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Chapter 1

Introduction

1.1 Motivation

Our world today is characterized by great transformations and new dynamics are
a�ecting the context in which we live and work every day. The new society that
is being formed is characterized by new needs, which did not exist or were not
considered fundamental some time ago. The epicenter of this transformation lies in
connectivity that is becoming always more simpli�ed and easily accessible. Wireless
network services, in this sense, are intended to play a role of primary importance in
the immediate future.

As was clearly to be expected, the number of mobile devices has signi�cantly
increased in the last few years. This means that the traditional centralized, �xed
networks will no longer satisfy the growth in demand for making wireless connections
faster in an ever-increasing mobility. New concepts related to infrastructure-less net-
works, therefore, are attracting a lot of attention nowadays. The reason is that they
allow to get a more scalable and �exible wireless networking, e�cient power usage
and robust connections when �xed network infrastructures are not available. For
instance, Device-to-Device (D2D) Communication [1] networks aim to implement
a self-organizing and self-con�guring multi-hop wireless network where the nodes
composing it are free to move randomly. Since these nodes are guided by forward-
looking goals, they are able to converge on-the-�y to arbitrary form graphs that
allow them to provide wireless services without requiring a centralized control en-
tity. Due to the dynamic environment, the vulnerability of the wireless medium,
the amount of control tra�c and power constraints, these networks are becoming
increasingly complex system to analyze and design.

An interesting problem arises from the fact that the participants do not neces-
sarily have an incentive to cooperate with each other. Because of that, the sel�sh
behavior of each node in the network has made it very di�cult to �nd a solution with
traditional mathematical analysis. In order to deal with such a problem, the idea of
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1 � Introduction

modeling the topology from a game theoretical perspective has become particularly
attractive. This is because game theory provides the tools to model individual, in-
dependent decision-makers, whose actions potentially a�ect all other participants.
Thus it resulted to be remarkably e�ective in selecting the best node of the network
to connect to and thereby achieving excellent performance.

The dominating framework behind such model is Expected Utility Theory (EUT)
[3], where decision-makers are strictly guided by accepted mathematical outcomes
coming from utility notions. Here a function is de�ned, which assigns a number to
every possible action of the player so that higher utilities represent more desirable
outcomes. This mechanism led us in having always rational choices, i.e. optimal
regarding the analytical and mathematical aspects, but totally unin�uenced by real-
life perceptions.

In the analysis of decision making under uncertainty, the foregoing model worked
properly in case a decision is taken by "Passive Users". That means the choice is
made only by the engineered system design, while human beings as end-users do not
interfere with such design. Since the end-user's ability to control devices is going
to steadily increase over time, as well as freedom in the latter's con�guration, they
will start to play an important role in decision making. In this case we are talking
about "Active Users", that means users could make decisions that in�uence the
underlying design of various algorithms and impact the performance of the overall
system [4]. Motivated by this growing phenomenon, it was relevant to consider the
scenario where players follow the principles of Prospect Theory (PT) [5] to explain
that real-life decisions often deviate from the behavior expected under EUT. To
understand the implications of these issues and how they can be related to real
life perception, an utility function has been appropriately de�ned to obtain e�cient
topology control for a non-cooperative game. This has been done in conjunction
with the impact analysis of mobility and human interference on the network design.

1.2 Purposes of the project

This project focuses on developing a game theoretical framework aimed at minimiz-
ing the transmit power in a multi-hop wireless broadcast network under dynamic
network scenario. A common message has to be sent from a �xed source to all the
nodes of the network in a multi-hop manner. A typical application can be found in
the context of vehicular content caching and distribution, e.g. a video with a speci�c
quality and the same length, in a video streaming scenario, or an emergency infor-
mation, such as tra�c collision warning, which can be disseminated to drivers by
multi-hop wireless communications. In applications of D2D communications, mes-
sage dissemination is an essential function for information distribution and sharing
among mobile devices, which are mostly driven by human. As a consequence, device
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1 � Introduction

mobility (i.e., human mobility) introduces the major challenges for message dissemi-
nation in D2D communication networks, including rapid network topology changes,
frequent link and path breaks, and intermittent network connectivity [2].

Firstly, we wanted to address two main issues that arise in the considered network
scenario. One concerns the fact that nodes can join and leave the system at any
time, which means that the connection conditions can continuously change over
time. This generates uncertainty about the complete data reception from dynamic
source of information. For this purpose, a probability has been introduced for a
node to remain in the network that depends on the mobility of the environment,
which allowed to evaluate when it is convenient to choose reception from a dynamic
or static node. The second is that in a multi-hop network an incentive is very
important for intermediate nodes, because if they have to relay a large amount of
information, a pricing mechanism may be required for forwarding and cooperation.
A cost has been so designed, which represents the core of our research, through
appropriate cost sharing function so that the receiving nodes pay for the service
provided to them.

Finally, an important observation to do is that many related works consider all
nodes to be empty (did not download any data) when the system in analyzed. On
the contrary, in reality, some nodes could start receiving and at the same time other
devices could join the network. One of the goal is thus to �nd an energy e�cient
way of disseminating the information for a network in which one node arrives when
there is an already going on transmission. In our work we will consider those crucial
points and we will see how an incentive mechanism works if a decision is made under
uncertainty. To model the preference with which a node decides the service provider
from which to receive the message, two models have been chosen: EUT and PT.
Based on these we will see how the network should be formed when the information
is transferred within a limited contact duration.

1.3 Thesis organization

The thesis begins with a brief overview of game theory and methods for decision
making under uncertainty in Chapter 2. A literature review of game theoretical
models for data dissemination in wireless D2D networks is presented in Chapter 3.
In Chapter 4 we focus on appropriately model the user's preference relationships,
which is one of the most challenging point and also the core aspect for the design of
our algorithm. Initially, it is developed by considering the simplest case where only
one decision-maker is added to the system. Then it is extended in Chapter 5 to two
players (action of an agent in�uences both participants) and a pricing mechanism is
presented for minimizing the total energy consumption in the network. In Chapter
6, several simulations of our algorithm are performed so that explained. Finally,
Chapter 7 concludes this dissertation and discusses the future work.

3



Chapter 2

Preliminaries

This chapter aims to provide readers with the necessary tools they need to under-
stand and participate in this work. Before talking about game theory, it is worth
to introduce the theories of decision making under uncertainty. In fact, for many
aspects, game theory is nothing more than a decision theory under interaction con-
ditions. Once it becomes clear what an utility is, it will be possible to represent
mathematically an agent's preference and thus be prepared to deal formally with
game theory itself.

2.1 Decision Making under uncertainty

The evolution of decision theory under uncertainty can be fundamentally divided
into two main parts: Expected Utility Theory (EUT) formulated by von Neumann
and Morgenstern (1944) [6], and Prospect Theory (PT) [5], proposed by Kahnemann
and Tversky (1979). While the �rst is a normative theory intended to provide an
ideal behavior model of choice under risk, the second instead aimed to provide a
descriptive and explanatory scheme of decision-making processes in people. The
Expected Utility Theory is therefore bound to some principles that are those of
rational behavior and axioms. Over time, we wanted to understand how this theory
contradicts the natural behavior of humans. Regarding this matter, the expected
utility has been criticized and subject to a few paradoxes [?]. The Prospect Theory
tried to give an alternative to the interpretation of this phenomenon. It provides
a new decision-making metric by introducing a value function and a probability
weighting function associated with each outcome. Thus, by outlining the Prospect
Theory, it is possible to explain how often decisions of real life deviate from the
expected behavior of the EUT. This presentation work has been done by using the
original texts of the theories, accompanied by various scienti�c texts and articles on
the subject.
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2.1.1 Expected Utility Theory

To explain the choices made by individuals under risk conditions, economists used
as a main framework the expected utility model of von Neumann and Morgenstern.
This theory, accepted and applied as the economic pattern for humans behavior,
considers men as a rational and predictable beings, studying then their preferences.
The expected utility theory is a deductive process based on some axioms that de�ne
the concept of rationality and its requirements. The choices and preferences of the
subjects are then tied to this concept.

When an individual has to choose among several alternatives, without knowing
with certainty which of them will come true, according to the theory he chooses
the one associated with a higher utility. To do this, he has to know the probability
distribution of the various alternatives. In other words it can be said that the
expected utility theory is a criterion that allows the individual to select the choice
in a state of uncertainty, under stochastic conditions.

With the term �utility� we represent the actual user's preference, which corre-
spond to the level of �satisfaction� that the subject obtains by achieving a speci�c
goal. In general, such a preference is represented by a utility function. It is a
function that associates with each possible choice a corresponding utility measure.
Speci�cally, for representing the user's preference, this function matches a numeric
value with every possible outcome. A subject that aims to maximize its utility, will
assign higher utilities to more desirable outcomes.

Axioms were de�ned in order to model the rational behavior of agents in making
choices. These are intended to further specify the preferences of individuals in
order to obtain su�ciently general and analytically manageable utility functions.
However, they will not be covered in this chapter and the reader is referred to the
original text in case he is particularly interested. It is thus important to know that
the fundamental idea behind this theory, in respect of axioms, is that the individuals
act rationally. This means that the decision-maker chooses what is most useful for
himself whenever a decision is taken.

To sum it up we can say that, if axioms are veri�ed, it is possible to construct
an utility function such that if choice X is preferred to choice Y, then the utility
function of X will be greater than the one of Y and in the end write that :

U(X) ≥ U(Y ).

Once the utility function is de�ned, it will be possible to compute the Expected
Utility (EU) of the alternative by summing the utility of each outcome weighted
with their probability.

The expected utility function of an alternative A is so de�ned as:

EU(A) =
N∑
i=1

pi U(oi) (2.1)
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where oi ∈ O is the value of each outcome, measured by a real number representing
the user's bene�t, being O the �nite set of possible outcomes composed by a �nite
positive number N ∈ Z of elements. The realization probability and the utility for
each outcome oi are represented by pi and U(oi) respectively.

At this point it is good to introduce a simple example, in our case related to the
telecommunications �eld, in order make the concepts outlined above clearer.

Example 2.1. Suppose that a customer has to make a choice between two Internet
providers. He is so in front to two alternatives A1 and A2: the �rst one is a service
that ensure a data-rate of 50 Mb/s with the risk that for 3 month in a year it may
slow down to 40 Mb/s, while the second is a service that ensure a speed of 100Mb/s
with the risk that for 6 months it could have problems and get a data-rate of 10
Mb/s. The probabilities regarding A1 are therefore pA1 = 75% to go at higher
speed UA1(oH) and a complementary probability of (1− pA1) = 25% to get a lower
bit-rate UA1(oL). In the same way for A2 we have pA2 = 50% for UA2(oH) and
(1 − pA2) = 50% for UA2(oL). Computing now the two Expected Utility for both
the alternatives with the formula (2.1), it will be possible to �gure out which one is
preferable to the other:

EU(A1) = pA1UA1(oH) + (1− pA1)UA1(oL) =

= 0.75 · 50 + 0.25 · 40 =

= 47.5

EU(A2) = pA2UA2(oH) + (1− pA2)UA2(oL) =

= 0.50 · 100 + 0.50 · 10 =

= 55

As can be seen, the second alternative A2 is preferable to the �rst A1 even if it
has a greater risk in having low performance during one year. This is due to the fact
that, from a mathematical point of view, A2 provides on average an higher rate.

It is interesting to notice that in the above case the expected utility criterion
coincides with that of the expected value

EU [U(X)] = E(X)

where X is a Random Variable with a �nite number of outcomes x1, x2, . . . , xn
occurring with probabilities p1, p2, . . . , pn respectively. This phenomenon depends
on how the utility function is designed. As from the theory, the utility has to be a
strictly increasing function and so it can be concave, convex, or linear. Depending
on the shape of the utility function, three main individual attitudes towards risk
can be outlined.

6
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o

U(o)

Expected Utility

Expected Value

Expected Utility

Expected Value

o oEU EV

U(o)

o

Expected Utility

Expected Value

U (o)
EU

U (o)
EV

(a) (b) (c)

Figure 2.1: (a): Individual attitude as Risk Neutral. (b): Individual attitude as
Risk Averse. (c): Individual attitude as Risk Seeking.

An individual is said to be:

� risk neutral when he is indi�erent between the alternative of certainty and
that of uncertainty. This means that for the subject is equivalent to obtaining
a gain represented by the outcome o either through the Expected Utility or
Expected Value. The level of satisfaction U(o) would be exactly the same.
The expected utility under risk neutrality conditions can be so represented
on a Cartesian coordinate system as a straight line that coincides with the
expected value (�gure 2.1 (a)). This is the situation that has been discussed
during the previous example.

� risk averse when the Utility Function that has been designed is concave. In
this case the subject can get the same level of satisfaction that he would get
with the expected value, but by means of a lower pro�t. In fact, relating to
�gure 2.1 (b), it is possible to see that the same utility U(o) is obtained from
both the outcomes oEU and oEV , where the �rst is smaller and than the second.
The di�erence between oEV and oEU is the price that the individual is willing
to pay in order not to be exposed to risk.

An example of Utility Function for risk aversion could be the square root:
U(o) =

√
o. This is because it is going to give greater utility for smaller

values of o compared to the one which would be obtained for higher numbers.
Applying this utility to the Internet provider choice discussed above we see
that:

EU(A1) = pA1UA1(oH) + (1− pA1)UA1(oL) =

= 0.75 ·
√

50 + 0.25 ·
√

40 =

= 6.88
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EU(A2) = pA2UA2(oH) + (1− pA2)UA2(oL) =

= 0.50 ·
√

100 + 0.50 ·
√

10 =

= 6.58

In this case the customer is going to select the more steady alternative A1 even
if he is never going to reach the high speed of 100Mb/s. Thus the individual
has more satisfaction with a lower expected value and he tries to avoid A2 that
has greater risk of having low performance.

� risk seeking when he achieves greater pleasure in obtaining higher outcomes.
In this case the Utility Function is represented on the on a Cartesian coordinate
system by a convex curve. Figure 2.1 (c) illustrates that for the same outcome
o the subject gets a level of utility UEV with the expected value and UEU with
the expected utility. As it is easily to observe from the graph, for the same
gain o, the UEU utility level (more risky) is higher than the UEV utility level
(less risky).

Despite the various models to describe the inclination of individuals seen so
far, this theory is at the center of several criticisms. Disapproval is mainly due to
incoherence between the choices proposed by the model and those of individuals.
The behavior of the latter is often incompatible with the principles of rationality on
which the expected utility is based.

Example 2.2. In [4], the authors provided a variation of the Allais' paradox as in
Table 2.1, which shows how EUT contradicts people's real-life decisions.

Prospect A B

1
$2500 with probability 0.33

$2400 with certainty$2400 with probability 0.66
$0 with probability 0.01

2 $2500 with probability 0.33 $2400 with probability 0.34
$0 with probability 0.67 $0 with probability 0.66

Problem

Table 2.1: An example of EUT violation

There were two problems in the experiment and for each problem, the respon-
dents were asked to choose between two prospects (A or B). For example, in Ta-
ble 2.1, the respondent had two prospects in problem 1. If she chose A, she would
win 2500 dollars with probability 0.33 or 2400 dollars with probability 0.66 or noth-
ing with probability 0.01. If she chose B, she would win 2400 dollars for sure. It was
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found that a majority of the respondents (61 per cent) chose B for problem 1 and A
for problem 2. According to the de�nition of EUT (2.1), a respondent would evalu-
ate a prospect, e.g., problem 1A, as the expectation of all the prospect's outcomes,
e.g., 0.33 · U(2500) + 0.66 · U(2400) + 0.01 · U(0). Thus, a preference of 1B over 1A
implies 0.33 · U(2500) + 0.66 · U(2400) + 0.01 · U(0) < U(2400) that is equivalent
to 0.34 · U(2400) > 0.33 · U(2500). Meanwhile, the choice of 2A over 2B implies
0.34 · U(2400) < 0.33 · U(2500). Thus, these two results produce a paradox. This
has led to consider this theory inadequate to evaluate decisions made by humans.

One of the �rst opponents of this theory is the Nobel Prize winner Herbert Simon,
who argues that people act by bounded rationality and therefore their aim is not to
look for the optimum, but rather to look for satisfying solutions [7]. However, there
are cases where the use of Expected Utility Theory is appropriated: for example
in the presence of structured problems, with a large information base and when
decision makers are automated computers. Another factor is given by experience,
learning from mistakes the agent is driven to adopt a behavior that is increasingly
approaching to rationality.

In conclusion, the expected utility theory refers to an �ideal� subject to which
rationality is attributed by respecting some axioms. It does so without taking into
account characteristics and limitations of human rationality. Moreover, it does not
consider any emotional aspects that can in�uence the actual individual choices. It is
clear that this model is inappropriate and its behavior does not re�ect what actually
reality is. An alternative theory that tries to shape the non-rational aspects of people
is Prospect Theory, which will be discussed in the next section.

2.1.2 Prospect Theory

The Prospect Theory (PT) is a model for describing more accurately the decisions
of individuals under risk. It shows that preferences are not absolute, but that they
depend on the context in which they are taken. Prospect means looking ahead and,
in this theory, it is intended as �getting an idea in advance�. The term prospect was
chosen to emphasize the highly introspective nature with which agents imagine and
analyze alternatives. Prospect Theory is not in contradiction with Expected Utility
Theory, but aims to integrate it:

� EUT provides a theoretical model of how people should act to make optimal
decisions.

� PT provides a theoretical model related to real decision-making processes that
induce people to make suboptimal decisions.

In fact, the EUT becomes the benchmark against which to judge the goodness
of choices made by people. However, very often, it is impossible to overcome this

9
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benchmark. It is the classic problem of the models that try to achieve the optimum,
that is, they are usually unrealistic. To make it short, the EUT shows �how it should
be�, while the PT shows �how it is�.

The greatest contribution of PT is to consider two aspects of choice that are not
treated appropriately in conventional behavioral paradigms:

I) The �rst problem is that people do not evaluate risk decisions according to
the expected utility, but they over-weight the importance of unlikely events.

II) The second concerns the framing consideration, which means that equivalent
results are treated di�erently depending on the way they are described and on
situation in which the decision is made.

To take these two phenomena into account, Prospect Theory bases the choice
on two functions used to evaluate, subjectively, the outcomes and the probabilities
associated with them. The �rst one is the Probability Weighting Function and the
second is the Asymmetrical Value Function that are illustrated below.

Probability Weighting Function

It is revealed in PT that people use their subjective probabilities rather than objec-
tive probabilities to weigh the values of possible outcomes. The probability weighting
function w(p) models the fact that people tend to over-weigh low probability out-
comes and under-weigh moderate and high probability outcomes [9]. A common
choice of probability distortion function (e.g., [10], [11], [12]) is

w(p) = exp(−(−ln p)α), 0 < α ≤ 1 (2.2)

where p is the objective probability of realizations and w(p) corresponds to the
subjective probability. The probability distortion parameter α reveals how a person's
subjective evaluation distorts the objective probability, where a smaller α means a
larger distortion.

From the graph shown in �gure 2.2 it is possible to see that, at the highest point
of the 45° line representing the objective probability (α = 1), a certain gain becomes
an almost certain gain. In other words, the �gure shows that here the preference
for almost certain alternative is reduced if compared to normative behavior. Thus,
high probability is underestimated with respect to objective calculations.

At the lowest points instead, coherently with assumptions of prospect theory,
there is an aversion to uncertainty in the presence of events with a low probability
of occurrence. In fact, the graph shows that the probability of unlikely events is
overestimated (i.e. w(p) > p for small values of p). In other words, low probability
is over-weighted with respect to objective calculations.

10
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α= 0.4
= 0.6
= 0.8
= 1

α
α
α

0.8

w
(p
)

p

Figure 2.2: the probability weighting function w(p) in PT.

Asymmetrical Value Function

As we have seen, the probability weighting function shows how humans react to
probability, but the PT di�ers from the EUT also for the fact that, in theory for-
mulation, the concept of value replaces the notion of utility. It is not just a change
of terms, it is a real change of perspective in determining the judgment basis for
taking a decision. It can be said that the utility is traditionally considered in terms
of achievable net welfare. The value, instead, is de�ned in terms of gains and losses,
which means referring to positive or negative returns with respect to a certain posi-
tion assumed as a neutral reference point. An example will clarify the concept and
how it a�ects individual behaviors.

Example 2.3. Suppose that a company employee receives a salary of 100 ¿ per
month. At one point his o�ce manager decides to increase the employee's salary
of 100 ¿ per month. This means that his wage, after his boss made the choice,
has doubled to 200 ¿. Suppose now that there is a second employee who receives
10000 ¿ per month. Again its employer says that will increase its salary by 100 ¿

per month, that means the total wage will be of 10100 ¿.
The question at this point is: how happy is the �rst employee compared to the

second one? Obviously the �rst is much happier than the second although in both
cases the increase in salary is the same and equal to 100 ¿. It is seen, therefore, that
what people feel is di�erent. The value V of 100 ¿ for the person that has 100 ¿

as monthly income is much higher than that of the person who has 10000 ¿ entry
(�gure 2.3). This e�ect is called diminishing e�ect, that is, when you go further the
slope of the curve reduces.

As we have see, possible alternatives are therefore evaluated not with the usual
utility function, but with the value function that is not related to the �nal position
of the subject, but to the variations of his wealth. It is interesting to note that the
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Figure 2.3: Value function for gains

function for gains follows the same principle on which the risk averse EUT is based,
where the bene�ts are represented by a strictly increasing and concave curve.

What is even more remarkable and makes the PT particularly innovative is to
give less importance to earnings than losses. This explains the peculiar characteristic
of the value function in relation to the utility function: the asymmetry. Asymme-
try means that losing and earning a certain amount is subjectively perceived in a
di�erent way from what should be done objectively.

From a psychological point of view, a win and a loss of the same amount not
cancel each other out. The individual perceives the �nal net result as a loss. Losses
create about twice a pain than a pleasure aroused by the winnings. For this reason
people are reluctant to accept a bet like the following: 50% chance to win 1000
¿ and 50% chance of losing 1000 ¿. The psychological weight of the possible loss
exceeds that of the possible winnings and the bet is perceived as unfair.

With reference to the example 2.3, suppose that the employer, instead of raising
the salary, decreases it by 50 ¿ to both employees. It can therefore be assumed
that the loss of this money for the employee who earned 100 ¿ will have a greater
psychological impact than the case when the salary was doubled. For the second
worker, however, the impact will be of little relevance also in this case.

Having made these considerations, we expect that the concept of asymmetry will
lead to: a convex and relatively steeper function that refers to losses, while a concave
and less steep function that refers gains. A common choice of value function [9] is:

v(x) =

{
xβ if x ≥ 0,
−Λ(−x)γ if x < 0,

(2.3)

where Λ > 1, 0 < β < 1, and 0 < γ < 1. The parameter Λ is the loss penalty
parameter, where a larger Λ indicates that the virtual operator is more concerned of
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loss, and hence is more risk-averse. The parameters β and γ are the risk parameters,
where the value function of the gain part is more concave (i.e., the virtual operator
is more risk-averse) when β approaches zero, and the value function of the loss part
is more convex (i.e., the virtual operator is more risk-seeking) when γ approaches
zero. The impact of β and γ can be interpreted by the risk-seeking behavior in loss
and risk-averse behavior in gain. The plot of such a function is shown in �gure 2.4.
We note that EUT is a special case if we choose Λ = 1 and γ = β = 1.

Λ
Λ
Λ
Λ

x

v(
x)

reference 
point

Figure 2.4: Value function

The �rst thing that catches the eye into seeing the graph of the value function is
the presence of the reference point. The reference point is a benchmark to evaluate
the payo�, where x ≥ 0 means a gain, while x < 0 means a loss. The central
idea of this fundamental reformulation is that the utility function needs to explain
real behaviors and for this purpose its arguments should be changes in states (or
events) and not simply the states. Since change is important, then the value that
individuals attribute to states depends on the relationship between the state and the
reference point. The value, consequently, depends on the starting point from which
the user moves because of the change. Summing up, the value function proposed by
Kahneman and Tversky [10] has three fundamental features:

� Outcomes are assessed in relation to a reference point and are categorized as
gains or losses.

� In both quadrants (gains and losses), the function is characterized by a de-
crease in sensitivity to change.

� In the loss side the function is steeper than in the gain side.

To conclude, because of the aversion to loss and the tendency to codify outcomes
in gains and losses, people are more able to make comparative evaluations rather
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than absolute evaluations. Do not change the state in which the decision maker is,
also has the e�ect of making him feel less guilty (less sorry) if anything goes wrong.
The behavior illustred in PT is clearly not standard, since from an objective point
of view you should always strive to achieve the highest possible outcome. At the
same time it turns out to be a powerful tool able to model the user's satisfaction
when he is driven by a bounded rationality.

2.2 Introduction to Game Theory

This section describes the game theory in general, introducing the main notations,
terminologies and the mathematical model adopted in the study of con�ict situ-
ations. Only the topics considered to be particularly relevant for modeling this
project will be studied in deep. Since there has been a great deal of interest in
the application this theory to wireless communications, it has been considered to
be of fundamental importance formalizing and analyzing the methods on which the
analysis proposed by the game theory is based. Indeed, an D2D network is a self-
con�guring, multi-hop network in which there is no central authority and so Game
Theory is particularly suitable for studying the interaction of autonomous agents
(i.e. nodes of the network). This mathematical model describes the interaction
between players assuming that each of them can be in�uenced by the actions of all
other players.

Two important classes of games can be identi�ed:

� non-cooperative games, in which players cannot enter into agreements with
each other, regardless of their goals. Non-cooperative games are also called,
in a totally equivalent way, competitive games.

� cooperative games, in which players pursue a common goal, at least for the
duration of the game, tending to collaborate for improving their pro�t.

This project is focused on one of the two particular classes of non-cooperative
games, where no binding agreements between players are permitted: Strategic Form
Games. They represent, through one-turn games, situations in which all players
choose their own strategy at the same time. The second class, which is not covered
in this chapter, is about Extended Form Games, which add to the �rst class a
sequential structure of successive moves for several players. Basically, in strategic
games, strategies are selected once for all players at the beginning of the game, while
in an extended game they can be reconsidered and varied during the evolution of
the game.

The work of this thesis was done on dynamic D2D networks, where nodes can join
and leave the network at any time. About this, the second class, which speci�cally
relates to Repeated and Markov Games, was not considered for the following reason:
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in these networks, once a connection has been established, it is di�cult to meet again
the same player a second time. Therefore, it would be di�cult to reformulate the
strategy through a su�ciently expressive temporal language able to represent the
sequential structure of the game.

Next, the most important concept of Game Theory will be developed: the Nash's
equilibrium. It will be seen that this equilibrium will play a crucial role in the
analysis of a strategic game, in particular it will have major implications in searching
the optimal solution for each individual player. In particular, the Nash Equilibrium
for mixed strategies will be explained in more detail, with the help of some examples,
as it was the concept used to �nd a solution to the model developed in Chapter 5.

2.2.1 What is game theory?

Game theory is a bag of analytical tools designed to help us
understand the phenomena that we observe
when decision-makers interact.

- Martin Osborne and Ariel Rubinstein [13]

Game theory is born with the aim of providing a unitary mathematical envi-
ronment for the analysis of situations in which more rational individuals interact.
It proposes to found a decision theory in conditions of interaction, based on the
decision theory (simple), which was previously described. In addition, it is intended
to predict what might (and perhaps what should) happen when a game is played.

There are many examples of game situations. The term game is not only meant
in a playful sense, but with it are meant situations of real con�ict where the scheme
of game theory can be an important tool for interpreting the situation. It should
be mentioned, in this regard, that the Nobel prize of 1994 was awarded to three
game theory scholars: John F. Nash of Princeton University, John C. Harsanyi of
the University of California at Berkeley and Reinhard Selten of the University of
Bonn. At that time, concepts such as Nash equilibrium, prisoner's dilemma [18]
became time-honored topic in newspapers.

A game is made up of three basic components: a set of players, a set of actions,
and a set of preferences.

� The players are the decision makers in the modeled scenario.

� The actions are the alternatives available to each player. When each player
chooses an action, the resulting �action pro�le� determines the outcome of the
game.

� Finally, a preference relationship for each player represents that player's
evaluation of all possible outcomes.
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In many cases, the preference relationship is represented by a utility function,
which assigns a number to each possible outcome, with higher utilities representing
more desirable outcomes. Appropriately modeling these preference relationships is
one of the most challenging aspects of the application of game theory [14]. Thus, in a
game theory problem, each decision-maker has its own objective function, which will
be the usual bene�t, a utility if has to be maximized or a cost has to be minimized.

The most important feature is that the result for the single player depends not
only on the choice made by her (In general, to refer to generic players in a game
are adopted female pronouns as game-theoretic convention), but also on the choice
made by others. She alone will not determine the result that will get, but she along
with all the others will determine the result for herself.

The two fundamental hypotheses that have been made (and from this moment
on will always be considered valid) are that the game participants are rational and
intelligent. Rational means that an agent is able to sort his preferences on a set of
results. This is to say that such preferences must satisfy a set of axioms (or beliefs)
that are reasonable from his point of view. Intelligent, on the other hand, is to
indicate the player's logical ability to recognize the actions necessary to maximize
her own pro�t. Consequently, the solution to a game is a systematic description of
the results that may emerge in a given model, compatible with the hypotheses of
intelligence and rationality of the players [16].

