
POLITECNICO DI TORINO

Department of Electronics and
Telecommunications

Electronics Engineering

Master’s Thesis

A reconfigurable architecture for
event-based optical flow in FPGA

Supervisors:
Prof. Maurizio Martina
Dr. Paolo Motto Ros

Candidate:
Ibrahim Shour

September 2018

Summary

The aim of this thesis is to present a reconfigurable hardware implementation for event-
based optical flow on incoming events that arrive from an event based image sensor. The
implementation is characterized by its reconfigurability and flexibility in which differ-
ent parameters can be modified at the synthesis stage, and the target device is a Zedboard
Zynq-7000 featuring an XC7Z020-CLG484-1 FPGA. The work of this thesis is developed
in collaboration with the Italian Institute of Technology (IIT), where the target application
of this study would be the iCub humanoid robot.

The thesis first examines the concept of neuromorphic architectures, computers, and
vision sensors. Neuromorphic event-based image sensors are inspired by the human retina
and are characterized by having a low latency, low redundancy, high dynamic range, and
lower energy consumption, which make them ideal for robotics and unmanned vehicles.
In a second stage, the concept of optical flow is highlighted, and some related prob-
lems and difficulties are posed. The optical flow corresponds to the detection of moving
physical objects in a certain sequence of images. Traditional frame-based optical flow
algorithms are based on long timing intervals which make them inadequate for being
employed on event-based image sensors. Therefore, a new family of optical flow com-
putation algorithms for event-based image sensors is illustrated, including an algorithm
which is the fundamental part of this thesis. The framework allows the estimation of the
optical flow by exploiting the local characteristics of the events’ spatio-temporal space.
The algorithm is applied to a YARP module which is a C++ based software package used
for interconnecting the different sensors and processors in robots, integrated as an es-
sential part of the iCub robot. The different code building blocks are analysed and the
hardware architecture is defined. After that, a detailed analysis on the working principle
of the different hardware blocks is performed, including details on the VHDL modules,
and the parallel computation of the amplitude and the orientation of the visual flow. Later
on, a simulation is provided as a demonstration of the functioning of the design, Finally,
the synthesis results in terms of latency and hardware resources consumption are exposed
for the different possible configurations and potential future improvements and steps are
discussed, including possible hardware modifications that may allow optimizing the de-
sign.

I

Contents

Summary I

1 Research on Neuromorphic Architectures 1
1.1 Introduction . 1

1.1.1 Neural Networks . 1
1.1.2 From Neural Networks to Neuromorphic Computers 2
1.1.3 Hardware Implementations and Applications 5

1.2 Event-based Neuromorphic Vision Sensors 10
1.2.1 Contrast-based Asynchronous Binary Vision Sensor 10
1.2.2 Colour Differentiating AER Image Sensors 10
1.2.3 Asynchronous Time-based Image Sensor (ATIS) 11
1.2.4 Dynamic Vision Sensor (DVS) 11
1.2.5 Dynamic and Active-pixel Vision Sensor (DAVIS) 13

2 Optical Flow 14
2.1 Definition . 14

2.1.1 Mathematical Approach . 15
2.2 Event-based Visual Flow . 17

2.2.1 Flow Definition . 18
2.3 YARP Module . 20

3 HW Architecture 24
3.1 Working Principle . 25

3.1.1 Memory Addressing . 26
3.1.2 Memory Accessing and Data Preparation 27
3.1.3 Computation of AtA and AtY 30
3.1.4 Computation of the Adjoint of AtA, adet, bdet, and det 30
3.1.5 Iterations and Recomputation of a and b 31
3.1.6 Final Computation . 31

3.2 Detailed Hardware and VHDL Description 32
3.2.1 MULT . 36

II

3.2.2 adjoint . 37
3.2.3 Iteration Blocks . 38
3.2.4 Divider . 40
3.2.5 Arctangent . 41
3.2.6 Sine and Cosine . 41
3.2.7 Square Root . 42
3.2.8 Reciprocal . 42
3.2.9 Final Computation . 42

4 Synthesis and Simulation Results 43
4.1 Simulation Results . 43

4.1.1 Memory Accessing . 43
4.1.2 Processing Stage . 46
4.1.3 Iteration Stage . 50
4.1.4 Validation Memory Simulation 51

4.2 Synthesis Results . 53
4.2.1 Resource Utilization and Latency 53

4.3 Future Perspectives and Conclusion . 59
4.3.1 Future Perspectives . 59
4.3.2 Conclusion . 62

5 Test Bench with a SPAER Interface 63
5.1 Interface Protocol . 64
5.2 Finite State Machine (FSM) . 65

Bibliography 67

III

Chapter 1

Research on Neuromorphic
Architectures

1.1 Introduction

Artificial Intelligence (AI) is becoming an essential part of our daily life. From our homes,
to our cars, office, etc. So as the complexity of applications required by humans grows,
programming manually becomes much more complex, and as a result, the need of ma-
chines that could behave in a smart way, and be self-programmed as humans, increases.
AI is all about machines that are able to learn and make decisions based on the learned
behaviours, it is based on a multidisciplinary approach including neuroscience, biology,
electronics, computer science, and many others. Its applications vary from gaming, to
robotics, vision systems, speech recognition and countless other applications.

1.1.1 Neural Networks

Artificial Neural Networks (ANN) are one research area in AI. They appear as the capa-
bility of designing computing architectures that could emulate the working principle of
the brain. They are simply a computational model including a certain number of pro-
cessing elements (neurons) interconnected with each other through a particular type of
connection (synapses), each neuron and synapse can have a certain weight that could
change through learning. Neural networks are so many to count, they differ mainly in the
number of levels they support and in the way in which the processing elements are con-
nected. One important example used mostly in image processing are the Convolutional
Neural Networks (CNN), they are feed forward neural networks where information in the
input layer is fed only in one direction to the output layer (no cycles). They are called
convolutional since some of the hidden layers in the network are convolutional layers,
which emulate the behaviour of a neuron as a response of a visual stimuli, and where

1

1 – Research on Neuromorphic Architectures

the corresponding network weights are shared among the convolutional layers. Neural
networks software demonstrated high efficiency when running on regular computers, but
as the need of larger neural networks grows, the required computational power increases,
and so, different computation approaches must be adopted.

Trying to emulate more closely the brain’s working principle, Spiking Neural Net-
works (SNNs) [1] arrive as the third generation of artificial neural networks. The neurons
in these networks generate spikes as a tool of communication, in an energy-efficient event-
based manner. The development of such networks raised the hopes of achieving a more
realistic brain imitation within a combination of the new generation of neural networks
with a suitable computational hardware.

1.1.2 From Neural Networks to Neuromorphic Computers
Neuromorphic computers (NC) are thought to be the solution for the limitations related
to using traditional computers. NCs are notable for being highly connected, supporting
better parallel processing through collocating both memory and processing through dis-
tributed elements, and for requiring much lower power with respect to normal computers.
All these characteristics are guaranteed by an asynchronous spike-based system, that im-
itates the brain more efficiently than ever.

The neuromorphic approach is being adopted more than before for several reasons: [2]

• Von Neumann bottleneck represents the main reason which inspired researchers to
move in the neuromorphic direction, it’s a major problem in traditional computers
for which memory and processing are done in different parts of the system, creating
a throughput limitation, that causes many difficulties when there is a need of a real-
time system that must act with no delays

• the increasing power demands of different computational model (i.e. neural net-
works)

• Scalability: neuromorphic computers are known for their ability to be scaled based
on the application that has to be implemented on, scaling means increasing the
number of neurons in simple way by connecting different chips

• the need of machine learning that is presented by an ability of the system to adapt
to dynamic changes at the input

• the near end of Moore’s law in scaling devices, so it would be difficult to reach
further power reduction and higher performance while keep using the traditional
device approach

2

1 – Research on Neuromorphic Architectures

Neural Network Models

In a neuromorphic computer, memory and processing are distributed among an enormous
number of neurons, each neuron communicates with a countless others through synapses,
each synapse has a certain weight. Neuron accumulates charge by receiving spikes from
the connected neurons, and when it reaches a certain charge threshold, it fires a spike
forcing a change on the connected neurons, this change depends on the synaptic weight.
All these operations are imposed by a neural network model that controls how the different
elements interact with each other. Such a model includes:

• a network model that specifies how the elements are related, for instance it defines
if the elements are connected in a feed-forward fashion, or in a recurrent fashion in
which cycles exist

• a neuron model represented by a mathematical equation that describes the behaviour
of a neuron, namely it tells how the charge on a neuron varies and when does it fire.

• a synapse model which describes the physical aspect of a neuron and whether a
synapse supports the plasticity mechanism - a mechanism in which the strength
(weight) of a synapse changes over time, it varies accordingly with the activity over
a synapse.

Learning Algorithms

One key aspect of neural networks is its learning capabilities. Once the network model is
chosen with all its corresponding choices, a learning algorithm could be decided. When-
ever a learning algorithm must be implemented, some choices must be taken into consid-
eration: [2]

• whether training is done on-chip or off-chip. Off-chip means that the training phase
is done using an external computer, then the trained data is transferred on-chip.

• whether learning is implemented on-line or off-line

– on-line learning is illustrated by the ability of the system to adapt to dynamic
changes in the environment (inputs), so each time the environment changes
the neural network model is adjusted to fit in the new conditions

– off-line learning includes two phases - a training phase and a testing phase.
In this specific implementation, no further training is permitted during the
operation. Such an algorithm is implemented only in static environment, in
which any change in the settings could cause an unknown behaviour.

• whether learning is supervised, unsupervised or semi-supervised.

3

1 – Research on Neuromorphic Architectures

– supervised learning where input data is labelled along with the correct an-
swers, the learning algorithm will associate all these information and try to
predict the correct answer

– unsupervised learning means that the correct answers are not given to the algo-
rithm (only input data are provided), so that the algorithm must learn if there
is a certain pattern in the data and decide how important are the features based
on that pattern

– semi-supervised where both labelled and unlabelled data are provided in the
training stage. Their are two main advantages of this type of learning. The first
is that performing a lot of labelling on the input data is time consuming, and
shall be avoided when possible. The second reason is that using unlabelled
data improves the accuracy.

Two of the most used learning algorithms are back propagation and spike-timing de-
pendent plasticity (STDP). Back propagation is represented by the fact that after the train-
ing phase - during the testing phase - if the system’s decision is incorrect, the error is cal-
culated at the output and is propagated backwards to correct some weights in the network.
It is mostly considered as a supervised algorithm, however it has some unsupervised im-
plementations.

On the other hand, STDP is characterized by an on-line change in the synaptic weights
as follows: if a pre-synaptic neuron (spike transmitter) fires before (after) a post-synaptic
neuron, the synaptic weight between the two neurons will increase (decrease). Briefer is
the time difference, higher is the magnitude of change in the weight.

Traditional CMOS synapse implementations have been recently used, however they
suffer from two main problems. The first is related to the fact that an efficient and precise
system requires analog synaptic weights, either by digitalizing these values and saving
them in a memory - this implies that enormous memory is required, or in an analog man-
ner utilizing capacitors which suffer from reliability and leakage problems. The second
problem is associated to the increasing size and complexity of neural networks, which also
increases the power consumption. Hence, researches were carried on to find alternative
implementation possibilities. One of the technologies that could support efficiently the
STDP mechanism is the memristor technology. A memristor is a device with a variable
resistance, its value changes based on the voltage applied in the past, it has a sort of mem-
ory behaviour which makes it ideal for learning mechanisms. It was realized in HP labora-
tories in 2008 [3], although it firstly appeared in the early 70’s (1971) in a work published
by Professor Leon Chua. What is interesting about memristors are not only their learning
capabilities, but also their energy-efficiency and scalability (scalable to 10 nm), offering a
high density structure. Moreover, various memristors are CMOS-compatible [4], making

4

1 – Research on Neuromorphic Architectures

them a good candidate for a hybrid CMOS/memristor architecture, with CMOS neurons
and memristive synapses, in a possible high-density crossbar structure. Although mem-
ristors have been mainly used in synapse implementations, fewer neuron implementations
do exist.

1.1.3 Hardware Implementations and Applications
There are several possible hardware implementations for neuromorphic computers, these
implementations range from analog to digital architectures, with the possibility of having
a hybrid analog/digital architecture. Since biology is mostly analog, an analog implemen-
tation could simulate the behaviour of the brain more efficiently. One drawback of analog
implementations is that analog components are more susceptible to noise that makes them
suffer from robustness and reliability problems. However, in a system that is able to learn
by itself, noise will not be a problem any more in which the system would be capable of
adapting to changes in the environment, making it more robust. Some researchers think
that the most effective way would be using analog components for computation and dig-
ital approach for the communication between the processing elements [2]. Both analog
and digital implementations could be divided into two broad categories, custom and pro-
grammable.

Digital Implementations

For digital systems, both ASIC and FPGA-based approaches showed interesting perfor-
mance when running different types of applications.

Custom-chip or ASIC-based approach is characterized by having lower power con-
sumption than the FPGA-based approach. Two of the most notable custom-chip neuro-
morphic implementations are the TrueNorth [5] chip and the SpiNNaker [6] chip.

IBM’s TrueNorth chip, a fully-digital one, was a part of the Defence Advanced Re-
search Projects Agency (DARPA) SyNAPSE project. It consists of 4096 neurosynaptic
cores organized on a 2D-array, each core contains 256 neurons, reaching more than one
million neurons for chip, with 256 million synapse. It was implemented using 5.4 billion
transistors in CMOS technology, consuming merely 65 mW. One important characteristic
of the TrueNorth chip is its scalability: larger neurosynaptic networks could be achieved
simply by connecting different chips (fig. 1.1a). Researchers created a Corelet [7] object-
oriented programming language for composing the neural network on the different cores.

