
POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Elettronica

Tesi di Laurea Magistrale

Design of versatile and innovative
wireless nodes for smart monitoring

applications

Relatori

Prof. Daniele Trinchero

Ing. Mattia Poletti

Candidato

Simone Trinchero

Anno accademico 2017-2018

� Ai miei genitori, Aldo

e Cecilia, e a mia nonna

Maria. A tutti coloro che

mi hanno sostenuto e a

tutti quelli che mi hanno

remato contro. E in�ne,

last but not least, a me

stesso.

� Le tecnologie aprono

orizzonti incredibili.

Internet non dà

informazione, dà

soltanto dati.

L'informazione si ha

quando i dati sono stati

assimilati dal cervello.

Federico Faggin

Summary

The project described in this thesis conceived with the aim to realize a wireless de-
vice (SwiRem) to remotely monitor electrical equipments. Thanks to Wireless Sen-
sor Network (WSN) technologies, it was possible to identify a pervasive monitoring
infrastructure, with a considerable number of miniaturized and independent nodes,
which sends information regarding the monitored system to a central collector. The
integrated ad-hoc WSN solution can remotely monitor the power consumption and
switch ON/OFF the power supply of a wide number of electrical devices, deployed
in an extensive outdoor area. Moreover, the monitoring system must be separated
and independent from the monitored one and needs an alternative network to send
data and to receive commands. To face the problems of design, construction and
testing, it was necessary to create a team of two students, who carried out the
whole job together. The work was divided in four fundamental steps:

� Deep analysis of the problem.

� Analysis of suitable RF transceiver

� Firmware and PCB Computer-Aided Design (CAD)

� Assembly and on-�eld tests

TI CC1310 SwiRem system

The SwiRem devices fall into the de�nition of Short Range Devices (SRD) and in
Europe must use the 433MHz or 868MHz industrial, scienti�c and medical (ISM)
spectrum and must operate between 25mW to 100mW of Emitted Radiation Power
(ERP), depending on the frequency band and on the transmission duty cycle, ac-
cording to the European Conference of Postal and Telecommunications Admin-
istrations (CEPT). Among many integrated transceivers analysed, two solutions
were identi�ed: the Texas Instruments (TI) CC1310 868MHz, and the Murata Lo-
RaWAN CMWX1ZZABZ. The SwiRem system with the TI CC1310 transceiver
includes two boards designed in a modular way, to allow easy upgrade and to min-
imize costs and implementation time. Technically speaking, the boards are the

5

structural devices of a single-hop WSN and so they were named Master and Node
in relation to the function they perform. The Master operates as collector/gateway
and the Node manages the on-site sensing functions. Both the Master and the Node
have a common RF hardware design, then they have di�erent sensors, actuators
and peripherals. The master can be connected to a Single Board Computer (SBC),
like the RaspberryPi, to implement more complex activities and to have an Internet
connection.

Both master and node boards use the TI CC1310 transceiver. The main pa-
rameters of this Integrated Circuit (IC) are the following:

� Wireless M-Bus and IEEE 802.15.4g PHY

� Sensitivity �110 dBm at 50 kbps

� Output power level up to +14 dBm

� Low power features (Standby: 0.6µA)

� Power supply range: 1.8 � 3.8V

This IC transceiver can achieve high RF and computational performances with-
out compromising the low-power management of the hardware resources, thanks to
an integrated power management system. A fully working Printed Circuit Board
(PCB) was designed following, among the many, these main strategies:

� A 4-layers stack-up PCB, to separate signal path and power path and to
minimize Electromagnetic Compatibility (EMC) problems.

� An accurate design of the RF path to match a 50 Wantenna

� An accurate power management to accept wide voltage power supply

Texas Instruments implemented his proprietary wireless stack protocol, named
TI SimpleLink, with an IEEE 802.15.4g PHY layer. To manage the RF drivers in
the �rmware, TI provides a complete suite of Application Programming Interface
(APIs), named EasyLink, that allows a deep interaction with the hardware. The
TI EasyLink APIs and others TI tools were used during the �rmware design with
Code Composer Studio software. After the analysis of a wide range of possibilities,
it was implemented a �rmware that manages a handshake behaviour, to guarantee
the exchange of data between the master and the nodes. The communication starts
when a node broadcasts a wake_up packet that includes his address. Afterwards,
when the master receives this packet, it sends to the node a speci�c command or a
data request and waits for an acknowledge packet that con�rms the success of the
communication.

6

Node board

The node is the core of the system, it monitors the speci�c Device Under Test
(DUT) and holds all the needed actuators and sensors. This board can be powered
both from an external power supply unit or from two AA 1.5V batteries, to guar-
antee the highest deployment versatility. The TPS2111A Auto-Switching Power
Mux handles the switching between the two power sources. In this �rst realization,
the node holds two main devices on it: a normally close Relay, able to manage a
resistive load of 1A @ 30VDC and the IC INA226 I2C Current Shunt and Power
monitoring. The �rmware sets the node in a low power mode, then wakes it up
every 3 seconds (this time interval is customizable) and waits for a command from
the master. It executes the command and, if needed, it sends back data to the
master.

Master board

The master board is the arbiter of the system and it represents the collector of
the single-hop WSN. In this version it does not include any sensor or actuator,
but it was arranged to be updated as needed. This board accepts di�erent power
supply, alternatively from the power grid or from the 5V of a speci�c RaspberryPi
pin. The master manages two main tasks: the communication with nodes and the
communication with the RaspberryPi through Serial Peripheral Interface (SPI).
The master stores commands received from SPI in a queue and converts them in
RF packets to be sent. Moreover, it implements the opposite conversion: it sends
back, through SPI, the RF received data. Furthermore, it must memorize possible
warnings about nodes that does not respond to commands, to report them.

LoRa SwiRem system

Due to the fast growth of new WSN IoT solutions, the SwiRem system faced the
challenge to reach larger audience with enhanced reliability. For this reason, the
CMWX1ZZABZ LoRaWAN transceiver from Murata was introduced. The main
parameters of this System-On-a-Chip (SOC) are the following:

� LoRa PHY Spread Spectrum technology

� Sensitivity down to �148 dBm

� Output power level up to +20 dBm

� Low power features

7

� Power supply range: 2.4 � 3.6V

This SoC, physically designed and commercialised by Murata, integrates two
ICs: a Semtech SX1276 LoRa transceiver and a STMicroelectronics ARM Cortex
M0 STM32L0 microcontroller. A system based on this transceiver has some fun-
damental di�erences compared to the one based on the TI CC1310: it is necessary
to design only the nodes because the wireless communication in a LoRaWAN net-
work, based on the Long Range characteristics of the LoRa physical layer, allows a
single-hop link between nodes and one or many gateways that acts as transparent
bridge between RF packets and Internet IP packets and vice versa. This approach
improves the reachable distances and facilitates the connection of nodes with Inter-
net servers, simplifying data collections, storage and usage. A group of the LoRa
Alliance community, named The Things Network, implemented a secure and re-
dundant collaborative LoRaWAN Internet of Things network that allowed to test
LoRa nodes exploiting public gateways. The Semtech LoRa spreading spectrum
modulation has better communication and noise rejection behaviour compared to
other transceivers, including the CC1310. The implementation of the SwiRem LoRa
version is in a development phase, the CAD schemes were realized for this thesis.

Tests

After some hardware-software compatibility tests, performed in a controlled indoor
environment, the CC1310 SwiRem system was tested in real environment. The
chosen area was the one around the Santuario di Crea at Serralunga di Crea (AL).
Several measurements have been taken, increasing progressively the distance be-
tween the two boards. The master was put on the top of a bell tower and a node
was put in various positions in the valley. For every point the RSSI was measured
and compared with theoretical values. For every test the measurements were co-
herent, and the system worked properly: the node correctly received the commands
from the master and executed them. Furthermore, the master, received back data
from node when necessary. The greatest distance reached was around 10 Km.

Conclusion

The work presented in this thesis shows the design, realization and testing of an
ad-hoc WSN monitoring system. This monitoring approach will be certainly useful
in various applications, reducing the time response to a possible breakdown of the
device under control. This system allows to electrically turn o� a device, without
going to the physical place, for power saving aims or to force a power on reset.
Furthermore, it can collect important data about power usage. In conclusion, the
testing process highlighted the correct behaviour of the system and con�rmed the
achievement of expected results.

8

Contents

List of Figures 13

1 Introduction 18

1.1 Preface . 18

1.2 Project background . 19

1.3 Overview and innovative contributions 20

1.4 Thesis's structure . 21

2 Survey on background knowledge 23

2.1 Internet of Things (IoT) . 23

2.2 Wireless Sensor Networks . 24

2.3 868 MHz wireless communication 26

2.4 Main standards on the market . 27

2.4.1 IEEE 802.15.4g PHY . 29

2.4.2 Wireless M-Bus . 30

2.4.3 LoRa WAN . 30

2.4.4 ZigBEE . 30

2.4.5 Z-Wave . 31

2.5 Fundamental parameters to evaluate radio communication 32

2.6 Main radio modulation techniques 32

2.6.1 FSK modulation . 32

2.6.2 PSK modulation . 33

2.6.3 ASK modulation . 34

9

2.6.4 Spreading Spectrum Modulation 34

2.7 ICs communication protocols . 35

2.7.1 SPI protocol . 35

2.7.2 I2C protocol . 36

2.7.3 UART . 38

2.7.4 JTAG standard . 39

3 SwiRem system overview 40

3.1 Speci�cations of the system . 40

3.2 General description of the system 41

4 Analysis of possible RF platforms 44

4.1 WiMOD LoRa . 44

4.1.1 iM880A LoRa characteristics 46

4.1.2 WiMOD LR Studio software and tools 47

4.2 Murata LoRa . 48

4.3 TI SimpleLink CC1310 . 50

4.3.1 TI CC1310 characteristics 51

4.3.2 TI software and tools . 52

4.4 CC1310 vs LoRa and �nal choice 53

5 CC1310 preparatory concepts 54

5.1 Hardware features . 54

5.2 Software features . 56

6 Firmware design 59

6.0.1 Firmware of the Master . 61

6.0.2 Firmware of the Node . 67

7 Hardware design 71

7.1 Hardware design of the node . 71

7.1.1 Power supply . 72

10

7.1.2 CC1310 . 78

7.1.3 Load monitoring . 82

7.1.4 The up level of the system 85

7.2 Hardware design of the Master . 88

7.2.1 Power supply . 88

7.2.2 CC1310 . 89

7.2.3 The up level of the system 89

7.3 Bill of Materials (BOM) . 91

8 PCB realization 96

8.1 PCB stack manager properties . 96

8.2 PCB Shape . 99

8.3 Footprint and library . 101

8.4 Placement and routing guideline . 102

8.5 Final PCB . 105

8.5.1 Node . 106

8.5.2 Master . 107

8.6 Gerbers, Eurocircuit and Costs . 108

9 Assembly and debug 110

9.1 Assembly . 110

9.2 Debug . 113

10 Further improvements and system evolution 116

10.1 LoRa Alliance "The Things Network" services 116

10.2 SwiRem LoRa Murata Version . 117

11 Testing 120

11.1 Controlled environment . 120

11.2 Real environment . 122

11.3 Evaluation of LoRa Murata board 126

12 Conclusions 127

11

Bibliography 128

A Firmware Code 131

A.1 B1_nodo_RADIO_v2.0.c . 132

A.2 B1_nodo_RADIO_v2.0.h . 139

A.3 B1_nodo_TASK_v2.0.c . 140

A.4 B1_nodo_TASK_v2.0.h . 144

A.5 B2_master_RADIO_v2.0.c . 145

A.6 B2_master_RADIO_v2.0.h . 152

A.7 B2_master_TASK_v2.0.c . 153

A.8 B2_master_TASK_v2.0.h . 159

12

List of Figures

2.1 Visual representation of Internet of Things potentiality 23

2.2 Wireless Sensor Network . 25

2.3 Single-hop a Multi-hop structure 26

2.4 Distance vs. main wireless standards applications [8]. 27

2.5 Comparison between the main wireless standards [8]. 29

2.6 General stack of a wireless protocol based on IEEE 802.15.4 PHY,
like on CC1310 . 29

2.7 An example of binary FSK . 33

2.8 An example of a basic PSK modulation 34

2.9 An example of OOK . 35

2.10 A typical SPI timing . 36

2.11 A common SPI scheme . 36

2.12 A typical I2C timing . 37

2.13 A common I2C scheme . 37

2.14 A common JTAG scheme . 39

3.1 Functional scheme of the whole system 42

4.1 LoRa Development Kit. 45

4.2 The WiMOD IM880 transceiver . 46

4.3 The LoRa Murata IC from [23] . 48

4.4 CC1310 Development Kit. 50

4.5 The TI Dev Kit CC1310 module . 51

5.1 The internal structure of CC1310 IC ©Texas Instrument 55

13

5.2 The 7x7 RGZ Package pin-out of CC1310 ©Texas Instrument . . . 55

5.3 Code structure with TI-RTOS. ©Texas Instrument 56

5.4 CC1310 software structure ©Texas Instrument 57

6.1 Flow diagram of Master-Node radio interaction 60

6.2 Firmware's Structure . 61

6.3 Flow diagram of Master-Node �rmware radio protocol 62

6.4 Firmware �ow diagram of the master 63

6.5 Firmware �ow diagram of the node 68

7.1 The schematic of Node power supply section. 73

7.2 Simple circuit to handle backup power supply 73

7.3 The pin con�guration of TPS2111A from datasheet. 74

7.4 The true table of MUX from datasheet. 75

7.5 The power divider at input of the TPS211A. 75

7.6 The pin con�guration of TPS63050 from datasheet. 76

7.7 The schematic of TPS63050 from datasheet. 77

7.8 The schematic of radio part and all the component around CC1310. 78

7.9 Equivalent LC circuit integrated of a Sub-GHz impedance matched
balun from datasheet. 79

7.10 The pin-out of the Johanson Technology's balun from datasheet. . . 79

7.11 The pin-out of the two crystal quartz oscillator from datasheet. . . 80

7.12 The functional scheme of load monitoring. 82

7.13 The schematic of load monitoring with INA226 and the relay HY1Z-3V. 83

7.14 The pin con�guration of INA226 from datasheet. 84

7.15 The schematic of INA226 from datasheet. 84

7.16 The internal schematic of Panasonic HY1Z-3V (bottom view) from
datasheet. 85

7.17 The up level schematic of the whole system of the node. 86

7.18 The schematic of Master power supply section. 89

7.19 The up level schematic of the whole system of the master. 90

7.20 The pin-out of the Raspberry PI 2. 90

14

7.21 The Bill Of Materials of the Master Board part 1. 92

7.22 The Bill Of Materials of the Master Board part 2. 93

7.23 The Bill Of Materials of the Node Board part 1. 94

7.24 The Bill Of Materials of the Node Board part 2. 95

8.1 A generic standard 2 and 4 layer structure. 96

8.2 Texas Instruments design cross section chart of PCB stack for the
CC1310. 97

8.3 The Eurocircuit design cross section chart of layers stack for a "stan-
dard pool" board. 98

8.4 Altium layer stack manager. 100

8.5 Dimensions of the Gewiss GW44205 case from datasheet. 100

8.6 A) Shape of the node board. B) Shape of the master board. 101

8.7 Footprint extracted by Ultra Librarian Tool. 102

8.8 Guideline structure for the balun chip. 104

8.9 PCB realization rule of a 50 Wtrace. 104

8.10 Guidelines routing of the INA226 from datasheet. 105

8.11 Routing guidelines of the TPS63051 from datasheet. 106

8.12 Layout of the node. 106

8.13 3D model of the node. 107

8.14 Layout of the node. 107

8.15 3D model of the node. 108

8.16 The Eurocircuit �nal document. 109

9.1 The �nal panel from Eurocircuit. 110

9.2 The syringe ready for the pneumatic dispenser 111

9.3 The pick and place at work. 112

9.4 Left: the �nal Master Board v. 1.0. - Right: the �nal Node Board
v. 1.0. 113

9.5 A sample of the node board inside the Gewiss Case 114

9.6 Clear connection scheme between the TI XDS100V3 programmer on
the SmartRF06 Dev Board and SwiRem boards. 115

15

10.1 Eagle CAD schematic of LoRa Murata Transceiver. 117

10.2 Eagle CAD SwiRem Board . 118

10.3 Radio design on a iXem PCB . 119

11.1 The con�guration used to test the system in controlled environment. 121

11.2 The con�guration used to test the system in controlled environment
with the Raspberry. 121

11.3 Geographical test point 1 . 124

11.4 Geographical test point 2 . 124

11.5 Geographical test point 3 . 124

11.6 Geographical test point 4 . 124

11.7 Geographical test point 5 . 125

11.8 Geographical test point 6 . 125

16

Chapter 1

Introduction

1.1 Preface

The experimental work presented in this Master Thesis took place in the framework
of an important and innovative laboratory in the Department of Electronic and
Telecommunication (DET) of Politecnico di Torino, the iXem Labs.

The iXem Labs, supervised by Professor Daniele Trinchero, deals with various
and innovative content with a R&D aim:

� the study of wireless communication systems

� the research of advanced wireless communication techniques

� the promotion of wireless technology for the realization of telecommunication
networks all over the world

� the overcome of the digital divide in Italy and between Occidental and devel-
oping countries

� the exploitation of advanced, reliable, low cost and e�cient wireless tech-
nology to improve the living conditions, the environmental protection and
sustainable production processes

� realization of Wireless Sensor Network (WSN) for Internet of Things (IoT).

The points just mentioned describe well the mission of the laboratory. Some of
the most important known projects are: design and testing of dipole antennas with
balun, precision farming systems, a smart hydrophone to �nd losses in a water pipe
and the world distance communication record reached with the link between two

18

1 � Introduction

antennas at 5 GHz.

To approach the project presented in this thesis it was necessary to
create a team strongly guided by Professor Daniele Trinchero and by
supervisors, composed by two Master degree students: Donato Mirolli
(211457) and Simone Trinchero (211453). This was necessary to face all the
problems of design and test of a wireless system. The contribution to this project
by the two Master students was equivalently engaged in all issues regarding the
project like: the case study, the project choices, the assembly, the testing process
etc and the work was equally divided. In all the cases where was necessary
to test the wireless devices, the collaboration between minimum two
person was mandatory. The complexity of PCB design of two boards
including microcontrollers and transceiver requires a strong cooperation
regarding hardware and �rmware knowledge. In most of the cases every
member of the team resolved a technical issue and after that there was a
discussion to solve any potential problem, to match every project choice
thus ensuring the correct progress of the project. One example is the
division of the work regarding the �rmware writing: Simone wrote some functions
in the while loop of the master board and some others to handle a sensor in the
node; vice versa Donato wrote some functions in the while loop of the node board
and some others to handle the SPI interfacing for the master. Same approach for
the hardware design.

1.2 Project background

Nowadays the Internet of Thing is becoming more and more present, ensuring
additional bene�ts in a wide range of situations. The increasing interest in this
new computing application forced a lot of technical and political institutions to
take an active part in this "new industrial revolution".

Strong signs, that evince the fast growing of IoT technologies, came from the
most important sectoral world conferences. In the 44th ECC Plenary meeting
(Electronic Communication Committee of the European Conference of postal and
telecommunications Administrators) in 2017, were approved a range of deliverables
and made decisions on spectrum issues covering in particular Machine-to-Machine
(M2M)/Internet of things (IoT) applications, short ranges devices and wireless
broadband communications.[1] Also in 2018, the IEEE 4th World Forum on Internet
of Things in February, introduced fundamental innovations for all the various �elds
of applications like Industrial IoT, smart cities, agriculture and many others. The
new edition of World Forum on Internet of Things in 2019 is already planned.

19

1 � Introduction

Another important sprint for IoT development, mainly managed by the Ngnm
Alliance[2] (Next Generation Mobile Networks), is the imminent advent (by 2020)
of the �fth generation wireless networks (the 5G technology) that, thanks to the
implementation of ipv6, will be able to manage a bigger volume of users and handle
with millions and millions of connected devices. According to that, a new dedicated
network NB-IoT (Narrow-Band Internet of Things) have been implemented by the
main telecommunications operators to face the increasing usage and need of IoT
devices.

Very interesting and useful is the possibility to sense and monitor the environ-
ment with smart distributed systems implemented with a wireless sensor network
(WSN) connected to the internet to exchange information. These WSN can be used
in various monitoring applications like: domotic, building automation, environmen-
tal monitoring, protection, monitoring of energy consumption, smart agriculture
and many others.

Following the iXem mission, with a strong desire of innovation, the aim of this
work is the development of a versatile and innovative wireless system for smart
monitoring applications. The development carried forward in this thesis include
the hardware and �rmware design of the two main devices of a wireless sensors
network.
A secondary objective of this thesis was to use some innovative wireless transceiver,
on a new project, to study and understand its potential to evaluate its introduction
in some existing iXem systems for a technological upgrade.

This work starts with the analysis and study of existing wireless protocols,
WSN structures and various wireless transceiver technologies, to select a suitable
one. Then, as main goal, the focus was on: the �rmware design for the chosen In-
tegrated Circuit (IC) transceiver, the hardware design, the realization and testing
of the two devices. The work ended with the physical realization of two Printed
Circuit Board (PCB) that integrate the ICs radio transceiver and a selection of
actuators and sensors that perform the needed monitoring activities. The system
was implemented with two di�erent transceiver technologies to allow useful com-
parisons, as mentioned before: for the �rst choice (the TI CC1310) the complete
design �ow was done and for the second one (the Murata LoRa) the �ow ended
with the CAD design. For the second technology (Murata) the physical realization
of the prototype is not already produced. All the details about the system, the
speci�cations and the testing environment are provided in the following chapters.

1.3 Overview and innovative contributions

The interest and the importance of the Environment is becoming very important
in every business sector. The evolution of technology, that allow the realization

20

1 � Introduction

of new and innovative wireless applications, can improve the sensibility and the
safeguarding of the environment we live in. As said before, a lot of applications
of IoT are wireless sensors networks with a monitoring aim. A �rst example came
as from iXem[3] as from other innovative realities and it is the intelligent farming
monitoring, for example to reduce the usage of pesticides in grape crops.

Another example is the concept of city smart grid, implemented to meter the
energy, water, gas consumption of the citizens. One concrete example about this,
that allow to understand the importance of smart monitoring, is a TIM project in
Torino, in collaboration with Olivetti and the Società Metropolitana Acque Torino.
They have realized the �rst IoT intelligent water meter capable to send in real
time the measures through the NB-IoT net. In this contest, a strong boost came
from the power industry, which is now upgrading the power grid. Here IoT WSN
technologies are playing a fundamental role in safety monitoring over power trans-
mission and transformation equipment with the usage (or substitution) of billions
of smart meters [4]. The project done for this thesis �ts well the idea of power
monitoring devices to evaluate their consumption and to avoid waste. This is a
generic vision of this work, because the devices designed for this thesis are far away
from a complete metering system for power saving.

A wide number of solutions exist on the market, that implement this idea for
private homes, like the Bticino, Gewiss, Arduino and many others that use modern
wireless protocols and standards, open source or proprietary. Also, at industrial
level, there are many solutions, but this project wants to challenge existing systems
by wagering on the concept of monitoring indoor or outdoor devices distributed over
medium-extended geographic areas using free bandwidth wireless systems. In other
words, the designed system have the mission to create a distributed monitoring
network of sensors mainly independent from WiFi, Cellular connection and with a
low power consumption. The aims of this monitoring are many, like: the necessity
to harvest power consumption data for statistical or decisional aims, avoid power
waste turning on/o� a device when is not needed or force a power on reset on it,
monitoring the power supply state of a device with a UPS system and many others.
This is the innovative contribution that this thesis wants to give.

1.4 Thesis's structure

This section give to the reader a brief explanation about the structure of this thesis
and why was structured in this way. It was decided, thanks to the suggestions
of supervisors, to organize the sequence of chapters giving the same �ow followed
during the whole period spent in the design of this project, reporting the same
steps followed to reach the �nal results. This was to ensure a better understanding

21

1 � Introduction

of the �ow followed to approach all the problems encountered. In fact, after the
introduction, is possible to �nd the following informations:

� In Chapter 2, a survey of all the important concepts needed to understand
the world of WSN an IoT, useful to understand the following topics.

� In Chapter 3 starts the explanation of the SwiRem system, describing the
general structure.

� In Chapter 4 and 5 there is the analysis of the wireless technology taken into
account.

� The core of the thesis is concentrated in the Chapters 6, 7, 8, 9 where are
explained in details all the �rmware, hardware and assembly design choices
about the CC1310 SwiRem devices. The succession of the topics covered in
these chapters follow the same order in which they were be addressed during
the work.

� The Chapter 10 brie�y expose the initial upgrade steps of the designed system
thanks to the introduction of the new Murata LoRa Transceiver and by the
usage of an ecosystem of cloud tools implemented by LoRa Alliance partners.

� In Chapter 11 are exposed all the test and the results reached with the
SwiRem system.

� A �nal Chapter, the 12th, contain the conclusions and re�ections about the
work done and about some possible future improvement that can be taken.

22

Chapter 2

Survey on background knowledge

2.1 Internet of Things (IoT)

The actual idea of connecting physical things together and to the Internet is an
old idea. The term "Internet of Things" was, almost certainly, born in 1999 as
the title of a Kevin Ashton presentation about the introduction of RFID in the
Procter & Gamble supply chain.[5] Than for few years this concept remained in the
dark until 2010, when the theme of Europe's biggest Internet conference LeWeb
was the �Internet of Things�. In the same years important magazines like Scienti�c
American, Wired, Forbes started using IoT in their vocabulary to describe this
concept of internet everywhere and in everything.