As stated so far, a game theory problem presents a certain number of players and
each player has her decision-making variables available. Then, it can be assumed
that the theory takes place in a continuous domain, where each player has at their
disposal continuous decision-making variables. For the purposes of this thesis there
is no interest in this area, so we imagine that each player has a �nite number of
choices (discrete) and possible alternatives available. For instance, if we imagine
a problem related to playing the stock market, we can suppose that any decision-
maker (player that makes up our scheme) can buy or sell, only one of these two
possibilities. Moreover, let us assume also for the moment that the players partic-
ipating in the game are only two. This is because if they are more than two, the
problem complicates only in terms of calculations, but not conceptually.

Example 2.4. Consider two players, each of them having a �nite number of alter-
natives and hence the outcome of each of them depends on her choice together with
the choice of the other player. It means that results can be imagined, for both one
and the other, as matrices: a matrix for player A and another for player B. Matrices
because the end result is dependent on the choices of both participants and both
have to work with a limited, �nite number of possible choices. So the situation is
similar to what appears in a Table 2.2.

Player A has available a �nite number of possible alternatives a1, a2, . . . , an.
Player B also has in turn a �nite number of alternatives that are b1, b2, . . . , bm. At
this point, in correspondence to the fact that the row and column players have made
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a1
a2

an

b1 b2 bmA
B

UA( )a bji ,

UB( )a bji ,

Table 2.2: An example of payo� matrix

their choice, some results are obtained. The values that players get are called payo�,
both for player A and player B. So what we see in the Table 2.2, synthesized in a
single matrix, are actually two matrices. Red values refer to player A, blue values
instead refer to player B. Then we say that for every player there is a payo� matrix.
If the participants are two, there will be two pay o� matrices. However, we can
brie�y illustrate both matrices in a single table, so that for each box there are two
values. In addition, it is necessary to determine if these values are bene�ts or costs.
Here we can simply say that the red and blue values (UA

(ai,bj)
and UB

(ai,bj)
) are the

rewards for player A and B, respectively.

There are several types of games that will not be covered in this work, but that
are very interesting. One of these is zero-sum games. They are interesting, compared
to the general one, because it is a scheme in which it is not possible to cooperate. If
the decision makers are in two, the amount that wins one loses the other and there
is no way to make them agree. The possibility that both have bene�ts is inexistent
at all. Here will be treated games whose sum is not always equal to zero, i.e. there is
a possibility that in speci�c situations both players have advantages. It is assumed
that in game represented by these tables the values inside them are known to both
players. At this stage makes sense to de�ne the concept of strategy, which will give
to the player an answer in any situation arises.

2.2.2 Strategic Form Games

This section presents the de�nition of a strategic form game. A strategic game is
a model of interaction with a single move, where players simultaneously choose an
action to be performed within known sets of admissible actions. At the same time, it
is not meant in a temporal sense: it refers to the fact that leak of information about
the choices of the various players, before everyone has made their choice, should not
occur. The outcome of the game is completely determined once every player has
made her choice.
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De�nition 2.1. A strategic form game G = 〈N,Si,≺i〉 consists of:

� a �nite set of players N = {1, 2, . . . , n};

� a non-empty strategy set Si for every player i ∈ N , from which a strategy
si ∈ Si (denoted as scalar) is selected by every participant in order to achieve
maximum bene�ts;

� a preference relationship ≺i on the space of strategy pro�les S = ×i∈NSi ,
de�ned as the Cartesian product of the individual strategy sets Si , for every
player i ∈ N (the i-th player's preferences on the set of outcomes).

It is called a strategy pro�le the vector s ∈ S containing the strategies of all
players: s = (si)i∈N = (s1, s2, . . . , sn). It is denoted by s-i the collective strategies
of all players except player i. Similarly, S−i represent the space of strategy pro�les
of all participants excluding player i.

The �rst result for numerical representation of preferences is now illustrated.
A preference relationship can be expressed by means of a utility function which
characterizes each player's sensitivity to everyone's actions: ui(s) : S → R

Theorem 2.1. If ≺ is a preference relationship, then in S there exist a function
u :→ R such that

x ≺ y ⇔ u(x) < u(y) ∀ x, y ∈ S

Moreover, such u is unique except for strictly increasing changes in the variable.

The fact that decision-makers' preferences are de�ned on S and not on their own
Si is exactly what distinguishes a game from a decision-making problem under risk
condition: interaction with other players is not negligible. Typically, as previously
mentioned, the preference relationship of each player in set S can be expressed
through a utility function (or payo�), associated with each player, which matches
higher values with better results. Thus, we can associate the player with a function
ui(s), de�ned on S, which expresses the utility for the player deriving from the
s strategy pro�le. For the sake of concreteness, let us look at an example taken
from [14].

Example 2.5. Consider a game of resource sharing in peer-to-peer networks. In
such a situation there may be free-riders, who take advantage of �les made available
by others but never contribute to the network. Clearly, if all users decide to free-ride,
the system will not work because no one will make any �les available to other users.
Modeling these networks in a game theoretic sense allows us to better understand
the incentive structures needed to support resource sharing. In this simple model,
each player i can decide whether to share her resources with others (we denote that
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strategy as si = 1) or to refrain from sharing (si = 0). The joint strategy space
is S = {0,1}N , where N is the number of peers connected to the network. Let us
assume the cost for each user of making her own resources available for sharing to
be 1.5 units (arbitrary positive value), and that the user bene�ts by 1 unit for each
other user in the network who decides to make her resources available. For N = 3,
this game can be represented in strategic form in Table 2.3, showing the utilities of
each player for every possible strategy pro�le.

s2 = 0 s2 = 1 s2 = 0 s2 = 1

s1 = (0,0,0) (1,−1.5,1) s1 = 0 (1,1,−1.5) (2,−0.5,−0.5)

s1 = (−1.5,1,1) (−0.5,−0.5,2) s1 = 1 (−0.5,2,−0.5) (0.5,0.5,0.5)

s3 = 0 s3 = 1

0

1

Table 2.3: Strategic form representation of a Game of Resource Sharing with three
players. The numbers in parentheses represent the Utilities accrued by players 1, 2,
and 3, Respectively, for each possible Strategy Pro�le.

Note that the strategy pro�le that maximizes the aggregate utility, a possible
indication of social welfare from the network point of view, is (1,1,1). It is not clear,
though, that there are intrinsic incentives for players to arrive at that strategy. As
you may expect, we are interested in determining which of these joint actions is the
most likely outcome of the game.

From now on, the issue of how to determine the most likely outcome of a game
will be addressed. About this, the most important and most well-known solution
concepts of game theory will so be discussed. The �rst concept of all is the iterative
deletion of dominated strategies. As we will see, that will be a su�cient predictor
only for some games, hence it allows to completely solve a game in a limited number
of cases. Next, the most common game theoretic solution concept is considered:
the Nash equilibrium. It can be shown that every �nite strategic-form game has
a mixed-strategy Nash equilibrium and this is one of the reasons why the latter
strategy will be the one applied in this project.

2.2.3 Dominated Strategies

This section presents the basic notions of dominated strategies and the iterated
deletion of dominated strategies. Starting from the hypothesis of rationality and in-
telligence of the players, it is possible to predict in some games a consistent solution.
This type of strategy is based on these two hypotheses and thus excludes any type
of choice that no rational player would choose. There is no common technique that
guarantees to be able to predict the evolution of a general game. In some situations
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it is not possible to predict any result, so such a solution might not exist. To give a
more formal description of this model, the following de�nition is presented.

De�nition 2.2. Given a strategic form game, consider a player i having two strate-
gies si and s′i both elements of Si. Be s-i an array containing the other N − 1
players' strategies. A pure strategy si strictly dominates all other strategies of
player i if its payo� ui(si, s-i ) is strictly greater than the payo� of any other al-
ternative available to player i, regardless of the choices made by the other players.
Indicating with ui the payo� calculated using the utility function, we get then:

ui(si, s-i ) > ui(s
′
i, s-i ) ∀ s-i ∈ S-i

Furthermore, a pure strategy si weakly dominates all other strategies of player i
if its payo� is greater or equal than any other alternative's payo� available to player
i, regardless of the choices made by the other players:

ui(si, s-i ) ≥ ui(s
′
i, s-i ) ∀ s-i ∈ S-i

If a strategy is dominated (weakly or strictly) by another, we will say that this
strategy is therefore dominated (weakly or strictly). A strategy that dominates
(weakly or strictly) all the other is called (weakly or strictly) dominant. Obviously,
if there is a strictly dominant strategy, this is unique. On the other hand, many
weak dominant strategies may exist. If each player has a dominant strategy, then it
is said that the game has a solution in the dominated strategy. A strategy that is
not dominated by anybody else is said, on the contrary, non-dominated.

To make the concept clearer, an example (taken from [14]) is going to be discussed
to see if it has dominant strategies and how the iterated deletion of dominated
strategies technique is applied.

Example 2.6. Let us now consider the game in Table 2.4. Player 1 can choose be-
tween moving to the left, to the right, or staying in the middle (S1 = L,M,R), while
player 2 can choose between moving to the left and moving to the right (S2 = L,R).
Notice that, regardless of what player 2 does, it is never a good idea for player 1
to select s1 = R: we say that this strategy is (strictly) dominated by the other two
strategies in player 1's strategy set. Assuming, as always, that player 1 is ratio-
nal, we can eliminate that row from our considerations of the likely outcome of this
game. Once we do that, we notice that strategy s2 = R dominates strategy s2 = L,
and therefore it is reasonable for player 2 to select the former. Finally, if player 2
selects strategy s2 = R, we expect player 1 to select s1 = M . By iterative deletion
of dominated strategies, we predict the outcome of this game to be strategy pro�le
(M,R).
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s2 = L s2 =R

s1 = L (1,1) (0.5,1.5)
s1 = M (2,0) (1,0.5)
s1 = R (0,3) (0,2)

Table 2.4: Left/Middle/Right Game: an illustration of Dominated Strategies.

The procedure described in this example takes the name of iterative deletion
of dominated strategies. So if that process allows us to come up with only one
pair of strategies, these are the solution to the game. However, the same identical
considerations could have been repeated in the case of weak dominance, but with
a substantial di�erence: the pro�le that survives the iterative deletion may, in this
case, depend on the order in which the eliminations are performed. it is easy to show
that this circumstance can not occur in the case of strictly dominated strategies, in
which case the order of elimination is of no importance.

This technique provides the �rst set of approximate solution for a game. Thus,
if rational players are participating in the game, it is clear that they should never
choose a strategy that would be eliminated by the iterated deletion of dominated
strategies. Unfortunately, for most games we need a stronger predictive notion. We
therefore move to the broader concept of Nash equilibria. First, though, mixed
strategies are introduced.

2.2.4 Mixed Strategies

This section de�nes the concept of mixed strategies. De�nition 2.2 considers a
strategy dominated if there is at least another strategy, for the same player, who
always provides a value of utility not lower (and in at least one case, strictly larger).
We now see an interesting and important alternative to strictly dominated strategy,
which arises from a di�erent approach. For simplicity, we illustrate this in the case
of two players only, but the de�nition is of utterly general validity.

Suppose a player, instead of picking a single strategy, randomizes the choice over
her strategy set. This means a generic player i could decide to adopt a strategy si
with probability 0 < σi < 1. In this case it is said that a mixed strategy has been
adopted.

In a strategic form game, a mixed (or probabilistic) strategy σi is a probability
distribution de�ned on all possible player i strategies. In particular we denote with
σi(si) the probability that σi assigns to si ∈ Si. According to probability laws, the
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underlying relationship must be respected:∑
si∈Si

σi(si) = 1.

The space of mixed strategies for player i is denoted with Σi. Similarly to what
has been done so far, the mixed strategy pro�le is de�ned as:

σ = (σi, σ2, . . . , σN)

where N is the number of player participating in the game. The Cartesian product
of all the Σi generates the mixed strategy space Σ. At this stage, the expected utility
function (or expected payo�) of a player i for mixed strategy can be expressed by

ui(σ) =
∑
s∈S

(
N∏
j=1

σj(sj)

)
ui(s) (2.4)

which represents the sum of the payo�s of each pro�le, weighed on their prob-
abilities. For instance, in the case of N = 2, suppose that a Player A and a
player B have available a �nite number of alternatives SA = (a1, a2, . . . , an) and
SB = (b1, b2, . . . , bm) respectively. If A chooses to play a given strategy ai with
i ∈ Z : 1 ≤ i ≤ n and denoting with σj(bj), where j ∈ Z : 1 ≤ j ≤ m, the
probability that player B chooses bj, then her expected utility would be

uA(ai) = σ1(b1)uA(ai, b1) + σ2(b2)uA(ai, b2) + · · ·+ σm(bm)uA(ai, bm).

A rational player will try to maximize her expected utility, thus A will choose
the strategy ai such that uA(ai) = maxak∈SA uA(ak). Of course, if the probabilities
σj(bj) were known, the decision problem for player A would be easily solved: it is
enough to calculate the expected utility of each possible strategy and then choose
the strategy which corresponds to the highest utility. The fact that probabilities are
not known a priori justi�es the e�ort that has been made over the years to de�ne
methods to compute such probabilities in order to reach a solution for the game. A
formal de�nition of mixed strategy can now be provided:

De�nition 2.3. Given a �nite set of actions Si available to player i, a mixed strategy
for player i is a probability distribution on such a set. That is, a mixed strategy is
a probability vector (σ1(s1), σ2(s2), . . . , σn(sn)) with si ∈ Si : σi(si) > 0 , i ∈ Z :
1 ≤ i ≤ n on the possible actions the player can take.

The literal interpretation of a mixed strategy therefore requires a player to take
her decision by deliberately introducing a stochastic element, and this may seem
irrational or even bizarre. However, if we accept the interpretation that a game
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models a situation that may occur many times, the mixed strategy can be interpreted
as the frequency with which the player selects the di�erent strategies, which are
called pure strategies, to distinguish them from mixed ones. Of course, a pure
strategy si is a degenerate case of a mixed strategy σi , where σi(si) = 1.

There are numerous games where no pure strategy can be justi�ed (more pre-
cisely, where there are no equilibria in pure strategies), and where the logical course
of action is to randomize over pure strategies. Let us take as an example [15].

Example 2.7. Consider the well-known children's game �Rock-Sciccor-Paper�. In
each contest, a player must adopt one of these �strategies� in advance: then Rock
blunts Scissors, Scissors cuts Paper, and Paper wraps Rock. Suppose that the winner
of each contest receives one dollar from the loser; if both adopt the same strategy,
no money changes hands. The payo� matrix is shown in Table 2.5. Clearly, a player
adopting the pure strategy �Rock� will lose in the long run, because his opponent
will catch on and play �Paper�. A player adopting the mixed strategy (1

3
, 1
3
, 1
3
) will

break even. Thus, the strategy for this game is to randomize among the three pure
strategies, assigning a probability of 1

3
to each.

s2 =Paper s2 =Rock s2 =Scissors
s1 =Paper (0,0) (1,−1) (−1,1)
s1 =Rock (−1,1) (0,0) (1,−1)

s1 =Scissors (1,−1) (−1,1) (0,0)

Table 2.5: Strategic form representation of Paper�Scissors�Rock game.

It is interesting to notice how the above example could not have any solution if
we did not randomize. The application of mixed strategies has led to the conclusion
that it would not otherwise be possible. Now we are going to face the issue of how
to predict the evolution of the game for more general cases and more accurately. In
some circumstances, the concept of iterative deletion of dominated strategies is not a
su�cient predictor of the outcome of the game. We are therefore going to discuss the
most common game-theoretic solution, which will be valid for most games: Nash's
equilibrium.

2.3 Nash Equilibrium

The solution concept most signi�cant and important in game theory is that of Nash
equilibrium. This concept, essentially, shapes a sort of �stationary state� where no
player has an interest in unilaterally deviating for improving their utility. It should
be noted that game theory does not deal with the mechanisms by which one achieves
this state.
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A Nash equilibrium is a stable equilibrium, since no player has an interest in
changing her decision (strategy). Each player draws the maximum bene�t possible
from their choices, considering the best choice of the other player. Any strategic
change could only lead to worse payo� (or utility). Nash's equilibrium represents
a well-balanced situation of a non-cooperative game, which ensures both the best
possible outcome for each player (individual optimum) and the best collective equi-
librium (social optimum).

A non-cooperative game can have multiple Nash equilibria. Even in the presence
of multiple equilibria, each Nash equilibrium of the game is still a stable equilibrium,
since from its position (local equilibrium) any other choice leads to a worse condition
for each player. A possible issue regarding this solution concept is the possibility
that the conditions for determining it will be completely absent. Many games have
no Nash equilibrium. Another important problem is that the non-cooperative game
could converge towards a stable but not optimal equilibrium. This means that, even
if the equilibrium exists, it may not bring the maximum bene�ts to the players.

Initially, pure strategies will be studied, and then we will extend the analysis to
mixed strategies that will be of crucial importance for �nding the �nal solution to
the project presented here.

2.3.1 Nash Equilibrium in Pure Strategy

For now only pure strategies will be considered, therefore, given a game in strategic
form, a strategy pro�le s ∈ S is a vector containing the strategies of all players
(s1, s2, . . . , sN).

De�nition 2.4. A strategy pro�le s
∗ ∈ S is a Nash equilibrium (NE) in pure

strategies if
ui(s

∗) ≥ ui(si, s
∗
-i

) ∀ si ∈ Si , ∀ i ∈ N

where s∗
-i
indicates the strategies of all the other N − 1 players.

Thus, in a Nash equilibrium, no player can change strategy, once the actions of
other players are �xed, without getting a worse outcome. It is useful to consider an
equivalent formulation of the De�nition 2.4.

De�nition 2.5. For every player i, consider a strategy pro�le for the others N − 1
participants s-i ∈ S-i and de�ne the set

B(s-i) = {ŝi ∈ Si | ui(s-i, ŝi) ≥ ui(s-i, si) ∀ si ∈ Si}

as the set of best reply that player i can make with respect to the decision taken by
other players. A strategy pro�le s∗ is a Nash equilibrium if and only if

s∗i ∈ B(s∗
-i

) ∀ i ∈ N, i = 1, 2, . . . , N.
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How can we directly draw from the mathematical de�nition of NE, if a player
selects any strategy other than ŝi, he could only worsen his payo� or, at most, leave
it unchanged. So if players reach a NE, no one could improve their outcome by
thinking about unilaterally changing their strategy. As this applies to all players,
we deduce that if there is a NE and this is unique, it would represent the solution
of the game, as none of the players would have any incentive to move away from the
equilibrium.

The most important contribution given by John F. Nash to game theory is the
invention (and subsequent mathematical proof of existence) of this equilibrium [17].
However, it is not said that the equilibrium is unique: in particular, in games where
individuals adopt exclusively pure strategies, a Nash equilibrium may not exist. Now
we are ready to see what are the Nash equilibrium for the previous examples:

Example 2.8. Consider the resource sharing example [14] in Table 2.3. Joint strat-
egy (0,1,0) is not an equilibrium because player 2 can improve her payo� by uni-
laterally deviating, thereby getting a payo� of 0 (greater than -1.5). Systematically
analyzing all eight possible joint strategies, we can see that the only one where no
player can bene�t by unilaterally deviating is (0,0,0). This is the only Nash equi-
librium for this game. Note that joint strategy (1,1,1) would yield higher payo�
than strategy (0,0,0) for every player; however, it is not an equilibrium, since each
individual player would bene�t from unilaterally deviating. The Nash equilibrium
for this game is clearly ine�cient, a direct result of independent decisions without
coordination among players.

The example discussed above is simply a variation of the famous Prisoner's
Dilemma [18]. Regarding the Left/Middle/Right Game in Table 2.4, the Nash
equilibrium coincides with the result obtained by iterative deletion of dominated
strategies. Instead, for the paper�scissors�rock there is no Nash equilibrium in pure
strategies, but as we will see it exists in mixed strategies. It is therefore necessary
to consider the case where a mixed strategy can represent a Nash equilibrium for a
game.

2.3.2 Nash Equilibrium in Mixed Strategy

Starting from Nash's equilibrium, many other solving concepts can be found, both
for trying to solve some of the problems mentioned in the previous examples and
for �nding a substitute in cases where Nash equilibrium does not exist. The search
for a solution changes substantially if we broaden our horizon of interest to include
mixed strategies. Suppose that each player has, as usual, a �nite number of pure
strategies at their disposal, but here he can decide to implement any mixed strategy
de�ned on them. The simplest resolution concepts based on Nash equilibrium is
therefore introduced, namely mixed strategies and an interesting interpretation in
terms of convictions is given.
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De�nition 2.6. A mixed strategy pro�le σ∗ ∈ Σ is a Nash equilibrium if

ui(σ
∗) ≥ ui(si, σ

∗
-i

) ∀ si ∈ Si ,∀ i ∈ N

where σ∗
-i
represents the collective mixed strategies of all players except player i.

The above-mentioned statement generalizes the notion of NE given earlier in
De�nition 2.4. As it has been done before, we can extend the concept of best reply:

De�nition 2.7. The best reply correspondence in mixed strategies from player i to
other players' strategies is the set

B(σ-i) = {σ̂i ∈ Σi | ui(σ-i, σ̂i) ≥ ui(σ-i, σi) ∀ σi ∈ Σi}

and a mixed strategy pro�le σ∗ is a Nash equilibrium if

σ∗i ∈ B(σ∗
-i

) ∀ i ∈ N, i = 1, 2, . . . , N (2.5)

Since the basic premises have been presented, we are now ready to present the
most important theorem for the purpose of the thesis. The following result is of
great interest in the whole theory and the importance of mixed strategies is further
strengthened by it.

Theorem 2.2. (Nash) Every strategic form game with a �nite number of players,
each of which with a �nite strategy set, has at least one Nash Equilibrium in mixed
strategies.

The theorem has been demonstrated by Nash in [19] and is an application of
the Kakutani's �xed point theorem. The Nash Theorem 2.2 does not describe a
method to �nd the Nash Equilibrium. It is still a considerable result as it provides a
su�cient condition for a game to have at least one NE in mixed strategies: in fact,
it is su�cient that the game is �nished, that is,

|N | < +∞, |Si| < +∞, ∀ i ∈ N

This does not contradict what is said for a NE in pure strategies: if the game is
�nite, the NE may not exist in pure strategies, but according to the Theorem 2.2,
there is always at least one NE in mixed strategies.

Example 2.9. We are now ready resume the the �Rock-Sciccor-Paper� in Table 2.5
in order to explain how a NE in mixed strategy can be found. A mixed strategy is
represented by a vector (σ1, σ2, σ3) that indicates the probability of playing each of
the possible strategies. A mixed strategy pro�le that is Nash equilibrium requires
that each strategy is the best answer of all mixed strategies of a player. To do this,
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it is enough to show that the expected value (the gain with the mixed strategy) is
greater than or equal to the gain you would get by playing any pure strategy. The
Nash equilibrium in this case is for both players (1

3
, 1
3
, 1
3
): �xed this strategy for one

of the two players, the other is indi�erent to play any pure strategy that will give
zero gain as well as the equilibrium mixed strategy. Viceversa for the other player.
The fact that earning is the same for pure strategies does not imply anything: if
they were played, it would break the equilibrium as the other player would have an
incentive to move and as we have seen the game in pure strategies has no equilibrium.

Since, as already mentioned above, the theory does not provide us with any pro-
cedure for �nding the equilibrium, it is crucial to introduce at least one methodology
to �nd it. In this regard we are going to introduce the Battle of the Sexes game.
This is done because what will be explained soon will be the method for �nding
the solution used in the research on D2D networks presented here. It is therefore
advisable for the reader to pay particular attention to the mathematical steps that
will be illustrated and how the concept of indi�erence is central to the formulation
of the problem.

Example 2.10. (Battle of the sexes [20])
A husband and a wife decided to spend the evening together going to the movies.

In this regard, the two are debating heatedly. Her (player 1) was trying to convince
him to go to watch �Wondrous Love (WL)�, while he (Player 2) would prefer to
bring her to watch �Lethal Weapon (LW)�. Both, however, prefer to go out together
rather than stay separate: loneliness would make even the most enjoyable show
unattractive.

We can then represent the situation as shown in Table 2.6.

s2 = LW s2 =WL

s1 = LW

s1 = WL

(2, 1) (0, 0)

(0, 0) (1, 2)

Husband

Wife

Table 2.6: Battle of the Sexes game.

Looking at the table, it can be immediately seen that the game has two NE
in pure strategy: (LW,LW) and (WL,WL). In fact, in both the situation were they
choose the same movie we can check that whenever one of the players plays the given
(pure) strategy, the other player would only lose by deviating. Are these the only
Nash equilibria? The answer is no; although they are indeed the only pure-strategy
equilibria, there is also another mixed-strategy equilibrium.
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What will be described below is a sort of starting point to �nd an equilibrium
which is enough that it works in small games. It is possible to turn this in a general
algorithm, but not necessarily the most e�cient or insightful way of �nding an
equlibria.

It will be shown here that this computational problem is easy when we know
(or can determine) the support of the equilibrium strategies, particularly so in this
small game. A support is the set of pure strategies that receives positive probabilities
under the mixed strategy of the players. In other words, an equilibrium support is a
set of that actions that occur with positive probabilities. So, for battle of the sexes
let us assume that the support of the equilibrium is made by all the actions available
to the players. Try then to reason about what the NE may be given that support.

First of all is better to introduce some notation in order to proceed with the
calculation. Assume that both players randomize and that husband's strategy is to
play LW with probability q2 and WL with probability 1 − q2. Now, if the wife has
to best respond to this mixed strategy, we need that player 2 (husband) must have
set those two probabilities (q2, 1−q2) in a way that makes player 1 (wife) indi�erent
between her own actions LW and WL. This is an important point in reasoning about
how mixed strategies work. The reason why player 1 needs to be indi�erent is that
she is going to play a mixed strategy as well, which means some of the time she's
playing LW and some other time WL. This is because such two strategies are both
in the support and so they both get played with nonzero probability. If the player
is not indi�erent, then she could get even more utility by reducing the amount of
probability she put on the lower outcome and increasing the amount of probability
she puts on the higher outcome. In an extreme case she could get the most utility
by putting absolutely no utility on the lower payo� in order to choose always the
higher. This is to say that the only way she would actually want to play a mixed
strategy is in the case it is the same to play LW and WL. That means we can reason
that player 2 has set his probabilities q2 and 1−q2 in such a way that makes player 1
indi�erent.

In this way, thanks to the last observations, it is actually possible to write that
down in math. Thus we can say the utility for player 1 of playing LW is equal to
the utility of player 1 of playing WL given that player2 plays (q2, 1− q2). Then we
can write the following equation:

u1(LW ) = u1(WL)

2 · q2 + 0 · (1− q2) = 0 · q2 + 1 · (1− q2)

q2 =
1

3
.

From the equalities we see that if the wife is indi�erent between the two strate-
gies, then that means when she plays LW she gets 2 with probability q2 and 0 withe
1 − q2. In case she chooses WL she gets 0 with probability q1 and 1 with 1 − q2.
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Solving the simple equation in 1 variable, we end up concluding that the only way
such that player 1 can be indi�erent between playing LW an WL is q2 = 1

3
.

In the same way, if player 2 (husband) was randomizing, which we had just
assumed he was, then player 1 must make him indi�erent. Why is player 1 willing
to randomize? because she is simultaneously being made indi�erent by player 2.
So now assume that player 1 plays LW and WL with probabilities q1 and 1 − q1
respectively. At this stage, the same computation of the previous case can be done:

u2(LW ) = u2(WL)

1 · q1 + 0 · (1− q1) = 0 · q1 + 2 · (1− q2)

q1 =
2

3
.

The important thing to notice here, happening in the game, is that player 1
and player 2 were both willing to randomize (Table 2.7), so we ended up getting
out numbers (representing probabilities) that make sense, since q1 and q2 are both
between 0 and 1. That means it is actually possible to set them in such a way that
makes both the players indi�erent. If the payo�s were di�erent, we might have gotten
out with number out of the probability range [0,1]. That would really be telling us
that there is no way of making the other player indi�erent, so no equilibrium would
be achievable with that support.

s2 = LW s2 =WL

s1 = LW

s1 = WL

(2, 1) (0, 0)

(0, 0) (1, 2)

q

1 - q

2

1

q1(

(

( 1 - q2(

)

)

) )

Table 2.7: Battle of the Sexes game with the introduction of probabilities.

Concluding, the mixed strategy (2
3
, 1
3
), (1

3
, 2
3
) are Nash equilibrium, since these

distributions make the other player indi�erent, and so they are both willing to play
the mixed strategies.

There are several interpretations and, consequently �justi�cations� for the use
of mixed strategies. The interesting descriptive interpretation of the use of mixed
strategies that has been made is also a good example of how deep (and complicated)
is the use of beliefs in the foundations of game theory.

