 80 -j ACCEPT
iptables -A INPUT --dport 80 -j ACCEPT
iptables -A INPUT -p udp --dport 53 -j ACCEPT
iptables -A INPUT -p tcp --dport 53 -j ACCEPT
iptables -A INPUT -d 10.0.0.1/8 -j ACCEPT

Port Val

* 00001

80 11001

53 00111

Proto Val

* 01001

TCP 11011

UDP 01101

1 1 0 0 1 & 1 1 0 1 1 & 1 1 1 1 0 =
1 1 0 0 1

Rule: 0
HTTP

Request

DstIp Val

0/0 11110

10.0.0.1/8 11111

Figure 4.1: An example of preprocessing and classification using the LBVS.

Complexity.

Tracking rules using bitmaps enables the evaluation in large groups: the larger the
memory parallelism the larger the groups. While theoretically the LBVS is a lin-
ear algorithm, this factor enables on a 64-bit architecture a speedup of 64 times,
compared to a traditional linear search.

The main drawback of the LBVS is the preprocessing cost, as presented in sec-
tion 6: it is not trivial to cache results of the tables, and it is usually easier to
populate the data structures from the ground every time there is an update [18].

Memory occupation is not optimal but is acceptable: given N rules, the bit
vectors will be N bit long, and in the worst case the memory occupation will be
N2 ∗ K bits, where N is the number of rules (and, consequently, the length of the
bit vectors), K the number of fields required by the rule set (and, consequently, the
number of different tables), and W the width of the memory access.

4.3 Architecture

The eBPF firewall has been developed in three main layers, depicted in figure 4.2.

The first one is in charge of interacting with the user. It strongly leverages on
libiptc and will be presented in section 5.1. This layer converts Iptables commands

29

4 – Design

(e.g. rule insertion or dump) into an intermediate format and pushes them to the
control plane.

The second layer is the control plane. It is in charge of processing the commands,
prepare the data structures and manage the data plane. Considering that the control
plane has no role in packet classification, it is not written using eBPF but instead
using C++, allowing for complex processing. It will be presented in the section 5.

The third layer is the data plane. It will be extensively described as it is the core
of the Firewall. It processes packets and it has to perform the minimum necessary
operations for filtering the traffic at a high rate.

Linux host

Kernel space

User space

Network applications
(e.g., web server, etc)

netdevice netdevice

Network stack

eBPF sandbox

Data plane

JIT+
Verifier

Restricted C Code

Control plane

BCC

Iptables
Libiptc

MAPS

Figure 4.2: Overview of the main components.

4.3.1 Pipeline architecture

Given the limited size of the eBPF programs, the firewall data plane has been
divided in a sequence of programs, each one implementing a piece of the overall
filtering logic. Figure 4.3 depicts a high-level view of the data plane structure.

Starting from the leftmost part, the first program encountered by the traffic
is a parser in charge of interpreting the raw bytes and moving the content in the
structures further detailed in 5.2. The choice of using such a module was taken as
eBPF provides to the program a raw array of bites, that must be scrolled, converted

30

4.3 – Architecture

and copied to be properly used. Considering that almost every program of the chain
requires some of the packet fields, an optimization is to perform this operation once
and share the results between programs.

After the parsing, packets are intercepted by the first connection tracking module.
This program, presented in section 4.3.3, is in charge of associating each packet with
the connection it belongs to.

The next module is the one in charge of enforcing the filtering semantic (sec-
tion 4.1). Its role is to guess the traffic path and forward it to the chain in charge of
filtering it. In the eBPF firewall, a chain (presented in section 4.3.2) is the sequence
of eBPF programs that implement the LBVS and perform the packet classification.

If the rule matching the packet allows it to continue in its path (i.e., the firewall
does not drop the packet), it is intercepted by another connection tracking module,
also presented in section 4.3.3, that tracks if the packet has triggered changes in the
connection.

By leveraging on the property of the LBVS, any step of the chain can assert that
the packet does not match any of the policy configured. In this case, the default
action is taken by forwarding the packet to a module (not represented in the figure)
that will enforce the action. This choice is motivated in section 4.3.4.

port
(e.g., eth0)

Ingress Chain
Forwarder

Egress Chain
Forwarder

INGRESS CHAIN

FORWARD CHAIN

OUTPUT CHAIN

Store session

port
(e.g., eth1)

TC/XDP
Ingress

Local src

Store session

Store session

To Linux
Stack

Connection tracking

Remote src

Parser

TC/XDP
Egress

Parser

Label Packet

Label Packet

Figure 4.3: Overall data plane structure. From[4]

4.3.2 Chain

A typical policy set for an enterprise firewall requires many (in the order of thou-
sands) complex (on many fields) rules. Hence, supporting such sets is a key feature

31

4 – Design

for a firewall. According to [19], enterprise filter sets are mostly based on a combina-
tion of IP addresses (and netmasks), transport protocol and ports, and sometimes
TCP flags. Typically these fields are not all specified in each rule, therefore wildcard
matching is needed.

Even if eBPF puts constraints on the program size and on the loop usage, the
LVBS can be implemented in eBPF for complex rule sets. It is, in fact, possible to
overcome the technology limits by leveraging the algorithm modularity and splitting
it into multiple programs interconnected using tail calls.

The main limit in the LBVS implementation is that it requires performing bit-
wise AND between the bit vectors to combine the partial results. This requires a
bounded loop (the size of the bit vectors depends on the size of the rule set, known
a priori), consequently, it can be implemented at the expense of increasing the num-
ber of instructions. This translates to a limit to the size of the vectors (and as a
consequence, to the number of supported rules). By splitting the data plane in mul-
tiple programs, the space necessary to unroll each loop increase, as each program is
dedicated to a single field.

Thanks to this architecture, the current implementation supports for each policy
a combination of one or more of the mentioned fields and a total of 8k rules per chain.

Each time a packet is received by the firewall, it is forwarded to the proper chain
(see section 4.1), in charge of performing the classification. Figure 4.4 represents a
high-level view of a chain that performs a lookup on a few fields.

Each eBPF program is in charge of matching one field and update the overall
bit vector shared between all programs. To do so,

1. It retrieves the bit vector associated to the field value;

2. If nothing is found, it calls another program in charge of executing the default
action;

3. It updates the overall bit vector by applying the bitwise AND with the re-
trieved one;

4. It calls the next program.

32

4.3 – Architecture

After all the fields have been checked, the result is a bit vector from which the
first-bit set represents the matched rule. Finding the first bit can be an expensive
operation, so the bitscan algorithm based on the De Bruijn sequence [20] was used
to reduce the overhead.

As a side note, the number of fields on which the filter set may require matching
at the same time is constrained only by the limit of subsequent tail calls dictated
by eBPF (i.e. 32 [21] minus the ones uses for internal purposes for processing the
packet before and after the classification). Increasing the number of fields supported
is really straightforward as it is enough to write and register one more program in
the chain.

Match on IP Src

bitmap= lpm.lookup(ipSrc);
if(bitmap == NULL){

default_action;
}
result=bitvector & result;

Match on Transport Proto

bitmap= hash.lookup(l4proto);
if(bitmap == NULL){

default_action;
}
result=bitvector & result;

Bitscan

rule= firstBitSet(result);

If(rule == null){
default_action;

}

Action

action= actions.lookup(rule);

switch(action){
case allow: ..
case drop: …
}

Figure 4.4: Example of a chain of eBPF programs in charge of classifying the packets.

4.3.3 Connection tracking

A network device implementing connection tracking is a device that can store in-
formation on the network connections that traverse it and track the state that each
connection takes based on the traffic traversing it or on other conditions like time-
outs.

