
POLITECNICO DI TORINO

Facoltà di Ingegneria
Corso di Laurea in Ingegneria Elettronica

Tesi di Laurea

DCT-V for Video Coding: A
reconfigurable implementation for

length 32 and 4

Relatore:
Prof. Maurizio Martina - Politecnico Di Torino

Candidato:
Jurgen Kello

Settembre 2018

Table of contents

Summary II

1 introduction 1
1.1 introduction to video compression . 1
1.2 HEVC . 3
1.3 JEM . 4
1.4 transform coding . 5

2 The proposed algorithm 6
2.1 Puschel algorithm . 6
2.2 DCT532 . 7
2.3 DCT58 . 14

3 MatLab model 17
3.1 normalized algorithm model . 17
3.2 Verification . 29
3.3 Integer coefficients . 30
3.4 C code . 43

4 Developing the architecture 48
4.1 VHDL code . 48
4.2 verification and synthesis . 57
Bibliography . 62

I

Summary

II

This work of thesis shows a new factorization and its implementation for DCT-
V(Discrete Cosine Transform) of length 4 and 32, used in the most recent video
compression standard.
During the last years, the Joint Video Exploration Team(JVET) of ITU-T VCEG
and ISO/IEC MPEG, now the Joint Video Experts Team, are trying to develop the
future video coding technology, that will improve the compression efficiency with
respect to the current HEVC standard. An experimental software was introduced,
JEM, based on the HEVC Model (HM) software, developed as reference for the
HEVC standard. One of the fundamental data compression techniques used for
this standard, as in many previous image and video coding standards, is transform
coding. What is interesting to consider for the future video coding is the introduc-
tion of the new transforms like DCT-V, DCT-VIII, DST-I and DST-VII. This new
transforms need low-complexity factorization to efficiently compute them.
This work exploits a factorization of the DCT using the algebraic theory, the Reznik
decomposition for DCT-II and an already known fast algorithm for the DCT-V of
length 4. In particular, all this known relationships are combined together to find
that DCT-V of length 32 can be computed using 5 of the same type DCTs of length
4. Moreover, a Matlab model has been written for functional validation, followed by
a model written in C language. This allows for the evaluation of the rate-distortion
performance within the video codex for the new DCT-V of length 32 and 4. To do
this, it is important to adapt the proposed algorithms for DCT-V with the existing
DCT-V description in the JEM software, that is a normalized version with integer
coefficients. Finally a reconfigurable unit exploiting multiplexers has been designed,
which computes both the DCT-V of length 32 and 5 DCTs of the same type of
length 4. For synthesis the umc65 library is used and the reports of time, area and
power are obtained.

III

Chapter 1

introduction

1.1 introduction to video compression

[4.1]Video, from all the different sources of data, is the one that needs more memory.
That is why video compression is needed. Video compression can be seen as image
compression with a time component. Most of the algorithms on video compression
use the temporal correlation to remove redundancy. The current frame is predicted
by the previous reconstructed frame. The prediction operation in video coding has
to consider the motion of the objects in the frame, known as motion compensation.

Motion compensation
In most video sequences a lot of the images parts are not changing from one frame
to the next, even in sequences with a lot of activity. When predicting the frame
it is important to consider the motion of the objects in the image. The frame
being encoded is divided into blocks of size M × M . For each block, the previous
reconstructed frame is searched for the block of size MxM that matches the block
being encoded. Fixing a prespecified threshold, the block being encoded is declared
uncompensable and is encoded without prediction if the distance between this
block and the closest one in the previous reconstructed frame is greater than this
threshold. This fact will also be transmitted to the receiver. If the distance is below
the threshold then a motion vector is transmitted to the receiver. This motion
vector is the relative location of the block to be used for prediction. A way to
reduce the number of times the motion compensation is performed, is by increasing
the size of the blocks. In this way there will be less blocks per frame but also
more computations per comparison. The drawback is that by increasing the block
size, it also increases the probability of objects inside the block moving in different
directions. The motion compensation is performed in what are called macroblocks.

1

1 – introduction

The earliest video coding standard is the ITU-T H.261 standard. A block dia-
gram of the H.261 video coder is shown in Figure 1.1. An input image is divided
into blocks of 8×8 pixels. For a given block it is subtracted the prediction using the
previous frame. The difference between the encoded block and the prediction passes
through a DCT transform. Further on the transform coefficients are quantized and
by using a variable-length code the quantization label is encoded.

Figure 1.1. Block diagram of the ITU.T H.261 encoder

The loop filter
There is a problem with sharp variations in the prediction error. They can cause
high values for the high-frequency coefficients in the transforms. That is why a
two-dimensional spatial filter is used to smoothen the prediction block. The filter
can be implemented as a one-dimensional filter that first operates on the rows then
on the columns.

The transform
The key idea in using transforms is to take a sequence of inputs and transforming
them into another sequence limiting the information in only a few elements. So
later on it can be used this new sequence, which can be encoded and transmitted
resulting in data compression. For the case of interest the transform operation
is performed on an 8x8 block of pixels or pixel differences using a DCT. If the
transform operation is performed on a block level, either a block or the difference
between the block and its predicted value is quantized and transmitted to the
receiver. The transform operation is performed on an 8x8 block of pixels if no close
match is provided by the motion compensation operation.

2

1 – introduction

Quantization and coding
The characteristics of the coefficients to be quantized depend on the quality of the
prediction. A wide variation range is possible, that is why the H.261 code switches
between 32 different quantizers, possibly from one mackroblock to the next. Each
mackroblock is preceded by a header which gives information of the quantizer used.
In the case when the sequence has a constant amount of motion then it can be
expected to use the same quantizer for a large number of makroblocks. In this
case the previous method of identifying a quantizer with each macroblock would be
wasteful. That is why the macroblocks are organized into what are called group of
blocks(GOBs).

Rate controller
Rate control is the name used to describe the constant back and forth comunication
between the transform coder and the transmission buffer. The function of this
later is to keep the output rate of the encoder fixed. If the buffer starts filling up
faster than the transmission rate than it sends a message to the transform coder to
reduce the output from the quantization. If the opposite happens, that is the the
buffer is being emptied then a message is send to the transform coder to increase
the output form the quantization.

This were some of the key aspects of the H.261 standard, which can be used as
a simple introduction to video compression. It can be interesting to see first in a
broader view how the standard has evolved comparing it with the latest versions,
and then focus the attention on the transform coding(going further till a specific
type of DCT) which will be the topic of this thesis work.

1.2 HEVC
[4.2]The increasing diversity of services, the use of HD video and beyond HD formats
created the need for coding efficiencies superior to the H.264 standard. HEVC was
created to increase video resolution and the use of parallel processing architectures.
In the following the key elements of the design by which these goals are achieved
and the typical encoder operation, are described. Each picture is been divided into
block shaped regions, and its important that this partition is also transmitted to
the decoder. The first picture of each video sequence is coded by using intrapic-
ture prediction only, that is a prediction with no dependence from other pictures
but only from region to region in the picture. For all the remaining pictures of the
sequence interpicture prediction is typically used for most blocks. The encoding
process for interpicture prediction consists of comprising a selected reference picture

3

1 – introduction

by choosing the motion data, and predict the samples of each block by choosing the
motion vectors(MV) to be applied. Using the MV and mode decision data and ap-
plying motion compensation(MC), the encoder and decoder will generate identical
interpicture prediction signals. The difference between the original block and its pre-
diction(inter of intra), called residual, is transformed by a linear spatial transform.
The coefficients are then scaled, quantized, entropy coded and transmitted together
with the prediction information. In order that both encoder and decoder generate
identical predictions for subsequent data, the encoder should duplicate the decoder
processing loop. Therefore, by inverse scaling are constructed the quantized trans-
form coefficients, then to duplicate the decoded approximation of the residual signal
the inverse transform has been applied. The residual is added to the prediction
and the result is filtered to smooth out artifacts that come as a result of block-wise
processing and quantization. The final picture representation will be stored in a
buffer and will be used in the prediction of subsequent pictures. In general, the
order which the pictures come from the source is not the same with the order they
are processed(encoding or decoding). Among the various features involved in hybrid
coding using HEVC, and later on used also for future video coding, what is more
interesting for us is the transform coding.

1.3 JEM

[4.3]The JEM software is based on the HEVC Test Model 16 (HM) architecture.
It introduced many new coding tools which give a significant coding gain. For the
Coding Tree Unit and Transform Units, larger sizes are considered(up to 256x256
and 64x64). In regard to the prediction modes, additional intra prediction modes
are introduced, motion vector storage is more accurate, and the introduction of a so
called bi-directional optical flow. What else is introduced is an improved adaptive
loop filter and an enhanced CABAC design. Based on the Enhanced Multiple Trans-
form is introduced the Adaptive Multiple Transform(AMT), which includes DCT-
II, DST-VII, DCT-VIII, DST-I and DCT-V core transforms. This AMT enables a
transform-unit level signaling where the applied horizontal and vertical transforms
are derived based on a prediction mode dependent set of transforms. On top of
the AMT scheme is placed a so called Non-Separable Secondary Transform(NST).
According to a set derived from the selected prediction mode, a 4x4 NST is applied
on each 4x4 transform coefficient groups. Finally, a variable sized Karhunen-Loeve
Transform(form 4x4 to 32x32) can be obtained by activating in software the Signal
Dependent Transform.

4

1 – introduction

1.4 transform coding
Since the introduction of the H.261 standard, the successive generations of stan-
dards have improved the way to de-correlate the residual signals thus improving
the coding efficiency. In the context of future video coding, a new approach called
Adaptive Multiple Transform(AMT) has been introduced, based on the enhanced
multiple transform(EMT)[4.4]. For Intra coding a mode-dependent transform can-
didate selection process is used. This way of selection comes from the different
residual statistics associated to each mode. The newly introduced transforms in
this case are DCT-V, DCT-VIII, DST-I and DST-VII. On the other hand, when
the block is inter predicted, only one set is used made of DST-VII and DCT-VIII.
So, summarizing everything, there are two transform candidates for each set, which
should be evaluated for both the horizontal and vertical transform. In total there
are five different transform candidates(the four multiple transform candidates of the
AMT and the DCT-II) which have to be computed for each block in all the different
prediction modes. The overall result is a very high complexity at the encoder side.
Therefore, this explains the need for low-complexity factorization of different DCT
types. But, while several fast algorithms have been proposed to compute the so
called even type DCTs, only a few consider the problem of odd type DCTs(types
V, VI, VII and VIII). This was also the starting point of this thesis work, finding a
low-complexity factorization to efficiently compute DCT-V.

5

Chapter 2

The proposed algorithm

2.1 Puschel algorithm

The paper considered for this thesis uses a new approach for the derivation of
the fast algorithms, the algebraic signal processing theory [4.5]. What is usually
done in literature is to derive the algorithms by manipulating the transform
coefficients. The derivation of the fast algorithms in [4.5] is algebraic: instead
of manipulating the entries of the transform matrix, it derives the algorithms by
stepwise decomposition of the associated signal models, or polynomial algebras. For
the purpose of this thesis, the algorithm considered for implementation is the one
for DCT-V, which is derived using the factorization properties of the Chebyshev
polynomials:

DCT53m+2 = Q3m+2
m (DCT5m+1 ⊕DCT32m+1(2

3))B(C5)
3m+2 (2.1)

From the given algorithm 2.1, different dimension DCT5 can be computed. The
DCT5 dimensions included in the JEM software [4.6], and so the dimensions which
are of interest to be considered are N= 4, 8, 16 and 32. Trying to substitute for the
above equation 2.1, 3m+ 2 = N , an integer N can be found only for the case of 8
and 32 dimensions. While no integer solutions can be found for the 4 and 16 point
matrices. As previously stated equation 2.1 is based on the factorization properties
of the Chebyshev polynomials. For the DCT5 case no other decomposition is pos-
sible, that means that this paper finds a solution only to the cases of 8 and 32 points.

6

2 – The proposed algorithm

2.2 DCT532

From the given algorithm 2.1, considering the case of N=32, the matrix decompo-
sition becomes:

DCT532 = Q32
10(DCT511 ⊕DCT321(2

3))B(C5)
32 (2.2)

The same algorithm 2.1 can be used for the DCT511 case:

DCT511 = Q11
3 (DCT54 ⊕DCT37(2

3))B(C5)
11 (2.3)

In 2.1, the pre-addition matrix B and permutation matrix Q, are defined as follows:

B
(C5)
3m+2 =



1
Im Jm

1
Im

I2m+1

−1/2
−Im
−Jm

 (2.4)

where In is the n x n identity matrix and Jn, the opposite identity matrix(i.e. In
with columns in reversed order).