The positive side of this approach are many, but there is a need to de�ne a
way that players consider and know each other's beliefs. From a networking point
of view, this approach resulted particularly suitable, since we are in presence of
programmable nodes that may be interested in maximizing their own utility so as
to improve the network performance.
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Chapter 3

Energy-e�ciency Optimization:

State of the Art Review

This chapter contains a brief summary of the state of the art for Energy-E�cient
optimization in wireless D2D networks. It is not purported to be an exhaustive
review, but a compendium of the most interesting models found in the literature
that are related to the work of this thesis.

As �rst, networks schemes for data dissemination are illustrated. Those methods
are designed to �nd the minimum cost path among nodes in a network. Such a cost,
in our case, is represented by the transmit power required for distributing a message
in a single source wireless D2D network. Some example are presented to allow the
reader to have a better comprehension of the basic graph search algorithm that are
used in this �eld. We will see how, over time, such mechanisms became suitable for
wireless communications, incorporating features as the wireless multicast advantage,
which takes into account the fact that a transmitter may communicate with multiple
receivers if they are within its communication range. The paradigm that has been
followed to achieve the best results is the centralized networking. It assumes the
that networks parameters are known a priori to all participants with the help of
a central infrastructure, which is not realistic in scenarios where the latter is not
available. Because of this, the only way for �nding a solution in the D2D wireless
scenario is to move toward a decentralized approach.

Next, we will see how the introduction game theory has supported distributed
solutions, allowing to achieve considerable results in decentralized environments.
Moreover, the incentive mechanisms for data replication will be discussed. This has
been thought to support nodes that have to relay, and so spend their energy, the
information to other nodes of the network. Pricing schemes are so characterized to
accomplish the will to pay for the service that a user receives.

Having considered those studies, the main challenge lies in determining the utility
function of these games, which is not trivial and it is still an open problem. We
focus speci�cally on a utility de�nition that represents the trade-o� between energy
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conservation and network throughput. In the current literature, such a technique
has been mainly applied to resource allocation for wireless communication, but not
to topology construction mechanisms. In our project, we are going to see how
these principles can be exploited to determine a procedure for energy-e�cient data
dissemination in D2D networks. The most innovative aspect, beside the use of
game theory with the possibility of end-user interaction, lies in the introduction of
dynamicity in the network, so that nodes may join and leave it at any time.

3.1 The Minimum-Energy Broadcasting Problem

In the literature, many schemes have been proposed for data dissemination in D2D
wireless networks. Energy conservation is a critical issue for network life, because
nodes are powered by batteries only. The most intuitive approach for saving en-
ergy in such a networks is to route a communication session along the paths that
require the lowest total energy consumption. This optimization problem is known
as minimum-energy broadcasting. In [21�23], regarding this issue, a performance
analysis of the greedy heuristics centralised algorithms MST (minimum spanning
tree) and SPT (shortest-path tree) is proposed.

� In MST, the requirement is to reach each vertex once (create graph tree) and
to do this is required the minimum collective cost for obtaining, among all
possible combinations, the minimum weight connected graph with no cycles.
It is based on the Prim's algorithm [24] which starts creating an empty list of
visited nodes and it is used to keep track of nodes that we have touched. The
next step is to pick an arbitrary node from which the algorithm is going to
start. For the sake of clarity, it is better to look at the scenario proposed the
example 3.1.

Example 3.1. With reference to Figure 3.1, suppose that the algorithm starts
from node A. The �rst thing to do is to add A to the visited list: V isited =
{A}. Next, examine all vertices reachable from A. They are the set composed
by the nodes {B,C,D}. Prim's is a greedy algorithm, so we are going to
choose the smallest edge that connects to an unvisited node. In this case A
to B (A → B). The minimum spanning tree is then started and for now
it is composed only of these two nodes. The visited list can be so updated:
V isited = {A,B}. Notice that B has been added to the list. We now look
at all nodes reachable from A and B and this is the neighborhood {C,D,E}.
Three edges all have a weight of 3. Pick one of these randomly. Here it has
been chosen A→ C. Continue in this manner each time picking the smallest
edge that connects to an unvisited node: C → E, A → D. Observe at this
point the edge between B and E within weight of 3 is the smallest edge, but
both vertices are already in the MST, so we cannot consider it. Instead, we
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will choose to add F to the three: C → F . The only unvisited node remaining
is G and also it will be added the the MST: F → G. All the nodes are now
connected in a three. Note that if edge weights are distinct, this minimum
spanning three will be unique.

A
D

F

G

C
B

E

2

3

3

4

3

5

6

7

8

9
1

Figure 3.1: Minimum Spanning Tree application: non-dashed edges represent the
�nal shape of the tree

� The SPT, instead, is focused on reaching a destination vertex starting from
a source of the data and this is required to be done with the lowest possible
cost (shortest weight). Such a mechanism does not have the goal of including
every node into the broadcast tree, but only focuses on source and destination
vertices. The SPT applies Dijkstra's algorithm [25] which tells the shortest
distance to one node to every other node in the graph. It di�ers from [24] which
results in a MST. Let us use the next representation as example (Figure 3.2).

Example 3.2. It is de�ne also here a set of unvisited nodes. At the be-
ginning in such a list are obviously present all the nodes. The �rst step
is to pick arbitrarily the starting node. Referring to Figure 3.2, suppose
this to be node A and the set of unvisited node should be upgraded re-
moving the starting node: UnvisitedNodes = {B,C,D,E}. In addition
to the previous method, we will use a table that keeps track of distances.
More precisely, we are measuring those from the starting node A. Origi-
nally, the distance between A and itself is set to 0, while all the others for
reaching each node of the network are set to in�nity, as we have not vis-
ited them yet: Distances = {A : 0, B :∞, C :∞, D :∞, E :∞}. The next
step is to examine the edges leaving A. It is possible to see that B and
C are so reachable. We can here update the chart with the corresponding
costs: Distances = { A : 0, B : 4, C : 2, D : ∞, E : ∞}. Next we
look at the chart and pick the smallest edge of which the vertex has not
been chosen: in this case C. Let us remove C from the unvisited node list
UnvisitedNodes = {B,D,E}. The graph can be updated accordingly by se-
lecting the route A → C. Node B is now reachable from A with the cost
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of 3 by traveling through C so we can replace the old cost with this new
one and establish the connection C → B. Again, due to the connection
of the latter, also D and E become reachable for the �rst time. At this
step, the same thing done before should be performed. Upgrade the distances
Distances = {A : 0, B : 3, C : 2, D : 6, E : 7} and choose the smallest path
among the not selected yet. This time is B, thus UnvisitedNodes = {D,E}.
We repeat the process examining the edges leaving B and updating the cost
getting B → D and B → E: Distances = {A : 0, B : 3, C : 2, D : 5, E : 6}.
Now we choose D and this time there is no updates to our table as there are
no edges leaving D and UnvisitedNodes = {E}. Finally we select E and
again there are no updates, but this time because the edges leaving E does
not result in a shorter path. All the edges in the graph have now been visited
and are closed.

A

D

C

E
1

3

B
4

2

3

4

1

2

5

Figure 3.2: Dijkstra's algorithm application: non-dashed edges represent the
shortest-path tree.

The algorithms that have been studied above are for the link-based, wired en-
vironment. In such fully-connected LANs, since there is single-hop connectivity
among all the nodes, the multicasting problem is trivial. Link-based models are
appropriate for wired applications, because they do not take into consideration the
broadcast-based nature of wireless communications.

� In [26�29] a performance analysis is performed for comparing the link-based
algorithms described so far with the Broadcast Incremental Power (BIP) al-
gorithm. This new mechanism aims to a multicast tree construction in infras-
tructureless, all-wireless applications. The performance metric used to eval-
uate broadcast and multicast trees is energy-e�ciency. Results demonstrate
that BIP provide better performance than conventional link-based schemes
over a scenario composed by wireless agents only. Their objective is to form
a minimum-energy tree, rooted at the source, that reaches all of the desired
destinations. The main di�erence that lies in this method is that the wireless
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channel is characterized by its broadcast nature. When an antenna is trans-
mitting, this transmission can be received not only by the destination node,
but by every receiver located its communication range. Consequently, if in the
neighborhood of the transmitting device there ares multiple nodes, a single
transmission is su�cient for reaching all these receivers in multicast mode.

In the previous unicast applications it is best (from the perspective of transmis-
sion energy consumption) to transmit at the lowest possible power level, even
though doing so requires multiple hops to reach the destination. However, in
multicast this solution may not be e�cient, along with interference problems
that may rise in case of too many transmission. For this reason in wireless
environments the use of higher power may permit simultaneous connectivity
to a su�ciently large number of nodes, so that the total energy required to
reach all members of the multicast group may be actually reduced. From this
work it is interesting to derive the �wireless multicast advantage� property,
which makes multicasting an excellent tool for energy conservation:

• A node is capable of reaching another node if the latter is within com-
munication range, which means that the received signal-to-noise ratio
exceeds a given threshold and the receiving nodes have allocated receiver
resources for this purpose.

• The total power required to reach a set of other nodes is simply the
maximum required to reach any of them individually.

By contrast, in wired models, to reach two di�erent node the total cost of the
transmission will be always the sum of the two costs, because there is a wire
or cable link connecting them.

Example 3.3. The basic operation of BIP for tree construction will be de-
scribed taking as reference the scenario shown in Figure 3.3, where the axes
give a reference regarding distances. Basically, a broadcast tree is computed
from a source node, in our case Node 10, by adding nodes one at time. At each
step, the less expensive action to add a node is selected, either by increasing
the radius of an already transmitting node, or by creating a new emission from
a passive one.

Step 1. Figure 3.3(a) shows a ten-node network, in which Node 10 is the Source.
Initially, the tree consists of only the Source. We begin by determining
the node that the Source can reach with minimum expenditure of power,
i.e., the Source's nearest neighbor, which is Node 9. This node is added to
the tree. Thus, at this point, two nodes are included in the tree, namely
Node 10 and Node 9 (10 → 9).
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Figure 3.3: Example of tree construction using BIP: (a) step 1: 10→ 9; (b) step 2:
10 → 6; (c) step 3: 6 → 7; (d) �nal tree.

Step 2. We then determine which �new� node can be added to the tree at min-
imum additional cost. There are two alternatives. Either Node 10 can
increase its power to reach a second node, or Node 9 can transmit to its
nearest neighbor that is not already in the tree. In this example, Node
10 increases its power level to reach Node 6 (Figure 3.3(b)). Here is the
crucial point: the concept of incremental cost. It means that Node 10
increases its power from a level su�cient to reach Node 9 to a level su�-
cient to reach Node 6. Suppose the cost of a transmission between Node
10 and Node 9 to be, in terms of power, p10,9, while between Node 10 and
Node 6 is p10,6. Then the incremental cost associated with adding Node
6 to the preliminary tree consisting of Node 9 and Node 10 is p10,6−p10,9.
We exploited in this way the multicast advantage of the wireless media,
because both Node 6 and Node 9 can be reached when Node 10 transmits
with su�cient power to reach Node 6.

Step 3. There are now three nodes in the tree, namely Node 6, Node 9, and Node
10. For each of these nodes, we determine the incremental cost to reach
a new node. The node that can be added to the is Node 7 from Node 6
(6 → 7). Since Node 6 was not transmitting, its incremental power is
equal to a full transmission power, but it is worth to do it because the cost
would lower than the case where Node 10 further increments its power
(Figure 3.3(c)).

Continue. The procedure goes on until all the nodes are included in the tree, as
shown in Figure 3.3(d). The order in which the nodes were added is: 6
→ 8, 6 → 5, 9 → 1, 9 → 3, 9 → 4, 9 → 2.

At the end, the total energy of the broadcast tree is simply the sum of the en-
ergy expended at each of the transmitting nodes in the tree; leaf nodes (which
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do not transmit) do not contribute to this quantity. The implementation of the
BIP algorithm is based on Prim's algorithm as well, but with a fundamental
di�erence: instead of having as inputs the link costs, the BIP updates at each
step the networks parameters in order to have as reference the incremental
cost.

All the algorithms presented so far are de�ned as centralized. In general, in such
methods, there is a central unit that has all the information about the network and so
is able to to coordinate the other nodes in order to achieve an optimal con�guration.
In fact, we can notice that those methods do not say who chooses the path to follow
and this may be one focus of control. In fewer words, in centralized problems we
have an entity that is responsible for the whole network, which get the information
from all the connected devices, i.e. knows all the link parameters for all the link
between every node, and makes know to everyone what to do. However, they result
not suitable for D2D networks. In fact, the latter are decentralized and due to
the lack of a central unit that guarantees a spread view of the network scenario is
more di�cult to obtain an optimal topology. Nevertheless, the fact remains that
the only way for �nding a solution in the D2D wireless scenario is to move toward
a decentralized approach.

In distributed algorithms every node decide by its own, which makes the network
more scalable and opens the way towards dynamic environments. In addition to that,
controlling and managing the network results to be easier. There are, however, also
drawbacks in such approach: their performance is poor compared to the well-known
centralized algorithms. This is mainly due to the limited knowledge of the network
that each of the nodes has, if compared to that of the central unit which would allow
everyone to act in the best way.

In support of the above argument, taking as benchmark the BIPSW centralized
algorithm proposed in [26], we see that decentralized solutions, as the broadcast
decremental power (BDP) algorithm [30], are not able outperform the centralized
solution.

The BIPSW is an appropriate modi�cation of the BIP algorithm and improve-
ments are obtained by reducing the transmission energy requirements of some nodes.
The decentralized alternative BDP it is shown to behave better than the original
BIP, bot not of its subsequent ameliorations. In this regard, we will see how the
introduction game theory has supported distributed solutions, allowing to achieve
considerable results in decentralized environments.
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3.2 Game Theoretic Approaches

Game theory is introduced to solve the problem of having performance close to the
centralized systems. The center of this new approach is to decide in a strategic
situation what is the better solution for a participant in a game, where the node
decision a�ect the others and viceversa.

Note that in distributed algorithms, as those for which the game theory is ap-
plied, each node may have also a global view of the network, e.g. energy levels,
communication load or neighbor degree. The indispensable requirement is that each
of them have to decide on their own. When such a spread view is provided to the
node the game is said to be a complete game: you have global information about the
reference scenario and an agent can use the information for local decision processes,
thus no external entity is involved.

The game theory allows to improve �exibility by reorganizing to increase local
control. No more communication towards a mandatory centralized point. A lot of
e�ort is being made to study how GT can be good for dynamic environments that
we will see will be the fundamental concept of this research. This theory may help
also in reducing the amount of information that has to be exchanged among all the
participants, but what matters is being able to decide for themselves to which nodes
to connect.

� The �rst game theoretical mechanism we are going to describe is the one pro-
posed in [31]. This algorithm is designed based on a potential game model,
which is a game where all agents are maximizing (utility) or minimizing (cost)
the same function. Generally, in this game the participants have aligned inter-
ests and depending on the form of the potential function it is possible to verify
some properties as the existence af a Nash Equilibrium. Such a mechanism
has been demonstrated to be capable to overcome other conventional decen-
tralized algorithms like BDP [30] and DynaBIP [32] in terms of total energy
expenditure. Moreover, it has been shown as this method can also outperform
centralized algorithms such as the BIPSW [26] when the network is not dense.

From this moment on the game theoretic algorithm [31] is presented. The
system model provides that in the network there are multiple nodes including
a source. The source has a message that has to bee received by all the other
nodes in the network. Such a message should be forwarded in a multi-hop man-
ner, which means that the information initialized by a source is distributed
with the help of some node located between the source and the destination.
Hence, the source's message has to be forward by other nodes in the net-
work. This work aims at minimizing the total transmit power required for the
information to be received by everyone.

In this game, the nodes in the network are modeled as rational players, i.e. each
node nodes rationally decide to minimize their own costs on each iteration, and

37



3 � Energy-e�ciency Optimization: State of the Art Review

the weakly dominant strategy, illustrated in section 2.2.3, is exploited. The
network scenario is de�ned as follows:

• N + 1 wireless nodes with random locations are forming the network: a
source node S and a set of N other nodes numbered from 1 to N;

• every node has a maximum transmit power pmax;

• the data dissemination is modeled as a graph with a tree structure. This
tree is called broadcast tree;

• for a single hop point to point transmission in the tree, node j as a
transmitter and node i as a receiver are called the parent node and the
child node, respectively. In order to bene�t from the broadcast nature of
wireless channel, a parent node may serve multiple child nodes and the
set of child nodes served by a parent node j is denoted byMj.

The game is designed in a way that minimizing the cost at each individual
node minimizes the total transmit power. It is played iteratively such that at
each iteration, a node makes decision given the decision of the other nodes.
In addition, it is important to specify that the game is child-driven, that is,
a node as child selects a parent with minimum cost. The action set for each
player has been de�ned in a way that cycle must not occur.

In the proposed algorithm the nodes are incentivized to choose a common
parent, so that multicast transmission are preferred. To do this, Marginal
Contribution (MC) is used as cost sharing concept that will be speci�cally
explained in section xxx. Following this approach, the cost of a child i when
his action ai is to connect to a parent j has been de�ned as:

Ci(j, a-i) = pTxj (Mj)− pTxj (Mj \ {i}) (3.1)

where a-i is the action pro�le representing the actions of all players except
the i-th one. The multicast transmit power of a parent node j correspond to
pTxj , which is dominated by the highest required unicast power punii,j of its child
nodes and is given by

pTxj (Mj) = max
i∈Mj

{punii,j }. (3.2)

The assigned positive cost (3.1) is equal to the di�erence between the highest
and second highest required unicast powers inMj.
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Since we are interested to the total power in the network, that we want to
minimize, it will be equal to

pnet =
N+1∑
j=1

pTxj (3.3)

and is computed as the sum of all the powers, including the one spent by the
source, needed to forward the message. Obviously, if a generic node j is not
transmitting its pTxj is equal to 0.

The Nash Equilibrium (NE) is considered as the solution concept of this game.
Since for every node the number of its neighboring nodes is limited (from 1
up to a maximum of N), then the number of iteration for every participant
is limited as well. When the number of iteration is �nished, there would be
a situation in which not dominant actions are available to the player. Thus,
there will be a point where no gain can be achieved for all agents by unilaterally
deviating and the nodes will stop updating their actions.

It is time, reached this stage, to introduce an example of the last game the-
oretic algorithm, so that the steps necessary for its operation can be clearly
illustrated.

Example 3.4. Consider a network composed of 5 nodes. The scenario to refer
to is that shown in Figure 3.4. A source node named S has a message for all
other 4 nodes which are indicated with the numbers from 1 to 4. We now see
the steps leading to the formation of the broadcast tree.
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(a) (b) (c) (d)

1 2

3 4

S

1 2

3 4

S

1 2

3 4

S

1 2

3 4

23

1

4
2 3

1

23

1

4
2 3

1

23

1

4
2 3

1

23

1

4
2 3

1

3 0 3 0

2 1

Figure 3.4: Mechanism Design with Potential Game for Energy-E�cient Data
Dissemination in D2D Networks: (a) step 1: analyzing network scenario; (b) step 2:
costs computation and S → 1 association; (c) step 3: S → 2; (d) �nal broadcast
tree, 1 → 3 and 3 → 4.
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Step 1. At the beginning the tree is composed by only the Source. No other node
belongs to the tree, thus Broadcast Tree = {S}. We have therefore
to start considering the neighbors of the nodes already belonging to the
acyclic structure and these are node 1 and node 2 which are close to S.
In �gure 3.4 (a) we see that node 2 and node 1 are within the area that
can be covered by the transmitting power of S. At this point we choose
randomly one of these two reachable nodes. In our example we are going
to pick node 1. The action set of the the selected node would be then

A1 = {S}

because node 1 can choose only S, being the latter the unique node that
is already part of the propagation structure. We can now proceed with
the computation of the cost associated to the decision made by node 1
of choosing node S as its parent node. This mean that the child node 1
will receive the information from its parent and eventually it will be in
charge of further propagate the message.

Step 2. In this phase we see the evaluation of the cost associated to the choice
of a parent by a child node. The cost is computed by considering the
formula (3.1). In a simpli�ed view, this formula states that Ci,p = Cp −
Cp−i, which means that: the cost Ci,p for a child i of choosing the parent p
is equal to the cost for connecting to the parent Cp (basically the highest
unicast transmit power when child i is connected to parent p) minus the
cost of the parent's communications already going on (corresponding to
the highest unicast required power when child i is not connected to parent
p yet). In case of node 1, we have simply

C1,S = CS − CS−1
C1,S = 3 − 0 = 3.

As we can see CS here corresponds simply to the weight associated to
the edge between node S and node 1. Moreover, since the source was not
transmitting so far, the cost related to the power for existing connections
from S before this new link is zero. Once the cost is computed and we
established the new connection, we can associate a weight to the node
just added to the tree. As we see in the �gure 3.4 (b), such a weight is
represented by the number 3 within the red square beside node 1.

Step 3. The same procedure, as for the node 1, must now be repeated for another
node near those who already belong to the broadcast tree. For this pur-
pose let us pick node 2. Its action set will be di�erent from the one seen
for node 1. In fact, here the nodes belonging to the propagation struc-
ture are two (Broadcast Tree = {S, 1}) and they correspond exactly to
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the two choices available at node 2. This is because the latter, as we
see in the �gure 3.4 (a), is reachable from both the source and node 1.
Consequently, the action set of node 2 is

A2 = {S,1}.

In order to make the selected node choose among the two possible actions,
the cost function has to be evaluated for both alternatives. The one that
will provide us with the lowest cost value will be chosen as parent node
for the child node 2. The cost for association to node 1 is

C2,1 = C1 − C1−2

C2,1 = 1 − 0 = 1.

Again, node 1 has not on going transmission, so the cost is simply equal
to the one associated to the wireless link between them. Instead, results
more interesting the calculation for connecting to the source, which shows
the peculiar aspect of this algorithm:

C2,S = CS − CS−2
C2,S = 3 − 3 = 0.

The cost for connecting node 2 directly to the source is 0. This is because
the source is already transmitting with a power of 3 to which must be
subtracted the value associated to the connections already in place when
the node 2 is not connected. Thus, the broadcast tree is updated with
the connection from the source to node 2 and the latter is associated with
a cost of 0 (red value next to node 2 in �gure 3.4 (c)).

Continue. The same procedure has to be applied for the remaining nodes still not
belonging to the acyclic structure that now is Broadcast Tree = {S,1,2}.
Considering node 3, its action set is composed only of node 1, being the
unique neighbor appertaining to the tree: A3 = {1}. The cost that can
be computed is just the one related to node 1, which is the parent from
whom the child node 3 will receive the information:

C3,1 = C1 − C1−3

C3,1 = 2 − 0 = 2.

Such a value is then the weight representing the addition of the new node,
illustrated within the rectangle beside node 3 (�gure 3.4 (d)). The last
step to perform is the connection of node 4 to one of the nodes forming
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its action set A4 = {1, 2, 3}. To select the parent let us compute the three
costs and see which will be the minimum:

C4,1 = C1 − C1−4 = 4− 2 = 2

C4,2 = C2 − C2−4 = 3− 0 = 3

C4,3 = C3 − C3−4 = 1− 0 = 1.

Note that C1−4 /= 0 = 2 because node 1 is already forwarding the informa-
tion to node 3, so the di�erence between the highest and second highest
required unicast power is 2. For the other two computation, the second
highest required unicast power is 0, since node 2 and node 3 are not for-
warding any information before the eventual connection of child node 4.
The �nal broadcast structure is the one represented by non-dashed arrow
in �gure 3.4 (d).
As a last stage, the total power in the network can be evaluated using the
formula (3.3), which gives us the result: pnet = 3 + 2 + 1 = 6. Looking
at �gure 3.4 (d) the last result corresponds simply to the sum of the
cost values we computed in the previous steps (numbers inside the red
rectangles) and we see how the bene�t of multicasting for wireless network
is exploited for S → 1 and S → 2.

It is left to the reader the computation of the total power on the scenario in
�gure 3.4 with the Dijkstra algorithm, which we can anticipate will be equal to 7.
The reason is that S → 2 and 2→ 1 links are preferred to those previously selected.
Furthermore, by applying the BIP to the same situation, the result was seen to be
equal the one evaluated with the last algorithm studied so far, that is, 6. We see
then how the same performance of the centralized solution has been obtained in a
totally decentralized manner.

� A further game-theoretic framework [33] is developed to study the problem
of selecting neighbors for sel�sh nodes in a wireless D2D network. Here is
proposed a Neighbor Selection Method (NSG) to optimize energy consump-
tion by the help of game theory modeling. In this method, each node tries
to select its own neighbor in a sel�sh way by the help of local and global
connectivity. But it has a limitation that it cannot consider other parameters
of the network. Hence, some of the network metrics are not optimized. For
instance it adopts the extreme tra�c model, without considering the general
case, and they model the problem as static game, without considering the
dynamic nature of the game. They just analyze the convergence result, but
don't consider the problem of how to optimize the system performance from
the system view, either. To sum up, such a work on non-cooperative game
just considers the case with strong assumption on network tra�c, which as-
sumes wireless nodes always have packets to send. Such extreme assumption
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is obviously impractical for actual wireless network and is not suitable for the
mobility of applications without intelligent spectrum management.

� Currently, most work application of game theory focus on improve the perfor-
mance of networks, such as [34] where is introduced a game theoretic method,
called forwarding dilemma game (FDG). The performance of the whole sys-
tem depends on the forwarding willingness of the devices, but this last aspect
will be further analyzed in the next section. The FDC is a game theoretic
approach that introduce a forwarding probability for strategy selection based
on the mixed strategy Nash equilibrium of the game. It limits the number of
redundant broadcasts in dense networks while still allowing connectivity. The
game is composed of the number of players receiving the packet, the forward-
ing cost and the network gain factor and it o�ers primarily two strategies:
forwarding or dropping the packet. Using a mixed strategy Nash equilibrium,
discussed above in 2.3.2, the authors derived the forwarding probability that
leaded to a mitigated broadcast storm mechanisms. Since the the sending
probability will allow to forward the message only to a subset (winners of the
game) of the total payers set, the number of nodes participating in the route
discovery process is reduced. The selected devices resulted to be at the end
those who will spread the information with the lowest cost for the network.

� Other problems that have been formulated in terms of potential game for
broadcasting are [35] [36]. They focus on a distributed potential game-based
algorithm that addresses theminimum transmission broadcast (MTB) problem
in wireless networks, especially for the many-to-all scenario. The authors
of [35] proposed a decentralized algorithm able to construct a broadcast tree
with a minimum number of hops. The main issue of this study lies in the power
control mechanism tha has been applied. Hence, it provides that parent nodes
always send information at the maximum power, which distances us from a
su�ciently approximate calculation of the actual power used, along with the
possible inappropriate exploitation of the advantages of wireless multicasting.

An analogy between the last algorithms found in the literature and the project
proposed in this thesis, which we will be studying in subsequent chapters, can be
made. In fact, in our distributed game theoretic algorithm we will introduce a
probability that a node may disappear at any time from the network, in order to
have a dynamic environment. This can be seen as a variation of the forwarding
probability and the link reception probability concepts described in [34] and [35],
respectively.

Meanwhile, existed schemes only consider static game, which indicates the mobile
terminals never leave the network. Such assumption indicates that these schemes
are unable to support mobile applications, as well as the majority of those works
that will be presented later.
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3.2.1 Incentive mechanisms for Data Replication

In D2D wireless networks, in order to transmit in a multi hop manner, an incentive is
very important for the node in the middle to relay the data. If a node wants to relay
a huge amount of data to another one, it needs an incentive for spending its energy.
The forwarding node requires then some reward for forwarding and cooperation.
For this reason, the receiving nodes that get the service in D2D network must pay
something for the service they receive.

Thus, it is really important how they decide:

� if a node wants to pay;

� how much would be the price.

In many works, cooperation is induced by payments toward the node that relays
the information and such credit is used to encourage those nodes to cooperate.
Middle agents usually decide independently the extent of their cooperation with the
network, depending on their energy status and reputation they could get based on
their previous behaviors.

� A pricing and payment-based power control scheme was presented in [37].
This non-cooperative game has the goal of attaining a fair energy share among
wireless D2D networks users without a central billing system. Such a payment-
based scheme, to alleviate sel�shness problem, controls the power that each
user should use by providing di�erent compensation paid for their own share of
performance. The authors treat the problem of lack of motivation among users
by giving them the due share through the use of an adaptive pricing function.
The latter generates values basing the calculation on the interference generated
by network users. In order to achieve the Nash Equilibrium of the game as
e�cient as possible, the pricing function has be designed such that the greater
is the interference generated by a user transmitting at high power level, the
greater will the value of pricing it will be pay. From this we can deduce that the
price is strictly increasing with power. The mechanism provides that each user
announces a set of price coe�cients that re�ects di�erent compensations that
should be payed by other users. To do that, an intense inter-node signaling
scheme and massaging control is required. It thus ends up in much additional
overhead for �nding the Nash Equilibrium and so the service preferences, also
because the environment conditions may change really fast. At the end, the
increase in fairness and the the reduction of transmission power have not been
radically improved.