The ideas beyond the �rs concept of Internet of Thing, that also are the ideas
that made this concept so important for the technological progress, are that we
leave in a physical world and in our lives, we interact with things, not with ideas
and information. So, the vision is the one where the Internet extends into the real
world making possible to computers to sense by their own the environment, learn
from it and help people in a in�nite variety of situations.

Figure 2.1. Visual representation of Internet of Things potentiality

23

2 � Survey on background knowledge

The mission of IoT is becoming true, in the last 3 or 4 years, thanks to the huge
and fast technology development that allow the integration of wireless embedded
systems with a huge variety of smart object. This integration can guarantee a new
observation of the real world at a new level of detail and at negligible cost. This
new "under control" world with the capability to sense in real time data and react
in automatic will be the scenario of many opportunities for new applications that
can improve the quality of our lives, can deal with di�cult situations and reduce
waste of resources.

It is now clear how important IoT is and where is it from, but under a tech-
nical point of view, the Internet of Things is not a single new technology but the
integration and cooperation of several technical developments that taken together
make possible the bridge between the virtual and physical world. Some of the main
capabilities that are needed to create an IoT device are: Communication and coop-
eration, Addressability, Identi�cation, Sensing, Actuation, Embedded information
processing, Localization, User interfaces. To realize an IoT device are needed lots of
di�erent technical solutions, starting from wireless protocols, then microcontroller
solutions, perfect hardware and �rmware cooperation for an embedded result, soft-
ware and network solutions and many others. Some of this aspect are described
in this chapter to be used in the following during the design explanations of this
work. For a more detailed comprehension of what IoT is and how it works is pos-
sible, among others, refer to "From the Internet of Computers to the Internet of
Things"[6]
The concept of IoT, intended as "sensors and actuators embedded in physical ob-
jects linked through wired and wireless networks" is intrinsically related with Wire-
less Sensor Network concept, sow is necessary to study it in deep.

2.2 Wireless Sensor Networks

As said before, the technology is now ready, thanks to the miniaturization based
on micro-electro-mechanical systems (MEMS), to create low power, low cost and
multifunction sensor objects with a very small size and that can communicate in
short and medium distances. This kind of sensor can be, in cooperatively way,
con�gured in a network that allow to cover and monitor a large and complex en-
vironment: it is a Sensor Network. Introducing a wireless communication between
nodes and to a base station it is obtained a Wireless Sensor Network (WSN), more
�exible than the wired solution. The development of WSNs come from military
needs, like surveillance in con�ict zones, but today it consists of distributed and in-
dependent devices that use sensors to monitor the physical world in a wide range of
applications, as said before, like automation, industrial infrastructure,tra�c, health
and many consumer areas. A WSN system include several technical components

24

2 � Survey on background knowledge

and infrastructures like a gateway, that manage wireless connectivity to the various
point of the network and give access to acquired information to the wired world
and distributed nodes that implement the wanted monitoring task. The wireless
protocol used to communicate by nodes to each other and to the gateway depends
on your application requirements. The most important protocols are explained in
this chapter. A general WSN structure, with its components and infrastructures,
is shown in Figure 2.2.

Figure 2.2. Wireless Sensor Network

It is possible to identify two main way to implement a WSN structure: multi-hop
and single-hop. In �gure Figure 2.3 are shown these two conceptual structures. The
structure used in the implemented system is a single-hop communication because
the characteristics of transceiver chosen and the morphology of the environment
guarantee equally to reach greater distances without using aggregation node (multi-
hop structure).

Since one of the goals of a WSN is the power conservation, the communication
protocols and the whole �rmware must consider the power management has one
of the main parameters. To better understand the concept behind the WSN is

25

2 � Survey on background knowledge

Figure 2.3. Single-hop a Multi-hop structure

possible to read the IEC white paper [4] and an interesting survey by the Georgia
Institute of Technology [7] .

2.3 868 MHz wireless communication

To better understand why IoT devices use the 868 MHz band is necessary to inves-
tigate inside the European Institutions that decide the usage of the RF spectrum.
IoT devices and WSN fall into the de�nition of "Short Range Devices" (SRD) that
is an ECC Recommendation 70-03 (Electronic Communications Committee). This
recommendation describes the radio frequency transmitter devices used in telecom-
munication for the transmission of information, which have low capability of causing
harmful interference to other radio equipment. The ECC is a European institution
that is responsible for radiocommunications and telecommunications matters and
is formed by the merger of ECTRA and ERC (European Radiocommunications
Committee) in September 2001. Going into detail, the Short-range devices are low-
power transmitters typically limited to 25�100 mW e�ective radiated power (ERP)
or less, depending on the frequency band, which limits their range to few hundred
meters, and do not require a license from its user. Applications for short-range
wireless devices include power meters and other remote instrumentation, RFID ap-
plications, radio-controlled models, �re, security and social alarms, vehicle radars,
wireless microphones and earphones, tra�c signs and signals (including control sig-
nals), remote garage door openers and car keys, barcode readers, motion detection,
and many others. The European Commission mandates through CEPT and ETSI
the allocation of several device bands for these purposes, restricts the parameters
of their use and provides guidelines for avoiding radio interference. In Europe, 863

26

2 � Survey on background knowledge

to 870 MHz band has been allocated for license-free operation using FHSS, DSSS,
or analog modulation with either a transmission duty cycle of 0.1%, 1% or 10%
depending on the band, or Listen Before Talk (LBT) with Adaptive Frequency
Agility.

2.4 Main standards on the market

According to the speci�c application, WSNs have to evaluate the access technology
to implement the wireless communication. Today a wide variety of di�erent wireless
standard technologies are remarkable to be used in this kind of applications, so it
was necessary to resume the main ones and to understand how they work.

Considering the distance and speed of access, the access technologies can be
grouped, following an increasing range order, in four categories: Personal Area
Network (PAN), Wireless Local Area Network (WLAN), Wireless Neighbourhood
Area Network (WNAN), Wireless Wide Area Network (WWAN. In Figure 2.4
are exposed some wireless access technologies grouped taking into account what
category they belong to, and consequently in relation to the theoretical distance
achievable. Are also heightened, for each category, the principal applications.

Figure 2.4. Distance vs. main wireless standards applications [8].

Before talking about the main standards on the market, used also in this project,
it was necessary to introduce the OSI model for the communication functions of a
telecommunication or computing system. The world of standards, regulations and
trademarks is very complex and to understand well how a communication protocol

27

2 � Survey on background knowledge

work is mandatory to know the structure of a wireless protocol. The model is a
product of the Open Systems Interconnection project at the International Organi-
zation for Standardization (ISO), maintained by the identi�cation ISO/IEC 7498-1.
This conceptual model divides a protocol of communication in seven abstraction
layers, where a layer serves the layer above it and is served by the layer below it.
These layers, in order from one to seven are: Physical Layer, Data Link Layer,
Network Layer, Transport Layer, Session Layer, Presentation Layer, Application
Layer. This structure is also called stack of a protocol. It is important to focus on
the two �rst layers, but to have a more complete description of the OSI model refer
to [9] or to the ISO/IEC 7498-1.

The physical layer explains the physical and electrical speci�cations of the data
connection. It de�nes the relationship between a device and a physical transmis-
sion medium (radio frequency link in this case). This includes the layout of pins,
voltages, line impedance, cable speci�cations, signal timing and similar character-
istics for connected devices and frequency and modulations for wireless devices. It
is responsible for transmission and reception of unstructured raw data in a physical
medium. The bit rate control is done at the physical layer. Furthermore, the data
link layer provides node-to-node data transfer link between two directly connected
nodes. It manages the detection of errors that may occur in the physical layer
and try to correct them. At this stage the protocol to establish and terminate a
connection between two physically connected devices is de�ned.[9]

Not all the standards use all the seven layers, but the �rst two are present in ev-
ery wireless stack structure, so is important to focus on the standard that is the base
for the upper protocols, that interest this project and in general the WSN for IoT
devices. One among many is the IEEE 802.15.4 low data rate, low power networks
standard. It de�nes the physical (PHY) and Medium Access Control (MAC) lay-
ers and forms the basis for numerous upper layer networking speci�cations. Other
important PHY layer speci�cations are LoRa and WM-BUS.

Starting from the above-mentioned physical layer protocols, in the following are
listed with a brief explanation the most common and useful protocols of interest.
Obviously, some of these protocols are used by devices employed in this project. In
the Figure 2.5 are reported some useful parameters to resume the main di�erences.

28

2 � Survey on background knowledge

Figure 2.5. Comparison between the main wireless standards [8].

2.4.1 IEEE 802.15.4g PHY

IEEE 802.15.4-2006 is a technical standard that deal with the low-level protocol
de�nitions corresponding to the OSI model physical and link layers. It was created
for low-power devices in the 868 MHz, 915 MHz, and 2.45 GHz frequency bands
in low-rate wireless personal area networks. Some of the most known standard
of wireless communication like ZigBee, 6LoWPAN, etc. are built upward in the
protocol stack and correspond to the network and transport layers, like shown in
Figure 2.6, and it is the one present in the TI CC1310.

Figure 2.6. General stack of a wireless protocol based on IEEE 802.15.4
PHY, like on CC1310

29

2 � Survey on background knowledge

2.4.2 Wireless M-Bus

The Wireless Meter Bus is a variant of the M-Bus or Meter-Bus which is a European
standard de�ned under EN 13757. M-BUS cover all the layers of the communica-
tion stack protocol, starting from the physical one. It is becoming widely accepted
in Europe for smart metering or Advanced Metering Infrastructure (AMI) appli-
cations. Wireless M-Bus was originally targeted to operate only in the 868 MHz
band, which gives a good trade-o� between RF range and antenna size. This stack
can be implemented with the TI CC1310 transceiver.

2.4.3 LoRa WAN

LoRa is a proprietary spread spectrum speci�cations scheme that is derivative of
Chirp Spread Spectrum modulation (CSS) and which can trade data rate for sen-
sitivity within a �xed channel bandwidth. It implements a variable data rate,
utilizing orthogonal spreading factors, which allows the system designer to trade
data rate for range or power, to optimize network performance in a constant band-
width.
The spread spectrum modulation is a method by which a signal with a particular
bandwidth is spread in the frequency domain, resulting in a signal with a wider
bandwidth. These techniques are used for a variety of reasons, including the estab-
lishment of secure communications, increasing resistance to natural interference,
noise and jamming, to prevent detection, and to limit power �ux density [10].
The forward error correction (FEC) or channel coding is a technique used for con-
trolling errors in data transmission over unreliable or noisy communication chan-
nels. The central idea is that the sender encodes the message in a redundant way
by using an error-correcting code (ECC).
LoRa is a PHY layer implementation and is separate with the higher-layer imple-
mentations. This allows LoRa to coexist and interoperate with existing network
architectures. For more details refer to [11].

2.4.4 ZigBEE

ZigBee is a wireless networking standard that is aimed at remote control and sen-
sor applications which is suitable for operation in harsh radio environments and
in isolated locations. ZigBee technology builds on IEEE standard 802.15.4 which
de�nes the physical and MAC layers. Above this, ZigBee de�nes the application
and security layer speci�cations enabling interoperability between products from
di�erent manufacturers. In this way ZigBee is a superset of the 802.15.4 speci�ca-
tion. With the applications for remote wireless sensing and control growing rapidly
it is estimated that the market size could reach hundreds of millions of dollars as

30

2 � Survey on background knowledge

early as 2007. This makes ZigBee technology a very attractive proposition for many
applications. For more details refer to [12].

2.4.5 Z-Wave

The Z-Wave technology, working in the sub-1GHz band, is based on a low-power
RF radio circuitry which is embedded into home electronics devices and systems,
its strength is the interoperability. Z-Wave is used in a wide range of wireless home
automation areas including lighting, entertainment systems and household appli-
ances, residential access control. With many more home devices becoming remotely
controlled, Z-Wave technology will have large market opportunities, especially in
the contest of the Internet of Things. The Z-Wave MAC and PHY layers are de�ned
by ITU-T Recommendation G.9959. In order to manage a hierarchical wireless net-
work, various types of Z-Wave device are needed: Controller, slave, Routing slave.
For more details refer to [13].

31

2 � Survey on background knowledge

2.5 Fundamental parameters to evaluate radio com-
munication

In this section are brie�y described some of the main parameters that allow to
evaluate the radio communications.

The following parameters are essential to characterise the quality of a radio
transmission:

� PER - Packet Error Rate = 100 ·
(

1 − ReceivedPackets

TransmittedPackets

)
� RSSI - Received Signal Strength Indicator = measurement of the power
present in a received radio signal

� SNR - Signal to Noise Ratio

� Latency - The latency is the time introduced by the signal travelling the
geographical distance as well as over the various pieces of communications
equipment

� Noise Floor - Is the measure of the signal created from the sum of all the noise
sources and unwanted signals within a measurement system, where noise is
de�ned as any other signal respect the one being monitored

� Budget Link - Is accounting all of the gains and losses from the transmitter,
through the medium (free space, cable, wave-guide, �ber, etc.) to the receiver
in a telecommunication system.

2.6 Main radio modulation techniques

In this section are described the main physical radio modulations used by a transceiver
hardware. More in detail the focus is: FSK, PSK and ASK.

2.6.1 FSK modulation

Frequency-shift keying (FSK) [14] is a frequency modulation scheme in which digital
information is transmitted through discrete frequency changes of a carrier signal.
The simplest FSK is binary FSK (BFSK). BFSK uses a pair of discrete frequencies
to transmit binary (0s and 1s) information. With this scheme, the "1" is called the
mark frequency and the "0" is called the space frequency. The time domain of an
FSK modulated carrier is illustrated in the Figure 2.7.

32

2 � Survey on background knowledge

Figure 2.7. An example of binary FSK

Rather than directly modulating the frequency with the digital data symbols,
"instantaneously" changing the frequency at the beginning of each symbol period,
Gaussian frequency-shift keying (GFSK) �lters the data pulses with a Gaussian
�lter to make the transitions smoother. This �lter has the advantage of reducing
sideband power, reducing interference with neighbouring channels, at the cost of
increasing intersymbol interference.

2.6.2 PSK modulation

PSK or Phase-shift keying [15] is a digital modulation that encode data by changing
the phase of a reference signal called the carrier. The modulation consists of the
variations of the reference signal varying from sine to cosine and vice-versa in precise
slots time.

A �nite number of phases is used to represent data to form a unique pattern
of binary digits. In other words, each pattern of bits is represented by a particular
phase that is called symbol.

A simpler implementation of ordinary PSK is DPSK (Di�erential PSK), since
there is no need for the demodulator to have a copy of the reference signal to
determine the exact phase of the received signal.

The IEEE 802.15.4 (2.4.1) exploiting PSK use two frequency bands: 868�915
MHz with BPSK and at 2.4 GHz with OQPSK. Both QPSK and 8PSK are widely
used in IoT technologies.

A basic PSK modulation is shown in the Figure 2.8.

33

2 � Survey on background knowledge

Figure 2.8. An example of a basic PSK modulation

2.6.3 ASK modulation

On-o� keying (OOK) denotes the simplest form of amplitude-shift keying (ASK)
[16] modulation that represents digital data at the presence or absence of a carrier
wave. In its simplest form, the presence of a carrier for a speci�c duration represents
a binary one, while its absence for the same duration represents a binary zero. Some
more sophisticated schemes vary these durations to convey additional information.
It is analogous to unipolar encoding line code. OOK is more spectrally e�cient
than frequency-shift keying, but more sensitive to noise when using a regenerative
receiver or a poorly implemented superheterodyne receiver. The OOk modulation
is shown in the following Figure 2.9.

2.6.4 Spreading Spectrum Modulation

The Spread Spectrum Modulation is a method to spread in the frequency domain
the bandwidth of a signal, obtaining a signal with a wider bandwidth. These
techniques are used for a variety of reasons, including the establishment of secure
communications, increasing resistance to natural interference, noise and jamming,
to prevent detection, and to limit power �ux density.

Forward Error Correction (FEC) or Channel Coding is a technique used for con-
trolling errors in data transmission over unreliable or noisy communication chan-
nels. The central idea is that the sender encodes the message in a redundant way
by using an Error-Correcting Code (ECC).

34

2 � Survey on background knowledge

Figure 2.9. An example of OOK

Spread Spectrum Modulation and Forward Error Correction are techniques that
increase the range and robustness of radio communication links compared with
traditional FSK or OOK based modulation.

2.7 ICs communication protocols

Serial bus gives several advantages in the device's wiring. For this reason, they
are widely present on chips like sensors, converters, analog switches, memory, etc.
Below is reported a brief description of the main wired communication protocols
and interconnection standards used in this thesis work.

2.7.1 SPI protocol

The Serial Peripheral Interface [17] (SPI) introduced by Motorola, is widely used
for communications between ICs. It is a master-slave protocol that use only four
wires. These wires are: one clock (SCLK), two data lines (Master Output Slave
Input - MOSI and Master Input Slave Output - MISO) and a Slave Select (SS').
The most common realization of this protocol is the one in Figure 2.10.

There are many ways to connect the master device with the slave devices, but
the most common one is the Figure 2.11.

35

2 � Survey on background knowledge

Figure 2.10. A typical SPI timing

Figure 2.11. A common SPI scheme

2.7.2 I2C protocol

The Inter Integrated Circuit [17] (I2C) is a serial interface bus created by Philips
(now NXP Semiconductor). This protocol uses two wires which are connected to all
slaves ICs and there is not a separate chip select like the SS' in SPI protocol. Since
there is not a SS', before sending data, is necessary to send an address to identify
the correct slave; this address is sent on the same line of data. It is important to
notice that the I2C is half-duplex and any device connect to the bus can become
a master when the current master leaves the control. In Figure 2.12 is shown the
typical timing protocol.

The two wires of this bus are a clock line (SCL) and data line (SDA). Both are
connected by pull-up resistors to the supply voltage. A typical connection is shown
in the Figure 2.13.

36

2 � Survey on background knowledge

Figure 2.12. A typical I2C timing

Figure 2.13. A common I2C scheme

37

2 � Survey on background knowledge

2.7.3 UART

The Universal Asynchronous Receiver Transmitter [18] (UART) is an asynchronous
serial communication protocol created by Gordon Bell. It is a hardware device that
perform the translation of parallel data in to serial forms. UARTs are generally used
with RS-232 standard. The electric signal levels and methods (such as di�erential
signal etc.) are handled by a driver circuit external to the UART. The UART
takes bytes of data and transmits the individual bits in a sequential fashion. At
destination, a second UART reassembles the bits into complete bytes. Each UART
contains a shift register, which is the fundamental method of conversion between
serial and parallel forms. Serial transmission of digital information (bits) through
a single wire or other medium is less costly than parallel transmission through
multiple wires. A UART usually contains the following components:

� a clock generator, usually a multiple of the bit rate to allow sampling in the
middle of a bit period

� input and output shift registers

� transmit/receive control

� read/write control logic

� transmit/receive bu�ers (optional)

� parallel data bus bu�er (optional)

� First-In, First-Out (FIFO) bu�er memory (optional).

38

2 � Survey on background knowledge

2.7.4 JTAG standard

The Joint Test Action Group [17](JTAG) standard, also known as IEEE 1149.1 [19].
It became necessary to deal with the surface mount IC. JTAG give the possibility
to look at the register and the data path of the chip to understand which is the
problem that necessary to debug. In fact, it is widely used to program and debug
microcontroller (e.g. ARM). The JTAG is a four wire serial bus: a clock line (TCK),
a mode select line (TMS), data in (TDI) and data out (TDO). Very often, when
JTAG is used to program a microcontroller, is necessary to include the RESET
signal. A curiosity is that the "T" in the name of the signals stay for "Test", giving
a precise idea about the scope of this interface. In the Figure 2.14 are shown a
basic scheme and timing of JTAG.

Figure 2.14. A common JTAG scheme

39

Chapter 3

SwiRem system overview

3.1 Speci�cations of the system

The idea to implement a WSN based on a custom system conceived with the need
to electrically control and monitor a great number of devices, distributed in an
extensive territory and often situated in uncomfortable places to be reached. So,
there was the need to implement a stand-alone system that performs the task of
remote control, monitor and meter of electrical characteristic of these distributed
devices, from now called Devices Under Test (DUT).

The main idea was to have a simple and versatile interface to remotely control
the DUTs without going in place. The system allows to know if one DUT has
a problem, to know how much energy it was consuming and many other imple-
mentable features.
The core characteristics that the new system must have are:

� Monitoring of power consumption

� Sense the present of the main power supply of the DUT

� Possibility to turn it on or o� remotely

� Low power consumption and battery supply for nodes

� Wireless 868 MHz connectivity

� Internet connectivity to provide collected data to users

40

3 � SwiRem system overview

The above characteristic implies the realization of two unit, a node and a base
station or master ,as the teory of wireless sensor network explains. This structure
is a general one, it is possible that in some cases is su�cient to design and realize
only the node (that is the sensing object) because the so called "base station" can
be already present, in function of the chosen communication system. To start the
design of the system the problems were addressed as follows:

� Study of some transceiver technology, in particular Texas Instruments Sim-
pleLink and LoRa Alliance products.

� De�nition of the system's functionality and its related design speci�cations

� Firmware development

� Hardware development

� PCB realization, debug and testing

� Possible improvements with other technologies

3.2 General description of the system

The realized system is composed by two or more devices, one master and one or
more nodes, to realize a single-hop WSN 2.2 . The nodes, that can be power
supplied from battery or from power grid, are deployed where there is a DUT to
be controlled and they perform the needed monitoring task, in function of the
characteristic of the speci�c DUT. For example, a possible DUT can be a router
board on a church bell tower that manage a radio link system or a Gateway deployed
near a vineyard.

Whereas, the master has the function of gateway/access point and it is con-
nected to the internet thank to a single-board computer (SBC), in this case a
RaspberryPi with a 3G pen-drive. The master communicates via wireless with
a node to send instructions of what to do and to collect the needed data about
the monitored parameters of the remote device. The collected data are saved in
an on-line database and they could be visualized from the end-users thanks to a
GUI (Graphic User Interface). The back end processes (database and GUI) use an
existing and working solution not aim of this project.

Due to a power saving strategy, periodically the node wakes up from sleep
and starts a communication with the master, that is always in a reception mode
(RX). Obviously, to avoid collisions, every node have a slightly di�erent time to
wake up and an anti-collision system procedures. At this point, the master has to

41

3 � SwiRem system overview

decide what the node has to perform, taking into account prede�ned situations and
possible instructions coming from the user from an internet connection tanks to a
Single Board Computer (SBC) like RaspberryPi.

The node, in this �rst realization, has the capability to: turn on/o� a generic
DUT to which it is connected, measure voltage and current (to monitor the power
consumption) and sense the present of the main power supply. To better understand
the con�guration of the system is useful to look at Figure 3.1.

Figure 3.1. Functional scheme of the whole system

In the system schemes is easy to distinguish a general topology of two nodes
attached to the respective DUT and the master collector, with a internet connection
to reach the end users. Obviously, a single master can handle with a larger number
of nodes, but the precise number is not yet de�ned. From the technical documents of
the analysed transceivers, its possible to manage 50 nodes with a single base station.
Other con�gurations, like the LoRaWAN, can handle hundreds of nodes. In order to
realize an independent IoT wireless sensor network, every device of the network has
the capability to understand the analysed phenomena and the autonomy to decide
when to send data to the master, that become a collector. This is to ensure, for
example, the immediate detection of an event, like the absence of the power supply
of the DUT. For this reason, every node starts the communication by sending a

42

3 � SwiRem system overview

wakeup to the master with �xed intervals or when it detects a particular event. The
master can handle the various requests coming from the nodes to supervise their
operations. These choices are in agreement with the collaborative node structure
in WSN theory. Than the master can decide, also processing information coming
from user, which action a particular node must do.

In conclusion, this is the general solution elaborated to satisfy to speci�cations
required, that in synthesis are: a remote switch and a power meter with wireless
connectivity, possibility to upgrade the system, internet connection to collecting and
saving data, management of distributed DUT in a not easily accessible environment.

43

Chapter 4

Analysis of possible RF platforms

At the very beginning of the project was necessary to study a wide number of wire-
less IoT oriented platforms, inside the de�nition of SRD that works at 868MHz. For
the choice were took in to account several parameters like: distances to be reached,
sensitivity in relations to the environment characteristics (mainly countryside), ver-
satility of development tools related to the development and the time to market
and possibly to expand and upgrade some existing iXem platforms. At the end
of a selection process, three suitable solutions were analysed more in details: The
LoRa WiMOD solution, the SimpleLink TI CC1310 solution (evolution of the TI
CC110 already used in many iXem devices) and the LoRa Murata module. For
the LoRa module the WiMOD solution was analysed because of the presence, in
the laboratory, of the development kit, already used in other tests by iXem. On
the market are now present di�erent solutions that use a proprietary Semtec LoRa
transceiver, like Arduino, Raspberry, Libelium, Murata etc. In the following, be-
fore exposing the �nal choice and explaining in detail the used product, is shown a
brief description of analysed Sistem on Chip (SOC), with a focus on the technical
characteristics and on the available tools and development kits.

4.1 WiMOD LoRa

The WiMOD-iM880 is given with an evaluation kit that helps the test phase, and
with a software that accelerates the settings of parameters and consequently the
communication with the transceiver.

44

4 � Analysis of possible RF platforms

The main features present on the evaluation boards are:

� USB interface for communication with a PC

� Power supply by USB or battery

� 3 push buttons and 2 DIP switches

� 4 LED indicators

� Temperature sensor with 2-Wire Serial Interface

� Buzzer and potentiometer

� Expansion port (I/O connectors)

To study in deep and understand better the Evaluation Board refer to [20]

Figure 4.1. LoRa Development Kit.