A firewall that supports connection tracking can use this additional information
to allow the user to configure advanced policies, for example allowing packets that
belong to established connections. It is therefore important for the user to know the
semantic behind the states assigned to each connection.

States

In the eBPF firewall, the semantic follows the one enforced in the Netfilter connection
tracking module. Each packet is associated with the following labels, based on the
connection it belongs to [22]:

33

4 – Design

1. NEW: The packet does not belong to any existing connection, hence it is
starting a new one. A common case is the TCP SYN flag.

2. ESTABLISHED: The packet belongs to a connection considered opened.
Such a connection has seen both a packet flowing from one host to the other
and a reply in the opposite direction.

3. RELATED: There is an established connection to which the packet does not
belong to, but is related to. The related connection is just a consequence of
the established one. As an example, ICMP errors are related to the connection
that generates the error, or FTP data connections are related to the control
ones.

4. INVALID: The packet can’t be associated with a connection. It may happen
because a protocol is not supported, or the packet is not foreseen (for example
an ICMP error not related to any connection).

Architecture

The semantic of Iptables/Netfilter has to be preserved in every feature of the firewall,
connection tracking too. However, there are two architectural limits to achieve this
goal: the Netfilter hooks and the technology limits.

The first point was already presented in section 4.1, and it is a problem for
connection tracking as the Netfilter can follow the packet through all its lifecycle,
whereas eBPF is not able to. Consider that each packet may trigger a state change
in a connection (e.g. a RST that closes a connection), it is important that only the
modifications associated with legit traffic are kept. By not being able to follow the
packet through the Netfilter, it is not possible to completely enforce this constraint.

The second point is important if a feature-complete implementation of the con-
nection tracking is needed. To completely replace the Netfilter connection tracking,
a module capable of performing deep validation (e.g. checksums, IP reassembling,
TCP window checks) and supporting many protocols is needed. A possible approach

34

4.3 – Architecture

in eBPF would be to move the current implementation in an eBPF helper embedded
in the kernel, as it is being discussed in the mailing list 1.

Nonetheless, the eBPF firewall supports a basic connection tracking for stateful
filtering of UDP, TCP, ICMP traffic.

The implementation leverages on a shared map that tracks the connections. The
key used to index the map is represented by the tuple source IP address, destination
IP address, transport protocol, source transport port, destination transport port. The
value associated with the key is the connection state, the connection lifetime and the
last seen sequence number (meaningful only for TCP). When the fields of the packet
are used to perform a lookup, they may either match it in the forward direction
(i.e. source address, destination address, source port, destination port) or in the
reverse direction (i.e. destination address, source address, destination port, source
port). From this structure, the program can infer information on the state of the
connection, as will be presented in the next paragraph.

The workflow is split into two steps. The first step is to associate each packet with
the connection it belongs to, while the second step (executed only on the allowed
traffic) tracks possible modifications on the connections. As shown in Figure 4.3,
these two functionalities were assigned to two separate eBPF programs, one in charge
of intercepting all the traffic at the beginning of the chain, the other reached only
by allowed packets at the end of the filtering process.

Both the connection tracking programs implement a state machine for each sup-
ported protocol. The first program checks the packet protocol and if it is not among
the supported ones, the process stops and the packet is labeled as invalid. The dif-
ference between the two programs is that when a decision is taken on the packet, the
first program labels it, the second program updates the table with the next state.
The invalid state is used to label any packet outside the expected flow (e.g. an Echo
Response without an Echo Request). The actions performed are different for each
protocol.

1Implementing connection tracking in eBPF as a kernel helper has been discussed in the Linux
mailing list: https://www.mail-archive.com/netfilter-devel@vger.kernel.org/msg11139.html

35

4 – Design

HOST
1

HOST
2

SYN/New/Syn_sent

![SYN+ACK]/Invalid/Syn_sent

Flags/Packet label/Next state

![SYN]/Invalid/Syn_sent

![SYN]/Invalid/-

SYN+ACK/Establ/Establ

-/Establ/Establ

FIN/Establ/Fin_wait

-/Establ/Fin_wait

FIN/Establ/Last_ack

ACK/Establ/Time_Wait

Figure 4.5: Simplified version of the TCP connection tracking state machine.

HOST
1

HOST
2

New/New

Established/Established

Established/Established

New/New

Packet label/Next state

Figure 4.6: Simplified version of the UDP connection tracking state machine.

For UDP, a new connection is started by any packet that does not match any
entry in the map. When a packet that does not belong to any connection is allowed,
the just-opened connection is stored in the session table and all subsequent packets
will be treated as new until a packet in the opposite direction (i.e. an answer) is
allowed by the firewall. An answer can be recognized as it will match the entry in
the reverse direction. In this case, the connection will be established. UDP has no
closing mechanism, so the connection will eventually just expire.

36

4.3 – Architecture

ICMP packets may either represent an error (e.g. Network unreachable) or carry
some special message (e.g. ICMP Echo). In the former case, the standard guarantees
that the header of the original packet can be retrieved from the error payload.
This provides enough information to perform a lookup in the session table. Any
match to an existing connection implies that the packet belongs to a RELATED
connection, otherwise it’s treated as invalid. In the latter case, only ICMP Echo
Request/Response is handled. An echo request is treated as new, the response is
treated as established.

TCP has many ways of starting or closing connections. In the firewall, the
canonical opening three-way handshake (syn, syn+ack, ack) and the closing four-way
handshake are supported, plus the reset. A connection is considered new during the
three-way handshake. When this is concluded, the connection becomes established.
However, the internals of the state machine need more states to track the entire
connection lifecycle:

1. First SY N received, the packet sequence number is stored in the session table.
The connection is new.

2. SY N + ACK seen in the reverse direction with a valid acknowledgment num-
ber. The connection is in the syn_rcv state.

3. ACK received in the forward direction with a valid acknowledgment number,
the connection is established.

4. FIN +ACK received, the connection is in fin_wait until the other side closes,
too. Packets are still treated as belonging to an established connection.

5. FIN +ACK received the other side. The connection will be shortly considered
closed.

6. RST closes the connection independently from its state.

When a packet is labeled as being part of a connection, the matching algorithm
can treat the state as any other field. A specific program is added to the chain to
specifically match the state.

37

4 – Design

An important limitation of the implementation is a missing clean-up mechanism.
Each connection has an associated lifetime, that allows to the connection tracking
modules to understand if a connection is still valid or it is expired, every time a
packet belonging to it is found. However, dangling connections (e.g. the one opened
by UDP, that has no explicit closing mechanism) are not removed from the session
table when they expire. The problem behind this choice is that it’s not possible to
clean up the tables from the control plane without incurring in race conditions, as
no locking or synchronization mechanisms are available. The adopted solution is to
use a Least Recently Used map, available in the kernel for eBPF programs so that
the session table can’t be saturated. However, a beneficial approach would be having
the support for a specific helper in the kernel that supports automatic clean-up.

4.3.4 Counters

RuleID Pkts

0 0

Counters Map

time

Control Plane

Data Plane

Rule{
Id: 0,
srcPort: 80,
Pkts: 0

}

HTTP Pkts

RuleID Pkts

0 2

Counters Map

Insert Rule
srcPort=22

Rule{
Id: 0,
srcPort: 80,
Pkts: 2

}

Rule{
Id: 0,
srcPort: 80,
Pkts: 0

}

RuleID Pkts

0 2

Counters Map

Rule {
Id: 0,
srcPort: 22,
Pkts: 0

}

Rule {
Id: 1,
srcPort: 80,
Pkts: 2

}

RuleID Pkts

0 0

1 0

Counters Map

Figure 4.7: Example of counters management.