� The study [38] shows a pricing and payment technique to obtain an optimal
path among spatially distributed autonomous agents. The proposed algorithm
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is based on Dijkstra's algorithm in order to minimize the transmission cost for
routing the information. Moreover, it is able to improve lifetime of network and
load distribution using game theory. To do that four important parameters
are optimized: the distance between two nodes, the remained energy of the
network, the network load tra�c, and as a further matter the path reliability.
The mechanism is designed such that each data packet transmission has a cost
for each node that participates in the route. This cost is a function of the four
previously mentioned parameters. Nodes wanting to maximize their pro�t,
will accept to be part of the path if its pro�t is not negative. The process of
checking the positivity of utility function is added to the algorithm. As said
before, the output of this algorithm is the optimized path and the results of
their simulation analysis show the achievement of the objectives set. However,
the mechanism resulted unable to maximize the utility for all participant and
so not everyone has bene�ted from being willing to cooperate. In addiction to
that, a simple problem arises form the use of a graph search algorithm which
not considers the wireless nature of communications.

� Among the latest works, in [39], to stimulate sel�sh users to participate in
forwarding information, a game theoretical incentive pattern based on the
relay selection is proposed. In mobile D2D networks, the propagation process
of data needs resources (bandwidth, energy, bu�er, etc.), which are limited in
reality. Therefore, to mitigate the sel�sh behavior of participants, which may
not be active to forward data to others or receive data from their neighbors,
a credit-based incentive scheme with the use of virtual currency is applied.
This mechanism allows a node to pay for the relay service it receives and
this helped in reducing the sel�sh negative e�ect on data propagation. In
this method, a message carrier selects next intermediate nodes based on its
available resources, such as those mentioned above. Although, this work has
made a lot of e�orts for the resource allocation, even though with some �aws
in the management of the latter. Moreover, the characteristics necessary for
the interaction in mobility conditions have not been su�ciently considered.

So far, di�erent approaches and mathematical methods have been used to char-
acterize the pricing problem. However, the main challenge is represented in the
trade-o� between energy conservation and network throughput, which makes the
problem of energy conservation more complicated. Unfortunately, determining the
pricing function and utility function in these games is non-trivial and requires a
great deal of e�ort. Nevertheless, �nding the �optimum� pricing and utility function
is still an open problem. After outlining how the throughput can be improved by
means of a speci�c de�nition of the utility function, works that applies Prospect
Theory to wireless communications scenarios will be presented.
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To conclude, the survey [40], which gives a taxonomy of games applied to wire-
less networks, would be of precious help for any researcher that wants to start
contributing to this area. It is very extensive and capable of �lling a need in the
current literature. It reviews also latest works using economic and pricing models,
showing how those became very useful in wireless D2D networks.

3.2.2 Utility Design for Wireless Applications

An overview of game-theoretic approaches is presented in which energy-e�cient
utility design in wireless networks has been identi�ed [43�45]. Generally, in a non-
cooperative (distributed) games each user seeks to choose a strategy that maximizes
its own utility while satisfying its quality of service (QoS) requirements. Hence,
an e�cient transmission power control method is necessary for wireless networks.
However, high transmission power can improve the signal strength as well as signal
quality at the receiving end, but at the same time it can cause more interference and
consume of energy. On the other hand, lower transmission power can reduce the
interference signal level, but may not satisfy user needs. Based on this discussions,
the choice of the utility function has a great impact on the nature of the game and
how the users choose their actions.

When energy e�ciency is the main concern, a good choice for the utility function
is the one that is considered in the following works, which measures the number of
reliable bits transmitted per joule of energy consumed. It has been showed to be
particularly suitable for energy-constrained networks. The tradeo� between a higher
signal-to-interference-plus-noise ratio (SINR) level at the output of the receiver,
which means having a lower bit error rate and hence higher throughput, and lower
SIR, which lead to an extended battery life and low interference among users, has
been so formulated as:

uk =
Tk
pk
. (3.4)

The nominator is the Throughput that here is the net number of information
bits that are transmitted without error per unit time (this sometimes is referred
to as goodput) and the denominator is the transmit power. Both the magnitudes
are referred to user k and their ratio represents the utility that the user achieves
selecting a speci�c strategy. As has been said in the previous explanation of game
theory, such a payo� is going to measure the degree of �happiness� of the player.
This utility function, has we can deduce from the formula, has units of bits/joule.

The main motivation behind formulating a game with the above utility function
is the large interdependence between the actions of the network nodes due to two
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main factors:

� limited amount of energy available to participants;

� interference across wireless nodes.

As we will see, the formulation (3.4) captures very well the tradeo� between
throughput and battery life and is particularly suitable for applications where energy
e�ciency is more important than achieving a high throughput. Along with this need,
the actions available to each user in trying to maximize its own utility are not only
the choice of the transmit power, but depending on the situation [42], the user
may also be able to choose its transmission rate, modulation, packet size, multiuser
receiver, multi-antenna processing algorithm, or carrier allocation strategy.

� Paradigmatic examples of this approach can be found in the broad �eld of
wireless communication, in which power control games are used to mitigate
the co-channel interference and improve the system throughput. In wireless
networks, one popular application is the uplink power-control game provided in
[43] for code-division multiple-access (CDMA) networks. It considers a single
cell of a wireless CDMA network where user equipments compete with each
other to access the channel using orthogonal codes simultaneously. The main
goal was to allow users to control their uplink transmit power in a distributed
manner so that their QoS would be optimized. All this had to be done in
presence of the mutual interference that occurs among the users. Game theory
has been adopted to solve the issue of how the resources should have been
allocated, in this speci�c case the transmit power. To do this the utility has
been designed as a function of the power consumed by the users and the SINR
they attain. Thus, through the formula (3.4), individual payo� were provided
to each player, who tries to maximize it. The strategies of the game were in
fact the transmit power values and it has been shown that the algorithm had
good performances in terms of energy e�ciency. A constraint on the total
received power has been imposed and since user's interference depends on his
own power allocation, it can make the problem non-convex. As we have seen,
here the pricing of transmit powers is a linear function of the transmit power
and this method leaded to improvements of the non-cooperative power control
game. As conclusion, this work illustrated us an innovative view of distributed
game theoretic algorithms, but there is neither a proof of convergence nor a
theoretical explanation of the performance improvement due to pricing.

� A game theoretic approach [44] to energy-e�cient power allocation in multicar-
rier systems is presented in here. This paper studies power control for uplink
transmission of a cellular system (like the one described above) and an algo-
rithm for resource allocation is suggested, which leads to the best subcarrier
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selection. Motivated by the facts that mobile terminals have a limited battery
lifetime, this mechanism results more suitable for scenarios where the main
concern is not the transmission rate. The game considers a CDMA system in
which the information is sent on multiple parallel stream by the players. The
strategy of each node is to choose its transmission power. It di�ers from the
previous research by considering a receiver design where the realized SINR on
each subcarrier is the same. However, such multi-carrier power control game
is more complicated than power control game introduced early, and so it may
be possible not to achieve any Nash Equilibrium. Moreover, it assumes the
spectral utilization information is known as a priori to all participants with the
help of a centralized infrastructure, which is not realistic in scenarios where
an infrastructure is not available. These works that considers radio resource
management in a single wireless access network problems are nevertheless pre-
disposed for heterogeneous wireless environments.

� In a similar manner to the last two works presented above, the authors of [45]
generalized the game further by considering e�ect of modulation on energy
e�ciency. In particular, a non-cooperative game is proposed in which each
user can choose its modulation level (e.g., 16-QAM or 64-QAM) as well as
its transmit power and transmission rate. Like the other cases, each user
chooses its strategy in order to maximize its own utility while satisfying its
QoS constraints. To do that, the utility function applied in this work has been
measured with formula (3.4), but further speci�cations for other parameters
are introduced, so to manage, besides the transmit power, transmit symbol
rate and constellation size. Through the proposed game-theoretic framework,
the e�ect of coding on energy e�ciency is studied and quanti�ed, along with
the tradeo� between energy and spectral e�ciency. Since possible variations
and bad conditions of the channel may occur, the degradation of service quality
for every node cannot be avoided. This strategy is then di�erent from the one
obtained when maximizing simply throughput, because an user can switch to
a higher-order modulation scheme improving the spectral e�ciency, but with
the drawback of degrading its energy e�ciency. The main important thing
that can be noticed so far is that the problem of energy-e�ciency and rate
control for dynamic wireless network has not been studied yet.

As can be seen, in the current literature there is no application of this well-
understood method for system optimization to topology construction problems. In
this thesis we take inspiration from the model presented in this section, which is
used mainly for resource allocation, to provide the decision-maker with an utility
function capable of evaluating the neighbor node to which it is better to connect.
This will be done in dynamic conditions, that is, a node could leave or join the
network at any time.
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It is worth to remark that an important assumption has been made in the last
three works: a transmission is assumed to be successful if a �xed minimum SINR
requirement is met. We are going to keep this assumption to reduce complexity and
make math procendimers more intuitive. Moreover, the pricing terms, as a heuristic
to improve the performance of a NE in power control games, do not need to be
necessarily linear as seen here. However, this choice has been made to allow the cost
function to respect and provide meaning from the physical point of view.

3.3 User Interference with Protocols

Traditional game theory assumes that all the players in the game are rational and
unin�uenced by real-life perception. This is due to the fact that in most exist-
ing game theoretic studies participants make decisions according to their expected
utilities (EUT). To address this issue, prospect theory (PT) has been proposed to
provide a subjective probabilities that models how the user perception can deviate
from the conventional, rational norm set by game theory. Thi has been done thanks
to the three main characteristics of prospect theory discussed in 2.1.2:

� Probability weighting function: A decision maker tends to overweight
small probability events, but underweight medium and large probability out-
comes (�gure 2.2).

� Asymmetrical value function: A decision maker tends to be risk averse,
since he strongly prefers avoiding losses than achieving gains. This function is
then steeper for losses than for gains (�gure 2.4).

� Impact of reference point: A decision maker evaluates the various options
available to him with respect to a reference point (the zero point). Only at this
point he can quantify the gain and losses, thus the reference point signi�cantly
a�ects the valuation.

In literature, PT has been applied mostly for resource allocation in wireless D2D
network. Thus, its applications have not been su�ciently studied in the construction
of the network topology when an end user it interferes with the nodes selection. Here
we present some work that gives an idea on how PT is increasingly becoming an
important framework for making decision.

� One of the �rst paper that applies PT to understand wireless networking is [41],
where the authors compared the equilibrium strategies of a two-user random
access game under EUT and PT. This has been done to study channel access
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between two subjective end-users in wireless networks. At this early stage
of PT application, considering all the three characteristics listed above was
challenging. Indeed, only the probability distortion was considered keeping the
value function linear. Basically, in this non -cooperative game sel�sh players
adjust their transmission probabilities over a collision channel according to
rewards received for successful transmission. At the end, they proved the
existence of a unique Nash Equilibrium under PT.

� Many other studies [46�49], in particular the one proposed in [48], applied
PT to solve problems in the social science. Such a study suggested a routing
policy choice model, based on prospect theoretic model, to predict travelers'
route adaptation to to real-time information and risk attitudes. The approach
showed that travelers can make strategic route choices and path prediction
where predicted under EUT and PT models. Using simulated choice data
has been revealed signi�cant di�erences in path share predictions under two
behavioral paradigms. In fact has been showed how PT provides a better
framework than EUT for a routing policy choice model conditioned by end
users.

� The research [4], which considers behavioral economics (PT in particular) to
understand user decisions in networking, is an extension of the work proposed
in [41] where only two homogeneous player has been considered in the wireless
random access game. Here, the authors have added the comparison of both two
player heterogeneous and N-player homogeneous games where general random
access channel model can be applied, that is, packet reception probability
can range within [0, 1]. A linear value function is supposed also here with
the addiction of probability distortion. To analyze the impact of end users
deviation from EUT in a more practical scenario, a data pricing in the network
has been introduced. As a conclusion, where the users do not objectively
evaluate their probability of successfully accessing the channel, the impact on
evaluation if a service is worth the purchase resulted in degradation of system
throughput and energy consumption.

� Authors in [50] proposed a prospect pricing mechanism under game theory to
improve the utilization of radio resources in wireless networks. This spectrum
allocation algorithm improved the will of relay nodes to provide service in the
presence of subjective users. This research includes a more detailed mapping
techniques to normalize objective and subjective measurements, taking into
account the probability that a node accepts the o�ered bandwidth. The equi-
librium strategies of the adaptive decision-making optimization is compared
under EUT and PT. Prospect pricing resulted indispensable to combat the
under-weighting e�ect by the end-users that moves PT away from the ideal
performance of EUT. Thus, there is still the need better design of optimal
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pricing schemes and networking algorithms considering PT for wireless envi-
ronments to manage the ever increasing demand for connections.

After analyzing some of the work that has been done on the use of prospect
theory in wireless networks, two main issues have emerged from the literature:

� under EUT in most of the case has been achieved an optimal performance

� in general, deviation from EUT resulted in a loss of performance for the overall
system and pricing has been adopted in order to reduce such a loss.

It must point out in the end that we are still at the very initial stage of this new
research for the identi�cation of the possible impact of end-user behavior on wireless
systems.
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Chapter 4

Utility Design for Dynamic

Environments: Single User case

In D2D networks, wireless devices, simply called nodes, have limited transmission
range. Therefore, each node can directly communicate with only those within its
transmission range (i.e. its neighbors) and requires other nodes to act as relays
in order to communicate with out-of-range destinations. We assume that a source
nodes has a message for all the other nodes of the network and due to the transmit
power constraint at the nodes, the data should be disseminated in a multi-hop
manner. In the considered system model a fundamental assumption has been made:
the network is dynamic. A probability of leaving the network for each node has
been so de�ned based on the mobility of the environment. This is one of the main
innovations that our project introduces compared to the game theoretic framework
found in the literature.

The dissemination mechanism of a message common to all users composing the
network has been so developed in order to support changes in numbers and density
of participants. We decided to start from a very simple model, in fact there is only
one new agent who has to choose whether to receive information from a dynamic
node or a static node, taking into account the risks to which the new user is exposed
according to the decision taken. For this reason, in this chapter the game theory
will not be addressed, because there is no competition between new nodes that need
to receive the information, as there is only one new agent in the network.

As a design factor, we decide to �x the data rate among the nodes involved in
communications. This has been done in order to reduce the number of parameters
(variables) in the networks and for helping us to get more intuition into mathematical
procedures. Another particularly innovative aspect is the fact that, at the time of
connection of the new agent, the dynamic node has already received part of the
message. There is therefore an ongoing transmission between the two possible service
providers and the new user must take into account this issue, because as long as the
relay does not receive the entire message, the latter cannot leave the network.
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We wanted to examine how the network topology (broadcast tree) construction
would change when one agent knows that the node it would like to connect has a
certain probability to leave the network, which also depends on the total amount of
data that the potential parent node has received.

The further knowledge provided to each child node about the possibility that
a node may leave for sure will in�uence the preference among all the parent nodes
available to connect. At this point, the determination of the utility function rep-
resenting the preference of each individual player, which is the key point of our
research, has become crucial. Conditions under which a child node should choose
either the dynamic node as a parent, which perhaps can lead to more e�cient energy
consumption, or the static node, which will certainly not cause failures in transfers
since it always remains in the system, will be therefore de�ned. The analysis of the
impact of mobility on the performance for multiple users will be then addressed in
the next chapters.

4.1 System model

In the initial stage of the work, a network composed of three wireless nodes with
random locations is considered: a source node s that wants to transmit the infor-
mation to all the other nodes, a relay node r already connected to the source and a
new node i that wants to connect to the network (�gure 4.1).

s

r

(𝑅𝑠,𝑟 , 𝑃𝑠,𝑟
uni)

(𝑅𝑟,𝑖 , 𝑃𝑟,𝑖
uni
)

(𝑅𝑠,𝑖 , 𝑃𝑠,𝑖
uni
)

i

Figure 4.1: Network scenario, including edges characterizations, to which reference
is made: Solid and dashed arrows show current and possible connections, respec-
tively.

The message dissemination from the source node to the other nodes can be
modeled as a graph with a tree structure called broadcast tree. For a single hop
point to point transmission, a node already belonging to the broadcast tree and a
node that wants to join the tree are called parent node and child node, respectively.
In this scenario, the set of parents nodes is composed by node s and node r, since
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they own at least part of the information that can be sent to others, while the only
child is represented by node i who has to select from which node to receive the
message. In this regard, we will refer to this situation by saying that the game is
child-driven, that is, a node as child selects a parent with minimum cost in order to
minimize the total transmit power in the network.

The main important feature that has been introduced in this project, with respect
to other related works studied in chapter 3, is the introduction of dynamicity. Whit
this we are stating that a node may leave the network with a certain probability
after that it received the whole information. To implement this, a probability of stay
in the network pstj is associated to every node j = {s, r, i}. Moreover, in order to
simplify the issue, here we just assumed that a node suddenly turns o� depending
on the level of mobility of the wireless environment. The source of the message is
always assumed to be under no mobility condition so that psts = 1 in any case. We
also see in �gure 4.1 that every edge between two couples of nodes, for instance from
a generic transmitter node j and a receiver node k, is characterized by:

� a Rate Rj,k that simply represent the number of bits that are conveyed per
unit of time over the single hop channel;

� a transmit Power Pj,k that corresponds to the one needed in a unicast trans-
mission to have a minimum signal to noise ratio (SNR) to the receiver from
parent node j to child node k. This allows to have all the bits successful
received.

The last assumption will be better explained in the next section where is described
the packet success rate (PSR). We want it always equal to 1, which translates in
having no error during a transmission.

As most of the basic graph search algorithm, the source always belongs tho the
propagation structure, from the very �rst moment. Moreover, here it is assumed that
a connection between the source and the relay node has been already established at
the time when the situation is being analyzed. That means the relay node is already
receiving data form the source and thus r can contribute to the dissemination of the
message.

In a broadcast tree, a child node has one parent node, but in order to bene�t
from the multicast nature of wireless channel, a parent node may serve multiple
child nodes. In this situation, where a simple D2D network with three nodes is
considered, basically two type of transmission may take place:

� Unicast: it refers to a one-to-one transmission between a sender and a re-
ceiver. Doing that, the transmitter node establishes a di�erent unicast con-
nection for each of the destinations. The data must therefore be duplicated
and transmitted on each of the individual connections. This solution is shown
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(a) (b)
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uni

𝑃𝑠,𝑟
uni

𝑃𝑠,𝑖
uni

Figure 4.2: Possible connection available to communicate with node i: (a) unicast
solution; (b) multicast solution.

in �gure 4.2 (a). Here we see that two unicast connection are established be-
tween node s and node i where node r relay the information. The total power
expenditure of the network is therefore equal to

P tot = P uni
s,r + P uni

r,i

� Multicast: in this case the distribution of the information occurs simultane-
ously to a group of receiving nodes. This means that it is possible to transmit
the same message to multiple end-devices without the need to duplicate the
information to be disseminated (�gure 4.2 (b)). The total power the parent
has to spend for spreading the data to all its child nodes, considering that it
does not have to communicate with each of them individually, is simply equal
to the higher required unicast power and is given by

P tot = max(P uni
s,r , P

uni
r,i )

In this network we presuppose that an incentive for forwarding node is provided.
However, such a mechanism is not implemented in this work, but as we have seen in
section 3.2.1, many are the scheme proposed in other papers concerning this matter.
Here it is only supposed a reward, in the general sense, to be given to the node that
relays the message to other devices, so that it is always willing to spend its energy
and resources for this purpose. This has been done to obtain the best in terms of
total transmit power and interference in the network.

4.2 Problem Statement

Nearly all the studies analyzed in the previous chapter for data transmission in
wireless D2D network consider that, since there is a source having a set of packet
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to transmit, all the receiving nodes are empty (they did not receive any packet).
So, when they want to receive the information, they start receiving it at the same
time. In reality, instead, some node may start receiving the message sent by the
source and after other nodes may join the network. In this regard, we study exactly
the case where one node already started receiving the message (node r), then an
other (node i) comes and starts receiving from scratch. This situation is shown in
�gure 4.3.

We see that the source has a message of length L bits that has to be received by all
the other nodes. The relay node r has already downloaded part of the information to
which we have been making clear reference calling it Ldwn

s,r . As a consequence, there
is still a part to be received that corresponds to the remaining data to complete the
transfer. This has been denoted with Lrem

s,r and during the time needed to receive
such an amount of information we are sure the relay will not leave the network.
Only after receiving all the data r will be able to leave the network, but before
that happens it will remain an additional time that will depend on its probability
of staying.

s :

r :

(𝑅𝑠,𝑟 , 𝑃𝑠,𝑟)

L

𝐿𝑠,𝑟
dwn

𝐿𝑠,𝑟
rem

i :

Figure 4.3: Message propagation with the relay that has already received part of
the data.

The problem statement can be synthesized in three main points. So, we want
to �nd an energy e�cient way able to de�ne the network topology for a scenario
where:

1. A nodes arrives in the middle of an already going on transmission.

2. Such a node has to choose the relay node from which it has to receive the data
in order to minimize the total energy consumption in the network. Here the
alternatives available are either the source s or the relay r.

3. This is important because, analyzing the two situation, we see that:

� if node i chooses the relay, the latter may leave after the reception of all
the data. In this case, if node i is unable to receive the whole informa-
tion before r leaves, it has it has to get all the data from the source by
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initializing a new connection from scratch. This may lead to a waste of
energy due to the failure of the �rst transfer.

� if node i chooses the source, it is going to receive surely all the data
without any failure given by the disappearance of the parent node. Nev-
ertheless, this may be not the optimal way for minimize the energy con-
sumption, because if the relay has an high probability of staying node i
should choose r. In this case, therefore, there may be a loss of energy in
the situation where the power required to receive data from the source is
greater than that required to communicate with the relay.

From what has been described above, it is evident that we are looking for a
compromise on which node to choose in order to receive the message: always to get
the source without risk (perhaps not the most e�cient solution) or take the risk
(in the worst case of spending almost twice the energy needed for the transfer) and
choose the relay.

At this point it is necessary to introduce some parameters that we may refer to
later on during the work of this thesis.

4.2.1 Parameters

Network parameters are the key for the evaluation of a utility that will lead a node
in selecting the best action. With reference to �gure 4.3, we have already introduced
three important parameters, which are:

L : Length of the message in bit that has to be disseminated by the source;

Ldwn
s,r : Amount of information received (downloaded) by the relay at the time

when the node i joins the network;

Lrem
s,r : Amount of information remaining to the relay to complete its reception

at the time when the node i joins the network. It can be easy calculated
by subtracting from L the amount of already received data Ldwn

s,r :

Lrem
s,r = L− Ldwn

s,r .

Having such values available, it is possible to divide those di�erent amount of bits
by the rate of the channel between the two nodes involved in the transmission. Doing
this, we can compute, for now in a general form, the transmission time between a
transmitter node j and the receiver node k as

tTXj,k =
bj,k
Rj,k

(4.1)
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where the numerator represents quantity of information (bit) on which we are inter-
ested in knowing the transmission time and the denominator is simply the bit-rate,
known a priori, of the wireless medium between j and k. Obviously, the unit of
measurement is expressed in seconds, as we have that [bit]

[bit/sec]
= [sec].

Referring now to our model, therefore by considering the source node s and the
relay node r, the rate of interest to be put in the equation (4.1) is Rs,r. Furthermore,
by keeping this rate at the denominator, we can substitute bj,k at the nominator with
the values expressed by L, Ldwn

s,r and Lrem
s,r . In doing so, i.e. replacing these quantities

in formula (4.1) as in the order of writing, we obtain the parameters listed below:

ttots,r : Total time required by the relay node r to receive the whole information
L from the source s;

tdwns,r : Time corresponding to the one that was needed for the relay node r to
receive the amount Ldwn

s,r of data from the source s;

trems,r : Time required by the relay node r to complete the reception of the message
from the source. This is clearly the time needed to get the remaining data
Lrem
s,r .

For the sake of clarity, these parameters are shown in �gure 4.4 where it is studied
the case in which the child node i selects the relay node r as its parent node. In
the �gure it is possible to notice the introduction of other parameters indispensable
for calculating the utility. We are now going to analyze, separately, which variables
should be taken into account for each of the two alternatives available to node i to
receive the information. These are the choice of the source node s or the relay node
r under dynamic conditions.

I) Choose the relay

As a �rst option, let us assume that node r is chosen. It was previously described
that the relay will surely remain in the network until it receives the entire message.
This means that, by using the parameters just introduced, it will not go away for
a time equal to trems,r . Calculating that time was the main reason for applying the
formula (4.1). Moreover, by making the inverse of this equation, we can calculate
the amount of bits received during a given time. Indeed, it is now possible to obtain
how much information will be received by node i from the relay r during the period
trems,r by simply doing

Ldwn
r,i = trems,r ·Rr,i.

We are interested in this because such an amount of information is the one that
certainly will be received by i before that r leaves.
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𝑡𝑠,𝑟
dwn

𝑡𝑠,𝑟
remr :

i : 𝐿𝑟,𝑖
dwn

𝐿𝑟,𝑖
rem

(𝑅𝑟,𝑖 , 𝑃𝑟,𝑖)

s : L

Figure 4.4: Selection of the relay r for receiving the message. The source is
present in the network, but it is put in the background because node i does not
receive information from s.

Once the received quantity Ldwn
r,i has been calculated, we can derive the amount of

data remaining to node i to receive the entire message. This can be straightforwardly
computed by subtracting from L the percentage of data already downloaded Ldwn

r,i

by node i so that we have Lrem
r,i = L−Ldwn

r,i . To recap, the new parameters that have
been introduced in the last step are:

Ldwn
r,i : Amount of information that node i would receive with certainty from the

relay node r;

Lrem
r,i : Amount of information that would remain to node i to complete its re-

ception from the relay r.

Having got this far, we can follow the same reasoning applied earlier to calculate
the transmission times with formula (4.1) on the last two quantities we found. Then,
by considering the rate between the relay r and node i, that is Rr,i, we can compute

tdwnr,i =
Ldwn
r,i

Rr,i

and tremr,i =
Lrem
r,i

Rr,i

. (4.2)

These last two times, as we see in �gure 4.5, correspond to:

tdwnr,i : Time corresponding to the one that would be needed to node i to receive
the amount Ldwn

r,i of data from the relay node r;

tremr,i : Time required by node i to complete the data reception from the relay
node r. This would be the time needed to get the remaining data Lrem

r,i

after node r has �nished downloading the message and is therefore ready
to leave the network with probability (1− pstr ).
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st(𝑝𝑟
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Figure 4.5: Transmission times between node r and node i. Red indicates the
additional probabilistic time the relay remains in the network after its full reception.
The question mark indicates the uncertainty over the duration of that time.

This would mean that node i, to be able to receive successfully the remaining
data Lrem

r,i , it needs the relay r to remain in the network an additional time (after the
the transmission from s ro r is completed) at least equal to tremr,i . Such an additional
time, as stated so far, is stochastic and so depends on the probability pstr that the
relay node r stays in the network. We refer to this probabilistic period (red colored
in �gure 4.5) by denoting it with:

T st
r (pstr ) : Expected time during which the relay node r will stay in the network

after �nishing its reception.

Thus, in this simpli�ed model, analyzing the situation form the node i point of
view, the time that the relay node r remains in the network is given by the sum of
two quantities: a deterministic time tremr,i and a random time T st

r (pstr ), which will be
analyzed more in detail when the utility that node i gets, based on the choice made,
will be designed.

What is important to perceive from this model is that the smaller the amount of
data Ldwn

s,r received by r when node i wants to join the network, the greater will be the
quantity of information Ldwn

r,i surely received by node i during the deterministic time
tremr,i . As a consequence of this, the shorter would be the probabilistic time that node
r has to stay in the network after its entire reception to allow node i to download the
remaining portion Lrem

r,i of the message. This results in a greater chance for node i of
receiving all the information from the relay, since r may leave only during T st

r (pstr )
that, in this case, would be relatively short. Viceversa, the greater Ldwn

s,r (smaller
tdwnr,i and therefore the deterministic amount Ldwn

r,i ), the greater tremr,i , which means
that most of the information should be received during the stochastic time T st

r (pstr ).
Accordingly to that, the possibility of a failure increases. This is because node r
might disappear (leave the network) before that the large remaining portion of the
message is downloaded by node i. One of the main purposes of our work has been
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that of modeling, according to mathematical procedures, the circumstances just
illustrated, that is, when not all nodes begin to communicate from an empty state.
It is good at this point to overlook the complexity of partial information management
at the nodes of the network and focus on the two cases that basically can happen
in a situation like the one presented here. Furthermore, there is still the need of
properly specifying what happens when a failure occurs and what countermeasures
are applied. Essentially, observing the scenario shown in �gure 4.5, what can happen
is:

� if T st
r (pstr ) ≥ tremr,i , then the reception of the entire message from the ralay node

r to node i would be successfully completed (�gure 4.6). This is because the
parent node r did stay in the network a time large enough to compensate for
the time needed for node i to get the remaining part of the message.

𝑇𝑟
st(𝑝𝑟

st)𝑡𝑠,𝑟
dwn

𝑡𝑠,𝑟
remr :

i : 𝑡𝑟,𝑖
dwn

𝑡𝑟,𝑖
rem

(𝑅𝑟,𝑖 , 𝑃𝑟,𝑖)

s : L

Figure 4.6: Success: node r did not leave the network before the time needed to
accomplish the whole transmission with node i.