Different types of applications from different sectors were tested on the TrueNorth
chip/multi-chip architectures. Two interesting on-field implementations were object de-
tection and recognition [8], and an autonomous driving robot [9]. The first consisted of
testing the performance of the chip on the Neovision2 Tower dataset (fig. 1.2a) - a set

5

1 – Research on Neuromorphic Architectures

(a) The NS16e circuit board incorporating
16 IBM TrueNorth chips. (Photo: IBM Re-
search)

(b) 48-node SpiNNaker Pro-
cessor. (Photo: University of
Manchester)

Figure 1.1: TrueNorth and SpiNNaker: two ASIC neuromorphic chips

that contains images taken at 30 frames-per-second of distinct object categories: people,
cyclists, trucks, cars and buses. The chip showed nearly an 80% classification accuracy
consuming only 63 mW of power.
The second application instead, consisted of a CNN running on a TrueNorth chip to esti-
mate the steering direction of a self-driving robot, the estimation was based on the output
of an Asynchronous Time-Based Image Sensor (ATIS). The training was achieved by as-
sociating the users’ remote commands provided manually, with the output of the ATIS
to generate the corresponding neural network (fig. 1.2b), training took place in three
different environments. The application demonstrated correct decisions in 82% of time.
However, these results are expected to improve through extended training. Despite all the
satisfying results, there are still some limitations of the TrueNorth architecture. These
limitations are due to the fact that the chip was designed before the major developments
in the of neural networks (e.g. CNNs and DNNs). For instance, when researchers tried
implementing a certain application that needs 30 thousand neurons [10] - a number that
could be provided by a single chip - they were forced to use 8 chips containing 8 million
neurons instead.

On the other hand, the spiking neural network architecture (SpiNNaker) project - de-
veloped at the University of Manchester as a part of the Human Brain Project (HBP) in
2014 - is a massively parallel digital architecture composing billions of computing units
with a spike-based communication infrastructure. The architecture is based on parallel
processing through ARM cores, each having two local memories: instruction memory
and data memory. The chip contains 18 ARM968 cores featuring 80 thousand neurons
and 20 millions synapse. When all cores are fully-loaded, the chip reaches a maximum
power dissipation of 1 W. Likewise the TrueNorth, the SpiNNaker holds the characteristic

6

1 – Research on Neuromorphic Architectures

(a) Real-time multi-
object recognition on
TrueNorth (Photo:
[8])

(b) Data flow in the neuromorphic robot system
(Photo: [9])

Figure 1.2: TrueNorth: Applications

of being scaled through connecting different chips. One example is the 48-node struc-
ture (see fig. 1.1b), a board which implements 768 thousand neurons with 768 million
synapse. In contrast to the TrueNorth, the SpiNNaker provides the user with the option
to program the neuron and the synapse models. It also supports the plasticity mecha-
nism (e.g. STDP) with some limitations. The applications could be written in high-level
neural description languages such as PyNN [11]; a Python-based simulator-independent
language; and Nengo [12]; a graphical and scripting software.

The SpiNNaker has proven promising performance in different application categories.
In robotics field, it was used as a processor on an autonomous mobile platform [13, 14]
along with dynamic vision sensors (DVS) providing the visual input. One application
[13] consisted of a trajectory stabilization using the optical flow, in which the robot tried
to remain in a central position when traversing a hand-made corridor with vertical stripes
on the walls, such a behaviour was achieved by balancing the two optical flows arriving
form the two lateral DVS (fig. 1.3b). Another example applied on the same robot platform
was a learning-by-example application [14], in which the robot was controlled manually
and it was forced to approach and collide with an obstacle. Once it collides with that
obstacle, it was ordered to step back and move away from it (fig. 1.3c). After that, a new
neural model was generated based on the sensory data and the related manual commands.
The entire training phase was carried out in less than a minute.

In addition to robotics-related applications, the SpiNNaker processor was tested in im-
age processing [15]. Specifically, three different image processing algorithms were tested
on the board. It showed comparable performance to the GPU in terms of processing speed

7

1 – Research on Neuromorphic Architectures

(a) The SpiNNaker robotic
platform (Photo: [13])

(b) Trajectory stabilization
using optical flow: experi-
ment arena (Photo: [13])

(c) Robot stimulus response after
learning (Photo: [14])

Figure 1.3: SpiNNaker: Applications

(frames-per-second), with a much lower power budget than both GPU-based and CPU-
based approaches.

On the other hand, the FPGA-based approach is characterized by being programmable
and much more flexible. Some of the different implementations that have been realized
are the following:

• Minitaur [16] - it is an event-driven neural network accelerator. It was implemented
on a Xilinx Spartan-6 FPGA platform. It featured 65k neurons and 16.78 millions
synapse, with a peak power consumption of 1.5 W. It was tested on a MNIST hand-
written digits dataset, the recognition accuracy reached 92%. In addition, in a sim-
ilar application of a newsgroup data set classification, the accuracy was about 71%.

• NeuroFlow [17] - a scalable SNN simulation platform. An implementation of 600k
neurons with a 6-FPGA system was realized. To evaluate the performance different
neural models that differ in size and complexity were tested. It demonstrated to be
33.6 times faster than an 8-core processor, and 2.38 times faster than a GPU, for
some specific applications.

• Darwin [18] - it was prototyped on an FPGA before being fabricated in 180 nm
CMOS process. It featured 2048 virtual neurons starting from 8 physical neu-
rons using the time-multiplexing technique. The power consumption was of 0.84
mW/MHz. When the MNIST handwritten digits recognition was tested - with the
same DBN applied to the Minitaur - the accuracy reached 93.8%.

8

1 – Research on Neuromorphic Architectures

Mixed Analog/Digital Implementations

The mixed analog/digital neuromorphic processors are basically inspired by the idea of
having analog computation and digital communication. Three of the most popular exam-
ples in this category of processors are Neurogrid [19], BrainscaleS [20] and ROLLS [21]
(Reconfigurable On-line Learning Spiking Neuromorphic Processor). Neurogrid is a neu-
romorphic computer, developed at Stanford University, it provides the real-time simula-
tion of large-scale neural models. It is composed of 16 "NeuroCore" chips, each support-
ing 65536 neurons working in sub-threshold, incorporating a total of 1 million neurons
and 4 billion synapses, with a peak power consumption of 3 W.

On the other hand, the ROLLS processor was founded at the Institute of Neuroinfor-
matics, ETH and the University of Zurich. It comprised 256 neurons and 128k synapses.
One interesting characteristic is its learning capabilities. In fact, on the contrary to other
chips, ROLLS processor supports the plasticity mechanism (STDP learning). It has a
power consumption of 4 mW for typical applications. In robotics, ROLLS was used to
interpret the input spikes arriving from a DVS mounted to a "PushBot" robot. In specific,
the neural population was used to estimate the speed and the steering direction of the
robot in order to avoid obstacles in different environmental situations [22].

9

1 – Research on Neuromorphic Architectures

1.2 Event-based Neuromorphic Vision Sensors

Conventional video cameras have always been in development in the last few decades,
they are based on taking snapshots at a certain rate followed by some processing tech-
niques. Although they are characterized by a high quality image reproduction - by using
simple small pixels - problems related to their high data redundancy, restricted dynamic
range, and high power consumption limited their utilization in some fields. This is related
to the fact that sampling is done even when no dynamic changes took place in the scene.

Inspired by the human retina, event-based image sensors come out as an alternative
for conventional video cameras. They are represented by a low-latency event-based data
stream with a low-power and fast processing algorithms. In the recent years, various ideas
appeared as an alternative for conventional video cameras. However, the most interesting
implementations have been the Dynamic Vision Sensor (DVS) [23] and the Asynchronous
Time-based Image Sensor [24]. In the following some of the adopted ideas will be briefly
highlighted.

1.2.1 Contrast-based Asynchronous Binary Vision Sensor

A spatial contrast-based asynchronous image sensor was discussed in [25]. The array is
composed of a 64 × 128 elements, and the working principle is based on the 1-bit quan-
tization of a local spatial contrast between a kernel of three pixels, in which only the
addresses of pixels presenting a certain contrast magnitude, has to be dispatched. For a
typical indoor application, only 5% of the pixels were active consuming only 100 µW of
power (55 µW for the imager and 45 µW for the decoding and digital control part).

1.2.2 Colour Differentiating AER Image Sensors

In [26] a dichromatic asynchronous event pixel was presented, it was produced for be-
ing exploited by an address event representation (AER) vision sensor. It is based on the
stacked photo diodes concept, with PN junctions with a different depth below the surface,
which allows achieving a sensitivity of two different colour spectra. The work was ex-
tended in [27] a sensitivity of three different spectra was achieved based on stacked photo
diodes concept as before. However, a quantification of the three spectra was achieved in
pulse density modulated signals which are then transmitted off-chip in AER protocol.

10

1 – Research on Neuromorphic Architectures

1.2.3 Asynchronous Time-based Image Sensor (ATIS)
At the Austrian Institute of Technology, Posch and his colleagues designed a QVGA
array of 304×240 pixels which are fully autonomous. The ATIS pixel including two sub-
pixels [24]. The first corresponds to the temporal contrast pixel from the DVS, which is
responsible of the change detection. The time-based intensity readings are triggered in the
second pixel by the events of the DVS pixel, this part is responsible of the exposure mea-
surement. The intensity depends on the time taken by a photodiode to integrate between
the two levels. The exposure-measurement part is a time-based pulse-width modulation
PWM imaging circuitry. The benefit of the ATIS pixel is the readout intensity that is char-
acterized by a wide dynamic range the reaches 143 dB in static conditions, and a 125 dB
at a temporal resolution which is equivalent to 30 fps. However, the expense is having a
large pixel size and low fill factor (the ATIS area is nearly twice that of the DVS pixel).
Moreover, another disadvantage is the capture time at low intensities which could reach
hundred ms.

1.2.4 Dynamic Vision Sensor (DVS)
The Dynamic Vision Sensor [23] was developed by the group of Professor Tobi Delbruck
at ETH Zurich. It was based on the temporal contrast between frames, in which only the
pixel having a change in its illumination level by a certain threshold will get its address
dispatched. The sensor included the following characteristics:

• event-based data communication

• requires low data storage

• 120-dB wide dynamic range making it efficient in uncontrolled light conditions

• 1 µs temporal resolution

• 1 ms maximum latency

• 20 mW power consumption

It is based on the quantization of the changes in the relative intensity, that leads to
spiking events at the output. The output is then a stream of address-events (AEs), in-
dicating the coordinates (x, y) of the spiking pixel, the polarization (ON/OFF), and a
corresponding time stamp, generated in an asynchronous manner with a precise timing,
in what is called Address Event Representation (AER) output. The polarization signifies
that the illumination level has increased or decreased for a certain pixel, usually caused
by a moving object in the scene. Having a latency of 1 µs, it is comparable to thousands
of frames per second (fps) related to a conventional frame-based camera. The circuit
is mainly composed of logarithmic photoreceptor with a switched-capacitor differencing

11

1 – Research on Neuromorphic Architectures

circuit that amplifies changes, and two-transistor comparator in the final stage (1.4a). The
pixels are of 40×40 µm2 large.

(a) Pixel core schematic (Image: [23]) (b) Principle of operation (Image: [23])

(c) Example of DVS output when either object or camera motion
takes place (Image: [23])

Figure 1.4: DVS

Generating spike-events related to changes in the light intensity, a DVS could be in-
terfaced to neuromorphic chips for data processing, composing a complete event-based
bio-inspired system, from sensing to processing.

The DVS has shown high efficiency in robotics, data acquisition and targeting. Specif-
ically, it was used to build a fast-calibrating robotic goalie [28], composed of a DVS that
provides an input to perform multiple balls targeting on a host PC.The movement of the
goalie arm was based on the positions and velocities of the tracked balls. As a result, the
system was able to block nearly 70 % of the balls.
In another application, event-based vision sensors were used to realize traffic data acqui-
sition and object tracking systems [29], implementing on one side a system that is able
to monitor 4 high-way lanes to estimate the speed and the number of vehicles that pass
on those lanes, the vehicles were classified in as cars or trucks based on the information
provided by the sensor.

12

1 – Research on Neuromorphic Architectures

1.2.5 Dynamic and Active-pixel Vision Sensor (DAVIS)
Another family of vision sensors are the Dyanmic and Active-pixel Vision Sensors (DAVIS)
[30, 31], they combine the functionality of a dynamic vision sensor (DVS) with a frame-
based active pixel sensor (APS) intensity readout. In this way, the objects’ recognition
and classification, and the scene content analysis could be handled by the frame-based
readout, while the tracking of fast moving objects is managed through the output of the
DVS. Since tracking is obtained through the DVS, a reasonable low APS frame-rate could
be used in order to reduce the computational power, thus obtaining a low-latency and low-
power architecture. The sensor has the following characteristics:

• 240× 180 array size

• 12 µs minimum latency at 1 klux

• up to 130 dB dynamic range for the DVS, and 55 dB for the APS

• power consumption: 5 µW at low activity, and 14 µW for high activity

13

Chapter 2

Optical Flow

2.1 Definition
Motion of physical objects is an essential phenomenon in everyday life. This motion,
when being observed by a spectator (a camera for instance), induces what is called the
Optical Flow (OF). Optical flow [32] became a field of research in the early 80’s, and it
is defined as the motion of the brightness pattern in a certain sequence of images (Figure
2.1). Such a motion could be caused by a moving observer, a moving scene, or a mu-
tual motion (relative motion between observer and scene objects). A motion may cause
a displacement in the brightness values in the related image sequence. However, not ev-
ery brightness variation corresponds to a motion, and not every motion will result in a
brightness variation as well. Optical flow is affected by the illumination conditions that
are present, and by different noise sources impacting the image sensor. The optical flow is
strongly related to how close the observer and the objects in the scene are, at their corre-
sponding travelling velocities, and to the angle of the scene with respect to the observer’s
travelling direction. One key issue discussed when mentioning the term "Optical Flow" is
the ability of providing a low power architecture, with a high computational speed that is
able to guarantee a real-time operation which is crucial in robotics and other autonomous
systems, as in driver assistance systems, where performance becomes critical.