45

4 � Analysis of possible RF platforms

4.1.1 iM880A LoRa characteristics

To better focus one the iM880A Long Range radio transceiver potentialities are
reported the main characteristics of this system, considering that on the PCB
solution designed by WIMOD are present two devices: a Semtec LoRa transceiver
[21] and a ST microcontroller.

� Dimensions: 20.0 x 25.0 x 2 mm

� LoRaTM modulation technology
('Long Range' communications us-
ing very low power levels.)

� ST uC STM32L151Cx

� Semtech SX1272 transceiver

� Sensitivity down to -137 dBm

� UART, SPI and I2C interface

� Analog and digital inputs � digital
outputs

� Supply voltage range from 2,4 to 3,6
V

� RF interface optimized to 50Ω

� Output power level up to +19 dBm

� High link budget up to 156 dB

� Range up to 15000m (Line of Sight)

� Pre-Certi�ed according to EN 300
220

� It operates in the license free 868
MHz SRD frequency band

Figure 4.2. The WiMOD IM880 transceiver

The iM880A uses a Semtech's patented LoRa module that, from the RF trans-
mission point of view, it combines spread spectrum modulation and forward error
correction techniques to increase the range and robustness of radio communication

46

4 � Analysis of possible RF platforms

links compared with traditional FSK or OOK based modulation according to the
LoRa modulation as mentioned in section 2.4.3

In LoRa mode the iM880A o�ers three bandwidth options of 125kHz, 250kHz,
and 500kHz with spreading factors ranging from 7 to 12. The spreading factor
is the ratio between the nominal symbol rate and the chip rate; it represents the
number of symbols sent per bit of information.

When two nodes communicate it is possible to identify a Local and a Peer. The
direction from local to peer device is called Downlink. The peer device counts the
number of received and transmitted packets and returns this status back to the
local device within the so-called Uplink timeslot.
The local device communicates through serial COM with the software.

4.1.2 WiMOD LR Studio software and tools

The WiMOD LoRa studio software o�ers a wide range of testing tool, to easily
interact and change the main parameters of the IM880 and the board. It is possible
to identify a section where the transceiver parameters can be read and changed and
a section where there are the real testing tools.
For the measurements we focus on the most important two tools.

Radio Link Test: The Radio Link Test can be used to verify the radio link qual-
ity between two iM880A modules. This test application measures THE PACKET
ERROR rate by counting the number of transmitted and received packets on the
local connected device and the peer device.
It is possible to modify the RF Packet size (from 15 byte to 64) and the number of
RF packet (from 100 to 50000). It is also possible to save in an external log �le all
the measured values.

Data Link Service: The Data Link Service can be used to send radio messages
from one iM880A to another in a comfortable way. This feature uses the "send
unreliable radio message" service of the radio �rmware. The user can de�ne, by an
dedicated box or by �les, a payload to transmit (of maximum 245 bytes), and it
is possible to set an automatic periodic transmission, setting the Transmit period.
The tool shows the received payload (the receiver must be the one connected to the
pc) and the measured RSSI, SNR and RX time of the received message.

For more information about the usage of the software please refer to theWiMODLR
Studio User Guide [22]

47

4 � Analysis of possible RF platforms

4.2 Murata LoRa

The LoRa WAN IC CMWX1ZZABZ by Murata is a new version of IoT device
that integrates in the same IC a Semtec SX1276 LoRa transceiver and a ST ARM
Cortex M0 STM32L0 microcontroller (di�erent from the WIMOD version that hold
the two devices on a PCB). It is possible to test this IC with a DEV Kit by ST
that allow an easy and rapid test of the most important features. The ST DEV
Kit hold also the programmer that can b used to upload your own �rmware on the
transceiver. In the following are listed the main characteristics of this device:

� Dimensions: 12,5 x 11,6 x 1,76 mm

� LoRaLPWAN modulation technol-
ogy ('LongRange' communications
using very low power levels.)

� ST uC STM32L0 series

� Semtech SX1276 transceiver

� Sensitivity down to -135 dBm

� UART, SPI and I2C interface

� includes 192kB �ash and 20kB
RAM

� Analog and digital inputs � digital
outputs

� Supply voltage range from 2,2 to 3,6
V

� RF interface optimized to 50Ω

� Output power level up to +14 dBm
(Max 20dBm)

� It operates in the license free 868
MHz SRD frequency band

� compatibility with "The things net-
work" IoT system

Figure 4.3. The LoRa Murata IC from [23]

48

4 � Analysis of possible RF platforms

This innovative module is used in particular for smart metering, wearable, IoT
edge nodes. The power of this system is the compatibility with a server infrastruc-
ture, The thing network [24] that eases the interconnection of IoT devices.

49

4 � Analysis of possible RF platforms

4.3 TI SimpleLink CC1310

The Texas Instruments CC1310 is the second transceiver taken into account. It is
given with an evaluation kit that help to speed the comprehension of the CC1310
working. The kit includes two boards (that �ts with various TI transceiver), two
CC1310 Evaluation Modules 779-930 MHz (CC13xxEM-7XD-7793-4L), two W5017
IP-65 Pulse Antennas (2 dBi gain). The main features present on the evaluation
boards are:

� USB interface for communication with a PC

� Power supply by USB or battery

� 4 push buttons and 2 DIP switches

� 4 LED indicators

� Accelerometer

� Ambient light sensor

� Micro SD Card reader

� LCD (to allow on board range test i.e.)

To study in deep and understand better the Evaluation Board refer to [25]

Figure 4.4. CC1310 Development Kit.

50

4 � Analysis of possible RF platforms

4.3.1 TI CC1310 characteristics

To better focus one the TI CC1310 radio transceiver potentialities are reported its
main characteristics, taking into account that on the IC module are present many
devices and two microcontroller: the main one is a Cortex M3 ARM and then there
is an ARM Cortex M0 for the RF Core.

� RoHS-Compliant Package 7-mm Ö
7-mm RGZ VQFN48 (30 GPIOs)

� Wireless M-Bus and IEEE
802.15.4g PHY

� Single-Ended or Di�erential RF In-
terface
item Worldwide Redio Frequency
Regulations: ETSI-EN 300 220, EN
303 131, MUX EN 303 204 (Europe)

� Powerful ARM Cortex-M3

� 48-MHz Clock Speed, 128KB Flash,
8KB of SRAM for Cache, 20KB of
Ultralow Leakage SRAM

� A dedicated Radio Controller
Cortex-M0 that handles low-level
RF protocol commands

� Sensitivity �110 dBm at 50 kbps

� UART, SPI and I2C interface

� True Random Number Generator,
AES-128 Security Module

� RF interface optimized to 50Ω

� Supply voltage range from
1,8 to 3,8 V

� Output power level up to +14 dBm

� Low power features (Standby:
µA0.6A)

� On-Chip Internal DC-DC Con-
verter

Figure 4.5. The TI Dev Kit CC1310 module

The CC1310 in a complex and highly technological Integrated Circuit (IC),
with a high grate of integrations. It is classi�ed in a Sub-1-GHz family, ultra-low
power wireless MCUs. The CC1310 device combines a �exible, very low power RF

51

4 � Analysis of possible RF platforms

transceiver with a powerful 48-MHz Cortex- M3 microcontroller in a platform sup-
porting multiple physical layers and RF standards. A dedicated Radio Controller
(Cortex-M0) handles low-level RF protocol commands that are stored in ROM
or RAM, thus ensuring ultra-low power and �exibility. The low-power consump-
tion of the CC1310 device does not come at the expense of RF performance; the
CC1310 device has excellent sensitivity and robustness (selectivity and blocking)
performance.

4.3.2 TI software and tools

The TI give a complete suite of Software around the Smart RF system, that help
the analysis and comprehension of all the CC1310 features in a fast way. The main
tools are: SmartRF Studio 7, Sensor Controller studio and Flash Programmer 2.
Over and above there are the CCS suite, but it will be considered separately from
the previous cited TI tools.

SmartRF Studio 7 SmartRF Studio 7 is a PC software that can be used to
manage several Texas Instruments development kits of the CCxxxx family. It helps
designers, at an early stage in the design process, to evaluate in an easy way the
RF-IC system for choosing the right product for the radio systems. The program
provides a user-friendly graphic interface to understand and operate on all the
chip's radio con�guration registers, and it is very helpful for functional testing
and for �nding the appropriate radio settings. The direct access to the RF-IC's
chip registers and radio-related features, and their XML storage help the designer
not only to set and test the designed IC, but to understand and reuse important
parameter that have to be included and set in the �rmware. With SmartRF Studio
it is easy to measure the signal strength (RSSI) and Packet Error Rate. There are
4 modes to set a Rf communication, in function of what is needed: Continuous
RX/TX and Packet RX/TX.

Sensor Controller studio The Sensor Controller Studio is a software used to
write, test and debug in an easy way code for the CC1310 Sensor Controller sub-
system. The tool generates a Sensor Controller Interface driver, which is a set of C
source �les that are compiled into the System CPU (ARM Cortex-M3) application.
The Sensor Controller is a small CPU core that is highly optimized for low power
consumption and e�cient peripheral operation and it is located in the CC1310 aux-
iliary power/clock domain, and can perform simple background tasks autonomously
and independent of the System CPU and MCU domain power state. These tasks
include such as: Analog sensor polling using the ADC or comparator, digital sensor
polling (using bit-banged SPI, I2C or other protocols), capacitive sensing (using the

52

4 � Analysis of possible RF platforms

integrated current source, comparator and time-to-digital converter). The Sensor
Controller is user programmable with a language that is very similar to C, and
allows for sensor polling and other tasks to be speci�ed as sequential algorithms.
This approach is very powerful to give the possibility to develop very complex, low
power features with CC1310.

4.4 CC1310 vs LoRa and �nal choice

The long and accurate analysis of this two di�erent RF technology which, as men-
tioned above, has focused on: RF protocols, hardware and low power features,
development tools and documentations.

Taking into account the speci�c task needed some fundamental di�erences were
identi�ed, that led to the choice of TICC1310:

� TICC1310 can be used to improve and upgrade some iXem system
that already use TI Transceiver (CC1110)

� Range Tests, for the speci�c application, are similar

� TICC1310 have is more versatile respect to the WiMOD LoRa

� CC1310 can implement di�erent IEEE802.15.4 based RF communication pro-
tocol

� SimpleLink products compatibility with little �rmware changes.

� LoRa WiMOD have a proprietary �rmware that impose the usage on another
uC.

During the development of the system with the chosen transceiver, the CC1310,
a new Semtech LoRa devices come out and communities of the alliance developed
new infrastructures and new powerful devices like the Murata one. This evolution
allowed the upgrade of the SwRem system with this new technologies to reach a
larger audience with enhanced reliability. More details follows in 10.

53

Chapter 5

CC1310 preparatory concepts

From this chapter on starts the most important section of the thesis with strongly
technical information. Purpose of this section was to deeply analyse the general
information given in the previous one (Chapter 4) about CC1310. The main aspects
pointed out will be useful characteristic of the hardware, software, features and
structures that will be widely exploited during the design of the SwiRem boards.
All the concepts here explained were allocated in a separate chapter because they
regard a general view of CC1310 and can be exploited in other projects.

5.1 Hardware features

To design a system that includes the CC1310, as central unit and transceiver, it was
necessary to analyse and understand some useful hardware characteristics, that are
spread in a large number of datasheets and manuals. In the following are resumed
the most important informations, essential for this work.

First of all it was important to understand generally the internal structure of
the CC1310. It has four main sections inside like shown in Figure 5.1. There is
the main CPU, the RF core, the general Peripheral and the sensor controller (the
one explained in section4.3.2)

The CC1310 have three di�erent RGZ package dimension: 4x4, 5x5, 7x7 that
make available respectively 10, 15 and 30 GPIO pins. In this project was chosen
the 7x7 one, because of the prototype aim of the boards and because the ease to be
handled. It was important to identify the pin-out of the CC1310 and their electrical
characteristics and absolute maximum ratings.

In Figure 5.2 is possible to see the pins order and their usage. There are �ve
main types of pins: GPIO and reset (all the DIO_N and pin 35), the power supply
pins (13, 22, 23, 33, 34, 44, 45, 48), the RF pins (1 and 2), the oscillator pins (4,

54

5 � CC1310 preparatory concepts

Figure 5.1. The internal structure of CC1310 IC ©Texas Instrument

Figure 5.2. The 7x7 RGZ Package pin-out of CC1310 ©Texas Instrument

55

5 � CC1310 preparatory concepts

5, 46, 47) and JTAG pins (24, 25, 26, 27). The GPIO at pin 10, 11, 12, 26, and 27
have a high drive capability that is the capability to drive a maximum current of
8mA instead of only 4mA like the other GPIO.

5.2 Software features

The CC1310 is a complex environment with various level of abstraction that allow
the designer to handle the hardware more quickly. A useful scheme to understand
how a complete code structure of a CC1310 �rmware based on TI-RTOS is shown
in Figure 5.3 taken from the TI-RTOS User Guide [26].

Figure 5.3. Code structure with TI-RTOS.©Texas Instrument

The application �rmware is based on the Texas Instrument Real Time Operation
System, TI-RTOS. TI-RTOS is a scalable, one-stop embedded tools ecosystem for
TI devices. It scales from a real-time multitasking kernel (SYS/BIOS) to a complete
RTOS solution including additional middle-ware components and device drivers.
By providing essential system software components that are pre-tested and pre-
integrated, TI-RTOS enables the designer to manly focus on the application instead

56

5 � CC1310 preparatory concepts

Figure 5.4. CC1310 software structure©Texas Instrument

of focusing on low level code. TI-RTOS contains its own source �les, pre-compiled
libraries, examples and several components within its "products".

TI-RTOS provides various software instruments that are utilized for the writing
of a complex �rmware code. A stack structure of these tools is shown in Figure 5.4.
These powerful tools are part of a very complex ecosystem that is articulated on
various level of abstraction and is presented through dozens of technical papers
from TI. After a careful analysis of these information, it was decided to report only
the essential tools that were used for the design of the �rmware for this application.
In particular the focus is on the following user applications level tools:

� SimpleLink

� Power management

SimpleLink is the trade mark chosen by Texas Instruments to identify the RF
TI 15.4 communication Stack. The CC1310 SimpleLink includes the software stack
from TI, that implements the standard IEEE 802.15.4e and 802.15.4g speci�cations
2.4.1. More in detail, at a operational level, to realize a radio communication
are used the EasyLink functions and SmartRF structures. EasyLink is a set of
functions that perform all the needed radio operations. As an example, to send
a packet it was possible to use, at high level code, the function EasyLink_Status
EasyLink_transmit(EasyLink_TxPacket *txPacket). Inside the EasyLink APIs are
speci�ed the packet structures used to collect and send the wanted data, like show
in the following code.

57

5 � CC1310 preparatory concepts

/* Copyright (c) 2015 -2016 , Texas Instruments Incorporated

All rights reserved. */

/// \brief Structure for the TX Packet

typedef struct

{

uint8_t dstAddr [8]; /// Dst Address

uint32_t absTime; ///Absolute time to Tx packet (0 for immediate)

///Layer will use last SeqNum used + 1

uint8_t len; ///Payload Length

uint8_t payload[EASYLINK_MAX_DATA_LENGTH]; ///Payload

} EasyLink_TxPacket;

/// \brief Structure for the RX'ed Packet

typedef struct

{

uint8_t dstAddr [8]; ///Dst Address of RX'ed packet

int8_t rssi; ///rssi of RX'ed packet

uint32_t absTime; ///Absolute time to turn on Rx when passed

///(0 for immediate), Or Absolute time that

packet was Rx

///when returned.

uint32_t rxTimeout; ///Relative time in ticks from Rx start to Rx

TimeOut

///a value of 0 means no timeout

uint8_t len; ///length of RX'ed packet

uint8_t payload[EASYLINK_MAX_DATA_LENGTH]; ///payload of RX'ed packet

} EasyLink_RxPacket;

These structures are �lled with incoming or ready to send data and are managed
by EasyLink. As interface, similar structures are created by the designer and are
useful to manage the data before the usage of EasyLink functions.

Moreover, TI gives a versatile method to set all the dozens of registers to pro-
vide the correct functionality the RF hardware. All these parameters were also
exportable from the SmartRF Studio Software 4.3.2.

58

Chapter 6

Firmware design

To handle with a micro-controller based device is necessary to design the �rmware
to control the hardware and allow to perform the wanted operations. This is a very
important part, because the �rmware gives the �nal intelligence to the device, but
it is not possible to write a good �rmware without deeply knowing the hardware
to be controlled, they are strictly related. The �rmware was realized with the IDE
Code Composer Studio, that allow to manage all the con�gurations �les needed to
program the CC1310. As �rst approach, to create the two �rmware for the two
boards, the development kit was used. It was necessary to test and understand
deeply which functions were needed, using a properly working hardware. All the
�rmware is based on TI-RTOS, the real time operation system of Texas Instrument,
explained in the section 5.2.

The �rst basic operation designed was the structure of the radio communication
protocol, to allow the interaction between two transceivers. Using the literature, the
TI guidelines and the given examples, it was implemented a radio communication
protocol to handle the exchange of information between the two boards. After many
con�gurations, the �nal protocol that manage the correct succession of operations
was created, with a handshake like structure. In Figure 6.1 is shown a schematic
representation of the designed �ow of operations.

To use and interact with the CC1310 RF driver the Texas Instrument Sim-
pleLink family provides some useful APIs called EasyLink, as explained in the
section 5.2. This APIs give the possibility, to the designers, to create a sub 1-GHz
protocol with a good abstraction from the hardware, considering the concepts ex-
plained in section 2.4.1. This methodology is very modern and useful to guarantee
an advantageous time to market and the possibility to a multi platform implemen-
tation.

The code is structured in a hierarchical �le structure, like in the Figure 6.2.
More in detail, this general structure allows a pre-emptive multitasking thank to

59

6 � Firmware design

Figure 6.1. Flow diagram of Master-Node radio interaction

TI-RTOS Kernel. The task is a TI-RTOS kernel service: independent, pre-emptible
thread of execution that has its own stack and can yield the processor. Every task,
entirely de�ned in a separate .c �le, are initialized by calling a init() function that
provide to start it. In fact, in the main �le there are only two init() fuction (one
for main-task and one for radio-task) and the BIOS_start() function that invoke
the startup sequence of SYS/BIOS (TI-RTOS kernel). The radio-task initialise the
TASK that handle with the radio issues. In detail it initialise the task steak, the
event queue and all the TI-RTOS OS functions needed in this TASK. The main-
task initialise the TASK that handle with all the actions that the uC unit have to
do. In detail it initialises the task steak, the event queue, SPI, and all the TI-RTOS
OS functions needed in this TASK.

The core structure of the designed task is a loop that wait an event (thanks to
the function Event_pend()) to decide how to evolve the operations. The event is
a resource used to guarantee the communication between the di�erent part of the
task and tasks. Each function set an event to give the permission to the system
to go ahead with the execution. To better explain this concept, it is necessary
to use a practical example: when the function used to sense the present of a new
radio packet in a RF driver identify the arrival of a new packet, it set an event
to communicate the present of this new radio data to allow the prosecution of the
code �ow. In other words, the task implements a state machine system.

So, having understood the TIRTOS functionality it was possible to realize the
radio protocol between the two boards, shown in Figure 6.3

60

6 � Firmware design

Figure 6.2. Firmware's Structure

6.0.1 Firmware of the Master

The �ow diagram of �rmware, shown in Figure 6.4, is formed by two tasks, one
that handles the radio operations and one that handles all the operations of the
micro-controller.

After power-on, TI-RTOS starts and all the values needed by the task are ini-
tialized. More in detail, are created the main structures of the task: the semaphore,
the event queue, the task priority and the stack size (state M2 and M3). After the
initialization, all the radio parameters are set (like modulation, frequencies, address,
RX-�lter, and so on) and the master goes in a synchronous receiving mode without
time-out (M4 state) and it remains in Rx-mode until it receives a radio-packet from
a node. If the received packet is a valid packet and a Wakeup �ag_wake_received
is set in M6 state otherwise it goes back in M4 state. In M7, the Radio-Task noti-
�es to the Master-Task the node's information received and waits for a command
coming from SPI. When a command comes from SPI (M13), the radio task sends it
to the node and comes back in Rx-mode, but this time with a time-out (M8). The
time-out is necessary to wait an acknowledge from the node, to be sure that it has
received the command. A resend structure is implemented to send again n-times
the command, until a valid acknowledge is received (M9). If any acknowledge is
received, during n-resends, the transmission is considered failed and this failure is
saved in an internal database that memorized this data for each node (M10 and
M14). Otherwise, if a valid acknowledge is received, the communication is consid-
ered valid and the master come back in Rx-mode without time-out (M4). Now it
can wait for another wakeup or a data packet from the node, if the initial command
asked for the return of some data from the node (M5 and M14).

The �rmware is structured to automatic memorize a new node inserted in the

61

6 � Firmware design

Figure 6.3. Flow diagram of Master-Node �rmware radio protocol

network. Every time a node starts a communication it sends a packet that include
his address and the master checks, in an internal database, if it is already present
or not. If is a new node, it is added to the database. This is import because allows
a simpli�ed management of the WSN making it dynamic. This system makes easy
to add new nodes (with a maximum number of 100) without changing the �rmware
of master.

Functions of Master Radio Task

In this section is brie�y explained the main functions of Master �rmware. To
understand where is located a function within the �rmware �ow look a Figure 6.4
and compare the code (MRx) near the wanted function.

MR1) void MasterRadioTask_registerPacketReceivedCallback(

MasterRadio_PacketReceivedCallback)

62

6 � Firmware design

Figure 6.4. Firmware �ow diagram of the master

The MR1 function implements the connection between the radio task and the main
task of the master. More in detail it was used to connect the pointer to the two
structures. It transforms the reception of a packet to a callback event.

MR2) static void MasterRadioTaskFunction(UArg arg0 , UArg arg1)

The MR2 is the core function of the Master Radio Task. It is divided in two mains
section: an initialization section and the task while loop. The main initialization
regards the radio parameters set by the some EasyLink function. In the while loop
is implemented the decision process that guarantee the correct evolution of the al-
gorithm thanks to the "event" tools.

MR3) void rerutnInRX_noTimeOut ()

This function allows to put the radio in reception mode without time-out with the
EasyLink function.

63

6 � Firmware design

MR4) enum MasterRadioOperationStatus MasterRadioTask_sendCommandData(uint16_t data

)

The MR4 function is used, by main task, to communicate to the radio task which
command the master have to send to a node. Furthermore, this function there is on
of the control on a received wakeup that allow to send a command only if a wakeup
is received. The semaphore TIRTOS tool guarantee the successful sending of the
only one command at a time without encounter con�icts on rf driver request.

MR5) static void returnRadioOperationStatus(enum MasterRadioOperationStatus result

)

This function collects the radio operations result and to decide how to set the
semaphore for rf-driver and allow or not the permission to start or not a new rf
communication.

MR6) static void sendCommandPacket(struct CommandPacket cmdPacket , uint8_t

maxNumberOfRetries , uint32_t ackTimeoutMs)

The MR6 function realize a transmission of a generic packet (in this case the master
send only a acknowledge or command packet) with an acknowledged waiting. Also,
here are set the maximum number of retries and the wanted acknowledge time-out.
Immediately afterwards a successful transmission the transceiver is set in reception
with time-out.

MR7) static void sendAck(uint8_t MasterAddress)

This function implements the simply sending of an acknowledge packet.

MR8) static void resendPacket ()

The MR8 function is similar to the MR7 function but it deals with the resending
of an unsuccessful sent packet. It takes count the number of retries before set.

MR9) static void notifyPacketReceived(union MasterPacket* latestRxPacket)

64

6 � Firmware design

The MR9 function assists the function MR1 to transmit the received data from a
node. In particular it noti�es the receipt of a package and physically give the data
received to the main task also exploiting the function MT12.

MR10) static void rxDoneCallback(EasyLink_RxPacket * rxPacket , EasyLink_Status

status)

This function that act as a callback active by the detection of an incoming rf trans-
mission. This is the core of the radio protocol, in-fact it deals with the identi�cation
of the received packet type (analysing the packet header) and communicate it to
the task while loop in MR2 with an appropriate event. It understands also the end
status of every reception.

Functions of Master Task

MT11) static void masterTaskFunction(UArg arg0 , UArg arg1);

The MT11 is the core function of the Master Task. Is divided in two main section:
an initialization section and the task while loop. The main initialization regards
the SPI and the reset of the database where are stored all the known node. In the
while loop is implemented the decision process that guarantee the correct evolution
of the algorithm thanks to the "event" tools.

MT12) static void packetReceivedCallback(union MasterPacket* packet , int8_t rssi)

;

The function MT12 is used by function MR9 as explained before. In particular it
takes the packet data received from a node and copy each value received in a local
structure to be used in this task.

MT13) void notify_toTask_addNode(int8_t address);

When the Radio Task identify a wake-up from a node, it uses this function to notify
to the main task the address of the particular node. This is to allow the main task
to know which node have talked and to decide which action to do. Moreover, it is
responsible for starting the procedures for sending via the SPI the address of the
received node.

65

6 � Firmware design

MT14) void notify_node_notRespond(int8_t address);

When the Radio Task identify a not responding node it uses this function to notify
to the main task the address of the particular node. This is to allow the main task
to know which node not have talked and memorize it inside of the database.

MT15) static uint8_t isKnownNodeAddress(uint8_t address);

The function MT15 search inside the database if the talking node is already known.

MT16) static void updateNode(struct NodeDataPacket* node);

The function MT16 after the execution of MT15 function update some useful data
(like RSSI of the last communication) inside the database if the node is known.

