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Sommario

In recent years,artificial intelligence and deep learning have become some of the most
analized and discussed topics both in academic and R&D world. This happened
mostly because of the increased interest regarding the analysis of big data; the
ultimate goal was to implement always smarter automatic platforms in order to
meet the rising demand.
In particular, most of the improvements in artificial vision tasks are reliyng on the
development of neural networks, which can be defined as a series of algorithms that
attempts to identify underlying relationships in a set of data. The Neural term
was chosen since this network is able to correlate informations using a process that
mimics the way the human brain operates. Neural networks have the ability to adapt
to changing input so that the network produces the best possible result without the
need to redesign the output criteria. In this work will be analyzed one of several
possible neural network, called Deep Convolutional Neural Network. This structure
is able to perform in a very efficient way matrix-matrix multiplication(convolutional
product).The purpose of this network is mainly to provide a classification for a set of
images in order to identify some previously defined classes. But in order to perform
this classification in real time, the neural network has to compute a large amount of
convolutional operations that can saturate the resources on our platform in terms
of time and power. The ultimate goal of the recent applications in this field is to
keep the accuracy of the classification really high(up to 99%) trying to reduce the
power consumption and increasing the speed of execution.
In this thesis work it will be designed and implemented a Hardware accelerator able
to perform the matrix-matrix multiplication, trying to exploit an energy-efficient
convolution architecture. In order to achieve this result, as it will be explained
later, it will be necessary to completely reschedule the dataflow of the convolutional
steps. After a first implementation, a further optimization will be developed, trying
to reduce as much as possible the internal parallelism of the structure in order to
reduce the clock period and at the same time to increase efficiency.
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Capitolo 1

Introduction

This introductive chapter presents an overview of topics that will be analyzed in
the following pages. Section 1.1 provides a brief summary on the so called ”Deep
Learning Context”, a widely discussed topic in both research and engineering. Then
CNNs algorithms are introduced in order to understand their working principles and
the possible applications in engineering fields. Section 1.2 describes the meaning of
”Hardware Acceleration” and how it can impact on the performance of the algori-
thm. A special focus is dedicated to the power management, crucial in real time
applications. Finally Section 1.3 describes the purpose of this thesis and how it is
organized.
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1 – Introduction

1.1 The Deep Learning Context

In the last 20 years we have had a great explosion of the so called ”big data” in
multiple fields. The only possible way to analyze and point out answers from the
much longer list of questions, was found in ”Artificial Intelligence”. An AI can be
defined as a mix of software and hardware applications that are able to understand
problems and solve them in a way that is similar to the one a human could choose.
The full range of possible implementation is still illimitate; we could go from the
interpretation of human language (speech recognition), to the analysis of a real-time
video (image processing), to finally arrive to discern people’s faces and behaviours.
The AI field is still in constant evolution and inside this giant branch of study, we
find Machine Learning (ML).
Machine Learning can be defined as a tecnique that gives to a defined AI the ability
to progressively improve performances on a specific task without being explicitly
programmed. In the usual way of programming, the software developer can create
complex algorithm to perform a particular task, but all the steps have to be well
known. The idea on which ML relies, consists of using a large Dataset and through
simple functions be able to make decisions based on the data available. The result of
a particular decision can be obtained following different mathematical formulas, like
polynomial functions,statistical functions and so on. Each function can be linked to
a particular behaviour,and the tecnique that will be analyzed in this thesis relies on
a smaller branch of ML called Deep Learning(DL).

Figura 1.1. Deep learning inside Artificial Intelligence

In the last years,the Deep Learning field has become one of the most promising
approach to solve a wide range of computing challenges. Every hour billions of
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1 – Introduction

images or audio file are saved and stored inside big data centers of different compa-
nies. The amout of data to analyze is so impressive that the common goal is now
to develop tecniques able to extract useful information from these datasets in an
efficient way. One of the ML algorithm used to achieve this automatic extraction is
the Neural Network approach.
In particular Convolutional Neural Network are a specific type of Artificial Intelli-
gence that are modelled on the biological process of our visual cortex,and nowadays
they outperformed all the previous networks in the image recognition and classifi-
cation field.
CNNs are able to extract a particular pattern of information from an image and
provide a classification even from an high level of abstraction. In the last few years
the effectiveness of these algorithms increased at incredible rates. As a result, an
always stronger effort has been carried out from researchers in order to keep this
trend possible. Following this direction many Machine Learning frameworks have
been developed in order to design and train Deep CNNs. Image processing is one
of the interested fields on which CNNs had a massive impact. For this reason a
lot of researchers are working to develop hardware solutions able to exploit the new
achievable performances.
Following this direction, in the thesis the ultimate goal will be to optimize from
an architecture point of view the internal computations of a generic convolutional
accelerator.

1.2 Hardware acceleration and energy optimiza-

tion

As we discussed before, the adoption of CNNs had an huge impact on the overall
accuracy of image processing tasks, but everything has a prize and in this case we
pay in terms of energy requirements in the overall computations. For this specific
reason, nowadays it is true that we are trying to develop tecniques able to speed up
the computation, but at the same time meeting the constraints on power consump-
tion is also a primary goal. From a computational point of view CNNs represent a
particul type of algorithm; they require a number of memory accesses and product
operations that increases exponentially with the size of the whole network. This
behaviour could lead to massive costs in terms of latency and working frequency,
but on the other hand the major part of the patterns of CNNs are highly repetiti-
ve. This particular property can stimulate a pipelined and parallelized approach in
order to boost the overall throughput.
Since the main operation of this kind of network is a convolutional product between
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1 – Introduction

the pixels of the images and weights of the filter(almost 95% of computational po-
wer), the most solid way to increase the overall performances is always to optimize
this kind of operations.
As the computational cost of CNNs rapidly increases, GPUs and application-specific
integrated circuits specialized for parallel computation have been widely employed
for real-time tasks; in this thesis we will discuss of both approaches even if the final
implementation will be modelled using a specific application architecture, for rea-
sons that will be cleared in the next chapters.

1.3 Purpose of the thesis and thesis outlines

The aim of this thesis is to implement and analyze a hardware accelerator able
to compute the convolutional operations in a CNN layer. The ultimate goal is to
achieve a significant energy-efficient architecture, without penalties in terms of speed
and accuracy.
Since the main operations of a CNN are based on convolutional products, the first
part of the work was to study the analytical expression of this operation and the
different possible implementations of a consequent hardware architecture.
In order to better visualize the pattern of the thesis, below are reported the topics
that will be analyzed in the future chapters.
In Chapter 2 will be provided a brief introduction on the evolution of Convolutional
Neural Networks. After the analysis of previous works, it will be described the
internal structure of a CNN with a particular focus on the possibility of hardware
acceleration.
In Chapter 3 we will analyze the proposed architecture starting with the description
of the Data Flow Diagram. Then it will be described the architecture developed with
all the internal blocks. In the final part the hardware accelerator will be simulated
with an highlight on the most important phases.
In Chapter 4 will be analyzed the synthesis phase, with the description of all the
necessary steps. Then the main features (area,speed,power) will be extracted and
the results will be compared with similar architectures. Finally a brief analysis of
different kernel filters will be provided in order to understand how process different
images.
In Chapter 5 will be outlined considerations on the work done and suggestions on
the possible steps for future developments.