Firewalls usually offer to the user the possibility to export statistics on how the
rule set is filtering the traffic, i.e. how many packets or bytes have been matched by
each rule. This is particularly useful for debugging (e.g. it allows to understand if the
traffic is matching the expected rules or the configuration is wrong) and for detecting
attacks (e.g. a rule dropping a large number of packets from a given address may
show a DoS).

38

4.3 – Architecture

To track these counters, the eBPF firewall leverages on the module that asso-
ciates the rule with the packet once the classification process is concluded. However,
this module has no knowledge of the default action, because as pointed in sec-
tion 4.3.2, any module can at any time infer that the packet does not match any
rule and apply the default action.

Starting from the non-default rules, the last program of the chain has a map en-
tirely dedicated to tracking the number of packets and the number of bytes matched
by every rule. This structure maps the rule number (e.g. first or second rule) with
the respective counters. When an action is taken, the program performs a lookup
using the rule number and increments the associated statistics.

For the default action, a different strategy is needed as the programs in the chain
do not execute directly the operation, but instead executes a tail call to a dedicated
program that performs it. Therefore, it is left to this program the responsibility to
update the counters for the default action using a separate map.

However, use this approach two problems need to be faced. The first one is
related to the chain update, that requires a new set of programs with new tables to
be injected. This choice is motivated in section 4.4.3, but its main drawback is that
the content of the tables is not preserved in the operations, hence the counters are
lost. The second one is related to the coherence of the data: if there are three rules
and the second rule is deleted, the third rule will become the second, and counters
reference will become inconsistent.

The adopted solution solves both problems. It uses an incremental approach in
which the control plane keeps the whole story of the counters of each rule, and the
data plane tracks only packets between one update and the other. When the control
plane receives a request to change the rule set, it loads the statistics from the data
plane and sums them with the one he has. In this way, they are saved, associated
with the proper rule, and will not be lost. Then, it triggers the atomic update of the
rules that will clear the map in the data plane.

To avoid any overhead on the traffic processing due to the operations on the
counters, the data plane is never stopped. As a consequence, the traffic processed
right after the counters have been fetched from the data plane until the new chain is

39

4 – Design

injected, won’t be tracked. This is a trade-off that may result in a reduced precision
of the statistics but won’t affect performance.

Figure 4.7 shows an example of the operations flow. It represents the evolution
over time of the control plane (on the top) and on the data plane (on the bottom)
with respect to the counters. If the starting point is a rule set with only one rule,
when packets match that rule the data plane increments the associated counters.
When the control plane receives an update, it first fetches the counters from the
data plane, then updates the rules and in the end, it flushes the counters in the data
plane.

4.4 Dataplane optimizations

The data plane presents a modular architecture that, combined with eBPF, allows
for optimizations to be performed at runtime when it is injected by the control plane.

This section presents the three optimizations currently implemented in the fire-
wall. The first one is the code tailoring, meaning that the control plane injects only
the pieces of the data plane that are strictly needed to respect the configuration.
The second one exploits the possibility of using tail calls to jump from one program
to another and the information provided by the connection tracking to avoid per-
forming the classification where possible. The third one leverages on the dynamic
code injection at runtime to guarantee atomic update of the rule set without any
locking mechanism.

4.4.1 Tailored dataplane

The Linear Bit Vector Search is a modular algorithm, meaning that it is a sequence
of steps that can be split into multiple programs, as in the firewall data plane.
Moreover, the combination of eBPF and BCC enables to build the data plane code
from the control plane and inject it in the kernel at runtime.

This combination is an opportunity to build the data plane on an as-needed basis:
the code handles only the fields whose matching is required by the configured rules,

40

4.4 – Dataplane optimizations

without unnecessary parsing and processing of the fields that are not required. For
example, if there is no rule requiring a match on the transport destination port, the
module in charge of matching it is omitted and not injected at all. This translates
into a higher efficiency due to less computation and memory accesses.

Furthermore, when a rule requiring that match is configured, the pipeline can be
updated by inserting the respective module to support the new classification step (in
the example, the one that operates on the destination port), and all the bit-vectors
in the maps are updated in order to handle the new rule as well.

A practical example of how the chain may be changed based on the rule set is
depicted in figure 4.8.

...

Rule set
INPUT –p tcp –j ACCEPT

Match on
Transport

Proto
...

...

Rule set
INPUT –p tcp –j ACCEPT
INPUT –p tcp –dport=80 –j ACCEPT

Match on
Transport

Proto
...

Match on
Destination

Port

Iptables –A INPUT
–p tcp –dport=80 –j ACCEPT

Figure 4.8: Example of data plane tailored on the rule set.

4.4.2 Leveraging on connection tracking

Stateful firewalls, i.e. firewalls that support connection tracking, are usually config-
ured with the first rule allowing all the traffic belonging to established connections.
The reason behind this is that usually most of the traffic belongs to these connec-
tions and, in the algorithms with linear complexity, the sooner a match is found, the
higher are the performance.

In the developed eBPF firewall, this situation was considered and an optimization
was built on it. If the configuration respects the described criteria, the firewall detects

41

4 – Design

packets belonging to established connections in the first connection tracking module
(hence, before the classification process) and just accepts them skipping all the
matching pipeline.

Such an optimization avoids unnecessary computation and translates in the com-
mon case in a considerable performance gain, as shown in section 6.

4.4.3 Atomic update

As presented in section 4.3.2, the processing chain is a sequence of programs, each
one using its own map. However, if the rule set is updated, it is likely that the update
is reflected on more than one map because each field of the new rule is tracked in
its own table.

The content of all the maps must be updated atomically: it must not happen
that a packet is processed by some tables updated and some not. In a case like this,
the resulting decision after the combination of the partial results cannot be foreseen,
and this is not acceptable in a firewall. The solution is to update all the maps in a
single shot.

The eBPF suite guarantees that the update of a single map is atomic, so if a
program is changing a map the other programs will not see a partial result. However,
there is no mechanism to update more than one map at once. The reason behind
this may be that a synchronized update may require to prevent programs to accept
traffic during the update, with a consequent unacceptable service disruption because
of the inability of the data plane to process traffic during that interval.

To guarantee both atomicity and negligible disruption during the update, our
software control plane implements a strategy heavily relying on the possibility to
inject new eBPF programs at runtime and reloading the existing ones. Every time
the policy set is changed, the current chain continues to process the traffic while the
control plane handles the update by following these steps, also depicted in figure
4.9:

1. Based on the new rule set, a new chain is assembled and injected, and the new
maps are filled with the updated values.

42

4.4 – Dataplane optimizations

2. The module used to enforce the semantic is reloaded in order to point to the
updated chain and steer the traffic towards it.

3. The old chain, obsolete, is unloaded.

As soon as the module is reloaded (in step 2), the configuration is updated and
the traffic is filtered by the new chain. There is no service disruption as there is always
a chain filtering the traffic, and reloading the first program has no impact. This is
possible thanks to the reload technique described in [8]: while the new program is
compiled and injected, the old one keeps handling the traffic, and when the new one
is ready, maps of the old instance are attached to it and the programs are atomically
swapped by substituting the pointer to the old program with the new one, and the
old program can be safely unloaded.

It is worth noticing that eBPF guarantees that a program, during its execution,
cannot be unloaded, interrupted or modified until it completes the task. In this way,
if a packet is inside the chain, it is guaranteed that it will complete its path (in the
old configuration) and only then the chain will be unloaded.

