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Chapter 1

Introduction

The purpose of this thesis is to describe and analyze a particular evasion maneuver with
double lunar gravity assist (LGA) for interplanetary missions.

Lunar flybys are a means to free increase the hyperbolic escape energy (C3) of an
escape maneuver for a modest increase in flight time.

Two approaches are applied:

• the first one is the approximate analytical approach;

• the second one gives the exact numerical solutions, because it takes into account
all the main perturbations.

The approximate model, it is easier than the other one because it is based on simplifying
assumptions such as: no gravitational influence of Sun and Moon on the spacecraft, no
solar radiation pressure, no eccentricity of Moon’s orbit (i.e. circular orbit), only Earth’s
gravitational pull. It is just a preliminary study but extremely helpful because it gives
you a macro view of the whole trajectory. Even without going into too much detail, it
provides all the most important information in terms of times, positions and velocities.
In particular, the solution obtained from this model, is used as the attempt solution for
the more detailed analysis.

Only short maneuvers, which should be less affected by solar perturbation are treated.
For preliminary analysis of the interplanetary transfers, is usually adopted the patched
conic approximation. The analysis of the heliocentric leg provides us the escape condi-
tions.

In particular, our conditions refer to an Asteroid Redirect Mission (ARM ), also known
as the Asteroid Retrieval and Utilization (ARU) mission. It is a NASA space mission,
proposed in 2013. An ARRM spacecraft (Asteroid Retrieval Robotic Mission) would
rendezvous with a large near-Earth asteroid and use robotic arms in order to collect a
multi-ton boulder from its surface and return it to a stable orbit around the Moon or
the Earth. This Asteroid Redirect Mission is part of NASA’s plan to advance the new
technologies and spaceflight experience needed for a human mission to the Martian system
in the 2030s.

All the solutions presented in the following chapters were obtained from these escape
conditions as boundary conditions. At the boundary of the Earth’s sphere of influence
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1 – Introduction

(a concept that will be explained in detail in Chapter 2), are known the escape date,
positions and escape velocity components of the spacecraft.

Solutions are then compared between the two different approaches and between the
different escape conditions (Chapter 5 and 6). Escape conditions that differ either by the
escape date or by the escape velocity.

Comparison between the two different models it is useful in order to verify the ap-
proximation committed by the simplest one, taking into consideration that this solution
is obtained in less than 1 second (limited computational effort), compared to the much
larger effort required to obtain the exact solution.
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Chapter 2

Evasion maneuvers

In order to escape the gravitational pull of a planet, the spacecraft must travel a hyper-
bolic trajectory relative to the planet, arriving at its sphere of influence with a relative
velocity V∞ (hyperbolic excess velocity) greater than zero. This is a simplification linked
to our study. Actually, the truer statement is that S/C must arrive at an infinite distance
with a non-zero relative velocity.

The sphere of influence (SOI) is a concept strictly related to the three-body problem.
In general it involves: a planet p of mass mp, the Sun s of mass ms and a space vehicle v
of mass mv (negligible mass). It is simply a reasonable estimate of the distance beyond
which Sun’s gravitational attraction dominates that of a planet.

At this distance, our study ends, because beyond this distance it leads from geocentric
escape leg to the heliocentric leg.

The radius of a planet’s gravitational sphere of influence is calculated as the boundary
where the error committed neglecting the Sun in the motion of the spacecraft with respect
to the planet, is equal to neglecting the planet in the motion with respect to the Sun (i.e.

perturbation of the Sun
gravity of the Moon = perturbation of the Moon

gravity of the Sun ).

For example, the SOI of the Earth, in the three−body problem with the Sun, is about
925000 km (generally, it is rounded to one million).

The same concepts are applied to the Earth - Moon system, where the sphere of
influence of the latter is defined (about 60000 km).

2.1 Short background on interplanetary missions
An interplanetary mission is a trip through outer space involving more than one planet.
For planetary missions, a spacecraft is launched from the Earth and accelerated to a
velocity higher than the local escape velocity. The spacecraft will then recede from Earth
along a hyperbolic trajectory.