4



Capitolo 2

Background on Convolutional
Neural Network

This chapter will present an overview of CNNs that is fundamental to understand
the analysis in the following chapters. Section 1.1 describes the previous work and
achievement obtained in the last years of reasearch in the development of Deep
CNNs. Section 1.2 provides an introduction on the basic architecture of a CNN in-
cluding a description of the functions of different layers. Then CNNs algorithms are
introduced in order to understand their working principle and the possible applica-
tions in engineering fields. Section 1.3 analyze the meaning of hardware acceleration
and the possibile choices in order to increase the overall performances.
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2 – Background on Convolutional Neural Network

2.1 Previous work on CNNs

Nowadays CNNs have become the most used platform for image processing and re-
cognition, but this trend is due mainly to some incredible achievements obtained in
the last few years. In order to analyze the evolution of convolutional network the
starting point for all researchers should be the ”Alexnet” network, developed and
published in 2012 by Krizhevsky from the University of Toronto[1].
The main reason of the global success of this network is the brilliant victory at
ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a global competi-
tion where software programs compete to correctly classify and detect objects and
scenes. In 2012, AlexNet significantly outperformed all the prior competitors and
won the challenge by reducing the top-5 error from 26% to 15.3%. The second place
top-5 error rate, which was not a CNN variation, was around 26.2%. The top-5
error can be defined as the percentage of times where the correct prediction is not
in the first 5 choices of the classificator. The main variations from previous network
were the multiple filter per layer and stacked convolutional layers.

Figura 2.1. Alexnet Architecture [1].

After the success of Alexnet many networks were developed and one year later
the so called ”ZFNet” [2] was able to outperform Alexnet with a top-5 error rate of
14.8%.
At last, at the ILSVRC 2015, the so called Residual Neural Network (ResNet)[3] by
Kaiming He introduced an architecture with ”skip connections” and features heavy
batch normalization. Such skip connections are also known as gated units or gated
recurrent units and have a strong similarity to recent successful elements applied
in Recurrent Neural Networks. Thanks to this technique they were able to train
a with 152 layers achieving a top-5 error rate of 3.57% which beats human-level
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2 – Background on Convolutional Neural Network

performance on this dataset.
In 2017 an hardware accelerator was proposed by Yu-Hsin Chen [4]; Eyeriss opti-
mizes for the energy efficieny of the entire architecture, including off-chip memory.
This approach is similar to the one we will use in our network, since they propose
an architecture with multiple processing elements exploiting a particular dataflow
called Row Stationary(RS). This structure significantly reduces the data movement
achieving great results in terms of speed and power.

2.1.1 ILSVRC Dataset

In order to test the proposed network it is necessary to define a generic Dataset
from where all the images will be taken. In this thesis we will always work with
the Dataset of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
since all the previous neural network were tested with it. In particular since it wa-
sn’t possible to test all the images with the different weight filter we will see just a
small part of the Dataset of the 2017 but it will be enough to highlight all the main
feautures in the proposed convolutional operations.

Figura 2.2. Alexnet Dataset

2.2 Architecture of a CNN

In machine learning, a Convolutional Neural Network (CNN, or ConvNet) is a class
of deep, feed-forward artificial neural networks, most commonly applied to analyze
visual imagery. Convolutional networks were inspired by biological processes where
the connectivity pattern between neurons resembles the organization of the animal
visual cortex.

7



2 – Background on Convolutional Neural Network

Figura 2.3. Convolutional Neural Network Architecture

Individual cortical neurons respond to stimuli only in a restricted region of the
visual field known as the receptive fields. The receptive fields of different neurons
partially overlap such that they cover the entire visual field.
The CNN algorithm is build by stacking multiple computation layers for feature ex-
traction and classification. The latest CNNs achieve their high accuracy thanks to
a very deep hierarchy of layers, which are able to convert the input image data into
highly abstract representations called feature maps. Every CNN is able to perform
four main operations, that corrispond to the basic building blocks,as shown in the
list below.

• Convolutional Product

• Non Linearity (ReLU)

• Pooling

• Fully Connected Layer

In the following sections we will describe these operations,but the main focus will
be the convolutional product operation since it is the one that will be optimized in
the architecture developed.

2.2.1 Convolution Operation

The primary computation inside a CNN layer is a high-dimensional convolution.
Before analysing in detail the operation, it is necessary to give some definitions
about image processing. A generic image can be defined as a matrix of pixel values,

8



2 – Background on Convolutional Neural Network

where each pixel has three different channels called Red,Blue,Green (each of 8 bit);
in case of grayscale images, the channel is just one. A convolution operation is a
matrix-matrix multiplication between an image, that is called input feature map
(iFMAP),and a weight filter. A filter is a particular type of matrix that is able to
extract embedded characteristics of an image; in the following chapters we will see
how changing the coefficients of the filtering window it will be possible to highlight
different aspects of the same image.

Figura 2.4. Convolution Example

The overall convolutional operation can be easily understood looking at the
example above. Here we have an input feature map of 7x7x3 matrix while the

9



2 – Background on Convolutional Neural Network

kernels are 3x3 matrix. The Kernel have to slide on the input matrix in order to
correctly multiply all the pixels one by one. An important parameter in this ope-
ration is the sliding size called stride; it is defined as the space between each linear
sample. Essentially, the stride is a metric for regulating the movement of various
convolutional filters for pixel-wise operations across a given image space. In the
following example the stride equal to 2.
As it is clear from the previous equations, the convolution operation can be computed
as a series of pixel multiplications and iterative sums of partial product. In the ima-
ge processing field the dimension of the convolution can be three-dimensional if we
are looking to a RBG picture as in the previous example, but also two-dimensional,
if we are analyzing picture in grayscale.
For sake of simplicity in the developed architecture the convolution operation is
applied to grayscale image, but,as it will be explained later, it is really simple to
convert a RBG image in grayscale through some rows of code in MATLAB.
The following formula defines the standard convolution operation applied in the
two-dimensional case.

cxy =
K−1X
z=0

cxyz =
K−1X
z=0

K−1X
i=0

wzi × f(x+z)(y+i) (2.1)

In the previous equation f,w,c can be defined as the input feature map, the filter
weight and the output feature map, respectively. If we try to apply this equation to
a simple example we will have the following expanded coefficients:

Figura 2.5. Input feature map & filter weight example.

c00 = w00f00 + w01f01 + w10f10 + w11f11 (2.2)

c01 = w00f01 + w01f02 + w10f11 + w11f12 (2.3)

10



2 – Background on Convolutional Neural Network

c10 = w00f10 + w01f11 + w10f20 + w11f21 (2.4)

c11 = w00f11 + w01f12 + w10f21 + w11f22 (2.5)

The previous computation is applied with a weight filter 2x2 and a input feature
map 3x3. From an analytical point of view it is possbile to compute the size of the
output feature map using a simple equation:

oFMAP = (iFMAP − Filter + Stride)/Stride (2.6)

It is plan to see that many input features along with the filter weights are loaded
multiple times, this will result in large input memory accesses. Since thanks to
previous works has been discovered that almost 90% of the power is related to these
memory accesses, in the following chapter it will be proposed an architecture that
is able to analyze every pixel of the input feature map just once and avoid all the
redundancy loads.
As can be imagined in this case we will have the minumum number of memory
accesses for each pixel, but of course we will pay in terms of parallelization; in fact
it will be necessary to increase the number of resources that work at the same time.
In our particular case we will see how we will need a number of parallel processing
elements that grows linearly with the size of the kernel filter.

2.2.2 Activation functions

For sake of completeness, it is necessary to define the non linear unit, also called
Rectified Linear Unit. In fact in almost all the CNNs after a convolutional layer it
is placed a ReLU. The main function of this unit is introduce a non linearity in the
system since the major part of the world data are non linear while all the convolu-
tional operations are linear functions. Before ReLUs other functions were used, like
the tanh or sigmoid ; the main reason to use ReLU instead of the others is that it is
possible to reduce the time spent training the network, without an evident loss of
accuracy.

11



2 – Background on Convolutional Neural Network

Figura 2.6. Activation Functions

2.2.3 Pooling Layer

The Pooling layer, also called sub-sampling layer, is usually an intermediate layer
between the series of two convolutional ones. The physical implementation of this
layer is quite similar to the convolutional operation, but in this case the filter is
smaller (usually 2x2).
The most used type of pooling layer is the Max-Pooling one, which selects as output
pixel the higher value in the analyzed window. After this operation the dimension
of the output feature map is always reduced according to the size of the kernel.
The main results of this layer are basically two; it is able to reduce the dimension of
the output feature map, with a significant saving in terms of storage of intermediate
results. Besides the choice of the maximum value in the window allows to pass to
the next layer only the most relevant features. In the following image is shown a
simple example of max pooling operation:

12



2 – Background on Convolutional Neural Network

Figura 2.7. Max Pooling example

2.2.4 Fully Connected Layers

The Fully Connected Layer is basically composed of several units that are able to
take the output of the previous layer as input (a max-pooling, a ReLu or a Conv)
and determines which features most correlate to a particular class. Of course this
layer is placed at the end of the CNN since it needs high level features to give the
correct results. In the figure below we can see the differences between the connec-
tions of a FCL and a CL.

Figura 2.8. Fully-Connected VS Convolutional Layer

13



2 – Background on Convolutional Neural Network

2.3 Hardware acceleration of CNNs

Convolutional neural networks have become the first solution for image recognition
applications mainly because of their really impressive results in terms of accuracy;
in the last few years the needy to make CNN available on mobile application and
low power systems increased exponentially.
From this necessity grew up the concept of Hardware Acceleration, that could have
many ways of interpretation. While in the usual way of thinking in the electronic
research, the acceleration of a process means to be able to decrease the clock period,
in the case of CNN tha main goal is to reduce the energy consumption meeting real-
time constraints on speed and accuracy. One of the advantages of the convolutional
operation is that it is highly repetitive and in some cases can be easily pipelined
and parallelized.
In order to expoit the parallelism of the structure in the early days the first idea
was to switch from CPU to GPU the processing of the networks. Even if the
performances were good, the CNNs world was expanding in a very fast way, so it
was necessary to develop new ideas to follow up on the increasing computational
efforts of the networks. In the following figure we can see a general structure of an
Hardware Accelerator; as we will explain in detail later, the main blocks are always
the same. The convolutional operation is carried on by the Processing Elements
(PE), while we have internal memories to keep track of the partial results and an
interface that has to connect the on-chip memories with the off-chip ones.

Figura 2.9. General Hardware Accelerator architecture.
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2 – Background on Convolutional Neural Network

Of course this structure has to be designed from scratch and it can have dif-
ferent implementation and cost problems. For this reason in the next paragraph
are described two different implementation choices to further exploit the particular
properties of these networks.

2.3.1 FPGA vs ASIC structures

Before analyzing the two main possibilities to implement a neural network, we ha-
ve to define a FPGA and an ASIC structure. A Field Programmable Gate Array
(FPGA) is an integrated circuit designed to be configured by a customer or a desi-
gner after manufacturing hence ”field-programmable”. The FPGA configuration is
generally specified using a hardware description language (HDL); FPGAs contain
an array of programmable logic blocks, and a hierarchy of reconfigurable intercon-
nects that allow the blocks to be ”wired together”, like many logic gates that can
be inter-wired in different configurations. Logic blocks can be configured to perform
complex combinational functions, or merely simple logic gates. In most FPGAs,
logic blocks also include memory elements, which may be simple flip-flops or more
complete blocks of memory.
An Application-Specific Integrated Circuit (ASIC), is an integrated circuit (IC) cu-
stomized for a particular use, rather than intended for general-purpose use. In the
previous years of CNN development the ASIC solution was preferred since it was
possibe to fully parallelize the whole architecture and be able to speed up a lot the
different convolutional operations. But in the last period a lot of researchers decided
to switch the implementation using FPGAs; the main reason of this big change is
that ASIC processors have a huge non recurrent cost(NRE) and since the neural
network world is in continuing expansion they needed a product that could have an
higher flexibility. This characteristic was found in FPGA even if in some cases the
performances were a little bit lower.
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2 – Background on Convolutional Neural Network

Figura 2.10. GPU vs ASIC vs FPGA

In this thesis we will try to exploit a solution implementing a ASIC architecture;
this choice is due to the fact that in this early design phase we want to optimize
a particular convolutional operation without many degrees of flexibility. For this
reason in the next chapter it will be possible to see all the steps necessary to build
from scratch an hardware accelerator. The starting point will be the DFG analysis,
followed by the implementation of the code in an Hardware Description Language,
in our case will be VHDL and Verilog; finally the whole structure will be simulated
and synthetized in order to evaluate all the main features like the minimum clock
cycle, the area of the chip and of course the power consumption.