Chain Forwarder Program 1 Program N

Data plane – before update

Chain Forwarder Program 1 Program N

Data plane – Step 1
Program 1 (New) Program N (New)

Chain Forwarder Program 1 Program N

Data plane – Step 2
Program 1 (New) Program N (New)

Chain Forwarder Program 1 (New) Program N (New)

Data plane – Step 3

Figure 4.9: Atomic update of the rule set.

43

44

Chapter 5

Implementation

5.1 Syntax

Even if the eBPF firewall preserves the Netfilter syntax, the project aim is to offer
a clone of Iptables. To do so, exporting the same interface to the clients is a must.

Designing an interface that allows user-space applications to inject configuration
in the kernel space is a non-trivial task. One of the main problems of Iptables itself
is exactly its user-space interface, due to its low efficiency and its undefined behavior
when multiple clients inject rules. This topic is subject of many discussions due to
bpfilter being included in the kernel1.

For the eBPF firewall, it was chosen to re-use the existing code already im-
plemented and largely tested of Iptables itself, plus its underlying library Libiptc.
Moreover, instead of already replacing Iptables, the eBPF firewall is shipped as a
separate executable. In this way, if the user needs functionalities not yet supported,
he can just use the Linux Iptables.

As depicted in figure 5.1, each command issued to the firewall is intercepted
by a slightly modified version of Iptables/Libiptc. First, the commands are sanity-
checked and parsed by the default code of these two modules. After this, before the

1https://www.mail-archive.com/netdev@vger.kernel.org/msg217183.html

45

5 – Implementation

modules actually inject the commands in the kernel, a customized code blocks them
and uses the already built data structures to create an intermediate representation
forwarded to a shell script. This script in charge of forwarding them to the REST
daemon exposed by the control plane, that finally updates the configuration.

If the commands require functionalities not yet implemented, an error is returned
to the client. For example, the current implementation does not support ranges (for
example, to express a matching between port 10 and 12 it is not possible to write
10:12) or negations (except for the TCP flags).

Client

bpf-iptables

Libiptc

REST-based
daemon

eBPF Firewall
Datapath

Shell
script

Custom
Code

iptables

Libiptc

Netfilter

iptables –A INPUT –p tcp \

--dport 53 –j ACCEPT

Control plane

Figure 5.1: Userspace utils to preserve iptables syntax. This picture is based on [3]

5.2 eBPF Maps

In eBPF, maps are data structures needed to store data between different executions
of the programs and to exchange data between user and kernel space (i.e. between
the control plane and the data plane). In the firewall implementation, maps are used
to share the state of the matching through the chain and to perform the matching
in each program (i.e. to store the bit vectors).

The state shared between programs is composed of two components: the packet
fields and the bit vector. For both, percpu maps are used because they allow sharing

46

5.2 – eBPF Maps

data between programs and with minimum overhead. The packet fields are stored
in a structure (5.1) that contains only the minimum necessary fields to perform
connection tracking and classification. Bit vectors are treated as arrays of 64-bit
elements, and every step of the chain stores the result up to that point in the shared
map.

Each program in the chain requires a structure to map the fields and the rules
matching them, as illustrated in section 4.2. These structures are independent, so
the most suitable one can be chosen for each supported field. In the implementation,
the following choices were made:

• IP addresses: A Longest Prefix Match map was chosen. It is the most natural
way to treat addresses as it allows the rule set to support both IP and netmasks
by using the LP algorithm.

• Transport protocol and ports: Hash tables were used. In this case, an array
seemed the most obvious choice because it was possible to index it using the
fields (unsigned integers) with a constant complexity. The problem was that an
array as to be entirely allocated, so for example to support port 16000, 16000
entries needed to be allocated, without a real use case. This memory allocation
was considered not acceptable, and hashmaps were chosen. However, for a
moderate number of fields, these structures still provide constant complexity.

• TCP flags: to manage the flags, it was necessary to consider that every single
flag can be either wildcard, set or not set. The map storing flags is an array
map of 256 elements, where each index represent combinations of the flags.
When a rule is inserted, the control plane chooses which combinations the one
required by rule satisfies. Figure 5.2 shows an example of preprocessing and
matching in a simple situation with only three flags.

Listing 5.1: Packet fields shared across the data plane

struct packetHeaders {

uint32_t srcIp;

uint32_t dstIp;

47

5 – Implementation

Array map

Key Value

0 0 0 R4

0 0 1 R3, R4

0 1 0 R1, R4

0 1 1 R3, R4

1 0 0 R2, R4

1 0 1 R3, R4

1 1 0 R1, R2, R4

1 1 1 R3, R4

Rules
R1: X 1 0
R2: 1 X 0
R3: X X 1
R4: X X X

Packet
Flags: 001

Figure 5.2: Flags processing in the map.

uint8_t l4proto;

uint16_t srcPort;

uint16_t dstPort;

uint8_t flags;

uint32_t seqN;

uint32_t ackN;

uint8_t connStatus;

};

5.3 Code structure

The firewall implementation has been designed based on the following considera-
tions:

1. The software has to live on two different levels using two different technologies,
namely the control and data plane. The control plane is written in C++,
hence has the maximum flexibility and usability. The data plane is written in
restricted C following the limits of eBPF and has to be modified at runtime
by the control plane.

2. The software is encapsulated by a framework under development that, while

48

5.3 – Code structure

offering a number of primitives to help the developer abstract the technicalities
of eBPF, forces a certain structure. This framework is itself based on another
framework, BCC.

Based on these considerations, all the code was designed to achieve the maxi-
mum flexibility under the constraints forced by the framework and encapsulate the
complexity of the underlying data plane in C++ classes. The overall structure is
depicted in figure 5.3 using a slimmer UML notation to highlight the dependencies
of the main components.

Program

Firewall

Conntrack
Label

IP LookupParser . . .

REST-based
daemon

Chain

Rule

Parser
Conntrack
Label

IP Lookup. . .

eBPF Data plane (Kernel space)

C++ Control plane (User space)

Figure 5.3: UML-like diagram of the code structure.

Starting from the top, the Firewall class is the only entry point of the service.
This class exposes an API to insert and fetch data from the service. In the current
implementation, the API is used by the REST daemon offered by the overlying
framework, but there are no restrictions on the client. A Firewall object can be seen
as an orchestrator of the whole system: it has knowledge of every chain, of every
program belonging to each chain, and of the overall configuration (e.g. to which
network devices it is attached to).

The main abstraction is the Program class. It is a pure virtual function, and it
forces the classes implementing it to offer an almost uniform interface to manage

49

5 – Implementation

the data plane. Using eBPF programs from the control plane is not straightforward,
even less if the programs are built during runtime based on a number of parameters.
This complexity is encapsulated inside each class implementing Program, offering
to the clients some clean and readable method to perform the tasks. A simplified
version of this class is in the listing 5.2. A program is characterized by a unique
identifier, the index, the chain it belongs to (the direction), and its code. When a
program is created, the skeleton of the data path code is provided in the constructor.
The getCode() method is the most important one, as it is the one starting from the
skeleton and building the real data path code based on it. Further details on how
the datapath is built will be provided in the next paragraphs.

Listing 5.2: Program interface.

1 class Program {

2 protected:

3 int index;

4 ChainNameEnum direction;

5 public:

6 virtual std::string getCode() = 0;

7 void updateHop(int hopNumber, Program *hop,

8 ChainNameEnum hopDirection);

9 Program *getHop(std::string hopName);

10 int getIndex();

11 bool reload();

12
13 Program(const std::string &code, const int &index,

14 const ChainNameEnum &direction, Firewall &outer);

15 };

As hinted, each of the classes representing a program in the data plane imple-
ments the Program interface. In the figure, these programs are Parser and so on.
Moreover, each program offers a method to fill the map of the encapsulated data
plane program. For example, 5.3, the method accepts a C++ fashioned map of IP
addresses and bit vectors, and internally it manages the update of the data plane

50

5.3 – Code structure

map by creating a proper string and building the map name based on the proprieties
of the program.