MT17) static void addNewNode(struct NodeDataPacket* node);

This function adds a new node to the database when it is found.

MT18) void spiInizializzazioni_blocking(int8_t address);

The MT18 function initialize all the need parameters to use SPI driver in blocking
mode.

MT19) static void spiInizializzazioni_callback ();

The MT19 function initialize all the need parameters to use SPI driver in callback
mode.

MT20) static void spiCallback(SPI_Handle handle , SPI_Transaction *Trans);

This is the function the physically manage the SPI transmission saving the data
receiving in a local structure.

66

6 � Firmware design

6.0.2 Firmware of the Node

The �ow diagram of �rmware, shown in Figure 6.5, is formed by two tasks like
in the master. Also in this case, after power-on, TI-RTOS starts and all the value
needed by the task are initialized. More in detail, are created the main structure
of the task: the semaphore, the event queue, the task priority and the stack size
(state N2). After the initialization, all the radio parameters are set (like modulation,
frequencies, address, RX-�lter, and so on) and the power policy is set to give the
permission to the system to go in deep sleep if there aren't any ongoing operations
that denied it (N3). Obviously, a timer interrupt has to be used, to set when to
wakeup, if any other operation does it. In this �rst approach the node wakes up
every three seconds, but this value is customizable. When the timer reaches the
pre�xed value, the Node wakeup and immediately go in transmission mode and send
a wakeup packet to the master and then it goes in Rx-mode with time out to wait
an eventual command from the master (N4 and N5). If an invalid or any packet is
received the node, after the rx time out, come back in sleep mode (N6). Otherwise,
if a valid packet is received the node transmit an acknowledge to the master (N7).
At this point, the node task that was waiting (N13) for a new command it is noti�ed
from the radio task about the presence of a new command (N8). Now the command
is evaluated and execute (N14). If the operation required by the command does not
need to send back data to the master (for example switching relay) after execution
the node can go back to sleep. Instead, if it is necessary to send data, the radio
task received the data to be sent (N9) and transmit it to the master. After the
transmission the node goes in rx mode with time out for waiting an acknowledge
from the master (N10). As explained in the master here is implemented a resend
structures that try to send the data to the master n-times until it receives the
acknowledge (N11). If the acknowledge is correctly received the power policy allow
to go back to sleep.

Functions of Node Radio Task

NR1) void NodeRadioTask_registerPacketReceivedCallback(

ConcentratorRadio_PacketReceivedCallback callback);

The NR1 function implements the connection between the radio task and the main
task of the node. More in detail it was used to connect the pointer to the two
structures. It transforms the reception of a packet to a callback event.

NR2) static void NodoRadioTaskFunction(UArg arg0 , UArg arg1);

The NR2 is the core function of the Node Radio Task. Is divided in two mains
section: an initialization section and the task while loop. The main initialization

67

6 � Firmware design

Figure 6.5. Firmware �ow diagram of the node

regards the radio parameters set by the some EasyLink function and all the settings
to manage the low power policy (for example the timer to wake-up). In the while
loop is implemented the decision process that guarantee the correct evolution of
the algorithm thanks to the "event" tools. Inside the while loop there are also the
some function that perform the wanted power policy.

NR3) void done_or_do_nothing ();

This function is utilized to communicate to the while loop when no operation are
needed.

68

6 � Firmware design

NR4) enum NodeRadioOperationStatus NodeRadioTask_sendCommandData(uint16_t data);

The NR4 function is used, by main task, to communicate to the radio task which
data the node have to send to a master. The semaphore TIRTOS tool guarantee
the successful sending of the only one data at a time without encounter con�icts
on rf driver request.

NR5) static void returnRadioOperationStatus(enum NodeRadioOperationStatus result);

This function deals with the collection of the radio operations result and to decide
how to set the semaphore for rf-driver and allow or not the permission to start or
not a new rf communication.

NR6) static void sendCommandPacket(struct NodeDataPacket Packet , uint8_t

maxNumberOfRetries , uint32_t ackTimeoutMs);

The NR6 function realize a transmission of a generic packet (in this case the node
send only a acknowledge or data packet) with an acknowledged waiting. Also, here
are set the maximum number of retries and the wanted acknowledge time-out. Im-
mediately afterwards a successful transmission the transceiver is set in reception
with time-out. Before starting the transmission is necessary to disable the low
power policy and then reactivate it after the transmission.

NR7) static void resendPacket ();

The NR7 function is similar to the MR7 function but it deals with the resending
of an unsuccessful sent packet. It takes count the number of retries before set.

NR8) static void sendWake(uint8_t MasterAddress);

This function implements the simply sending of an wakeup packet.

NR9) static void sendAck(uint8_t MasterAddress);

This function implements the simply sending of an acknowledge packet.

NR10) static void notifyPacketReceived(union ConcentratorPacket* latestRxPacket);

69

6 � Firmware design

The NR10 function assists the function NR1 to transmit the received data from
a master. In particular it noti�es the receipt of a package and physically give the
data received to the main task also exploiting the function NT14.

NR11) static void rxDoneCallback(EasyLink_RxPacket * rxPacket , EasyLink_Status

status);

This function that act as a callback active by the detection of an incoming rf trans-
mission. This is the core of the radio protocol, in-fact it deals with the identi�cation
of the received packet type (analysing the packet header) and communicate it to
the task while loop in NR2 with an appropriate event. It understand also the end
status of every reception.

NR12) void Clok_Radio_TimeoutCallback(UArg arg0);

This is essential to set the time interval in which the node wakeup sleep from power
policy.

Functions of Node Task

NT13) static void NodeTaskFunction(UArg arg0 , UArg arg1);

The NT13 is the core function of the Node Task. In the while loop is implemented
the decision process that guarantee the correct evolution of the algorithm thanks
to the "event" tools. In particular based on the received command in this section
is performed the request action.

NT14) static void packetReceivedCallback(union ConcentratorPacket* packet , int8_t

rssi);

The function NT14 is used by function NR10 as explained before. In particular it
take the packet data received from a node and copy each value received in a local
structure to be used in this task.

NT15) void readADCvalue ();

This function manage all the operation to eventually read a value from internal
ADC.

70

Chapter 7

Hardware design

The core of this work was the hardware design of the two boards with Computer-
aided design (CAD) tools. The CAD software used was Altium Designer, and
following the recommendations of a good CAD design a hierarchical organization
of the schematic sheets was used. In other words, for every section of the project,
was made a separate schematic sheet seen as black block. Then every block was
linked together to create the �nal design. The choice to realize, as �rs prototype,
an integrated Printed Circuit Board (PCB) was due to the necessity to test, as
soon as possible, the reliability of a board including the TI CC1310 transceiver.
Doing this, it was possible to test the radio capability and other parameters to
evaluate the goodness of this IC separately from the development kit, over and
above realizing the needed task of power monitoring. First of all, to manage the
project of a complex system, it was necessary to understand and de�ne a high level
design of the necessary sub-systems that must be present in the PCB. The main
design areas that it was possible to identify are: the power supply management,
the radio management, the peripheral sensor/actuator management and the micro-
controller management. In this case the RF hardware and the micro-controller are
integrated in the same IC, the CC1310.

As explained before, the system is composed by two boards. This two boards
have some common hardware components, like the transceiver, and some di�er-
ences. In the next sections every design decisions are expanded, starting from the
node.

7.1 Hardware design of the node

The node is the core of the system, is the board that have to monitor the DUT,
in fact is the board that hold all the needed actuators and sensors. How explained

71

7 � Hardware design

above, the board is characterized by three main sections, let's analyse them in
detail.

7.1.1 Power supply

The main idea behind the designed power supply chain in the board is forced by the
necessity to manage two voltage supply: the primary source and the secondary one,
which guarantees the recovery power supply in absence of the primary one. This is
basically the idea of a UPS system. To decide how to supply the board and every
device inside it, it was chosen, as reference, the voltage supply of the CC1330, that
is the most critical component. In this way it was possible to realize a single supply
voltage board instead of a multi voltage one. Since a multi supply voltage PCB
have a higher design complexity and the advantages are unnecessary in this case,
the decision was done to simplify the design to minimize coasts and farther to realize
a robust power supply path. How explained in the section dedicate to the CC1310,
the range of the supply voltage is 1.8 to 3.8 V. Since that the maximum voltage
needed in the board is about 3.3 V (considering all the devices) it was chosen to
use an external AC-DC power supply to transform the voltage of electrical grid into
�xed 5 V. In this way, on the board, there is not the presence of high voltage which
requires more complex approaches. Instead, for the secondary power supply was
chosen to use the two 1.5 V batteries in series of 3 V overall. To reach the correct
supply voltage, starting from the external supply, and to guarantee its goodness in
term of stability, it was necessary to introduce some power conditioning circuitry. In
the Figure 7.1 is reported the schematic of the designed power supply management
for the Node

The design of this section required two main devices: an auto-switching power
mux and a single inductor buck-boost, the Texas Instruments TPS63051.

Auto-switching power mux - TPS2111A

To manage the automatic switching between two power supply, the main one coming
from the power grid and the other from battery, it was necessary to introduce an
auto-switching power mux.

In electronic, is very common to handle with multi power supply, for example
to guarantee power supply in the absence of the primary source or for many other
reasons. In the literature is possible to �nd many circuital solutions, starting from
the simplest, with discrete diodes and transistors, to more integrated and complex
circuits, has the chosen one. In Figure 7.2 is shown the simplest circuit possible
to handle with a backup power supply that have to feed the circuit when the main

72

7 � Hardware design

Figure 7.1. The schematic of Node power supply section.

Figure 7.2. Simple circuit to handle backup power supply

one is down. From this theoretical idea was started the search of a more complex,
integrated and versatile solution like the one explained in the following.

The chosen solution is an IC auto-switching power multiplexer (mux) that allow
the transition between two power supplies, each operating in a range between 2.8
V to 5.5 V, and it can deliver up to 1 A. To better understand the schematic
is necessary to introduce in Figure 7.3 the pin con�guration description of the
TPS2111A.

73

7 � Hardware design

Figure 7.3. The pin con�guration of TPS2111A from datasheet.

Besides advantages to have only one integrated device that perform the needed
task, the TPS2111A o�ers many other advantages: thermal protection, inrush cur-
rent control, seamless supply transition, cross-conduction blocking and reverse con-
duction blocking. The most interesting features of this component is that it can
operate in two mode: auto-switching and manual-switching. To decide the operat-
ing mode is necessary a hardware con�guration of D0 and D1 pins. For this appli-
cation it was chosen the auto-switching mode following the indications reported in
the true table shown in the Figure 7.4.

According to the truth table, D0 was linked to high value (in this case Vmain)
through a resistor, to limit the sink current, and D1 to the ground. If the voltage
on pin VSNS is less than 0.8 V the mux selects as output the greater input between
IN1 and IN2 (in this case the Vbat). Instead if the voltage of VSNS is greater than
0.8 V, the mux selects as output IN1 (in this case Vmain).

At node A from Figure 7.5, are connected two resistors of a voltage divider
to set the threshold that discriminate the decision between the two power supply.
This is to guarantee that if Vmain reaches 4 V the voltage in A is 0.8 V, in other
words the control of the supply is managed by the level of a primary supply: if it
drop under 4V the mux switch to the other supply voltage.

74

7 � Hardware design

Figure 7.4. The true table of MUX from datasheet.

Figure 7.5. The power divider at input of the TPS211A.

0.8V =
R9

R9 +R11

4V

R9

R11

= 4

R11 = 120kΩ

R9 = 470kΩ

To limit the input current at VSNS comparator pin were chosen two resistors
of the order of Kohm. To maximize the current limit, was set the resistor Rlim to
400Ω according to the datasheet of TPS2111A [27].

75

7 � Hardware design

Single inductor buck-boost - TPS63051

The second main device is a single inductor buck-boost. This device is a voltage
regulator that perform an auto switch between buck and boost mode depending on
input voltage. The input range voltage is 2.5 V to 5.5 V. Considering the maximum
GPIO VOH of CC1310, in relation to power supply, to be able to drive the necessary
peripherals (like led, relay, the INA sensing etc.) and all the devices present on the
board, the power supply of the whole system was set to 3.3 V. To guarantee a stable
3.3 V, having as input a wide range of voltage supplies (5 V from the power grid
and 3 V for the battery), it was necessary to use a buck-boost DC-DC converter.
For this reason, it was chosen the TPS63050.

To better understand the schematic is necessary to introduce the pin-out de-
scription of the TPS63050, reported in Figure 7.6.

Figure 7.6. The pin con�guration of TPS63050 from datasheet.

This device o�ers some interesting advantages: more than 90% of e�ciency in
boost mode and 95% in buck mode, buck-boost transition without interruption,
soft start, load disconnection during shut-down and over temperature protection.

76

7 � Hardware design

In the Figure 7.7 is shown the schematic of the DC-DC converter with its
components. These components where chosen according to the TPS63050 datasheet
[28].

Figure 7.7. The schematic of TPS63050 from datasheet.

77

7 � Hardware design

7.1.2 CC1310

In this section are described the CC1310 hardware design. In Figure 7.8 were
reported all the components around CC1310 including: oscillators, radio antenna
connector, VDD conditioning, reset circuit and balun. Every connection decision
and every consideration from now on widely uses the concepts exposed on the
hardware explanation section of the CC1310 in 5.1

Figure 7.8. The schematic of radio part and all the component around CC1310.

Balun - Johanson 0850BM14E0016

The balun (balanced-unbalanced) is a LC circuit used to convert a balanced signal
(two signals working against each other where ground is irrelevant) to unbalanced
signal (a single signal working against ground or pseudo-ground) and it is funda-
mental to allow the transceiver to transmit and receive signals. In other words,
it is necessary to adapt the RF signal in output from CC1310 (pin1 positive and
pin2 negative) with the signal provided to the antenna. In this project, to improve
stability, to avoid the presence of about 11 discrete components (Inductors and

78

7 � Hardware design

capacitors) and to avoid problems concerning the routing it was decided to intro-
duce, as balun, the IC 0850BM14E0016 Sub-GHz impedance matched balun of the
Johanson Technology [29]. As shown in Figure 7.9, all the LC circuit is integrated
inside the Johanson component.

Figure 7.9. Equivalent LC circuit integrated of a Sub-GHz impedance
matched balun from datasheet.

In the Figure 7.9 is reported the pin-out of the Johanson's Technology balun.

Figure 7.10. The pin-out of the Johanson Technology's balun from datasheet.

Following the pin-out table, pin2, pin3 and pin4 are connected to the respective

79

7 � Hardware design

CC1310 pins and pin1 is connected to the antenna connector (Teoglas Antenna
Solution Female SMA PCB Antenna Jack).

Crystal Oscillators

The CC1310 has two integrated crystal oscillators circuits and Texas Instrument,
in the Crystal Oscillator and Crystal Selection guideline document [30], gives the
possibility to the designer to choose a low cost quartz crystal to be externally con-
nect to the correct pins of CC1310 (pin4, pin5, pin46 and pin47). The system uses
one high-frequency oscillator at 24 MHz and a low-frequency one, at 32.768 kHz.
The �rst is used to generate the reference clock for the Rf blocks and for the micro-
controller unit. It is very important the precision of this clocks, to guarantee the
correct operations of the whole system (correct and not degraded RF performances,
the correct regulatory requirements, etc.). The second clock is used to manage some
operations during low-power mode, when the high-frequency oscillator is turned-o�.

The two selected crystal unit are the Seiko Epson Corporation, in particular the
TSX-3225 24.0000MF15X-AC3 for the 24 MHz [31] and the FC-135 32.7680KA-
AG0 for the 32.768 kHz [32].

In the Figure 7.11 is reported the pin-out of the two crystal quartz oscillators
to better understand the schematic of this section, shown in Figure 7.8.

Figure 7.11. The pin-out of the two crystal quartz oscillator from datasheet.

Power supply pins

The CC1310 have six power supply pins that are pin13, pin22, pin34, pin44, pin45
and pin48. The output of the TPS63050 of the power management section (Fig-
ure 7.1) is directly taken trough a LC conditioning circuit to supply the following
internal subsection of CC1310 via the following pins:

� VDDS_DCDC 34: supply pin for the internal DCDC

80

7 � Hardware design

� VDDS3 22: DIO supply

� VDDS2 13: DIO supply

� VDDS 44: main chip supply

The other two power pins, VDDR and VDDR_RF, are powered with a 1.7 to
1.95 V supply taken from the output of the internal DCDC at pin33. The path from
pin33 to VDDR and VDDR_RF pass through another LC conditioning circuit. It
is also possible to supply these two pins with an external supply source but it is
not the case for this project. Under the CC1310 there is a ground via layout, that
in the schematic is represented by pin49 (EP,) that is not a real pin and it will be
explained better in PCB design section REF.

Reset pin

The pin RESET_N (pin 35) needs an active-low reset signal. Since there is not
an internal pull-up resistor, it was necessary to introduce it. For this project the
reset signal is user-managed by the pressure of a reset button, that generate the
signal needed for the reset. The pin was grounded through a capacitor, to give the
correct slew rate to the reset signal. To be valid, the reset pin must remain low for
at least 1 µs, so the pressing of the button combined with the designed RC circuit
with a τ = 1ms of time constant is su�cient to guarantee a sure reset. The circuit
is shown in Figure 7.1 but the push button is present in Figure 7.17.

81

7 � Hardware design

7.1.3 Load monitoring

In this section is explained the circuit that performs the monitoring of a generic
DUT load referring, as shown in Figure 7.12, to the situation used to de�ne the
system. The general con�guration of a monitored system is the one with a generic
UPS (Uninterruptible Power Supply) that powers the DUT.

Figure 7.12. The functional scheme of load monitoring.

The two main devices of this section, shown in Figure 7.13, are: the Texas
Instruments INA226 bi-directional current and power monitoring and the HY1Z-
3V Panasonic relay.

Current shunt and power monitoring IC with I2C interface - INA226

The INA226 is a current shunt and power monitoring IC with I2C interface. The
device measures the voltage of a line (from 0 V to 36 V) and a shunt voltage drop
(from -81.92 V from 81.92 V). Thanks to the possibility to program parameters like
conversions time, calibration value, averaging and internal multiplier, the INA226
gives back the measures of current in amperes and power in watts. This device can
operate in a wide range of temperatures from −40◦C to 125◦C. Its supply voltage
range is 2.7 V to 5.5 V and it absorbs 330 µA. The INA226 can operates in two
modes: continuous and triggered. It is possible to choose between them in real

82

7 � Hardware design

Figure 7.13. The schematic of load monitoring with INA226 and the relay HY1Z-3V.

time, according to the speci�c application needed. The choice is done by sending a
speci�c setting command through I2C.

To better understand the schematic is necessary to introduce the pin con�gu-
ration of the INA226 shown in Figure 7.14.

The two pins A0 and A1 have the function to set the serial bus address of the
INA226. To choose the wanted slave address is necessary to follow the indications
on the address pin table presented in the datasheet [33]. They were set at ground
to have as address: "1000000".

The INA226 can operate only as slave in I2C bus. To use the open drain SCA
and SCL lines, it was necessary to introduce some pull-up resistors. In this project,
considering power supply and the current limitations of the INA226, they were set
at 2.2 kW.

This device can measure the current shunt in two ways, with respect to the load
position: high-side and low-side, like shown in Figure 7.15. In this case was chosen
a high-side current sensing for two main reasons: �rst of all, with high-side shunt it
is possible to directly monitor the current delivered by the supplier to the load with
the possibility to detect an eventual short circuit, second is that low-side sensing
may introduce disturbances to the system load's ground potential.

Relay - Panasonic HY1Z-3V

The second main device present on the board is the Panasonic relay HY1Z-3V.
This relay has the capability to manage a resistive load of 1 A at 30 V DC. This
electrical parameters were chosen in relation with the family of the load devices

83

7 � Hardware design

Figure 7.14. The pin con�guration of INA226 from datasheet.

Figure 7.15. The schematic of INA226 from datasheet.

that will be used (for example a MikroTik router-board supplied at 24 V). It was
chosen a normally close relay, instead a normally open, because the main necessity
was to disconnect, for a short time, the load from power supply. This was the

84

7 � Hardware design

main reason, but a secondary one was that the load has to remain connected to the
power supply also if the board fails. In Figure 7.16 is reported the mechanical and
electrical schematic of the Panasonic HY1Z-3V.

Figure 7.16. The internal schematic of Panasonic HY1Z-3V (bottom
view) from datasheet.

The relay is controlled by a GPIO pin of CC1310 (pin 39) through a N-P-N
transistor, the Taiwan Semiconductor BC337-16A1. It realizes a low-side switch,
the best con�guration for the usage of a BJT as switch. Obviously, the relay
needs a free-wheeling diode to avoid eventual voltage spikes due to inductive e�ects
produced by a fast current variation. So, it was added the diode (MCC 1N4003)
in parallel to relay coil as shown in the the schematic in Figure 7.13.

7.1.4 The up level of the system

In Figure 7.17 is shown the schematic that include all the subsystems explained in
the previous sections (Power management, Load monitoring and CC1310) and all
the general component needed on the board, like LEDs and connectors.

LEDs

On the board are present four LEDs, all of them are Bival SMD LEDs with di�erent
colors (green, yellow and red). Three of them (D1, D2, D3) are used as state LEDs
for the �rmware operations, like described in the �rmware section. This three LEDs
are connected to GPIO pins 11, 12, 38 of CC1310 and they are active high. To
guarantee a satisfying brightness, according to the led datasheet, were put some
resistors to �x at 4 mA the sink current, and to limit it to acceptable values for the
cc1310. The Voh provided by the GPIO for a load of maximum 4mA is about 2,75V
(value related to the power supply and estimated, in the design phase, using data
on the CC1310 datasheet[34]). So the chosen resistor value is 200 W. The fourth
one, LED D6, is used as "power good" indicator, in fact is directly connected to
the VDD plane and it turns on as soon as the exit of the DCDC give supply to the
board.

85

7 � Hardware design

Figure 7.17. The up level schematic of the whole system of the node.

board ON/OFF switch

To turn on/o� the board was put a SMD sub-miniature slide switch, the JS202011SCQN
of C&K Components. This switch has two input, so it can connect two inputs to
two outputs. This was necessary to manage the two power supply needed in the
system, as explained in power supply section. Probably this component will be
eliminated in a future realisation of the board. In the Figure 7.17 (down left) is
clearly possible to see that one supply input come from the batteries and one come
from a connector. Indeed, to make a more user friendly connection procedure, all
the main external inputs can be connected to the board through some headers.

Connectors

For the main power supply and for the connection of the load where chosen two
separeted Molex connectors: one with two contacts (power supply connections)
and one with four contacts (load connection). These two Molex have a 5.00 mm
Eurostyle Pitch with a vertical �xed mount stile. The portion that holds the cable
has a screw pressure clamp. Another important contact is the one for the JTAG

86

7 � Hardware design

pins, used to program the uC. This contacts where made as planted true halls, to
allow to insert the programming cables or to solder a header connector, as needed.
Due to the fact that this board is also a development board, it was decided to
expose all the GPIO contacts to allow any further experimentation and test. In a
�nal version the unused pins will not be exposed.

87

7 � Hardware design

7.2 Hardware design of the Master

The master board is the arbiter of the system. It has to communicate to the
RaspberryPi through SPI to send the collected data to the users and has to send
the request of the users to nodes. This board has less components respect to the
node, but every common part presented the same problems that in the node. All
the common hardware components were not be repeated in this chapter.

7.2.1 Power supply

The structure of the power supply chain of the master board must guarantee the
possibility to power the system with two main voltage supplies: one from the power
grid and one from the RaspberryPi. The structure is very similar to the node board
but conceptually is di�erent. In this case there is not an integrated UPS system
(the battery) because the master is supposed to be installed in a non critical zone
from the point of view of power supply. In other words the master board is located
near an external UPS system. As the node, also for the master it was used an
external AC-DC power supply to have 5 V on board.

It is present a generic 40 pins GPIO header that permit to interface with a
SBC with a standard 40 pins header, in this case a Raspberry PI 2. Thanks to
this header, it was possible to take the secondary voltage from the external board.
In summary, the input of the mux TPS2111A 7.3 are the following: at the IN1 is
connected the supply from RaspberryPi 2 and at IN2 the external AC-DC power
supply. All the considerations about the voltage, devices, etc. are the same made
for the node in section 7.1.1. The only di�erence is the absence of the pick point
to sense the present of main power supply as shown in the highlighted red circle in
Figure 7.18.

88

7 � Hardware design

Figure 7.18. The schematic of Master power supply section.

7.2.2 CC1310

Both the boards have the same CC1310 section, so also for the master are valid the
same considerations made in 7.1.2.

7.2.3 The up level of the system

In this section is shown the schematic that includes all the subsystem explained
in the previous subsections (Power management and CC1310) and all the general
components needed on the board, like LEDs and connectors, like shown in Fig-
ure 7.17.

The 40 pin header is used to connect the master board with the RaspberryPi
that perform the on-line transmission of the data. It is possible to see in Figure 7.20
the pin-out of the Raspberry PI 2.

Starting from this con�guration, it was pointed out the necessary pin for the
needed operations. These pins are: the SPI pins, the I2C pins, the UART pins, the
5 V pins and the ground pins. Also here, it is present the on-o� SMD sub-miniature
slide switch, the JS202011SCQN of C&K Components. As input it receives the 5
V from Raspberry or 5 V from the electrical power grid.

In perspective to use these boards as a development kit, it was decided to
introduce various SMD pads to facilitate the access to the various pins like I2C,
SPI, all GPIO, and others.

89

7 � Hardware design

Figure 7.19. The up level schematic of the whole system of the master.

Figure 7.20. The pin-out of the Raspberry PI 2.