2.4 Methodology and research question

As mentioned in Chapter 1, CNNs have become a very widely discussed topic in
both companies and academic research. Lot of efforts have been done in order to
provide improvement in accuracy, performance and energy efficiency of such algor-
thms. Despite the latest achievements in this field, the large amount of operations
and memory accesses required to implement a CNN makes it a very difficult task.
This is particularly true when this type of networks have to be implemented in
hardware and critical scenarios where there is a particular need that regards power
consumption, such as embedded devices and mobile applications.
Even though GPUs demonstrated to be efficient as accelerators for both training
and inference of CNNs, such devices have an always higher power consumption,
which makes them not suitable in the aforementioned power-constrained real-time
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2 – Background on Convolutional Neural Network

applications. For this reason, interest in special purpose accelerators has been gro-
wing in the last years. Indeed, this kind of devices can achieve massime saving in
tems of power, and their architecture perfectly fit the massively parallel computation
pattern of CNNs and neural networks in general. However, the process to design
and implement such algorithms on ASIC structure can still be complex, since there
is no pre-defined hardware structure, but the all network has to be designed and
implemented from scratch.
Given these motivations, the aim of this work is to develop a hardware accelera-
tor for Deep Neural Network, providing a continous description of all the necessary
steps.
The methodology used is basically the design flow for every special purpose applica-
tion; in the first phase the algorithm has to be analyzed and all the properties have
to be derived from the DFGs. Then we need to choose how to define all the blocks to
implement the analytical operation, and also how to reduce the internal connection
and parallelism. Finally the architecture has to be simulated and synthetized in
order to see if the ideal properties have been fully exploited. The final part is the
analysis of the obtained results, comparing them with the latest results from similar
architecture.

17



Capitolo 3

The proposed architecture

This chapter will present the developed architecture, with a focus on the code im-
plemented in VHDL. Section 2.1 provides a brief analysis on the Data Flow Graph
related to the convolutional operation and the possibility to reschedule it in order to
optimize the memory accesses. Section 2.2 describes the Matlab code developed to
fetch the architecture with the images and to show the final results. Section 2.3 pro-
vides an analysis in detail of the overall architecture with a particular focus on the
main blocks and the different functions implemented. Finally Section 2.4 provides
all the simulations necessary to understand the correct behaviour of the accelerator.

18



3 – The proposed architecture

3.1 Data Flow Diagram Description

Before any type of hardware implementation, it is necessary to analyze the data de-
pendencies inside the convolution algorithm thorugh a Data Flow Diagram. A DFD
is a graphical representation of the ”flow” of data through an information system,
modelling its process aspects; it is often used as a preliminary step to create an over-
view of the system without going into great detail, which can later be elaborated.
Applying the DFD to the convolutional operation in two-dimensione we will have
the following figure.

Figura 3.1. 2D Convolution [5].

For sake of simplicity all the pictures are referred to a 3x3 iFMAP and to a 2x2
weight filter, while every circle in th figures indicates a Multiply-and-Accumulate
unit(MAC). In the previous picture two rows of filter weights are multiplied sepa-
rately with the input features of the upper and lower dependence graphs, so the
intermediate partial sums are obtained in separate ways. In this case it is necessary
to aggregate the partial sums in successive operations. As mentioned in the previous
chapter, a portion of the pixels in the input features are loaded multiple times inside
the structure. Since almost 90% of the energy is consumed for memory accesses,
while only a small part is devoted to the computational units, the overall efficiency
can be enhanced by minimizing the redundant on-chip memory accesses.
In order to achieve this goal, the only way is to modify the Data Flow Diagram.
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In the past few years many researchers developed different DFGs, one of the most
interesting was proposed by Jihyuck Jo [5],where the undesired energy consumption
due to redundancy is minimized allowing to load every pixel of the IFMAP just
once. In the following figure it can be seen a rescheduled DFG that supports the
previous described behaviour.

Figura 3.2. Rescheduled Data Flow Diagram [5].

The partial sums are not added immediately, but thanks to some on-chip memo-
ries are accumulated and wait for the execution of the next row. We will see in the
next chapters that through this delay in the final computation of the partial sums
the overall energy efficiency will be enhanced.

3.2 Matlab Processing

The previous architecture has been build for an input feature map of 128x128 pixels
in grayscale (for simplicity just one channel) and supports kernel filter with a size
3x3. These choices were made for different reasons that we need to analyze in detail.
From the DFG we know that even if the architecture is able to compute multiple
operation in parallel, it is necessary to insert one pixel for each clock cycle and save
inside the memories all the convolutional values computed for each row. Now it is
clear why the size of the iFMAP impact in a linear way on the dimension of the
on-chip memory. This issue could have a huge inpact if we consider that high reso-
lution images would need always bigger memories. This problem can be bypassed
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supposing that scaling in future tecnologies will be able to follow the increasing size
of future images.
For this reason in the design phase it was decided to block the size of the image at
128x128 pixels; a much bigger issue have to be considered if we decide to increase the
size of the weight filter. Analyzing the DFG in the previous section it can be noted
that for each weight in the filter window it is necessary to implement a different
processing element. If we use as example the first convolutional layer of Alexnet
with a filter window of 11x11 pixel we will have 121 PEs that work in parallel.
Since our ultimate goal is to increase the efficiency of the structure it was decided
during design phase to block at 3x3 the size of the weight filter. This choice has two
main consequences,in fact from one side we will need much less processing elements
e so we will reduce simultaneously power consumption and area, but at the same
time we will not have a heavy reduction of the dimensions of the output feature
map. The solution to this problem is to add an extra Max Pooling layer after the
computation to further reduce the size of the oFMAP.
For these reasons in order to analyze different images without limit on their di-
mensions or colour, a simple script in Matlab has been developed. It is able to
downsample every image to a 128x128 input feature map in grayscale.

Figura 3.3. Pre-processing script.

Also at the end of the computation another Matlab script has been developed
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to read the results written in a txt file and show the obtained output feature map.

Figura 3.4. Post-processing script.

3.3 Overall Architecture of the proposed Accele-

rator

In previous researches have been analyzed different configurations for an hardware
accelerator in a convolutional layer. It is possible to define three different archi-
tectural choices in transferring input and weight data from memories to the PE:
Broadcast, Forwarding, and Stay.
The Broadcast approach requires a multi-port input memory able to read a different
data every clock cycle and to send it to all the PEs at the same time, in order to
exploits a full parallelism in the intermediate operations. The Forwarding approach
uses the loaded data into a PE and passes them to a neighboring PE through some
registers. The Stay scheme instead loads data inside a PE and keeps them for an
entire convolutional operation.
In a similiar way we can define the output process in three main cases: Aggregation,
Migration, and Sedimentation. The Aggregation scheme uses an hardwired adder
tree in order to sum all the partial products coming from the PEs, this could be
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problematic if the size of the convolutional operation increases too much. The Mi-
gration scheme pass the partial sum to a neighboring PE while the Sedimentation
has an output memory for each PE.