Q3m+2
m = i1 + 3i2 Ô→


i2, for i1 = 0;
2i2 +m+ 1, for i1 = 1;
2i2 +m+ 2, for i1 = 2;

(2.5)

This notation 2.5, is used to define a permutation matrix. Matrix Q3m+2
m has in row

i1 + 3i2 the only entry 1 at position:

• i2 if i1 is 0.

• 2i2 +m+ 1 if i1 is 1.

• 2i2 +m+ 2 if i2 is 2.

This means that i1 will take only three possible values (0, 1, 2).
From the initial algorithm, what can be furtherly decomposed are the DCT3
matrices. In [4.5] are included also these algorithms:

DCT3km(r) = Kn
m(

n
0≤i<k

DCT3m(ri))(DCT3k(r) ⊗ Im)B(C3)
k,m (2.6)

For the case of interest, DCT37, it can not be decomposed further since no integer
values k, m could be found such that the product k · m = 7 is a prime number.

7

2 – The proposed algorithm

Meanwhile for the DCT321 case the matrix decomposition will be:

DCT321(r) = K21
7 (

n
0≤i<3

DCT37(ri))(DCT33(2
3) ⊗ I7)B(C3)

3,7 (2.7)

In the equation 2.7, some important building blocks of the algorithm can be noted.
They are called skew DCTs. The theory behind skew DCTs can be seen more in
detail in another paper [4.7], but what is important for the matrix decomposition is
only the fact that every skew DCT can be translated in its non-skew counter part:

DCTn(r) = DCTn ·X(∗)
n (r) (2.8)

where X(∗)
n (r) depends on the DCT in consideration. For the actual case of interest:

X(C3)
n (r) =



1 0 · · · · · · 0
0 c1 sn−1
...
...
0 s1 cn−1

 (2.9)

In equation 2.9, cl = cos(1/2 − r)lπ/n, sl = sin(1/2 − r)lπ/n
What still remains to be explained is, in the case of DCT37(ri) in 2.7, what
do those ri stand for? They are actually the zeros of the Chebyshev polynomial
Tn − cos(rπ).
It can be proved that for the case of n even, they can be found from the relation:

(rl)0≤l<n = (
Û

0≤i<n−1
2

(r + 2i
n

,
2 − r + 2i

n
)) ∪ (r + n− 1

n
) (2.10)

Substituting for the case of interest r=2/3, three ri are found: 2/9, 4/9 and 8/9.
Those are the values to be substituted in the final algorithm 2.7.
The DCT3km(r) algorithm 2.7 contains also two matrices, Kn

m and B
(C3)
k,m , the per-

mutation and pre-addition matrix respectively. The definition for the pre-addition
matrix is given as:

B
(C3)
3,m = (Im ⊕ (I2 ⊗ diag(1,2, . . . ,2)))

Im −Zm I
Í
m

Im −Zm
Im

 (2.11)

8

2 – The proposed algorithm

In 2.11 the special case for k=3 has been considered, where I Í
m = diag(0,1, . . . ,1) and

Zm =


0

0 1
... ...

0 1


While the permutation matrix takes the form:

Kn
m = (Ik ⊕ Jk ⊕ Ik ⊕ Jk ⊕ . . .)Lnm (2.12)

In 2.12, Lnm is the stride permutation matrix which can be defined as
Lnm : i Ô→ im mod n− 1, for 0 ≤ i < n− 1

n− 1 Ô→ n− 1
It should be noted that diagonal matrices are written as diag(x0, . . . ,xn−1).
Further the matrix operator used, the direct sum, is defined as:

A⊕B =
C
A

B

D

and the Kronecker product is:
A⊗B = [ak,lB]k,l, forA = [ak,l].

These last blocks definition bring an end to the algorithm introduced by [4.5],
which gives a decomposition of the DCT532 into simpler matrices 2.2. There are
some missing pieces to this algorithm, since it does not define a way how to find the
smaller blocks like DCT54, DCT37 and DCT33. To find fast algorithms for these
last matrices, other papers are considered which will be explained in the following.
To end this part there is a summary of the algorithm introduced till now, where for
abbreviation instead of DCT is simply written C, also since it is always considered
X for (C3) type then this last one is omitted so simply X will be written:

9

2
–

T
he

proposed
algorithm

C532 =
#

Q32
10

$


#
Q11

3

$5#
C54

$ #
C37

$ #
X7(2

3)
$6#

BC5
11

$
#

K21
7

$#
C37

$ #
X7(2

9)
$ #

C37
$ #

X7(4
9)

$ #
C37

$ #
X7(8

9)
$
#

C33X3(2
3) ⊗ I7

$ #
B

(C3)
3,7

$
#

B
(C5)
32

$
(2.13)

10

2 – The proposed algorithm

To define the missing blocks, is done reference to some further literature. The
algorithm for DCT54 has been found in [4.8], where the signal flow graph (SFG) is
given as follows:

Figure 2.1. DCT54 SFG

To find the algorithm for DCT37 the same procedure followed in this paper
[4.8], will be used. The starting point will be the decomposition of DCT2 into
a DCT6 and DST7, [4.9]. Applying this concept to the case of interest, the result is:

DCT27 = Q7

C
DCT64

DST73

D  I3 J3
1

−J3 I3

 (2.14)

To write the algorithm for DCT37 several relationships have to be considered. The
starting point will be to use the property of DCT3: DCT3 = (DCT2)T . From
2.14 it can be seen that DCT27 is given as a product of three matrices. Using the
properties of the transpose for the product (A ·B)T = BT ·AT , it will be applied to
the product of three matrices case

(A ·B · C)T = ((A ·B) · C)T = CT · (A ·B)T = CT ·BT · AT

Then for the composing matrix DCT6, using the relationship introduced in [4.8]
DCT6n = Dn · DCT5n · Jn and again doing the transpose, the final algorithm for
DCT37 can be written as:

DCT37 =

I3 −J3
1

J3 I3

 C
J4 ·DCT54 ·D4

DST7T3

D
QT

7 (2.15)

In this algorithm 2.15, DCT54 fast algorithm is known, Q is a sign alteration and
reordering matrix introduced in [4.9] as in the following(for Q2N+1):
y(2n) = x(n) n=[0,N]
y(2n+ 1) = (−1)n+1 · x(N + 1 + n) n=[0, N-1]

11

2 – The proposed algorithm

DN is a diagonal matrix implementing sign-alteration:

DN =



1
−1

. . .
1

−1



For the DST73 algorithm the same procedure used in [4.8] can be followed,
but this time the lower part of the signal flow graph has to be considered. The
case of interest is DST7T3 . To find the algorithm of the transpose, as explained in
[4.10], simply the network transposition has to be done. Considering the signal flow
graph used to represent the algorithm of a linear network, where the edges represent
multiplication by a constant(the discontinuous edges do a sign change) and the
vertices represent addition of the incoming edges. Network transposition simply
consists of reversing the direction of every edge in a directed graph, which could
simply be seen as starting the computation from the outputs instead of the inputs of
the original graph. After using this principle and doing some final sign manipulations
and the necessary permutations, the final signal flow graph for DST7T3 is derived.

Figure 2.2. DST7T3 SFG

The final remaining block for which the fast algorithm has to be defined is
DCT33. From [4.11] an odd length DCT2 is derived from the real valued DFT of
the same length. The algorithm for the case of interest N=3 is also given in this
paper. Moving from the DCT2 to DCT3 algorithm can be easily done as explained
in [4.10]. Since the DCT3 is the transpose of DCT2, a fast DCT3 algorithm is
obtained by network transposition of a fast DCT2 algorithm. The final SFG will
be:

12

2 – The proposed algorithm

Figure 2.3. DCT3 SFG

The coefficients used for all this algorithms are introduced by [4.12] for the
computation of the DFT. In table 2.1 are defined all coefficients used:

Starting from the algorithm in 2.13 and substituting the decomposition in 2.15,

Coefficient value
C31 −

√
3

2
C32 1.5
C71 7

6

C72 2cos(u)−cos(2u)−cos(3u)
3

C73 cos(u)−2cos(2u)+cos(3u)
3

C74 cos(u)+cos(2u)−2cos(3u)
3

C75 sin(u)+sin(2u)−sin(3u)
3

C76 2sin(u)−sin(2u)+sin(3u)
3

C77 sin(u)−2sin(2u)−sin(3u)
3

C78 sin(u)+sin(2u)+2sin(3u)
3

Table 2.1. Coefficients of the algorithm

for the DCT37, blocks an interesting result can be noted. To compute the DCT5
matrix of dimensions 32x32, 5 smaller DCT5 matrices of dimensions 4x4 have to
be computed. Since both DCT5 of 32 and 4 samples are included in 3.1, then it is
possible to implement them by a single hardware component. That is, by applying
this solution and trying to implement the DCT532 block, it will at the same time
implement also 5 DCT54 blocks. This means that the important concept of resource
sharing has been used in this case, reducing the HW cost needed to implement the
different coding tools included in 3.1. This was the reason why this idea was chosen
to be developed further in this thesis work.

13

2 – The proposed algorithm

2.3 DCT58

The same algorithm introduced in [4.5] allows the factorization of DCT58 matrix.
In this case it will be:

DCT58 = Q8
2(DCT53 ⊕DCT35(2

3))B(C5)
8 (2.16)

Again matrices Q and B can be found as previously described, matrix Q being
a permutation matrix gives no operation cost, while the pre-addition B matrix
requires 10 additions and 1 right shift. Moving on to the block diagonal matrix,
one of the blocks in the diagonal is the skew matrix DCT35(2

3) which as previously
described can be written as:
DCT35(2

3) = DCT35 · X(C3)
5 (2

3) The X(C3)
5 (2

3) will introduce 8 multiplications and
4 additions, while to compute DCT35 again [4.11] is considered and then it is done
the network transposition(this last operation does not change the operation count).
The signal flow graph for the DCT35 fast algorithm is given below in figure 2.4:

Figure 2.4. DCT35 SFG

As it can be seen there are 5 multiplications and 13 additions.
To find the fast algorithm for the remaining block DCT53, the same procedure
used in [4.8] is followed, but instead of starting from DCT27, this time it is started
from DCT25. The final signal flow graph is given below in figure 2.5:

14

2 – The proposed algorithm

Figure 2.5. DCT35 SFG

The top part in figure 2.5, considering the upper three rows, is the signal flow
graph for the DCT63. Using the relation given by [4.8], DCT6n = Dn ·DCT5n ·Jn,
the SFG for DCT53 can be found just by doing some permutations and sign
variations. The result is given in figure 2.6:

Figure 2.6. DCT53 SFG

For the different algorithms and signal flow graphs described in this section, the
used coefficients are given in table 2.2:

Coefficient value
m1 0.95106
m2 1.53884
m3 0.36327
m4 0.55902
m5 0.25(º2)

Table 2.2. DCT35 coefficients

So the fast algorithm for DCT53 will introduce 6 additions, 1 multiplication and
1 right shift of 2. In overall the operation count for the complete DCT58 algorithm
will be 33 additions, 14 multiplications and 2 shifts.

15

2 – The proposed algorithm

What could be noticed from the beginning was the fact that for this algorithm,
differently from the DCT532 case, no reusable blocks could be identified. Meaning
that this algorithm has to be implemented as standalone, without being able to use
the principle of resource sharing. This makes the DCT532 block more interesting to
be implemented with respect to the DCT58. So for the next stages of the work for
this thesis only the DCT532 algorithm has been considered.