All the concepts about the reset, the power-on LED, the status LEDs and
external connectors are the same designed for the node board.

90

7 � Hardware design

Even if, both the boards have many common parts, every design choice was
independently evaluated to guarantee the correct work of this system.

Every schematics previously described represent only the �rst step of the design:
in reality, every component corresponds to a physical footprint with placing, routing
and physical dimensions problems, that will exhaustively described in chapter 8.

7.3 Bill of Materials (BOM)

To resume all the components chosen for this system are reported, for the master
�rst and then for the node, the �nal BOM generated by Altium through the Output
Job Files. The BOM �le is an important tool for the designer that allow to buy the
correct quantity of the needed components from a supplier shop. In this case the
chosen supplier was Mouser Electronics. During the realization of the component
library, as explained in section 8.3, all the Supplier Part Number were inserted in
Altium, among other, to create the BOM.

91

7 � Hardware design

Figure 7.21. The Bill Of Materials of the Master Board part 1.

92

7 � Hardware design

Figure 7.22. The Bill Of Materials of the Master Board part 2.

93

7 � Hardware design

Figure 7.23. The Bill Of Materials of the Node Board part 1.

94

7 � Hardware design

Figure 7.24. The Bill Of Materials of the Node Board part 2.

95

Chapter 8

PCB realization

8.1 PCB stack manager properties

Starting the physical design of the PCB was necessary to face some issues about
materials, stratigraphy, dimensions and rules to guarantee the correct realization
of the printed circuit.

Di�erent PCB stack structures

The �rst main choice, when proceeding to the realization of a PCB, was to choose
how many layers to use in the stratigraphy of the device. In this case the choice was
between 2-layers and 4-layers. In Figure 8.1 are shown the two generic standard
structures.

Figure 8.1. A generic standard 2 and 4 layer structure.

Generally, with a two layers board, it can be realized everything that is pos-
sible to realize with a multilayer structure, but the multilayer board has many
improvements and technical advantages. Usually, the two internal layers of a 4-
layers structure, are used as power plane and ground plane, providing easy routing.
In this way, in addition to the possibility to create a more complex and dense de-
sign, a lot of electromagnetic compatibility problems are reduced. The plains usage

96

8 � PCB realization

guarantees many advantages like: easy decoupling, separation between power path
and signal path, increasing of thermal dissipation. To exploit all these advantages,
and taking care of the presence of a RF path, the ground plane is placed under the
top plane.

Stack structure

The organization of the layers started at an early stage of the project, due to the
presence of a transceiver with a RF path, that has rigid design rules imposed by the
producer (Texas Instruments in this case). The Texas instrument rules are shown
in Figure 8.2.

Figure 8.2. Texas Instruments design cross section chart of PCB stack for the CC1310.

It was strictly suggested to follow as much as possible these guidelines, so the
4-layers PCB was chosen.

To better understand the speci�cations it is useful to underline that a PCB is
composed by two main structures: a substrate (the board) and printed layer that
holds the wires (the copper traces). The substrate provides the solid structure
that physically holds the components and the printed wires and provides electrical
insulation between conductive parts. A common type of substrate is FR4, which
is a �ber-glass� epoxy laminate. Substrates are made also by Te�on, ceramics and
other special polymers [35].

Multilayer boards are composed by one or more substrate that can have copper
on one or both sides. These substrates are called cores.

97

8 � PCB realization

The cores are glued together thanks to one or more sheets of a partially cured
epoxy called PREPREG. It is simple to recognize the described structure, in Fig-
ure 8.1 and in Figure 8.2 .

The order of GND and VDD plane is also �xed, because under the signal RF
path must be present a ground plane to improve the quality of the RF signal as
explained before.

To realize a RF 50 Wmatched line, it was very important to evaluate the ratio
between the width of the line and its distance from the ground plane.

Stack properties

To decide the values of the various layers thickness, were taken into account both
the speci�cations of the CC1310 layers stack and the speci�cations of the chosen
manufacturer, Eurocircuit, that realized the two boards.

Unfortunately, the TI speci�cations and the one accepted by Eurocircuit didn't
match at all. Eurocircuit gave, at a reasonable coast, di�erent maximum and
minimum speci�cations for layer thickness and hole diameters. Among the various
possibilities o�ered by Eurocircuit, the most suitable one for this project, was the so
called "standard pool PCB" [36]. This service covers most of the needs for standard
PCB production.

In Figure 8.3 is reported the Eurocircuit cross section chart of the layers stack
of a "standard pool" board.

Figure 8.3. The Eurocircuit design cross section chart of layers stack for
a "standard pool" board.

Analysing the given Eurocircuit speci�cations, with respect to the TI ones,
many di�erences arose.

98

8 � PCB realization

It was necessary to contact the TI technical customer service to discuss and eval-
uate if it was possible to use these di�erent parameters of the stack layer and which
king of problems may occur. From the discussion with a TI technical employee, the
following issues were identi�ed:

� The type of substrate is a key parameter and fortunately it was respected

� The distance between L1 and L2 of Eurocircuit is wider than the TI one.
These parameters is very critical, in fact increasing this distance the parasitic
capacitance become smaller but the inductance of the ground vias becomes
larger. This it changes the impedance the Rf path and therefore changes the
performances. Thanks to a simulation, made by the TI technical customer
service, the impedance variations is relatively small.

� The reduced copper thickness of the outer layer provided by Eurocircuit don't
cause any problem, it may only reduces reliability.

After these analysis, the recalculation of the width of the RF path and the dis-
tance between the rounding mass plane was done. At the end of this adjustment
process, was decided that using Eurocircuit parameters don't compromise the sys-
tem functionality and the properly working of the transceiver was guaranteed.

In Figure 8.4 are listed the �nal values inserted in the layer stack manager of
Altium Designer.

8.2 PCB Shape

The physical board layout realization, starting from the schematics project, faces
some placement and routing problems.

First of all, it was necessary to evaluate the mechanical properties of the boards,
taking into account the real working environment where they have to be installed.
For this application, taking into account that the device has to work outside exposed
to meteorological events, the usage of a case was necessary. It was chosen the IP56
Gewiss GW44205 case. In Figure 8.5 are shown the dimensions of the case.

To �t this case, the physical structure of the board has to be designed as shown
in Figure 8.6. It was necessary to cut the four corners and to drill some �xing
holes to �x the board at the case. To remain independent from the hole position
on the case, the usage of a interfacing metallic bracket between the board and the
case was introduced. The two boards have di�erent �xing holes because the master
board is suitable to support a tower-fashion mounting to guarantee the connection
to an external SBC like the RaspberryPI. This solution may or may not be adopted

99

8 � PCB realization

Figure 8.4. Altium layer stack manager.

Figure 8.5. Dimensions of the Gewiss GW44205 case from datasheet.

and probably in future implementations will be discarded, but for this prototype
this was a good choice to remain independent with respect to the speci�c case. The
corners are rounded with a circle of 13 mm of radius.

100

8 � PCB realization

Figure 8.6. A) Shape of the node board. B) Shape of the master board.

8.3 Footprint and library

To develop a PCB project, using a CAD tool, is fundamental to use and eventually
to create, a library that contains every components and device used. In Altium De-
signer, a library is composed mainly by two distinct sections: one for the schematic
description and one for the footprint structure. Many components are provided, by
the manufacturers, with the complete library structure, so the work of the designer
is to check the correctness of the provided �les and to adapt them to the speci�c
needs. For example, to use the CC1310 footprint given by TI, it was necessary to
download template �le from the TI website and process it with the Ultra Librarian
Software, that permit to extract the Altium footprint and the schematic �les. It
was also necessary to modify the footprint ground of the component because the
original one had some errors. In Figure 8.7 is possible to see, in the left the Ultra
Librarian interface and in the right the same footprint in Altium Designer.

To realize an exhaustive library, it was necessary to associate at each component
the supplier part number. This procedure is to guarantee the correct association
of all the component parameters trough the Supplier Search Tool and to allow the
creation of the BOM to buy the needed component.

101

8 � PCB realization

Figure 8.7. Footprint extracted by Ultra Librarian Tool.

8.4 Placement and routing guideline

Another important aspect of the layout realization, was the choice of where to
collocate each component. Extremely important was to design precise footprints
and to follow the routing guidelines, to ensure the proper working of the circuits and
to minimize noise and EMC problems. To face the organization of the components
on the top and bottom layer, the boards were divided in three main areas: the
radio area, the power area and the sensors/actuators area.

CC1310 routing

Since that the CC1310 is one of the most critical device present on the boards,
obviously the layout must respect several guidelines [8]:

� The area under the CC1310 is used for ground connection and shall be con-
nected to the ground plane with several vias for good thermal performances
and su�ciently low inductance to ground

� It is recommended not to place any digital trace below/near the crystal os-
cillator

� It is highly recommended to have a continuous and un-interrupted ground
plane in any RF design

102

8 � PCB realization

� A continuous ground plane underneath the top layer provides easy connec-
tion to the ground by allowing to drop vias from the pads to the ground.
This also eliminates the need for any additional traces that would worsen the
performance by increasing the inductance of the ground connections.

� On the top plane it is usually a good idea to �ll the unused area with ground
plane and then connect this top �ll with the ground plane below with several
vias

� To prevent high frequency noise from reaching the power supply pins every
power connection of the CC1310 is bypassed to the ground plane using a
capacitor, which provides a low impedance path to the high frequency noise.

RF routing

First of all, to design the radio section, it was necessary to reserve a correct and
precise area where to put the transceiver and all the rounding components. This
layout dimensions are strictly recommender on the TI guidelines. To maximize
power transfer, for optimum performance, it was important that impedance match-
ing is considered carefully in radio frequency designs. The main rules to take care
of are the following:

� It is mandatory a solid ground plane

� Any signal traces have to be place underneath the RF path

� RF longer traces must have 50 Wimpedance

� Decoupling capacitor as close as possible to the CC1310

The balun has a precise structure, as shown in Figure 8.8, that must be pre-
cisely reproduced to avoid any disturbances and any phase alterations on the �lter
characteristics.

A good choice was to put far from RF area all possible source of noise, like
the relay, transistors, DC-DC converters, LEDs. For this reason, the layout was
organized to put all external connectors as far as possible from the transceiver area.

For delivering the maximum power out of the balun-�lter section to the antenna
the impedance of the RF trace was a critical factor. The impedance of a PCB
trace at RF frequencies depends from: the thickness of the trace, its height above
the ground plane, and the dielectric constant. All these parameters, for the PCB
realization, were set in the PCB rules and constraints editor in Altium Design
introducing value provided by Eurocircuit. In particular, as shown in Figure 8.9,

103

8 � PCB realization

Figure 8.8. Guideline structure for the balun chip.

it is possible to read the rules that manage the trace width to maintain a �xed
impedance of 50 W. Every sensible device is surrounded by a ground plane on the
surface of PCB that act as guard ring.

Figure 8.9. PCB realization rule of a 50 Wtrace.

INA226 routing

In Figure 8.10 is shown what must be done to the routing of this particular device.
More in detail, it was important to avoid an additional resistance between the input
pins, realizing a good routing. So, it must be used a 4-wire connection to ensure
that only the current-sensing resistor impedance is detected between the input pins.
It is also important to place the power-supply bypass capacitor as close as possible
to the supply and ground pins.

104

8 � PCB realization

Figure 8.10. Guidelines routing of the INA226 from datasheet.

Power routing

The PCB layout is an important step to maintain the high performance of the
TPS63051 device. Some precautions must be taken into account:

� Place input and output capacitors as close as possible to the IC

� Traces need to be kept short

� Routing wide and direct traces to the input and output capacitors results in
low-trace impedance and in a low parasitic inductance

� Use a common-power GND

� The sense traces connected to FB must de kept away from L1 and L2 nodes

� A capacitor must be added between FB node and ground to �lter ground
noise and to match e�ciency results

In Figure 8.11 is reported the layout suggested in the TI datasheet [28].

The traces that manage the power signals must be realized wider than the other
traces, to support a high power.

8.5 Final PCB

Keeping in mind all the remarks explained in the previous sections, it was placed
all the components on the board and it was done the manual (to optimize the

105

8 � PCB realization

Figure 8.11. Routing guidelines of the TPS63051 from datasheet.

interconnections) rooting. In every trace it was very important to avoid right
angles, to reduce EMC radiation problems.

8.5.1 Node

In Figure 8.12 is shown the Altium Designer layout of the node board and in
Figure 8.13 is also reported the 3D model.

Figure 8.12. Layout of the node.

106

8 � PCB realization

Figure 8.13. 3D model of the node.

8.5.2 Master

In Figure 8.14 is reported the Altium Designer layout of the node board and in
�gure Figure 8.15 is also reported the 3D model.

Figure 8.14. Layout of the node.

107

8 � PCB realization

Figure 8.15. 3D model of the node.

8.6 Gerbers, Eurocircuit and Costs

When the project was �nished, it was necessary to produce all the needed �les to
permit to the PCB manufacturer to physically build the PCB. This �les are called
Gerbers. This kind of �les provide the link between the PCB design side and the
set of photo-tools required on the manufacturing side. It was possible to generate
this kind of �les using a dedicated tool, the "Output Job File", in Altium Designer
CAD. The used Gerber format is "Gerber X2" that substitute the old RS-274D
format.

To reduce production costs, it was created a panel that includes more than one
board (also from di�erent projects). So it was necessary to realize a general panel
to send to Eurocircuit.

To realize a panel was necessary to create a new PCB document, including the
layouts of the needed boards. To do this, in Altium Designer, it was used the
tool "Embedded Board Array/Panelize" under the menu "Place". This tool allows
to decide how to place the boards and the distances between them and between
margins of the panel. These values are very important to avoid unwanted breaking
when the various layout mus be separated from each other.

In Figure 8.16 is shown the �nal Eurocircuit document, that summarize all the
important data of the object to be produced, including the production costs.

108

8 � PCB realization

Figure 8.16. The Eurocircuit �nal document.

109

Chapter 9

Assembly and debug

9.1 Assembly

In this section is explained everything about the procedures used to mount all
the components on the PCB. In the Figure 9.1 is shown the panel received from
Eurocircuit.

Figure 9.1. The �nal panel from Eurocircuit.

Before illustrating the welding process, it is important to list the materials and
the equipments used.

110

9 � Assembly and debug

More in detail:

� Low temperature Solder Past - Sn42Bi57.6Ag0.4 No-Clean T5

� High temperature Solder Past - Sn96.5Ag3.0Cu0.5 No-Clean T5

� Needle for solder past

� Pneumatic pick and place - Essemtec

� Microscope - i-Tronik

� Pneumatic solder past dispenser - Clever-Dispenser-04

� Re�ow soldering oven - Infrared IC Heater T-962A

� Professional soldering station - JBC DDE 2 tools

After separating the various boards from the panel and from each other, as �rs
step of the soldering process, it was necessary to put on the gold pads of the PCB
the adequate quantity of solder past, contained in a syringe shown in Figure 9.2.
To dispense the solder past with a pneumatic dispenser, the correct needles have
to be chosen. The needles have to be chosen in relation of the pads dimensions and
consequently, in relation to the physical characteristic of the solder past.

Figure 9.2. The syringe ready for the pneumatic dispenser

When there is the need to populate a PCB board with two side is mandatory
to use two di�erent solder pasts: one that solidi�es at high temperature (for the
�rst baking process) and the second one that solidi�es at lower temperature for the
second baking process. In this way, with the second baking process, it is avoided
that the �rst soldered components unstick.

After depositing the solder paste on all the pads, was necessary to place all
the components on the board thanks to the pneumatic pick and place machine, as
shown in Figure 9.3.

111

9 � Assembly and debug

Figure 9.3. The pick and place at work.

When all the components on one side of the board were placed, it was possible
to proceed with the �rst baking process of the PCB in the oven. To guarantee the
correct soldering it was necessary to choose the correct baking pro�le in relation to
the solder past used (the �st one is always the one at higher temperature).

All the steps above are repeated for the second side of the PCB board with the
low temperature solder past. The last passages was the manual polishing thanks
to a speci�c solvent and a brush.

Some components, in particular the true-hole, were manually soldered after the
baking process by means of a professional soldering station.

At this stage arose a problem about the value of the true hole diameter of
some components, in particular the holes of Molex connectors were too tight. To
resolve this problem it was necessary to manually drill the PCB to enlarge the
holes. Obliviously this error was immediately corrected in the Altium PCB project
for the future physical realization.

In the Figure 9.4 are shown the two complete boards (version 1.0) ready to be
tested, with all the components mounted above. In the Figure 9.5 is possible to
see the node board in a Gewiss case.

112

9 � Assembly and debug

Figure 9.4. Left: the �nal Master Board v. 1.0. - Right: the �nal Node Board v. 1.0.

In conclusion, is well known that there are many industries that provide, to the
designer, soldered and tested PCB boards, with precision and robustness higher
than the one reached with the procedure just described. For this �rst prototype it
was decided to make all the steps in laboratory for both a didactic and practical
purpose.

9.2 Debug

The �st type of debug done was the visual control of the solders with the help of
the electronic microscope, to verify the alignment of the various components leads
with the under pads and the uniform distribution of the solder. In some cases it
was necessary to de-soldering and re-soldering manually a component because the
previous solder was unsuccessful.

Successively it was necessary to control some connections with a digital multi-
meter, without giving power supply, to control the physical short circuit between
two points.

Afterwards, it was possible to verify the presence of the correct voltage in some
strategic points, like the network of the power supply. Thanks to this measures on
the power supply network, a problem was founded on the control pins of the Auto
Switching Multiplexer.

113

9 � Assembly and debug

Figure 9.5. A sample of the node board inside the Gewiss Case

In detail, it was set the state value wrongly, putting to zero voltage the con�g-
uration pin D0 instead of VDD, like explained in 7.1.1.

The previous measurements have been repeated many times before reaching the
correct functionality, from the electrical point of view.

After the preliminary testing and before proceeding to the cross hardware-
software testing, it was necessary to update the Altium PCB project adding some
pads, for Ground and VDD, to facility the connection of the testing measure in-
struments.

Obviously, all these mistakes are present in PCB version 1.0 (the one explained
in this chapter) but in the Hardware Design and PCB realization chapters (chapter
7 and 8) all the explanations refer to the correct version 1.1 of the boards.

After solving all the hardware bugs, it was possible to load the �rmware into
the TI CC1310 by means of the Texas Instruments Programmer XDS100V3 on the
SmartRF06 Board with the JTAG connector for both the boards. The connection
used between programmer and SwiRem board is shown in Figure 9.6.

Thanks to Code Composer Studio (CCS), leaving connected the SwiRem board

114

9 � Assembly and debug

Figure 9.6. Clear connection scheme between the TI XDS100V3 programmer on
the SmartRF06 Dev Board and SwiRem boards.

to the Debugger Module, it was possible to control the success of the �rmware
loading and its proper functioning. It was also possible to make a true debug, very
useful to understand various �rmware mistakes. After few changes, it was possible
to make sure that the hardware responds properly to the software instruction.

Now the design process is completed, the two boards correctly handle with the
tasks for what they were designed for.

115

Chapter 10

Further improvements and system

evolution

Due to the high innovation rate of IoT technologies it was decided to improve the
system using the new structure based on LoRa Alliance products, that include
hardware, �rmware and server solutions. It is a very di�erent approach respect to
the WSN TI CC1310 based because:

� It is necessary to design only the Nodes.

� As base station is possible to use the Sentrius RG1XX LoRa Enabled Gateway
from Laird

� The Laird Gateway realize a private LoRaWAN networt for end-to-end node
control.

� The possibility to use a cloud service called "The Things Network" that allow
easily link nodes distributed in long distances exploiting public Gateways
already installed on the territory.

� LoRa Murata CMWX1ZZABZ has better communication and noise rejection
behaviour certi�ed by various iXem tests.

10.1 LoRa Alliance "The Things Network" ser-
vices

The Things Network is a community that has as mission the realization of a secure
and redundant collaborative LoRa WAN Internet of things network to improve the

116

10 � Further improvements and system evolution

proliferation of new IoT application. The network use only LoRa WAN technology
without using 3G or WiFi, to link the various distributed "things".

This system provides some important tools as �rmware APIs, Server applica-
tions and hardware products to allow any certi�ed LoRa WAN devices to use long
range Gateway and to have access to a decentralized network. This infrastructure
allow the exchange of data with applications.

To exploit all the advantages of The Things Network with the SwiRem system,
the previous design was converted to use the new LoRa Murata transceiver. In this
thesis work the �rmware for this product was not implanted yet. The iXem team
developed the �rmware for a LoRa WAN Node based on the Murata and the server
management.

10.2 SwiRem LoRa Murata Version

For the SwiRem LoRa Murata board was necessary to reimplement all the radio part
around the new transceiver. Deeply analysing the datasheet [37], in collaboration
with other iXem teams, all the necessary components were selected and introduced
in Eagle CAD to create the schematic sheet, as shown in Figure 10.1

Figure 10.1. Eagle CAD schematic of LoRa Murata Transceiver.

117

10 � Further improvements and system evolution

To make compatible all the previous actuators and sensors, it was necessary to
choose the suitable pins of the new transceiver and design a new routing for the
connections to guarantee a functional design, as shown in Figure 10.2

Figure 10.2. Eagle CAD SwiRem Board

This board is not printed yet because is in a development phase and the RF
hardware it was tested on another iXem board, to be sure about the radio design.

118

10 � Further improvements and system evolution

In Figure 10.3 is possible to see, on a PCB done in collaboration with another
iXem team, the realization of the radio part (so not in a SwiRem version, that is
not printed yet, but it has almost the same radio design). The photo is only a
portion because the entire board is still a project under development.

Figure 10.3. Radio design on a iXem PCB

119

Chapter 11

Testing

When the prototype was ready to use, after software and hardware debug, the
most important work was testing the functionalities of the devices and of the whole
system. These analysis were essential to understand the correctness of the system,
to verify the presence of HW or SW bugs and to test the performances. The tests
where done �rst of all in a controlled environment and then in a real environment.

11.1 Controlled environment

As �rst approach, the preliminaries tests were done in a controlled environment,
inside Politecnico di Torino, to verify the correct behaviour of the system without
taking into account any performance parameters. The con�guration used is the one
shown in the Figure 11.1.

The test was successfull, the implemented radio protocol took place properly,
when the node received from the master the command to switch the relay it cor-
rectly turn on or o� the connected generic load, that in this case was a MikroTik
routerboard. Furthermore, every time the node was asked to send back data to
the master, the communication was done correctly, completing the planned data
exchange cycle. When the master receved the packet data, it was possible to collect
it through SPI thanks to Bus Pirate universal serial interface [38], and see them
through a serial monitor on the PC. During another test, done between the two
bridge of Politecnico, with a distance of about 190 meters, the RSSI of the radio
link was evaluated. It was possible to enrich the con�guration replacing the Bus
Pirate Universal Serial Interface with the Raspberry PI (with a proper running
script) like shown in the Figure 11.2.

Also in this test the exchange of data between master and node and the com-
mands execution took place correctly . In the following table 11.1 are reported the

120

11 � Testing

Figure 11.1. The con�guration used to test the system in controlled environment.

Figure 11.2. The con�guration used to test the system in controlled envi-
ronment with the Raspberry.

measures taken in this context.

121

11 � Testing

The transmission parameters were the following:
1)
SwiRem: 50Kbps - 2-GFSK - 14dBm Tx power
TI Dev Kit: 50Kbps - 2-GFSK - 14dBm Tx power
Wi-MOD LoRa Module: LoRa Mod - SF:12 - BW:125Khz - EC 4/5 - 20dBm Tx
power
2)
SwiRem: 625bps - LoRa - 14dBm Tx power
TI Dev Kit: 625bps - LoRa - 14dBm Tx power
Wi-MOD LoRa Module: LoRa Mod - SF:7 - BW:125Khz - EC 4/5 - 20dBm Tx
power

N° RSSI WiMOD [dBm] RSSI CC1310[dBm] RSSI SwRem [dBm] Friis [dBm]
1 -62 -70 -73 -59
2 -63 -70 -74 -59

Table 11.1. RSSI Measures of SwiRem, CC1310 Dev Kit and LoRa be-
tween Politecnico bridges

The RSSI measured values di�er from the RSSI calculate with the Friis Equation
(-59 dBm with 14 dBm of Tx Power and -52 dBm with 20 dBm of Tx Power) because
Friis gives a theoretical value without taking into account many parameters like the
altitude of the antenna respect to the �oor, that in�uences a lot the performance
of a radio transmission.

11.2 Real environment

To understand the reachable performances and to better understand the behaviour
of the system it was necessary to do some tests in an environment the most similar
to the one where the system will be used. This test contest is one of the main
situation where was necessary to work in team, because it was necessary to place in
di�erent locations the two board and taking data on their behaviour. To approach
an environment the most similar to the real one, it was chosen as testing area the
Santuario di Crea at Serralunga di Crea (AL).

In this frame were realized six measures, increasing progressively the distance
between the two boards. These measures were done in the same conditions and in
the same places with respect to the ones done with the development kit of CC1310
and WiMOD Module. To take these measures, the organization was the following:

122

11 � Testing

the master was attached to the PC (through Bus Pirate universal serial interface)
in a �xed geographical position, on the bell tower of the "Santuario Diocesano
di Crea" on the top of a hill. Than the node was put in various points with a
crescendo of distance, around the Sanctuary. For every measure the main focus was
to understand if the communication between master and node took place, in detail
the master sent the command to turn on or o� the relay to the node, as explained
before, and the evidence of the correct communication was the relay commutation.
Then, to evaluate performances, the RSSI of the radio link was measured and
compared with the one measured with the Texas Instrument Development Kit and
with the one of the WiMOD Module.