Input Weight Output Abbreviation

Broadcast Broadcast Aggregation BBA
Broadcast Forwarding Sedimentation BFS
Broadcast Stay Migration BSM
Forwarding Broadcast Aggregation FBA
Forwarding Forwarding Sedimentation FFS
Forwarding Stay Aggregation FSA

Stay Broadcast Aggregation SBA
Stay Forwarding Migration SFM
Stay Stay Migration SSM

In Fig. 3.5 and 3.6 are defined how the different approaches can be implemen-
tend using Processing Elements(PEs) and On-chip Memories (OCMs).

Figura 3.5. Input and weight Sche-
mes. (a) Broadcast,(b) forwarding,(c)

stay.

Figura 3.6. Output Schemes. (a)
Aggregation, (b) migration, (c) sedi-

mentation.

The selection of the load and store schemes is the key to realize an accelerator able
to enhance particular features in the convolutional operation. In the proposed archi-
tecture the final choice was the so-called BSM structure (Broadcast-Stay-Migration)
where we decided to apply the Broadcast approach for the loading of the iFMAP,
the Stay approach to load the weight filter, and the Migration approach to collect
the outputs. For what concerns the loading approach of the input feature map, the
Broadcast one allow us to parallelize all the computations, and also reduces to just
one the number of times we have to pick a pixel from the input memory. Instead for
the weights, the stay approach is much better, since the kernel is not changing inside
a full convolutional operation and it can be loaded just once. Finally we choosed
a Migration approach for the output process, because passing the partial sum to a
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neighboring PE is a good solution to enhance the energy efficiency, since the energy
cost induced by an internal register transfer is much lower than memory operations.
In the paper [5] has been shown how the BSM architecture is by far the best struc-
ture for what concern energy consumption between the various convolutional models.

Figura 3.7. Normalized energy consumption for different convolutional models
[5].

In order to exploit the properties that we described before on the BSM archi-
tecture, it was necessary to develop a special purpose structure able to complete
the convolutional operation. The hardware architecture of our proposed accelerator
is illustrated in the figure below, where it is possible to see all the different main
blocks that will be described in detail in the following sections. As we can see the
accelerator takes as input some images and stores them in the input memory. At
the same time the weight memory is filled with the kernel filter weights. When
the loading is finished, a start signal is send to the Control Unit that enables the
Datapath with some Flag signals. After a predefined number of clock cycles the
convolutional product of the image with the filter is over and the oFMAP is stored
inside the Off-chip memory. At this point we can save this values and we can obtain
the processed image.
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Figura 3.8. The proposed architecture.

3.3.1 Input Data Memory

The Input Data Memory (IDM) has two different tasks; firstly it has to load from
a txt file all the pixels of the image(in our case is 128x128) and then it has to send
all the pixels one by one to the Datapath where they will be processed. The inputs
of this block are the main clock and an asynchronous reset signal, while as output
beside the pixels, it has also a start sequence signal that goes directly to the Control
Unit in order to be sure that all the flags will be send in time. These flags are basi-
cally the write and the read enable necessary for the operations inside the on-chip
memories
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Figura 3.9. Read function of the iFMAP.

In our architecture the IDM is able to download just one image at time and then
to flush it out when the output feature map is generated. Of course it could have
been possible to save multiple images during the computation of the first one, but
as said before, the goal is to keep the overall size of the memories small. For what
concern the parallelism of the structure,every input pixel is represented on 9 bits,
where 8 bit are for the actual representation and the first bit is for the sign. This
is necessary because the multiplications inside the Datapath are signed since the
values inside the kernel filter can be negative.

26



3 – The proposed architecture

Figura 3.10. Output of the iFMAP.

3.3.2 Weight Memory

The Weight Memory (WM) works in a similar way of the IDM; it has as inputs
the clock and the asynchronous reset, but since we have a Stay structure, all the
weights have to be stored inside the PEs at the same time in order to exploits the
full parallelism. In our case for a filter 3x3 we have nine outputs directly wired to
the Datapath. Also for this memory the data are loaded from a txt file, but the
parallelism of the outputs is different. In this case the outputs are on 7 bit, since the
amplitude range of the weights is much smaller respect to the pixel; in the end using
this structure we will have an internal parallelism of 16 bits that is quite acceptable
for this kind of operations.

27



3 – The proposed architecture

Figura 3.11. Output of the filter weights.

3.3.3 Datapath

The main computational unit of our Hardware accelerator is the Datapath (DP),
that is mainly composed by three diffenrent blocks: Processing Elements (PE), On-
chip memories and internal registers. The complete architecture is visible in fig.
3.12, while in the next sections the single blocks will be analyzed. From the picture
is clear how the system works. Every PE has to operate with the current pixel and
a predefined weight, of course since the weights for each image are always the same
they can be saved just once.
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Figura 3.12. Datapath Block Diagram.
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Processing Elements

This block is the heart of the computation inside the architecture, basically it im-
plements a Multiply and Accumulate(MAC) operation. As it is clear from the
Datapath image, there are nine PEs since the weight filter is 3x3 and we need nine
convolutional product for each clock cycle. The internal parallelism of this unit is
16 bits, since the pixels are represented on 9 bits and the weights on 7 bits. Since
the multiplication is the most complex operation, in the following sections we will
present an architecture with a reduced internal parallelism that will allow to further
reduce the computational power.

Figura 3.13. Processing Element.

On-chip memories

The on-chip memories are necessary since we decided to keep the intermediate re-
sults in storage and wait for the end of each row computations in order to sum up
the partial results. As it is clear in the Datapath structure, we need three internal
memories since the need to keep track of the partial value every three rows. For
what concern the size of each memory, if we suppose to have as input feature map
an image of 128x128 pixels, the internal memories will have to save (128-3+1)/1 =
126 values. This value can be computed using the equation 2.6 on the size of the
oFMAP, if we use as filter size the value 3 and the stride equal to 1. The structure is
similar to a standard FIFO, besides the clock and the reset; the memory is triggered
by a Write Enable (WE) and a Read Enable(RE) that arrive from the Control Unit.
The code structure of the memory is redundant on the controls flag since we had
some problems during the synthesis and we needed valid addresses even when the
machine was in idle state.
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Figura 3.14. On-chip memories write and read operations.

3.3.4 Control Unit

The most complex unit in the architecture is without any doubt the Control Unit(CU),
since it has been necessary to adapt all the internal flags of the machine to the re-
scheduled DFG proposed at the beginning of the chapter.
The input of this unit are the main clock, the reset and the starting sequence signal
from the IDM, while the outputs are all the WEs and REs destined to the on-chip
memories plus an extra WE needed for the Off-chip memory(OCM). In the internal
structure of this block we had to create some counters in order to keep track of the
writing and forwarding sequences.
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Figura 3.15. Generation of a generic write enable signal (WE).