The first successful interplanetary mission was that of the US Mariner 2 spacecraft,
which has flown by Venus at a minimum distance of 34,773 km on 14 December 1962. On
14 July 1965, the US Mariner 4 spacecraft became the first spacecraft to successfully fly

3



2 – Evasion maneuvers

by Mars at a minimum distance of 9,846 km. The first soft landing on Mars was performed
by the Mars 3 spacecraft, launched by the USSR in December 1971. Since then, many
interplanetary spacecrafts have been launched by the USSR/Russia, USA, Europe (ESA)
and Japan to perform flyby missions to all planets, flybys of comets, asteroids, and moons
of planets, landings on Mars, Venus, Titan and asteroids, and an impact on a comet.

But even for this minimum-energy trajectory, the relatively low energy density and
exhaust velocity of chemical propellants only allow the launch of relatively small payloads,
in particular to the more distant planets.

In the early 1960s, a fundamental new concept of space travel was developed: the
swingby concept, also known as the gravity-assist concept.

To reach a distant planet, the idea is to launch a S/C to an easy-to-reach nearby
planet and to pass that planet on a precise trajectory such that planet’s gravity field
would change vehicle’s orbital energy relative to the Sun.

The first spacecraft that has experienced a substantial gravity assist was NASA’s Pio-
neer 10, which was launched on 3 March 1972, by an Atlas/Centaur rocket. In December
1973, it approached Jupiter.

Although it is possible to increase spacecraft’s velocity relative to the Sun consider-
ably, the application of the swingby technique will lead to long total flight times.

In a preliminary design for interplanetary missions, the most common method is the
so-called “patched conics”, which allows getting an approximate ∆V and time of flight,
at a low computational cost.

The method of patched conics is used to divide the mission up into three parts:

• the hyperbolic departure trajectory (generally geocentric) relative to home planet:
escape. It is determined by the gravity field of the Earth;

• the cruise ellipse relative to the Sun: Hohmann transfer, the most energy-efficient
way for a spacecraft to transfer from one planet’s orbit to another (Figure 2.1)). It
is determined by Sun’s gravity field;

• the hyperbolic arrival trajectory relative to target plane: capture. Trajectory is
considered as a planetocentric hyperbola that is solely determined by gravity field
of that planet.

Consider Figure 2.1, which shows a Hohmann transfer from an inner planet 1 to an
outer planet 2 (for example from Earth to Mars). The departure point D is at periastron
(perihelion) of the transfer ellipse and the arrival point A is at apoastron (aphelion).

Each of them is studied as a two bodies’ problem: it is assumed that if the satellite is
outside the sphere of influence of a planet, the only effect to be taken into account is the
gravitational attraction of the Sun. In the same way, if it is inside the sphere of influence
of a planet, the attraction of the Sun will not be considered.

The first leg of the interplanetary mission is the most important for our study. For
this reason, in the next section, it is the only one dealt examined in depth.

To simplify the beginning of our study of interplanetary trajectories, we will assume
that all the planets’ orbits are circular and coplanar.
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2.2 – Escape

H1

H2

Figure 2.1: Hohmann transfer from inner planet 1 to outer planet 2 [4]

2.2 Escape

First of all, to obtain all the details of this leg, it is necessary to determine the heliocentric
trajectory. This trajectory takes the S/C from the sphere of influence of planet 1 to that
of planet 2, with an Hohmann transfer orbit.

After calculating the speed required by the elliptical transfer at the SOI of planet 1,
it is possible to analyze the planetary departure.

As in Figure 2.1, V1 is the circular orbital speed of planet 1 relative to the Sun:

V 1 =
√

µS
r1

(2.1)

Since the elliptical transfer orbit has a semi-major axis of

aH = r1 + r2
2 , (2.2)

the energy of this orbit is

ε = V 2

2 − µ

r
= − µ

2a
. (2.3)

5



2 – Evasion maneuvers

It is easy to calculate the velocity of the space vehicle on the transfer ellipse at the
departure point D:

VH1 =
√

2µ

r1
− 2µ

r1 + r2
(2.4)

So, in our study, this is the heliocentric velocity of the S/C, at the boundary of Earth’s
sphere of influence. It is parallel to the asymptote of the departure hyperbola as well as
to the planet’s heliocentric velocity vector V1.

In the geocentric reference, it can be obtained the required hyperbolic excess speed
of the departure hyperbola manipulating the equation

VH1 = V 1 + V ∞ (2.5)

It should be noted that only the magnitude are added up, not the vectors (only for
Hohmann’s transfer).