Listing 5.3: Accessing to the data plane maps.

1 void IpLookup::updateMap(

2 const std::map<struct IpAddr, std::vector<uint64_t>>

&bitvector) {

3 for (auto ele : bitvector) {

4 updateTableValue((ele.first),

fromContainerToMapString(ele.second.begin(),

ele.second.end()));

5 }

6 }

7
8 void IpLookup::updateTableValue(int netmask, std::string ip,

std::string value) {

9 std::string key = utils::to_map_format(

10 netmask, utils::ip_string_to_hexbe_string(ip));

11
12 std::string tableName = "ip";

13 if (type == SOURCE_TYPE) {

14 tableName += "src";

15 } else if (type == DESTINATION_TYPE) {

16 tableName += "dst";

17 }

18 tableName += "Trie";

19 if (direction == ChainNameEnum::INGRESS)

20 tableName += "Ingress";

21 else if (direction == ChainNameEnum::EGRESS)

22 tableName += "Egress";

23
24 firewall.get_table(tableName, index).update_value(key, value);

51

5 – Implementation

25 }

Datapath programs are written using a combination of static code and dynamic
code. The programs are filled with macros that enable or disable pieces of code, and
they are defined from the control plane getCode() function based on the environ-
ment. For example, in the listing 5.4, the _NR_ELEMENTS macro defines if the code
has to be activated based on the size of the bit vector, and determines how many
time the loop will be unrolled. The macro _TYPE defines if the module is used to
match the source or the destination address, and so on. There are two reasons for this
choice. First, a single program can be used for multiple functionalities, for example,
thanks to the macros there is no need to write a different program to match the
source and destination address in each chain, one program can take any function.
Second, it’s proven [8] that embedding parameters in the data path code instead of
letting the program retrieve the values in maps benefits performance.

There are two more main classes in the implementation: the Chain and the
rule. The chain keeps all the Rules configured on it. When the firewall receives an
update, it forwards it to the proper chain that effectively manages to update its
configuration. To do so, a function is triggered that starting from the C++ rule set
returns a set of maps ready to be used by the LBVS. These maps are consumed by
the function in charge of performing the update of the data plane programs that
first loads only the programs needed, second populates their maps

Listing 5.4: Snippet of datapath code with macros.

1 static __always_inline struct elements *getShared() {

2 int key = 0;

3 return sharedEle_DIRECTION.lookup(&key);

4 }

5
6 static __always_inline struct elements *getBitVect(struct lpm_k

*key) {

7 return ip_TYPETrie_DIRECTION.lookup(key);

8 }

9

52

5.3 – Code structure

10 static int handle_rx(struct CTXTYPE *ctx, struct pkt_metadata

*md) {

11 #if _NR_ELEMENTS > 0

12 #if _NR_ELEMENTS == 1

13 // Code to match a single element

14 #else

15 #pragma unroll

16 for (int i = 0; i < _NR_ELEMENTS; ++i) {

17 // Code to match multiple elements elements

18 }

19 #endif

20 call_bpf_program(ctx, _NEXT_HOP);

21 #else

22 return RX_DROP;

23 #endif

24 }

53

54

Chapter 6

Benchmarking

6.1 Methodology

For performing correct and meaningful benchmarks of the developed firewall, there
are a number of factors to consider:

• Rule set: each firewall configuration leads to different performance measure-
ments. For example, if the testing traffic is allowed by rules at the beginning
or at the end of the set, it results will be different. Even the complexity of the
rules themselves has a consequence on the performances. This aspect will be
further presented in section 6.1.1.

• Test traffic: the RFC-35111 states that each test should be performed using
a set of different packet sizes. However, it gives no indications on protocols or
other traffic characteristics. An important consequence of choosing the traffic
structure is that it strongly influences how the DUT is tested. For example, if
the traffic flow is composed by a single repeated packet, the DUT will process
it using only a single CPU. A variegated traffic will be distributed on more
processors.

1Benchmarking Methodology for Firewall Performance: https://tools.ietf.org/html/
rfc3511

55

https://tools.ietf.org/html/rfc3511
https://tools.ietf.org/html/rfc3511

6 – Benchmarking

• Testing conditions: the RFC-3511 states that the test should be performed
as in figure 6.1, where two devices are connected through two network inter-
faces, the traffic is generated from a device, forwarded from one NIC to the
other by the device under test, and received back by the generator to track
the performance.

• Parameters: the RFC-3511 suggests a number of parameters to benchmark.
Particularly interesting are the IP throughput (defined by the RFC-1242 as
at the maximum rate at which none of the offered frames are dropped) and
the latency (defined by the RFC-1242 as the interval starting when the end
of the first bit of the input frame reaches the input port and ending when the
start of the first bit of the output frame is seen on the output port). Moreover,
parameters like the time to insert rules in batches or to insert a single rule in
the head or in the tail of the rule set can be of interest [23].

Client

N
I
C

N
I
C

N
I
C

N
I
C

10Gbit Ethernet

Server

Firewall
(DUT)

Traffic
generator

Figure 6.1: NIC-to-NIC Benchmark setup.

6.1.1 Rule set

The rule set has a direct consequence on the quality of the benchmark. To design a
proper rule set, three main strategies can be found in literature:

1. Synthetic rule sets. This approach, used in [24], is based on generating rule
sets based on some internal criteria, usually random rules.

56

6.2 – Results

2. Synthetic rule sets based on real ones. This approach is the most
common [25] [26] [27] [23] [28]. Real rule sets are analyzed to get some statistics
(e.g. fields. the variance of these fields, the type of matching required) and
based on these, new synthetic rule sets are created. This technique allows to
not disclose real rule sets and to create configurations of many dimensions to
perform more tests.

3. Real rule sets [25] [28]. The rule sets can be taken from ISPs firewalls and
routers. These sets are usually hard to get and can’t be disclosed.

The approach used in the benchmarking the firewall is in between the second
and the third. An enterprise firewall configuration based on a Jupiter firewall was
provided to the group. A Juniper firewall sees the network as a number a number
of zones, each one with its own rule set, and applies application-level filtering. To
translate the rule to fit the Iptables syntax, the original rules had to be interpreted
and translated accordingly, and this operation could not be performed manually.

The resulting rule set is strongly based on the original one (i.e. same fields, same
values) but it has a different semantic. However, for the sake of the benchmarking,
the semantic was not important.

6.2 Results

The following tests were performed by comparing Iptables and the developed eBPF
firewall in the exact same conditions, using variable rule sets as described in the
previous section.

The tests were performed according to the RFC-3511 (here called NIC-To-NIC
setup) and by using Iptables as an host firewall. Both setups employ to machines,
that run an Ubuntu Server 16.04.4 LTS, kernel 4.14.12. Both machines are based on
an Intel i7-4770 CPU running at 3.40GHz (four cores plus hyper-threading, 8MB of

2In [8] it is highlighted how in newer kernels eBPF is subject to strong performance degradation,
probably due to the Spectre/Meltdown fixes

57

6 – Benchmarking

L3 cache and 32GB RAM) connected to each other through two direct 10Gbps links
terminated in an Intel X540-AT2 Ethernet NIC.