16

Chapter 3

MatLab model

3.1 normalized algorithm model

After developing the algorithm to be implemented, the next step will be to create a
MatLab model to be able to better simulate and test the algorithm. Before starting
with the model, some final clarifications have to be done. What should be noted is
the fact that [4.5] defines a non normalized algorithm. This is different from the
software [4.6], which is using a normalized matrix for the DCTs, as shown in the
code below extracted from the software [4.6]:

1 c = 4 ;
2 f o r (i =0; i <5; i++)
3 {
4 s h o r t ∗ iT = NULL ;
5 con s t doub l e s = s q r t ((doub l e) c) ∗ (64<<2) ; //

COM16 C806 TRANS PREC=2
6

7

8 f o r (i n t k=0; k<c ; k++)
9 {

10 f o r (i n t n=0; n<c ; n++)
11 {
12 doub l e w0 , w1 , v ;
13

14 // DCT−V
15 w0 = (k==0) ? s q r t (0 . 5) : 1 . 0 ;
16 w1 = (n==0) ? s q r t (0 . 5) : 1 . 0 ;
17 v = cos (PI∗n∗k /(c −0.5)) ∗ w0 ∗ w1 ∗ s q r t

(2 . 0 / (c −0.5)) ;

17

3 – MatLab model

18 iT [1∗ c∗c + k∗c + n] = (s h o r t) (s ∗ v +
(v > 0 ? 0 .5 : −0.5)) ; //DCT5=1

19 }
20

21 }
22 c <<= 1 ;
23 }

Listing 3.1. JEMs DCT5 definition

All the details are not important for the scope of the thesis, what is needed is just
to notice the fact that v represents every entry of the DCT5 matrix. This entries
are normalized, since are multiplied also with the factors w0, w1 and

ñ
2

c−0.5 where
c stands for the number of samples in consideration, in this case c=32. w0 and w1
will take the value

ñ
1
2 for the first row and column of the DCT5 matrix respectively.

But in comparison, the algorithms described till now are using the non normalized
definition of the DCT5: [DCT5N]k,l = cos(2πkl

2N−1) k,l = [0,N − 1] which will have
the first row and the first column simply all equal to one. Listing the two matrices
helps to understand better the differences between the two. Starting from an input
vector

x =


x0
x1
...

xN−1


the non normalized DCT5 can be computed by doing the matrix product:

Z =


Z0
Z1
...

ZN−1

 = [DCT5N] · x =

=



1 1 1 . . . 1
1 cos(2π

2N−1) cos(4π
2N−1) . . . cos((N−1)2π

2N−1)
1 cos(4π

2N−1) cos(8π
2N−1) . . . cos(2(N−1)2π

2N−1)
...
1 cos((N−1)2π

2N−1) cos(2(N−1)π
2N−1) . . . cos((N−1)22π

2N−1)





x0
x1
x2
...

xN−1



(3.1)

Another way to write this is by using the equation 3.2:

Zn =
N−1Ø
k=0

xkcos(nk
2π

2N − 1) for n = 0,1, . . . ,N − 1 (3.2)

18

3 – MatLab model

Instead in the normalized case the DCT5 will be computed by the matrix product:

Y =


Y0
Y1
...

YN−1

 = [DCT5N]n · x =

= 2√
2N − 1



1
2

1√
2

1√
2 . . . 1√

2
1√
2 cos(2π

2N−1) cos(4π
2N−1) . . . cos((N−1)2π

2N−1)
1√
2 cos(4π

2N−1) cos(8π
2N−1) . . . cos(2(N−1)2π

2N−1)
...
1√
2 cos((N−1)2π

2N−1) cos(2(N−1)π
2N−1) . . . cos((N−1)22π

2N−1)





x0
x1
x2
...

xN−1



(3.3)

which again can be expressed as an equation of the form:

Yn = 2√
2N − 1

Tn
N−1Ø
k=0

xkTkcos(nk
2π

2N − 1) for n = 0,1, . . . ,N − 1 (3.4)

where

Tn =


1√
2 , if n = 0;

1, if n Ó= 0;

Tk =


1√
2 , if k = 0;

1, if k Ó= 0;

Comparing the two equations, 3.2 and 3.4, a connection between the non normalized
and normalized DCT5 can be found. Starting from the normalized equation 3.4, it
can be written as:

Yn = 2√
2N − 1

Tn(1√
2

)x0+ 2√
2N − 1

Tn
N−1Ø
k=1

xkcos(nk
2π

2N − 1) for n = 0,1, . . . ,N−1

(3.5)
Separating the cases between n=0 and n Ó= 0 it can decompose into this two equa-
tions:

Y0 = 1√
2

(2√
2N − 1

1√
2
x0 + 2√

2N − 1

N−1Ø
k=1

xkcos(nk
2π

2N − 1)) for n = 0 (3.6)

Yn = 2√
2N − 1

1√
2
x0+ 2√

2N − 1

N−1Ø
k=1

xkcos(nk
2π

2N − 1) for n = 1, . . . ,N−1 (3.7)

19

3 – MatLab model

The summation in the two equations, 3.6 and 3.7, is similar to the non normalized
algorithm 3.2(what is changing is just the first element of the sum). To have the
equality, an initial vector

x̃ =



0
x1
x2
...

xN−1


has to be considered. It is exactly the same starting vector used for the two algo-
rithms 3.2 and 3.4, with exception only to the first element which is 0. Using this
vector in the previous two equations 3.6 and 3.7, everything can be rewritten as:

Yn =


1√
2(2√

2N−1(1√
2)x0 + 2√

2N−1
qN−1
k=0 x̃kcos(nk 2π

2N−1)) for n = 0
2√

2N−1(1√
2)x0 + 2√

2N−1
qN−1
k=0 x̃kcos(nk 2π

2N−1) for n = 1, . . . ,N − 1
(3.8)

which in a further step can be modified as:

Yn =


1√
2(2√

2N−1(1√
2)x0 + 2√

2N−1Z0) for n = 0
2√

2N−1(1√
2)x0 + 2√

2N−1Zn for n = 1, . . . ,N − 1
(3.9)

where from 3.2, Z is the non normalized DCT5, substituting the summation.
So this last equation 3.9 gives the connection between the non normalized and
the normalized DCT5. This equation can be broken in steps, explaining the pro-
cedure to be used in obtaining the final normalized result. This steps can be listed as:

1. Starting from the non normalized DCT5 algorithm that is introduced in 2.13,
this algorithm is applied to the modified input vector, which has the first
element equal to 0.

2. Multiply the output vector of the non normalized algorithm with 2√
2N−1

3. Sum to every element of the output vector the term 2√
2N−1(1√

2)x0

4. For the first element of the output vector an extra multiplication with 1√
2 has

to be done

In overall the computational cost seems to be 33 extra multiplications and 32 extra
additions. Making reference to equation 2.13, exploiting its form and the fact that a
linear algorithm is been considered, some final modifications can be done to reduce

20

3 – MatLab model

the operation count. The idea is to try to integrate the final additions and multi-
plications in some earlier stages of the algorithm. To better explain the following
passages a schematic representation of the algorithm is given in figure 3.1:

Figure 3.1. algorithm schematic

Looking at the schematic of the algorithm, one possibility for integrating the
final multiplications and additions can be to integrate them in the DCT54 and
DCT37 blocks, since they are the last stage that produces the output(after this
stage only the permutation matrices remain, which just change the position of the
output elements). In the following, a first version of the DCT54 and DCT37 non
normalized blocks is written in Matlab 3.2, and then a second normalized version is
introduced, modifying the first so that it does the final additions and multiplications
3.3.

1 f u n c t i o n y=dc t5 4 (x)
2 %c o n s t a n t s
3 u=2∗p i /7 ;
4 C(1) =−7/6;

21

3 – MatLab model

5 C(2)=−(2∗cos (u)−cos (2∗u)−cos (3∗u)) /3 ;
6 C(3) =(cos (u)−2∗cos (2∗u)+cos (3∗u)) /3 ;
7 C(4) =(cos (u)+cos (2∗u)−2∗cos (3∗u)) /3 ;
8 C(5) =1;
9 %preadd

10 a1=x (2)+x (3) ;
11 a2=a1+x (4) ;
12 a3=x (2)−x (3) ;
13 a4=x (4)−x (3) ;
14 a5=x (2)−x (4) ;
15 a6=a2+x (1) ;
16 %m u l t i p l i c a t i o n s
17 m1=C(1) ∗a2 ;
18 m2=C(5) ∗a6 ;
19 m3=C(4) ∗a3 ;
20 m4=C(3) ∗a4 ;
21 m5=C(2) ∗a5 ;
22 %postadd
23 a7=m1+m2;
24 a8=a7+m3;
25 a9=a8+m5;
26 a10=a7−m3;
27 a11=a10−m4;
28 a12=a7+m4;
29 a13=a12−m5;
30 %outpu t s
31 y (1)=m2;
32 y (2)=a13 ;
33 y (3)=a9 ;
34 y (4)=a11 ;
35 end

Listing 3.2. unnormalized DCT5 4

1 f u n c t i o n y=ndct5 4 (x , x 0 , N, f i r s t)
2 k=2/ s q r t (2∗N−1) ;
3 %c o n s t a n t s
4 u=2∗p i /7 ;
5 C(1)=−k ∗7/6 ;
6 C(2)=−k ∗(2∗ cos (u)−cos (2∗u)−cos (3∗u)) /3 ;
7 C(3)=k ∗(cos (u)−2∗cos (2∗u)+cos (3∗u)) /3 ;
8 C(4)=k ∗(cos (u)+cos (2∗u)−2∗cos (3∗u)) /3 ;
9 %c o e f f i t i e n t s f o r do ing the n o r m a l i z a t i o n

10 C(5)=1∗k ;

22

3 – MatLab model

11 C(6)=k/ s q r t (2) ;
12 C(7)=1/ s q r t (2) ;
13

14 %preadd
15 a1=x (2)+x (3) ;
16 a2=a1+x (4) ;
17 a3=x (2)−x (3) ;
18 a4=x (4)−x (3) ;
19 a5=x (2)−x (4) ;
20 a6=a2+x (1) ;
21 %m u l t i p l i c a t i o n s
22 m1=C(1) ∗a2 ;
23 m2=C(5) ∗a6 ;
24 m3=C(4) ∗a3 ;
25 m4=C(3) ∗a4 ;
26 m5=C(2) ∗a5 ;
27 m6=C(6) ∗ x 0 ;
28 %postadd
29 a7 0=m2+m6;%i t does the n o r m a l i z a t i o n
30 a7=m1+a7 0 ;%a7 w i l l be used i n e v e r y output
31 a8=a7+m3;
32 a9=a8+m5;
33 a10=a7−m3;
34 a11=a10−m4;
35 a12=a7+m4;
36 a13=a12−m5;
37 %p a r t i a l ou tpu t s
38 i f f i r s t ==1
39 y (1)=a7 0 ∗C(7) ;
40 e l s e
41 y (1)=a7 0 ;
42 end
43 y (2)=a13 ;
44 y (3)=a9 ;
45 y (4)=a11 ;
46 end

Listing 3.3. normalized DCT5 4

For the normalized model 3.3, the normalization constant k has been included inside
the already existing multiplications. In this way it does not increase the number
of operations excessively. This can be done due to the linearity of the algorithm.
By including the multiplications in this stage, the output will be just a linear

23

3 – MatLab model

combination of the multiplications outputs, so the final result will be the same as
doing the multiplication at the end. The only thing to be kept in consideration is
that every element of that linear combination should be multiplied by k, otherwise
the final result will be wrong. That is why compared with the unnormalized
case 3.2, where only 4 multiplications were necessary, in the normalized case it is
necessary to consider one of the edges in the signal flow graph 2.1 as a multiplication
by 1. In this way when doing the normalization, an extra multiplication should be
included also, having a coefficient 1 · k.
C(6) is the coefficient that should multiply x0, m6 is the result of this multipli-
cation, and later it should be added to every output. But exploiting the fact that
a7 is used in each of the outputs, then it is necessary to do the sum only once and
then it will be included in the computation of every output. Finally the first row
should be multiplied also with 1√

2 . The condition in line 39 of 3.3 does that, it
includes this multiplication for computing the first element of the output vector if
the first DCT54 is been considered, otherwise it is not included. The algorithm has
been defined as a Matlab function, which takes as input arguments x and x 0. x is
the input vector of the DCT54 block, x 0 is the first element of the input vector
of the overall DCT532 algorithm, so it is the first element of a 32 element vector.
N is the number of samples for the algorithm, this is used to define between 4 and
32 samples, since will be both computed with the same code. And finally the last
input is first which takes two possible values, 1 in case the top DCT54 has been
considered, the one used as a single block, not included inside a DCT37 block, and
0 when the DCT37 blocks are being considered. In this way can be separated the
case when to use the normalization multiplication with C(7) and when to not use
it.
After defining the code for the normalized DCT5(the n in the name of the function
stands for normalized), the modification of the DCT37 can be considered:

1 f u n c t i o n y=dc t3 7 (x)
2 %f i r s t do the pe rmuta t i on
3 z 1=Q Reznik (7) ’∗ x ’ ;
4 %now m u l t i p l y the b l o ck d i a g o n a l mat r i x
5 z 2 (5 : 7)=i n v d s t 7 3 (z 1 (5 : 7)) ;
6 %f o r the dc t5 4 pa r t i t s hou ld be m u l t i p l i e d a l s o w i th D

and J m a t r i x e s
7 z (1 : 4)=dc t5 4 ([z 1 (1) −z 1 (2) z 1 (3) −z 1 (4)]) ;
8 z 2 (1 : 4)= f l i p l r (eye (4)) ∗ z (1 : 4) ’ ;
9 %f i n a l l y do the postadd