It is important to underline that, the same considerations apply not only for Hohmann
but for any trajectory, both ballistic and propelled (even with electric propulsion): from
the point of view of the escape maneuver, all that matters are the magnitude and the
direction of the required V∞.

Figure 2.2: Departure of a spacecraft on a mission from an inner planet to an outer planet
[4]
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2.2 – Escape

Coming back to the first leg, as usual, the spacecraft starts from a circular parking
orbit, whose radius equals the perigee radius rp of the departure hyperbola.

Known this value, and the hyperbolic excess velocity, from the energy it is easy to get
the semi-major axis of the hyperbola and the ∆V necessary to reach the exact trajectory.

ε = V 2
∞
2 = −µE

2a
so a = − µE

V 2
∞

(2.6)

ε = V 2
P

2 − µE
rP

= V 2
∞
2 so V P =

√
V 2

∞ + 2µE
rP

(2.7)

with
µE
rP

= V 2
P O

So, from the circular parking orbit it is required

∆V = V P − V PO (2.8)

As in Figure 2.2, Φ gives the orientation of the apse line of the hyperbola to planet’s
heliocentric velocity vector. To calculate it, it is necessary, first of all, to determine the
eccentricity of the escape trajectory.

First, it is defined the semilatus rectum:

p = h2

µE
= a(1 − e2) = rP(1 + e) (2.9)

in which h is the angular momentum of the departure hyperbola (relative to the planet),
and in our case is equal to

h = rPV PO (2.10)
So, the eccentricity of the hyperbola it can be calculated as:

e = rPV 2
P O

µE
− 1 (2.11)

and therefore it is possible to calculate the Φ angle as

Φ = arccos
(1

e

)
(2.12)

In the particular case, in which the S/C must be sent from an outer planet to an inner
planet, then the spacecraft’s heliocentric speed at departure must be less than that of the
planet. For this reason, the spacecraft must emerge from the backside of the sphere of
influence with its relative velocity vector directed opposite to V1, the so-called back door
exit, instead of front door exit.
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2 – Evasion maneuvers

2.3 Flyby

As mentioned before, the introduction of the gravity-assist concept was fundamental to
reach the external solar system. So, in this section, it will be briefly exposed the concepts
behind the flyby.

A planetary (or lunar) flyby occurs when a spacecraft, entered the SOI of that planet
(or the Moon), does not impact or go into orbit around it. The S/C will continue in its
hyperbolic trajectory through periapsis and exit the sphere of influence.

At the inbound crossing point, velocities assume values as defined in the equation 2.5.
Moving from magnitudes to vectors

V̄H1 = V̄ 1 + V̄∞1 (2.13)

Similarly, at the outbound crossing, we have

V̄H2 = V̄ 1 + V̄∞2 (2.14)

The ∆̄V in the spacecraft’s heliocentric velocity is

∆̄V = V̄H2 − V̄H1 = (V̄ 2 + V̄∞2) − (V̄ 1 + V̄∞1) (2.15)

that is
∆̄V = V̄∞2 − V̄∞1 = ¯∆V∞ (2.16)

The hyperbolic excess velocity changes its direction but maintains the same magnitude,
lie along the asymptotes of the hyperbola. As in Figure 2.3, are therefore inclined at the
same angle Φ to the apse line.

From this figure it can be seen that, in a trailing-side flyby, the component of ∆̄V
in the direction of the planet’s velocity is positive, whereas for leading-side flyby, it is
negative. So, a trailing-side flyby results in a increase in the spacecraft’s heliocentric
speed (or geocentric, for a lunar flyby).

As in Figure 2.3, ûv is the unit vector in the direction of the planet’s heliocentric
velocity V, while ûs is the unit vector pointing from the planet to the Sun.

α is the angle between planet’s heliocentric velocity and S/C heliocentric velocity: it
is the flight path angle γ of spacecraft’s heliocentric trajectory when it encounters planet’s
SOI.