� if T st
r (pstr ) < tremr,i , then the parent node r leaves the network before that child

node i could receive everything it needs (�gure 4.7 (a)). When this happen,
the consequences are based on the worst case scenario: all the amount of data
received during the time tdwnr,i + T st

r (pstr ) is lost. Thus, it has been supposed
that the failure involves the entire loss of the information downloaded by node
i until the moment in which the departure of the relay node r occurs. As a
result, those data become useless and will only increase the network overhead.

In this situation, since all that has been received is discarded, node i
must start receiving the whole message from the source s again. We can see
that happening in �gure 4.7 (b) where the relay node r has already left the
network. To let the message be disseminated, a new connection with the source
is established. Neglecting the additional overhead required to set up the new
connection, we are sure that in this case no more failures can occur during
the transmission. The reason behind this is that the source is not subject to
mobility and so all the message will be surely received. Obviously, when the
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new connection takes place, network parameters will no longer be those used
during the �rst transfer from r to i that has not been successful, but those
characterizing the wireless medium between s and i which are the last two
remaining nodes in the network.

(𝑝𝑟
st)𝑇𝑟

st𝑡𝑠,𝑟
dwn

𝑡𝑠,𝑟
remr :

i : 𝑡𝑟,𝑖
dwn

𝑡𝑟,𝑖
rem

(𝑅𝑟,𝑖 , 𝑃𝑟,𝑖)

s : L

(a)

s : L

i :

(b)

(𝑅𝑠,𝑖 , 𝑃𝑠,𝑖)

Figure 4.7: Failure: (a) node r leaves the network before the time needed to
accomplish the whole transmission with node i; (b) a new connection with the
source s must be established to allow the message to be received.

Logically, the hope of the child node i is that the parent node r does not leave
the network for the period tremr,i , since in this case the relay has been chosen for
receiving the message. It needs to be pointed out that such a decision is based on a
well-de�ned criterion, that is, the utility that node i would get by choosing the relay
as its parent node, which would bring greater bene�ts to the network even taking
some risk.

All of the parameters needed for utility design have �nally been introduced. The
only missing step is a brief analysis of the simplest case that come to be present in
the proposed scenario: the direct connection to the source without passing through
the relay node. As there is nothing casual in the latter, the problem is reduced to
calculating the transmission time of the entire message between the source and the
node i. What will be signi�cant in the part we are about to study, however, is the
presentation of the formula for calculating the energy required to put in place the
the transmissions discussed so far and it is precisely on such a point that the work
will focus later on.

II) Direct connection to the source

The second option available to the child node i for receiving the message is to
choose the source s as its parent. In this case, all issues related to mobility are not
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present. The source sends the data that will be fully received with certainty. This
is because, as already mentioned, node s does not leave the network. The time to
receive the whole message is therefore deterministic and depends on the rate that
characterizes the channel between the two involved nodes. Such transmission time
is

ttots,i =
L

Rs,i

and it is simply calculated applying the formula (4.1) that has been used so far to
determine the other periods of interest. By giving it a more formal de�nition, we
refer to it as:

ttots,i : Total time required by the new node i to receive the whole information L
from the source s;

Considering for a moment the previous case, and precisely the one shown in the
�gure 4.7 (b), the time just expressed is exactly what is needed to retransmit the
message after the failure caused by the departure of the relay node r.

In the case of direct connection to the source, instead, the situation is that
illustrated in �gure 4.8. What we can see in the last scenario is that a new connection

s : L

𝑡𝑠,𝑟
dwn

𝑡𝑠,𝑟
remr :

i : 𝑡𝑠,𝑖
tot

Figure 4.8: Selection of the source for receiving the message. The relay is present
in the network, but it is put in background because it does not participate in the
dissemination.

with node i is established from the source and, in the meanwhile, the data transfer
between node s and node r is in progress. To make this situation happen, a new
unicast connection needs to be set up. It is not possible to exploit a multicast
communication from the parent to the two child nodes, because one of them was
already going on. The power used is therefore not the maximum between Ps,r and
Ps,i, but an average of the two until the relay has �nishes downloading everything.
The source needs so, for the moment, to begin a di�erent unicast connection with
node i (e.g. by picking a di�erent frequency from the one it is already using, or on

63



4 � Utility Design for Dynamic Environments: Single User case

the same transmitting medium by assigning cyclically to each of these predetermined
time intervals). To ensure a simultaneous propagation of the message to two nodes
without the need to duplicate the information, we have to wait for a new empty
participant, besides a node i, that wishes to connect to the network at the same
time node i does. This will be addressed in the next chapter, but what's important
here is that to make the child node choose the best solution is not trivial at all.

Now that both of the veri�able situations of our model have been analyzed in the
last two paragraphs, we are ready to explain why there has been so much interest in
calculating the transmission times. Having this knowledge it is possible to compute
the energy required for a transmission as the product between the power required to
transmit the data from a source of information j to a receiver k multiplied by the
time of the transmission:

Ej,k = Pj, k · tj,k (4.3)

The goal of this work is then to minimize the total transmit energy in the network,
which is given simply by the sum of all the actual expended energy after that all
the parent are selected so that the topology is de�ned. We aim to a achieve that by
trying to avoid failures given by the relay departure and providing the new node that
wants to join the network with an analytical model for making the best choice for
the good of itself and others in the network. All of this is based on an appropriate
design of the utility function which is the core of our optimization process.

4.3 Utility Formulation under Fixed Rate

conditions

In this section the utility function will be designed and all the necessary elements
for its formulation will be thoroughly studied. For now, the player of the game we
are interested in providing a methodology for a preference evaluation is only node i
(�gure 4.3). We know that the latter has to choose between receiving the message
from the relay (with the risk that the last leaves, but perhaps with the possibility to
get better performance) or from the source (no risk of failure during he transmission
given by the parent departure, but perhaps not the optimum solution in terms of
energy expenditure). It is assumed the relay to be a full duplex device, i.e. device
that can transmit and receive simultaneously, by supporting paired and unpaired
spectrum using frequency (FDD) and time (TDD) division duplexing operations as
a technical solution [51]. The ability to assign resources simultaneously for downlink
and uplink transmissions will allow an e�cient utilization of the available spectrum.
However, this approach increase the interference because of the simultaneous trans-
missions to di�erent directions. Thus, there is a need of a tradeo� between spectral
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e�ciency and area coverage that makes such a technology particular suitable for
small networks (as in our case) given practical self-interference cancellation lim-
its [52]. We have so, in the proposed scenario, a child node that has to make a
decision between two parent nodes. Following on from the game theory fundamen-
tals, it has been discussed in chapter 2 that a preference relationship (i.e. the ability
of a player to evaluate and compare the consequences associated with an action that
has to be selected within the player's action set) is represented by an utility func-
tion. Such a function has, therefore, the task of assigning a number, called utility, to
each option available to the player with the aim of being able to select the one that
brings greater bene�ts (higher utility value) to the decision maker and consequently
to the network.

The main purpose of this research part was on appropriately modeling these
preference relationships �nding at the end an analytical model able to justify the
action of each player. To do this, a probabilistic utility function has been de�ned
as a performance metric for a wireless packet-switched data user, which measures
the average information throughput over the air link powered by each unit of the
mobile node energy [bits/Joule]. It interesting to notice that, achieving a high SINR
level requires the user terminal to transmit at a high power, which in turn results
in low battery life. From this last consideration it can be easily seen that the two
magnitudes are in con�ict. A trade-o� can be quanti�ed (as in [43�45], by further
specifying the formula (3.4) ) by de�ning the utility function, of a child node k that
choses a node j as its parent node, to be the ratio of throughput achievable over the
link between them and the transmit power from node j toward node k, i.e.,

uj,k =
Tj,k
Pj,k

. (4.4)

Throughput is de�ned as the net number of information bits that are transmitted
without error per unit time (sometimes referred to as goodput). It can be expressed
as

Tj,k =
L

M
Rj,kf(γj,k) (4.5)

where M and L are the number of information bits and the total number of bits
in a packet (comprising the various overhead introduced by the OSI layered model)
to be transmitted, respectively; Rj,k and γj,k are the transmission rate and the signal-
to-interference-plus-noise ratio (SINR) of the transmitted signal from parent node j
and received by child node k, respectively; and f(γj,k) is the e�ciency function
representing the packet success rate (PSR), which is portrayed in �gure 4.9 as Γ,
i.e., the probability that a packet is received without an error.

The assumptions that has been made are: the �rst is that L andM are the same,
which translates in having all the packet of length L made by only information bits
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Figure 4.9: Packet Success Rate as a function of SINR

(the overhead introduced by the network communication layered model is neglected);
the second is that f(γij) ' 1, which means having a minimum power Pj,k between the
two communicating nodes that ensures a SINR such as to assert the last hypothesis.
The power needed to do that is exactly the one that characterizes the edges among
the nodes described in our system model. This, then, leads us to an ideal scenario
where every bit is successfully received by the receiver and as shown in 4.9 this can
be achieved assuming a γij ≥ 10. Having done these assumptions, the throughput is
going to coincide directly with the rate of the single hop link between the two nodes
j and k so that

Tj,k = Rj,k. (4.6)

and such a rate is precisely the one we have found specifying the wireless medium
among the nodes in our simpli�ed scenario.

Indubitably, all these suppositions make our environment clearly unreal, al-
though it is well-known that in wireless transmissions the number of errors given by
the air channel is relatively high. However, as a �rst step it was very worthwhile
pursue this approach, so that we could focus on the main innovative aspect which
is the introduction of probabilities which determine the dynamism of the system.

It is possible to notice that formula (4.6) is derived from formula (4.5) where L
and M simplify each other and the multiplication by f(γij) can be simply omitted
since it is assumed to be approximately equal to 1. Having done so, the formula (4.4)
can be rewritten as follows:

uj,k =
Rj,k

Pj,k
=

L

Pj,k · tTXj,k
(4.7)

where the rate has been simply substituted with L/tTXj,k and such a ratio is derived
from formula (4.1) used to evaluate the transmission time for the message to be
transmitted from the parent node j to child node k. Since L and Pj,k are �xed,
the only parameter on which we will operate is precisely the transmission time tTXj,k.
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It is important because such a time will be conceptually di�erent for the two cases
addressed in this project: certain reception when there is a connection to the source
and possible partial reception due to the mobility of the relay node.

The scenario is repurposed in �gure 4.10 where we �nd the introduction of the
probability of staying for every node of the network. The probability related to the
source has been omitted in the illustration being always constant and equal to 1.
The reason is that, as we know, the source is not subject to mobility. It is clear now
that the maximum rate achievable on every channel is for the case f(γij) ' 1.

We have seen earlier that in the moment in which we are going to analyze the
system, the connection between the source s and the relay r has already been es-
tablished. Obviously, this has been done to allow the node i to choose between a
static node (source) or dynamic node (relay).

s

r,

(𝑅𝑠,𝑟 , 𝑃𝑠,𝑟)

(𝑅𝑟,𝑖 , 𝑃𝑟,𝑖)

(𝑅𝑠,𝑖 , 𝑃𝑠,𝑖)𝑝𝑟
st

i ,𝑝𝑖
st

Figure 4.10: System model with the introduction of the probability that a node
stays in the network.

To give an idea of how the situation we are analyzing has been reached, we can
image that, from a game theoretic perspective, in a �rst step node r, alone, wanted
to joint the network. The latter has a certain probability of �turning o�� (suddenly
disappears from the network) represented by (1 − pstr ) ∈ [0,1]. We can see that it
has only node s as a parent node belonging to the broadcast tree, then the action
set of node r is composed only by Ar = {s}. Having only one choice in its action
set, no preference evaluation is needed. It will select surely the only option available
to it which will provide an associated utility us,r. At this point node r belongs
to the broadcast tree, which means that a connection can be established between
the two nodes. After that, a new node i wishes to join the network. Here the
situation is di�erent, because it can choose between two parents already connected
to the broadcast tree, since node i can be reached in a radium less or equal to the
maximum power of both node s and r. The action set, the choice of the node in
order to join the network, will be clearly composed by the two alternatives to i
available: Ar = {s, r}. Also here, each choice is associated with a utility, which are
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us,i and ur,i for node s and r respectively. The player's evaluation of the two utility
is so really important, since node i is going to select the bigger value among them.
It is necessary to say that probability psti is useless at this time, because node i has
just to receive and not relay the information. We know that probability comes into
play only when you have to forward the message once you have received it all. Here
node i not to children to look after, so psti could also be omitted in the last �gure.

The formulation of the utility function is therefore made for both alternatives
available to node i, which, according to the decision taken, will obtain:

� ur,i : the utility associated with choosing the dynamic node, that is, the relay
node r. This could mean achieving better performance because, being they
closer in the proposed model than the distance between i and s, the denom-
inator of the general formulation of the utility (4.5) would be smaller. The
statement on the distance among nodes has been made because, as we will see
in the chapter of simulations and results, node r is always positioned in an
area that is in the middle of i and s, otherwise it would make sense to always
choose the source. However, making this decision would lead to take the risk
that the relay leaves the network before the transfer completion with i and
consequently to lose the whole data received up to that moment. As we said,
in this last case node i has to establish a new connection toward the source
restarting again the transfer with the drawback of increasing the overhead of
the system.

� us,i : the utility associated with choosing the static node, that is, the source
node s. Such a connection would lead to greater power consumption (larger
denominator in formula (4.5)), but being sure to complete the transfer.

We are therefore starting the steps for the de�nition of both, by analyzing the
two cases again separately as was done during the de�nition of the parameters. The
connection to the static node (source node s), the simplest, will be analyzed �rst.
We will then pass to the dynamic node (relay node r).

As a �rst step for the utility formulation, it is assumed that all the rate among
the nodes in the simpli�ed scenario of �gure 4.10 are �xed and equal, which means

Rs,r = Rs,i = Rr,i.

It has been decided to do that in order to reduce the number of parameters
(variables) in the networks and for helping us to get more intuition into mathematical
procedures.

The case of variable rate will be also discussed in the future work direction, given
that part of the work for this circumstance has been made during this project. For
now it is worth to keep going considering the constant and equal transmission speed
for each wireless channel, so as to address more clearly the problem of the utility
de�nition associated with the choice of a node.
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4.3.1 Connection to the Static Node

The case where child node i chooses as its parent node the source s for receiving
the message is now examined. Since the source node s has probability of staying
in the network psts = 1, it will never leave the system. This means that once the
connection among the two nodes is established and the data transfer starts, the
latter will end successfully in a deterministic time equal to ttots,i . Knowing the size of
the message L, its transfer time ttots,i , and the power required for it to be successfully
received without errors, we can calculate the utility associated with choosing the
source as the parent node. This utility is the one introduced earlier, namely us,i,
and is calculated using the formula (4.7) so to get:

us,i =
L

Ps,i · ttots,i
. (4.8)

The transmission time at the denominator here is simply the one needed to node i
to receive the whole information L from the source s.

Observing the denominator carefully we see that it is the same as the product
de�ned in the formula (4.3) where the energy required for a transmission has been
introduced. Thus, thanks to that formula we can substitute at the denominator the
multiplication of the power by the transmission time and the utility can be rewritten
as:

us,i =
L

Etot
s,i

(4.9)

where Etot
s,i is the energy required for transmitting the entire data from the source

node s to the receiving node i.
Concluding, us,i is the numeric value that node i will get by choosing the source.

It will then be compared with the one it would obtain by choosing the relay so
that the largest of them may indicate to node i from which device to receive the
information.

4.3.2 Connection to the Dynamic Node

In the model proposed in this work it was said that the relay node leaves the network
after receiving the entire message from the source. This happens not immediately
at the moment when the reception is completed, but after a stochastic time T st

r (pstr )
that depends on the probability pstr that node r stays in the network. In this case we
are so studying the situation in which node i chooses as its parent node the dynamic
node r, which will leave the network after a random time once it has received all
the information.

Thus, as we see in �gure 4.11, in modeled scenario the time that the relay node
r remains in the network is given so by the sum of two quantities:
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Figure 4.11: Transmission times between node r and node i. Red indicates the
additional probabilistic time the relay remains in the network after its full recep-
tion. Green indicates the time needed by node r to complete its reception, which
correspond to the period it will surely remain in the system.

1) Deterministic Time: it corresponds to e�ective time remaining to terminate
a data transfer from the source node s to its child node r. Referring to the
parameters introduced in section 4.2.1, we know that when node i wants to
join the system, the relay node r has already downloaded a part Ldwn

s,r of the
complete message L. To download such a portion of data the relay needed
a time tdwns,r , which depends on the rate between the source and the relay.
Having this knowledge, it is possible to evaluate the deterministic time that
node r will stay certainly in the network to �nish receiving the message, which
corresponds to the �nite time trems,r . During the deterministic time, if node r it
is chosen as a parent by node i, the child is going to receive for sure a portion of
information Ldwn

r,i that depends on the rate between this two last nodes. This
allows to compute, as we have seen in formula (4.2), the time tremr,i remaining
to node i to �nish receiving the message, which requires node r to stay in the
system at least a time equal to the last one to avoid a failure. Note that trems,r
is always equal to tdwnr,i , but the quantity of information received by node r
and i may be di�erent depending on Rs,r and Rr,i. Having considered in the
assumption that the rates of those two hops are equal, we will see that in this
simplest scenario the amount of information Ldwn

s,r is equal to Ldwn
r,i . What is

important to predict is how likely node r is going to stay in the network to
allow node i receiving the portion of data out of the deterministic conditions.

2) Probabilistic Time: Once the transfer between the source node s and the
relay node r has been completed, the latter will remain in the network for a
further time T st

r (pstr ) that is probabilistic. In fact, such a probabilistic time
depends on the probability pstr that node r stays in the network. As we have
seen before, we need that T st

r (pstr ) > tremr,i to allow the node i receiving the full
message avoiding a failure, which will cause the entire message retransmission
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from node s.

Thus, for the child node is extremely important predict how likely the parent
node will remain in the network after that the deterministic time expires. Also
because the part of the data received surely during the �rst time represents the
potential overhead it is going to add in the network if the transmission during the
second time does not conclude successfully.

As a �rst step for the formulation of the utility ur,i associated to the choice of
the relay node r by node i, we try to de�ne the reception time of child i when it is
receiving data from parent r. This can be done, with the support of �gure 4.11, as:

trecr,i = trems,r + pstr · tremr,i (4.10)

which tell us that the �rst part of information Ldwn
r,i will be downloaded for sure

during the time trems,r , while the remaining data Lrem
r,i are going to be received with

probability pstr during the time tremr,i needed to complete the transfer from node r
to node i. Indeed, if we take pstr → 0, which means that the relay r goes to leave
the network as soon as its reception its completed, the time trecr,i in formula (4.10)
results to be simply equal to trems,r . If this happens, node i is going to receive only
the deterministic amount of information and then it will download only a part of
the message. Such a situation would lead to a failure (all the data Ldwn

r,i would be
lost) and a to the consequent retransmission of the whole message from the source.
Instead, if pstr → 1, which means that the relay node r will likely stay in the
network, we have that trecr,i = trems,r + tremr,i = ttotr,i and so all the data are gong to be
received by i from the forwarding node r. In this case the dissemination takes place
successfully, so as to obtain the best performance for the network.

Having seen how times can be related to each other, we are ready now to de�ne
the utility ur,i in terms of number of reliable bits transmitted per joule of energy
consumed:

ur,i =
L

Pr,i · trecr,i + (1− pstr )Ps,i · ttots,i
. (4.11)

The last formula de�nes at the denominator energy that would be spent in case
the relay node r is chosen by node i to receive the message of length L which is in
the numerator. Observing carefully the denominator, we can distinguish to main
components: a �rst energy Pr,i · trecr,i that is the one that would be expended during
the reception from node r to node i, to which it is added a second term, again an
energy, that would decrease the utility value if the relay node leaves the network
with probability (1 − pstr ). Indeed, the second component is exactly the energy
Etot
s,i = Ps,i · ttots,i we found in formula (4.9), which is the one that would be consumed,

in case of failure, for the total retransmission of the message from the source s to
node i. In the event of this last circumstance, all the energy used for the �rst transfer
attempt, that is during time trecr,i , would be wasted.
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To give an example of how the newly de�ned utility works, it is worth to play
again with the probability pstr that the node r remains on the network. Before doing
so, it is necessary to substitute the reception time of node i (equation (4.10)) in the
utility de�ned in formula (4.11) in order to obtain:

ur,i =
L

Pr,i(trems,r + pstr · tremr,i ) + (1− pstr )Ps,i · ttots,i
. (4.12)

Consider now the two extreme case for pstr → 1 and pstr → 0 to see what happen:

ur,i =


L

Pr,i(trems,r + tremr,i )
for pstr → 1,

L

Pr,i(trems,r ) + Ps,i · ttots,i
for pstr → 0.

(4.13)

The utility then provides di�erent values depending on the probability. To give
an exhaustive explanation of the results achieved, the two cases are going to be
discussed below:

� The �rst term represents the utility for the case where the relay node r does not
leave the network. In fact, we can see that the energy consumed for transmit-
ting the message of length L is equal to the one needed for the communication
between node i and the relay without taking into account the possibility of a
connection to the source. Such an energy therefore results to be the product
of the transmit power Pr,i by the sum of two times: the deterministic time
trems,r remaining to node r to complete the reception form the source and the
time tremr,i remaining to node i for receiving the missing portion of the data
from node r after that the latter �nished its reception. This is because, when
the �rst time of the sum expires, the remaining part of the message has to be
received during the second time that in this case is going to cover for sure the
entire reception, being pstr → 1.

� The second ratio, instead, shows the utility that would be obtained in case the
relay leaves the network strictly after its entire reception. Wee see here that
the �rst term of the sum Pr,i(t

rem
s,r ) represent the energy that is wasted because

of the data certainty received by node i during the deterministic time trems,r .
Unfortunately, as soon as the latter expires, the relay node r leaves the network
and so a new transmission is going to be established with the source node r to
receive the whole message. This corresponds to an additional expenditure of
energy that is represented by the second term of the sum Ps,i · ttots,i . Indeed, the
last is exactly the energy Etot

s,i required for the total transmission of the message
form the source to node i. Of course, the situation in which such a situation
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may occur should be avoided, because does not make sense to choose to receive
data from a parent node that will not ensure you a full reception. Thus, this
additional term at the denominator will decrease the value resulting as utility
in order to make a more wiser decision in the moment when the alternatives
are compared.

Everything presented so far in this section will be clearer when the utilities
associated with the choices of the parent node by the child node will be graphically
represented. Before doing so, however, it is good to provide the reader with a brief
summary of the topics addressed so far. This is done by resuming the parameters
of section 4.2.1 again and placing them in a wider view given by the knowledge of
the utility formulas. Resuming, at the moment when a new node i wishes to join
the network:

1. A relay node r as received part of the message Ldwn
s,r from a source of informa-

tion, which has a message of length L that has to be received by all the nodes
of the network.

2. The remaining portion of data to be received from the relay is so equal to
Lrem
s,r = L−Ldwn

s,r . This means that the relay r for �nishing receive the message
needs a time trems,r = Lrem

s,r /Rs,r that depends on the rate of the channel between
it and the source. This is the time during which the relay will certainty stay
on the network and after that such a period expires node r will remain in the
network an additional probabilistic time in which it may leave the network
with a certain probability pstr .

3. If the child node i chooses to receive the information form the relay r (dynamic
node), it will download during the time trems,r surely a portion of information
Ldwn
r,i . Then to complete the transmission, node i requires a time equal to

tremr,i = (L − Ldwn
r,i )/Rr,i = Lrem

r,i /Rr,i that starts at the moment when node
r �nishes to receive the message. Then, if the relay stays in the network an
additional probabilistic time (after completing its reception from the source) at
least equal to tremr,i the message will received successfully by node i. Otherwise
a failure occurs and node i has to receive the full message form the source,
wasting the energy consumed for the �rst communication with the relay. To
this choice is associated an utility ur,i described by the formula (4.12).

If the child node i chooses to receive the information form the source s (static
node), then all the information will be received for sure since the source never
leaves the network. To this alternative is associated the utility us,i described
by the formula (4.8). Thus, the best choice will depend on the network condi-
tions, like transmit powers, probability pstr , data-rate and especially how much
information the relay r has already downloaded.
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We are now ready to study under which network conditions the child node will
choose the static node as a parent rather than the dynamic node and viceversa.
This will be done by comparing the two utilities us,i and ur,i for the two speci�c
cases in order to understand which choice must be taken by a node that wants to
join the system. In addition, a graphic illustration of the trend of the utilities will
be provided according to the parameters imposed by the network so that we can
distinctly see and discuss the two cases.

4.3.3 Decision Criteria Analysis

The utility function, as widely discussed, associates a numerical value to each of the
possible alternative available to a given agent. This function, in case the dynamic
node is chosen by the new node of the network for receiving the message, depends
on the probability that the parent node remains in the network after �nishing its
reception. Therefore, before going to investigate how the decision criteria has been
addressed, we need to analyze the dynamics regarding the departure process of a
node in order to be able to evaluate the probability of staying in the network of the
relay node r. This has been done by designing such a probability in a way that a
generic node j leaves the network after a �nite time exponentially distributed with
departing rate λj, so that

T st
j ∼ exp(λj) = λj e

(−λj t)

where T st
j represents the further time that node j will stay in the network after

receiving the whole message.
As was mentioned at the beginning of this chapter, it has been just assumed

that a generic node j, instead of going away from the network, suddenly turns o�
when the probabilistic time T st

j expires. This has been done in order to simplify
the dynamicity issue so as to have instantaneous disappearances of the nodes and
therefore without the need of considering power decay that would take place if a node
moved away from the system. The moment in which this phenomenon occurs, that is
to say, the disappearance of a node j after a �nite time exponentially distributed with
parameter λj, depends on the level of mobility of the wireless environment. Under
no mobility condition, all links will stay active during simulation time (λj = 0).
With medium mobility, there will be a certain percentage of links between nodes
that will fail at certain time (λj > 0). With high mobility, there will be a large
number of these links between nodes failing during simulation time (λj � 0). The
source node s of the message is always assumed to be under no mobility condition
which means having λs = 0.

Considering the speci�c case of this work, i.e. the scenario shown in �gure 4.11,
the hope of the child node i, when it chooses the relay node r for getting the message,
is that the parent node (dynamic in this case) would not leave the network for a
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period of time at least equal to tremr,i . This corresponds to the probability of having
no departure events of the parent node during this last time frame. Such a condition
con be modeled, by assuming that the period the relay node r stays in the network
after its complete reception T st

r (pstr ) to be exponentially distributed with departing
rate λr, as a Poisson process. In fact, this type of stochastic process will count the
number of departures of the the relay node r during the time interval [0, tremr,i ]. With
the 0 point of the interval, in which we are going to count the number of leaving
occurrences of the parent, we refer to the instant where the parent node r completes
its data reception. Therefore, we are considering the period of time starting from
the moment when the deterministic time expires and, consequently, the probabilistic
time begins.

We de�ne then a random variable N(t), with t > 0, counting the total number
of events (departures of a parent node in our speci�c case) that have happened up
to and including time t. Referring once again to a generic node j of the network,
a Poisson counting process with rate λj has the property that N(0) = 0. The
probability of the random variable N(t) being equal to n, which means having n as
number of events in any interval of length t, is given by

P{N(t) = n} =
(λjt)

n

n!
e−λjt.

By applying last de�nition of the counting process N(t) to our scenario, we want
to count the number of departing events of the relay node r, if the latter would be
chosen by the child node i as a parent node, during the period of time of length tremr,i .
This can be modeled, as

P{N(tremr,i ) = n} =
(λrt

rem
r,i )n

n!
e−λrt

rem
r,i . (4.14)

which represents the probability of having n departure events of the relay node r
during the time required by node i to �nish receiving the message. Obviously, we
want no parent's departure to take place during such a time and so we are interested
only in the case where n = 0. Thus, the probability of having no departure of the
parent node r during the time interval of length tremr,i can be expressed as:

P{N(tremr,i ) = 0} = e−λrt
rem
r,i . (4.15)

This last result is simply obtained by substituting n = 0 in the formula (4.14).
Thinking carefully about the outcome coming from equation (4.14) we see that the
probability that the node r does not leave the network for a time tremr,i has exactly
the meaning of the probability that the relay stays in the network during such a
period of time. We can so agree on the fact that such a result coincides with pstr and
so we �nally obtain that

pstr = e−λrt
rem
r,i . (4.16)
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Having such a result allows us to rede�ne the total reception time of the child i
when it is receiving data from parent node r that we have seen in formula (4.10) in
order to get

trecr,i = trems,r + pstr · tremr,i =

= trems,r + P{N(tremr,i ) = 0} · tremr,i =

= trems,r + e−λrt
rem
r,i · tremr,i

(4.17)

It is possible to verify now that if λr → 0 (absence of mobility condition, relay
node r is going to stay always in the network) pstr → 1, so as to have the message
completely received by the relay. In this circumstance, by looking at formula (4.12),
there are no contributions in the denominator given by the connection with the
source because the failure in this limit case does not occur and (1− pstr )→ 0.