Different computation algorithms have been analysed and discussed in the last few
decades, these algorithms are evaluated in terms of performance by a set of standards that
could vary from one application to another, and they could be classified in various macro
categories. Two of the most common categories are:

• Block matching algorithms [33] (Correlation-based) - they are based on assigning a
flow vector to group of pixels (macro block) rather than assigning it to an individual
pixel. This is achieved by searching the best matching block in the current frame to
a corresponding block in a previous frame, in order to determine its displacement.
Smart strategies must be used then in order to reduce memory requirements and

14

2 – Optical Flow

(1) (2) (3)

(1-2) (2-3)

Figure 2.1: Simple Example of Optical Flow

computation time. This type of algorithms usually suffers from accuracy problems
since they are pixel-discrete, and from their high computational cost requiring a
very high number of comparisons.

• Differential algorithms (Gradient-based)- are the most widely used algorithms for
optical flow computation. They are based on the calculation of spatial and tempo-
ral derivatives on a certain image. Are usually divided into two categories, local
methods and global methods. One famous example of local methods is the Lucas
& Kanade [34], while a notable global method is the Horn & Schunck method [35].

2.1.1 Mathematical Approach
A function I(x, y, t) of the grey values defines the considered image sequence. Where
(x, y) represent the pixel position in the array, and t is the time. When calculating the
optical flow, it is assumed that the brightness (grey value) of a standing still pixel in two
consecutive frames is constant, and a moving pixel has a constant grey value over time,
which is know as the brightness constancy constraint. The latter assumption is exposed
to several limitations, either observer-related limitations corresponding to the noise af-
fecting the image sensor, or scene-related ones associated the illumination variations and
conditions in which the number of photons acquired by one pixel can vary over time.
Optical flow computation also suffers from what is called the aperture problem, in which
different moving patterns at different orientations and different speeds could generate the
same optical flow output and identical response to a visual system (observing through a

15

2 – Optical Flow

small aperture), a simple example could be seen in figure (2.2).

Figure 2.2: The Aperture Problem

The brightness constancy equation exposes the following equation:

I(x,y,t) = I(x+ u,y + v,t+ 1) (2.1)

where (u, v) is the optical flow vector in ∆t = 1 (u.t.). For small movements, the
equation (2.1) can be developed in Taylor series (of first order):

I(x,y,t) ≈ I(x,y,t+ 1) +∇I(x,y,t+ 1)t
(
u
v

)
(2.2)

0 = I(x,y,t+ 1)− I(x,y,t) +∇I(x,y,t+ 1)t
(
u
v

)
(2.3)

Hence, It, Ix, and Iy will be used to indicate the partial derivatives. Where

It(x,y,t+ 1) = I(x,y,t+ 1)− I(x,y,t)

That follows:

0 = It + Ixu+ Iyv (2.4)

Equation (2.4) is an under-determined equation that features two unknowns in one
equation yielding to un infinite number of solutions. Here, the aperture problem becomes
clearly visible.

As a result, the problem has to be re-formulated using additional assumptions, such as
regularization (smoothness of the optical flow), with a further set of equations provided
by new constraints.

16

2 – Optical Flow

Lucas & Kanade Method

The Lucas & Kanade [34] method is a local differential method that makes use of the
spatial intensity gradient. This method was adopted as an acceptable solution to the am-
biguity in the optical flow constraint equation. It assumes that the optical flow field is
constant in a neighbourhood of the pixel x, adding more constraints then. The considered
neighbourhood is a small n×n pixels region. Such a method allows shifting the system of
equations from an under-determined one to an over-determined system by applying the
optical flow constraint equation to all the pixels in the considered region, by using the
least square criterion, yielding to more equations than unknowns.

Horn & Schunck Method

The Horn & Schunck [35] method assumes a smooth variation in the velocity of the bright-
ness pattern almost over the entire image, thus adding more constraints that help in resolv-
ing the optical flow constraint problem. This method suffers from the fact of being a slow
iterative method, moreover it is more noise-sensitive compared to other local methods.

2.2 Event-based Visual Flow
Recently, the exploitation of unmanned vehicles and robots has increased exponentially in
different civilian and military applications including remote sensing, aerial surveillance,
search and rescue (SAR) operations, bomb disposal, etc. However, many of the existing
machines lack the necessary intelligence which requires a high speed and efficient inter-
action in some particular fast changing and clustered environments. Frame-based optical
flow algorithms are characterized by their high computational cost accompanied by a lim-
ited speed of computation, making them inadequate for real-time operation, an essential
requirement in robot navigation and autonomous vehicles. One question could be: Could
the frame-based algorithms be employed for processing the output of an asynchronous
event-based retina?

Frame-based optical flow computation is normally based on long timing intervals (the
famous 50/60 Hz frequency for example) that makes them inadequate to be interfaced
with a DVS or other event-based image sensors having a temporal resolution of 1 µs
and a maximum latency of 1 ms. Therefore, some changes must be performed on the
traditional algorithms, and other methods should come to light as well. The new family
of algorithms could be employed directly on the output of an event-based image sensor.
Some of these algorithms were inspired by previous conventional region-matching algo-
rithms [36], others come out as variants of the traditional Lucas & Kanade [34] algorithm
[37], and some others used local plane fits as an alternative [38].

17

2 – Optical Flow

One example of robots that make use of event-based sensors is the iCub. The iCub
[39] is a humanoid robot developed at the Italian Institute of Technology (IIT). It is a robot
which is able to hear and see, and it is disposed with motors that move the hands, arms,
head and legs, allowing the robot to interact with the surrounding environment and other
humans. In [40] a biologically inspired visual attention system was developed for the
iCub. The system is based on input from two event-based dynamic vision sensors (DVS),
obtaining a low-latency and efficient computation. The robot exploits a C++ open-source
software package that allows interconnecting the different processors, sensors and actu-
ators of the robot, the library is called YARP [41] which stands for Yet Another Robot
Platform.

The framework that was discussed in [38] presented a new method in computing vi-
sual flow. The method makes use of the precisely timed output with a microsecond tem-
poral resolution of an event-based retina providing a redundancy-free information. The
mathematical approach is a time-oriented one based on a differential computation on the
spatio-temporal space of the incoming events, with the corresponding grey levels having
no impact on the adopted method, and where the need of solving dynamic equations be-
comes irrelevant. It is based on fitting a plane to the incoming events’ neighbourhood,
without any need of calculating spatial or temporal gradients. It also provided a solution
for large inter-frame displacements when having fast motions.

The events are generated by a 128×128 Address-Event Representation (AER) sili-
con retina [23], characterized by a very low latency. These events, when transmitted
off-chip, are time-stamped before being finally communicated, in packets (∼ one pack-
et/millisecond), to a computer where the computation takes place. The algorithm has been
implemented in software and different result parameters have been discussed.

2.2.1 Flow Definition
In this section, the algorithm that was adopted to calculate the optical flow will be de-
scribed as in [38]:

From the output of the DVS, information relative to the pixel’s position and the time
stamp are considered. So, the events could be defined as e(p, t) = (p, t)t, where p = (x,y)t

is the position of the pixel, and t is its relative time. A function Σe maps the time t to
each p, providing a surface of active events that are considered when the orientation and
the amplitude of the motion are estimated:

Σe : N
2 −→ R

p 7−→ Σe(p) = t
(2.5)

18

2 – Optical Flow

Figure 2.3: Optical flow computation [38]

Since timing is an increasing contribute, Σe is an increasing function in space with
partial derivatives that could be expressed as:

Σex =
∂Σe

∂x

Σey =
∂Σe

∂y

from which it could be written:

Σe(p+∆p) = Σe(p) +∇Σe∆p+ o(||∆p||) (2.6)

where∇Σe = (∂Σe

∂x
,∂Σe

∂y
).

Σe being a strictly increasing function, it has a non zero derivative at any point. Ap-
plying the inverse function theorem at p = (x,y)t one gets:

∂Σe

∂x
(x,y0) =

dΣe|y0
dx

(x) =
1

vx(x,y0)

∂Σe

∂y
(x0,y) =

dΣe|x0
dy

(y) =
1

vy(x0,y)

(2.7)

19

2 – Optical Flow

Rewriting the gradient as:

∇Σe = (
1

vx
,
1

vy
) (2.8)

and having components that are the inverse of the velocity vector, it represents a measure-
ment of the rate of change of time with respect to space, with its corresponding direction.
The problem of the definition provided in (2.8) is its sensitivity to the noise, imposed by
calculating pointwise partial derivatives. For this reason, the authors of [38] added a reg-
ularization process assuming a local velocity constancy. Therefore, Σe is locally planar,
and a fitted plane is calculated based on the incoming events, the slope of that plane with
respect to time axis is proportional to the motion velocity. In [38] a robust plane fitting
was applied in a spatiotemporal region of L×L×2∆t centred on each incoming event.
At this point any event e(p,t) belongs to a plane Π = (a, b, c, d)t if equation (2.9) is
satisfied:

Π t

pt
1

 = 0 (2.9)

The whole optical flow computation algorithm is shown in figure (2.4).

2.3 YARP Module
In this section the YARP module (written in C++) will be analysed and explained. The
module includes the algorithm which has been adopted as a starting point for obtaining
the hardware architecture the will be presented later. The following work, which includes
the hardware realization of the algorithm, is in collaboration with the Italian Institute of
Technology IIT.

The algorithm starts its computation by receiving events from the event queue, each
received event must be assigned to an appropriate surface (128 × 128 pixels each). The
choice is firstly related to the channel from which an event arrives. In fact, there are
two channels present in this case, representing the left and right dynamic vision sensors
(DVSs) of the robot. Secondly, for each DVS channel, two surfaces are available, here the
choice is related to the polarity of the arriving event, whether it is a positive or a negative
one.

After choosing the appropriate surface, nine regions centred at each neighbouring
pixel around the arriving pixel are searched, controlling each time stamp of the events
that are present to decide which subregion is most temporally nearby. The searching win-
dow is of 3× 3 pixels in this case.

20

2 – Optical Flow

Figure 2.4: The OF computation algorithm as provided in [38]

Once the temporally nearby surface is chosen, the plane coefficients could be calcu-
lated mathematically, using the following approach: consider that the events belonging
the subsurface are organized as discussed in what follows.

A is a 9 × 3 matrix containing all the spatial coordinates of the valid events on the
subsurface (assuming that all events on the 3× 3 surface are valid in this case):

21

2 – Optical Flow

A =

x0 y0 1
x1 y1 1
x2 y2 1
x3 y3 1
x4 y4 1
x5 y5 1
x6 y6 1
x7 y7 1
x8 y8 1

On the other hand, Y is a 9× 1 matrix holding the times stamps of the corresponding
events:

Y =

t0
t1
t2
t3
t4
t5
t6
t7
t8

A plane is normally described by:

ax+ by + ct+ d = 0

normalizing the equation, one gets:

ax+ by + d = −t

In the matrix form, the problem is solved in the form:

x0 y0 1
x1 y1 1
x2 y2 1
x3 y3 1
x4 y4 1
x5 y5 1
x6 y6 1
x7 y7 1
x8 y8 1

 a
b
d

 = −

t0
t1
t2
t3
t4
t5
t6
t7
t8

22

2 – Optical Flow

multiplying both sides by At:

AtA

 a
b
d

 = AtY

Thus obtaining: ∑xixi
∑
xiyi

∑
xi∑

yixi
∑
yiyi

∑
yi∑

xi
∑
yi N

 a
b
d

 = −

 ∑xiti∑
yiti∑
ti

from which the matrix [a b d]t is calculated as a

b
d

 = (AtA)−1AtY

where the inverse can be calculated as:

(AtA)−1 =
1

det(AtA)
adj(AtA)

Finally a control is done on all the events to find out whether they are close enough to the
plane, in this way the outliers are eliminated, and the coefficients a and b are recalculated
for the remaining events. This operation could be repeated different times, but the result
normally converges in 1-2 iterations. Only after that, the gradient is calculated:

dt

dx
= speed× cos(angle)

dt

dy
= speed× sin(angle)

where
speed =

1√
a2 + b2

angle = arctangent(
a

b
)

23

Chapter 3

HW Architecture

In this chapter the architectural choices will be discussed, as further analysis on each
building block will be provided later, including details on the corresponding VHDL mod-
ule. For simplicity, in what follows the dimension of the events-matrix will be assumed
as 3 × 3 matrix, later on more details will be examined on how the dimensions of the
matrix could change. The software described earlier referred to four different surfaces
based on two distinct image sensors (left and right), and two opposite polarities (positive
and negative). Here the design deals with events that are supposed to belong to the same
surface. The design could be simply generalized and applied for processing the other
surfaces when required.

The top-level entity is the one shown in figure 3.1. The architecture has essentially
in input an incoming event including the coordinates X and Y, and a relative time stamp,
along with a source ready signal (sready) indicating the arrival of that event . In output
the architecture provides both components of the gradient, which are dt

dx
and dt

dy
.

TOP

ENTITY

sready

X

Y

Ts

CLK100MHZ

dt/dx

dt/dy

Figure 3.1: Top Entity

A more detailed block diagram is demonstrated in figure 3.2. The block diagram
shows the different stages of the output computation, including:

• Memory management: concerning all the performed actions whenever a new event
is received, the purpose of this stage is to store the incoming event in its correct

24

3 – HW Architecture

position on the 304 × 240 pixels-surface (related to the coordinate X and Y), the
surface stores all the most recent events for each position for a defined interval of
time. If a valid event is already present in that position it is always replaced by the
most recent one.

• Matrix operations: including all the executed computations on the matrix of valid
elements. Starting from the computation of the product AtA, to its inverse, to all
the required operations that lead to (AtA)−1AtY and to the coefficients a and b as
a result.

• Iterations: as mentioned before, if the previous result is not satisfying, and starting
from the initially provided events - given a and b - some arithmetic operations are
completed to detect the outliers from the initial set of events, and then to calculate
the new coefficients from the remaining events. For the matrix in consideration (3
× 3), 1-2 iterations are usually sufficient.

• Gradient computation: the final stage of the algorithm from which dt
dx

and dt
dy

are
calculated using the coefficients a and b.

Memory

Management

Matrix

Operations
Iterations

Final

Computation

a

b

a'

b'

dt/dx

dt/dy

Figure 3.2: Architecture Block Diagram

3.1 Working Principle
In this section, a detailed set of information will be given on the working principle of the
architecture, different architectural choices will be highlighted, and various characteristics
will be exposed.