123

11 � Testing

In the following Figures, from 11.3 to 11.8, are shown the geographical points
(named from 1 tu 6) where the measurements were taken.

Figure 11.3. Geographical test point 1 Figure 11.4. Geographical test point 2

Figure 11.5. Geographical test point 3 Figure 11.6. Geographical test point 4

124

11 � Testing

Figure 11.7. Geographical test point 5 Figure 11.8. Geographical test point 6

RSSI measurements

In the following are reported the RSSI measurements related to the various geo-
graphical positions of the node. For completeness are reported, in the same table
11.2, all the values obtained from SwiRem system, the Texas dev. kit and the
WiMOD Module. All the measurements are ordered with increasing distance and
the cardinal number X refer to the respective "test point X"

Distance [m] RSSI WiMOD [dBm] RSSI CC1310[dBm] RSSI SwRem [dBm] Friis [dBm]
1 649 -80 -82 -83 -69
2 1144 -80 -81 -83 -74
3 2697 -110 -123 -122 -81
4 5429 -96 -97 -96 -88
5 6601 -96 -95 -96 -90
6 9701 -95 -95 -97 -93

Table 11.2. RSSI Measures of SwRem, CC1310 Dev Kit and LoRa in
Monferrato countryside

At the end of these tests it was possible to certify that the main aspects of the
system work properly. It is necessary to further test a ongoing working cycle to
evaluate some online errors that may not occur in a brief period of usage.

125

11 � Testing

11.3 Evaluation of LoRa Murata board

The characterisation of the board with LoRa Murata was done on a board printed
for a di�erent project. It reached vary good goals in term of performances, link
distances and time to market realization. The most important advantage, widely
tested in the above mentioned board, was the exploitation of The Things Network
community. The infrastructure, o�ered by the community, works properly, in fact
a node can communicate with a public Gateway (or private) sending data to the
iXem database on Amazon hosting. In the future further test will be done on a
�rst prototype of SwiRem Lora Murata board.

126

Chapter 12

Conclusions

In conclusion, the team work done by Mirolli Donato and Trinchero Simone led to
the creation of an ad-hoc wireless system capable to monitor power consumption
and turning on and o� a speci�c device under test.

The design process started from the speci�cations and concluded with the phys-
ical realization of two boards that implement a wireless sensor network. All the
experimental test gave positive results about the working of this system that, even
with some errors, behaves as expected. This monitoring approach will be certainly
useful in various applications, reducing the time response to a damage of the de-
vice under control and to guarantee an improvement in power wasting, allowing to
turning o� a device, if not needed, without going in the physical place.

This work is open to future implementations and improvements. A �rst im-
provement was preliminary treated, at the end of the physical realization of the
system with the TI CC1310 transceiver, introducing the new Murata LoRa SoC
transceiver and some useful LoRa Alliance services, to exploit the advantages of
the LoRaWAN network and the goodness of the LoRa PHY spreading spectrum
technology.

127

Bibliography

[1] Electronic Communication Committee (ECC). THE 44TH ECC PLENARY
MEETING, DUBLIN, 28 FEBRUARY-3 MARCH 2017. 2017. url: http:
//www.cept.org/ecc/news/results- from- the- 44th- ecc- plenary-

meeting-dublin-28-february-3-march-2017/.

[2] Javan Erfanian Rachid El Hattachi. 5G White Paper. Tech. rep. NGMN Al-
liance, 2015.

[3] Abel Rodríguez de la Concepción, Riccardo Stefanelli, and Daniele Trinchero.
�Ad-hoc multilevel wireless sensor networks for distributed microclimatic dif-
fused monitoring in precision agriculture�. In: Wireless Sensors and Sensor
Networks (WiSNet), 2015 IEEE Topical Conference on. IEEE. 2015, pp. 14�
16.

[4] MSB Member Dr. Shu Yinbiao Project Leader and Co. �Internet of Things:
Wireless Sensor Networks�. In: International Electrotechnical Commission.
2014.

[5] Kevin Ashton. �That 'Internet of Things' Thing - In the real world, things
matter more than ideas.� In: RFID Journal 22.7 (2009).

[6] Christian Floerkemeier Friedemann Mattern. �From the Internet of Comput-
ers to the Internet of Things�. In: Distributed Systems Group, Institute for
Pervasive Computing - ETH Zurich ().

[7] Y. Sankarasubramaniam I.F. Akyildiz W. Su and E. Cayirci. �Wireless sensor
networks: a survey�. In: Computer Networks (2002) (2002).

[8] Suyash Jain. Layout Review Techniques for Low Power RF Designs. Tech.
rep. Texas Instruments, Rev 2012.

[9] Wikipedia. Osi Model. url: https://en.wikipedia.org/wiki/OSI_model.

[10] Wikipedia. Spread spectrum. 2017. url: http://en.wikipedia.org/wiki/
Spread_spectrum.

[11] Lora Aliance. url: https://www.lora-alliance.org.

[12] Zigbee Aliance. url: http://www.zigbee.org.

128

http://www.cept.org/ecc/news/results-from-the-44th-ecc-plenary-meeting-dublin-28-february-3-march-2017/
http://www.cept.org/ecc/news/results-from-the-44th-ecc-plenary-meeting-dublin-28-february-3-march-2017/
http://www.cept.org/ecc/news/results-from-the-44th-ecc-plenary-meeting-dublin-28-february-3-march-2017/
https://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/Spread_spectrum
http://en.wikipedia.org/wiki/Spread_spectrum
https://www.lora-alliance.org
http://www.zigbee.org

BIBLIOGRAPHY

[13] Z-Wave Aliance. url: https://z-wavealliance.org/.

[14] Wikipedia. Frequency Shift Keying. url: https://it.wikipedia.org/
wiki/Frequency-shift_keying.

[15] Wikipedia. Phase Shift Keying. url: https://en.wikipedia.org/wiki/
Phase-shift_keying.

[16] Wikipedia. Amplitude Shift Keying. url: https://en.wikipedia.org/
wiki/Amplitude-shift_keying.

[17] Win�eld Hill Paul Horowitz. The Art of Electronics. Cambridge University
Press, 2015, pp. 1032�1037.

[18] Wikipedia. Universal asynchronous receiver/transmitter. 2010. url: https:
//en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter.

[19] Colin M. Maunder (chair, Vice Chair editor) Rodham E. Tulloss, and Various
Authors. IEEE Standard Test Access Port and Boundary-Scan Architecture.
Tech. rep. The Institute of Electrical and Electronics Engineers, Inc., 1993.

[20] IMST GmbH.WiMOD iM880A Datasheet - Document ID: 4100/40140/0063.
Tech. rep. IMST GmbH.

[21] Semtech Corporation. SX1272/73 DATASHEET. Tech. rep. Semtech Corpo-
ration, Rev July 2014.

[22] IMST GmbH. WiMOD LR Studio User Guide Version 1.3 - Document ID:
4100/40140/0061. Tech. rep. IMST GmbH.

[23] Murata. Murata IC LoRa LPWAN. 2017. url: http://wireless.murata.
com.

[24] LoRa Alliance. The Things Network. 2017. url: http://www.thethingsnetwork.
org.

[25] Texas Instrument. SmartRF06 Evaluation Board User's Guide - SWRU321A.
Tech. rep. Texas Instruments, Rev May 2013.

[26] Texas Instrument. TI-RTOS 2.20 User's Guide. Tech. rep. Texas Instrument,
June 2016.

[27] Texas Instruments. Autoswitching power MUX - TPS2110A. Tech. rep. Texas
Instruments, Rev 2010.

[28] Texas Instruments. TPS6305x Single Inductor Buck-Boost With 1-A Switches
and Adjustable Soft Start. Tech. rep. Texas Instruments, Rev 2015.

[29] Johanson Technology. Sub-GHz Impedance Matched Balun + LPF integrated
Passive Component for Texas Instruments CC1310 Chipset. Tech. rep. Jo-
hanson Technology, Rev 2016.

129

https://z-wavealliance.org/
https://it.wikipedia.org/wiki/Frequency-shift_keying
https://it.wikipedia.org/wiki/Frequency-shift_keying
https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Amplitude-shift_keying
https://en.wikipedia.org/wiki/Amplitude-shift_keying
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
http://wireless.murata.com
http://wireless.murata.com
http://www.thethingsnetwork.org
http://www.thethingsnetwork.org

BIBLIOGRAPHY

[30] James Murdock and Danielle Gri�th. Crystal Oscillator and Crystal Selection
for the CC26xx and CC13xx Family of Wireless MCUs. Tech. rep. Texas
Instruments, Rev 2016.

[31] Seiko Epson Corporation. FA-238V FA-238 TSX-3225. Tech. rep. Seiko Epson
Corporation.

[32] Seiko Epson Corporation. FC-135R FC-135 FC-255. Tech. rep. Seiko Epson
Corporation.

[33] Texas Instruments. INA226 High-Side or Low-Side Measurement, Bi-Directional
Current and Power Monitor with I2C Compatible Interface. Tech. rep. Texas
Instruments, Rev 2015.

[34] Texas Instruments. CC1310 SimpleLink Ultralow Power Sub-1-GHz Wireless
MCU. Tech. rep. Texas Instruments, Rev 2015.

[35] Kraig Mitzner. Complete PCB Design Using OrCAD Capture and Layout.
Elsevier, 2007, pp. 23�24.

[36] Eurocircuit. Standard Pool. url: http://www.eurocircuits.com/standard-
pool-your-default-choice-for-your-pcb/.

[37] Murata. LoRa module datasheet BP-ABZ-B. Tech. rep. Murata.

[38] Where Labs. Bus Pirate USI. url: http://dangerousprototypes.com/
blog.

130

http://www.eurocircuits.com/standard-pool-your-default-choice-for-your-pcb/
http://www.eurocircuits.com/standard-pool-your-default-choice-for-your-pcb/
http://dangerousprototypes.com/blog
http://dangerousprototypes.com/blog

Appendix A

Firmware Code

All the following �rmware (from page 131 to 159), for the TI CC1310 transceiver,
refers to the Texas Instruments Incorporated disclaimer reported below in green,
and it was reused, modi�ed, implemented and extended by Donato Mirolli and
Simone Trinchero for this thesis in relation with the SwiRem project. Any trades
marks that may appear in the code is property of Texas Instruments, as explained
in the disclaimer below. In this code may were used and reused parts of some
provided examples given to developers as development tools by Texas Instruments.
There are no connections, no endorsements or no promotions by Texas Instruments
for any part of work.

/* Copyright (c) 2015 -2018 , Texas Instruments Incorporated

* All rights reserved.

*

* Redistribution and use in source and binary forms , with or without

* modification , are permitted provided that the following conditions

* are met:

*

* * Redistributions of source code must retain the above copyright

* notice , this list of conditions and the following disclaimer.

*

* * Redistributions in binary form must reproduce the above copyright

* notice , this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

*

* * Neither the name of Texas Instruments Incorporated nor the names of

* its contributors may be used to endorse or promote products derived

* from this software without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

* AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO ,

* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

* CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL ,

* EXEMPLARY , OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT LIMITED TO,

* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE , DATA , OR PROFITS;

* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY ,

* WHETHER IN CONTRACT , STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR

* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE ,

131

A � Firmware Code

* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

/* Mirolli Trinchero

*Firmware v2.0 per iXem SwiRem 2018

*/

A.1 B1_nodo_RADIO_v2.0.c

/***** Includes *****/

#include <B1_nodo_RADIO_v2 .0.h>

#include <RadioProtocol_Nodo_v2 .0.h>

#include <xdc/std.h>

#include <xdc/runtime/System.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Task.h>

#include <ti/sysbios/knl/Semaphore.h>

#include <ti/sysbios/knl/Event.h>

//Power management

#include <ti/drivers/Power.h>

#include <ti/drivers/Power/PowerCC26XX.h>

#include <ti/drivers/Power/PowerCC26XX_tirtos.c>

/* Drivers */

#include <ti/drivers/rf/RF.h>

#include <ti/drivers/PIN.h>

/* Board Header files */

#include "Board.h"

#include "easylink/EasyLink.h"

/***** Defines *****/

#define NODE_TASK_STACK_SIZE 1024

#define NODE_TASK_PRIORITY 3

#define RADIO_EVENT_ALL 0xFFFFFFFF

#define RADIO_EVENT_VALID_PACKET_RECEIVED (uint32_t)(1 << 0)

#define RADIO_EVENT_INVALID_PACKET_RECEIVED (uint32_t)(1 << 1)

#define RADIO_EVENT_COMMAND_PACKET_RECIVED (uint32_t)(1 << 2)

#define EVENT_WAKE_UP (uint32_t)

(1 << 3)

#define RADIO_EVENT_SEND_DATA (uint32_t)(1 << 4)

#define RADIO_EVENT_ACK_TIMEOUT (uint32_t)(1 << 5)

#define RADIO_EVENT_SEND_FAIL (uint32_t)(1 << 6)

#define RADIO_EVENT_NO_OPERATIONS (uint32_t)(1 << 7)

#define RADIO_EVENT_DATA_ACK_RECEIVED (uint32_t)(1 << 8)

#define NODERADIO_MAX_RETRIES 2

#define NORERADIO_ACK_TIMEOUT_TIME_MS (8000)

#define NORERADIO_COMMAND_TIMEOUT_TIME_MS (12000)

#define NODE_CLOCK_INTERVAL_TIMEOUT_MS 10000 //ms

/***** Type declarations *****/

struct RadioOperation {

EasyLink_TxPacket easyLinkTxPacket;

uint8_t retriesDone;

uint8_t maxNumberOfRetries;

uint32_t ackTimeoutMs;

enum NodeRadioOperationStatus result;

};

132

A � Firmware Code

/***** Variable declarations *****/

static Task_Params NodeRadioTaskParams;

Task_Struct NodeRadioTask; /* not static so you can see in ROV */

static uint8_t NodeRadioTaskStack[NODE_TASK_STACK_SIZE];

Event_Struct radioOperationEvent; /* not static so you can see in ROV */

static Event_Handle radioOperationEventHandle;

static Semaphore_Handle radioAccessSemHandle;

Event_Struct radioOperationEvent; /* not static so you can see in ROV */

static Event_Handle radioOperationEventHandle;

Semaphore_Struct radioResultSem; /* not static so you can see in ROV */

static Semaphore_Handle radioResultSemHandle;

Semaphore_Struct radioAccessSem; /* not static so you can see in ROV */

static uint16_t dataToSend;

static uint8_t flag_wake_moment =0;

static ConcentratorRadio_PacketReceivedCallback packetReceivedCallback;

static union ConcentratorPacket latestRxPacket;

static EasyLink_TxPacket txPacket;

static struct WakeUpPacket WakePacket;

static struct AckPacket ackPacket;

static uint8_t nodoAddress;

static int8_t latestRssi;

static struct RadioOperation currentRadioOperation;

/***** Prototypes *****/

static void NodoRadioTaskFunction(UArg arg0 , UArg arg1);

static void rxDoneCallback(EasyLink_RxPacket * rxPacket , EasyLink_Status status);

static void notifyPacketReceived(union ConcentratorPacket* latestRxPacket);

static void sendWake(uint8_t MasterAddress);

static void sendAck(uint8_t MasterAddress);

static void returnRadioOperationStatus(enum NodeRadioOperationStatus status);

static void sendCommandPacket(struct NodeDataPacket Packet , uint8_t

maxNumberOfRetries , uint32_t ackTimeoutMs);

static void resendPacket ();

static struct NodeDataPacket dato_da_inviare;

void Clok_Radio_TimeoutCallback(UArg arg0);

/* Pin driver handle */

static PIN_Handle ledPinHandle;

static PIN_State ledPinState;

/* Clock for the fast report timeout */

Clock_Struct RadioReportTimeoutClock; /* not static so you can see in ROV */

PowerCC26XX_Config power;

/* Configure LED Pin */

PIN_Config ledPinTable [] = {

D2 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL |

PIN_DRVSTR_MAX ,

PIN_TERMINATE

};

/***** Function definitions *****/

void NodeRadioTask_init(void) {

/* Create semaphore used for exclusive radio access */

Semaphore_Params semParam;

Semaphore_Params_init (& semParam);

Semaphore_construct (& radioAccessSem , 1, &semParam);

radioAccessSemHandle = Semaphore_handle (& radioAccessSem);

/* Create semaphore used for callers to wait for result */

Semaphore_construct (& radioResultSem , 0, &semParam);

radioResultSemHandle = Semaphore_handle (& radioResultSem);

133

A � Firmware Code

/* Open LED pins */

ledPinHandle = PIN_open (& ledPinState , ledPinTable);

if (! ledPinHandle)

{

System_abort("Error initializing GPIO\n");

}

/* Create event used internally for state changes */

Event_Params eventParam;

Event_Params_init (& eventParam);

Event_construct (& radioOperationEvent , &eventParam);

radioOperationEventHandle = Event_handle (& radioOperationEvent);

/* Create clock object */

Clock_Params clkParams2;

clkParams2.period = 0;

clkParams2.startFlag = FALSE;

Clock_construct (& RadioReportTimeoutClock , Clok_Radio_TimeoutCallback , 1, &

clkParams2);

RadioTimeoutClockHandle = Clock_handle (& RadioReportTimeoutClock);

/* Create the node radio protocol task */

Task_Params_init (& NodeRadioTaskParams);

NodeRadioTaskParams.stackSize = NODE_TASK_STACK_SIZE;

NodeRadioTaskParams.priority = NODE_TASK_PRIORITY;

NodeRadioTaskParams.stack = &NodeRadioTaskStack;

Task_construct (& NodeRadioTask , NodoRadioTaskFunction , &NodeRadioTaskParams ,

NULL);

}

void NodeRadioTask_registerPacketReceivedCallback(

ConcentratorRadio_PacketReceivedCallback callback) {

packetReceivedCallback = callback;

}

static void NodoRadioTaskFunction(UArg arg0 , UArg arg1)

{

/* Initialize EasyLink */

if(EasyLink_init(RADIO_EASYLINK_MODULATION) != EasyLink_Status_Success) {

System_abort("EasyLink_init failed");

}

/* Set frequency */

if(EasyLink_setFrequency(RADIO_FREQUENCY) != EasyLink_Status_Success) {

System_abort("EasyLink_setFrequency failed");

}

/* Set node address */;

nodoAddress = RADIO_NODO_ADDRESS;

EasyLink_enableRxAddrFilter (& nodoAddress , 1, 1);

/* Set up Wake up and Ack packet */

WakePacket.header.sourceAddress = nodoAddress;

WakePacket.header.packetType = RADIO_PACKET_TYPE_WAKEUP_PACKET;

ackPacket.header.sourceAddress = nodoAddress;

ackPacket.header.packetType = RADIO_PACKET_TYPE_COMMAND_ACK_RECEIVED;

//set n* di clock to wake up node

Clock_setTimeout(RadioTimeoutClockHandle ,NODE_CLOCK_INTERVAL_TIMEOUT_MS * 1000

/ Clock_tickPeriod);

Clock_start(RadioTimeoutClockHandle);

//Set the power policy - PowerCC26XX_standbyPolicy

134

A � Firmware Code

power.policyInitFxn =NULL;

power.policyFxn = &PowerCC26XX_standbyPolicy;

power.calibrateFxn = &PowerCC26XX_noCalibrate;

power.enablePolicy=FALSE;

power.calibrateRCOSC_LF=FALSE;

power.calibrateRCOSC_HF=FALSE;

PIN_setOutputValue(ledPinHandle , D2 ,0);

while (1) {

Power_enablePolicy ();

uint32_t events = Event_pend(radioOperationEventHandle , 0, RADIO_EVENT_ALL

, BIOS_WAIT_FOREVER);

//If timer tell to wake up

if(events & EVENT_WAKE_UP)

{

flag_wake_moment =1;//for the RADIO_EVENT_ACK_TIMEOUT to veryfy if

is a wake up or an other RX situation

//Send wake up packet

sendWake(RADIO_MASTER_ADDRESS);

Power_setConstraint(PowerCC26XX_SB_DISALLOW);

Power_setConstraint(PowerCC26XX_IDLE_PD_DISALLOW);

//Go back to RX with time out to whait a valid command from master

EasyLink_setCtrl(EasyLink_Ctrl_AsyncRx_TimeOut ,

EasyLink_ms_To_RadioTime(

NORERADIO_COMMAND_TIMEOUT_TIME_MS));

if(EasyLink_receiveAsync(rxDoneCallback , 0) != EasyLink_Status_Success

) {

System_abort("EasyLink_receiveAsync failed");

}

}

if(events & RADIO_EVENT_COMMAND_PACKET_RECIVED)

{

flag_wake_moment =0;

sendAck(RADIO_MASTER_ADDRESS);

/* Call packet received callback */

notifyPacketReceived (& latestRxPacket);

}

if(events & RADIO_EVENT_SEND_DATA){

dato_da_inviare.header.sourceAddress = nodoAddress;

dato_da_inviare.header.packetType = RADIO_PACKET_TYPE_DATA_PACKET;

dato_da_inviare.adcValue = dataToSend;

sendCommandPacket(dato_da_inviare , NODERADIO_MAX_RETRIES ,

NORERADIO_ACK_TIMEOUT_TIME_MS);

System_printf("send command\n");

System_flush ();// serve per far stampare

}

//If we get an ACK command recived from node ,

if (events & RADIO_EVENT_DATA_ACK_RECEIVED)

{

returnRadioOperationStatus(NodeRadioStatus_Success);

Event_post(radioOperationEventHandle ,

RADIO_EVENT_NO_OPERATIONS);

135

A � Firmware Code

}

//If we get an ACK timeout

if (events & RADIO_EVENT_ACK_TIMEOUT)

{

if(flag_wake_moment ==1){

flag_wake_moment =0;

Event_post(radioOperationEventHandle ,

RADIO_EVENT_NO_OPERATIONS);

}else if (currentRadioOperation.retriesDone <

currentRadioOperation.maxNumberOfRetries)

resendPacket ();

}else

{

//Else return send fail

Event_post(radioOperationEventHandle ,

RADIO_EVENT_SEND_FAIL);

}

}

//If send fail

if (events & RADIO_EVENT_SEND_FAIL)

{

returnRadioOperationStatus(NodeRadioStatus_Failed);

Event_post(radioOperationEventHandle ,

RADIO_EVENT_NO_OPERATIONS);

}

/* If invalid packet received */

if(events & RADIO_EVENT_INVALID_PACKET_RECEIVED) {

Event_post(radioOperationEventHandle ,RADIO_EVENT_NO_OPERATIONS);

}

//Give the permission to go to sleep and set the timer to wake up

if(events & RADIO_EVENT_NO_OPERATIONS){

EasyLink_setCtrl(EasyLink_Ctrl_AsyncRx_TimeOut ,

EasyLink_ms_To_RadioTime (0));

Power_releaseConstraint(PowerCC26XX_SB_DISALLOW);

Power_releaseConstraint(PowerCC26XX_IDLE_PD_DISALLOW);

PIN_setOutputValue(ledPinHandle , D2 ,0);

Clock_start(RadioTimeoutClockHandle);

}

}

}

void done_or_do_nothing (){

Event_post(radioOperationEventHandle ,RADIO_EVENT_NO_OPERATIONS);

}

enum NodeRadioOperationStatus NodeRadioTask_sendCommandData(uint16_t data)

{

enum NodeRadioOperationStatus status_enum ;

// Get radio access sempahore

Semaphore_pend(radioAccessSemHandle , BIOS_WAIT_FOREVER);

// Save data to send

dataToSend = data;

// Raise RADIO_EVENT_SEND_COMMAND_DATA event

Event_post(radioOperationEventHandle , RADIO_EVENT_SEND_DATA);

// Wait for result

Semaphore_pend(radioResultSemHandle , BIOS_WAIT_FOREVER);

//Get result

status_enum = currentRadioOperation.result;

136

A � Firmware Code

// Return radio access semaphore

Semaphore_post(radioAccessSemHandle);

return status_enum;

}

static void returnRadioOperationStatus(enum NodeRadioOperationStatus result)

{

/* Save result */

currentRadioOperation.result = result;

/* Post result semaphore */

Semaphore_post(radioResultSemHandle);

}

static void sendCommandPacket(struct NodeDataPacket Packet , uint8_t

maxNumberOfRetries , uint32_t ackTimeoutMs)

{

//Set destination address in EasyLink API

currentRadioOperation.easyLinkTxPacket.dstAddr [0] = RADIO_MASTER_ADDRESS;

// Copy ADC packet to payload

//Note that the EasyLink API will implcitily both add the length byte and the

destination address byte.

memcpy(currentRadioOperation.easyLinkTxPacket.payload , ((uint8_t *)&Packet),

sizeof(struct NodeDataPacket));

currentRadioOperation.easyLinkTxPacket.len = sizeof(struct NodeDataPacket);

//Setup retries

currentRadioOperation.maxNumberOfRetries = maxNumberOfRetries;

currentRadioOperation.ackTimeoutMs = ackTimeoutMs;

currentRadioOperation.retriesDone = 0;

EasyLink_setCtrl(EasyLink_Ctrl_AsyncRx_TimeOut , EasyLink_ms_To_RadioTime(

ackTimeoutMs));

Power_disablePolicy ();// disable the power policy because it interferes with

the "receiveAsync"

//Send packet

if (EasyLink_transmit (& currentRadioOperation.easyLinkTxPacket) !=

EasyLink_Status_Success)

{

System_abort("EasyLink_transmit failed 1");

}

//do not insert anything here

//Enter RX

if (EasyLink_receiveAsync(rxDoneCallback , 0) != EasyLink_Status_Success)

{

System_abort("EasyLink_receiveAsync failed");

}

}

static void resendPacket ()

{

Power_disablePolicy ();// disable the power policy because it interferes

with the "receiveAsync"

/* Send packet */

if (EasyLink_transmit (& currentRadioOperation.easyLinkTxPacket) !=

EasyLink_Status_Success)

{

System_abort("EasyLink_transmit failed 2");

}

137

A � Firmware Code

//do not insert anything here

/* Enter RX and wait for ACK with timeout */

if (EasyLink_receiveAsync(rxDoneCallback , 0) != EasyLink_Status_Success)

{

System_abort("EasyLink_receiveAsync failed");

}

/* Increase the retries number by one */

currentRadioOperation.retriesDone ++;

}

static void sendWake(uint8_t MasterAddress) {

/* Set destination Adress , but use EasyLink layers destination adress

capability */

txPacket.dstAddr [0] = MasterAddress;

memcpy(txPacket.payload , &WakePacket.header , sizeof(WakePacket));

txPacket.len = sizeof(WakePacket);

/* Send packet */

if (EasyLink_transmit (& txPacket) != EasyLink_Status_Success)

{

System_abort("EasyLink_transmit failed");

}

}

////Send the ACK to master after it revived a command

static void sendAck(uint8_t MasterAddress) {

/* Set destinationAdress , but use EasyLink layers destination address

capability */

txPacket.dstAddr [0] = MasterAddress;

/* Copy ACK packet to payload , skipping the destination address byte.