3.3.5 Off-Chip Memory

The Off-chip Memory collects all the computed pixels that arrive from the Datapath
and through a Write Enable signal, always managed from the CU, is able to write a
txt file with the output feature map. This oFMAP will be sent to Matlab that will
show the new image after the convolutional operation.
The structure of this memory is always similar to a FIFO, but a End Sim signal is
added in order to be sure that all the operations on the current image are finisced.
In the next chapter we will see how this signal will be fundamental in order to have
an estimation of the switching activity of the system and then of the power con-
sumption.
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Figura 3.16. Off-chip memory read and output operations.
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3.4 Simulations

The simulation phase is one of the most intense and wide inside the design flow of
every hardware architecture. The Hardware simulator that will be used in this thesis
is mainly ModelSim. In the following sections we will briefly describe the simulation
environment and we will analyze different waveforms in order to understand the
timing diagram of the entire architecture.
ModelSim is a multi-language HDL simulation environment developed by Mentor
Graphics; in our design we will mainly use only VHDL and Verilog as hardware
description languages, but it supports also SystemC and SystemVerilog. One of the
main advantages of this environment is the possibility of mixing in a transparent
way blocks in VHDL and Verilog in one design. It gives us the possibility to simulate
behavioural, RTL and gate-level code; the ModelSim debug environments broad set
of intuitive capabilities make it the choice for both ASIC and FPGA design. In this
thesis we will carry out the first solution, trying to design of an Application Specific
Integrated processor(ASIC).

3.4.1 Modelsim Simulations

After the coding phase in VHDL of our hardware architecture, an intense phase of
simulation was needed.In the following pages will be shown only simulations of the
entire structure, but of course, in order to debug the whole architecture, a testbench
for each basic block has been created and tested.
In order to easily repeat multiple simulations some simple scripts have been prepa-
red,like this one.

Figura 3.17. Script per simulare i listati VHDL.
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It is interesting to notice that while all the building blocks are in VHDL, the
testbench is in verilog since , as was mentioned before, it is possible to write in
different languages and then the simulator will be able to bind and planarize all the
difference.
For sake of completeness in the following image we can see an extract from the
TestBench, just to point out the differences between Verilog and VHDL.

Figura 3.18. TestBench in Verilog.

In the following images we can have a close look to the entire simulation; of cour-
se since a full convolutional operation requires 16384 clock cycles we need multiple
images to highlight the main features. This number is mainly due to the size of the
input feature map, since we have to analyze a pixel in each clock cycle and we have
128x128 = 16384 pixels. The extra 129 clock cycles are the internal latency of the
architecture due the partial sum accumulation inside the on-chip memories.
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In fig. 3.19 it can be noticed a full simulation of the structure; now let’s try to ana-
lyze the different internal signals. From top to bottom we have the main clock and
the reset, and the start sequence signal, then there are all the input of the structure
as the iFMAP’s pixel and the weights. In the central part it can be seen all the con-
trol signals from the CU to the DP necessary to create the correct timing inside the
structure. Finally we can see the End Sim signal and the output of the structure. In
the final clock cycle all the saved outputs will be send to a txt file; after that, Matlab
will be able to read the results and show all the processing work done on the images.

1...

0

-1

0

-1

4

-1

0

-1

0

-...

0 10000000 20000000

/TestBench/pixel_in_i 1...

/TestBench/weight_0_in_i 0

/TestBench/weight_1_in_i -1

/TestBench/weight_2_in_i 0

/TestBench/weight_3_in_i -1

/TestBench/weight_4_in_i 4

/TestBench/weight_5_in_i -1

/TestBench/weight_6_in_i 0

/TestBench/weight_7_in_i -1

/TestBench/weight_8_in_i 0

/TestBench/pixel_out_i -...

/TestBench/CLK_i

/TestBench/Rst_i

/TestBench/start_sequence_i

/TestBench/store_enable_ocom_in_i

/TestBench/TE/store_enable_om2_in

/TestBench/TE/output_enable_om2_in

/TestBench/TE/store_enable_om5_in

/TestBench/TE/output_enable_om5_in

/TestBench/TE/store_enable_om8_in

/TestBench/TE/output_enable_om8_in

/TestBench/TE/store_enable_ocm_out

/TestBench/END_SIM_i

Figura 3.19. Full Simulation.

In fig 3.20 there is an highlight of the initial part of the simulation; if we focus
on the reset and the start signals we can see how when the reset goes down, at the
next rising edge of the clock the the start sequence signal goes high and the input
pixel and weights start to flow inside the architecture.
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Figura 3.20. Start of the sequence.

The output pixel remains undefined for 387 clock cycles; this is the latency of
the entire chain of registers and FIFO memories. The first valid value is 53 and it
can be seen from the figure below.
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Figura 3.21. First output valid value (53).

Finally if we highlight the end of the simulation we can see how the End Sim
signal allows to block the internal clock and to write the final results when the last
value is computed.
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Figura 3.22. End of the simulation.

39



Capitolo 4

Hardware implementation and
applications

This chapter describes all the different phases of the hardware implementation of
our accelerator. Firstly,Section 4.1 provides all the steps required to synthetize the
architecture through Synopsys Design Compiler. Then the analysis on area, power
and speed is carried out. In Section 4.2 it is analyzed a different architecture with a
reduced parallelism in order to compare different structures. Section 4.3 provides a
description of the different weight filters tested and the resulting images coming out
from the overall computation. Finally the last section provides a comparison with
previous developed hardware accelerators.
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4.1 Synthesis

Synthesis is a complex task consisting of many phases and requires various inputs
in order to produce a functionally correct netlist. The following section presents
the basic synthesis flow with Synopsys Design Compiler. In order to be able to
generate the netlist it is necessary to have synthesizable and functionally correct
HDL description of the hardware structure. The library that we will use to synthetize
the previous described accelerator is the UMC 65nm, that is granted thanks to the
partnership of the United Mycroelectronic Corp with the Politecnico of Turin.