10 a1=z 2 (1) − z 2 (7) ;
11 a2=z 2 (2) − z 2 (6) ;
12 a3=z 2 (3) − z 2 (5) ;

24

3 – MatLab model

13 a4=z 2 (4) ;
14 a5=z 2 (3) + z 2 (5) ;
15 a6=z 2 (2) + z 2 (6) ;
16 a7=z 2 (1) + z 2 (7) ;
17 %output as s i gnment
18 y (1)=a1 ;
19 y (2)=a2 ;
20 y (3)=a3 ;
21 y (4)=a4 ;
22 y (5)=a5 ;
23 y (6)=a6 ;
24 y (7)=a7 ;
25 end

Listing 3.4. unnormalized DCT3 7

where the QReznik function, corresponds to the Q matrix introduced in [4.9], and
its code is as follows:

1 f u n c t i o n x=Q Reznik (M)
2 N=(M−1) /2 ;
3 x=z e r o s (2∗N+1, 2∗N+1) ;
4 f o r j =0:N
5 x (2∗ j +1, j +1)=1;
6 end
7 f o r j =1:N
8 x (2∗ j , N+j +1)=(−1)ˆ(j) ;
9 end

10 end

Listing 3.5. Q Reznik

While the code for the normalized algorithm for the DCT37 block will be:

1 f u n c t i o n y=dc t3 7 (x , x 0 , N, f i r s t)
2 %f i r s t do the pe rmuta t i on
3 z 1=Q Reznik (7) ’∗ x ’ ;
4 %now m u l t i p l y the b l o ck d i a g o n a l mat r i x
5 z 2 (5 : 7)=i n v d s t 7 3 (z 1 (5 : 7) , N) ;
6 %f o r the dc t5 4 pa r t i t s hou ld be m u l t i p l i e d a l s o w i th D

and J m a t r i x e s
7 z (1 : 4)=ndct5 4 ([z 1 (1) −z 1 (2) z 1 (3) −z 1 (4)] , x 0 , N,

f i r s t) ;

25

3 – MatLab model

8 z 2 (1 : 4)= f l i p l r (eye (4)) ∗ z (1 : 4) ’ ;
9 %f i n a l l y do the postadd

10 a1=z 2 (1) − z 2 (7) ;
11 a2=z 2 (2) − z 2 (6) ;
12 a3=z 2 (3) − z 2 (5) ;
13 a4=z 2 (4) ;
14 a5=z 2 (3) + z 2 (5) ;
15 a6=z 2 (2) + z 2 (6) ;
16 a7=z 2 (1) + z 2 (7) ;
17 %output as s i gnment
18 y (1)=a1 ;
19 y (2)=a2 ;
20 y (3)=a3 ;
21 y (4)=a4 ;
22 y (5)=a5 ;
23 y (6)=a6 ;
24 y (7)=a7 ;
25 end

Listing 3.6. normalized DCT3 7

The code in 3.6 is the same with the unnormalized case ??, it just has some extra
inputs, the one passed to DCT5 4. Since in the algorithm for DCT3 7 the final
step is to do the addition between the output elements of DCT5 4 and the output
elements of DST7T3 , means that it is included in automatic the sum with x0 for
the normalization. This sum was already included in the DCT54 algorithm, so
the outputs of this matrix, i.e. z 2(1:4) in the code are already summed with
that factor. It means that also the final output of DCT3 7 will correctly include
that normalization factor. So the x 0 term should not be included in the DST7T3
algorithm, which in the code corresponds to inv dst7 3. Also the multiplication with

1√
2 should not be included in the inv dst7 3 code. The reason is that after doing

some considerations for the permutation matrices which will change the order of the
elements of the output vector, none of the DCT3 7 outputs correspond to the first
element of the output vector, which is the one multiplied by 1√

2 . So to have correct
results, the only modification to be introduced to DST7T3 is to multiply the existing
coefficients with the 2√

2N−1 constant. A part of the code is shown below in listing 3.7:

1 c=2/ s q r t (2∗N−1) ;
2 u=2∗p i /7 ;
3 C(5)=c ∗(s i n (u)+s i n (2∗u)−s i n (3∗u)) /3 ;
4 C(6)=−c ∗(2∗ s i n (u)−s i n (2∗u)+s i n (3∗u)) /3 ;
5 C(7)=−c ∗(s i n (u)−2∗ s i n (2∗u)−s i n (3∗u)) /3 ;

26

3 – MatLab model

6 C(8)=c ∗(s i n (u)+s i n (2∗u)+2∗ s i n (3∗u)) /3 ;

Listing 3.7. inv dst 7 coefficients

As previously stated, the only difference is in the coefficients, which in the normal-
ized case will be multiplied with the constant c.
These were all the blocks which were affected by the normalization. The other matri-
ces in the algorithm should not differ between the normalized and the unnormalized
case. Finally the top level algorithm can be written, to every matrix in the original
algorithm now corresponds a function call, so the writing of the code becomes very
straightforward.

1 f u n c t i o n y=p u s c h e l 3 2 (x)
2 N=32;
3 x norm =[0; x (2 :N)] ;
4 %i n i t i a l p r e a d d i t i o n s from the B 32 mat r i x
5 y1=B N a (x norm , N) ;
6 %second p r e a d d i t o n s f o r DCT5 11
7 %m u l t i p l y i n g B11
8 y2 (1 : 1 1)=B N a (y1 (1 : 1 1) , 11) ;
9 %t h i r d p r e a d d i t o n s f o r DCT3 21

10 %m u l t i p l y i n g B C3 3m
11 y2 (1 2 : 3 2)=B C3 3m a (y1 (1 2 : 3 2) , 7) ;
12 %the b l o ck d i a g o n a l m a t r i x e s made o f DCT5 4
13 %use the a l g o r i t h m g i v en f o r DCT5 4 as a f u n c t i o n
14 f i r s t =1;
15 y3 (1 : 4)=ndct5 4 (y2 (1 : 4) , x (1) , N, f i r s t) ;
16 f i r s t =0;
17 y2 1 (5 : 1 1)=X C3 a (y2 (5 : 1 1) , 7 , 2/3) ;
18 %the r e s u l t o f t h i s w i l l m u l t i p l y DCT3 7
19 y3 (5 : 1 1)=dc t3 7 (y2 1 (5 : 1 1) , x (1) , N, f i r s t) ;
20 %do the d i a g o n a l mat r i x f o r dc t3 21
21 %s t a r t w i th the k r oneke r p roduct
22 f o r i =0:6
23 z=X C3 a ([y2(12+ i) y2(19+ i) y2(26+ i)] , 3 , 2/3) ;
24 t=dc t3 3 (z) ;
25 y2 1 (12+ i)=t (1) ;
26 y2 1 (19+ i)=t (2) ;
27 y2 1 (26+ i)=t (3) ;
28 end
29 %the dc t3 7 b l o ck d i a g o n a l mat r i x
30 y2 2 (1 2 : 1 8)=X C3 a (y2 1 (1 2 : 1 8) , 7 , 2/9) ;
31 y3 (1 2 : 1 8)=dc t3 7 (y2 2 (1 2 : 1 8) , x (1) , N, f i r s t) ;
32 y2 2 (1 9 : 2 5)=X C3 a (y2 1 (1 9 : 2 5) , 7 , 4/9) ;

27

3 – MatLab model

33 y3 (1 9 : 2 5)=dc t3 7 (y2 2 (1 9 : 2 5) , x (1) , N, f i r s t) ;
34 y2 2 (2 6 : 3 2)=X C3 a (y2 1 (2 6 : 3 2) , 7 , 8/9) ;
35 y3 (2 6 : 3 2)=dc t3 7 (y2 2 (2 6 : 3 2) , x (1) , N, f i r s t) ;
36 %doing the pe rmuta t i on s
37 %K 21 7
38 y4 (1 2 : 3 2)=K n m a (y3 (1 2 : 3 2) , 21 , 7) ;
39 %Q 11 3
40 y4 (1 : 1 1)=Q a (y3 (1 : 1 1) , 11 , 3) ;
41 %Q 32 10
42 y=(Q a (y4 , 32 , 10)) ’ ;
43 end

Listing 3.8. Puschel algorithm

Some of the steps used for this algorithm given in listing 3.8 should be commented.
The input vector is x, passed as argument of the function, since it will be defined
externally to the algorithm. In the function body, the vector that is been used
is x norm which has the first element equal to 0, as explained before for the
normalization of the algorithm. The first element of the input vector, x(1)(since
the indexes in Matlab start from 1), will be used only inside the DCT5 4 blocks to
do the extra sum. So every time the Matlab function ndct5 4 or dct3 7 is called,
the value of x(1) should be passed as argument.
When doing the algorithm for DCT321 as given by the equation 2.7, there is a
Kronecker product to be computed between DCT33(2

3) and I7. If DCT33 is defined
in a general way as:

DCT33 =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3



given an input vector:

X =


X1
X2
...

X21



Then the product between the input vector and the Kronecker product, will provide
a result of the type:

28

3 – MatLab model

Y =



a1,1 ·X1 + a1,2 ·X8 + a1,3 ·X15
a1,1 ·X2 + a1,2 ·X9 + a1,3 ·X16

...
a1,1 ·X7 + a1,2 ·X14 + a1,3 ·X21
a2,1 ·X1 + a2,2 ·X8 + a2,3 ·X15

...
a3,1 ·X1 + a3,2 ·X8 + a3,3 ·X15


So the result can be found equivalently by forming from the input vector of 21 points,
7 smaller vectors of 3 points each, and apply to this input vectors the DCT33(2

3). In
the Matlab function puschel 32, listing 3.8, the loop in row 22 is used to do exactly
this.
The other parts of the algorithm are straightforward. At the end it will return the
value of the y output vector of 32 elements.

3.2 Verification
After writing the algorithm in Matlab, the next step will be to verify its correctness.
For this purpose the comparison between the algorithm and the DCT532 matrix
definition has to be done. ntrue dct5 is the Matlab function for the DCT5,
following exactly the definition of DCT5 given by the equation 3.4. The code for
this function is as follows:

1 f u n c t i o n C r e a l=n t r u e d c t 5 (N matr i x)
2 C r e a l=z e r o s (N matr ix , N matr i x) ;
3 f o r m = 1 : N matr i x
4 f o r n = 1 : N matr i x
5 i f m == 1
6 km = 1/ s q r t (2) ;
7 e l s e
8 km = 1 ;
9 end

10 i f n == 1
11 kn = 1/ s q r t (2) ;
12 e l s e
13 kn = 1 ;
14 end
15 C r e a l (m, n) = 2/ s q r t (2∗N matr ix −1)∗km∗kn

∗ cos ((m−1)∗(n−1)∗2∗ p i /(2∗N matr ix −1)) ;
16 end

29

3 – MatLab model

17 end
18 end

Listing 3.9. DCT5 definition

What is done in the verification of the normalized code 3.8, the two matrices to be
compared are multiplied with an input vector of 32 points, containing only the i-th
element as 1 and all the other elements are zero. By multiplying this vector with the
matrix, the result will be the i-th column of the matrix. What the code does is to
compute the difference between the two obtained column vectors. After executing
the code, all the column vectors were equal, with difference approximately 0. The
actual results are shown in figure:

Figure 3.2. normalized algorithm error

As it can be seen from the graphs of root mean square, max error and mean
error, they are of the order of 10−15, so it is negligible. It can be said that the
normalized algorithm is correct.

3.3 Integer coefficients
Till now an exact algorithm was considered using Matlab. Meaning that the coeffi-
cients used for the fast algorithm models were all in floating point. Making reference
again to the JEM software and its definition of DCT5 matrix 3.1, after defining a

30

3 – MatLab model

double v as the generic element of the matrix, what is finally stored is actually a
short, which is v represented as integer. To do this, in 3.1 it multiplies by s =

√
c ·28

and then does the rounding up, by truncating the fractional part of the number. For
the two cases of interest DCT54 and DCT532, c will take respectively the values
4 and 32, meaning that s will be 29 for the first case and 210.5 for the second. By
doing this shift, allows for the normalization of the coefficients into integers, but also
changes the value of the final results. So for having the same results expected by
the software 3.1, it is important to normalize also the coefficients of the algorithm
found, 2.13, trying to have as a final shift respectively 29 and 210.5 for the DCT54
and DCT532.