In the opposite case, for high environment dynamicity, it has been seen that
λ� 1. For the limit case λ→∞ we have that the connection with the source tends
to happen almost with certainty being (1− pstr )→ 1. Regarding the amount of data
that the child node could receive from the relay, we have instead that tremr,i → 0 and
consequently it would be lost because the message is incomplete. The situation is so
completely identical to what has been previously illustrated in the relations (4.13),
the only di�erence is that in this case the parameter to play with is λ, which has a
direct impact on the remaining probability pstr of the dynamic node in the network.
As we have seen in the formula (4.12), the numerator of the utility function is �xed.
This allows to say that to achieve greater utility it is su�cient to minimize the
denominator, which will subsequently named as the price that a new agent has to
pay to take advantage of the service o�ered by the parent node. Having said that,
the child node can select the utility value such as to have the lowest value of energy
in the denominator.

At this point it is possible to graphically analyze the results obtained in terms of
utility in function of the amount of data received (Figure 4.12) and the probability of
remaining in the network (Figure 4.13), and therefore of the λ parameter related to
environment mobility, of the node relay r. The utility value on the y axis is obtained
by placing the relay at a shorter distance from the new agent with respect to the
source, otherwise there would have been no advantage in choosing the dynamic node
since, at the same cost, the new user would have preferred always the static node
to avoid risks. The transmission power required at the two possible parent nodes to
have the message received without error, packet success rate (PSR) equal to 1, at
the receiver node i was set to Pr,i = 80 mW and Ps,i = 200 mW for the dynamic
and static node, respectively. The channel rate was set at 54 Mb/s and the message
size was chosen as L = 10 Mb. For the moment, the choice of parameters for the
numerical calculation of the utility is not the point to dwell on, since this analysis
has been done in order to have a clearer interpretation of what a new user might
face when it has to take a decision.
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By looking at Figure 4.12, it is possible to identify two main behaviors: the �rst
concerns the choice of the source, whose utility is constant and independent of the
percentage of data received from the dynamic node, while the second one is the
utility value that would be obtained by choosing the relay, which decreases as the
data received from this potential parent node increases. What we see is perfectly
in line with what has been described when the utility was de�ned, in fact we know
that the source will always remain in the network and therefore generate a value
of constant utility (blue curve) and independent of the introduction of the concept
of mobility. As for the relay, however, we have that it provides a greater utility
in the left side of the graph, so when it received a small part of the total amount
L. The reward then becomes lower when, at the moment of connection of the new
node i in the network, the node r has already received almost all the message. The
explanation of this phenomenon is given by the assumption made in the model,
which provides that a vertex of the graph cannot leave the network before having
received all the information. In fact, when the amount downloaded is small, it will
surely remain in the network for a longer time. This means that the deterministic
time is greater and therefore the probability of failure decreases. As a consequence,
the amount of data that must be received during the stochastic time is smaller and
since this period is shorter the probability of having a departure event is lower.
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Figure 4.12: Utility that the new node i would get in function of the data received
by the relay node r. The straight line represents the utility that the child node i
would get by selecting the source s as its parent node.

Summarizing, it follows that the less information has downloaded the relay, the
more it will remain in the network to complete the transfer. Thus the new node
will be able to receive a good part of the information during the secure permanence
time of the relay and only a small part remaining when the parent node will be in
the process of disappearing. If the relay has already received a good part of the
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message, instead, it is better to choose the source because the amount of data to
be received in the stochastic time is greater. A possible failure in this case would
be more likely to happen, which consists in having to receive, immediately after the
negative event, the whole message from the source. For this reason, under these
conditions, the new agent tends directly to receive the message from the node not
a�ected by mobility.

A further analysis aimed to verify the correctness of utility function is given by
the three curves obtained for three di�erent values of the λ parameter. We see that
if the mobility of the environment is high (lambda large, black curves in �gure 4.12),
the new node that wants to join the network tends to connect to the source for a
smaller amount of data received by the relay. This is because the new agent aims to
receive as much data as possible during the secure staying time of the parent node,
knowing that in this case the latter will leave the system with higher probability.
The opposite occurs when the mobility of the environment is less (lambda smaller,
red curves in �gures 4.12). Here the node prefers to connect to the relay even when
the latter has received more than half of the message. From an energy point of view
this is convenient, because as explained above, in this scenario the relay is placed
between the source and the new agent. Since the intermediate node in this case is
more likely to remain in the network after having completed its reception, the child
node is more willing to receive part of the message during the stochastic time of its
dynamic parent node.
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Figure 4.13: Utility that the new node i would get in function the departure rate
of the relay node r. The straight line represents the utility that the child node i
would get by selecting the source s as its parent node.

A similar behavior can be seen in Figure 4.13, where the curve representing the
utility has been obtained by varying the λ parameter. Here we see that as the
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environment becomes more dynamic, the new node tends to prefer a connection
to the source so as to receive the message. Obviously, also in this case the curve
showing the utility for choosing the source is constant, since it is always present in
the network. It is therefore con�rmed that the greater si the departure rate that
characterizes the environment (i.e. the lower the probability that the relay remains
in the network after receiving the whole message), the greater is the preference of
the new agent joining the network of establishing a connection with the source.
As always, it is preferred to receive a larger amount of data possible during the
deterministic time, that is the period required by the intermediate node to complete
its reception. The quantity of packets that the child node will surely receive may
be smaller if the staying probability of the dynamic node network is greater (may
be tolerated a good portion of data already received by the dynamic node). On the
contrary, the amount of information downloaded by the relay has to be small when
it is known this potential parent node can quickly disappear after completing its
operations (when the mobility of the environment is high).

Also in this case the utility curve obtained for the choice of the relay as par-
ent node was calculated for three cases, speci�cally for three percentages of data
downloaded from it when the new agent wants to join the network. The values
chosen, with respect to the total amount L, are 25% (red curve), 50% (green curve)
and 75% (black curve). We see that the threshold characterizing the change of the
choice between source and relay, corresponding to the point of intersection between
the decreasing and the constant curves, moves gradually to the left as the number
of packets received from node r increases. This is because, as already explained
in the analysis of Figure 4.12, the time that a node surely remains in the network
decreases when it has received many packets. So, for the same mobility value, if the
relay received a small percentage of the message, the amount of data that the new
agent will have to receive during the stochastic time decreases. Consequently, also
the time necessary for node i to complete the transfer, once the node r has received
the totality of data, is less and therefore also the probability that the parent node
leaves the network while the transfer is in progress decreases. To avoid failure, the
value of utility associated with the choice of the relay is greater when the latter
has to remain more time, with certainty, in the network. In conclusion, we have
seen how the values relating to the percentage of data received by the relay and the
mobility of the environment a�ect in a decisive way the formation of the network
topology.

4.4 Final remarks

In this chapter, the decision criteria for a node have been de�ned, that is to say
the utility value to be associated with each of the choices available in the action
set of a player. Of course, here we focused only on one agent and so we have not
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faced the competition between sel�sh players when they want to connect to the
network. However, the tool for obtaining the preferences has been de�ned, i.e. the
utility function, which will be used to achieve the best energy consumption in the
network. Later, in the non-cooperative game, we will see that the value of utility
that a player obtains will not depend only on its choice to connect to the source or to
the relay, and so from the only conditions of the network environment, but also from
the choices made by the other agents who want to join system. The formulation
described in this chapter concludes one of the core topics of this thesis, that is the
generation of an analytical model aimed to �nd the best conditions for an e�cient
energy consumption.
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Chapter 5

Interaction among Multiple Users

In this chapter, we examine the scenario where more than one player is going to
join the dynamic network. Until now we have considered the simple case where
only one node had to join the network. Now we have, instead, that two nodes want
to connect at the same time to the vertices already part of the graph. To model
this con�ict situation, where more than one child node has to select a parent node
simultaneously to build the network topology, game theory has been applied. The
choice of this tool was given by the fact that the decision taken at the moment of
the connection of a speci�c node inevitably in�uences the utility obtained by the
other participants. The utility, as already widely discussed, allows an agent to take
a decision, which will always look for �nding the one that brings greater bene�ts
to itself. In particular, it was calculated for two di�erent types of users: the �rst
where the nodes are reactive, in which panning tasks are tackled through a myopic
optimization-based approaches; the second is represented by the case in which the
nodes are proactive, then through the rules established by Expected Utility Theory
(EUT) and Prospect Theory (PT) they are able to take into account possible future
events.

In this game players are represented by the new devices that are added to the
system. The alternatives available to each of them will be represented by the choice
of connecting to the information source (static node) or to the a relay (mobile
node). As we have seen, the evaluation of the possible alternatives that will lead
to the construction of the topology depend on the mobility of the environment, the
power needed to establish a new connection, the rates of the wireless channels and
the amount of information already downloaded by the relay at the moment of the
new agents connection. In this section we will see that the choice of the single node,
aimed at minimizing the total energy of the network, will also be strongly in�uenced
by the decision taken by the other players who simultaneously wants to receive the
message.

Mechanisms for cost sharing have been introduced in order to �nd a solution in
the case more than one player has to share the price (energy expenditure) for the
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information forwarded by a parent node, which may be the relay r or the source s
in our case. This price is paid to the service provider in order to encourage it to
participate in the dissemination process of the common message, so that the best
energy-e�cient solution can be available. With this we want to avoid that a vertex
already part of the propagation structure refuses to spend its energy for spreading
the information when that may be the most e�cient choice.

As a solution concept for the decentralized model proposed in this project, the
Nash Equilibrium (NE) has been used. Precisely, it was decided to apply a method-
ology to research the NE for mixed strategies, which steps will then be illustrated
in detail.

5.1 Two players scenario

Consider a network composed of four nodes. The reference scenario is similar to
that illustrated in the previous chapter in Figure 4.3. A source nodes has to send a
message to all devices forming the network. Connected to it there is a relay node r
that, at the moment when the system is analyzed, has already received part of the
information from the source. In addition to a child node i, which as we know wants to
join the network, in the case we are going to study there is also another child node j
that has to choose a parent node for receiving the information. It is also assumed
that the two new nodes are synchronized (access to the communication medium at
the same time) and therefore time is divided into slots [53] [54]. They will begin to
receive the message simultaneously and this generates a con�ict situation.

s r

i j

s r

i j

s r

i j

s r

i j

(a) (b) (c) (d)

Figure 5.1: System model with all possible transmission scenarios for the two new
vertices i and j. (a): multicast connection from the source node s; (b): multicast
connection from the relay node r; (c) and (d): unicast connections when two di�erent
parent nodes are selected.

The choice of each of the two nodes to connect either to the source or to the
relay de�nes the type of transfer that will be established. In fact the latter can be
multicast, in the event where both the two new nodes choose the same parent node,
or unicast when they select two di�erent service providers for receiving the message.
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This decision has so a direct impact on the topology that will be formed, as well as
on the power levels necessary to realize the data transfers. The situation is therefore
that shown in Figure 5.1.

As we can see from the last illustration, we have four di�erent transmission
combinations, which lead to four di�erent power levels needed for disseminating the
message. A multicast transmission is established if both nodes, when they access
the system, choose either the source or the relay. In this case, the power needed
to realize the transfer is given by the maximum power level at the parent node to
communicate with node i and node j, which is max(P uni

k,i , P
uni
k,j ) where k = {s, r}

is either the source or the relay node. On the contrary, if the two new agents,
when they join the network, choose to receive the message from two di�erent parent
nodes, they are going to generate two unicast communications. In this case the power
imposed by adding the two child nodes i and j is equal to the sum of the two powers
P uni
k,r + P uni

k,i , with k = {s, r}, needed to establish the two unicast transmissions.
In this game theoretic framework, the action sets are Ai = {us,i, ur,i} and

Aj = {us,j, ur,j} for player i and j respectively and represent, in both cases, the
bene�t that each participant gets by selecting as its parent node the source s or the
relay node r. What happens is that, for example, if the player i decides to receive
the message from the static node, while the other player j for the same purpose
prefers the dynamic node, they will get di�erent utility with respect to the case in
which both choose the same parent node (the transmission power required for the
two cases are di�erent). For this reason, and as previously stated, the choice of each
player inevitably in�uences the utility value of the other.

Since in the considered scenario the relay node may forward the message that
it is receiving from the source to other devices, motivate it to participate in the
forwarding process is of fundamental importance. In such a network, in order to
incentivize the relay to act as a parent node for a data transfer, and therefore to
consume its energy, towards the child nodes that are added to the system, the
forwarding node is paid by its respective receivers. In fact, each vertex of the graph
must pay the cost for receiving the message that will be sent to it. The scenario can
so be seen as that of a network with di�erent message providers to whom a price
has to be paid, e.g. by a virtual currency [55], for the reception of information. The
main objective of this section is to distribute the source message through devices
that act as intermediaries through a fair cost allocation mechanism. By this we
mean that each child node pays a price, which for the objectives of this project
coincides with the energy that the parent node spends for the transmission of the
message, which must be as low as possible, so as to minimize the total expenditure
of energy in the network.

In order to measure how much power is imposed by adding the two new devices
to the network, which corresponds to the total cost to be paid by the two players
for receiving the message, three cost sharing functions have been used. Precisely,
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the chosen functions are: Equal Sharing, Marginal Contribution and Shapley Value.
They will be analyzed in the next paragraph. It will be seen how they have been
of fundamental importance in the calculation of the utility values necessary for the
de�nition of a preference among the actions available to a player, which subsequently
allowed to generate the payo� matrix.

5.2 Cost sharing functions

In the multi-hop data dissemination model for wireless networks considered so far,
we deal with sel�sh users. As already mentioned, we want the source's message
to be received by all the other nodes of the network. Due to the limits given by
the maximum power that a node can achieve in the realization of a transfer, there
is the need for intermediate nodes to resend the message toward devices that are
not one-hop-reachable. To incentivize the relays, in our case the node r only, to
forward the message, a forwarding cost is paid to the parent node by its respective
child nodes who want to receive the data. The price to pay is de�ned in this
project as the energy that the intermediate nodes spend for the retransmission of
the message [56]. Therefore, to reduce the energy required for the dissemination of
the message, the child nodes are required to make a decision that would make the
parent node consume (pay) as little energy as possible to forward the information. To
achieve this goal, such a cost must be shared between the receivers by means of cost
sharing function (CS) and this is possible only when the established transmission is
multicast. In fact, in multicast connections, a forwarding node has more than one
receiver and consequently the price to be paid to the relay can be divided among all
the devices that receive the message.

The non-cooperative game proposed here, aimed at reducing the total energy
consumption, requires that a child node i, when choosing the parent k from which
to receive the data , knows the power level P uni

k,i that the service provider should use
to establish the new connection. The level of energy required must be such as to have
an acceptable SNR at the receiver. In our case, since several child nodes can have
di�erent power level requests to get the information with as few errors as possible,
the fairness of the shared cost is a key issue for the receiving nodes. Since the price
to pay can be di�erent according to the project design (e.g. share the expenses
equally, proportionally or in other ways), in order to choose the most appropriate
sharing function fCSi (P uni

k,i ) for the user i requiring the service from node k, two cost
allocation properties were considered the most suitable for our case:

� Budget Balancing: an allocation is budget balancing if the sum of the allo-
cated costs equals total cost [57] [58]. In other words, this property means that
the service provider (parent node) recovers from its customers (child nodes)
the entire cost of providing the service (message forwarding). Formalizing is
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obtained that, if the total number of agents bene�ting from the service is Mk,
which belong to theMk set of nodes served by the same service provider k (in
our case either the source s or the relay node r), and the total price that the
service provider has paid is Ck(Mk), then:∑

i∈Mk

ck,i = Ck(Mk) (5.1)

where ck,i = fCSi (P uni
k,i ) il the price paid by the single user i to the service

provider k, which comes from the application of the cost sharing function on
the resource required to establish the connection. As we can see, the sum of all
the contributions paid by the Mk agents requesting the service compensates
the entire cost necessary for its fruition.

� Fairness: the notion of fairness has been de�ned within this project as a
principle of equity [59] that comes out from the fact that if a node consumes
more resources it has to pay a higher price. Some participants may complain
about an unfair sharing if the obtained solution, at the end of the decision-
making process, is achieved at the expense of some players. The price to pay
for each child node that wants to receive the message from its parent node
providing the service has to take into account the the actual utilization of the
resources that each of the new devices, to be added to the system, requires. It
is therefore de�ned a utilization criterion that takes into account the resources
necessary to be able to add a new agent to the system. The cost to be paid
ck,i should therefore be proportional to the amount of resources P uni

k,i that are
used by a parent node k to send the message to a child node i. This means
that the cost has to be distributed in function to the stand-alone worths of
each member [60] forming the coalition. A coalition is a group of users willing
to share the cost of a service. One of the players has not incentive to join the
group if, when it participates, pays more than when it is alone. In game theory,
when a node always stays in the group it is said to be in the core. Formalizing,
if the use of the resources P uni

k,i of one of the agents i is greater than the use P uni
k,j

of another user j to be served by the same service provider k, i.e. P uni
k,i > P uni

k,j ,
then the cost values obtained from the application of the sharing function must
be such as to have fCSi (P uni

k,i ) = ck,i > fCSi (P uni
k,j ) = ck,j. So, if a user consumes

more, for correctness, he has to pay more and viceversa. With this property
the perception of every single player about fairness is satis�ed.

As previously anticipated, three cost functions have been analyzed in the non-
cooperative game developed here: Equal Sharing, Marginal Contribution and Shap-
ley Value. At this stage, where the two of the most important sharing properties
have been de�ned, which will allow us to optimize the total power consumption of
the system by assigning the price to be paid for each new agent joining the network,
we are going to see which of them are satis�ed in the three approaches considered.
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5.2.1 Equal Sharing

The �rst cost sharing function considered is the Equal Sharing (ES). It is a classic
sharing rule where every player who receives a service pays the same amount to the
service provider. Therefore, the cost to be paid according to this criterion is equally
divided between users who choose the same source of information. Some variants
of this approach [61] introduce a threshold that a user has to overcome in order to
pay the same price as the other users of the service. This is because it is not fair to
become part of a group where there may be agents that require a far greater amount
of resources than others and the price to pay is still the same. In fact, as we will see
in the next example, one of the major limits of this rule lies in the fairness concept.
However, we chose not to introduce any threshold in our model to participate in cost
sharing, so each node can freely choose a service provider knowing that, regardless
of the amount of resources required, will pay the same price as all the other agents
with whom it shares the service.

In order to formalize this concept, let N = {1, . . . , n} denote the set of all
players in a game. Given the broadcast nature of the wireless channel, we know
that a forwarding node can transmit the message to a set of receiving devices. We
thus denote withMk the set of child nodes that receive the message from the same
parent node k. The total number of entries in theMk set is indicated withMk. The
total price Ck(Mk) that the Mk agents must pay to the service provider k to get
the data is equal to, since the channel is broadcast, the highest transmission power
required from its child nodes in Mk formula (3.2). Being pTxj (Mk) the total cost
to be paid to the parent node k to provide the service, according to the ES rule, a
child node i must pay a price ck,i = fESi (P uni

k,i ) shared with the other users in the
same setMk equal to [62]:

ck,i =


Ck(Mk)

Mk

=
pTxk (Mk)

Mk

if i ∈Mk,

0 otherwise.
(5.2)

So, if one players i of the total set of players N decides to take advantage of the
service provided by the parent node k, i.e. becomes part of the sub-set Mk ⊂ N ,
then must pay the same price as all the other nodes that have made the same decision
(cost equally shared among all the Mk nodes of the coalition).

We now apply this rule to the speci�c case of only two players. In the following
example, such a situation will be addressed, also because this speci�c number of
agents coincides exactly with the number of devices added to the system in our
scenario. In addition, it will be possible to verify the satisfaction of the budget
balancing and fairness properties that are particularly important for achieving the
minimum overall energy expenditure.
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Example 5.1. Consider the system model shown in �gure 5.1. Two child nodes i
and j have to receive a message from a parent node that can be either the source s
or the relay node r. We are interested in the case where both the two new agents
choose the same source of information. This is because, in the opposite case, two
unicast connections would be established and bothMs andMr sets of nodes served
by the two service providers would be composed by only one user. Observing the
formula (5.2), being only one the node served, it will simply pay the entire cost
(denominator equal to one), not obtaining any sharing advantage.

Now let us focus on the most interesting case for our study: suppose that both
nodes i and j choose to connect to the same parent node k (which can be either
r or s in our model), so as to have Mk = 2. The transmission that is established
is, according to these assumptions, multicast. We have therefore that the total cost
Ck(Mk) at the parent k in order to transmit the message to the two children compos-
ing the setMk is given by, according to formula (3.2), pTxk (Mk) = max(P uni

k,i , P
uni
k,j ).

The values P uni
k,i and P uni

k,j represent the power levels required by node i and node j,
respectively, to have an acceptable SNR at the reception. In other words, they are
the amount of resources needed by each child node (power that would needed if a
unicast communication is established between two communicating parts, as if each
of them connects alone to the network).

Assume to be P uni
k,i < P uni

k,j , with P
uni
k,i , P

uni
k,j > 0, which means that node i requires

a smaller amount of resources with respect to node j in order to receive the infor-
mation. Applying the Equal Sharing formula (5.2), such that ck,i = fESi (P uni

k,i ) and
ck,j = fESj (P uni

k,j ), we obtain that:

ck,i = ck,j =
Ck(Mk)

Mk

=
pTxk (Mk)

2
.

The two new nodes therefore pay the same price even if the resources needed to
communicate with i are less than those needed to communicate with j. This is
unfair, because as we see the allocation cost for a player is not proportional to the
real use of the resources necessary for its communication. This is negative aspect
because can generate tendencies in child nodes to disrupt the sharing concept, so
that and the end the total energy expenditure is more. The fairness property is not
so satis�ed.

On the other hand, by applying the formula (5.1), we obtain that:

ck,i + ck,j =
pTxk (Mk)

2
+
pTxk (Mk)

2
= pTxk (Mk) = Ck(Mk).

We see that the Budget Balancing property is met and so the parent node recov-
ers, from its child nodes, the entire cost of providing the service. This allows to
incentivize a node located in an intermediate position between two other devices to
forward the message, with the consequent bene�t of reducing the energy necessary
for the dissemination of a message common to all the nodes of the network.
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5.2.2 Marginal Contribution

Another method for cost allocation among the players of a games that allow side
payments to be made among the players is Marginal Contribution (MC). As before,
let N denote the set of all players and Mk ⊂ N be the set of those who share a
service provided by the same parent node k, with cardinalityMk. The Characteristic
value Ck(Mk) gives the maximum cost incurred by the set of users being part of
Mk. As we already know, it is equal to the highest transmission power requested
by the parent node to communicate with the child nodes who decided to receive the
message from it. According to the MC rule, the price to pay ck,i = fMC

i (P uni
k,i ) for

a node i in order to share the total cost with the other users served by the same
forwarding node is [63]:

ck,i =

Ck(Mk ∪ i)− Ck(Mk) if i ∈Mk,

0 otherwise
(5.3)

where Ck(Mk∪i) represents the new set of nodes that would be formed if the agent i
is added to those who chose to share the cost of a service given by the parent node k.
From this amount has to be subtracted the maximum cost Ck(Mk) that the service
provider would pay if node i was not part of the group served by it.

Also for this new sharing concept, it is good to provide the reader with an ex-
ample of its application in the case of only two players who compete to reduce their
price to pay for joining the system. The veri�cation of the fairness and budget bal-
ancing properties will be carried out, in order to highlight the substantial di�erences
with the previously studied cost function.

Example 5.2. Consider again the case in which two new devices want to join the
network formed by two possible sources of information: a static and a dynamic node
(Figure 5.1). As we have seen in the previous case, it is not of particular interest,
from a cost sharing perspective, the case in which the two child nodes choose to
receive the message from two di�erent parent nodes, i.e. one chooses the source
s and the other the relay r. In such a case two unicast transmissions would be
established. This means that the set of nodes served by the same service provider is
composed of only one node, thus there is no possibility of sharing the cost between
multiple agents (each player pays the entire cost of the received service). For this
reason, let us consider directly the case in which the two child nodes choose the
same parent node k = {s, r} for getting the data, so that a multicast transmission
is formed.

Also assume in this example that P uni
k,i < P uni

k,j , with P
uni
k,i , P

uni
k,j > 0, where these

two quantities represent the power levels required by each of the two nodes to receive
the common message with an acceptable SNR. Applying the formula (5.3) of the
MC we get, according to the resources actually used, that the cost ck,i = fMC

i (P uni
k,i )
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to pay for the user i is:
ck,i = P uni

k,j − P uni
k,j = 0

being the maximum transmission power requested at the parent node k from the
child nodes in Mk that of the node j, even when node i is added to the set. So,
if a node requires a lower power level than others in the sharing group, it has the
possibility, within a multicast connection, to receive the message without paying the
cost of the service. This turns out to be a fundamental principle for the reduction
of total energy expenditure in a system: given that the parent node to communicate
with both nodes must spend the energy required by j, it might as well not require
any additional cost to node i in order to receive the same information.

The price to pay ck,j = fMC
j (P uni

k,j ) for the other agent instead is:

ck,j = P uni
k,j − P uni

k,i > 0,

being the required power level to disseminate the information, when node j partic-
ipates in cost sharing, greater than the case in which to receive the message from
the parent node k is the user i only.

We say this taxing scheme to be incentive-compatible, which means that if a
node requires less resources to be able to join the system, it has to pays less. In
fact we have that ck,i < ck,j. Thanks to this result, a node is more incentivized to
share the costs for receiving a service in common with other users, which could bring
bene�ts in terms of total energy expenditure for the dissemination of the message.
The fairness property is so satis�ed, the players perceive a correctness given by the
proportionality of the assigned costs with respect to the actual resources needed
for adding a device to the system. However, this does not happen for the budget
balancing property, which is not met: the total amount of tax collected is usually
less than Ck(Mk) [64]. In fact, by applying the formula (5.1) we obtain that

ck,i + ck,j = 0 + P uni
k,j − P uni

k,i < P uni
k,j = pTxk (Mk) = Ck(Mk).

Thus, the forwarding node does not recover the full cost of the service that it has
provided. This could lead to a non-participation of the k node in the data dis-
semination process. As a result, it may be necessary to establish multiple unicast
connections, which may not be energy e�cient, since the broadcast nature of the
wireless channel is not exploited and perhaps the multicast solution would have been
the best.

We are therefore in the opposite case of what was examined in the ES rule, in
fact in the MC the properties have been respected in a reverse way with respect to
previous sharing rule. Each of the two cost functions studied so far has therefore
advantages and disadvantages: the �rst (ES) allows the parent node to get the total
cost of the service, but does not divide the expenses equally among the users; the
second one (MC), instead, allows the to share the costs for the use of resources
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proportionally, but it may not motivate a potential forwarding node to participate
in the data dissemination. We will see if with the third proposed approach it is
possible to combine the positive aspects of the two sharing methods described so
far, so as to compensate for the expenses of the intermediate node and to rightly
distribute the cost among the participants.

5.2.3 Shapley Value

The last solution concept used to allocate the cost that an agent has to pay in order to
take advantage of a service provided by a forwarding node is Shapley Value (SV) [65].
It is based on the marginal contribution of each player. This means that the price
that a player pays varies depending on the number of agents who choose the same
service provider. In our case, it will depend on the number of child nodes that
decide to receive the message from the same parent node. SV aims to distribute
the total cost of a service in proportion to the use of resources allocated for a user.
It therefore meet the fairness concept. It also has the goal, in our case, to totally
compensate for the cost paid by the forwarding node to deliver the message to those
users who have to receive it.

In wireless networks it is known that a device can send the message to more than
one receiver. As in the two previous cases, the set of nodes that selected the parent
node k so as to receive the information is indicated byMk, with a total number of
Mk entries. So, to a child node i that selects parent node k for getting the data, SV
assigns a cost ck,i to the new agent of the system that is dependent on the power
required by the child node i to receive the message with the fewest transmission
errors. This transmission power is denoted with P uni

k,i . Given the broadcast nature
of the wireless channel, the transmission power pTxk (Mk) that a parent node uses
to communicate with all its child nodes it is simply equal, in case of a multicast
transmission, to the highest power required by the nodes in Mk. By sorting the
requested powers of the nodes in Mk in the form of P uni

k,1k
, . . . ,≤ P uni

k,Mk
we obtain

that the cost ck,i = fSVi (P uni
k,i ) of a node i within the setMk of the agents served by

the parent node k, using the SV rule can be calculated as [56]:

ck,i =


i∑

j=1

P uni
k,j − P uni

k,j−1

Mk + 1− k
if i ∈Mk,

0 otherwise.

(5.4)

for which P uni
k,0 = 0.

As previously done, to verify which of the budget balancing and fairness prop-
erties are satis�ed, it is convenient to make an application of this approach in the
speci�c case of only two nodes that go to share the cost to be paid to the service
provider.
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Example 5.3. Suppose again that P uni
k,i < P uni

k,j , with P
uni
k,i , P

uni
k,j > 0, that is to say

the power level necessary at the parent node k to communicate with i is less than the
one needed to communicate with j. The system model in consideration is always the
one in �gure 5.1. The set of nodes served by the service provider k = {s, r}, as we
saidMk, is formed by both nodes i and j in the case considered for the calculation
of the ck,i = fSVi (P uni

k,i ) and ck,j = fMC
j (P uni

k,j ), which means that the case interesting
for us is when the transmission established is multicast. SV would coincide with
the unicast power required at the parent node if they choose di�erent forwarding
nodes. For this reason, we are always interested in the multicast case where there
is an e�ective cost-sharing. Applying the SV formula (5.4) we obtain that the costs
for the two nodes are:

ck,i =
P uni
k,i

2

ck,j =
P uni
k,i

2
+ (P uni

k,j − P uni
k,i )

where, since the transmission power pTxk (Mk) at the parent node k is equal to
the highest required from its child nodes in Mk, we have that pTxk (Mk) = P uni

k,j

corresponding to the total cost Ck(Mk) to be collected by the forwarding node to
provide the service.