6.2.1 Nic-To-Nic setup

The configuration in figure 6.1 was used. Linux was configured to enable IP forward-
ing between the interfaces using the following command

echo 1 > /proc/sys/net/ipv4/ip_forward

to use eBPF JIT with the following one

echo 1 > /proc/sys/net/core/bpf_jit_enable

And to disable Conntrack when the eBPF firewall was tested using

echo ’blacklist nf_conntrack’ >> /etc/modprobe.d/conntrack.conf

UDP Throughput

To measure the throughput, Pktgen-dpdk3 was used as a traffic generator and re-
ceiver. This software has the advantage of directly attaching itself to the network
interfaces, skipping the Linux stack and achieving higher precision as there is no de-
lay due to the stack processing. Pktgen was configured to a stream of identical UDP
packets, in order to saturate a single core of the DUT. Consequently, throughput in
case of real deployment will be much higher due to the traffic balancing implemented
by the Linux kernel, which automatically exploits multiple cores.

The throughput was measured when the packet loss rate was one percent. The
test was performed for various packet size, However, the most significant measure is
when packets are 64Bytes long, as it can easily saturate the DUT.

Figures 6.2 and 6.3 show the results of the tests for Ethernet frames of size 64B
and 512B.

3http://pktgen-dpdk.readthedocs.io/en/latest/getting_started.html

58

http://pktgen-dpdk.readthedocs.io/en/latest/getting_started.html

6.2 – Results

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 1 100 500 1000 2000 4000 7000

U
D

P
 t

h
ro

u
gh

p
u

t
(M

p
p

s)

Number of rules

UDP Throughput - 64B Ethernet frames

iptables

bpf-iptables

Figure 6.2: Throughput using UDP traffic with 64B frames.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 1 100 500 1000 2000 4000 7000

U
D

P
 t

h
ro

u
gh

p
u

t
(M

p
p

s)

Number of rules

UDP Throughput - 64B Ethernet frames

iptables

bpf-iptables

Figure 6.3: Throughput using UDP traffic with 512B frames.

Results are promising, in particular for a high number of rules, where the eBPF
firewall definitely outperforms Iptables. An accurate analysis of the data suggests
that the main overhead lowering the performance of the eBPF firewall derives from
letting Linux perform the routing. This overhead is not negligible when few rules are

59

6 – Benchmarking

involved. For example, for the sake of the tests, in figure 6.4 the throughput without
using the Linux routing (and hence, breaking the semantics) was evaluated.

5 394 1000 7000

ebpf_tc 1058,909 1007,964 1051,423 822,714

iptables 883,82 281,895 53,319 7,61

1
0
5
8
,9
0
9

1
0
0
7
,9
6
4

1
0
5
1
,4
2
3

8
2
2
,7
1
4

8
8
3
,8
2

2
8
1
,8
9
5

5
3
,3
1
9

7
,6
1

M
B
IT
P
S

RULES

UDP THROUGHPUT WITHOUT LINUX ROUTING

Figure 6.4: Throughput using UDP traffic with 512B frames and bypassing Linux
routing.

ICMP Latency

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

0 1 100 500 1000 2000 4000 7000

La
te

n
cy

 (
m

s)

Number of filtering rules

iptables

bpf-iptables

Figure 6.5: Latency measured using the Ping tool.

Latency was measured using the ping utility by sending an echo request per

60

6.2 – Results

second. The results, depicted in figure 6.5 are coherent with the ones performed on
the throughput, and hence the same conclusions can be made.

6.2.2 Host firewall setup

These tests were performed to analyze the performance of the eBPF firewall in the
more common situation in which Iptables is used to protect local applications, by
configuring policies on the input chain.

In this configuration for UDP and TCP throughput, the iperf3 benchmarking
suite was used. Using this tool, one machine acts as a client and sends traffic to the
server machine through one direct Ethernet link, as in figure 6.6.

To further stress the DUT and have meaningful results, the processor interrupt
management was tweaked. To do so, the interrupts generated by the network cards
were all directed to a single core, while iperf3 was assigned to the other seven cores.

Client

N
I
C

N
I
C

10Gbit Ethernet

Server

Firewall
(DUT)

Traffic
generator

Traffic
receiver

Figure 6.6: Setup used for benchmarking the input chain.

UDP Throughput

To perform these benchmarks, on the server machine iperf3 was run through taskset

to set the processors affinity, using the command

61

6 – Benchmarking

taskset 0x000000FE iperf3 -s 10.0.0.3

and on the client machine, iperf was run using the command

ip netns exec nsclient iperf3 -c 10.0.0.3 --bandwidth 0 --omit 10

--time 300 --udp --interval 60 -P 8

where bandwidth 0 does not limit the bandwidth, omit 10 does not log the results
for the first 10 seconds, time 300 interval 60 runs the test for five minutes and
logs the average of the results every minute, P 8 launches 8 separate connections to
fully stress the DUT. The segment size using UDP is not customizable, hence it was
the default Ethernet one.

The results of the UDP throughput tests are shown in figure 6.7. It can be
noticed how, in this condition, the linearity of the algorithm is almost negligible,
with a strong gain over iptables on an high number of rules. An explanation can be
that by focusing the computation on a single core, the overhead of the other Linux
networking components is much higher than the one of the eBPF firewall, making
it almost negligible.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

0 100 500 1000 4000 7000

G
b

p
s

Rules

UDP Throughput using the INPUT chain

iov-iptables iptables

Figure 6.7: Input chain UDP Throughput.

62

6.2 – Results

TCP Throughput

To perform these tests, on the server machine iperf3 was ran through taskset to
set the processors affinity, using the command

taskset 0x000000FE iperf3 -s 10.0.0.3

and on the client machine, iperf was run using the command

ip netns exec nsclient iperf3 -c 10.0.0.3 --bandwidth 0 --omit 10

--time 300 --set-mss 88 --interval 60 -P 8

where bandwidth 0 does not limit the bandwidth, omit 10 does not log the results
for the first 10 seconds, time 300 interval 60 runs the test for five minutes and
logs the average of the results every minute, P 8 launches 8 separate connections
and the segment size was reduced to 88 as it was useful to stress the DUT.

These benchmarks were performed both with the segmentation offload enabled
(figure 6.8) and disabled (figure 6.9), the first scenario is more realistic and the
second is more stressing for the DUT. In both cases, the eBPF implementation
outperforms Iptables. In the first scenario, as for UDP, the overhead introduced by
the eBPF firewall is negligible and hence the linearity of the algorithm has almost
no impact.

ICMP Latency

Latency was measured using the ping utility by sending an echo request per second
twenty times. From figure 6.10 it can be noticed that the tool was not able to stress
the DUT enough to provide clear results, hence both Iptables and the eBPF firewall
are close, with the latter slightly outperforming the former.

6.2.3 Rule insertion

Rule insertion time reflects the reactivity of the firewall to the changes made to its
configuration.

63

6 – Benchmarking

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

0 100 500 1000 4000 7000

G
b

p
s

Rules

TCP Throughput (with seg. offload) using the INPUT chain

iov-iptables iptables

Figure 6.8: Input chain TCP Throughput with segmentation offload enabled.

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

0 100 500 1000 4000 7000

M
b

p
s

Rules

TCP Throughput (no seg. Offload) using the INPUT chain

iov-iptables iptables

Figure 6.9: Input chain TCP Throughput with segmentation offload disabled.

Figures 6.11 and 6.12 present the insertion time with a variable number of rules.

In this aspect, Iptables outperforms the eBPF firewall. The dominant problems
are two: first, the LBVS requires a complex pre-processing, as presented in sec-
tion 4.2; second, the chain of programs is rebuilt and injected every rule update,

64

6.2 – Results

0,00

0,05

0,10

0,15

0,20

0,25

0 100 500 1000 4000 7000

M
b

p
s

Rules

Latency using the INPUT chain

iov-iptables iptables

Figure 6.10: Latency measured using the Ping tool.

resulting in a high overhead due to the compilation and injection time of the pro-
grams.