In what follows, the Xilinx Artix-7 35T FPGA (XC7A35TICSG324-1L) on the Arty
board is used as a target device for the architecture, and all the initial architectural choices
were based on that choice. Later on, and due to some resource restrictions, the target
device choice will be replaced by a ZedBoard Zynq-7000 board featuring an XC7Z020-
CLG484-1 FPGA to make the architecture more flexible.

The Artix-7 35T FPGA has a 100 MHz oscillator which is set to be the reference
clock of the entire architecture. As a specification of the project, the timing of the incom-
ing events is related to the characteristics of the events-source, and it reaches in the worst
case an input rate of 1 event/80ns (could be seen as a 12.5 MHz input source). Starting
from these specifications, it could be concluded that dividing the system’s reference clock

25

3 – HW Architecture

of 100 MHz and the input data clock which is of 12.5 MHz, 8 clock cycles are available
to exploit some design methodologies such as data pipeline and resource sharing. The di-
mension of the pixels’ array is of 304× 240 (related to the ATIS [24] resolution) holding
the most recent events for a well-defined interval of time, this time frame is a reconfig-
urable input parameter that is decided at the synthesis level as will be explained in the
following sections. As for the input event, it is considered a 32-bit input with:

• 9 bits representing the X coordinate

• 8 bits representing the Y coordinate

• 14 bits representing the time stamp Ts

• one polarity bit

The size of the matrix surrounding the incoming event in this project is also a recon-
figurable parameter, it has 3 × 3 as a lower bound, and 15 × 15 as an upper bound. It
should also be highlighted the fact that the number of rows and the number of columns of
this matrix are independent from each other, leading to a wider set of dimensions, where
the desired choice depends on the target application, as it varies between different fields
of utilization (indoor, outdoor, automotive, etc...).

3.1.1 Memory Addressing
In this part the adopted memory addressing mode will be exploited and justified, the
choice is restricted by the memory resources which are available on the Artix-7 35T
FPGA. The FPGA provides 50 block RAMs, each of 36 kbit, leading to a total of 1800
kbit of accessible memory. It supports either the use of a single 36K BRAM, or two in-
dependent 18K BRAM blocks. It also allows the usage of two independent ports when
there is a need of dealing with multiple reading/writing operations. The array that has to
be stored in memory is a 304× 240 array, each represented by 15 bits: 14 bits for the cor-
responding times stamp and one additional bit that indicates whether the event is a valid
one or not. Selecting the correct mode of addressing, there will be no need of storing the
coordinates X and Y in the memory, but only the corresponding time stamps. Considering
that the time stamps are of 14 bits, and the total available memory per block is of 36 kbit,
the number of needed blocks will be an upper bound of:

nblocks =
304× 240× 16

36000
≈ 33 blocks

This number of blocks, approximated to the nearest even integer which will be 34,
could be a suitable choice of block RAM. However, and in order to make the addressing
simpler and less consuming in terms of HW resources, 38 memory blocks are used. The

26

3 – HW Architecture

choice is related to the fact that the number of rows of the array (304) is a multiple of
19 which makes the column addressing easier as will be noticed later. As a result, the
pixels are distributed among 38 memory blocks, each holding the most recent event of
1920 different pixels.

Returning to the worst case in which the subsurface(matrix) surrounding the active
event is of 15×15, and exploiting the availability of 8 clock cycles to read and process all
the elements of this matrix (which allows a remarkable reduction in terms of the needed
HW resources), reading 30 elements corresponding to two consecutive columns is the
solution that has been adopted through the project. Reading 2 columns at a time means
that the 38 blocks will be distributed between these two columns (19 blocks per column),
and the final array distribution is the one reported in table 3.1, in which the numbers
express the memory number in which each cell is stored. The distribution of 38 × 10
pixels is generalized to the 304× 240 array.

Having this type of addressing, the pixels are then organized in the memory in 16×120
mini blocks, each composed of 19× 2 pixels. And the address of each pixel is calculated
as:

address = numblock + Y (7 downto 1)

where Y is the y-coordinate of the incoming event, and numblock varies with the co-
ordinate x. For instance if 0 ≤ x ≤ 18 then numblock = 0, if 19 ≤ x ≤ 37 then
numblock = 1 and so on. It can be concluded therefore that numblock varies between 0
and 15, depending on x.

3.1.2 Memory Accessing and Data Preparation
When a new event arrives, the 15 × 15 matrix must be provided at the output 2 columns
at a time, in 8 consecutive clock cycles. The addresses in each cycle are calculated for y,
where y is:

clock cycle 1 2 3 4 5 6 7 8
y yi − 7 yi − 5 yi − 3 yi − 1 yi + 1 yi + 3 yi + 5 yi + 7

As it could be observed, the address for which the data must be written in memory
before reading is provided either in cycle 4 or in cycle 5 with the corresponding write
enable signal set active only for one specific memory. The correct is choice based on the
least significant bit (LSB) of Y, if Y (0) = ’1’ then the writing address is that of cycle
4, otherwise it is the one provided in cycle 5. For what concerns the adjacent pixels, the
pixels having a coordinate x < xeventi will have either the same address as calculated
for y shown above, or an address that is 120 locations lower. On the other side all the
pixels having an x > xeventi will have either the same address as the central event, or
a one which is 120 positions higher, according to the adopted memory addressing mode
discussed before.

27

Table 3.1: The distribution of the first 38× 10 cells among the 38 available memories.

0 19 0 19 0 19 0 19 0 19
1 20 1 20 1 20 1 20 1 20
2 21 2 21 2 21 2 21 2 21
3 22 3 22 3 22 3 22 3 22
4 23 4 23 4 23 4 23 4 23
5 24 5 24 5 24 5 24 5 24
6 25 6 25 6 25 6 25 6 25
7 26 7 26 7 26 7 26 7 26
8 27 8 27 8 27 8 27 8 27
9 28 9 28 9 28 9 28 9 28

10 29 10 29 10 29 10 29 10 29
11 30 11 30 11 30 11 30 11 30
12 31 12 31 12 31 12 31 12 31
13 32 13 32 13 32 13 32 13 32
14 33 14 33 14 33 14 33 14 33
15 34 15 34 15 34 15 34 15 34
16 35 16 35 16 35 16 35 16 35
17 36 17 36 17 36 17 36 17 3
18 37 18 37 18 37 18 37 18 37

0 19 0 19 0 19 0 19 0 19
1 20 1 20 1 20 1 20 1 20
2 21 2 21 2 21 2 21 2 21
3 22 3 22 3 22 3 22 3 22
4 23 4 23 4 23 4 23 4 23
5 24 5 24 5 24 5 24 5 24
6 25 6 25 6 25 6 25 6 25
7 26 7 26 7 26 7 26 7 26
8 27 8 27 8 27 8 27 8 27
9 28 9 28 9 28 9 28 9 28

10 29 10 29 10 29 10 29 10 29
11 30 11 30 11 30 11 30 11 30
12 31 12 31 12 31 12 31 12 31
13 32 13 32 13 32 13 32 13 32
14 33 14 33 14 33 14 33 14 33
15 34 15 34 15 34 15 34 15 34
16 35 16 35 16 35 16 35 16 35
17 36 17 36 17 36 17 36 17 3
18 37 18 37 18 37 18 37 18 37

3 – HW Architecture

The output of this stage is:

• an array of 30 elements of 15 bits, corresponding to the 2 columns of 15 pixels each
that are being analysed

• a signal that starts the next stage which is the stage of processing

The first 15 elements of the output array are multiplexed on the outputs of the first 19
memory blocks (with index between 0 and 18), while the remaining 15 elements of the
array are multiplexed on the other 19 blocks (with index between 19 and 37). In this case,
the multiplexing is based on the memory number of middle row. Moreover, sending 2
columns every cycle for 8 clock cycles means that the total number of columns will reach
16 instead of 15. For this reason either the first column sent in the first clock cycle or the
second column sent in the eighth clock cycle will be set to zero in order to be ignored
later on in the processing stage, also in this case the choice is related to the LSB of the
coordinate Y.

Validation Memory Since all the events must be kept in memory for a precise interval
of time, additional memory has to be added to the architecture in order to keep track of
the events. The idea is to introduce a distributed memory, working as a first-in, first-out
(FIFO), that stores every single event received in the time frame taken into consideration.
The time stamp is stored in the FIFO along with its coordinates Xv and Yv, and an addi-
tional bit that indicates whether the content of the cell corresponds to a valid event or not.
The FIFO has two internal counters, readcount and writecount, each is incremented once
every 8 clock cycles (related to the 12.5 MHz input data rate), keeping a constant time
interval between them, which is equal to the time frame for which the events have to be
stored. Therefore - and with a frequency of 12.5 MHz - if a new event has arrived, the
event is written and the validation bit is set to 1, otherwise the validation bit is set to 0. In
both cases the writecount is incremented. The outputs of the validation memory are:

• Xv and Yv: the coordinates of the pixel that has to be validated

• Tsv: the time stamp of the pixel that has to be validated

• check: a signal that indicates if any control on validation has to be done. It is just a
signal which is equal to the validation bit mentioned before

Once the check signal is asserted, the content of the pixel having X = Xv and Y = Yv
is compared to the time stamp Tsv provided by the validation memory. If the contents
are equal this means that the event is expired and it has to be eliminated by setting all bit
- including the validation bit - to zero. Otherwise, if the contents are different, then the
event in that position is more recent and no actions have to be taken. The memory address,
for which the contents have to be compared, is based on Xv and Yv and is calculated as
explained previously.

29

3 – HW Architecture

3.1.3 Computation of AtA and AtY

At this point of the project, AtA and AtY have to be calculated properly as ∑xixi
∑
xiyi

∑
xi∑

yixi
∑
yiyi

∑
yi∑

xi
∑
yi N

 and
 ∑xiti∑

yiti∑
ti

 respectively.
As it can be noticed, the 3 × 3 matrix to the left is a symmetric one for which it

would be enough calculating 6 elements out of the 9. As previously specified, this block
receives an array of 30 elements every clock cycle (two consecutive columns). Since the
array contains only time stamps for now, each of these events receives a unique pair of
coordinates X and Y (0 ≤ (x,y) ≤ 14 in the 15×15 case) to start composing the matrices
A and Y. For each element, if the validation bit is set to ’1’ then the element will have its
coordinates x and y along with its time stamp added to the final result, otherwise they will
be ignored and will have no effect on the final result. As a result, each of the 30 elements
with xi, yi and a time stamp tsi - when it is valid - will have the following contributes
calculated in parallel: x2i , y

2
i , xiyi, xitsi and yitsi. After that, all the contributes will be

added, and the result will be stored in order to be summed with the related events that
will arrive in the consecutive clock cycles. Besides calculating AtA and AtY , this block,
when receiving the different columns of the subsurface, stores all the elements in a 15×15
array. This operation is necessary for filtering the outliers in following iterations, as will
be described subsequently.

3.1.4 Computation of the Adjoint of AtA, adet, bdet, and det

Once the matrix

 ∑xixi
∑
xiyi

∑
xi∑

yixi
∑
yiyi

∑
yi∑

xi
∑
yi N

 is ready, the next step is to calculate the

adjoint matrix adj(AtA) =

 adj11 adj12 adj13
adj21 adj22 adj23
adj31 adj32 adj33

 which is a symmetric matrix as

well, this means that only the following elements - which are relevant for the computation
of a and b - have to be calculated as:

• adj11 = N
∑
y2i −

∑
yi
∑
yi

• adj12 =
∑
xi
∑
yi −N

∑
xiyi

• adj13 =
∑
xiyi

∑
yi −

∑
xi
∑
y2i

• adj22 = N
∑
x2i −

∑
xi
∑
xi

• adj23 =
∑
xiyi

∑
xi −

∑
x2i
∑
yi

30

3 – HW Architecture

After that, the architecture progresses by multiplying the first two rows of adj(AtA) by
AtY , obtaining the two elements adet and bdet that will be divided later by the determinant
of AtA (det) to get the coefficients a and b:

• adet = adj11
∑
xiti + adj12

∑
yiti + adj13

∑
ti

• bdet = adj12
∑
xiti + adj22

∑
yiti + adj23

∑
ti

• det = adj11
∑
x2i + adj12

∑
xiyi + adj13

∑
xi

3.1.5 Iterations and Recomputation of a and b
Starting from the coefficients a and b previously calculated, the events that have been
stored in an early stage are verified in a defined number of iterations, which is introduced
as a parameter at the synthesis stage. Consider a 15 × 15 matrix, a pair of columns is
taken into consideration at a time in 8 different clock cycles according to the following
comparison:

a(x− xc) + b(y − yc)− (ts − tsc) < th

where x and y are the coordinates of the event that has to be validated and ts is its cor-
responding time stamp, whereas xc, yc and tsc are the parameters related to the central
event of the matrix in consideration. On the right of the inequation, the parameter th is a
threshold set at synthesis time and can be modified based on the application in operation.
The events that verify the inequation passes through to the next stage, while the other
events will have their validation bit set to zero. After that, the computation of AtA, AtY ,
and of adj(AtA) after them, and finally of adet, bdet and det, is executed exactly as before.

3.1.6 Final Computation
The coefficients a and b are calculated using a Xilinx IP Divider Generator, which char-
acteristics will be specified in the next section. They are simply calculated as:

a =
adet
det

and b =
bdet
det

The remaining steps are executed using the Xilinx IP core that implements the coordi-
nate rotational digital computer (CORDIC) that allows the exploitation of the following
functions that are required by the algorithm:

• θ = arctan(a
b
)

•
√
a2 + b2

• sin(θ) and cos(θ)

31

3 – HW Architecture

while the term 1√
a2+b2

is computed using Xilinx IP Divider Generator.
Finally the following products could be evaluated:

dt

dx
= speed× cos(θ)

dt

dy
= speed× sin(θ)

3.2 Detailed Hardware and VHDL Description
In this section more details will be provided on the hardware and the VHDL source code.
The VHDL code of each block will be investigated, and the specifications of each block
in terms of working principle, data pipeline, resource sharing and latency will be high-
lighted. Through out this section, the worst case, in which processing will be done on a
15× 15 matrix, is taken into consideration. When the latter is satisfied, in the other cases
in which smaller matrices are needed, the architecture guarantees the correct behaviour,
even though some code optimizations would be possible for each specific configuration. It
must be highlighted that Vivado Design Suite 2016.1 is used for the synthesis and analysis
of the architecture.