4.1.1 Introduction to Synopsys Design Compiler

The Design Compiler tool is the core of the Synopsys synthesis products. Design
Compiler optimizes designs to provide the smallest and fastest logical representa-
tion of a given function. It comprises tools that synthesize your HDL designs into
optimized technology-dependent, gate-level designs. It supports a wide range of flat
and hierarchical design styles and can optimize both combinational and sequential
designs for speed, area, and power. In the following picture we can see an overview
of how Design Compiler fits into the design flow.
Synthesis with Design Compiler include the following main tasks: reading the VHDL
source files in the design, applying constraints, optimizing the design, analyzing the
results and saving the obtained design. These tasks will be described in detail in
the following sections.
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Figura 4.1. Design Flow

4.1.2 Reading VHDL source files

The first task in the synthesis is to read the design into Design Compiler memory.
Reading in an HDL design description consist of two tasks: analyzing and elabora-
ting the description. The analysis command (analyze) performs the following tasks:
reads the HDL source, checks it for syntactical errors and creates HDL library objec-
ts in an HDL-independent intermediate format while saving these intermediate files
in a specified location. The elaboration command (elaborate) instead translates the
design into a technology-independent design from the intermediate files produced
during the analysis, allows changing of parameter values (generics) defined in the
source code, replaces the HDL arithmetic operators in the code with DesignWare
components. The uniquify and link commands are necessary in order to deal with
multiple instances of the same block.
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Figura 4.2. Script to analyze the HDL files

It is interesting to notice that in the elaboration reports we can see the number
and the type of memory elements Design Compiler thinks it should infer. At this
point, if the elaboration completed successfully, the design is represented in an in-
ternal, equation-based, technology-independent design format.

4.1.3 Applying constraints

The next task is to define the constraints of out design. Constraints are the instruc-
tions that the designer gives to Design Compiler in order to mark out the limits
what the synthesis tool can or cannot do with the design or how the tool behaves.
Usually this informations can be derived from the design and timing specifications.
Firstly we have to set the constraints on the main clock and in order to simulate a
real behaviour we have to define some uncertainty parameters assuming that in the
architecture we could have jitter and skew problems. We have also to set output
load available in the library in order to compute a timing analysis. In this particular
case it has been chosen the input capacitance of a buffer.

Figura 4.3. Applying constraints

One of the goal in this first synthesis is to find the maximum possible frequency,
so we have to force to 0 the clock period and then from the timing result we can

43



4 – Hardware implementation and applications

take the slack violation as minimum clock cycle.
After that, it possible to run a new synthesis with this minimum clock cycle and
verify if the obtained slack is equal to zero without any violation.

4.1.4 Optimizing and Analyzing the reports

In the next phase we issue the compile ultra command in order to exploit all the
possible optimizations that the tool is able to achieve. And finally we can write
into some files the report on the area,the timing and the resources used by our
accelerator.
In the final synthesis it has been found a minimum clock of 1.28 ns, so the derived
maximum frequency was 781.2 MHz.

Figura 4.4. Report timing.
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In the fragment below we can see how the area of the synthetized architecture is
85812.85 µm2.

Figura 4.5. Report area

From the previous simulation we also found that a complete convolutional ope-
ration on one input feature map takes 16384 clock cycles. Multiplying this value
with the minimum clock cycles we can obtain the throughput of the architecture
and analyze the consequences in real-time systems.
The full processing of one image will take 1.28 ns × 16384 = 2097152 ns; for sake
of simplicity we can suppose that the whole operation takes 21 µs. This means that
this hardware accelerator can analyze images with a throughput of more than 47
thounsands frames per second (FPS). Since even the most recent video-processing
cameras have a maximum of 200 FPS there is no need to push too much on the
frequency, but we can try to reduce it in order to decrease area and power consump-
tion.
So the next step was to synthetize again the whole architecture with a frequency
equal to Fmax/4; since the dynamic power is linearly related to the frequency we
expect a linear reduction of the overall power consumption. In the table below we
can appreciate how the reduction is not exactly in linear scale, since we have some
leakages in the structure,but its almost one third of the previous one.

Area[µm2] Tclock[ns] Fmax[MHz] Power[mW]

80892.01 5.12 195.3 15.42
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4.1.5 Saving the synthetized design

In the final step we can save the data required to complete the design and to per-
form the switching-activity power estimation. Then we have to export the netlist in
Verilog and save the design in order to be simulated and verified.

Figura 4.6. Saving the current Design

4.1.6 Simulation of the Netlist

After multiple synthesis, in order to verify the final design of the architecture, a
further simulation was necessary. In this case through another simple script it was
possible to test the generated Netlist in Verilog. This step is always mandatory
since even if the architecture seems to work correctly through the simulations in
ModelSim, after the synthesis there could be some problems of undefined nets.

Figura 4.7. Script to simulate the Netlist

This situation is mainly due to the fact that while ModelSim applies as standard
value 0 to all its undefined nets, in the synthesis if we have something initially unde-
fined or not correctly clocked we could have some internal value in high impedance.
If this happens we could have a propagation of the error inside all the pipeline and
in the end the output of the entire system will be undefined.
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In our case we had an issue with the control flags coming from the Control Unit; in
fact since the Datapath was expecting always valid signals,when the machine was
down, the internal on-chip memories weren’t able to sample the data and all the
internal registers were in high impedance. This problem was solved adding the pos-
sibility to reset to 0 the internal registers when the machine was in standby mode(
waiting for a image).
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Figura 4.8. Simulation of the Netlist

4.1.7 Switching-activity-based power consumption estima-
tion

The final step of the testing phase was the estimation of power consumption through
a switching activity model implemented jointly by ModelSim and Synopsys. The
switching activity of a system is defined as the probability that a node inside the
architecture is changing its value in a determined clock cycle; so it is going from 0
to 1 or 1 to 0.
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In order to complete this measurement we had to follow different steps. Firstly we
had to create a file where Synopsys was able to extract the technological libraries.
Then we had to modify the testbench in Verilog in order to add statements to get
the switching activity.

Figura 4.9. Code to obtain switching-activity

In the code its clear how the End Sim signal is necessary in order to define a
boundary in which the power simulation has to be performed. Finally we had to
launch ModelSim and through another script it was possible to generate a file with
the nets informations.

Figura 4.10. Script to compute the power analysis

In the end we had to go back to Synopsys design compiler and generate the
report on the power consumption. As it is clear in the image below, the power
consumption in out architecture is around 41.36 mW, of course this result has been
computed using as reference the maximum frequency.
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Figura 4.11. Report Power

4.2 Architecture with reduced parallelism

In the following section a further optimization has been developed, in order to in-
crease the performances in terms of speed and power without losing any accuracy
in the results. Since the main operations of our convolutional accelerator were mul-
tiplications and addition, a intuitive way to decrease the complexity was to reduce
the internal parallelism of the structure. The main problem was that the bits for
the input feature map were already minimum, so instead of 7 bits for the weight
filter we decided to work with only 5 bits. This solution will reduce the overall
internal parallelism to 14 bits instead of 16 and in order to make a comparison all
the previous steps were repeated.

Area [µm2] Clock Period [ns] Max Frequency [MHz] Power [mW]

79142.77 1.13 884.9 39.15

Changing the internal parallelism reduced of 13% the minimum clock cyle and
reduced the overall area of around 8.4%. The total power consumption was reduced
of 5.6% even if the frequency increased. Then if we try to synthetize this architectu-
re with a clock cycle equal to 1.28( the maximum of the first architecture), we will
have the following results.
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Area [µm2] Clock Period [ns] Frequency [MHz] Power [mW]

73919.52 1.28 781.2 36.87

Decreasing the frequency of the system allows to the synthetizer to relax the
constraints inside the architecture and it enables a save in terms of area and power.
Of course the main drawback of the reduced parallelism solution is that the range
of values that can be represented by the filter are between -16 and +15. As we will
see in the next section the major part of the analyzed weight filter are inside this
boundaries, but for some particular cases this representation is not enough and we
have to stick with the original architecture.