We now evaluate which of the two properties, the most important for our project,
are met in this cost-sharing solution. Consider, as �rst, the budget balancing prop-
erty. Applying the formula 5.1 we see that:

ck,i + ck,j =
P uni
k,i

2
+
P uni
k,i

2
+ (P uni

k,j − P uni
k,i ) = P uni

k,j = pTxk (Mk) = Ck(Mk).

Since the sum of the individual costs of the child nodes bene�ting from the service
provided by the parent node k is equal to the total cost paid by the latter to satisfy
their requests, the budget balancing property is satis�ed. With the SV solution,
an agent is encouraged to forward the common message (to be a parent node) that
must be received by all the network devices. This positive aspect, which consists in
the forwarding availability of intermediate nodes, may allow a more e�cient energy
expenditure, since a voluntary participation of the relay node in the dissemination
process is not excluded.

Regarding the fairness property, we see that it is also satis�ed. In fact, the cost
that node i goes to pay ck,i to receive the message from the parent node k is less than
ck,j, which is the one paid by j for the same service. This is because the resources
that would actually be allocated for the addition of node i to the system, i.e. P uni

k,i ,
are less than those necessary for communicating with node j, i.e. P uni

k,j . What we
have seen is not particularly surprising, since, as shown in [66], SV is known as a
fair sharing method in cost allocation games.
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Now that three of the most known sharing cost functions have been analyzed,
we can compare the results obtained in terms of satisfaction of the two properties
considered most interesting for the purpose of this project.

The �rst cost function studied was ES, which, as we have seen, was able to
make recover to the forwarding the entire cost of the dissemination service, but
at the same time did not rightly distribute the cost of the operations among the
customers of the service. This could lead to a refusal by new devices that are added
to the network of the will to connect to the same service provider, as the costs
are not shared proportionally to the actual resources needed by each of them for
the communication. Such a situation is disadvantageous from an energetic point
of view, because when there is a tendency to select the same node for receiving
the information, guaranteed by the fairness property, the connections that form a
network are mostly multicast. Since it is convenient in wireless networks many times
for a message to be propagated via a multicast transmission, due to the broadcast
nature of the transmission medium, the �rst approach analyzed may not be the best.

In the second approach, namely MC, the multicast connections could lead to
free-riding nodes, i.e. some nodes can receive the information without paying the
cost of the service. This could lead to better use of resources and therefore to an
energy e�ciency improvement, but, as we have seen, the forwarding node could be
unwilling to participate in the propagation process. The reason is that the property
of budget balancing in this case is not satis�ed. Consequently, there may be cases
in which the optimal solution is not available given to the refusal of the forwarding
node in providing the service, since it will not receive the full cost for its delivery.

Given the limit shown by this second approach, a �nal solution has also been
analyzed. The SV in fact goes to compensate for the de�ciencies shown by the two
previous cost sharing functions. In fact we have seen that, in addition to recovering
the total cost of the service provided by the parent node, it allocates proportionally
the individual costs of its child nodes based on the resources actually used by them.
All players are so incentivized to share a service. Consequently, the choice a parent
node that establishes a unicast connection with the child node, of which the latter
must pay the full cost, generates no more interest. For this reason, the last solution
turns out to be, in wireless a environment, more e�cient from an energy optimization
perspective. Given the two advantages seen in the analysis of the last approach,
when we will discuss the results obtained at the end of the work presented in this
thesis, the SV will be chosen as a cost function to perform the simulations.

5.3 Payo� matrix derivation

As we have seen in Chapter 2, whenever a game is proposed to us, we can build a
payo� matrix. It contains all the rewards for the various choices that players have
in their strategy sets. In our speci�c case of 2 players, we will have two matrices.
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Each entry of the structure will refer to one of the four topology combinations that
can be formed in the proposed network scenario. In this regard, referring to the
system model in �gure 5.1, the �rst payo� can be the one obtained in case both the
players i and j choose the source s; the second can be the reward that a player gets
when it chooses the static node s and the other the dynamic node r; the third is so
the one that the participant gets when it chooses the relay r and the other selects
the source s; while the last gain refers to the case where both players choose the
dynamic node r in order to receive the message.

In game theory, the two payo� matrices, one for each player, are merged together
in one payo� matrix. By doing this, we obtain a single structure where each entry
is composed of two values, called utilities, which correspond to the bene�t obtained
in case a speci�c choice is made: one for the row player, which is node i given the
model considered up to now, and one for the column player, node j in our case.

What has been brie�y said can therefore be summarized in table 5.1 (a) where
we see the strategy sets of the two players Ai = {s, r} and Aj = {s, r}, for player
i and j respectively, to be composed by the possibility of selecting the source s or
the relay r to receive the message. To each decision made by them is associated a
utility value ul(al, a−l), which depends (section 2.2.2) on the strategy al ∈ Al picked
up by one player l = {i, j} and the action a−l selected by the other participant.
The rewards values that make up the matrix come out from the utility function
designated in Chapter 4 for a single device that wants to connect to the network. It
will now be adapted for the case in which two players participate to the game, i.e
the two nodes i and j that want to join the system.

(a) (b)

Table 5.1: A two row, two column strategic game. (a) Payo� matrix: each entry is
the utility that would be obtained (preferably the highest) according to the strategies
selected by the two players. (b) Cost matrix: each entry is the cost that would be
paid (preferably the lowest) according to the strategies selected by the two players.

The fundamental step in this process of obtaining the utilities for the two-player
model is made by introducing in its calculation the cost sharing functions (CS)
illustrated in the previous section. It is therefore de�ned fCSl = {fESl , fMC

l , fSVl }
the cost function applied to the power level P uni

k,l required by a node l to receive the
information from a forwarding node k, which as we have seen correspond to the price
to be paid for the service, and it can be Equal Sharing (ES), Marginal Contribution
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(MC) and Shapley Value (SV). It is not important for the time being which is
speci�cally used in the calculation of utilities, but it is important to know that the
values on which it is applied come out of one of the three previously discussed cost
sharing methods.

Referring to the utility function de�ned in formula (4.7), which represents the
starting point to make a new agent choose the forwarding node, we see that the
numerator is always constant. In fact, the amount of data to be sent is always the
same. For this reason, from this moment on we will only refer to the denominator
of this function de�ning it as a cost, on which the cost sharing function will be
applied, so as to obtain cl(al, a−l). It so represents the price to pay for a node
l = {i, j} to access the network that depends on the strategies picked up by the
two players and minimize it corresponds to obtaining greater bene�ts for the sel�sh
player. The choice of an agent, at this point, will be made not by trying to maximize
the utility obtained when an action is selected, but in order to minimize the costs
that it entails. Similarly to the payo� matrix, the cost matrix (Table 5.1 (b)) has
been de�ned, which reports the price to be paid for every possible action available
to the players. In this case the decision that will bring greater bene�ts to the agent
will be the one corresponding to the lower cost value.

In addition to the introduction of the cost sharing functions for the de�nition
of the analytical model that allows a node to make a decision, i.e. the cost (from
now on the cost matrix will be considered), two classes of users have been de�ned.
The price to pay must therefore be calculated based on the type of player that is
added to the system. The two classes of agents considered are: reactive user and
proactive user, which will then be individually investigated. They have been de�ned
so as to compare the total energy required to disseminate the message based on the
decisions that a node can make for the creation of the network topology.

5.3.1 Reactive user

Reactive users are those who, when selecting an action available in their action set,
do not take into account any future failure that may occur once the decision has
been made. They are therefore reactive, which means they will be forced to react to
the occurrence of a negative event that had not previously been taken into account.
The type of approach to the problem is de�ned in the literature as myopic. A user
who follows myopic rules looks only at the current state of the system and not at
the possible evolutions to which the latter may face.

The cost function de�ned in this case, referring to the system model illustrated
in �gure 5.1, does not take into account a possible disappearance of the dynamic
node r. At the time of the decision of the parent node to which the child node must
connect, the myopic user simply searches for the lowest cost, i.e. the power required
to receive the message, to be paid at the current time. Thus, nodes i and j will look
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primarily at the respective P uni
k,i and P uni

k,j , respectively, where k is the forwarding
node they want to connect to, that may be either the static node s or the dynamic
node r. Basically, the two nodes see the network as static, since it does not consider
the mobility of the environment and the consequent probability that a device other
than the source remains in the network.

In order to de�ne the cost, consider the well known utility function (formula (4.4))
found in the literature that for a unique child node i to be added to the network is
expressed as uk,i =

Tk,i
Pk,i

when it chooses k as forwarding node. It can be rewritten in
the form seen in formula (4.7) where it is clearly seen that the numerator is constant
( uk,i = L

Puni

k,i ·t
TX

k,i
) and for this reason we will no longer refer to it. To obtain the cost

that has to be shared among the two user, we apply the CS function on the price to
be paid that in our case is equal to the transmission power requested at the parent
node k present in the denominator of the utility function, so we have:

cl(al, a−l) = fCSl (P uni
k,l ) · ttotk,l (5.5)

where ttotk,l would be the time needed to transfer the whole data without failures. We
so de�ned the cost cl(al, a−l) that a child node l = {i, j} (can be agent i or j when
both simultaneously choose to join the network ) has to pay to receive the message
from a parent node k, which depends on the decision made by both the participants.

As we know two main situations can occur: either both choose the same parent
node (multicast transmission) or they choose di�erent information sources (two uni-
cast transmissions). In the study of the CS functions we have seen that they make
sense only when the parent node k serves more than one child node at the same time,
otherwise the cost to be paid is not shared among multiple entities, being the set of
agents served by the parent node Mk composed of a single node. For this reason,
the CS function is actually working when the connection is multicast, which means
when both players choose the same parent node (cl(s, s) or cl(r, r), with l = {i, j}).

We must not confuse the value fCSi (P uni
k,i ) and fCSj (P uni

k,j ) with the real power
consumption in the network. The CS function is applied only in order to obtain the
cost value that in�uences the choice of a player, who aims at the smallest possible.
The power actually used, as well known, when choosing the same forwarding node, is
pTxk (Mk) = max(P uni

k,i , P
uni
k,j ). Thus, the formula (5.5) provide costs shared between

the two users only when the decision they made leads to the establishment of a
multicast connection.

In the opposite case, when the two agents choose two di�erent service providers
(cl(s, r) or cl(r, s), with l = {i, j}), the cost function loses its meaning so as to have
fCSl (P uni

k,l ) = P uni
k,l and the price to pay for a user l is simply cl(al, a−l) = P uni

k,l · tTXk,l .
Since here there is no tax sharing to obtain the service, the power value that appears
in the formula coincides with the resource actually spent for the addition of a single
node in the system.
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In conclusion, it is now possible to see clearly that the calculations for obtaining
the entries forming the cost matrix have been made not taking into account the
probability of a node to remain in the network. This is because, as mentioned
before, a myopic user does not consider the event that the service provider may
leave. It only aims to minimize the energy spent at the connection time.

The behavior of these users re�ects most of those seen in the literature (Chap-
ter 3), where most of the networks taken into consideration were static. It was
decided to consider in this situation so as to have a benchmark to compare how
much energy can be saved when a node, at the time of connection, already considers
the possibility of some future negative event. In the subsequent case study, in fact,
the nodes are proactive and the cost formula designed for them will therefore take
into account the dynamism of the environment.

5.3.2 Proactive user

When proactive users are added to the system, the dynamism of the network envi-
ronment becomes the key for the calculation of the costs associated with the choice
of the single agent. They, therefore, instead of myopically overreacting to a negative
event that may occur in the future, take into account such a possibility already at
the time when the selection of the node from which to receive the message is taken.
According to this model, child nodes consider, within the calculation of the cost as-
sociated with a speci�c action available to them, the possibility that the forwarding
node may suddenly leave the network.

For what concerns the connection to the source, there will not be substantial
di�erences compared to the case seen in the Reactive User, since they see the en-
vironment as static and the source in any case never leaves the network. Indeed
we have that, when both players choose the static source s, the cost for the user
l = {i, j} is simply (from formula (5.5)):

cl(s, s) = fCSl (P uni
k,l ) · ttotk,l .

Instead, when a user chooses the source s and the other selects the relay r, there is
no longer a share to be done on the cost. Under this condition, the price to pay for
the user who decides to receive the message directly from the source s is

ck,i =

{
ci(s, r) = P uni

s,i · ttots,i
cj(r, s) = P uni

s,j · ttots,j

where the �rst cost is obtained for the case in which such user is i (as we see j selects
the dynamic node), while the second one is for user j (and i chooses the relay r).
Note that the source s is at the �rst term in the cost brackets if the player who
chooses it is i. The reason is that it is the row player. For the column player j the
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choice is represented by the second term in brackets, which allows to address the
price to be paid into the cost matrix.

The main di�erence concerns the connection to the dynamic node, which, as we
know, has a certain probability of remaining in the network and may not be able to
transfer the whole message before its disappearance. For this reason, the starting
formula from which the cost that a child node must pay is the one described in
formula (4.12) for the dynamic forwarding node (relay r). Being the numerator also
in this case constant, the cost is de�ned as the denominator of that formula, which
is reported below for a unique user who wants to join the system:

cr,i = P uni
r,i (trems,r + pstr · tremr,i ) + (1− pstr )P uni

s,i · ttots,i (5.6)

The value cr,i represents the price that a new child node i, if it is the only node to
be added to the network, must pay to the relay node r for receiving the message.

We are now interested, obviously, in the case where the agents who have to
compete in order to get the service are two. To this end, the cost sharing mechanism
that has been formulated in the previously studied CS functions must be integrated
into the last formula. So, as for the case of reactive users, also here the price for
the service can be shared when both new users choose the same service provider
(musticast transmission).

Contrary to the previous case, however, it is not possible to apply the cost sharing
function directly to the formula (5.6), because a further subdivision of users has to
be done when they are proactive. In fact, it is possible to identify two classes of
agent that do not address the problem myopically: passive user and active user.
The main di�erence between the two lies in the fact that active users interfere with
the choices made by the underlying system design, while the passive ones do not
a�ect such a decision. By this we mean that the model to follow for the choice of
a passive user is the Expected Utilty Theory (EUT), while the decision taken by
an active user, who has an unbalanced perception between losses and gains at the
time of decision, is based on the Prospect Theory (PT). The cost function, which
provides the values that make up the matrix with which a user can evaluate his
preferences, has therefore been rede�ned for these two types of users.

I) Passive user

The approach to be taken in the case of a passive user for the cost de�nition,
on which the player has to make an assessment in order to come to a decision,
is fundamentally the one used in Chapter 4. In fact, according to the EUT, the
decision weight depends linearly from the probability of each outcome occurring.
In our case, the numerical value associated with the alternatives that a player has
available depends on the probability that the relay node leaves the network, without
this expectation being altered somehow by the user's perception.
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The weight attributed by the individual to the probability of occurrence of the
negative event, i.e. the relay disappears so as to receive the message from the source
from scratch, re�ects a linear function, which allows the rational agent to make
optimal decisions.

Consider as �rst the case in which both the players i and j decide to receive the
message from the relay node r. In this case we de�ne the cost that a passive user
l = {i, j} has to pay to the forwarding node r as:

cl(r, r) = fCSl (P uni
r,l )(trems,r + pstr · tremr,l ) + (1− pstr )fCSl (P uni

s,l ) · ttots,l (5.7)

where the CS function chosen to assign the price to be shared among the users
receiving the message from the same forwarding node, i.e. the power requested at
the parent node for the service to be provided, can be ES, MC and SV. We can
see that the cl(r, r) cost, with l = {i, j}, has been simply obtained by applying the
CS function on formula (5.6) and this was possible because in the previous chapter
the approach used to obtain the utility function was, as in this circumstance, EUT.
It is interesting to notice that the CS function is also applied if the two nodes fail
and have receive the message from the source (fCSl (P uni

s,l )). This is because if the
communication with the relay fails, both must at the same time receive the message
from the static node and this allows, since they are synchronized, to share the new
cost with the source.

As we see the CS application makes sense only when the two players choose to
get the data from the same parent node, because if they connect to two di�erent
information sources (no sharing possible) we simply have for the two player i and j
that {

ci(r, s) = P uni
r,i (trems,r + pstr · tremr,i ) + (1− pstr )P uni

s,i · ttots,i ,
cj(s, r) = P uni

r,j (trems,r + pstr · tremr,j ) + (1− pstr )P uni
s,j · ttots,j .

We have thus seen how the cost function for a passive user is obtained according to
the principles derived by the Expected Utility Theory.

II) Active user

An active user acts by limited rationality and therefore its purpose is not to look
for the optimum, as it was for the case of the passive user, but rather is to look for
satisfactory solutions. It interferes with the decisions made by the underlying system
design, in fact it tends to overestimate the small probabilities and to underestimate
the medium or high ones.

The relationship between the probability of occurrence of an event and the weight
attributed by the individual to such a value is not linear in this case. The model
that allows the de�nition of a cost for this speci�c type of user is the Prospect
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Theory (PT) (section 2.1.2), which induces the agent to a decision-making process
that does not necessarily lead to the highest utility (or lower cost as in our case).

In order to assign a subjective weight to the expectation of a user about the
realization of an event, PT uses a Probability Weighting Function (PWF) de�ned
as w(p) = exp(−(−ln p)α). Because of this function an option is not multiplied by
the probability of occurrence of the option itself (as stated by the EUT), but for
the value obtained through the PWF, which overestimates the unlikely events and
underestimates the likely ones.

In addition to the distortion introduced by the PWF, a further Asymmetric Value
Function (AVF) is used to de�ne the cost that the player must pay to participate in
the game. Such a function allows the passive user to be risk averse, which means the
value of an option is not calculated in absolute terms, but compared to a reference
point that is the basis for understanding whether the decision taken leads to gains
or losses. In the PT, the AVF makes a player to overestimate the losses (it makes
them feel ampli�ed) compared to the gains, so that the user tends to avoid the most
unfavorable situations. We will so refer only the the loss side of the AVF, de�ning
it as v(x) = Λ(x)γ.

To calculate the cost that an active user has to pay for getting the service, it
is not enough in this case only to apply the CS function to the formula (5.6), but
we also need to consider how the PWR and the AVF in�uence the decision-making
process. If two vertices have to be added to the graph, the cost that a new agent l
(active user, which can be either player i or j) pays to the relay r to receive the
message, in case the other child node also selected the dynamic node as its parent
node, is:

cl(r, r) =fCSl (P uni
r,l ) trems,r + w(pstr ) · v(fCSl (P uni

r,l ) tremr,l )+

+ w(1− pstr ) · v(fCSl (P uni
s,l ) ttots,l ) =

(5.8)

=fCSl (P uni
r,l ) trems,r + e[−(−ln p

st
r )α] · Λ[fCSl (P uni

r,l ) tremr,l ]γ+

+ e{−[−ln (1−pstr )]α} · Λ[fCSl (P uni
s,l ) ttots,l ]

γ .

As was widely discussed in section 2.1.2, the parameters introduced by the PT
model for the calculation of costs are: 0 < α ≤ 1 is the probability distortion
parameter, which reveals how the subjective evaluation of the user distorts the
objective probability (smaller α means stronger distortion); Λ > 1 is the loss penalty
parameter, which is going to amplify loss perception of the active user (larger Λ mens
that it is more risk-averse); 0 < γ < 1 is the risk parameter, which makes the loss
side of the value function more convex (i.e., the virtual operator is more risk-seeking)
when gamma approaches to zero and viceversa.

Also in this case, as it was for the previous types of user, the application of the
CS function only makes sense if the connection established between the parent node
and the two child nodes is multicast. As a result, if the two players choose to receive
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the message from two di�erent service providers, the price can not be shared and
the costs result to be:{

ci(r, s) = P uni
r,i · trems,r + w(pstr ) · v(P uni

r,i · tremr,i ) + w(1− pstr ) · v(P uni
s,i · ttots,i ),

cj(s, r) = P uni
r,j · trems,r + w(pstr ) · v(P uni

r,j · tremr,j ) + w(1− pstr ) · v(P uni
s,j · ttots,j ).

which means that two unicast connections are established. Finally, we got how PT
can be used to model the subjective perception of the active user that in�uences the
decision-making process for building the network topology.

The procedures for obtaining the values that form the cost matrix have therefore
been illustrated. It must emphasized that those costs are only needed to make a
player select the action that could bring the highest bene�ts to the sel�sh players.
It is true that the cost is de�ned as the power that a parent node must spend to
serve its child nodes, but in the decision-making process it is seen only as a price
to be paid, not as the real power for resource allocation. Only after the decision
has been made, and consequently the network topology is formed, it is possible to
proceed with the calculation of the total energy spent for the dissemination of the
common message.

In conclusion, the decision driven by wanting to minimize the costs that have
been de�ned in this section will allow the child nodes to establish the actual connec-
tion with the respective parent node, which, thanks to this incentive, is motivated to
forward the message as well. This decision-making process was modeled in order to
achieve the most e�cient energy consumption once the topology has been de�ned.

5.4 Solution of the game

The most important solution concept for a non-cooperative game is the Nash equi-
librium (NE). As we have seen in the study of game theory (section 2.2), in some
cases it is not possible to determine a NE in pure strategies. However, it has been
shown that (theorem 2.2) every game with a �nite number of players who have a
�nite set of possible actions to be selected has a mixed NE. For this reason, in the
model developed in this project, where the participants in the game are two and each
of them has a total number of actions equal to two, a NE has been found on the basis
of a stochastic behavior. In this way there is the certainty of reaching a solution,
so as to have the basis to be able subsequently to carry out simulations aimed at
showing the results achieved by means of the model illustrated so far. It is therefore
necessary to identify the probabilities that indicate how often a player decides to
perform an action instead of an other, so that the NE can be expressed through
mixed strategies. In fact, formally a mixed strategy corresponds to a probability
distribution on the strategies available to the player.
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In order to simplify the notation in the mathematical passages that will subse-
quently be presented, from this moment on we refer to the two new agents i and j
that want to join the system as player 1 and player 2, respectively.

The procedure followed to obtain the frequency with which a player tends to
select a speci�c action is shown in Example 2.10 (battle of sexes). The strategy
pro�le {q1, (1 − q1)}, {q2, (1 − q2)} so represents the NE in mixed strategy. The
values of q1 and q2 represent the probabilities with which the �rst and second play-
ers respectively choose the �rst action (in our case the preference of receiving the
message from the static source s). Accordingly to that, (1− q1) and (1− q2) are the
frequency with which player 1 and 2 choose the second action (that is, the reception
of the message from the dynamic node r).

To be able to compute q2 and (1 − q2), player 2 must set its probabilities in
such a way as to make player 1 indi�erent between his own two actions, namely the
connection of to the source or relay. This is obtained, with reference to the payo�
matrix in table 5.1 (a), following the mathematical steps below:

u1(s, a2) = u1(r, a2)

u1(s, s)q2 + u1(s, r)(1− q2) = u1(r, s)q2 + u1(r, r)(1− q2)

q2 =
u1(r, r)− u1(s, r)

u1(s, s) + u1(r, r)− u1(r, s)− u1(s, r)

where a2 ∈ A2 = {s, r} is the action selected by column player 2, which can select
either the source or the relay as its parent node.

The same has to be done by the other player as well. Indeed, to calculate q1
and (1− q1), player 1 has to make player 2 one indi�erent among the actions at its
disposal. The action selected by the row player is denoted with a1 ∈ A1 = {s, r}.
Similarly to what has be done for player 2, the frequency with which player 1 selects
the �rst or second option is obtained as:

u2(a1, s) = u2(a1, r)

u2(s, s)q1 + u2(r, s)(1− q1) = u2(s, s)q1 + u2(r, r)(1− q1)

q1 =
u2(r, r)− u2(r, s)

u2(s, s) + u2(r, r)− u2(r, s)− u2(s, r)
.

The procedure illustrated so far for obtaining q1 and q2 is valid when the two
players want to get the greatest bene�ts by choosing the highest utility that a certain
choice entails. Since in our case the players have to pick up the strategy aimed at
minimizing the price to be paid to the forwarding node (the lowest possible value in
the cost matrix), the values of ql and (1−ql), with l = {1,2} have to be interchanged.
This simply means that q1, once obtained as shown above, becomes the probability
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with which the player 1 chooses the second action (connection to the relay, before
was the source) and (1−q1), consequently, will be the frequency with which player 1
is going to select the �rst action (connection to the source, before was the relay).
The reason for this a change is simple, because if before a player was selecting, for
example, with a higher frequency the action providing the highest utility, now such
a probability must be applied at the choice that provides the lowest cost, since it is
a question of expenses rather than earnings. Thus, a utility chosen with frequency
q1, referring to player 1, becomes in our case a cost chosen with probability (1− q1)
and viceversa. The same is true for the probabilities q2 and (1− q2) with reference
to player 2, which has to be interchanged in the transition from choosing of greater
utility to selecting the lower cost.

The cost matrix, with the respective frequencies with which the players decide
to select the actions, is represented in table 5.2. It is possible to see in this represen-
tation that in the case of the cost matrix the probability of choosing the strategies
of the row and column players have been swapped with respect to the payo� matrix
seen in the Example 2.10 (battle of sexes).

Table 5.2: Cost matrix for the two-player game with the introduction of probabil-
ities.

An issue, however, has been found in the probabilities computation: sometimes
it was found to be ql < 0 or ql > 1, with l = {1,2}. This of course is not possible,
since to be a probability the values found must be q1, q2 ∈ [0,1]. This situation
occurs when a player is not willing to randomize such as to make indi�erent the
other participant in the game. Therefore, if ql < 0, the player l will never choose the
action associated with that probability, since it is strictly dominated by the option
to which the associated probability is (1− ql). In order to solve the problem, due to
the fact that a player would never pick up a strategy strictly dominated by another,
it was imposed that if ql > 1 then ql = 1 and if ql < 0 then ql = 0, with l = {1,2}.
Such a solution has been possible since it is known, from the theory, that a pure
strategy can be seen as a degenerative case of a mixed strategy and in the issue we
have dealt with we seemed to be under this condition.

Now that the two-player model aimed at optimizing the total energy consumption
for the dissemination of a common message has been de�ned, we are ready to see
its practical feedback. Various simulations will therefore be carried out in the next
chapter so as to see the results obtained from its application in a real situation.
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Chapter 6

Simulation Results

In this chapter the simulations of the model discussed in chapter 5 are illustrated
and explained. The software that has been chosen to perform the simulations is
Matlab. Although nowadays simulation environments are e�cient and powerful,
they can never take into account all the problems that can be found in a real phys-
ical environment. Indeed, in a real network, there are many factors that can a�ect
performance. To name a few: the climatic conditions (if we consider an external
environment), the presence of obstacles that a signal can encounter while it is trans-
mitted, the proximity of other possible wireless networks and other factors that
in�uence the distance between host, as in the case of dynamic networks. Therefore,
the results obtained with the simulations can only come close to what in reality may
happen, but it will never be what actually occurs. Firstly, the scenario in which the
simulations are carried out will be presented and described, including the param-
eters of the network, the magnitudes of interest for obtaining the results and the
model that allowed the positioning of the vertices composing the graph. Finally,
the results collected at the end of the simulations are shown. A �rst part will focus
on the performances shown by the system in terms of energy expenditure for the
two types of users described in the previous chapter: reactive users (myopic ap-
proach) and proactive users, who take into account future events and can be further
divided into passive (user does not interfere with the optimal choice researched by
the EUT) and active (user in�uences the decisions made by the underlying system
design, through its perception of the situation provided by the PT). These results
will be widely discussed and represented by plots, so as to have a clear vision of the
objectives achieved by this research.

6.1 Simulation parameters

The simulation scenario involves a network node, which can act as a relay for a
common message that has to be disseminated, interposed between the �xed source
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of such information and the two new nodes that have to join the system. The
scheme is illustrated in �gure 6.1. Referring to this representation, we see that in
the considered network the dynamic relay r is so located closer to the static source s
than the other two new agents i and j who have to decide which node to receive
the message from. The intermediate node r is located randomly in a range from 1
to 15 meters (green area) away from the �xed information source, while the other
two devices i and j are always randomly placed in a range from 15 to 50 meters
(purple area). The source, as already stated, is �xed in a point that coincides with
the center of the circular quadrant with a radius of 50 meters.
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Figure 6.1: Network scenario with the respective positioning areas of the nodes.

The scenario considered is dynamic, which means that a node can leave the
network at any time. For simplicity, it has been assumed that a device, instead
of gradually moving away from the network by varying its connection conditions,
suddenly disappears. This simpli�cation avoids the use of complicated algorithms
for tracking the movement of devices within an D2D wireless network. Moreover, in
this way it is possible to carry out a clearer analysis whose main purpose is to provide
a �rst solution to a non-competitive game for a dynamic environments, leaving a
more in-depth study to other forums.