The architecture has these parameters as reconfigurable ones that have to be set at
synthesis stage.

Parameter Description
ROW the number of rows of the desired output matrix
COL the number of columns of the desired output matrix

min_events
the minimum number of valid events on a matrix for which

it is considered a valid one

n_iter
the required number of iterations. It can be set to 0, 1, 2 or 3

depending on the matrix dimension and the required accuracy
time_int the time interval for which the events are considered valid in the memory

RD_MTX

A macro block that consists of three different parts.

1. MEM_READ

2. 38 block RAM

3. VLD_MEM

32

3 – HW Architecture

CLK100MHZ

w
e
a

w
e
b

d
ia

d
ib

a
d
d
ra

a
d
d
rb

d
o
b

check

Tsv

Xv

Yv

Validation

Memory

BRAM

MEM

READ

e
v
e
n
t

s
re

a
d
y

d
o
a

Tsout

MEM_num

RD_MTX

Figure 3.3: RD_MTX Schematic

The schematic of the MEM_READ block is shown in figure 3.3.
The ports of this blocks are:

• sready (input) - active high for one clock cycle when a new events arrives

• X , Y and Ts (input)

• Tsout (output) - a 30 elements array corresponding to all the items of two consec-
utive columns. Each elements is of 15 bits, 14 corresponds to the time stamp, and
one validation bit that indicates whether the event is valid or not

• start (output) - signal that goes active (high) when the first two columns of Tsout
are ready for the next blocks (MULT). Once activated, this signal remains active
for 8 consecutive clock cycles in the case of an output matrix of 15 columns has to
be provided. If the output matrix is of 3 columns for example, this signal remains
active only for 2 clock cycles, since 2 cycles are enough to read 3 columns.

There are two main reasons regarding the choice of reading two columns at a time
instead of reading all the elements of the matrix at once. Mainly for the 15× 15 case:

1. It would not be possible reading all the elements of the matrix due to memory access
limitations related to the adopted addressing methodology.

33

3 – HW Architecture

2. Reading all the elements of the matrix means that all the read events must be pro-
cessed in parallel, which is a hardware expensive solution in terms of LUT and DSP
slices. The problem is more evident for larger matrix dimensions.

MEM_READ The block has in input:

• 9 bits Xi, 8 bits Yi and 14 bits Tsi: Xi and Yi are the coordinates of the input event,
and Tsi is its time stamp

• sready is a signal that indicates the arrival of new event to the architecture

• 9 bits Xv, 8 bits Yv and 14 bits Tsv: in this case Xv and Yv are the coordinates
of the event that has to be verified if expired, Tsv is the time stamp that has to be
compared with the current one present in that position

• check: active high signal: signals the expiry of an event, for which verification has
to be performed

• dob: the outputs of port B for all the 38 memories, port B is the BRAM port on
which the verification phase takes place. It allows reading the memory content that
has to be verified. Each elements of the 38 is of 15 bits.

The outputs of the block are:

• MEMnum - number that varies between 0 and 18 since the memories are orga-
nized in 19 rows, this number is used to multiplex the outputs of the memories in
order to get the correct output.

• addra and addrb - 11 bit addresses that are provided by this block to the memories.
As stated previously, port A of the BRAM memories is used to write the new data in
the correct location and to read the output matrix, while port B is used in the expiry
validation stage in which an event is firstly read and secondly written (cancelled) in
case of expiry.

• dina and dinb - 15 bit inputs of the different memories for both ports

• wea and web - active high write enable signals for both memory ports, activated for
a specific memory when an event has to be written.

The table below shows how y changes with respect to yi among the clock cycles. For
each y, an address is calculated according to the formula previously stated.

clock cycle 1 2 3 4 5 6 7 8
y yi − 7 yi − 5 yi − 3 yi − 1 yi + 1 yi + 3 yi + 5 yi + 7

34

3 – HW Architecture

After that, the different addresses are generated for the memories depending onMEM_num.
Suppose that the address that has been generated for a certain y is address, then the one
that will be assigned to each memory will be one of the following: address, address +
120, or address− 120 according to the position of each memory with respect to the cen-
tral one. A simple example for a 5×5 is shown in the figure below (fig. 3.4), for a selected
pair of columns.

0

1

2

18

17

37

36

19

20

21

address-120

address-120

address

address

address

0

1

2

18

17

37

36

19

20

21

0

1

2

18

17

Figure 3.4: Addresses generation for a 5× 5 matrix

Regarding the write enable signal wea, one of the 38 write enables (one for each
memory) will be activated exclusively for one clock cycle whenever y(7 downto 1) =
yi(7 downto 1), and the choice between the left and the write columns of memories
depends on the LSB of yi, since both cells corresponding to a certain row have the same
MEM_num value as can be deduced from 3.1.

VLD_MEM Related to the validation memory which working principle has been de-
scribed earlier. The inputs of this block are:

• sready - active high that indicates that a new event is ready to be written

• evt - 32 bit input event

And the outputs:

• Xv and Yv - the coordinates of the event to be validate

• Tsv - time stamp of the event to be validated

• check - indicator for MEM_READ when a validation is required, it is an active
high pin

At the HDL level, the validation in managed in the following steps:

35

3 – HW Architecture

1. When the check signal is asserted, the coordinates of the cell that has to be validated
Xv and Yv are provided to the MEM_READblock

2. The address for those coordinates is calculated and provided to the all the memories

3. Only the output of the specific memory corresponding to that cell is taken into
consideration and is compared to the time stamp Tsv

4. Only if the time stamps match, the event is eliminated, otherwise no actions are
taken

3.2.1 MULT
The MULT block has the job of calculating AtA and AtY . Figure 3.5 shows how the
blocks RD_MTX , MULT , and Adjoint are connected. In input it has the following
signals:

• start - a signal that arrives from RD_MTX in order to start the computation

• sum - when start is active (for 8 clock cycles), this signal is set to 0 in the first clock
cycle, and then it’s activated for the remaining 7 clock cycles. It simply indicates
whether to take or not the result of a previous stage, since the addition is performed
in a loop over 8 clock cycles.

• y0 - the least significant bit of the Y of the event for which the computation is being
executed, it implies whether to take into consideration or ignore, the first column in
the first cycle and the second column in the 8th clock cycle when saving the matrix
in sur15 and sur15_2, or when performing the computation

The outputs of this blocks are:

•
∑
x2,
∑
y2,
∑
xy,

∑
x,
∑
y,
∑
xt,
∑
yt,
∑
t, and N . They represent the com-

ponents of matrices AtA and AtY , and their corresponding VHDL notation is:
sum_x2, sum_y2, sum_xy, sum_x, sum_y, sum_xt, sum_yt, sum_t and N .
The dimensions of these signals are shown in the table 3.2.

• go - active high - signals to the subsequent block to start its computation, based on
the outputs of this stage

• sur15 and sur15_2 - two dimensional arrays where the input matrices are stored
for the next iteration. The reason of the presence of two matrices is that when two
consecutive computations - for two distinct events (with an inter-event time interval
of 8 clock cycles) - have to be executed, the new arriving matrix could not be stored
in sur15 since the matrix that is already present their has not been used yet by the
iteration block. For this reason, the new matrix will be stored in sur15_2 instead

36

3 – HW Architecture

Another parameter that could be set at synthesis time is min_events, it simply indi-
cates the minimum number of valid events on a plane in which the matrix is considered
valid, and therefore the next processing stages are called. The worst case in which all the
events in the 15 × 15 matrix are valid has been considered in this project. However, the
number of bits of each element varies with the dimension of the matrix as demonstrated
in the table below (table 3.2). The estimation of number of bits - in the case 15 × 15 - is
done starting from X and Y that are represented in 4 bits each, where they vary between 0
and 14, in which the absolute value of X and Y is not relevant in the final computation, but
the relative difference between the matrix elements is the term that counts when dealing
with derivatives. This choice reduces drastically the consumption of the architecture in
terms of hardware resources, since it implies dealing with internal signals with a narrower
bit-widths.

Table 3.2: Variation of the number of bits (worst case) for the elements of AtA with the
matrix dimension

matrix dimension
∑
x2

∑
y2

∑
xy

∑
x
∑
y
∑
xt

∑
yt

∑
t N

15× 15 14 14 14 11 11 25 25 22 8
13× 13 14 14 14 10 10 24 24 22 8
11× 11 13 13 13 10 10 24 24 21 7
9× 9 11 11 11 9 9 23 23 21 7
7× 7 10 10 10 8 8 22 22 20 6
5× 5 8 8 8 6 6 20 20 19 5
3× 3 4 4 4 4 4 18 18 18 4

RD_MTX MULT Adjoint

CLK100MHZ

X

Y

Ts

sready

Tsout

y0

start

SUM

go

a_det

b_det

det

goout

sur15

sur15_2

Figure 3.5: A schematic showing how the first set of RD_MTX , MULT and Adjoint
blocks are connected

3.2.2 adjoint
The adjoint block completes the calculation of a_det, b_det, and the determinant det start-
ing from the adjoint matrix of AtA. The computation is performed in 3 consecutive clock
cycles, in order to meet the timing requirements of the different adders and multipliers
that are included in the computation :

37

3 – HW Architecture

1. computation of the adjoint matrix of AtA

2. computation of partial products adet1, adet2 , adet3 , bdet1 , bdet2 , bdet3, det1, det2,
and det3

3. summation of the different terms:

• adet = adet1 + adet2 + adet3
• bdet = bdet1 + bdet2 + bdet3
• det = det1 + det2 + det3

This block has in input and output the following signals:

• sum_x2, sum_y2, sum_xy, sum_x, sum_y, sum_xt, sum_yt, sum_t and N in
input

• go - active high input that arrives from the MULT block to start the computation

• a_det, b_det, and det in output

• gout - a signal that is asserted whenever the computation ot the outputs is termi-
nated, and is sent to the successive block

As it can be noticed, the product (adj(AtA))(AtY) is calculated instead of dividing
(adj(AtA)) by the determinant of the matrix, which results in getting the inverse matrix
of AtA, as specified in the algorithm. This choice is related to the hardware limitations
in which calculating the inverse of AtA would require using at least 6 dividers, thus con-
suming more resources. While multiplying (adj(AtA)) by (AtY), then dividing after that
requires only two divisions.

3.2.3 Iteration Blocks
The figure 3.6 and 3.7 show two different implementations of the iteration phase for two
cases of n_iter.

The iteration block stores one of the two matrices that are provided by the MULT
block, and starts the iteration in order to exclude the outliers from the final computa-
tion. The validation of the events is performed in three clock cycles (due to some timing
requirements of the different blocks: comparators, adders, multipliers, etc...) as follows:

1. the terms a(x − xc), b(y − yc), and (t − tc) are calculated for each valid events in
the matrix. Since x and xc, as well as y and yc, are well defined through the entire
matrix, then there is no need to introduce any adders when subtracting (x−xc) and
(y−yc), where these subtractions depend only on the relative position of each event
with respect to the central one

38

3 – HW Architecture

a_det

b_det

det

go_out

sur15

sur15_2

iteration MULT
FINAL

Adjoint

`

a_det_final

b_det_final

det_final

go_out_final

Tsout_it1

start_final

SUM_
FINAL

gout_
final

Figure 3.6: A schematic demonstrating the components of the iteration block when the
parameter n_iter = 1

a_det

b_det

det

go_out

sur15

sur15_2

iteration MULT_
IT

Adjoint

`

Tsout_it1

start_it1

iteration MULT
FINAL

Adjoint

`

a_det_final

b_det_final

det_final

go_out_final

Tsout_
final

start_final

SUM_
FINAL

gout_
final

a_det_it

b_det_it

det_it

go_out_it

sur15_it1

sur15_2_it1

gout_it1

SUM_IT1

Figure 3.7: A schematic demonstrating the components of the iteration block when the
parameter n_iter = 2

2. the absolute value of a(x − xc) + b(y − yc) - (t − tc) is computed for each valid
event

3. the values computed in cycle 2 are compared to a certain threshold, and only those
satisfying the inequation are approved for the next processing stage

At the end of each iteration the new values of a_det_final, b_det_final, and det_final,
are computed exactly as in the first case, by passing the new matrices to the MULT and
adjoint blocks, respectively. A distinction is made betweenMULT_it andMULT_FINAL
blocks only because the block MULT_it - in the case where n_iter = 2 - has to store the

39

3 – HW Architecture

input matrix for further processing in the second iteration. Hence, all the data processing
is identical between the two blocks.

3.2.4 Divider
The next step is to calculate the coefficients a = adet

det
and b = bdet

det
using the Xilinx IP

Divider Generator. The objective was to decide between the different possibilities offered
by the divider generator, and to choose the most suitable solution namely between these
two:

1. Radix-2 solution - it employs the FPGA logic (registers and LUTs) to obtain dif-
ferent throughput options, reaching a single cycle if required. It is based on integer
division and is suggested either when a high throughput is required or when the
operands width is around 16-bits. Moreover, since the proposed solution does not
require block RAM or DSP primitives, this solution might be useful when those
resources are required elsewhere.

2. High Radix solution - it exploits block RAMs and DSP slices, it is the recommended
when the widths of the operand are greater than 16. This solution is based on a
prescaling algorithm in an iteration loop, this means that once this block starts the
computation, any new input must wait until the previous calculation has terminated,
getting a throughput which is lower than the previous solution

Both solutions were tested for the normalized 56-bit dividend and a 40-bit divisor,
with a 16-bit fraction at the output. In order to satisfy the timing requirements (positive
slack), either a 40 clock cycles latency with a single cycle throughput Radix-2 divider, or
a High Radix divider with a latency of 16 clock cycles (which is equal to the throughput
in this case), must be introduced. Since the inputs of this block arrive once every 8 clock
cycles, adopting the High Radix division will require the use of 4 dividers instead of a
single one, the first two are used in order to divide adet and bdet in parallel, and the other
couple of dividers is used in the worst case in which 8 clock cycles later, another pair of
inputs arrives, and this pair is divided in a correct way.