It should be noted that V
(v)

1 is equal to VH1, as previously defined.
Spacecraft velocity could be divided into V⊥ and Vr, whose modules respectively are

equal to:
V⊥ = µS

h1
(1 + e1 cos θ1) (2.17)

Vr = µS

h1
e1 sin θ1 (2.18)

The magnitude of V̄∞1 is computable as

V∞ =
√

V̄∞1 · V̄∞1 =
√

V̄ 2
H1 + V̄ 2 − 2V̄H1V cos α1 (2.19)
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2.3 – Flyby

Figure 2.3: Trailing-side planetary flyby [4]

The angle between V̄∞1 and planet’s heliocentric velocity is θ1.
At the outbound crossing, the angle between V̄∞2 and V̄ is θ2, where

θ2 = θ1 + δ (2.20)

with δ the rotation angle among the two velocities, it is negative (clockwise) for the
trailing-side flyby:

δ = π − 2Φ (2.21)

At the outbound crossing, the heliocentric velocity of the spacecraft is

V̄H2 = V̄ + V̄∞2 = V̄⊥2ûv + V̄r2ûs (2.22)

where
V̄⊥2 = V + V∞ cos θ2 (2.23)

V̄r2 = V∞ sin θ2 (2.24)

Notice that, if the dimension of the sphere of influence is neglected, the flyby is considered
to be an impulsive maneuver during which the heliocentric radius of the spacecraft, which
is confined within the planet’s sphere of influence, remains fixed at R.

9



2 – Evasion maneuvers

It is important to note that

θ2 = θ1 + π − 2Φ, (2.25)

so the bigger is Φ, the greater is the heliocentric velocity gain. When θ2 decreases, V̄∞2
and V̄ tend to become parallel with same sense: the best condition is when the two
velocities are exactly parallel and so VH2 is the greatest possible.

At the opposite, it happens for leading-side flyby: the two velocities are still parallel,
but with opposite sense. In this way, the planet holds the spacecraft back.

The use of gravity assist maneuvers it is also very helpful to change the orbital param-
eters of spacecraft’s orbit. One of the most important is the inclination, whose variation
can be estimated through the simplified model here described.

This maneuver allows the S/C velocity vector to rotate relative to the plane of the
initial incoming orbit. The angle of rotation depends on both the gravitational capacity
of the flyby body and on the location of the point at which the spacecraft enters the
body’s sphere of activity. Mainly, it depends on the mutual orientation of the two vectors
V̄∞ and V̄1 (or in our particular case, for a lunar flyby, between V̄∞ and V̄M ).

Figure 2.4 shows the sphere of possible locations of the end of vector V̄∞2, after the
planetary flyby. This sphere is determined by the angle of rotation of the hyperbolic
excess velocity δ. Remember that V1, as previously used, is the heliocentric velocity of
the planet, while VH1 is the spacecraft heliocentric velocity.

Figure 2.4: Changes in the inclination angle of the spacecraft orbit as result of gravity
assist maneuver [8]

From this figure, it is possibile the write the expression for the maximum change in
the angle of inclination of the spacecraft orbital plane:

sin ∆i = V̄∞ sin δ

V1
(2.26)
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Chapter 3

Approximate analytical approach

3.1 Introduction

The solutions deriving from the approach that will be described in this chapter, are
attempt solutions, necessary to then derive the numerical exact ones.

The analysis is based on a patched-conic approximation that neglects the dimension
of Moon’s sphere of influence. The trajectory is split into three geocentric legs:

1. the inner leg, from trajectory perigee (usually imposed by the launcher) to the
Moon;

2. the intermediate leg, a Moon-to-Moon transfer;

3. the outer leg, from the Moon to the boundary of Earth’s sphere of influence (set at
1 million km).

(a) In-plane view. (b) Out-of-plane view.

Figure 3.1: Lunar escape trajectory with backflip
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3 – Approximate analytical approach

LGA is modeled as an instantaneous relative velocity rotation at Moon’s intercept,
which separates the geocentric legs.

This approach neglects all the external perturbations (as the influence of the Sun for
example) and it considers only the influence of the gravitational force exercised by the
Earth on the spacecraft (because the S/C remains inside the Earth’s sphere of influence).

An example of complete trajectory can be seen both in Figure 3.1 and 3.2, where
the three legs are underlined by three different colors. The green dotted line represents
Moon’s orbit. These trajectories correspond to the reference case, treated in the following.

All the characteristics of this particular trajectory with a double lunar flyby will be
discussed, analyzed and compared in the next chapters.