The concept applied for the normalization of the coefficients is similar to what
was used for the normalization of the DCT5. That is by multiplying the coefficients
by a constant, it changes their value, and this will propagate into changing the
value of the results. This means that again by doing a shift, the same as done in
3.1, for the coefficients of DCT54 and DCT37, will give the correct value of the final
results. But some further considerations have to be done about for the introduced
algorithm 3.1, since there are several multiplication stages preceding DCT54 and
DCT37(in the schematic they are nominated as C5 4 and C3 7 respectively).
Stages like X(C3)

n , DCT33 also perform multiplications inside with floating point
coefficients. Meaning that also this coefficients need to be normalized. Since every
coefficient normalization is done by multiplying by a power of two(also can be seen
as shift in the later stages of the implementation), each of these stages increase even
further the order of magnitude of the results since what is done is none other than
cascaded multiplications. To have the correct order of magnitude of the results, it
is important to shift back, or truncate, the final computation.
During the work for this thesis, several versions of Matlab code were written, each
of them did the truncation in different positions of the algorithm. In the first
version, all the stages preceding DCT54 and DCT37 were truncated immediately
after they did the multiplication. Since later on, when doing the implementation,
the order of magnitude of the results will also define the number of bits used, then
this solution will save more from the HW point of view, since it gives a minimum
parallelism. The code listed below in listing 3.10, tries to explain the immediate
truncation:

1 f u n c t i o n y=X C3 a (x , N, r , nb)
2 y (1)=x (1) ;
3 f o r i =2:N
4 c=cos ((0.5 − r) ∗(i −1)∗ p i /N) ;
5 s i g n c=s i g n (c) ;
6 c mod=abs (c) ;
7 c=s i g n c ∗ f l o o r (c mod∗power (2 , nb−1)+0.5) ;

31

3 – MatLab model

8

9 s=s i n ((0.5 − r) ∗(N−(i −1)) ∗ p i /N) ;
10 s i g n s=s i g n (s) ;
11 s mod=abs (s) ;
12 s=s i g n s ∗ f l o o r (s mod∗power (2 , nb−1)+0.5) ;
13

14 y p a r t i a l=c∗x (i)+s ∗x (N− i +2) ;
15 y (i)=f l o o r (y p a r t i a l /power (2 , nb−1)) ;
16 %the r e s u l t has been s h i f t e d back immed i a t e l y
17 end
18 end

Listing 3.10. min parallelism X

Starting from the code for X(C3)
n , now a new input argument is added to the

function, the number of bits nb. This nr is related with the normalization factor
used for the coefficients. As shown, the normalization factor will be 2nb−1. In the
last line of code, after doing the computation of the output, it is immediately
truncated. So the X(C3)

n block does not introduce any additional factor that
multiplies the final result. The same concept is applied for every block which has
floating point multiplications.
In the case of B(C5)

3m+2 there is a minimal variation with respect to the original code,
since to use only integer numbers the floor operator has to be applied after doing
the division by 2(the floor operator truncates the fractional part of the number).
Finally the change happening for DCT54 is shown below:

1

2 f o r i =1:7
3 s i g n c=s i g n (C(i)) ;
4 c mod=abs (C(i)) ;
5 C(i)=s i g n c ∗ f l o o r (c mod∗power (2 , nb1 −1)+0.5) ;
6 end
7

8 . . .
9

10%p a r t i a l ou tpu t s
11 i f f i r s t ==1
12 y 0=a7 0 ∗C(7) ;
13 y (1)=f l o o r (y 0 /power (2 , nb−1)) ;
14 e l s e
15 y (1)=a7 0 ;
16 end

32

3 – MatLab model

Listing 3.11. min parallelism DCT54

The normalization of the coefficients is done in the same way. Another thing to
be noted is the fact that the extra multiplication done only for the first output
element has to be truncated back. This is because this multiplication is in cascade
with the other multiplications, meaning that if not truncated back, then the result
will be wrong(not the same with the software 3.1 result). Also for DST7T3 is done
in a similar way for the normalization of the coefficients. It has to be noted that
doing the normalization in this way no new multiplications have to be introduced,
simply the value of the coefficients is changing. The other Matlab functions which
do not introduce multiplications with floating point numbers remain the same.
Now to verify this new version of Matlab code again it is used the same method as
before of comparing the columns of the matrices. The true dct5 matrix used as
comparison must have integer coefficients, meaning that the previous code 3.9 will
change as follows:

1 f u n c t i o n C r e a l=n t r u e d c t 5 (N matr ix , nb1)
2 C r e a l=z e r o s (N matr ix , N matr i x) ;
3 f o r m = 1 : N matr i x
4 f o r n = 1 : N matr i x
5 i f m == 1
6 km = 1/ s q r t (2) ;
7 e l s e
8 km = 1 ;
9 end

10 i f n == 1
11 kn = 1/ s q r t (2) ;
12 e l s e
13 kn = 1 ;
14 end
15

16 K r e a l = 2/ s q r t (2∗N matr ix −1)∗km∗kn∗ cos ((m−1)∗(n
−1)∗2∗ p i /(2∗N matr ix −1)) ;

17 s i g n c f= s i g n (K r e a l) ;
18 X mod= abs (K r e a l) ;
19 C r e a l (m, n) = s i g n c f ∗ f l o o r (X mod∗power (2 , nb1

−1)+0.5) ;
20 end
21 end
22 end

33

3 – MatLab model

Listing 3.12. true DCT5 normalized

The result of the comparison is given in figure 3.3, which clearly shows that the
two are different.

Figure 3.3. minimum parallelism error

Doing the truncation immediately after the operation gives an error, this due to
the fact that the algorithm works with small values, meaning that when truncated
back, those small values are approximated with one or zero, that is the reason of
the big values for the error. What reinforces this fact even more is that, looking at
the difference between the columns there are 4 elements which are equal. Tracing
back the position of those elements, they actually correspond to the first DCT54
which is not preceded by any of the blocks which introduce multiplications. This is
why no error is seen for these cases.
To move on, another version of the algorithm is tried, this time doing the truncation
at the end. This means that it is worked with the full parallelism and only at the
end it is rescaled back to the correct result. The following code should be added to
the DCT54 function:

1 i f (f i r s t ==1)&&(f i r s t d c t 3 ==1)
2 m6=C(6) ∗4∗ x 0 ;

34

3 – MatLab model

3 end
4

5 i f (f i r s t ==0)&&(f i r s t d c t 3 ==1)
6 m6=C(6) ∗power (2 , (nb2+1)) ∗ x 0 ;
7 end
8 i f (f i r s t ==0)&&(f i r s t d c t 3 ==0)
9 m6=C(6) ∗power (2 , (2∗ (nb2 −1)+nb3)) ∗ x 0 ;

10 end

Listing 3.13. full parallelism DCT5 4 code

The fact is that x0 is the only input of DCT54 which is introduced separately,
without passing from the cascaded matrices introducing the normalization multipli-
cations. Meaning that while the other inputs have already had an increase in order
of magnitude, to x0 this should be done explicitly as shown above in listing 3.13.
The single DCT54 is being preceded by two B matrices introducing a multiplication
by 2 each, that is why also a factor 4 is included in the multiplication. In the
first DCT37 case a power of 2 with nb2+1 is included, since this block is preceded
by the same two B matrices of before and also an X block which introduces a
multiplication by 2nb2−1. The last case corresponds to the three remaining DCT37
blocks which are preceded by one B matrix and also by X3, DCT33 and X7. This
last 3 blocks will introduce respectively multiplications of 2nb2−1, 2nb3−1 and 2nb2−1.
This explains the additional coefficient used.
It should be noticed, that in this case of full parallelism a new modification is done
to the code. To generalize even more, three different normalization constants have
been considered in the three different positions where the multiplications are being
normalized. nb1 is used for the normalization of DCT54 and DCT37, nb2 for
X(C3)
n and nb3 for DCT33. Finally, since in software 3.1 the final result will have

only the multiplication with 2nb1−1, it means that a renormalization should be done
to remove the other multiplicative constants. To do this, at the top level function,
DCT37 block, the renormalization code should be added. The rows of code doing
this are given in the following:

1 . . .
2 i f f i r s t d c t 3==0
3 y (1)=f l o o r (a1/power (2 , 2∗(nb2−1)+nb3)) ;
4 y (2)=f l o o r (a2/power (2 , 2∗(nb2−1)+nb3)) ;
5 y (3)=f l o o r (a3/power (2 , 2∗(nb2−1)+nb3)) ;
6 y (4)=f l o o r (a4/power (2 , 2∗(nb2−1)+nb3)) ;
7 y (5)=f l o o r (a5/power (2 , 2∗(nb2−1)+nb3)) ;
8 y (6)=f l o o r (a6/power (2 , 2∗(nb2−1)+nb3)) ;
9 y (7)=f l o o r (a7/power (2 , 2∗(nb2−1)+nb3)) ;

35

3 – MatLab model

10 e l s e
11 y (1)=f l o o r (a1/power (2 , (nb2+1))) ;
12 y (2)=f l o o r (a2/power (2 , (nb2+1))) ;
13 y (3)=f l o o r (a3/power (2 , (nb2+1))) ;
14 y (4)=f l o o r (a4/power (2 , (nb2+1))) ;
15 y (5)=f l o o r (a5/power (2 , (nb2+1))) ;
16 y (6)=f l o o r (a6/power (2 , (nb2+1))) ;
17 y (7)=f l o o r (a7/power (2 , (nb2+1))) ;
18 end

Listing 3.14. renormalization code in DCT3 7

The last renormalization to be considered is the multiplication by 4 for the first
DCT54, which is done as follows:

1 . . .
2 y3 (1 : 4)=f u l l n d c t 5 4 (y2 (1 : 4) , x (1) , N, nb1 , nb2 , nb3 , f i r s t ,

f i r s t d c t 3) ;
3 y3 (1 : 4)=f l o o r (y3 (1 : 4) . / 4) ;

Listing 3.15. renormalization code in the top level block

Now considering the correctness of this code, the same comparison between the
true dct5 and the full parallelism algorithm has been considered. The error
between the columns of the matrices is small, as shown in the figure below:

Figure 3.4. error of full parallelism algorithm

36

3 – MatLab model

At max there are two or three samples which differ by 3 units, otherwise the
difference is 1 or 2 units. This shows that the full parallelism algorithm is the
best to approximate the DCT532 used in JEM software 3.1. The problem would
be to implement this algorithm due to the very high parallelism. To compute
the parallelism a Matlab script is written, which while doing the algorithm will
find the maximum partial result for every addition or multiplication. In this way
knowing the maximum result from each operation, the maximum number of bits
representing that result can be found. To do this study of the parallelism, as a first
step a variation of the initial Matlab algorithm should be done. For every created
Matlab function, instead of having only the output vector as the return variable,
an addition and multiplication vector should be returned also. This corresponds
to the array of results of the additions and multiplications inside that block. To
better understand this last part, a piece of the code is given below:

1 f u n c t i o n [y , a , m]= p a r a d c t 3 3 (x , nb3)
2

3 a (1)=x (1)−x (3) ;
4

5 c (1)=−s q r t (3) /2 ;
6 c (2) =1.5 ;
7

8 f o r i =1:2
9 s i g n c=s i g n (c (i)) ;

10 c mod=abs (c (i)) ;
11 c (i)=s i g n c ∗ f l o o r (c mod∗power (2 , nb3 −1)+0.5) ;
12 end
13m(1)=c (1) ∗x (2) ;
14 m1=f l o o r (m(1) /power (2 , nb3 −1)) ;
15

16m(2)=c (2) ∗x (3) ;
17 m2=f l o o r (m(2) /power (2 , nb3 −1)) ;
18

19 a (2)=a (1)+m2;
20 a (3)=a (2)−m1;
21 a (4)=a (2)+m1;
22

23 y (1)=a (3) ;
24 y (2)=a (1) ;
25 y (3)=a (4) ;
26 end

Listing 3.16. parallelism computation DCT3 3

37

3 – MatLab model

While the code that does the computation of the parallelism for the adders and
multipliers is given below:

1 nb1=12;
2 nb2=11;
3 nb3=11;
4 N=32;
5

6 f o r i =1:500
7 x (: , i) = r a n d i ([−2ˆ8 ,2ˆ8 −1] , N, 1) ;
8 end
9 f o r i =1: l e n g t h (x (1 , :))