On the other hand, the Radix-2 solution, which has been adopted in this project, allows
to get the maximum throughput with a latency of 40 clock cycles. The inputs adet, bdet,
and det arrive at the same time. As soon as the inputs arrive, in the first clock cycle adet
is fed to the divider as a dividend, and det is fed as the divisor, while in the second clock
cycle the dividend is switched to bdet. Therefore, the coefficients a and b are obtained in
consecutive clock cycles. The divider block has the following interface signals:

• dividend_valid and divisor_valid active high signals in input to tell when a new
dividend or divisor is valid, respectively

• 56-bit dividend and a 40-bit divisor in input

40

3 – HW Architecture

• dout_data an output of 32-bit, including a 16-bit fractional part and a 16-bit integer
part

• dout_valid active high signal indicating when a new output is valid

After obtaining the coefficients a and b, two parallel computations are executed as
shown in figure 3.8. The first regarding the θ = arctan(a

b
) and sin(θ) along cos(θ) after

that. The other concerning the calculation of the term 1√
a2+b2

.

Divider

arctan(a/b)

a2+b2 SQRT RECIPROCAL

SINCOS

a

b

a_det

b_det

det

sin()

cos()

1/√(a2+b2)

Figure 3.8: Data propagation in two different processing directions

3.2.5 Arctangent
The arctangent of the ratio a

b
is computed using a Xilinx IP implementing a coordinate

rotation digital computer (CORDIC) algorithm. The architectural configuration of the
block is set to parallel in order to obtain a high throughput with a maximum pipelining.
The block has a 20 clock cycles latency, and the output is expressed in 16 bits fixed-point
twos complements number with 13 bit fractional part and the remaining 3 bits for the
integer part. It has a 64 bits input, where the input coefficient a is placed in the most
significant part (63 downto 32) and b on the least significant part (31 downto 0). At the
output, an atan_v signal is asserted whenever an output is ready.

3.2.6 Sine and Cosine
Successively, once obtaining the arctangent result of the previous stage, the function of
the SINCOS block is to compute the sine and the cosine of the angle θ. The arctangent is
passed to the input through a 16-bits vector and the output is obtained on a 32-bits vector,
where the most significant part belong to the cosine of the angle and the least significant
part features the sine of the angle, both expressed in radians in the 1QN format (2-bits
integer, 14-bits fractional). This CORDIC block has a latency of 20 clock cycles, with a
maximum throughput guaranteed through a parallel architectural configuration.

41

3 – HW Architecture

3.2.7 Square Root
The SQRT block, implemented through the Xilinx IP CORDIC algorithm, starts the com-
putation of (

√
a2 + b2) in parallel with the arctangent block, after obtaining the term

a2 + b2 in two consecutive clock cycles, in which in the first clock cycle the terms a2

and b2 are calculated, and in the second clock cycle the two terms are added. The input
a2 + b2 is expressed in 32 bits, and the output in 17 bits representing the integer part, and
the latency of this block is of 17 clock cycles

3.2.8 Reciprocal
The final step that remains before obtaining the final result is to calculate the reciprocal of
the term (

√
a2 + b2). It was achieved by introducing another divider, adopting the Radix-

2 solution as before, and by setting the the dividend width to 2 bits (since it is constant
and equal to 1), and the divisor to 17-bits width. The output is expressed in 19 bits with 2
bits for the quotient part and 17 bits for the fractional part. The latency of this block is of
10 clock cycles.

3.2.9 Final Computation
The total delays in the trigonometric part (calculating sine and cosine), and in the arith-
metic part (1√

a2+b2
) are:

ttrig = tarctan + tsincos = 20 + 20 = 40 clock cycles

tarith = ta2,b2 + t(a2+b2) + tSQRT + tRECIPR = 1 + 1 + 17 + 10 = 29 clock cycles

This implies that the result of the arithmetic part arrives 11 clock cycles earlier than that
of the trigonometric part. Hence, pipelining the output of the arithmetic part for 11 clock
cycles is required in order to compute the products 1√

a2+b2
sin(θ) and 1√

a2+b2
cos(θ) cor-

rectly.

42

Chapter 4

Synthesis and Simulation Results

4.1 Simulation Results
In the following section the results of the simulation will be demonstrated, illustrating the
main steps of processing for each block. The architecture was fed by the inputs provided
in the table below (table 4.1), in which for each event the coordinates X and Y are stated
along with the corresponding time stamp. The final set of events where the processing
example takes place is shown in figure 4.1. The inputs - as can be observed - are provided
to a limited region in order to have enough events in the neighbourhood which can be con-
sidered during the processing stage, giving more reasonable results. The main parameters
of the architecture have been set as:

• matrix dimension: 5× 5 (row = 5, col = 5)

• min_events set to 0 in order to start the processing stage for all the inputs that are
provided, and be able to discuss the obtained results.

• the threshold for which the events pass the iteration stage is set appropriately, allow-
ing all the events to pass this stage. An example in which this threshold is lowered,
filtering some events, will be provided later.

4.1.1 Memory Accessing
Figure 4.2 shows some aspects of the initial stage of memory accessing and some data
processing. The sready signal is provided with the inputs X , Y and Ts. MEM_num
is the memory number that varies between 0 and 18 depending on the input coordinate
X . For example, for the first input which has an X = 93, the signal simply exploits
the modulo function as: MEM_num = 93 mod 19 = 17, while the LSB of Y
indicates whether the memory belongs to the first set of memories (indexed from 0 to

43

4 – Synthesis and Simulation Results

Table 4.1: Table showing the first 18 inputs that have been provided to the architecture

Input X Y Ts

1 93 189 6100
2 92 191 5983
3 96 189 7196
4 95 191 7200
5 94 187 7240
6 95 188 7307
7 97 190 7400
8 94 191 7430
9 94 190 7470
10 94 189 7502
11 94 188 7540
12 95 191 7590
13 97 190 7607
14 97 189 7700
15 97 188 112
16 96 191 107
17 95 190 104
18 95 189 7800

1

2

3

4

5 1110 9 8

1718612

16

1571314

Figure 4.1: Simulation: first 18 inputs with the output window around the last received
event

18), or the other set (19 to 37). Mem_num decides where to take the different outputs
from. addrvector are the addresses that are sent for the different memories. As it can be
observed, different addresses are provided in the three consecutive clock cycles (required
in the case of 5 × 5 matrix), and the wea signal is only activated in the second cycle and
only for one specific memory, where the new event must be written, and read after that.

The addresses that are calculated for the first two inputs are shown in figure 4.3 (shown

44

4 – Synthesis and Simulation Results

Figure 4.2: Simulation results: input

for the first 19 memories since address(MEM[i+19]) = address(MEM[i])). The addresses
are calculated corresponding to the equation that has been reported previously, where
numblock = 4 and Y (7 downto 1) = 94, therefore address = 574 for the cen-
tral event. Since the last row of the matrix must be read from the subsequent block of
memories, the address corresponding to that row would be address + 120 as explained
previously, and as can be observed in the waveform.

Figure 4.3: Simulation results: address generation

45

4 – Synthesis and Simulation Results

1

2

3

4

1

2

3

1

2

1

Figure 4.4: Simulation: first 4 inputs and their corresponding output window

4.1.2 Processing Stage
The figure below (fig. 4.5)shows how are the first 4 matrices - related to the first 4 inputs -
saved in the sur15 and sur15_2 for the iteration stage. The inputs are saved alternatively
between the two matrices as can be noticed.

The output matrix corresponding to the 18th input is the one shown in figure 4.1.
As can be noticed, the matrix includes 17 out of 18 events that are provided, where the
second event is not taken into consideration since it does not belong to the 5 × 5 region.
The outputs of the MULT block are highlighted, they represent both the AtA and the
AtY matrices, defined as follows:

AtA =

 ∑xixi
∑
xiyi

∑
xi∑

yixi
∑
yiyi

∑
yi∑

xi
∑
yi N

 =

 107 80 37
80 110 36
37 36 17

AtY =

 ∑xiti∑
yiti∑
ti

 =

 210369
184061
103405

46

4 – Synthesis and Simulation Results

Figure 4.5: Simulation results: sur15 and sur15_2 in 4 consecutive cycles

47

4 – Synthesis and Simulation Results

Figure 4.6: Simulation results: output of mult block

The signal go indicates when the output of the MULT block is ready for the succes-
sive processing. Once, the outputs are ready they are fed to the adj block responsible of
calculating a_det, b_det and det as shown in figure 4.7. The outputs for the input matrices
AtA and AtY expressed before are:

• a_det = −7453852

• b_det = −15300142

• det = 15148

Figure 4.7: Simulation results: output of adj block

The next step would be to divide a_det and b_det by the determinant det, the results
of this operation are shown in hexadecimal in figure 4.8, the useful bits are 32 bits, 16
representing the integer part, and the other 16 express the fractional part. The results are
provided 40 clock cycles after, and they are as expected, where a ≈ −492 and b ≈ −1010.

48

4 – Synthesis and Simulation Results

Figure 4.8: Simulation results: output of divider block

Once a and b are ready, two parallel computations must take place as explained before.
The first regarding the computation θ as the arctangent of a

b
, then calculating sin(θ) and

cos(θ). a and b are provided in input of the arctangent block, a on the MSB 32 bits
and b on the LSB part. The output is available 20 clock cycles later, it is expressed in
hexadecimal as A9F6 which corresponds to ≈ −2.689 radians (−154◦). The result is
a negative one related to having both a and b negative, which corresponds to having an
angle in the fourth quadrant .

Figure 4.9: Simulation results: output of arctangent block

After having calculated the angle θ the next step is to calculate the sine and the cosine
of the angle through the sincos block. The output is ready 20 clock cycles later, and is
composed of 32 bits, (16 bits for each):

• sin(θ) = E3FF (expressed in hexadecimal) which corresponds to ≈ −0.4376

• cos(θ) = C673 corresponding to ≈ −0.899

Figure 4.10: Simulation results: output of sincos block

49

4 – Synthesis and Simulation Results

On the other hand, and after calculating the term a2+b2 ≈ 1259239, the output would
be 1122, and is provided with an input to output delay of 17 clock cycles.

Figure 4.11: Simulation results: outputs of squareroot and reciprocal blocks respec-
tively

The remaining step after that would be to calculate the reciprocal of the previously
calculated square root. The result is 0003A (corresponding to 8.85 · 10−4) with 16 bits
expressing the fractional part.

4.1.3 Iteration Stage
The figure below illustrates a possible case in which not all the events pass the first stage.
In this specific case, and for a certain threshold, only 6 events of the 9 present in the first
stage, pass to the second stage of processing. Only those who satisfy the equation that has
been discussed earlier make it through the final processing.

Figure 4.12: Simulation results: output of iteration mult block

50

4 – Synthesis and Simulation Results

4.1.4 Validation Memory Simulation
In this part the input data has been changed, the time interval for which the events remain
in memory has been modified to 800 ns, and the matrix dimension has been set to 3 ×
3. These modification allows a simple demonstration of the correct behaviour of the
validation memory stage. The inputs that have been provided consecutively are presented
in table 4.2, with a time interval of 80 ns between each pair of events. As can be observed,
the first and ninth events have the same coordinates (7,9) in order to show how is the most
recent event is kept for the correct time inside the main memory.

Table 4.2: Table showing the inputs that have been provided to the architecture in the
validation memory simulation

Input X Y Ts

1 7 7 256
2 7 8 300
3 7 9 350
4 8 7 400
5 8 9 450
6 9 7 500
7 9 8 550
8 9 9 600
9 7 9 625

10 8 8 650
11 8 8 700
12 8 8 750
13 8 8 800
14 8 8 850
15 8 8 900
16 8 8 950
17 8 8 1000

The image below (4.13) shows how in the third check the event is not cancelled from
the main memory, where the web signal remains deactivated. The reason is that a new
event has been written on the same position, and that event is not expired yet. While in
the eighth check where X_v = 7 and Y _v = 9 again the web is asserted
To the left of figure 4.13, the outputs of the MULT block have been highlighted to show
that the last two remaining events are the inputs indexed as 9 and 17 (see table 4.2),
whereas the other events in the neighbourhood has been cancelled from the main memory.
To the right of the figure the web is activated later to cancel the event with coordinates
(8, 8), the reason is that different events have been written in this same position, and only

51

4 – Synthesis and Simulation Results

when the most recent event has expired, the position is deleted.

Figure 4.13: Simulation results: events validation

52

4 – Synthesis and Simulation Results

4.2 Synthesis Results
In this section, the results in terms of hardware resource consumption and latency for the
different matrix configurations will be highlighted and discussed. The reported results
are obtained after the synthesis and implementation stages, in which in the first stage the
synthesizer generates a gate-level netlist starting from the written VHDL code, and using
a UNISIM component library, which is a Xilinx library that contains the basic primitives.
On the other hand, in the implementation stage, the netlist is translated into a placed and
routed FPGA design. The place and route stage defines how are the resources located and
interconnected on the FPGA device. The target device that has been used is a ZedBoard
Zynq-7000 board.

4.2.1 Resource Utilization and Latency
The design is constrained to an internal clock of 100 MHz, and some necessary pipeline
stages have been introduced in order to satisfy the timing requirements of the different
blocks. For the two dividers (divider and reciprocal blocks), different implementations
have been carried out in order to find the minimum possible latency depending on the
input bit-width, and the operation has been carried out for the different blocks. Some
hardware resources could have been saved at the cost of a higher block latency, but in this
project the aim was to obtain the minimum possible latency, and it is the strategy that has
been adopted even at a higher resource utilization. The implementation results in terms
of latency and resource utilization have been reported in the tables below. The results
are generated for different configurations, these configurations are related to the different
output matrix dimensions, which varies between 3× 3 and 15× 15 with the possibility of
setting a number of rows independently from the number of columns.
Another parameter that must be taken into consideration is the dimension of the validation
memory responsible of keeping track of all the events that are present in the main mem-
ory, and to delete the expired ones. Since the validation memory has been designed as a
distributed FIFO, at the implementation stage the some LUT have been exploited for this
block instead of using block RAM. The time interval, which depends on the dimension of
this memory, has been set to 2 µs.
One other parameter that has to be noticed is the number of iterations. The results have
been analysed for a number of iterations that varies between 0 and 2. Zero iterations indi-
cates that no iterations take place, and the results are obtained through a unique processing
stage. This could lead to realistic results for high matrix dimensions (e.g. 15×15), where
the outliers weigh less on the final result.