65

6 – Benchmarking

5 349 1000 7000

fw_tc 6035,2 7287,1 7450,5 26593,3

iptables 7,3 2,3 2,7 7,3

6035,2
7287,1 7450,5

26593,3

7,3 2,3 2,7 7,3
0

5000

10000

15000

20000

25000

30000

Ti
m

e
(m

s)

Rules

Figure 6.11: Time to update the rule set by inserting a rule in the tail.

5 349 1000 7000

fw_tc 6035,2 7287,1 7450,5 26593,3

iptables 11,9 667 1944,5 32897,8

6035,2
7287,1 7450,5

26593,3

11,9 667
1944,5

32897,8

0

5000

10000

15000

20000

25000

30000

35000

Ti
m

e
(m

s)

Rules

Figure 6.12: Time to update the rule set by inserting a batch of rules.

66

Chapter 7

Conclusions

7.1 Future work

The architecture modularity opens a wide range of possible future improvements.
These may be from the performance or from the features point of view.

Starting from the performance, it’s particularly interesting to explore possible
optimizations to the algorithm. For example, the LBVS may be combined with a
tree properly design to be implemented in eBPF. A schema of the idea is in figure 7.1
and would allow the algorithm to be split in a subset of rules, decreasing its linear
complexity even more. To avoid the use of loops, this would require to teach the
control plane how to unroll the tree exploration every time the rule set is updated.

CHAIN

SrcIP > 65536

DstIp > 65535

DstIp > 65535

True

False

Linear Bit Vector Search

Linear Bit Vector Search

Figure 7.1: A concept on how to improve the LBVS using a tree.

Other two optimizations on the algorithm may be the introduction of a caching
mechanism, to avoid executing the LBVS if the matched rule is stored in a cache

67

7 – Conclusions

(and this opens questions on how to be sure that there is no rule at higher priority
matching each packet) and the tailoring of the code based on the traffic pattern, for
example by reordering the rules at runtime.

Moreover, a critical aspect is the rule injection time. At the moment, no caching
of the preprocessing is performed, as the literature suggests that this is the most
common solution. However, patterns may be found that allow re-using part of the
already computed data and speed-up the change in configuration.

From the features point of view, it may be interesting to explore the added
complexity to support multiple chains other than the canonical ones and allow the
user to configure rules to jump between them, as in Iptables.

To fully reproduce Iptables behavior, it can be interesting to extend the eBPF
implementation to other features Iptables provide, in particular, the NAT. As for
the firewall, the NAT rules are based on the Netfilter hook points, raising similar
challenges to the ones risen by the firewall. Iptables allows the user to configure
source-NAT and destination-NAT, to change a single address or a pool of addresses
into a different one. Moreover, it allows masquerading, to statically change the source
address of a packet with one of the outbound interfaces.

Given the architecture modularity, a possible implementation of the NAT would
be to add more programs in the chain before and after the filtering to enforce the
new functionalities. Such an implementation would leverage on the already existing
mechanisms to guess Linux routing decision and would allow a proper emulation.
The group is already working on a prototype in this direction.

7.2 Final remarks

This work started by presenting the main limits of the currently most used Linux
firewall, Iptables, and described the main challenges and solutions in developing a
replacement that could overcome its limit by using eBPF.

To preserve Iptables semantic and syntax, in order for the users to do a migration
in a transparent way to the new system, and to use eBPF, in order to offer greater

68

7.2 – Final remarks

performance, the entire architecture was designed to be modular and leverage on
chains of programs each one executing a piece of the overall task.

In the end, the developed solution was validated and compared to its competitor.
Even if it still presents a number of constraints, like the limited features of the
connection tracking or the limited number of field supported, it is a concrete proof
that the technology limits can be overcome and the technology advantages can be
used to obtain a fast and working replacement.

The great result is that showing to the Linux community this work can prompt
a collaboration to improve it and eventually replace the Netfilter, moving to eBPF
the Linux networking architecture.

69

70

Appendix A

Firewall data model

This chapters lists the data model of the eBPF firewall.

caption
module firewall {

yang−version 1.1;
prefix "firewall";

import base−iovnet−service−model { prefix "basemodel"; }

organization "Politecnico di Torino";
description "Data model for the IOVisor Firewall service";

uses "basemodel:base−yang−module";

extension cli−example {
argument "value";
description "A sample value used by the CLI generator";

}

typedef action {
type enumeration {

enum DROP;
enum LOG;
enum FORWARD;

}
default DROP;

}

typedef conntrackstatus {
type enumeration {

enum NEW;
enum ESTABLISHED;
enum RELATED;
enum INVALID;

}
}

grouping rule−fields {
leaf src {

type string;

71

A – Firewall data model

description "Source IP Address.";
config false;
firewall:cli−example "10.0.0.1/24";

}

leaf dst {
type string;
description "Destination IP Address.";
config false;
firewall:cli−example "10.0.0.2/24";

}

leaf l4proto {
type string;
config false;
description "Level 4 Protocol.";

}

leaf sport {
type uint16;
config false;
description "Source L4 Port";

}

leaf dport {
type uint16;
config false;
description "Destination L4 Port";

}

leaf tcpflags {
type string;
config false;
description "TCP flags. Allowed values: SYN, FIN, ACK, RST, PSH, URG, CWR, ECE. ! means set to

0.";
firewall:cli−example "!FIN,SYN,!RST,!ACK";

}

leaf conntrack {
type conntrackstatus;
config false;
description "Connection status (NEW, ESTABLISHED, RELATED, INVALID)";

}

leaf action {
type action;
config false;
description "Action if the rule matches. Default is DROP.";
firewall:cli−example "DROP, FORWARD, LOG";

}

leaf description {
type string;
config false;
description "Description of the rule.";
firewall:cli−example "This rule blocks incoming SSH connections.";

}
}

leaf ingress−port {
type string;
description "Name for the ingress port, from which arrives traffic processed by INGRESS chain (by default it’s

the first port of the iomodule)";
}

72

A – Firewall data model

leaf egress−port {
type string;
description "Name for the egress port, from which arrives traffic processed by EGRESS chain (by default it’s

the second port of the iomodule)";
}

leaf conntrack {
type enumeration {

enum ON;
enum OFF;

}
description "Enables the Connection Tracking module. Mandatory if connection tracking rules are needed.

Default is ON.";
}

leaf accept−established {
type enumeration {

enum ON;
enum OFF;

}
description "If Connection Tracking is enabled, all packets belonging to ESTABLISHED connections will be

forwarded automatically. Default is ON.";
}

leaf interactive {
type boolean;
description "Interactive mode applies new rules immediately; if ’false’, the command ’apply−rules’ has to be

used to apply all the rules at once. Default is TRUE.";
default true;
}

list session−table {
key "src dst l4proto sport dport";
config false;
leaf src {

type string;
config false;
description "Source IP";

}

leaf dst {
type string;
config false;
description "Destination IP";

}

leaf l4proto {
type string;
config false;
description "Level 4 Protocol.";

}

leaf sport {
type uint16;
description "Source Port";
config false;

}

leaf dport {
type uint16;
description "Destination";
config false;

}

leaf state {

73

A – Firewall data model

type string;
config false;
description "Connection state.";

}

leaf eta {
type uint32;
config false;
description "Last packet matching the connection";

}
}

list chain {
key name;

leaf name {
type enumeration {

enum INGRESS;
enum EGRESS;
enum INVALID;

}
description "Chain in which the rule will be inserted. Default: INGRESS.";
firewall:cli−example "INGRESS, EGRESS.";