10 [y (: , i) , a (i , :) , m(i , :)]= p a r a p u s c h e l 3 2 (x (: , i) , nb1
, nb2 , nb3) ;

11 end
12 f o r i =1: l e n g t h (a (1 , :))
13 max add (i)=c e i l (l og2 (max(abs (a (: , i))))) ;
14 end
15 f o r j =1: l e n g t h (m(1 , :))
16 max mul (j)=c e i l (l og2 (max(abs (m(: , j))))) ;
17 end

Listing 3.17. parallelism computation code

The output of this code will be the two vectors, max add and max mul containing
the parallelism for all the additions and multiplications in the algorithm. Using the
algorithm described above which does the truncation of the results only at the end,
many of the operations would have parallelism even higher than 50, which makes it
very costly from the architecture point of view.
The last solution tried, which makes also the final code for the algorithm, will be
midway between the first and second solutions proposed above. Which is to not
do the truncation immediately after the block, but to let it propagate to the next
block, do the multiplication and then do the truncation immediately after. It is
a trade off of not having the max parallelism with still an acceptable error. In
this way the first blocks which have multiplications to normalize, X 7 preceding
the first DCT37 and all the X 3, will not do the division by the normalization
coefficients, meaning that the result will not be truncated. The result will be
truncated in the following blocks. The code listed below tries to explain this concept:

1 f u n c t i o n y=work X C3 a (x , N, r , nb2 , f i r s t d c t 3)
2

3 i f (f i r s t d c t 3 ==0)&&(N==7)

38

3 – MatLab model

4 y (1)=x (1) ;
5 e l s e
6 y (1) =(power (2 , nb2 −1)−1)∗x (1) ;
7 end
8

9 . . .
10

11 i f (f i r s t d c t 3 ==0)&&(N==7)
12 m1=f l o o r (m1/power (2 , nb2−1)) ;
13 m2=f l o o r (m2/power (2 , nb2−1)) ;
14 end

Listing 3.18. final X n modification

This Matlab function 3.18, corresponds both to X 3 and X 7 blocks. The truncation
has to be done only for the X 7 blocks, except the first one. In the algorithm, the
X 7 blocks are preceded by the X 3 blocks, so the truncation done, that division
with 2nb2−1 is due to the multiplication with 2nb2−1 done in the X 3 block. Another
block to be considered is DCT33. The added code is shown below:

1 m1=c (1) ∗x (2) ;
2 m1=f l o o r (m1/power (2 , nb3−1)) ;
3

4 m2=c (2) ∗x (3) ;
5 m2=f l o o r (m2/power (2 , nb3−1)) ;

Listing 3.19. DCT3 3 final modification

In this case the truncation is done immediately with the same amount 2nb3−1, since
the inputs are coming from X 3 block so they are already multiplied with 2nb2−1.
This means that the output of DCT33 will not be totally truncated so it will not
introduce a big error. Finally the last truncation should be done in the DCT54 and
DCT37 blocks. The part of the code doing that is:

1 i f N==32
2 i f f i r s t ==0
3 i f f i r s t d c t 3==1
4 m1=f l o o r (m1/power (2 , nb2+1)) ;
5 m2=f l o o r (m2/power (2 , nb2+1)) ;
6 m3=f l o o r (m3/power (2 , nb2+1)) ;
7 m4=f l o o r (m4/power (2 , nb2+1)) ;
8 m5=f l o o r (m5/power (2 , nb2+1)) ;
9 e l s e

39

3 – MatLab model

10 m1=f l o o r (m1/power (2 , nb2)) ;
11 m2=f l o o r (m2/power (2 , nb2)) ;
12 m3=f l o o r (m3/power (2 , nb2)) ;
13 m4=f l o o r (m4/power (2 , nb2)) ;
14 m5=f l o o r (m5/power (2 , nb2)) ;
15 end
16 e l s e
17 m1=f l o o r (m1/4) ;
18 m2=f l o o r (m2/4) ;
19 m3=f l o o r (m3/4) ;
20 m4=f l o o r (m4/4) ;
21 m5=f l o o r (m5/4) ;
22 end
23 end

Listing 3.20. truncation inside DCT5 4

Again what is left to be truncated is the multiplication introduced by the previous
stage only. In the single DCT54 case, what is preceding it are the two B matrices,
so a division by 4 is necessary. The DCT37 are all preceded by an X 7 block,
what is changing is that for the first DCT37 there are the B 32 and B 11 matrices
introducing a multiplication by 2, while for the remaining DCT37 there is only
B 32. The multiplication done is respectively with 2nb2+1 and 2nb2.
The final step will be to verify this code comparing as always with the columns of
the DCT matrix used in the JEM software. In this case what is obtained is:

40

3 – MatLab model

Figure 3.5. final algorithm error

The difference is larger than the one for the full parallelism, but still it remains
acceptable, having a max of 5 units. And obviously having to truncate and not
leaving the full parallelism, reduces the architecture cost. This is why the last
solution is the one chosen for implementation.
Finally a random test is done. Instead of multiplying with unit vectors, random
input vectors with values in the range (-256, 255) are used. The resulting statistics
in this case are shown below for both DCT532 and DCT54:

41

3 – MatLab model

Figure 3.6. DCT532 tested with random vectors

The same Matlab script which is doing the statistics in figure 3.6, will also create
two text files. One will contain the input samples which are randomly generated
and in the other file will be stored the results of the algorithm. The same thing will
be done for the DCT54 case and the results are shown in figure 3.7:

Figure 3.7. DCT54 tested with random vectors

42

3 – MatLab model

3.4 C code

In the previous section a Matlab model was implemented. To have a reference
model used to develop, debug and test the algorithm as an hardware architecture,
it is necessary to develop a C model. This will be a fixed point implementation.
In developing this model, the same structure is maintained. Each of the blocks
are written as C functions, then the final algorithm will be a series of function
calls. The passage from Matlab to C is pretty much straight forward, what changes
is just the variable declaration. In C the variables used should be declared first,
meaning that a preliminary study of the parallelism should be done to know if
certain intermediate results should be declared as int type or long long int. From
this study there are several multiplications which have results with more than 32
bits. This multiplications should be kept in consideration when writing the C code,
since it can not be stored into int variables(or long int which is stored also in 32
bits), but they should be stored in long long int variables. The writing of the code
later on is straightforward.
The main in the C code will open two files, one in read mode and one in write
mode. The input file is the samples file from Matlab. Every row of the file is been
read and for the vector samples the reference algorithm 2.13 has been computed.
The output is written in the output file, which is later compared with the output file
of the Matlab algorithm. In the DCT532 mode input and output file will have rows
of 32 integers each, while in the other mode of operation the input and output files
will have rows of 4 integers each. The format of this files has been made similar to
the format of the Matlab files created by the Matlab code discussed in the previous
section. Actually the input file is the same samples file generated by Matlab. While
for the output text file it will be compared with the Matlab output text file by a
Matlab scrip. This Matlab script simply does the difference element by element of
the two files to see if they are equal. After running the simulation and comparing
the two text files together, the results are as shown by the figure 3.8. It clearly
shows that the two files are equal, meaning the C code is a correct representation
of the Matlab algorithm.

43

3 – MatLab model

Figure 3.8. difference between C and Matlab

In a similar way it is done the simulation for DCT54. Also in this case the C
code was correct.
After verifying the correctness of the C code, the next step is to include it in the
source code of the JEM software and do the simulation. The JEM software is based
on the HEVC Model(HM) software. It is a C++ implementation of both the en-
coder and the decoder. It allows to evaluate the weight of every single coding tool
on the overall rate-distortion performance given by the standard. The drawback
is the high computational effort. To encode a video sequence, two configuration
files and some additional parameters should be specified. The first configuration
file gives information on the coding tools to be used, while the second gives the
information about the input video sequence file. A document is defined by the Joint
Video team, named Common Test Conditions (CTC), which defines the common
environment where the experiments must be conducted. It specifies to use four QP
values, namely 22, 27, 32 and 37. The test sequences used cover a large range of
resolutions from 480 × 240up to 4096 × 2160.
The quality and the bit-rate are the metrics characterizing the coding efficiency of a
video encoder. Peak Signal to Noise Ratio(PSNR) is an index from the video samples
used to approximate the quality. The quality and the bit-rate data are used to plot
the rate-distortion curve of an encoder. Therefore, by plotting both rate-distortion
curves of the reference and the test encoders, it can be easily observed which of the
two performs better. The rate-distortion curves are plotted by interpolating the four
points resulting from the encoder simulation using the four QP values. After each

44

3 – MatLab model

simulation the resulting PSNR value and the corresponding bit rate are obtained.
As mentioned previously two configuration files are necessary for the encoding, more
specifically the first configuration file used is encoder intra jvet10.cfg while the sec-
ond one depends on the input video sequence file. The choice for the input video
sequence is of type C, that is a resolution of 832x480. The first choice is a sequence
with a frame rate of 30Hz named Race Horses, while the second one is a sequence
with a frame rate of 50Hz named Basketball Drill. The corresponding configuration
files used in the two cases are respectively RaceHorsesC.cfg and BasketballDrill.cfg.
Finally the results for the reference and test encoder are shown. For the test en-
coder, the part of the source code corresponding to the DCT5 will be substituted
with the developed C model. This C model introduces a new algorithm for the
DCT54 and DCT532 matrices. Different simulations are done for different versions
of the source code for the encoder. One version includes only the new algorithm for
the DCT532, one version only the algorithm for the DCT54 and the last one is the
final modification which will include both DCT54 and DCT532. Below in figure 3.9
is shown the rate distortion curve comparing the reference and test encoder includ-
ing only the new algorithm for the DCT532. A more explicit definition of the four
points, corresponding to the four different QP values, is given in table 3.2. It has to
be noted that for these simulations the input video sequence is Basketball Drill:

Figure 3.9. Rate distortion curve for reference and test encoder

Similar results, with a minimal difference with respect to the previous ones are
obtained simulating the test encoder containing the new code for the DCT54 only.
The four points for the reference encoder remain the same of table 3.1, what are
changing are only the four points of the test encoder. In this case these points are

45

3 – MatLab model

QP 37 32 27 22
bit rate 366.9190 648.5651 1204.6175 2230.7944
PSNR 34.8960 37.3512 40.1083 43.2010

Table 3.1. The four points for the reference encoder. The input sequence used is
Basketball Drill

QP 37 32 27 22
bit rate 367.3897 648.4381 1205.6222 2231.1230
PSNR 34.8970 37.3513 40.1118 43.2011

Table 3.2. The four points for the test encoder, with the new algorithm for
DCT532 only

given in table 3.3. The rate distortion curve in this case is the same with the curve
of figure 3.9.

QP 37 32 27 22
bit rate 367.4556 648.7460 1204.0825 2229.6794
PSNR 34.9024 37.3504 40.1060 43.1943

Table 3.3. The four points for the test encoder, with the new algorithm for DCT54
only

Finally the four points defining the rate distortion curve are given for the final
test encoder, which will contain the new code for both DCT54 and DCT532. Again
the results do not change much from the previous two cases, as given in table 3.4

QP 37 32 27 22
bit rate 367.3286 648.4571 1203.9437 2230.4222
PSNR 34.8951 37.3479 40.1042 43.1963

Table 3.4. The four points for the test encoder, with the complete final algorithm

Just for statistics, another simulation is done using a different input test se-
quence. The test sequence used in this case is again of C type, named Horse Race.
The resulting rate distortion curves are given in figure 3.10. For more details, the
four point are given in table 3.5 and table 3.6.