Hardware Resource Consumption The tables below illustrate the hardware consump-
tion for different matrix dimensions and for the three different iteration configurations. As

53

4 – Synthesis and Simulation Results

it can be noticed, the number of BRAMs is constant in the different cases since BRAMs
are only used for storing the events of the array, which is independent from the different
configuration parameters.
A detailed study of how are the hardware resources distributed among the different blocks,
shows that the DSP primitives are mainly exploited by the adjoint block, since the opera-
tions that are performed in this block are done on signals with higher bit-width, therefore,
at the implementation stage, multipliers and adders exploit DSP instead of LUTs. Keep-
ing a high internal bit-width results in more precise results at the cost of exploiting more
DSP blocks.
A constant number of DSP blocks (37) is used for the different matrix dimensions in the
iteration-free configuration. The DSP primitives are used in the adjoint block, and in the
final computation stages. Both cases are independent of the matrix dimension, leading to
a constant number of exploited DSP blocks. The amount of DSP blocks increases with
the number of iterations as can be noticed, in which the iteration process requires different
multiplications, additions and comparisons. In these cases, the number of DSP blocks is
dependent on the matrix dimension.

Two particular cases are reported where the matrix dimensions are of 3×15 and 15×3.
The results show how the consumption of the LUT used as logic are similar in the 15× 3
and 15 × 15 cases, and so are they in the 3 × 15 and 3 × 3 cases. The reason is that the
LUT part as logic is exploited by arithmetic operations, which number depends on the
number of rows and not on the number of columns, leading to these comparable results.

Generating the Netlist After resolving the final timing problems and introducing the
necessary pipeline stages in various blocks, a Verilog timing simulation was performed
using Vivado simulator to verify the correct behaviour of the circuit. The same test bench
was used to make sure that both the timing and behavioural simulation provide the same
outputs. The post implementation simulation has been performed in two steps:

1. The post implementation netlist corresponding to the entire design was generated

2. Generate an SDF delay file while annotating all the timing delays with the related
netlist

54

4 – Synthesis and Simulation Results

(a) 3× 3

Iterations 0 1 2
Slices 3815 4598 5983

SliceL 2621 3146 4116
SlcieM 1194 1452 1867

LUTs 9098 12136 15286
LUT as logic 9016 12052 15200
LUT as memory 82 84 86

DSPs 37 74 111
Flip Flops 12709 15112 17777
BRAMs 38 38 38

(b) 5× 5

Iterations 0 1 2
Slices 3780 5589 7180

SliceL 2688 3938 5020
SlcieM 1092 1651 2160

LUTs 9840 14660 19484
LUT as logic 9758 14576 19398
LUT as memory 82 84 86

DSPs 37 82 127
Flip Flops 13669 17251 21593
BRAMs 38 38 38

(c) 7× 7

Iterations 0 1 2
Slices 4163 6362 8948

SliceL 2943 4381 5960
SlcieM 1220 1981 2988

LUTs 10734 17609 24475
LUT as logic 10652 17525 24389
LUT as memory 82 84 86

DSPs 37 90 143
Flip Flops 14901 20078 26739
BRAMs 38 38 38

55

4 – Synthesis and Simulation Results

(d) 9× 9

Iterations 0 1 2
Slices 4687 7554 10852

SliceL 3295 5178 7346
SlcieM 1392 2376 3506

LUTs 11380 20781 30087
LUT as logic 11297 20696 30001
LUT as memory 83 85 86

DSPs 37 98 159
Flip Flops 16263 23241 32665
BRAMs 38 38 38

(e) 11× 11

Iterations 0 1 2
Slices 4564 7938 12860

SliceL 3047 6019 9046
SlcieM 1517 1919 3814

LUTs 12268 24162 36183
LUT as logic 12187 24079 36098
LUT as memory 83 83 85

DSPs 106 175
Flip Flops 27020
BRAMs 38 38 38

(f) 13× 13

Iterations 0 1 2
Slices 5598 9852 12948

SliceL 3866 6718 8772
SlcieM 1732 3134 4176

LUTs 12659 27280 41919
LUT as logic 12576 27195 41832
LUT as memory 83 85 87

DSPs 37 114 191
Flip Flops 19916 31297 47767
BRAMs 38 38 38

56

4 – Synthesis and Simulation Results

(g) 15× 15

Iterations 0 1 2
Slices 5783 11475 13300

SliceL 4066 7736 8950
SlcieM 1717 3739 4350

LUTs 13418 30920 48326
LUT as logic 13336 30836 48240
LUT as memory 82 84 86

DSPs 37 122 207
Flip Flops 19916 35958 56609
BRAMs 38 38 38

(h) 15× 3

Iterations 0 1 2
Slices 4912 8616 12104

SliceL 3311 5787 8199
SlcieM 1601 2829 3905

LUTs 13234 25444 37700
LUT as logic 13152 25306 37614
LUT as memory 82 84 86

DSPs 37 122 207
Flip Flops 16682 25077 34840
BRAMs 38 38 38

(i) 3× 15

Iterations 0 1 2
Slices 3752 5284 5983

SliceL 2638 3499 4116
SlcieM 1114 1785 1876

LUTs 9213 13746 15286
LUT as logic 9131 13662 15200
LUT as memory 82 84 86

DSPs 37 74 111
Flip Flops 13789 17304 17777
BRAMs 38 38 38

57

4 – Synthesis and Simulation Results

Latency The table below illustrates how does the latency of the architecture vary with
the different parameters. For the iteration-free configuration, the latency increases of one
clock cycle for each additional pair of columns (e.g. between 3× 3 and 5× 5, the latency
increases from 98 to 99 clock cycles). The maximum latency is reached for the 15 × 15,
2-iterations configuration, and it is of 140 clock cycles (1.4 µs). The results for the 3×15
and 15 × 3 configurations are reported in order to demonstrate how the latency depends
on the number of columns only and not on the number of rows.

Table 4.3: The variation of the latency with the matrix dimensions and iteration number
XXXXXXXXXXXXMatrix

Iterations
0 1 2

3× 3 98 110 122
5× 5 99 112 125
7× 7 100 114 128
9× 9 101 116 131
11× 11 102 118 134
13× 13 103 120 137
15× 15 104 122 140
3× 15 104 122 140
15× 3 98 110 122

58

4 – Synthesis and Simulation Results

4.3 Future Perspectives and Conclusion

4.3.1 Future Perspectives

In this section, the next possible steps will be highlighted along with some achievable
future improvements, which could result in a more performing architecture, reducing both
hardware resource consumption and latency.

Future Testing and Precision Evaluation The architecture that has been presented in
this thesis is tested with a simple test bench that verifies the correct behaviour of the
various blocks, and the data propagation through the architecture, where no ground truth
dataset is available. The next step could be the evaluation of the precision of this archi-
tecture and the comparing it with the accuracy of the corresponding software.

Architecture Improvements The intention was to get a reconfigurable architecture,
with a reusable VHDL code with a set of parameters that could be decided at synthesis
stage. The parameter that has the strongest impact on the entire architecture is the output
matrix dimension. The choice of assuming that the matrix dimension is a reconfigurable
forced the architecture to be designed in a way that guarantees the correct behaviour in
the worst case (15 × 15), therefore, for lower matrix dimension the code is sub-optimal.
The VHDL code could be heavily optimized by studying the correct architectural choices
for each case.

Memory Addressing The memory addressing that has been adopted throughout
the project is related to a choice in which a trade-off between the number of the exploited
BRAM blocks and the simplicity of the memory addressing was chosen. A simple exam-
ple, where 48 RAM blocks are exploited instead of 38, is shown in the table below (table
4.4), in which each memory exploits 1.5 BRAMs (one 36K block and one 18K block).
As it can be noticed, having memory blocks organized in blocks of 16 in the vertical di-
rection, and blocks of 2 in the horizontal direction leads to a simpler address calculation
in which:

address = Y (7 downto 1) + 120 ·X(8 downto 4)

the term numblock used in this project, which requires a more complex computation van-
ishes in this equation. A specific addressing technique could be adopted based on the
desired output matrix dimension. For instance, in the 5 × 5 case, a certain addressing
methodology could allow reading the 25 matrix elements in parallel, leading to a reduc-
tion in the final latency, and introducing the possibility of obtaining a fully pipelined
architecture.

59

4 – Synthesis and Simulation Results

Operands bit-width As mentioned before, the bit-width of the internal signals is
strongly dependent of the matrix dimension, and has an important impact on the dedi-
cated hardware of the different blocks (e.g. mult, adjoint, divider, etc...). In this design
the choice was to keep a high precision event at the expense of exploiting more DSP.
The FPGA exploits a single hardware multiplier that accepts two operands, one of 25
bits and the other of 18 bits maximum. If higher bit-widths are used, which is the case,
the implementation exploits more than one multiplier per multiplication. Therefore, one
methodology that would reduce the number of the exploited DSP slices is reducing the
internal bit-width and thus the accuracy. Moreover, a divider with lower bit-width at the
operands will certainly induce lower latency, and lower hardware resource consumption
as well.

Divider As explained previously, modifying the divider’s type would have a re-
markable reduction in the latency of the architecture. The adopted Radix-2 divider has
a latency of 40 clock cycles, using 4 dividers each of 16 clock cycles latency will lead
to a latency which is 24 clock cycles lower, at the cost of using more DSP blocks. One
other possibility would be to use some external approximated dividers at the expense of
accuracy loss, with the exploitation of less hardware resources.

Reciprocal Having the two coefficients a and b represented on lower bit-width will
mean that the term

√
a2 + b2 can be expressed on lower bit-width, leading to a reduction

of an operand of the reciprocal block, which lead to lower hardware consumption, and
possible lower latency.

Iterations Resource sharing between the different iterations could have a great im-
pact on the hardware resource consumption. For instance, if the architecture is designed
appropriately to support reading a whole 3×3 or 5×5 matrix elements in parallel, it means
that the dedicated hardware, that is being used for the different arithmetic operations, can
be shared between two consecutive iterations for example.

60

4 – Synthesis and Simulation Results

Table 4.4: The distribution of 32× 10 cells among the 32 available memories.

0 16 0 16 0 16 0 16 0 16
1 17 1 17 1 17 1 17 1 17
2 18 2 18 2 18 2 18 2 18
3 19 3 19 3 19 3 19 3 19
4 20 4 20 4 20 4 20 4 20
5 21 5 21 5 21 5 21 5 21
6 22 6 22 6 22 6 22 6 22
7 23 7 23 7 23 7 23 7 23
8 24 8 24 8 24 8 24 8 24
9 25 9 25 9 25 9 25 9 25

10 26 10 26 10 26 10 26 10 26
11 27 11 27 11 27 11 27 11 27
12 28 12 28 12 28 12 28 12 28
13 29 13 29 13 29 13 29 13 29
14 30 14 30 14 30 14 30 14 30
15 31 15 31 15 31 15 31 15 31

0 16 0 16 0 16 0 16 0 16
1 17 1 17 1 17 1 17 1 17
2 18 2 18 2 18 2 18 2 18
3 19 3 19 3 19 3 19 3 19
4 20 4 20 4 20 4 20 4 20
5 21 5 21 5 21 5 21 5 21
6 22 6 22 6 22 6 22 6 22
7 23 7 23 7 23 7 23 7 23
8 24 8 24 8 24 8 24 8 24
9 25 9 25 9 25 9 25 9 25

10 26 10 26 10 26 10 26 10 26
11 27 11 27 11 27 11 27 11 27
12 28 12 28 12 28 12 28 12 28
13 29 13 29 13 29 13 29 13 29
14 30 14 30 14 30 14 30 14 30
15 31 15 31 15 31 15 31 15 31

61

4 – Synthesis and Simulation Results

4.3.2 Conclusion
The scope of this thesis was to design a hardware architecture responsible of comput-
ing the optical flow on events that are produced by a particular family of image sensors
which is the event-based image sensors (DVS or ATIS for example). Event-based image
sensors are retina-inspired event-based image sensors the came out as an alternative to
conventional vision sensors. They are characterized by:

• Low latency and high speed

• Low data volume and memory storage

• High dynamic range

The architecture receives new event at a worst case rate of 1 event/80 ns and stores each
in its corresponding position on a 304 × 240 array that keeps only the most recent event
for each location. The processing is performed on a matrix centred at the incoming event.
Although the architecture may not be optimal in terms of hardware consumption, it is
characterized by:

• flexibility and reconfigurability, in which different parameters are reconfigurable
and can be modified based on the target application. These parameters include:

– the time_int which is the time interval in which the elements are kept in the
main memory

– the min_events - the minimum number of valid events on a matrix for which
the processing is performed

– the matrix dimension using two independent parameters which are ROW and
COL, representing the rows and columns of the desired matrix

– n_iter representing the desired number of iterations

• low latency

• high precision in which no approximations are performed in the initial processing
stage

The future step would be to test the performance of the hardware implementation on
a ground truth dataset and integrate the design on the iCub robot.

62

Chapter 5

Test Bench with a SPAER Interface

The test bench discussed in this section is a part which provides the processing architec-
ture with the event-based data derived from the neuromorphic vision sensor. This part is
designed for testing a more complete system, where different subsystems are interfaced
toward each other on the FPGA, where some signals provide status information regarding
the block that transmits information and the block that is receiving. Therefore, the test
bench presented here has not been used to test the architecture described previously.

This test bench consists of:

• a common-clock dual-port RAM which holds the AER events - such events are
organized in a sequential manner, each consist in two parts: a time stamp which
is related to the timing difference between two successive events - rather than the
absolute one - in this way fewer bits are required to represent wide timing ranges;
and an address event which represents the address of the active event.

• a programmable pre-scaler that has as an input a global clock and as an output an
enable signal which is activated only once each N clock cycles. That is necessary in
order to have an application dependent architecture in which the time stamp scale
could vary between one application and another (ns, ms, µs, etc...)