Summarizing, to experimentally evaluate our approach, we simulated a region of
50m × 50m, in which three nodes are randomly located in the areas delimited for
them. A fourth node is also present in the network, which is �xed and is the source
of the message. The simulation is based on the Monte Carlo approach. Samples
were collected at each simulation in order to obtain estimates on the choices made
by the players and the overall energy spent in the described scenario.

One of the fundamental parameters on which the model considered in the simu-
lation is based, as already seen in Chapter 4, is the probability of stay in the network
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that has been associated to the relay node, which remains in the system an addi-
tional stochastic time after receiving the whole message. This probability allowed
to compute the cost that a proactive user has to pay to the service provider, which
incentivized the latter to participate in the dissemination process. In fact, through
this parameter it was possible to evaluate the possibility of a future failure in the
communication with a dynamic node, which can suddenly switch o� depending on
its probability of remaining in the network.

The communication channel between two generic nodes of the network is based
on the pathloss model, which means a channel gain equal to |hk,l|2 = 1/dαk,l, where
dk,l represents the Euclidean distance between two communicating parts k and l.
The exponent has been set equal to α = 3. The minimum required signal to noise
ratio (SNR) at the generic receiver node l, in order to successfully decode the data
sent form its parent node k, is considered as γ = 10 dB. Therefore, for a unicast
transmission, the transmit power at node k, in order to guarantee at least SNR of γ
to the child node l, is calculated as:

punik,l =
γ · σ2

|hk,l|2

where the noise power has been set to σ2 = −90 dBm.
The rate Rk,l of the single hop channel, which simply represent the number of

bits that are conveyed per unit of time over the wireless medium from parent node
k to child node l, has been set to 54 Mb/s. Regarding the common message to
be disseminated from the source to all users of the network, it has been set to
L = 10 Mb.

To incentivize an intermediate node to forward the message to other devices, a
pricing mechanism has been introduced. Thus, the child nodes, in order to receive
the message from their respective service provider, must pay a cost that has been
de�ned as the energy that the parent node spends for the transmission of the infor-
mation. In order to pay the lower price, which will allow an e�cient overall energy
expenditure in the network, cost-sharing functions have been applied to this game
theoretic framework. In our algorithm, we use the Shapley Value (SV) as a fair
cost allocation method, to determine the cost share of each receiving node. This
is because it allows the service provider to receive the full price of the service (is
budget balanced). Moreover, SV guarantees a right division of costs between the
various nodes that receive the message, i.e. it is fair and for this reason it encour-
ages consumers to form coalitions. These groups of users who choose to receive the
message from the same parent will actually have the opportunity to share the cost
of the service. If they choose, in the opposite case, di�erent service providers (fair-
ness property not satis�ed), the coalition would be formed by only one node and
therefore this unique agent has to pay the whole service price. In wireless networks,
the principle of fairness is crucial because it allows to establish multicast connec-
tions that exploit the broadcast nature of wireless channels, so as to save energy for
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sending the same message to multiple receivers. In this respect, SV has provided
better results in terms of energy consumption and number of failures given by the
departure of a dynamic node, compared to the other two cost functions, namely ES
and MC. To summarize, in table 6.1 the parameters used to perform the simulations
are presented.

Unicast transmit power punik,l = γ σ2/|hk,l|2
Channel gain |hk,l|2 = 1/d3k,l
SNR γ = 10dB
Noise power σ2 = −90 dBm
Data-rate 54 Mb/s
Data size 10 Mb
Network size 50m× 50m
Cost sharing function Shapley Value

Table 6.1: Network information.

In order to obtain results as accurate as possible, a large number of simulations
have been performed by varying other parameters that do not appear in Table 6.1,
which are the departure rate and the percentage of data received by the relay node r.
A further analysis was then carried out to understand at what distances a new agent
that wants to join the network tends to prefer a connection to a dynamic node or to
a static node. The data collected at the end of the simulations were analyzed and
then arranged in the form of descriptive plots, which will be discussed in the next
section.

6.2 Results analysis

In this section we analyze the graphs obtained from the simulations in order to
evaluate the performance of the game theoretic algorithm developed within this
project. The total transmit power in the network is considered as the performance
measure. The reference scenario is simple, in fact we have that only two new agents
have to be added to a network made up of only two devices. We therefore have that
the broadcast tree, at the moment when the algorithm is performed, is composed
only of node s and r. Moreover, is assumed that there is a communication in
progress between these two parts and in the meanwhile two other nodes want to
join the system. The relay node r has already received part of the message and may
leave the network after receiving the total amount of data.

The algorithm takes into account the fact that, in order to make a decision
about the parent node from which to receive the information, not all nodes are in
the same initial condition as the two new nodes, i.e. did not downloaded any data
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(not all receiving bu�ers are empty at the moment of the connection of the two new
nodes). Along with the fact that the nodes are not in the same condition when the
algorithm is executed, which is one of the most innovative points of our model, we
wanted to focus on the introduction of mobility in the network. This is because
in the literature a large part of multi-hop data dissemination mechanisms based
on game theory have been developed for static environments. In this regard, the
energy spent by the reactive user (myopic, as it sees the network static) was chosen
as performance evaluation benchmark, in order to see how the utility de�ned in this
thesis for reactive users (they are aware of the dynamism of the environment) can
bring bene�ts in terms of energy expenditure. Reactive users have been divided into
two classes: passive users, who follow the principles dictated by the EUT, and active
users, who make their choices according to the PT.

As extensively explained in chapter 2, PT introduces, with respect to the EUT,
two functions (PWF and AVF) to model the subjective perception of the user.
These functions have coe�cients that must be quanti�ed, in fact, referring to the
cost de�ned for the active user in formula 5.8, we see the presence of three coe�cients
that, in all the realizations, were set as α = 0.6, Λ = 1.5 and γ = 0.9.

In all the graphs that will be discussed later, the points that make up the curves
derive from the average value obtained from multiple simulations. Precisely, we
have that for each input value to the simulator (x-axis of the plots), the scenario
has been repeated for ten thousand times. This high number has been chosen to
have the most reliable results possible. At each execution, the nodes were randomly
placed in the areas of their competence, which changed the power required for the
transmissions and consequently the decision that the two new agents make in order
to minimize the cost of the service.

Figure 6.2 shows the total energy expenditure in the network as a function of
the percentage of data received by the relay (�gure 6.2 (a), obtained by �xing the
departure rate of the relay to λr = 1 departure per second) and the departure rate
of the relay (�gure 6.2 (b), obtained by assuming that the relay already downloaded
half of the packets).

The energy required for a transmission is calculated as the product between the
power required to transmit the data from the service provider to the receiver node
and the transmission time (formula (4.3)). In both plots we see that the actual
energy consumption to disseminate the message from the source to all the node of
the network is normalized by the energy that would have been spent if both the two
new nodes i and j of the network had selected the source s to receive the information.
Thus, the values on the y-axis derive from the total transmit power in the network
divided by the multicast transmit power from the node s to the two new agents i
and j, i.e. max(P uni

s,i , P
uni
s,j ). For a better analysis of the results it is good to focus

on one chart at a time.
In �gure 6.2 (a) we see that energy consumption increases as the relay node
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(a) (b)

Figure 6.2: Total transmit energy in the network normalized by the energy spent
if both the new agent select the �xed source as parent node.

receives more information. This is easily explained because when the relay node has
received a small amount of data, it certainly remains more in the network so as to be
able to send a large part of the message to the child node during the deterministic
time. The two new users can therefore choose to receive the data from the dynamic
node with a low risk of failure, as most of the information will be transmitted while
the parent node is receiving its own message. A lower transmission power is a
consequence of the fact that the relay r is located closer to the two new agents
with respect to the source s. Therefore, the cost is less when the dynamic node has
received a small amount of the total data because it guarantees reliability for the
reception of nodes i and j and at the same time ensures a lower energy expenditure
as it is located at a shorter distance than the source s.

By observing the three types of users (the three curves in the graph) they in the
left part of the representation consume a similar energy amount. This is because
the reactive user, regardless of situations, tends to almost always choose the relay as
a parent node since, being at a shorter distance, it requires less transmission energy
at the decision time. The other two users, the active and the passive, select the
dynamic node as well, since in such circumstance there is a low risk of failure given
by the departure of the parent node.

When we move towards the right side of the graph we see that the energy needed
for the data dissemination increases. The reasons is mainly that the dynamic node
becomes less reliable in forwarding the information and the di�erent energy trends
depend on the type of player who participates in the game. In the case of the myopic
user, the highest energy consumption is given by the larger number of failures that
occur between the dynamic parent node and its two child nodes. In fact, the reactive
users, not being able to foresee a possible future event, continue to almost always
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choose the relay node r as a service provider, which, having received a large part of
the message, tends to remain a short time in the network. As explained in chapter 4,
the greater the amount of data received by the relay, the less deterministic time it
will remain in the system. Consequently, the agents served by it have to receive
most of the message during the stochastic time in which the failure may happen.
For this reason, the two types of proactive users try to avoid a connection to the
relay r in these uncertain conditions. However, we note a substantial di�erence in
the energy needed to spread the message to active users (green line on the graph,
obtained by applying the PT) and to passive users (blue line on the graph, obtained
by applying the EUT). The curve that describes the energy trend with the cost
calculated following the EUT provides the best result compared to the other types
of users. On the contrary, the user who seeks more satisfactory solutions (through
the subjective perception of the occurrence possibility of an event provided by the
PT) results in a worse energy consumption than the other two types of users. The
reason for these behaviors is as follows: the passive user (based on EUT) requires a
lower overall transmission power than the reactive user because he is able to avoid
the failures that the myopic agent inevitably meets. Being proactive, the passive
user takes into account the dynamism of the environment and can evaluate when
a future failure has a high probability of occurring. In this case the action to be
taken is to select the source that, although is more distant and requires more power
to transmit the message, saves the energy that would be lost as soon as the relay r
leaves the network. As we will see in the following analysis, the reactive user tends
in almost all cases to choose the close dynamic node as a father, which will induce
to a consistent amount of data lost because of the failures. The active user (based
on PT) also tries to avoid unfavorable events that may occur in the future, but does
so by looking for the least risky solution possible. This leads the user to choose
most of the times as parent node the static source which, not being able to leave the
network, guarantees a sure reception of the information. The price to pay for this
decision is a higher energy consumption and consequently also the higher price that
the two active users have to pay for the satisfaction given by the absence of failures.

The EUT thus provides the best tradeo� between the choice of receiving the
message from the source s or from the relay r, while the PT, to avoid any risk,
tends to choose several times the static node which requires a higher transmission
power level.

What has been said so far is also valid for the graph where the energy is varied
according to the departure rate of the dynamic node (�gure 6.2 (b)). Brie�y we
have that when the environment mobility is low, the choice of the relay brings more
bene�ts. In fact, it appears to be reliable because it will remain in the network a
time long enough to allow the almost complete message reception to two new users.
As the rate increases, the proactive users begin to choose the source as the parent
node in order to avoid possible failures, since the time that the dynamic node will
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remain in the network at the end of its reception progressively decreases. However,
the reactive user will continue to choose the option that provides the highest current
bene�t, i.e. connection to the relay (closer than the source), since it does not look
to the future. The di�erence between the two types of proactive user remains. The
passive, in fact, looks for the best tradeo� between choosing an option with unlikely
failure and avoiding one where the negative event most likely happens, while the
passive is willing to pay more as long as the service runs smoothly.

By observing the obtained results, it could therefore be said that a reactive user
may require less energy consumption than a proactive user, precisely the active
user who assigns a weight to the occurrence of an event that is non-linear with the
probability that the latter occurs, despite such an agent is aimed at avoiding the
risk of possible future failures.

Before drawing hasty conclusions, it is good to observe the curves obtained con-
sidering the total number of failures that occurred, as a percentage of the total
number of transfers, for the three types of users (�gure 6.3).

(a) (b)

Figure 6.3: Number of failures occurred with respect to the total number of trans-
fers.

In this case we see that the percentage of failures occurred when reactive users
are added to the system far exceeds that achieved by the other two types of user.
This is valid for both the graphs in �gure 6.3 (a) and �gure 6.3 (b), where we
count the percentage of transmission failures as the amount of data received from
the dynamic node and its departure rate change, respectively. Obviously, the more
uncertain the permanence of the relay r in the network, the greater the number of
failures that may occur in the transmissions. Looking at the red curve, this behavior
can be clearly seen.

When the PT is applied, however, we see a peak in the percentage of failures
in an area where reception from the dynamic node should be fairly secure. In fact,
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when the relay has received a little amount of data or its departure rate is low, the
active user is able to choose the dynamic node as service provider, given the almost
secure reception. For this reason, only in that case failures can occur, because as
the uncertainty increases (we move towards the right of the graphs), the active user
prefers to receive the message from the source so that the failures are reduced.

In this circumstance the EUT �nds itself in the middle of the other two behaviors,
i.e. not taking risks into account as the myopic does and avoiding them as much
as possible as the active user does. The passive user has indeed a much lower
percentage of failures than the reactive user, especially when the staying probability
of the dynamic node decreases. However, it results in a far greater number of
retransmissions than the active user and the di�erence in terms of energy may be
di�erent from what was observed in �gure 6.2 if the cost for retransmission was also
considered.

It is important to notice that our model does not take into account the transition
costs, which means that when a failure occurs and there is a need to connect to
another service provider, in the system there is an additional consumption of energy
to set up the new connection. In our case, if the relay r leaves the network while a
transmission is in progress, the new agent must receive the message from the source,
which means to exchange additional packages with the new parent node in order to
establish a new communication before that any useful data can be transferred.

We have not considered this additional energy consumption, but if it had been
taken into account for each new connection that the reactive user needs, which as
we have seen has the highest number of failures, the total energy trend would have
been much worse for the myopic user. The same worsening would have occurred
also for the passive user, who, as is clearly visible, requires a substantially greater
number of retransmissions than the active user.

From the failures point of view, the PT is the model with which the best results
have been achieved. Such a behavior, although from the previous analysis was not
the one with greater energy e�ciency, would save a fair amount of energy that would
be consumed to establish new connections caused by the dynamic node departure,
as well as providing greater user satisfaction.

The study of the percentage of failed connections over the total number of trans-
missions is not the only circumstance in which PT achieves the best results. By
looking at �gure 6.4, we note that the percentage of energy wasted (compared to
total energy consumption) due to unsuccessful data transfers is much lower when
active users are added to the system. This behavior is a direct consequence of the
number of failures that occur for the three types of users, because the greater the
number of negative events, the greater the amount of energy loss.

It is not surprising that the reactive user wastes a larger amount than the other
two types of agent, as well as the fact that the passive user exceeds the active user
regarding this comparison metric. The same behavior is seen both in the graph as
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(a) (b)

Figure 6.4: Energy loss, caused by the relay node departure, with respect to the
total transmit energy in the network.

a function of the percentage of data received by the relay (�gure 6.4 (a)) and in the
graph where the departure rate of the relay node varies (�gure 6.4 (b)).

The hill shape, i.e. the progressive increase in the amount of energy loss and the
subsequent decrease of the latter at the right side of the graph, is mainly given by
the following reason: if the probability of permanence of the dynamic node in the
network is greater, then a new agent can receive a substantial part of the message
from the parent node, then the wasted energy will be greater if a failure occurs under
such conditions. As a consequence, the lower the probability that the parent node
remains in the network, the less the energy loss because the transmission lasted for
a very short time. Obviously with the PT the only possible failures can occur when
the permanence of the service provider in the network is almost sure (left of the
graph), because otherwise it chooses the static source to receive the message.

As a last observation, and as already explained for the results obtained from the
study of the failures, the wasted energy would have been very high if the transition
cost was considered for each retransmission occurred during the simulations. This
would have generated a greater separation between the curves obtained for the
reactive, passive and active user, where the �rst would have shown a behavior far
worse than that of the other two, whereas the last could have saved much more
energy because of the non-necessity to re-establish a connection.

A further analysis was made by observing how many times the two new agents
choose to connect to the source or relay node r. It has been done as a function of the
distance from the source, so as to be able to investigate their behavior at di�eerent
network locations. The decisions taken by the two nodes i and j when they are
located at a wide distance from the source and when they, on the contrary, are very
close to the two vertices already part of the broadcast structure turn out to be of
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great interest. The analysis was performed for the three types of user considered so
far.

Before showing the obtained results, the expectations regarding the behavior of
the nodes are: when they move away a lot from the source, since the di�erence in
distance between the two new agents and the two potential information sources is
small, selecting the static or dynamic node involves a similar cost. Being both far
away, the user prefers not to take the risk of a future failure and since the price
changes slightly we should see, in these circumstances, a preference in choosing the
static source s as a parent node. On the contrary, when the two new agents are close
to the two possible service providers, the di�erence in distance for a connection to
the static node and the dynamic node becomes more marked. For this reason we
expect that in this situation the relay r should be preferred to the source s.

All the �gures that will be subsequently discussed are formed by two histograms.
On the left are shown the results obtained by �xing the departure rate of the relay
node as λr = 1 and by varying the percentage of data received by it from 0 to 100.
Whereas, on the right, we can �nd the results of the simulations where the relay
node received half of the total amount of data and its departure rate varies from
λr = 1 to λr = 2.

(a) (b)

Figure 6.5: Number of times the passive users (decision based on EUT) select
node s or node r for receiving the message in function of the distance from the �xed
source.

The �rst investigated case is that concerning the passive user, who, as is well
known, makes its choices based on the rules derived from the EUT. In �gure 6.5 it
is possible to see the percentage of times the two proactive users choose the static
node or the dynamic node as service provider.

As we can see, in both cases shown in �gure 6.5 (a) and �gure 6.5 (b), passive
users prefer to receive the message from the dynamic node. The reason is that such
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a vertex is located in the middle of the network and therefore the transmission power
required at the relay node r to reach the two new agents is always less than or equal
to the one needed if the transfer had started from the source s.

It is good to notice that there are cases in which the two new devices are randomly
located at a very similar distance from the dynamic and static potential parent
nodes. Referring to the �gure 6.1 and imagining it as a Cartesian coordinate system,
it can happen that the relay node r is located near the point (15; 0) with the other
two nodes positioned around (0; 15). In this situation, the transmission power
required at the relay node r is not less than that required at the source s, so there
may be cases in which it is not convenient to choose only the dynamic node as
information source in order to save resources. In most cases, the choice of the
dynamic node allows the total energy spent in the network to be as low as possible
even if, in a considerable number of times, the the passive users prefer to receive the
message form the source s. This is because, in order to avoid failures, the rules of
the EUT provide the user with the tools to �nd an optimal compromise between the
two choices. Since the goal is to minimize the costs necessary for the dissemination
of the common message, it is not surprising that the closest dynamic node is chosen
a greater number of times.

(a) (b)

Figure 6.6: Number of times the reactive users (myopic approach) select node s or
node r for receiving the message in function of the distance from the �xed source.

Another result that re�ects our expectations is to see that when the two players
move away from the source node s, the latter is preferred more times with respect to
the situation in which the two new nodes are located close to this potential parent
node. The reason for this behavior is, as expected, that when the distance increases
there is no big di�erence between the power values needed to receive the message
from the static node or the dynamic node. Therefore, the two players prefer not to
take the risk and choose the �xed information source s.
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The same analysis is performed for the reactive user. The results of this exper-
iment are shown in �gure 6.6. In this case, the dynamic node is chosen in almost
all the simulations, in fact the number of times the source has been selected is very
small. These results are not surprising since the myopic agent, not minding about
the future, takes into account only the lowest price to pay to the service provider at
the time of connection. Obviously, this choice is addressed most of the time to the
relay that is generally closer to the two agents and, as we have seen, this decision
will cause the number of transmission failures to be quite high.

Similarly to the previous analysis, the source begins to be slightly more preferred
when the two users are long distance from it. The reason for this behavior is the
same as in the case of the passive user, in fact at wide distances the di�erence in
cost associated with the choice of the dynamic and static node becomes less marked
so that the latter can sometimes be preferred.

The last study reported is that concerning the decisions made by the two active
users. The results obtained in this experiment are shown in �gure 6.7. We can see

(a) (b)

Figure 6.7: Number of times the active users (decision based on PT) select node s
or node r for receiving the message in function of the distance from the �xed source.

that in this case the two agents prefer to receive the message from the �xed source.
The reason for this behavior lies in the fact that active users, being risk-averse, avoid
as much as possible the possibility of a failure occurring.

Obviously, choosing as the parent node, in most cases, the source s can lead to
not achieving an e�cient energy consumption since it is usually at a greater distance
than the relay node r. However, the advantage of this decision-making policy lies in
obtaining a much lower number of transmission failures than the other two types of
users (active and myopic) who, in a completely di�erent way, preferred to receive the
message from the dynamic node. An active user is therefore satis�ed if the service
is provided without any unexpected events, even at the cost of spending a little
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more. However, this price could be even lower with respect to what the passive and
reactive user spend if the transition cost is considered.

The common behavior of all types of users is that of preferring the source s as
the parent node when the two new agent are long distance from it. In fact, we see
that even in this case the number of transmissions from the static node is greater
when the two nodes are moving away from it. Thus, we saw that when they are
very far away form the two potential information sources the di�erence in distance
(and cost) between node s and r is less signi�cant and the decision made by the two
players, through the designed cost function, have met our expectations.
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Chapter 7

Conclusion

In this research we designed a mechanism to reduce the total energy consumption
for the dissemination of a common message sent from a �xed source to all the other
nodes of the network. We focused on the study of D2D multi-hop networks composed
of wireless intelligent devices, with sel�sh behaviors, which have the capacity to
self-organize following a decentralized paradigm. For this purpose the game theory
has been used where every new user, child node, of the network chooses the most
advantageous option available to it in order to select the forwarding node, parent
node, from which to receive the message. The core part of this study is represented
by the de�nition of the analytical model for a user's preference relationship, that
is to say the utility function that assigns a payo� to a player's action of this child
driven game theoretic framework.

One fundamental peculiarity of the proposed scenario, for which our mechanism
has been developed, is that it is dynamic. A node can thus leave the network at
any moment. In order to realize this characteristic, a probability of remaining in
the system has been associated with each node that composes the network. For
simplicity we just assumed that a node suddenly turns o� depending on the level
of mobility of the wireless environment, so as to avoid the use of further algorithms
for tracking the movement of devices within the system. It allowed to reduce the
number of parameters (variables) in the network by helping us to get more intuition
into mathematical procedures.

Another important aspect is that when the system is analyzed, the nodes are
in di�erent initial conditions. Indeed, when new agents have to select the service
provider, there may be a transmission in progress among the nodes already part of
the propagation structure. It is so assumed that a node cannot leave the network
before receiving the whole information from the source. Only at the end of the
transmission it will be able to leave the network, but before this happens it remains
an additional time which depends on its probability of staying.

The system model for which the algorithm have been developed was very simple,
in fact at the beginning the broadcast tree is composed of only two nodes: the static
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source of information and a dynamic relay node. As a �rst step, only one new node
has to be added to the network. A pricing mechanism has therefore been de�ned to
allow for the new agent to decide whether to take the risk of receiving information
from a relay node that can leave the network after the end of its reception or whether
to obtain such a message, perhaps paying a higher price, from the source without
risk, since the latter is static. In the �rst case, a possible failure can be caused by
the parent node departure and as a consequence the child node has to download
the information from the �xed source (everything that has received up to that point
is lost). In order to have a successful transmission, the forwarding node needs to
remain in the network at least a time equal to the one needed by the new agent for
receiving the entire message. This period depends on how much information has
been downloaded by the relay node, as well as on its probability of remaining in the
network, when the new user arrives.

Some parameters were presented in order to de�ne the energy required for a
transmission, which allowed to design the cost to be paid based on the choice made
by the child node. This was done by trying to maximize the well known utility
function obtained as the ratio between the number of bits transmitted and the
power required for the transmission. In our work we considered the message to be
of �xed length and this allowed to convert the concept of bene�t to be maximized
in cost to be minimized (denominator of the utility function) in order to reduce the
power needed for the data dissemination.

As a step after the de�nition of the cost to be paid for receiving the information,
a network consisting of four nodes was considered. In this second scenario, two new
users want to connect to the network and the decision of one of them also determines
the cost of the other player. To model this situation we used game theory, where
players are the nodes that are added to the system. The solution concept has been
given by the Nash Equilibrium for mixed strategies, which is a prediction of what
will happen when the game is played. In this way, there was the certainty of reaching
a solution, so as to have the basis to subsequently carry out simulations aimed at
showing the results found on the basis of a stochastic behavior.

We had so di�erent combinations of power depending on the choices made by the
two participants. To measure the power imposed by each of them in the network,
we used cost sharing functions. Speci�cally, we considered three of them: Equal
Sharing (ES), Marginal Contribution (MC) and Shapley Value (SV). They allowed
to compute the price that each node has to pay to receive the service. In the end,
SV was chosen to run the simulation because it provided the forwarding node with
the full price of the service, which was de�ned as the energy that the intermediate
node spends for relaying the message. Furthermore, we had with SV that the two
nodes were willing to form coalition, which led to a greater number of multicast
transmissions with respect to ES and MC. It allowed to exploit the broadcast nature
of the wireless channel and to save energy that would be wasted if many unicast
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transmissions were established.

We have seen that, according to the model used for the cost de�nition, two
di�erent classes of users have been identi�ed: the �rst is the passive user, where
the decision is taken without the end-user interaction. In this case the decisions
were modeled with the Expected Utility Theory (EUT), which allowed to achieve
optimum results (rational user), but totally unin�uenced by the real life perception.
The second approach that has been used was Prospect Theory (PT), which allowed
to de�ne the active user, which means that the end-user interfere with the decision
taken by the underlying system design. In this case the decisions are guided by a
bounded rationality, since people do not look for the optimum, but for satisfying
solutions. The active user, being risk-averse, tended to overweight unlikely events
and underestimate the likely ones. Moreover, the impact of a loss resulted to be
higher than that of a win for the same absolute value.

To show all the possible cost that the child nodes have to pay by selecting the
parent node from which to receive the message, we de�ned a cost matrix. Having
used mixed strategies, we found at the end the frequency with which each players
selects each of the two option available to it. Once the decisions were made, it
was possible, through simulations, to calculate the total energy expenditure in the
network. We then compared the values obtained for the two classes of user (active
and passive) with a third type of agent used as a benchmark for the evaluation
of bene�ts obtained by performing our algorithm: the reactive user (myopic). It
makes the most convenient decision by looking only at the current time and not at
the possible future events. Basically it sees the network as static and does not take
into account the fact that a parent node can leave the network while it is forwarding
information.

In the simulation scenario, the relay node has been placed closer to the source
than the two new nodes of the network, so that there may be an advantage in
choosing the dynamic node for forwarding the message. The �nal results showed
that, as the mobility of the environment and the percentage of data received by the
relay node vary, the total energy required in the network to disseminate the message
was found to be lower in the case of a passive user. In fact, it found the best tradeo�
between the choice of the static and dynamic information source. In the other two
study cases, i.e. those concerning the total number of transmission failures and the
wasted energy given by the departure of the dynamic forwarding node, the active
user showed the best results. This is because it prefers the satisfactory solution that
has the lowest risk of failure, which was also con�rmed by the analysis of its choices
in function of the distance from the �xed source. In fact, while the reactive and
passive user have selected most of the time to receive information from the dynamic
relay node (lower cost, but risky), the active user preferred the static source (no
risk, but higher cost). However, the behavior shared by all types of users was that
as they move away from the static source, the latter begins to be preferred. This is
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due to the fact that the advantage given by the choice of relay node (far away too)
becomes less consistent. The cost for a retransmission was not considered, which
would have certainly led to worse performance for the reactive user (greater number
of failures) and for the passive user (willing to take the risk when, according to the
EUT, it is worth it).

In conclusion, we have seen that a deviation from the behaviors expected from
the application of the EUT can lead to a degradation of the total energy spent in the
network. However, in a dynamic environment, recovery from a failure can de�nitely
require additional resources and according to the rules of the PT this circumstance
is successfully avoided. A scenario has therefore been analyzed in which end-users
interfere with the protocols in order to reach satisfactory solutions, which has been
compared with the most widely used and known models found in the literature.

7.1 Future research directions

A possible improvement for the dissemination mechanism of a common message
sent from an information source to all the nodes of the network has already been
partially performed during the development period of the algorithm presented in
this dissertation. The utility function was in fact modeled, but not tested, also
for the case in which the data-rates between the nodes composing the network are
di�erent. The user's preference de�nition for this case requires the message to be
divided into packets. Moreover, it needs that the new agent, who wants to join the
network, also knows the speed of the communication in progress between the two
communicating nodes that form the broadcast tree (static source and dynamic relay
node) when the system is analyzed. Given the excessive amount of information and
parameters necessary to make a decision under these conditions, we chose to focus
only on the scenario having the same data-rate for all wireless channels.

For the future, the mechanism described in this thesis can be extended to more
than two nodes that join the system, considering not only departures, but also
arrivals. It can be also improved by considering more than one hop between the
new nodes that have to receive the message and the �xed source. For this speci�c
scenario, would be interesting to apply Markov Games, since they result to be more
suitable for generalized cases.

There is certainly a need for further research, perhaps by involving real users
and wireless devices, in order to con�rm and improve the mechanism studied so far
for the data dissemination in a dynamic environment.
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