}

leaf default {
type action;
description "Default action if no rule matches in the ingress chain. Default is DROP.";
firewall:cli−example "DROP, FORWARD, LOG";

}

list stats {
key "id";
config false;
leaf id {

type uint32;
config false;
description "Rule Identifier";

}

leaf pkts {
type uint64;
description "Number of packets matching the rule";
config false;

}

leaf bytes {
type uint64;
description "Number of bytes matching the rule";
config false;

}

uses "firewall:rule−fields";
}

list rule {
key "id";
leaf id {

type uint32;
description "Rule Identifier";

}

uses "firewall:rule−fields";
}

action append {

74

A – Firewall data model

input {
uses "firewall:rule−fields";

}
output {

leaf id {
type uint32;

}
}

}

action reset−counters{
description "Reset the counters to 0 for the chain.";
output{

leaf result{
type boolean;
description "True if the operation is successful";

}
}

}

action apply−rules{
description "Applies the rules when in batch mode (interactive==false)";
output{

leaf result{
type boolean;
description "True if the operation is successful";

}
}

}

}
}

75

76

Bibliography

[1] D. Borkmann. (Feb. 2018). Net: Add bpfilter, [Online]. Available: https://

lwn.net/Articles/747504/.

[2] A. Lioy. (2017). Firewall and ids/ips, [Online]. Available: http://security.

polito.it/~lioy/02krq/firewall_en_6x.pdf.

[3] M. Bertrone, S. Miano, J. Pi, F. Risso, and M. Tumolo, “Toward an ebpf-based
clone of iptables”, Netdev’18, 2018.

[4] M. Bertrone, S. Miano, F. Risso, and M. Tumolo, “Accelerating linux security
with ebpf iptables”, SIGCOMM’18, 2018.

[5] B. Gregg, Linux bpf superpowers, Available at http://www.brendangregg.

com/blog/2016-03-05/linux-bpf-superpowers.html (2018/21/07).

[6] Ebpf: Next generation of programmable datapath, Available at http://www.

openvswitch.org//support/ovscon2016/7/1030-graf.pdf (2018/21/07).

[7] M. Fleming, A thorough introduction to ebpf, Available at https://lwn.net/

Articles/740157/ (2018/07/17).

[8] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal, “Creating
complex network services with ebpf: Experience and lessons learned”,

[9] Bpf compiler collection (bcc) [on GitHub], Available at https://github.com/

iovisor/bcc/ (2018/21/07).

[10] J. Wallen. (2015). An introduction to uncomplicated firewall (ufw), [Online].
Available: https://www.linux.com/learn/introduction-uncomplicated-

firewall-ufw.

77

https://lwn.net/Articles/747504/
https://lwn.net/Articles/747504/
http://security.polito.it/~lioy/02krq/firewall_en_6x.pdf
http://security.polito.it/~lioy/02krq/firewall_en_6x.pdf
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html
http://www.openvswitch.org//support/ovscon2016/7/1030-graf.pdf
http://www.openvswitch.org//support/ovscon2016/7/1030-graf.pdf
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://github.com/iovisor/bcc/
https://github.com/iovisor/bcc/
https://www.linux.com/learn/introduction-uncomplicated-firewall-ufw
https://www.linux.com/learn/introduction-uncomplicated-firewall-ufw

BIBLIOGRAPHY

[11] T. Graf,Why is the kernel community replacing iptables with bpf?, Available at
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-

replacing-iptables/ (2018/21/07).

[12] H. V. Styn, Advanced firewall configurations with ipset, Available at https:

//www.linuxjournal.com/content/advanced-firewall-configurations-

ipset (2018/21/07).

[13] P. Sutter, Benchmarking nftables, Available at https://developers.redhat.

com/blog/2017/04/11/benchmarking-nftables/ (2018/21/07).

[14] F. Westphal. (Mar. 2018). Bpfilter: Add experimental imr bpf translator, [On-
line]. Available: https://www.spinics.net/lists/netdev/msg486873.

html.

[15] P. N. Ayuso. (Feb. 2018). Nftables meets bpf, [Online]. Available: https :

//www.mail-archive.com/netdev@vger.kernel.org/msg217425.html.

[16] G. Varghese, Network algorithmics: An interdisciplinary approach to designing
fast networked devices. San Francisco, CA, USA: Morgan Kaufmann, 2005.

[17] K. Karimi, A. Ahmadi, M. Ahmadi, and B. Bahrambeig, “Acceleration of
iptables linux packet filtering using gpgpu”,

[18] T. Lakshman and D. Stiliadis, “High-speed policy-based packet forwarding
using efficient multi-dimensional range matching”, SIGCOMM CCR, no. 2,
pp. 203–214, 1998.

[19] D. E. Taylor and J. S. Turner, “Classbench: A packet classification bench-
mark”, IEEE/ACM Transactions on Networking, no. 3, pp. 499–511, 2007.

[20] Bitscan, Available at https://chessprogramming.wikispaces.com/BitScan

(2018/05/05).

[21] Cilium, Bpf and xdp reference guide, Available at http://www.iptables.

info/en/connection-state.html (24/10/2017).

[22] Chapter 7. the state machine, Available at http://cilium.readthedocs.io/

en/latest/bpf/ (2018/30/04).

78

https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://www.linuxjournal.com/content/advanced-firewall-configurations-ipset
https://www.linuxjournal.com/content/advanced-firewall-configurations-ipset
https://www.linuxjournal.com/content/advanced-firewall-configurations-ipset
https://developers.redhat.com/blog/2017/04/11/benchmarking-nftables/
https://developers.redhat.com/blog/2017/04/11/benchmarking-nftables/
https://www.spinics.net/lists/netdev/msg486873.html
https://www.spinics.net/lists/netdev/msg486873.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg217425.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg217425.html
https://chessprogramming.wikispaces.com/BitScan
http://www.iptables.info/en/connection-state.html
http://www.iptables.info/en/connection-state.html
http://cilium.readthedocs.io/en/latest/bpf/
http://cilium.readthedocs.io/en/latest/bpf/

BIBLIOGRAPHY

[23] H. Song and J. S. Turner, “Toward advocacy-free evaluation of packet classi-
fication algorithms”, 2011.

[24] R. Thakker and C. Sheth, “Performance evaluation and comparative analysis
of network firewalls”, 2011.

[25] D. E. Taylor and J. S. . Turner, “Classbench: A packet classification bench-
mark”, 2005.

[26] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for core routers:
Is there an alternative to cams?”, 2003.

[27] F. Baboescu and G. Varghese, “Scalable packet classification”, 2003.

[28] P. Comerford, J. N. D., and V. Grout, “Reducing packet delay through filter
merging”, 2016.

79

	Acknowledgments
	List of Figures
	Introduction
	Security through firewalls
	The Linux firewall: Iptables & Netfilter
	Motivation

	Tools
	Technologies
	BPF
	eBPF

	Frameworks
	BCC
	Polycube

	Related work
	Ipset
	Nftables
	Bpfilter
	The packet classification problem
	Algorithms for packet classification

	Design
	Semantic
	Matching algorithm
	Architecture
	Pipeline architecture
	Chain
	Connection tracking
	Counters

	Dataplane optimizations
	Tailored dataplane
	Leveraging on connection tracking
	Atomic update

	Implementation
	Syntax
	eBPF Maps
	Code structure

	Benchmarking
	Methodology
	Rule set

	Results
	Nic-To-Nic setup
	Host firewall setup
	Rule insertion

	Conclusions
	Future work
	Final remarks

	Firewall data model
	References

		Politecnico di Torino
	2018-09-11T10:51:11+0000
	Politecnico di Torino
	Fulvio Giovanni Risso
	S