* Note that the EasyLink API will implcitily both add the length byte and the

destination address byte. */

memcpy(txPacket.payload , &ackPacket.header , sizeof(ackPacket));

txPacket.len = sizeof(ackPacket);

/* Send packet */

if (EasyLink_transmit (& txPacket) != EasyLink_Status_Success)

{

System_abort("EasyLink_transmit failed");

}

}

static void notifyPacketReceived(union ConcentratorPacket* latestRxPacket)

{

if (packetReceivedCallback)

{

packetReceivedCallback(latestRxPacket , latestRssi);

}

}

static void rxDoneCallback(EasyLink_RxPacket * rxPacket , EasyLink_Status status)

{

union ConcentratorPacket* tmpRxPacket;

/* If we received a packet successfully */

if (status == EasyLink_Status_Success)

{

/* Save the latest RSSI , which is later sent to the receive callback */

latestRssi = (int8_t)rxPacket ->rssi;

138

A � Firmware Code

/* Check that this is a valid packet */

tmpRxPacket = (union ConcentratorPacket *)(rxPacket ->payload);

/* If this is a known packet */

if (tmpRxPacket ->header.packetType == RADIO_PACKET_TYPE_COMMAND_PACKET)

{

/* Save packet */

memcpy ((void*)&latestRxPacket , &rxPacket ->payload , sizeof(struct

CommandPacket));

/* Signal packet received */

Event_post(radioOperationEventHandle ,

RADIO_EVENT_COMMAND_PACKET_RECIVED);

}else if (tmpRxPacket ->header.packetType ==

RADIO_PACKET_TYPE_DATO_ACK_RECEIVED)

{

// Signal ACK packet received

Event_post(radioOperationEventHandle ,

RADIO_EVENT_DATA_ACK_RECEIVED);

}

}

else if(status == EasyLink_Status_Rx_Timeout)

{

//Post a RADIO_EVENT_ACK_TIMEOUT event

Event_post(radioOperationEventHandle , RADIO_EVENT_ACK_TIMEOUT);

}

else

{

/* Signal invalid packet received */

Event_post(radioOperationEventHandle , RADIO_EVENT_INVALID_PACKET_RECEIVED)

;

}

}

void Clok_Radio_TimeoutCallback(UArg arg0)

{

PIN_setOutputValue(ledPinHandle , D2 ,1);

Event_post(radioOperationEventHandle , EVENT_WAKE_UP);

}

A.2 B1_nodo_RADIO_v2.0.h

#ifndef TASKS_CONCENTRATORRADIOTASKTASK_H_

#define TASKS_CONCENTRATORRADIOTASKTASK_H_

#include "RadioProtocol_Nodo_v2 .0.h"

#include "stdint.h"

enum ConcentratorRadioOperationStatus {

ConcentratorRadioStatus_Success ,

ConcentratorRadioStatus_Failed ,

ConcentratorRadioStatus_FailedNotConnected ,

};

enum NodeRadioOperationStatus {

139

A � Firmware Code

NodeRadioStatus_Success ,

NodeRadioStatus_Failed ,

NodeRadioStatus_FailedNotConnected ,

};

union ConcentratorPacket {

struct PacketHeader header;

struct CommandPacket rxCommand;

struct AckPacket ack_master_data_recived;

};

typedef void (* ConcentratorRadio_PacketReceivedCallback)(union ConcentratorPacket*

packet , int8_t rssi);

/* Create the NoderRadioTask and creates all TI-RTOS objects */

void NodeRadioTask_init(void);

/* Register the packet received callback */

void NodeRadioTask_registerPacketReceivedCallback(

ConcentratorRadio_PacketReceivedCallback callback);

/* void done_or_do_nothing(void);

permete di comunicare al radio quando gli e' arrivato il comando torna a dormire o

quando ha eseguito un certo comando */

/* Sends an DATA value to the Master */

enum NodeRadioOperationStatus NodeRadioTask_sendCommandData(uint16_t data);

#endif /* TASKS_CONCENTRATORRADIOTASKTASK_H_ */

A.3 B1_nodo_TASK_v2.0.c

/***** Includes *****/

#include <B1_nodo_RADIO_v2 .0.h>

#include <B1_nodo_TASK_v2 .0.h>

#include <RadioProtocol_Nodo_v2 .0.h>

#include <xdc/std.h>

#include <xdc/runtime/System.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Task.h>

#include <ti/sysbios/knl/Semaphore.h>

#include <ti/sysbios/knl/Event.h>

/* Drivers */

#include <ti/drivers/PIN.h>

#include <ti/mw/display/Display.h>

#include <ti/mw/display/DisplayExt.h>

/* Board Header files */

#include "Board.h"

/* Driver Header files */

#include <ti/drivers/ADC.h>

#if defined(CC2650DK_7ID) || defined(CC1310DK_7XD)

#include <ti/drivers/PIN.h>

#endif

/***** Defines *****/

#define NODE_TASK_STACK_SIZE 1024

140

A � Firmware Code

#define NODE_TASK_PRIORITY 3

#define NODE_EVENT_ALL 0xFFFFFFFF

#define NODE_EVENT_NEW_COMMAND (uint32_t)(1 << 0)

#define NODE_EVENT_NEW_DATA (uint32_t)(1 << 1)

#define CONCENTRATOR_MAX_NODES 7

#define CONCENTRATOR_DISPLAY_LINES 8

#define NODE_CLOCK_INTERVAL_TIMEOUT_MS 30000 //ms

/***** Type declarations *****/

struct AdcSensorNode {

uint8_t address;

uint16_t latestAdcValue;

uint8_t button;

int8_t latestRssi;

};

/* Pin driver handle */

static PIN_Handle ledPinHandle1;

static PIN_State ledPinState1;

/* Configure LED Pin */

PIN_Config ledPinTable1 [] = {

D3 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL |

PIN_DRVSTR_MAX ,

D1 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL |

PIN_DRVSTR_MAX ,

Board_ALS_PWR| PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL |

PIN_DRVSTR_MAX ,

Board_DIO27_ANALOG | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW |

PIN_PUSHPULL | PIN_DRVSTR_MAX ,

PIN_TERMINATE

};

/* ADC conversion result variables */

uint16_t adcValue0;

/***** Variable declarations *****/

static Task_Params NodeTaskParams;

Task_Struct NodeTask; /* not static so you can see in ROV */

static uint8_t NodeTaskStack[NODE_TASK_STACK_SIZE];

Event_Struct NodeEvent; /* not static so you can see in ROV */

static Event_Handle NodeEventHandle;

struct AdcSensorNode knownSensorNodes[CONCENTRATOR_MAX_NODES];

static struct CommandPacket commandRecived;

static uint16_t stato_relay;

static uint16_t Sense_220;

// Commands to control the node

uint8_t GET_RELAY = 0x61;//a

uint8_t SET_OPEN_RELAY =0x62;//b

uint8_t SET_CLOSE_RELAY= 0x63;//c

uint8_t GO_BACK_SLEEP = 0x65;//e

uint8_t CONTROL_220 = 0x64;//d

uint8_t CONTROL_BATTERY = 0x05;

uint8_t CONTROL_I_LOAD = 0x06;

uint8_t READ_ADC_VALUE =0x07;

/***** Prototypes *****/

static void NodeTaskFunction(UArg arg0 , UArg arg1);

static void packetReceivedCallback(union ConcentratorPacket* packet , int8_t rssi);

void readADCvalue ();

141

A � Firmware Code

void ClokTimeoutCallback(UArg arg0);

/**I2C***/

static I2C_Handle i2c_node_handle;

static I2C_Params i2c_node_param;

static I2C_Transaction i2cTransaction;

unsigned char i2cBuffer [3];

int8_t INA_READ_I;

int8_t INA_READ_V;

void i2cInizializzazioni_blocking(int8_t address);

I2C_Config i2c_configuration;

I2C_FxnTable i2c_table;

static uint16_t INA_value;

/***** Function definitions *****/

void NodeTask_init(void) {

/* Open LED pins */

ledPinHandle1 = PIN_open (& ledPinState1 , ledPinTable1);

if (! ledPinHandle1)

{

System_abort("RR Error initializing board\n");

}

/* Create event used internally for state changes */

Event_Params eventParam;

Event_Params_init (& eventParam);

Event_construct (&NodeEvent , &eventParam);

NodeEventHandle = Event_handle (& NodeEvent);

/* Create the node radio protocol task */

Task_Params_init (& NodeTaskParams);

NodeTaskParams.stackSize = NODE_TASK_STACK_SIZE;

NodeTaskParams.priority = NODE_TASK_PRIORITY;

NodeTaskParams.stack = &NodeTaskStack;

Task_construct (&NodeTask , NodeTaskFunction , &NodeTaskParams , NULL);

}

static void NodeTaskFunction(UArg arg0 , UArg arg1)

{

/* Register a packet received callback with the radio task */

NodeRadioTask_registerPacketReceivedCallback(packetReceivedCallback);

/* Enter main task loop */

while (1) {

/* Wait for event */

uint32_t events = Event_pend(NodeEventHandle , 0, NODE_EVENT_ALL ,

BIOS_WAIT_FOREVER);

/* If we got a new ADC sensor value */

if(events & NODE_EVENT_NEW_COMMAND) {

PIN_setOutputValue(ledPinHandle1 , D1 ,1);

if(commandRecived.command == SET_OPEN_RELAY){

PIN_setOutputValue(ledPinHandle1 , Board_ALS_PWR ,1);

PIN_setOutputValue(ledPinHandle1 , D3 ,1);

Clock_start(RadioTimeoutClockHandle);

done_or_do_nothing ();

PIN_setOutputValue(ledPinHandle1 , D1 ,0);

142

A � Firmware Code

}else if(commandRecived.command == SET_CLOSE_RELAY){

PIN_setOutputValue(ledPinHandle1 , Board_ALS_PWR ,0);

PIN_setOutputValue(ledPinHandle1 , D3 ,0);

Clock_start(RadioTimeoutClockHandle);

done_or_do_nothing ();

PIN_setOutputValue(ledPinHandle1 , D1 ,0);

}else if(commandRecived.command == GET_RELAY){

stato_relay = (uint16_t)PIN_getOutputValue(Board_ALS_PWR);

NodeRadioTask_sendCommandData(stato_relay);

PIN_setOutputValue(ledPinHandle1 , D1 ,0);

}else if(commandRecived.command == GO_BACK_SLEEP){

done_or_do_nothing ();

PIN_setOutputValue(ledPinHandle1 , D1 ,0);

}else if(commandRecived.command == CONTROL_220){

Sense_220 = (uint16_t)PIN_getOutputValue(

Board_DIO27_ANALOG);//pin 40/ DIO_27 on CC1310 , where

is possible to sense the presence of 220

NodeRadioTask_sendCommandData(Sense_220);

PIN_setOutputValue(ledPinHandle1 , D3 ,0);

}else if(commandRecived.command == CONTROL_BATTERY){

//read V

i2cInizializzazioni_blocking(INA_READ_V);

NodeRadioTask_sendCommandData(INA_value);

}else if(commandRecived.command == CONTROL_I_LOAD){

//read I

i2cInizializzazioni_blocking(INA_READ_I);

NodeRadioTask_sendCommandData(INA_value);

}else if(commandRecived.command == READ_ADC_VALUE){

//If it is necessary to read a value with ADC

readADCvalue ();

NodeRadioTask_sendCommandData(adcValue0);

PIN_setOutputValue(ledPinHandle1 , D3 ,0);

}

else {

Clock_start(RadioTimeoutClockHandle);

done_or_do_nothing ();

PIN_setOutputValue(ledPinHandle1 , D1 ,0);

}

}

}

}

//I2C initialization

void i2cInizializzazioni_blocking(int8_t address){

I2C_Params_init (& i2c_node_param);

i2c_node_param.bitRate = I2C_100kHz;

i2c_node_param.transferMode = I2C_MODE_BLOCKING;

i2c_node_param.transferCallbackFxn = NULL;

i2c_node_param.custom =(uintptr_t) NULL;

I2C_init ();

143

A � Firmware Code

i2cBuffer [0]=(char)address;

i2c_node_handle=I2C_open(Board_I2C , &i2c_node_param);

if (! i2c_node_handle){

System_printf("I2C did not open");

}

i2cTransaction.readCount =2

i2cTransaction.slaveAddress = 0x40;//INA HW ADDRESS

i2cTransaction.writeBuf = i2cBuffer;

i2cTransaction.writeCount = 1;

i2cTransaction.readBuf = i2cBuffer;

i2cTransaction.readCount = 2;

I2C_transfer(i2c_node_handle , &i2cTransaction);

INA_value = i2cBuffer [1] \<< 8 | i2cBuffer [2];

}

//Open an ADC instance and get a sampling result from a one -shot conversion.

void readADCvalue ()

{

ADC_Handle adc;

ADC_Params params;

int_fast16_t res;

ADC_Params_init (& params);

adc = ADC_open(Board_ADC0 , ¶ms);

if (adc == NULL) {

System_abort("Error initializing ADC channel 0\n");

}

else {

System_printf("ADC channel 0 initialized\n");

}

/* Blocking mode conversion */

res = ADC_convert(adc , &adcValue0); // adcValue0 is a global variable

if (res == ADC_STATUS_SUCCESS) {

System_printf("ADC channel 0 convert result: 0x%x\n", adcValue0);

}

else {

System_printf("ADC channel 0 convert failed\n");

}

ADC_close(adc);

System_flush ();

}

static void packetReceivedCallback(union ConcentratorPacket* packet , int8_t rssi)

{

/* If we recived an ADC sensor packet , for backward compatibility */

if (packet ->header.packetType == RADIO_PACKET_TYPE_COMMAND_PACKET)

{

commandRecived.command = packet ->rxCommand.command ;

Event_post(NodeEventHandle , NODE_EVENT_NEW_COMMAND);

}

}

A.4 B1_nodo_TASK_v2.0.h

#ifndef TASKS_CONCENTRATORTASK_H_

144

A � Firmware Code

#define TASKS_CONCENTRATORTASK_H_

/* Create the ConcentratorRadioTask and creates all TI-RTOS objects */

void NodeTask_init(void);

#endif /* TASKS_CONCENTRATORTASK_H_ */

A.5 B2_master_RADIO_v2.0.c

/***** Includes *****/

#include <B2_master_RADIO_v2 .0.h>

#include <xdc/std.h>

#include <xdc/runtime/System.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Task.h>

#include <ti/sysbios/knl/Semaphore.h>

#include <ti/sysbios/knl/Event.h>

#include <ti/sysbios/knl/Clock.h>

#include <ti/drivers/Power.h>

#include <ti/drivers/power/PowerCC26XX.h>

/* Drivers */

#include <ti/drivers/rf/RF.h>

#include <ti/drivers/PIN.h>

/* Board Header files */

#include "Board.h"

#include <stdlib.h>

#include <driverlib/trng.h>

#include <driverlib/aon_batmon.h>

#include <RadioProtocol_Master_v2 .0.h>

#include "easylink/EasyLink.h"

/***** Defines *****/

#define MASTERRADIO_TASK_STACK_SIZE 1024

#define MASTERRADIO_TASK_PRIORITY 3

#define RADIO_EVENT_ALL 0xFFFFFFFF //

#define RADIO_EVENT_SEND_COMMAND (uint32_t)(1 << 0)//

#define RADIO_EVENT_COMMAND_ACK_RECEIVED (uint32_t)(1 << 1)

#define RADIO_EVENT_ACK_TIMEOUT (uint32_t)(1 << 2)

#define RADIO_EVENT_SEND_FAIL (uint32_t)(1 << 3)

#define RADIO_EVENT_WAKEUP_RECEIVED (uint32_t)(1 << 4)

#define RADIO_EVENT_RETURN_RX (uint32_t)(1 << 5)

#define RADIO_EVENT_DATA_PACKET_RECEIVED (uint32_t)(1 << 6)

#define RADIO_EVENT_INVALID_PACKET_RECEIVED (uint32_t)(1 << 7)

#define MASTERRADIO_MAX_RETRIES 2

#define MASTERRADIO_ACK_TIMEOUT_TIME_MS (1000)

/***** Type declarations *****/

struct RadioOperation {

EasyLink_TxPacket easyLinkTxPacket;

uint8_t retriesDone;

uint8_t maxNumberOfRetries;

uint32_t ackTimeoutMs;

enum MasterRadioOperationStatus result;

};

/***** Variable declarations *****/

static MasterRadio_PacketReceivedCallback packetReceivedCallback;

static Task_Params MasterRadioTaskParams;

Task_Struct masterRadioTask; /* not static so you can see in ROV */

145

A � Firmware Code

static uint8_t masterRadioTaskStack[MASTERRADIO_TASK_STACK_SIZE];

Semaphore_Struct radioAccessSem; /* not static so you can see in ROV */

static Semaphore_Handle radioAccessSemHandle;

Event_Struct radioOperationEvent; /* not static so you can see in ROV */

static Event_Handle radioOperationEventHandle;

Semaphore_Struct radioResultSem; /* not static so you can see in ROV */

static Semaphore_Handle radioResultSemHandle;

static struct RadioOperation currentRadioOperation;

static uint8_t masterAddress = 0;

static struct CommandPacket cmdPacket;

static int flag_wake_recived =0;//flag per il controllo del wake up ricevuto

static int ppp =0;

static union MasterPacket latestRxPacket1;

static uint16_t commandToSend;

extern PIN_Handle ledPinHandle;

static struct AckPacket ackPacket;

static int8_t latestRssi;

static EasyLink_TxPacket txPacket;

// static int8_t latestRssi;

// static struct DualModeSensorPacket dmSensorPacket;

/* previous Tick count used to calculate uptime for the Sub1G packet */

// static uint32_t prevTicks;

/***** Prototypes *****/

static void MasterRadioTaskFunction(UArg arg0 , UArg arg1);

static void returnRadioOperationStatus(enum MasterRadioOperationStatus status);

static void sendCommandPacket(struct CommandPacket cmdPacket , uint8_t

maxNumberOfRetries , uint32_t ackTimeoutMs);

static void resendPacket ();

static void rxDoneCallback(EasyLink_RxPacket * rxPacket , EasyLink_Status status);

static void rerutnInRX_noTimeOut ();

static void sendAck(uint8_t MasterAddress);

static void notifyPacketReceived(union MasterPacket* latestRxPacket);

/***** Function definitions *****/

void MasterRadioTask_init(void) {

/* Create semaphore used for exclusive radio access */

Semaphore_Params semParam;

Semaphore_Params_init (& semParam);

Semaphore_construct (& radioAccessSem , 1, &semParam);

radioAccessSemHandle = Semaphore_handle (& radioAccessSem);

/* Create semaphore used for callers to wait for result */

Semaphore_construct (& radioResultSem , 0, &semParam);

radioResultSemHandle = Semaphore_handle (& radioResultSem);

/* Create event used internally for state changes */

Event_Params eventParam;

Event_Params_init (& eventParam);

Event_construct (& radioOperationEvent , &eventParam);

radioOperationEventHandle = Event_handle (& radioOperationEvent);

/* Create the radio protocol task */

Task_Params_init (& MasterRadioTaskParams);

MasterRadioTaskParams.stackSize = MASTERRADIO_TASK_STACK_SIZE;

MasterRadioTaskParams.priority = MASTERRADIO_TASK_PRIORITY;

MasterRadioTaskParams.stack = &masterRadioTaskStack;

Task_construct (& masterRadioTask , MasterRadioTaskFunction , &

MasterRadioTaskParams , NULL);

System_printf("B2_masterRadio RadioTask inizializato\n");

System_flush ();

}

146

A � Firmware Code

void MasterRadioTask_registerPacketReceivedCallback(

MasterRadio_PacketReceivedCallback callback) {

packetReceivedCallback = callback;

}

//MAIN RADIO TASK FUNCTION

static void MasterRadioTaskFunction(UArg arg0 , UArg arg1)

{

/* Initialize EasyLink */

if(EasyLink_init(RADIO_EASYLINK_MODULATION) != EasyLink_Status_Success) {

System_abort("EasyLink_init failed");

}

// Set frequency

if(EasyLink_setFrequency(RADIO_FREQUENCY) != EasyLink_Status_Success) {

System_abort("EasyLink_setFrequency failed");

}

masterAddress = RADIO_MASTER_ADDRESS;

/* Set the filter to the generated random address */

if (EasyLink_enableRxAddrFilter (& masterAddress , 1, 1) !=

EasyLink_Status_Success)

{

System_abort("EasyLink_enableRxAddrFilter failed");

}

cmdPacket.header.sourceAddress = masterAddress;

cmdPacket.header.packetType = RADIO_PACKET_TYPE_COMMAND_PACKET;

System_printf("B2_masterRadio impost. radio settate\n");

System_flush ();// serve per far stampare

// Start in reciving mode

if(EasyLink_receiveAsync(rxDoneCallback , 0) != EasyLink_Status_Success) {

System_abort("EasyLink_receiveAsync failed");

}

/* Initialize previous Tick count */

// prevTicks = Clock_getTicks ();

/* Enter main task loop */

while (1)

{

// Wait for an event

uint32_t eventsRadio = Event_pend(radioOperationEventHandle , 0,

RADIO_EVENT_ALL , BIOS_WAIT_FOREVER);

if (eventsRadio & RADIO_EVENT_WAKEUP_RECEIVED)

{

System_printf("B2_masterRadio while WAKE UP RECIVED\n");

System_printf("1\n");

System_flush ();// serve per far stampare

flag_wake_recived =1;//// setto che ho ricevuto un wake up da un

nodo

notify_toTask_addNode(latestRxPacket1.header.sourceAddress);

Event_post(radioOperationEventHandle , RADIO_EVENT_SEND_COMMAND);

}

if(eventsRadio & RADIO_EVENT_SEND_COMMAND)

{

System_printf("B2_masterRadio evento SEND COMMAND ricevuto\n");

System_flush ();// serve per far stampare

147

A � Firmware Code

// cmdPacket.command = (uint8_t)commandToSend; //!