4.3 Application of different weight filters

As we mentioned in the previous chapters, it is possibile to modify the weights in-
side a kernel filter in order to highlight particulare features of an image or a set
of images. In this section we will analyze some pictures inside the Dataset of 2017
ILSVRC and we will apply different filters to our original architecture. Before that
we can just define a couple of things about the structure af a kernel filter.
The convolutional kernel is a small matrix, in our case we consider a 3x3 matrix,
with a defined number in each cell and a particular number in the middle of the
matrix called anchor point.

Figura 4.12. Anchor Point

This kernel slides over an image and the convolutional operation is computed;
the anchor point is used to determine the position of the kernel with respect to the
image. The anchor point starts at the top-left corner of the image and moves over
each set of stride pixels sequentially. At each position, the kernel overlaps a few
pixels on the image. Each overlapping pair of numbers is multiplied and added. Fi-
nally, the value at the current position is set to this sum. The main problem of this
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structure are corners and edges, but as we exploited in our architecture, they can
be simply ignored and preselected to 0 in order to go on with the overall computation.

Figura 4.13. Edge
Detection Filter

Figura 4.14. Sobel
Filter

Figura 4.15. Lapla-
cian Filter

Now we can analyze the effects on the images applying different kernel filters; the
first kernel applied is called Edge Detection Operator,and it is clear how it tracks
the edges inside the pictures.

Figura 4.16. Application of the Edge Detection Operator

Another tested filter is the one defined as Sobel. This Operator is very effective
against noise to noise since it has a smoothing effect.
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Figura 4.17. Application of the Sobel Operator

Finally we test the convolutional operation with the Laplacian Operator defined
as the second derivative of the image. This Operator is much more sensitive to noise
so it is used only for academic purpose.

Figura 4.18. Application of the Laplacian Operator

The main goal of applying these filters is to be able to extract particular features
to help the post-processing classification. As we mentioned before there will be
necessary multiple stages of convolution in order to fully process a single image, but
in any case if we are able to optimize a single layer, it will be the same for all the
others.
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4.4 Comparison with previous Hardware Accele-

rators

At the end of our work we can spend a few words on how this hardware accelerator
can fit the giant branch of accelerators developed to boost Neural Networks from all
points of view.
First of all we have to define its characteristic, so we can easily say that in order
to make a fair comparison we will define a few parameters: the technological node,
that in our case is the 65 nm UMC technology, the total area of the structure,the
power consumption, the clock frequency and the bit width of our architecture that
can be seen as the internal parallelism.
In the table below we have listed our feature comparing with some other papers that
worked on the same subject.

Accelerators The proposed structure Cambricon-X[6] EIE [7] SCNN[8]
Tech. node[nm] 65 65 28 16

Area[mm2] 0.0809 11.32 15.95 7.87
Power[mW] 41.37 1220 590 n/a

Clk Frequency[MHz] 781 1000 1200 1000
Bit width 16 16 16 16

The first thing to notice is that our structure seem to have much lower area and of
course power consumption,but this is due to the fact that our hardware accelerator
works mainly on one layer of a CNN while the others trained their accelerator on
a complete CNN structure. If we wanted to make a fair comparison we would have
to test our architecture in a full CNN environment; this wasn’t possible because it
would have required to build also a full network and not only a convolutional layer.
In the future works could be very useful to try to exploit this direction, in order to
make a much easier comparison with all the other similar works.
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Capitolo 5

Results and Conclusions

This chapter provides an overall analysis of this thesis. Section 6.1 gives an overview
of the proposed work, summarizing the methodology and the obtained results. Fi-
nally, Section 6.2 concludes the thesis by analyzing the problems of the proposed ap-
proach, proposing solutions to overcome such limitations and providing suggestions
on future directions for this work.
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5.1 Proposed work summary

Convolutional Neural Networks are playing an important role as a new emerging
technology for computer vision. Thanks to their capability, they have become one of
the most analyzed approaches in the last years for many application fields, including
Big Data Analysis, mobile robot vision, video processing and so on. In such contexts,
due to the huge amount of data to be processed or the need for real time execution,
it is crucial to find techniques to speed up the computation. Moreover, the huge
number of operations of CNNs makes it impractical to implement them on CPUs, so
researchers and engineers have been looking for hardware accelerators able to provide
fast implementation meeting the constraints on power consumption and accuracy.
Among the accelerators proposed in the literature, ASIC processor demonstrated to
be very effective low-power devices for hardware acceleration of CNNs.
The aim of the work presented in this thesis is to develop an hardware accelerator
able to merge the demands in terms of speed and power through a careful analysis
of the possible parallelization inside the CNN algorithm.
In particular in Chapter 3 is presented the proposed architecture with all the pre-
synthesis simulations necessary to understand the behaviour of the algorithm. From
this analysis it can be pointed out how changing the DFG of a particular hardware
architecture is possible to exploit properties that will have a huge impact on the
overall performances.
In Chapter 4 the synthesis flow is carried on with a particular focus on design
compiler aspects that could be useful also for future works on the subject. The
main result is that it was possible to complete the processing of an image in a very
reasonable time compared to the possibilities in terms of FPS of modern cameras.
In fact as we demonstrated our machine can work up to 45 thousand FPS; of course
this result does not have to be considered in its absolute value, since in our case
we analyzed just one layer of a CNN, but even if we suppose that a full structure
will decrease of 100x the speed performances, we will still have more than 450 FPS
to deal with. This value is above modern video-cameras that works usually at 120
FPS. THis result could lead to future implementation of structures able to meet
constraints in real-time applications.

55



5 – Results and Conclusions

5.2 Future Works

Although efficient, the proposed architecture still has some limitations due to dif-
ferent reasons. On the one hand, at the moment the input features map that the
machine is able to process are defined as 128x128 pixel images; this problem is not
impossible to solve since the easiest solution could be to increase the size of the
on-chip memories and maybe also try to use bigger filter kernel. But of course this
could lead to a latency delay that has to be fully analyzed in order to meet the pre-
vious defined real-time constraints. On the other hand, the generated accelerator
is able to process a fully convolutional operation, basically implementing the main
function of a layer inside a Neural Network. But as we discovered using as example
the AlexNet Network, modern CNN have more than 10 different layers, so a future
optimization could be to test this architecture inside a particular framework in order
to replace a single layer and analyze the overall performances.
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