46

3 – MatLab model

Figure 3.10. Rate distortion curve for reference and test encoder. Input sequence
is named Horse Race

QP 37 32 27 22
bit rate 315.3521 611.4884 1056.7232 1758.3734
PSNR 33.6566 36.8599 39.9631 43.1979

Table 3.5. The four points for the reference encoder. The input sequence used is
Horse Race

QP 37 32 27 22
bit rate 314.6266 610.3918 1055.3534 1756.1100
PSNR 33.6480 36.8481 39.9496 43.1818

Table 3.6. The four points for the test encoder. The input sequence used is Horse
Race

47

Chapter 4

Developing the architecture

4.1 VHDL code

The final step in this thesis work is to create an architecture for the algorithm
found, and try to see how this architecture behaves in terms of timing, area and
power consumption. What has been tried to be implemented is an architecture
which may work in two possible ways. If selected the DCT532 mode, given an
input vector of 32 samples, it will compute the DCT532 and give an output vector
of 32 samples. Each of the input samples are integers represented in nb in bits
complement of 2. The other mode to be selected is the DCT54 mode. To exploit
what is given by the algorithm, i.e. the 5 blocks of DCT54 inside the DCT532,
then an input of 20 samples is given, 4 samples for every DCT54. In this last case
to introduce the inputs to the architecture the first 20 of the overall 32 are used.
Also the outputs are given in the first 20 pins out of 32.
Another important point in the development of the architecture is the parallelism
used for the coefficients. This number of bits is given as a parameter. So the
architecture is parametric, with the number of bits used for the coefficients of
the different stages given as generic constants. So when writing the architecture,
considerations were done step by step about the parallelism, and how it increased
with every block. The figure below tries to give a better picture of the architecture:

48

4 – Developing the architecture

Figure 4.1. Top architecture

Starting with the blocks one by one, from input to output: The first entity to be
considered is param B 32 corresponding to matrix B(C5)

32 . The block is combinatorial
and it can be written directly from the C or Matlab code, substituting for the sum
and subtraction operation, the actual HW components.

There are defined 32 input ports, nb in bits each. The input number of bits is
given as a parameter. To write everything in a more concise way a vector notation
was tried for the 32 inputs, creating a type array of std logic vector unconstrained.
This type had to be used in every entity definition, so it was defined in a package.
Using this kind of construct, an unconstrained array of unconstrained arrays, is
possible only in VHDL 2008. No problems occurred when simulating the model,

49

4 – Developing the architecture

but when doing the synthesis, Synopsys Design Compiler did not support that kind
of construct. That is why the less concise notation is used to define every port
separately. About the output ports, looking at their notation, they are been divided
in two groups. This is done keeping in consideration the following stages of the
algorithm(the block diagonal matrix with blocks of 11 and 21 points).

Moving on to the description of the components used, an adder component was
defined to do the addition of three numbers. In the code this is given by adder 2.
The adder 2 component does two normal additions(given by param adder compo-
nents). This was done just to write everything in a more compact way. It is used
for computing the first 11 outputs of B 32, since they need 3 additions. The thing
to be noticed about this block is the number of output bits. For every addition one
extra bit has to be used to not have overflow. Since at maximum two additions
are done for every output, it is expected that the output parallelism is nb in+2.
Looking at the port definition, actually the z output ports are defined with nb in+3
bits. The extra bit is due to the left shift done for every output. Returning back to
the Matlab code, when doing the simulation of the algorithm, the floor operation
when doing the division by 2, introduced a wrong final result. This was because
when small numbers were used, the floor would truncate everything to 0. To resolve
the problem, the division by 2 should be removed. To do that everything is to be
left shifted by 1(meaning a multiplication by 2). For the final result of the algorithm
it is important to right shift the result by 1 to get something correct. For the last
21 outputs the method is straightforward, the only difference is that in this case a
max of 1 subtraction is done, giving a parallelism of nb in+2. The code for B 11 is
written in a similar way. Still the algorithm of reference is the same B(C5)

3m+2, what is
changing is only the number of input and output ports. Again also in this case the
output is divided in two. A group of 4 outputs and another of 7 with respectively a
parallelism of nb+3 and nb+2.

An important difference between B 11 and B 32 is that B 11 includes also an
adder to compute the first output. The algorithm defined an addition between
x(1) and x(2m+2), but it was not included in B 32 since in this case x(1)=0 al-
ways(because of the normalized algorithm). In the case of B 11 x(1) is not zero.

1−− f i r s t output
2 y11 (1) (0) <= ’0 ’;
3 y11 (1) (n b i n downto 1)<=x (22) ;
4 y11 (1) (n b i n+2 downto n b i n +1)<=(n b i n+2 downto n b i n+1=>x (22) (

nb in −1)) ;
5

6−−us e s x (1) i n the computat ion
7 x22 ext<=s t d l o g i c v e c t o r (r e s i z e (x (22) , n b i n +1)) ;
8 y21 (1)<=s t d l o g i c v e c t o r (r e s i z e (− s i g n e d (x22 ex t) , n b i n +2)) ;

50

4 – Developing the architecture

Listing 4.1. first output computation B 32

For y11(1), since x(1) is zero, the output will be just 2 · x(22). The first row of the
code shown in listing 4.1 does exactly that, a multiplication by 2 or a left shift by
1. Then the third row of the code does just the bit extension. For the y21(1), the
output will be just x(22) with the changed sign. But an extra step is needed to elim-
inate the risk of overflow, so an extension of the parallelism by one bit is done. On
the other hand, for B 11, x(1) is not zero any more, meaning that instead of a simple
change of sign, an addition or a subtraction is needed, as shown from the code below:

1 a1 : param adder
2 g e n e r i c map(N=>nb+1)
3 po r t map(A=>x (1) , B=>x (8) , S=>y4 (1) (nb+1 downto 1)) ;
4 y4 (1) (0) <= ’0 ’;
5 y4 (1) (nb+2)<=y4 (1) (nb+1) ;
6

7−− − . . .
8

9 x 8<=s t d l o g i c v e c t o r (r e s i z e (s i g n e d (x (8)) , nb+1)) ;
10 l e f t s h i f t (0) <= ’0 ’;
11 l e f t s h i f t (nb downto 1)<=x (1) ;
12

13 a12 : p a r am sub t r a c t o r
14 g e n e r i c map(N=>nb+2)
15 po r t map(A=> l e f t s h i f t , B=>x 8 , S=>y7 (1)) ;

Listing 4.2. first output computation B 11

B 21 code corresponds to the B
(C3)
3,m algorithm. Transforming from C to vhdl

becomes straightforward. Again also for this code, a new component is created,
param sub add, grouping together a subtractor and an adder.

After defining the code for the pre-addition matrices the components containing
the fast algorithms can be written. As said in the chapter 2, about the Matlab
code, for the first stages of X(C3)

n no truncation has to be done. When writing the
architecture two blocks have been defined. X 3 corresponds to X(C3)

n of 3 samples.
It will be the block preceding DCT33. Meanwhile X 7 is the one for 7 samples, so
it will precede the DCT37 blocks. Since the X 3 block is always the first block in
the cascade then its output should not be truncated.
The actual parallelism used inside the block for the coefficients is nb2+1. One extra
bit is added due to the fact that if considered the values of those coefficients there

51

4 – Developing the architecture

are few of them with values near to 1. When shifted with nb2-1 an overflow may
happen in this case giving an erroneous result. This is why it is chosen to extend
the parallelism. As said before no truncation has been applied to the output. For
the case of X 7 some extra considerations have to be done, since the same block
will be used when both it needs truncation and when it does not need truncation.

1

2 . . .
3

4 y (1)<=s t d l o g i c v e c t o r (r e s i z e (s i g n e d (x (1)) , nb out +1)) when
f i r s t d c t 3 = ’0 ’ e l s e

5 s t d l o g i c v e c t o r (t o s i g n e d ((2∗∗ (nb2 −1)−1)∗ t o i n t e g e r (s i g n e d (x (1)
)) , nb out +1)) ;

6

7 . . .
8

9 c i n t<=s t d l o g i c v e c t o r (t o s i g n e d (i n t e g e r (s i g n (c) ∗ f l o o r ((s i g n (c)
∗c) ∗ r e a l (2∗∗ (nb2 −1)) +0.5)) , nb2+1)) ;

10

11 . . .
12

13 m c<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (s i g n e d (p rod c) , (nb2−1)
) , nb out)) when f i r s t d c t 3 = ’0 ’ e l s e

14 s t d l o g i c v e c t o r (r e s i z e (s i g n e d (p rod c) , nb out)) ;

Listing 4.3. X 7

The difference in this code is when doing the renormalization of the coefficients. It
shifts right with nb2-1 only in the case when it is not the first DCT37. In this case
the signal before elaborated by the X 7 block should pass through the X 3 block
described previously. Since this last block did not do the truncation at the end,
that truncation is actually done at this point in the algorithm. So this block will be
instantiated 4 times in the architecture. Once it will be instantiated as a block doing
the truncation(this when first dct3=1) and three other times will be instantiated as
a block not doing the truncation. Since the block is the same, then a parameter
should be defined for the output parallelism. In this way the output parallelism is
decided when instantiating the component. This nb out parameter it is not strictly
necessary for X 3, but it is used just to have a similarity of the code.

In the case of DCT33, since the input vector has already had a left shift by
the preceding block, and this block itself will introduce another left shift, then in
this case it is possible to right shift the result. It is chosen to do the right shift
with nb3-1, which is the same shift introduced when transforming the coefficients

52

4 – Developing the architecture

of DCT33 into integers. It should be noted that the first coefficient is stored in nb3
bits while the second in nb3+1 since this coefficient is larger than one, and so using
nb3 bits would have introduced an overflow. The code below does the truncation.

1 m1<=s t d l o g i c v e c t o r (r e s i z e (s i g n e d (mu l ex t1 (nb+nb3−1 downto nb3
−1)) , nb+3)) ;

2

3 m2<=mul ex t2 (nb+nb3 downto nb3−1) ;

Listing 4.4. DCT3 3 truncation

What remains to be defined now are the last blocks in the cascade, that is the
blocks containing DCT54. DCT54 is the block used when working both in 32
samples mode and in 20 samples mode. The two sets of coefficients have been
defined, the one for DCT54 standalone and the other one for when it is used
inside DCT532. An initial process is used to select between the two sets of
coefficients. sel dct=0 selects the first case while sel dct=1 selects the other
case with coefficients of DCT532. In this last case to normalize the coefficients,
as in the software 3.1, a multiplication with 210.5 should be used. But for the
normalized algorithm, the multiplication with C(6) will be in cascade with the
other multiplications meaning that it introduces an extra shift of the coefficient,
i.e. a shift of the result. To obtain the correct value then it should be renor-
malized, by dividing again with the constant 210.5. Since doing a floating point
division is heavy from the computational point of view, then only for the last
coefficient the normalization constant used is 211 instead of 210.5. In this way when
trying to rescale back the result at the end by dividing with the normalization con-
stant, it can be simply done by a right shift. This last operation is given by the code:

1 l a s t m u l : p r o c e s s (s e l d c t , m6 ext , a13)
2 beg in
3 i f s e l d c t = ’0 ’ then
4 y1<=s t d l o g i c v e c t o r (r e s i z e (s i g n e d (m6 ext (nb out

+nb1 32 downto nb1 4 −1)) , nb out +4)) ;
5 e l s e
6 i f f i r s t = ’1 ’ then
7 y1<=s t d l o g i c v e c t o r (r e s i z e (s i g n e d (

m6 ext (nb out+nb1 32 downto nb1 32 −1)) , nb out +4)) ;
8 e l s e
9 y1<=s t d l o g i c v e c t o r (r e s i z e (s i g n e d (a13) ,

nb out +4)) ;
10 end i f ;
11 end i f ;
12 end p r o c e s s l a s t m u l ;

53

4 – Developing the architecture

Listing 4.5. DCT5 4 first output resizing

The two cases have been separated, when computing DCT532 a different normal-
ization constant is used, meaning that this same normalization constant will be
used to renormalize it back. nb1 4 and nb1 32 are defined in the software 3.1
and have respectively the values 9 and 12. A separate case is selected when it
is not considered the first DCT54 of the algorithm, meaning first=0. Since the
normalization coefficient 1√

2 is not used when first=0, as a result also when doing
the renormalization it should not be divided by that constant. Another important
piece of code for this block is the part which does the renormalization from the
cascaded multiplications. DCT54 is the block used before almost every output
element. It is preceded by different matrices. The first DCT54 is preceded only by
the two B matrices. Each of these matrices does a multiplication by 2. In order
to have correct results for the outputs of DCT54 it is important to divide with
the same amount that has been multiplied. So for the first DCT54 the constant
to be divided is 4, or in another way it can be said that it should be right shifted
by 2. In the case of first DCT37, the block X 7 is preceding it. Since this block
will introduce a left shift by nb2-1, then it is important that the DCT54 block
does the right shift of the same amount, to bring the result at the correct order
of magnitude. It should be noted also that in this case there are also the two B
matrices preceding everything. This means that also in this case a right shift by 2
has to be done. So in overall, the total right shift amounts to nb2+1. For the last
3 DCT54, again the only block preceding them that has to be considered is X 7.
The multiplication with the normalization constants introduced by the blocks X 3
and dct3 3 have already been taken care of. What is changing in this case is the
fact that instead of having two B matrices preceding, there is only one B 32 which
introduces the multiplications by 2, while B C3 does not introduce normalization
multiplications. So for the case of the final 3 DCT54 the right shift to be done is
by nb2. The part of code which does all what has been explained here is written
below in listing 4.6:

1 g e n n o t f i r s t : i f f i r s t = ’0 ’ g e n e r a t e
2 g e n f i r s t d c t 3 : i f f i r s t d c t 3 = ’1 ’ g e n e r a t e
3 m norm (0)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (

s i g n e d (mu l ex t0) , (nb2+1)) , nb out)) ;
4 m norm (1)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (

s i g n e d (mu l ex t1) , (nb2+1)) , nb out)) ;
5 m norm (2)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (

s i g n e d (mu l ex t2) , (nb2+1)) , nb out)) ;

54

4 – Developing the architecture

6 m norm (3)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (
s i g n e d (mu l ex t3) , (nb2+1)) , nb out)) ;

7 m norm (4)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (
s i g n e d (mu l ex t4) , (nb2+1)) , nb out)) ;

8 end g e ne r a t e g e n f i r s t d c t 3 ;
9 g e n o t h e r d c t 3 : i f f i r s t d c t 3 = ’0 ’ g e n e r a t e

10 m norm (0)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (
s i g n e d (mu l ex t0) , nb2) , nb out)) ;

11 m norm (1)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (
s i g n e d (mu l ex t1) , nb2) , nb out)) ;

12 m norm (2)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (
s i g n e d (mu l ex t2) , nb2) , nb out)) ;

13 m norm (3)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (
s i g n e d (mu l ex t3) , nb2) , nb out)) ;

14 m norm (4)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (
s i g n e d (mu l ex t4) , nb2) , nb out)) ;

15 end g e ne r a t e g e n o t h e r d c t 3 ;
16 end g e ne r a t e g e n n o t f i r s t ;
17 g e n f i r s t : i f f i r s t = ’1 ’ g en e r a t e
18 m norm (0)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (s i g n e d (

mu l ex t0) , 2) , nb out)) ;
19 m norm (1)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (s i g n e d (

mu l ex t1) , 2) , nb out)) ;
20 m norm (2)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (s i g n e d (

mu l ex t2) , 2) , nb out)) ;
21 m norm (3)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (s i g n e d (

mu l ex t3) , 2) , nb out)) ;
22 m norm (4)<=s t d l o g i c v e c t o r (r e s i z e (s h i f t r i g h t (s i g n e d (

mu l ex t4) , 2) , nb out)) ;
23 end g e ne r a t e g e n f i r s t ;

Listing 4.6. right shift to obtain the correct results

Finally for the second mode of operation, when only DCT54 are being computed,
this problem does not exist since there are no preceding blocks which have coeffi-
cients to be normalized. So in this case the result has simply to be extended into
the same number of bits as for the DCT532 case. After having explained all the
used components, the top entity called param datapath has simply a structural
architecture doing the instantiation of all this components. For this architecture
there are two modes of operation, but still it will use only the blocks of the DCT532
algorithm. Which means some multiplexers are needed to supply the inputs to the
DCT54 and DCT37 blocks. Basically the top level architecture will have 32 inputs
each of nb0 bits for the input samples, and 32 outputs with nb0+nb1 32+21. Since

55

4 – Developing the architecture

this is a parametric architecture, the number of bits for the coefficients it is not
known a priori, so the worst case has always to be considered when computing
the parallelism of every block. This explains the large number obtained as output
parallelism. The final input is sel dct which is of binary type, used as the select
signal when doing the multiplexing. When sel dct=1 the architecture is expected
to work as DCT532, so it expects 32 inputs and will calculate 32 outputs. While for
the other mode of operation, it needs only 20 inputs and will calculate 20 outputs.
The inputs are expected to be given in the first 20 consecutive ports, the other 12
inputs will be ignored. Actually to reduce the power consumption during this mode
of operation, since only the 5 DCT54 will be used, the inputs to the DCT532 can
be supplied to 0 in this case, since the blocks preceding the 5 DCT54 will not be
used. Some considerations have to be done for the inputs of DCT37. The first stage
of the DCT37 is the Q matrix from [4.9] factorization. It will do a permutation
of the inputs, and afterwards the D matrix introduced by [4.8] does also a sign
change. Keeping this in mind the assignment to the outputs of this block is given as:

1 y7 dc t1 4 <=(3=> s t d l o g i c v e c t o r (r e s i z e (− s i g n e d (x (6)) , nb0+nb2
+7)) ,

2 5=> s t d l o g i c v e c t o r (r e s i z e (s i g n e d (x (7))
, nb0+nb2+7)) ,

3 7=> s t d l o g i c v e c t o r (r e s i z e (− s i g n e d (x (8)
) , nb0+nb2+7)) ,

4 o t h e r s=>(o t h e r s => ’0 ’)) ;

Listing 4.7. dct input assignment

The code shown in listing 4.7 corresponds to the first DCT37, for the other DCT37
blocks the input parallelism will change accordingly. Also for the outputs of the
architecture a multiplexing operation has to be done. When sel dct=1 then the
final permutation matrices have been implemented by doing the corresponding signal
assignments for every output port. When sel dct=0 no permutations have to be
done, the outputs of DCT54 and DCT37 will be connected to the first 20 outputs
of the architecture. The final 12 outputs will be left as high impedance. This brings
an end to the description of the architecture written for the block computing both
the DCT532 and 5 DCT54. Finally input and output registers are added to the
datapath to create the top level entity. This registers will help finding the frequency
of the circuit. The next section will show the simulation and synthesis results for
the given architecture.

56

4 – Developing the architecture

4.2 verification and synthesis

To simulate the design, a testbench is created, containing three other extra blocks:

• A clock generator component which will contain inside a process for generating
the clock, and it also forces the values for RSTn and sel dct signals.

• A data maker component which will read the input samples from a text file, and
generate the outputs as std logic vector. It will also generate an END SIM
signal 10 clock cycles after the end of file is reached.

• A data sink component which will write the outputs of the algorithm into an
output file, with the same format of the input file.

Two pair of this blocks have been created. Each one of them will simulate the
architecture in one of the two operating modes. In the DCT532 mode input and
output file will have rows of 32 integers each, while in the other mode of operation
the input and output files will have rows of 4 integers each. The format of this
files has been made similar to the format of the Matlab files created by the Matlab
code discussed in the previous chapter. Actually the input file is the same samples
file generated by Matlab. While for the output text file it will be compared with
the Matlab output text file by a Matlab scrip. This Matlab scripts simply does the
difference element by element of the two files to see if they are equal. After running
the simulation and comparing the two text files together, the results are as shown
by the figure 4.2. It clearly shows that the two files are equal, meaning the VHDL
architecture is a correct representation of the Matlab algorithm.

57

4 – Developing the architecture

Figure 4.2. Matlab vs Vhdl difference mode 32

In a similar way it is done the simulation for DCT54. Also in this case the VHDL
was correct as shown in figure 4.3:

Figure 4.3. Matlab vs Vhdl difference mode 4

58

4 – Developing the architecture

After verifying the correctness of the VHDL, the architecture can now be syn-
thesized with the Synopsys Design Compiler. The used library for the synthesis
is umc65. In a first stage the design has been compiled to obtain the time and area
reports. The minimum working period found is 5.6ns, which means a working fre-
quency of 178.57MHz. The results about the area are reported in the tables below:

Combinational area 255112.202867
Noncombinational area 14879.880079

Total cell area 269992.082946

Table 4.1. Total area results

% total
B 32 2.4
B 11 0.6
B 21 1.5

X 3(7 blocks) 6.3
dct3 3(7 blocks) 8.9

dct5 4 3.2
first X 7 2.0

first dct3 7 8.1
dct5 5.2

inv dst7 1.6
X 7 2 9 5.9

second dct3 7 15.2
dct5 9.8

inv dst7 3.2
X 7 4 9 4.0

third dct3 7 12.4
dct5 7.6

inv dst7 2.9
X 7 8 9 5.7

fourth dct3 7 15.2
dct5 9.7

inv dst7 3.2

Table 4.2. Separate blocks area results

Looking at the results, it can be noticed that last blocks in the algorithm, the
ones which would have also a higher parallelism, will also occupy more area. Also

59

4 – Developing the architecture

module implementation count estimated area % of cell area
DW01 add pparch 165 62428.9733 23.1
DW01 sub pparch 140 47037.4714 17.4

DW mult tc apparch 38 13132.4291 4.9
DW mult tc pparch 111 95388.0269 35.3

Total: 454 217986.9007 80.7

Table 4.3. Different implementation area results

the multipliers which have a large parallelism will occupy in an estimated way the
same area with the additions and substractions even though their number is 1/3
of the later. To obtain the power report, the design has to be compiled using the
switching activity of the nodes. So as a primary step the saif file has to be created.
The results after the simulation are shown below. There are two considered set of
results, one obtained using the compile command of Synopsys, and the other using
the compile ultra. With the compile command, the minimum period achieved was
7.56ns. The power report in this case gave the results:

internal power 23.072 uW
switching power 15.442 uW
leakage power 46.112 uW

total power 84.626 uW

Table 4.4. Compile power results 4 mode

internal power 184.8792 uW
switching power 143.2767 uW
leakage power 45.7650 uW

total power 373.9 uW

Table 4.5. Compile power results 32 mode

internal power 4.0440 uW
switching power 1.8444 uW
leakage power 26.7426 uW

total power 32.631 uW

Table 4.6. Compile ultra power results 4 mode

60

4 – Developing the architecture

internal power 3.4335 uW
switching power 1.2054 uW
leakage power 26.9203 uW

total power 31.559 uW

Table 4.7. Compile ultra power results 32 mode

Comparing the values for the two cases, it can be clearly seen that compile ultra
does a high optimization of the design by reducing the power almost 10 times. This
reduction happens even though the frequency of the circuit in this case is still higher.
The compile ultra does a reduction of the total dynamic power of the cell of almost
100 times in the DCT532 case. The dominant power component in this case though
is the leakage power, which is still reduced compared to compile command result,
but not with the same order as the previous one. Using the synthesis obtained with
compile ultra, the power consumption of the architecture during the two modes of
operation is approximately 32 uW.

61

Bibliography
[4.1] K. Sayood, Introduction to Data Compression. Morgan Kaufmann, 2012.
[4.2] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the

High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec 2012.

[4.3] T. Biatek, V. Lorcy, P. Castel, and P. Philippe, “Low-complexity adaptive
multiple transforms for post-HEVC video coding,” in Picture Coding Sympo-
sium, 2016, pp. 1–5.

[4.4] X. Zhao, J. Chen, M. Karczewicz, X. Li, and C. Wei-Jung, “Enhanced Mul-
tiple Transform for Video Coding,” in Proc. 2016 Data Compression Confer-
ence, 2016, pp. 73–82.

[4.5] M. Puschel and J. M. F. Moura, “Algebraic Signal Processing Theory: Cooley-
Tukey Type Algorithms for DCTs and DSTs,” IEEE Trans. Signal Process.,
vol. 56, no. 4, pp. 1502–1521, April 2008.

[4.6] Joint Collaborative Team on Video Coding (JCT-VC)
of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11,
HM-16.6-JEM-4.0 Reference Software Model. [Online]. Avail-
able: https://jvet.hhi.fraunhofer.de/svn/svn HMJEMSoftware/tags/HM-
16.6-JEM-4.0/

[4.7] M. Puschel and J. M. F. Moura, “Algebraic Signal Processing Theory.”
[4.8] M. Masera, M. Martina, and G. Masera, “Odd Type DCT/DST for Video

Coding: Relationships and Low-Complexity Implementations,” IEEE Trans.
Signal Process., November 2017.

[4.9] Y. A. Reznik, “Relationship between DCT-II, DCT-VI, and DST-VII trans-
forms,” in Proc. 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, May 2013, pp. 5642–5646.

[4.10] X. Shao and S. G. Johnson, “Type-II/III DCT/DST algorithms with reduced
number of arithmetic operations,” Signal Processing, vol. 88, no. 6, pp. 1553–
1564, 2008.

[4.11] M. T. Heideman, “Computation of an odd-length DCT from a real-valued
DFT of the same length,” IEEE Trans. Signal Process., vol. 40, no. 1, pp.
54–61, Jan 1992.

[4.12] S. Winograd, “On Computing the Discrete Fourier Transform,” Mathematics
of computation, vol. 32, no. 141, pp. 175–199, 1978.

62

		Politecnico di Torino
	2018-09-10T07:19:25+0000
	Politecnico di Torino
	Maurizio Martina
	S