PIN_getInputValue(Board_BUTTON0); //// USARE NUMERI

DISPARI

if(ppp ==0){

cmdPacket.command = 0x63;

ppp =1;

}else if(ppp ==1){

cmdPacket.command = 0x62;

ppp =0;

}

sendCommandPacket(cmdPacket , MASTERRADIO_MAX_RETRIES ,

MASTERRADIO_ACK_TIMEOUT_TIME_MS);

System_printf("B2_masterRadio dopo sendCommand\n");

System_flush ();// serve per far stampare

}

if (eventsRadio & RADIO_EVENT_DATA_PACKET_RECEIVED)

{

sendAck(latestRxPacket1.header.sourceAddress);

// sendAck (0x01);

notifyPacketReceived (& latestRxPacket1);

System_printf("B2_masterRadio DATI RICEVUTI DAL NODO 0x%02x \n",

latestRxPacket1.rxCallBack_datiNodo.adcValue);

System_flush ();

Event_post(radioOperationEventHandle , RADIO_EVENT_RETURN_RX);

}

if (eventsRadio & RADIO_EVENT_COMMAND_ACK_RECEIVED)

{System_printf("4\n");

System_printf("B2_masterRadio ACK RECIVED\n");

System_flush ();// serve per far stampare

returnRadioOperationStatus(MasterRadioStatus_Success);

rerutnInRX_noTimeOut ();

}

//If we get an ACK timeout

if (eventsRadio & RADIO_EVENT_ACK_TIMEOUT)

{System_printf("5\n");

//If we haven 't resent it the maximum number of times yet ,

then resend packet

if (currentRadioOperation.retriesDone <

currentRadioOperation.maxNumberOfRetries)

{

resendPacket ();

}else

{System_printf("6\n");

System_printf("B2_masterRadio ACK TimeOut

raggiunto\n");

System_flush ();// serve per far stampare

//Else return send fail

Event_post(radioOperationEventHandle ,

RADIO_EVENT_SEND_FAIL);

}

}

//If send fail

if (eventsRadio & RADIO_EVENT_SEND_FAIL)

{System_printf("7\n");

System_printf("B2_masterRadio radio send fallita\n");

System_flush ();// serve per far stampare

returnRadioOperationStatus(MasterRadioStatus_Failed);

notify_node_notRespond(latestRxPacket1.header.

sourceAddress);

148

A � Firmware Code

Event_post(radioOperationEventHandle ,

RADIO_EVENT_RETURN_RX);

}

if (eventsRadio & RADIO_EVENT_RETURN_RX)

{System_printf("8\n");

rerutnInRX_noTimeOut ();

}

//se ho ricevuto un pacchetto non valido ritorno in ricezione

if (eventsRadio & RADIO_EVENT_INVALID_PACKET_RECEIVED)

{System_printf("9\n");

rerutnInRX_noTimeOut ();

}

System_printf("while\n");

}

}

void rerutnInRX_noTimeOut (){

EasyLink_setCtrl(EasyLink_Ctrl_AsyncRx_TimeOut , EasyLink_ms_To_RadioTime

(0));

/* Enter RX */

if (EasyLink_receiveAsync(rxDoneCallback , 0) != EasyLink_Status_Success)

{

System_abort("EasyLink_receiveAsync failed");

}

}

enum MasterRadioOperationStatus MasterRadioTask_sendCommandData(uint16_t data)

{

System_printf("B2_masterRadio enum chiamato da masterTask\n");

System_flush ();

enum MasterRadioOperationStatus status_enum ;

if(flag_wake_recived ==1)

{

/* Get radio access sempahore */

Semaphore_pend(radioAccessSemHandle , BIOS_WAIT_FOREVER);

/* Save data to send */

commandToSend = data;

System_printf("master radio dentro enum , comando :%d\n",

commandToSend);

System_flush ();

receiveBufferPointer

/* Raise RADIO_EVENT_SEND_COMMAND_DATA event */

Event_post(radioOperationEventHandle , RADIO_EVENT_SEND_COMMAND);

flag_wake_recived = 0;

/* Wait for result */

Semaphore_pend(radioResultSemHandle , BIOS_WAIT_FOREVER);

/* Get result */

status_enum = currentRadioOperation.result;

/* Return radio access semaphore */

Semaphore_post(radioAccessSemHandle);

System_printf("B2_masterRadio enum DOPO semaforo send command

avvenuto\n");

System_flush ();

149

A � Firmware Code

}

return status_enum;

}

static void returnRadioOperationStatus(enum MasterRadioOperationStatus result)

{

/* Save result */

currentRadioOperation.result = result;

/* Post result semaphore */

Semaphore_post(radioResultSemHandle);

}

static void sendCommandPacket(struct CommandPacket cmdPacket , uint8_t

maxNumberOfRetries , uint32_t ackTimeoutMs)

{

//Set destination address in EasyLink API

currentRadioOperation.easyLinkTxPacket.dstAddr [0] = latestRxPacket1.header.

sourceAddress;

// currentRadioOperation.easyLinkTxPacket.dstAddr [0] = 0x01;

// Copy ADC packet to payload

//* Note that the EasyLink API will implicitly both add the length byte and

the destination address byte.

memcpy(currentRadioOperation.easyLinkTxPacket.payload , ((uint8_t *)&cmdPacket),

sizeof(struct CommandPacket));

currentRadioOperation.easyLinkTxPacket.len = sizeof(struct CommandPacket);

//Setup retries

currentRadioOperation.maxNumberOfRetries = maxNumberOfRetries;

currentRadioOperation.ackTimeoutMs = ackTimeoutMs;

currentRadioOperation.retriesDone = 0;

EasyLink_setCtrl(EasyLink_Ctrl_AsyncRx_TimeOut , EasyLink_ms_To_RadioTime(

ackTimeoutMs));

//Send packet

if (EasyLink_transmit (& currentRadioOperation.easyLinkTxPacket) !=

EasyLink_Status_Success)

{

System_abort("EasyLink_transmit failed 1");

}

//Enter RX

if (EasyLink_receiveAsync(rxDoneCallback , 0) != EasyLink_Status_Success)

{

System_abort("EasyLink_receiveAsync failed");

}

}

static void sendAck(uint8_t MasterAddress) {

/* Set destination Adress , but use EasyLink layers destination address

capability */

txPacket.dstAddr [0] = MasterAddress;

ackPacket.header.sourceAddress = RADIO_MASTER_ADDRESS;

ackPacket.header.packetType = RADIO_PACKET_TYPE_DATO_ACK_RECEIVED;

/* Copy ACK packet to payload , skipping the destination adress byte.

150

A � Firmware Code

* Note that the EasyLink API will implicitly both add the length byte and the

destination address byte. */

memcpy(txPacket.payload , &ackPacket.header , sizeof(ackPacket));

txPacket.len = sizeof(ackPacket);

/* Send packet */

if (EasyLink_transmit (& txPacket) != EasyLink_Status_Success)

{

System_abort("EasyLink_transmit failed");

}

System_printf("B2_masterRadio send ack\n");

System_flush ();// serve per far stampare

}

static void resendPacket ()

{

System_printf("B2_masterRadio dentro resendPacket\n");

System_flush ();// serve per far stampare

/* Send packet */

if (EasyLink_transmit (& currentRadioOperation.easyLinkTxPacket) !=

EasyLink_Status_Success)

{

System_abort("EasyLink_transmit failed 2");

}

/* Enter RX and wait for ACK with timeout */

if (EasyLink_receiveAsync(rxDoneCallback , 0) != EasyLink_Status_Success)

{

System_abort("EasyLink_receiveAsync failed");

}

/* Increase retries by one */

currentRadioOperation.retriesDone ++;

}

static void notifyPacketReceived(union MasterPacket* latestRxPacket)

{

if (packetReceivedCallback)

{

packetReceivedCallback(latestRxPacket , latestRssi);

}

}

static void rxDoneCallback(EasyLink_RxPacket * rxPacket , EasyLink_Status status)

{

union MasterPacket* tmpRxPacketByNodo; // modificato tipo di struttura

/* If we received a packet successfully */

if (status == EasyLink_Status_Success)

{

System_printf("B2_masterRadio dentro rxDoneCallback easy link

success\n");

System_flush ();// serve per far stampare

/* Save the latest RSSI , which is later sent to the receive

callback */

latestRssi = (int8_t)rxPacket ->rssi;

/* Check that this is a valid packet */

tmpRxPacketByNodo = (union MasterPacket *)(rxPacket ->payload);

/* If this is a known packet */ //fare i vari casi (ogni type un

controllo)

151

A � Firmware Code

if (tmpRxPacketByNodo ->header.packetType ==

RADIO_PACKET_TYPE_WAKEUP_PACKET)

{

System_printf("B2_masterRadio rxDoneCallback WAKE UP

RECIVED\n");

System_flush ();// serve per far stampare

/* Save packet */

memcpy ((void*)&latestRxPacket1 , &rxPacket ->payload , sizeof

(struct WakeUpPacket));

/* Signal packet received */

Event_post(radioOperationEventHandle ,

RADIO_EVENT_WAKEUP_RECEIVED);

}

else if (tmpRxPacketByNodo ->header.packetType ==

RADIO_PACKET_TYPE_DATA_PACKET)

{

memcpy ((void*)&latestRxPacket1 , &rxPacket ->payload , sizeof

(struct NodeDataPacket));

Event_post(radioOperationEventHandle ,

RADIO_EVENT_DATA_PACKET_RECEIVED);

}

else if (tmpRxPacketByNodo ->header.packetType ==

RADIO_PACKET_TYPE_COMMAND_ACK_RECEIVED)

{

memcpy ((void*)&latestRxPacket1 , &rxPacket ->payload , sizeof

(struct AckPacket));

System_printf("B2_masterRadio rxDoneCallback ACK RECIVED\n

");

System_flush ();// serve per far stampare

// Signal ACK packet received

Event_post(radioOperationEventHandle ,

RADIO_EVENT_COMMAND_ACK_RECEIVED);

}

}else if(status == EasyLink_Status_Rx_Timeout)

{

System_printf("B2_masterRadio rxDoneCallback Time out\n");

System_flush ();// serve per far stampare

//Post a RADIO_EVENT_ACK_TIMEOUT event

Event_post(radioOperationEventHandle , RADIO_EVENT_ACK_TIMEOUT);

}

else

{

System_printf("B2_masterRadio rxDoneCallback invalid packet

recived\n");

System_flush ();// serve per far stampare

/* Signal invalid packet received */

Event_post(radioOperationEventHandle ,

RADIO_EVENT_INVALID_PACKET_RECEIVED);

}

}

A.6 B2_master_RADIO_v2.0.h

#ifndef TASKS_NODERADIOTASKTASK_H_

#define TASKS_NODERADIOTASKTASK_H_

#include "RadioProtocol_Master_v2 .0.h"

#include "stdint.h"

152

A � Firmware Code

#define NODE_ACTIVITY_LED Board_LED0

enum MasterRadioOperationStatus {

MasterRadioStatus_Success ,

MasterRadioStatus_Failed ,

MasterRadioStatus_FailedNotConnected ,

};

union MasterPacket {

struct PacketHeader header;

struct WakeUpPacket rxCallBack_wakeup;

struct AckPacket rxCallBack_Ack;

struct NodeDataPacket rxCallBack_datiNodo;

};

typedef void (* MasterRadio_PacketReceivedCallback)(union MasterPacket* packet ,

int8_t rssi);

void MasterRadioTask_registerPacketReceivedCallback(

MasterRadio_PacketReceivedCallback callback);

void notify_node_notRespond(int8_t address);

void notify_toTask_addNode(int8_t address);

/* Initializes the NodeRadioTask and creates all TI-RTOS objects */

void MasterRadioTask_init(void);

/* Sends an ADC value to the concentrator */

enum MasterRadioOperationStatus MasterRadioTask_sendCommandData(uint16_t data);

#endif /* TASKS_NODERADIOTASKTASK_H_ */

A.7 B2_master_TASK_v2.0.c

/***** Includes *****/

#include <B2_master_RADIO_v2 .0.h>

#include <B2_master_TASK_v2 .0.h>

#include <xdc/std.h>

#include <xdc/runtime/System.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Task.h>

#include <ti/sysbios/knl/Semaphore.h>

#include <ti/sysbios/knl/Event.h>

#include <ti/sysbios/knl/Clock.h>

#include <ti/sysbios/knl/Clock.h>

#include <ti/drivers/PIN.h>

#include <ti/drivers/SPI.h>

/* Board Header files */

#include "Board.h"

#include "SceAdc.h"

/***** Defines *****/

#define MASTER_TASK_STACK_SIZE 1024

#define MASTER_TASK_PRIORITY 3

#define MASTER_EVENT_ALL 0xFFFFFFFF

#define MASTER_EVENT_NEW_ADC_VALUE (uint32_t)(1 << 0) //FORSE DA CANCELLARE

#define MASTER_EVENT_NEW_COMMAND_VALUE (uint32_t)(1 << 1)

153

A � Firmware Code

#define MASTER_EVENT_NEW_DATA_VALUE (uint32_t)(1 << 2)

/* A change mask of 0xFF0 means that changes in the lower 4 bits does not trigger

a wakeup. */

#define MASTER_ADCTASK_CHANGE_MASK 0xFF0

/* Minimum slow Report interval is 50s (in units of samplingTime)*/

#define NODE_ADCTASK_REPORTINTERVAL_SLOW 50

/* Minimum fast Report interval is 1s (in units of samplingTime) for 30s*/

#define NODE_ADCTASK_REPORTINTERVAL_FAST 1

#define NODE_ADCTASK_REPORTINTERVAL_FAST_DURIATION_MS 30000

#define MAX_NODES 10

/***** Variable declarations *****/

static Task_Params masterTaskParams;

Task_Struct masterTask; /* not static so you can see in ROV */

static uint8_t masterTaskStack[MASTER_TASK_STACK_SIZE];

Event_Struct masterTaskEvent; /* not static so you can see in ROV */

static Event_Handle masterEventHandle;

// static uint16_t latestAdcValue; //da cancellare

static uint16_t latestCommandValue;

static struct NodeDataPacket dato_ricevuto_daNodo;

/* Clock for the fast report timeout */

// Clock_Struct fastReportTimeoutClock ;//DA ELIMINARE // not static so you can

see in ROV

// static Clock_Handle fastReportTimeoutClockHandle ;//DA ELIMINARE

static void addNewNode(struct NodeDataPacket* node);

static void updateNode(struct NodeDataPacket* node);

static uint8_t isKnownNodeAddress(uint8_t address);

/* Pin driver handle */

static PIN_Handle buttonPinHandle;

static PIN_Handle ledPinHandle;

static PIN_State buttonPinState;

static PIN_State ledPinState;

//SPI ////////////////////// SPI ////////////////////// SPI

#define SPI_MAX_BYTE_TRANSACTION 4

static SPI_Handle spi_master_handle;

static SPI_Params spi_master_param;

static SPI_Transaction spiTransaction;

char transmitBufferPointer[SPI_MAX_BYTE_TRANSACTION];

char receiveBufferPointer[SPI_MAX_BYTE_TRANSACTION];

char init_mex_SPI[SPI_MAX_BYTE_TRANSACTION]="abcd";

bool ret;

//SPI ////////////////////// SPI ////////////////////// SPI

struct active_node_known{

uint8_t address;

uint8_t latest_RSSI;

bool state;

///altri parametri da memorizzare del nodo

};

static struct active_node_known nodes [10];

int8_t rssi_recived;

PIN_Config pinTable [] = {

NODE_ACTIVITY_LED | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL |

PIN_DRVSTR_MAX ,

Board_LED1 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL |

PIN_DRVSTR_MAX ,

Board_LED4 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL |

PIN_DRVSTR_MAX ,

154

A � Firmware Code

Board_LED3 | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL |

PIN_DRVSTR_MAX ,

PIN_TERMINATE

};

PIN_Config buttonPinTable [] = {

Board_BUTTON0 | PIN_INPUT_EN | PIN_PULLUP | PIN_IRQ_NEGEDGE ,

PIN_TERMINATE

};

/***** Prototypes *****/

static void masterTaskFunction(UArg arg0 , UArg arg1);

//void fastReportTimeoutCallback(UArg arg0);

//void adcCallback(uint16_t adcValue);

//void buttonCallback(PIN_Handle handle , PIN_Id pinId);

static void packetReceivedCallback(union MasterPacket* packet , int8_t rssi);

static void spiInizializzazioni_callback(void);

static void spiInizializzazioni_blocking(int8_t address);

static void spiCallback(SPI_Handle handle , SPI_Transaction *Trans);

SPI_Config spi_configuration;

SPI_FxnTable spi_table;

/***** Function definitions *****/

void MasterTask_init(void)

{

/* Create event used internally for state changes */

Event_Params eventParam;

Event_Params_init (& eventParam);

Event_construct (& masterTaskEvent , &eventParam);

masterEventHandle = Event_handle (& masterTaskEvent);

/*

// Create clock object which is used for fast report time -out

Clock_Params clkParams;

clkParams.period = 0;

clkParams.startFlag = FALSE;

Clock_construct (& fastReportTimeoutClock , fastReportTimeoutCallback , 1, &

clkParams);

fastReportTimeoutClockHandle = Clock_handle (& fastReportTimeoutClock);

*/

/* Create the node task */

Task_Params_init (& masterTaskParams);

masterTaskParams.stackSize = MASTER_TASK_STACK_SIZE;

masterTaskParams.priority = MASTER_TASK_PRIORITY;

masterTaskParams.stack = &masterTaskStack;

Task_construct (&masterTask , masterTaskFunction , &masterTaskParams , NULL);

System_printf("B2_masterTask inizializzato\n");

System_flush ();

}

static void masterTaskFunction(UArg arg0 , UArg arg1)

{

/* Open LED pins */

ledPinHandle = PIN_open (& ledPinState , pinTable);

if (! ledPinHandle)

{

System_abort("Error initializing board 3.3V domain pins\n");

}

PIN_setOutputValue(ledPinHandle , Board_LED4 ,1);

155

A � Firmware Code

int j;

for (j = 0; j < MAX_NODES; j++)

{

nodes[j]. address = 0x00;//// azzero tutti i nodi memorizzati , avviene solo

con un reset o un riavvio

}

///SPI /////////////////////////////////// SPI

spiInizializzazioni_callback ();

///SPI ///////////////////// SPI //////////// SPI

System_printf("B2_masterTask masterTaskFunction\n");

System_flush ();

/*DA ELIMINARE

// setup timeout for fast report timeout

Clock_setTimeout(fastReportTimeoutClockHandle ,

NODE_ADCTASK_REPORTINTERVAL_FAST_DURIATION_MS * 1000 / Clock_tickPeriod);

// start fast report and timeout

Clock_start(fastReportTimeoutClockHandle);

*/

buttonPinHandle = PIN_open (& buttonPinState , buttonPinTable);

if (! buttonPinHandle)

{

System_abort("Error initializing button pins\n");

}

MasterRadioTask_registerPacketReceivedCallback(packetReceivedCallback);///

connect the pointers to receive a command from the radio task

while (1) {

/* Wait for event */

uint32_t eventsTASK = Event_pend(masterEventHandle , 0, MASTER_EVENT_ALL ,

BIOS_WAIT_FOREVER);

/* If new command , send this command */

if (eventsTASK & MASTER_EVENT_NEW_COMMAND_VALUE) {

/* Toggle activity LED */

PIN_setOutputValue(ledPinHandle , NODE_ACTIVITY_LED ,! PIN_getOutputValue

(NODE_ACTIVITY_LED));

System_printf("B2_masterTask while Evento NEW_ADC_VALUE\n");

System_flush ();//make print

/* Send command value to nodo */ //give the command to the radio task

MasterRadioTask_sendCommandData(latestCommandValue);

}

if(eventsTASK & MASTER_EVENT_NEW_DATA_VALUE){

if(isKnownNodeAddress(dato_ricevuto_daNodo.header.

sourceAddress)){

updateNode (& dato_ricevuto_daNodo);

}else{

addNewNode (& dato_ricevuto_daNodo);

}

System_printf("B2_masterTask TASK , RICEVUTI DAL NODO 0x%02x \n",

dato_ricevuto_daNodo.adcValue);

System_flush ();

}

156

A � Firmware Code

}

}

static void packetReceivedCallback(union MasterPacket* packet , int8_t rssi)

{

rssi_recived=rssi;

/* If we recived an ADC sensor packet , for backward compatibility */

if (packet ->header.packetType == RADIO_PACKET_TYPE_DATA_PACKET)

{

dato_ricevuto_daNodo.adcValue = packet ->rxCallBack_datiNodo.adcValue ;

dato_ricevuto_daNodo.header.sourceAddress = packet ->rxCallBack_datiNodo.

header.sourceAddress;

Event_post(masterEventHandle , MASTER_EVENT_NEW_DATA_VALUE);

}

}

void notify_toTask_addNode(int8_t address){

// SPI_close(spi_master_handle);

System_printf("B2_masterTask notify_toTask_addNode: 0x%02x \n",address);

System_flush ();

// spiInizializzazioni_blocking(address);

SPI_close(spi_master_handle);

spiInizializzazioni_callback ();

return;

}

void notify_node_notRespond(int8_t address){

uint8_t i;

for (i = 0; i < MAX_NODES; i++)

{

if (nodes[i]. address == address)

{

nodes[i]. state = 0;//1 tutto ok, 0 non risponde

System_printf("B2_masterTask node not responding add:0x%02

x, status :0x%02x \n", nodes[i].address ,nodes[i].state)

;

System_flush ();

}

}

return;

}

static uint8_t isKnownNodeAddress(uint8_t address) {

uint8_t found = 0;

uint8_t i;

for (i = 0; i < MAX_NODES; i++)

{

System_printf("B2_masterTask nodi conosciuti: 0x%02x , last rssi 0x%02x,

status :0x%02x \n", nodes[i].address ,nodes[i]. latest_RSSI ,nodes[i].

state);

System_flush ();

if (nodes[i]. address == address)

{

found = 1;

break;

}

157

A � Firmware Code

}

return found;

}

static void updateNode(struct NodeDataPacket* node) {

uint8_t i;

for (i = 0; i < MAX_NODES; i++) {

if (nodes[i]. address == node ->header.sourceAddress)

{

nodes[i]. latest_RSSI = rssi_recived;

nodes[i]. state = 1;//1 tutto ok, 0 non risponde

break;

}

}

}

static void addNewNode(struct NodeDataPacket* node) {

uint8_t i;

System_printf("B2_masterTask add new node to vector");

System_flush ();

for (i = 0; i < MAX_NODES; i++)

{

if (nodes[i]. address == 0x00)

{

nodes[i]. address=node ->header.sourceAddress;

nodes[i]. latest_RSSI = rssi_recived;

nodes[i]. state = 1;//1 tutto ok, 0 non risponde

break;

}

}

}

//SPI //////////////////////// SPI ///////////////////////// SPI

void spiInizializzazioni_blocking(int8_t address){

char buf_inviare;

transmitBufferPointer [0]=(char)address;

transmitBufferPointer [1]='s';

transmitBufferPointer [2]='t';

transmitBufferPointer [3]='u';

SPI_Params_init (& spi_master_param);

spi_master_param.frameFormat = SPI_POL1_PHA1;

spi_master_param.mode = SPI_SLAVE;

spi_master_param.transferMode = SPI_MODE_BLOCKING;

// spi_master_param.transferTimeout = 0x0010;

SPI_init ();

spi_master_handle=SPI_open(Board_SPI0 , &spi_master_param);

if (! spi_master_handle){

System_printf("SPI did not open");

}

System_printf("B2_masterTask spiInizializzazioni_blocking: 0x%02x \n",

address);

System_flush ();

spiTransaction.count = SPI_MAX_BYTE_TRANSACTION;

spiTransaction.txBuf = transmitBufferPointer;

spiTransaction.rxBuf = NULL;

SPI_transfer(spi_master_handle , &spiTransaction);

}

158

A � Firmware Code

static void spiInizializzazioni_callback (){

/* Defaults values are:

transferMode = SPI_MODE_BLOCKING

transferTimeout = SPI_WAIT_FOREVER

transferCallbackFxn = NULL

mode = SPI_MASTER

bitRate = 1000000 (Hz)

dataSize = 8 (bits)

frameFormat = SPI_POL0_PHA0

*/

SPI_Params_init (& spi_master_param);

spi_master_param.frameFormat = SPI_POL1_PHA1;

spi_master_param.mode = SPI_SLAVE;

spi_master_param.transferMode = SPI_MODE_CALLBACK;

spi_master_param.transferCallbackFxn = spiCallback;

SPI_init ();

spi_master_handle=SPI_open(Board_SPI0 , &spi_master_param);

if (! spi_master_handle){

System_printf("SPI did not open");

}

spiTransaction.count = SPI_MAX_BYTE_TRANSACTION;

spiTransaction.txBuf = NULL;

spiTransaction.rxBuf = receiveBufferPointer;

SPI_transfer(spi_master_handle , &spiTransaction);

}

static void spiCallback(SPI_Handle handle , SPI_Transaction *Trans){

ret=SPI_transfer(handle , Trans);

if (!ret) {

System_printf("Unsuccessful SPI transfer");

System_flush ();

receiveBufferPointer

}

latestCommandValue =receiveBufferPointer [0];

Event_post(masterEventHandle , MASTER_EVENT_NEW_COMMAND_VALUE);

System_printf("SPI Callback , received %s\n",spiTransaction.rxBuf);

System_flush ();

}

//SPI //////////////////////// SPI ///////////////////////// SPI

A.8 B2_master_TASK_v2.0.h

#ifndef TASKS_NODETASK_H_

#define TASKS_NODETASK_H_

/* Initializes the Node Task and creates all TI-RTOS objects */

void MasterTask_init(void);

#endif /* TASKS_NODETASK_H_ */

159

	List of Figures
	Introduction
	Preface
	Project background
	Overview and innovative contributions
	Thesis's structure

	Survey on background knowledge
	Internet of Things (IoT)
	Wireless Sensor Networks
	868 MHz wireless communication
	Main standards on the market
	IEEE 802.15.4g PHY
	Wireless M-Bus
	LoRa WAN
	ZigBEE
	Z-Wave

	Fundamental parameters to evaluate radio communication
	Main radio modulation techniques
	FSK modulation
	PSK modulation
	ASK modulation
	Spreading Spectrum Modulation

	ICs communication protocols
	SPI protocol
	I2C protocol
	UART
	JTAG standard

	SwiRem system overview
	Specifications of the system
	General description of the system

	Analysis of possible RF platforms
	WiMOD LoRa
	iM880A LoRa characteristics
	WiMOD LR Studio software and tools

	Murata LoRa
	TI SimpleLink CC1310
	TI CC1310 characteristics
	TI software and tools

	CC1310 vs LoRa and final choice

	CC1310 preparatory concepts
	Hardware features
	Software features

	Firmware design
	Firmware of the Master
	Firmware of the Node

	Hardware design
	Hardware design of the node
	Power supply
	CC1310
	Load monitoring
	The up level of the system

	Hardware design of the Master
	Power supply
	CC1310
	The up level of the system

	Bill of Materials (BOM)

	PCB realization
	PCB stack manager properties
	PCB Shape
	Footprint and library
	Placement and routing guideline
	Final PCB
	Node
	Master

	Gerbers, Eurocircuit and Costs

	Assembly and debug
	Assembly
	Debug

	Further improvements and system evolution
	 LoRa Alliance "The Things Network" services
	SwiRem LoRa Murata Version

	Testing
	Controlled environment
	Real environment
	Evaluation of LoRa Murata board

	Conclusions
	Bibliography
	Firmware Code
	B1_nodo_RADIO_v2.0.c
	B1_nodo_RADIO_v2.0.h
	B1_nodo_TASK_v2.0.c
	B1_nodo_TASK_v2.0.h
	B2_master_RADIO_v2.0.c
	B2_master_RADIO_v2.0.h
	B2_master_TASK_v2.0.c
	B2_master_TASK_v2.0.h

		Politecnico di Torino
	2018-09-14T14:22:43+0000
	Politecnico di Torino
	Daniele Trinchero
	S