• an N-bit counter used to count the time stamp cycles. Once the counter’s output
coincide with the corresponding time stamp, an event is ready to be triggered.

• an FSM responsible of extracting AER data from the RAM and providing it at the
output in a precise timely manner.

The related architecture is shown in figure 5.1.
"Policy" is an application-dependent input that decides which policy must be adopted

whenever an event time-out occurs. Event time-out means that the source has a new

63

5 – Test Bench with a SPAER Interface

DATA

ADDRESS

READ_EN

FSMRAM

COUNTER
PRESCALER

CLK100MHZ

CLK100MHZ

CLK100MHZ

CLK100MHZ

PRESCALE

AERout

sready

dready

E
N

A
B
L
E

R
S
T
_
P
R
E

C
O

U
N

T

C
N

T
_
E
N

R
S
T
_
C
N

T

ERROR

WRITE MEMORY

POLICY

BLOCKRAM

RST

Figure 5.1: Test bench Architecture

event to provide for the destination, while the destination has not captured the previously
provided one. Specifically, three different options are available:

• Stall - means no more events shall be provided unless the destination extracts the
old one. This option guarantees that all the events are captured at the output.

• Provide new - in which the old event is excluded and the new one is provided at the
output. Such an option ensures that the timing of the events is precise, despite the
fact that some events could have been ignored.

• Keep old - implies that the new event is ignored and the old one is kept at the output.

The error signal is used to indicate the time-out problem when it happens.

5.1 Interface Protocol
The adopted interface protocol is a Synchronous Parallel AER (SPAER) interface used
in [42], in which the source puts the event on the output, activates the "sready" signal,
and waits for the destination to respond with an active "dready". In this case it is not
necessary to release the "sready" signal if the destination is ready while a new event must
be provided, hence guaranteeing the maximum data rate.

64

5 – Test Bench with a SPAER Interface

AER

sready

dready

Source Destination

Figure 5.2: Test bench Interface

5.2 Finite State Machine (FSM)

IDLE

WAIT

NEW

DATA

 READ

MEMORY

 WAIT

 DESTI-

 NATION

STALL

START

N
e
w

 D
a
ta

d
re

a
d
y
 =

 1
 &

N
o
 N

e
w

 D
a
ta dready = 0 &

No New Data

dready = 1

& New

Data

dready = 0

dready = 1 &

No New Data

dready = 0 & New Data

& POLICY = "00"

dready = 0

dready = 1

dready = 0 & New Data

& POLICY = "00"

COUNT

No New Data

LOOP

 END

Figure 5.3: Test bench FSM

The implemented FSM is the one shown in figure 5.3. It is a five states FSM organized
as follows:

• IDLE - whenever start is released the FSM starts and reads the first event with its
related time stamp.

65

5 – Test Bench with a SPAER Interface

• WAIT NEW DATA - the counter starts counting until it reaches ∆TS. It then moves
to "READ MEMORY" to trigger the source ready signal.

• READ MEMORY - "sready" is set high at the output with the associated AER result
to tell the destination that an event is ready.

• WAIT DESTINATION - is a state in which the source is still ready, no new event
has to be provided, and it is waiting for the destination to respond

• STALL - the state which the system reaches only if "Policy" is set to "00" and a
new event has to be provided while the old one was not read by the destination yet.

The correct behaviour of this test bench has been synthesized with Vivado 2017.1
and tested on the Xilinx Artix-7 35T FPGA (XC7A35TICSG324-1L) after loading the bit
file on the board. One particularity of this part is the ability of updating the content of
the memory without the need of re-synthesizing the design, by simply modifying the old
bitstream file. This was achieved by the updatemem command which takes in input:

• a memory mapping information .mmi file

• a .MEM file which contains the new content of the memory

• a .bit file which contains the bitstream of the old design

updatemem

file.mmi file.bit file.mem

new.bit

Figure 5.4: updatemem TCL command

The updatemem command provides in output the new new.bit file which contains the
same design as before but with the updated memory content. Throughout this part, the file
.mmi has been edited manually since V ivado 2017.1 does not support the Xilinx Artix-7
35T FPGA for the automatic generation of .mmi file. A .mmi file will be attached with
the thesis as an example.

66

Bibliography

[1] S. R. Kulkarni, A. V. Babu, B. Rajendran, “Spiking Neural Networks–Algorithms,
Hardware Implementations and Applications” in no, v. 1, pp. 426–431, 2017.

[2] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose,
J. S. Plank, “A survey of neuromorphic computing and neural networks in hardware”
in arXiv preprint arXiv:1705.06963, 2017.

[3] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, “The missing memristor
found” in nature, v. 453, n. 7191, p. 80, 2008.

[4] G. Snider, R. Amerson, D. Carter, H. Abdalla, M. S. Qureshi, J. Leveille, M. Ver-
sace, H. Ames, S. Patrick, B. Chandler, et al., “From synapses to circuitry: Using
memristive memory to explore the electronic brain” in Computer, v. 44, n. 2, pp.
21–28, 2011.

[5] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,
Y. Nakamura, P. Datta, G.-J. Nam, et al., “Truenorth: Design and tool flow of a 65
mw 1 million neuron programmable neurosynaptic chip” in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, v. 34, n. 10, pp. 1537–
1557, 2015.

[6] S. B. Furber, F. Galluppi, S. Temple, L. A. Plana, “The spinnaker project” in Pro-
ceedings of the IEEE, v. 102, n. 5, pp. 652–665, 2014.

[7] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz, S. K. Esser, A. An-
dreopoulos, T. M. Wong, M. Flickner, R. Alvarez-Icaza, et al., “Cognitive comput-
ing programming paradigm: a corelet language for composing networks of neurosy-
naptic cores” in Neural Networks (IJCNN), The 2013 International Joint Conference
on IEEE, 2013, pp. 1–10.

[8] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al., “A million spiking-neuron
integrated circuit with a scalable communication network and interface” in Science,
v. 345, n. 6197, pp. 668–673, 2014.

[9] K. D. Fischl, G. Tognetti, D. R. Mendat, G. Orchard, J. Rattray, C. Sapsanis,
L. F. Campbell, L. Elphage, T. E. Niebur, A. Pasciaroni, et al., “Neuromorphic
self-driving robot with retinomorphic vision and spike-based processing/closed-loop
control” in Information Sciences and Systems (CISS), 2017 51st Annual Conference

67

Bibliography

on IEEE, 2017, pp. 1–6.
[10] M. Hutson. (2017) Pocket brains: Neuromorphic hardware arrives for our brain-

inspired algorithms. [Online]: https://arstechnica.com/science/2017/07/pocket-
brains-neuromorphic-hardware-arrives-for-our-brain-inspired-algorithms/3/

[11] D. Brüderle, E. Müller, A. P. Davison, E. Muller, J. Schemmel, K. Meier, “Establish-
ing a novel modeling tool: a python-based interface for a neuromorphic hardware
system” in Frontiers in neuroinformatics, v. 3, p. 17, 2009.

[12] T. C. Stewart, C. Eliasmith, “Large-scale synthesis of functional spiking neural cir-
cuits” in Proceedings of the IEEE, v. 102, n. 5, pp. 881–898, 2014.

[13] F. Galluppi, C. Denk, M. C. Meiner, T. C. Stewart, L. A. Plana, C. Eliasmith,
S. Furber, J. Conradt, “Event-based neural computing on an autonomous mobile
platform” in Robotics and Automation (ICRA), 2014 IEEE International Conference
on IEEE, 2014, pp. 2862–2867.

[14] J. Conradt, F. Galluppi, T. C. Stewart, “Trainable sensorimotor mapping in a neuro-
morphic robot” in Robotics and Autonomous Systems, v. 71, pp. 60–68, 2015.

[15] I. Sugiarto, G. Liu, S. Davidson, L. A. Plana, S. B. Furber, “High performance
computing on SpiNNaker neuromorphic platform: a case study for energy efficient
image processing” in 2016 IEEE 35th International Performance Computing and
Communications Conference (IPCCC) IEEE, 2016, pp. 1–8.

[16] D. Neil, S.-C. Liu, “Minitaur, an event-driven FPGA-based spiking network accel-
erator” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v. 22,
n. 12, pp. 2621–2628, 2014.

[17] K. Cheung, S. R. Schultz, W. Luk, “NeuroFlow: a general purpose spiking neural
network simulation platform using customizable processors” in Frontiers in neuro-
science, v. 9, p. 516, 2016.

[18] J. Shen, D. Ma, Z. Gu, M. Zhang, X. Zhu, X. Xu, Q. Xu, Y. Shen, G. Pan, “Darwin: a
neuromorphic hardware co-processor based on spiking neural networks” in Science
China Information Sciences, v. 59, n. 2, pp. 1–5, 2016.

[19] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M.
Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, K. Boahen, “Neurogrid: A
mixed-analog-digital multichip system for large-scale neural simulations” in Pro-
ceedings of the IEEE, v. 102, n. 5, pp. 699–716, 2014.

[20] (2011) The brainscales project. brainscales - brain-inspired multiscale computation
in neuromorphic hybrid systems. [Online]: https://brainscales.kip.uniheidelberg.de/

[21] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, G. Indi-
veri, “A reconfigurable on-line learning spiking neuromorphic processor comprising
256 neurons and 128K synapses” in Frontiers in neuroscience, v. 9, p. 141, 2015.

[22] M. B. Milde, H. Blum, A. Dietmüller, D. Sumislawska, J. Conradt, G. Indiveri,
Y. Sandamirskaya, “Obstacle avoidance and target acquisition for robot navigation
using a mixed signal analog/digital neuromorphic processing system” in Frontiers
in neurorobotics, v. 11, p. 28, 2017.

68

Bibliography

[23] P. Lichtsteiner, C. Posch, T. Delbruck, “A 128 × 128 120 dB 15 µs Latency Asyn-
chronous Temporal Contrast Vision Sensor” in IEEE journal of solid-state circuits,
v. 43, n. 2, pp. 566–576, 2008.

[24] C. Posch, D. Matolin, R. Wohlgenannt, “A QVGA 143 dB dynamic range frame-free
PWM image sensor with lossless pixel-level video compression and time-domain
CDS” in IEEE Journal of Solid-State Circuits, v. 46, n. 1, pp. 259–275, 2011.

[25] M. Gottardi, N. Massari, S. A. Jawed, “A 100µW 128 × 64 Pixels Contrast-Based
Asynchronous Binary Vision Sensor for Sensor Networks Applications” in IEEE
Journal of Solid-State Circuits, v. 44, n. 5, pp. 1582–1592, 2009.

[26] J. A. M. Olsson, P. Hafliger, “Two color asynchronous event photo pixel” in Circuits
and Systems, 2008. ISCAS 2008. IEEE International Symposium on IEEE, 2008, pp.
2146–2149.

[27] Ł. Farian, J. A. Leñero-Bardallo, P. Häfliger, “A bio-inspired aer temporal tri-
color differentiator” in Biomedical Circuits and Systems Conference (BioCAS), 2014
IEEE IEEE, 2014, pp. 524–527.

[28] T. Delbruck, M. Lang, “Robotic goalie with 3 ms reaction time at 4% CPU load
using event-based dynamic vision sensor” in Frontiers in neuroscience, v. 7, p. 223,
2013.

[29] M. Litzenberger, A. N. Belbachir, P. Schon, C. Posch, “Embedded smart cam-
era for high speed vision” in Distributed Smart Cameras, 2007. ICDSC’07. First
ACM/IEEE International Conference on IEEE, 2007, pp. 81–86.

[30] R. Berner, C. Brandli, M. Yang, S.-C. Liu, T. Delbruck, “A 240× 180 10mW 12us
latency sparse-output vision sensor for mobile applications” in VLSI Circuits (VL-
SIC), 2013 Symposium on IEEE, 2013, pp. C186–C187.

[31] C. Brandli, R. Berner, M. Yang, S.-C. Liu, T. Delbruck, “A 240× 180 130 db 3 µs
latency global shutter spatiotemporal vision sensor” in IEEE Journal of Solid-State
Circuits, v. 49, n. 10, pp. 2333–2341, 2014.

[32] D. Fortun, P. Bouthemy, C. Kervrann, “Optical flow modeling and computation: a
survey” in Computer Vision and Image Understanding, v. 134, pp. 1–21, 2015.

[33] J. T. Philip, B. Samuvel, K. Pradeesh, N. Nimmi, “A comparative study of block
matching and optical flow motion estimation algorithms” in Emerging Research Ar-
eas: Magnetics, Machines and Drives (AICERA/iCMMD), 2014 Annual Interna-
tional Conference on IEEE, 2014, pp. 1–6.

[34] B. D. Lucas, T. Kanade, et al., in “An iterative image registration technique with an
application to stereo vision” 1981.

[35] B. K. Horn, B. G. Schunck, “Determining optical flow” in Artificial intelligence,
v. 17, n. 1-3, pp. 185–203, 1981.

[36] M. Liu, T. Delbruck, “Block-matching optical flow for dynamic vision sensors: Al-
gorithm and FPGA implementation” in Circuits and Systems (ISCAS), 2017 IEEE
International Symposium on IEEE, 2017, pp. 1–4.

69

Bibliography

[37] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, M. Srinivasan, “Asynchronous
frameless event-based optical flow” in Neural Networks, v. 27, pp. 32–37, 2012.

[38] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, C. Bartolozzi, “Event-based visual
flow.” in IEEE Trans. Neural Netw. Learning Syst., v. 25, n. 2, pp. 407–417, 2014.

[39] [Online]: www.icub.org
[40] F. Rea, G. Metta, C. Bartolozzi, “Event-driven visual attention for the humanoid

robot iCub” in Frontiers in neuroscience, v. 7, p. 234, 2013.
[41] [Online]: www.yarp.it
[42] P. M. Ros, M. Crepaldi, C. Bartolozzi, D. Demarchi, “Asynchronous DC-free se-

rial protocol for event-based AER systems” in Electronics, Circuits, and Systems
(ICECS), 2015 IEEE International Conference on IEEE, 2015, pp. 248–251.

70

		Politecnico di Torino
	2018-09-07T06:14:24+0000
	Politecnico di Torino
	Maurizio Martina
	S