However, you can immediately notice that the Moon−to−Moon leg is extremely in-
clined: that is because in this document a backflip transfer (section 3.2.2) will be treated.

Figure 3.2: Approximate analytical solution, 3D view

3.2 Trajectory analysis

In this section, the trajectory will be analyzed backwards. In particular, the analysis
is carried out with a reference frame based on Moon’s osculating orbit: x-axis towards
the ascending node of Moon’s orbit with respect to Earth’s equator, z-axis along angular
momentum, y-axis to complete a right-handed reference frame.

12



3.2 – Trajectory analysis

3.2.1 Moon to Escape

It is fundamental that Moon’s orbit intercepts spacecraft escape hyperbola at one of the
nodes. The escape velocity gives

a3 = − 1
V 2

∞ − 2/r∞
(3.1)

Then, after calculating the unit vector along angular momentum

uh = un × V∞ (3.2)

with un unit vector pointing to the ascending node (it is important to notice that sign
must change for negative V∞,z, as in all our cases visibile at Table 5.1, Chapter 5), the
inclination can be obtained from the angular momentum

i3 = arccos(uh,z) (3.3)

Another equation can be obtained from the position of the spacecraft at the second
flyby, because the distance from the Earth must be the same for S/C and Moon. This
kind of solution is approximated as it assumes first of all the modeling of the lunar orbit
around the Earth as circular.

rM = a3(1 − e2
3)

1 + e3 cos(ν3) (3.4)

Moreover, it is important to note that there is a misalignment between the velocity
directions at infinity and at the boundary of the sphere of influence, that is

β = (π

2 − ν∞ + γ∞) − Φ (3.5)

because escape is actually reached at the boundary of the sphere of influence and not
at infinity.

At escape, the true anomaly is obtained from

r∞ = a3(1 − e2
3)

1 + e3 cos ν∞
(3.6)

and the flight path angle is

γ∞ = arctan e3 sin ν∞
1 + e3 cos ν∞

(3.7)

β is added to the rotation that must be provided by Moon’s flyby.

3.2.2 Moon to Moon

Although three kinds of Moon to Moon transfer are possible, in this section only the one
consider for our study will be presented and better described:

1. resonant transfers: the Moon is intercepted at the same place after a small integer
number (e.g., 2:1) of revolutions;
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3 – Approximate analytical approach

2. planar transfers: the trajectory lies entirely on Moon’s orbit plane.

3. backflip transfers: the case at hand.

Figure 3.3: Approximate analytical solution, XY plane

In the last kind, the Moon is intercepted at points 180 degrees apart, that is, at the
intersections of the spacecraft and Moon orbit planes. Moon’s orbit is intercepted by
spacecraft orbit at ±90 degrees from its perigee.

As clearly visible in Figure 3.3, the two flybys occur, in a geocentric reference, in
positions symmetrically opposite to the Earth.

So,
p2 = rM and νfb = ±π/2.

Since this document aims to describe only short maneuvers (to avoid large distances
from the Earth), only intercept of the Moon after 1.5 revolution is considered, with the
spacecraft performs either 0.5 or 1.5 revolutions.

The inclination could be obtained from

1
a2

+ 2
√

a2(1 − e2
2)

r3
M

cos i2 = 3
rM

− V 2
∞ (3.8)

which is solved for e2 given the inclination. The nonlinear system is solved numerically,
by introducing the ratio of periapsis radius to Moon’s orbit radius

ρ = rp

rM
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3.2 – Trajectory analysis

And so,
e2 = 1 − ρ

ρ − cos νfb
(3.9)

a2 = ρ

1 − e2
rM (3.10)

3.2.3 Perigee to Moon

As before, intercept is on the reference plane and must occur at a node of the spacecraft
orbit. Since the magnitude of the relative velocity before and after the flyby must be the
same, the following equation can be derived

(V 2
∞ − 3/rM ) + (1 − e1)/rP = −2

√
rP /r3

M cos i1
√

1 + e1 (3.11)
in which the larger solution (plus sign) is for prograde orbits (i1 ≤ π/2), the lower

one for retrograde orbits (i1 ≥ π/2).
From the vectors V∞+ and V∞−, it is possible to estimate the angle of rotation of

the velocity at both flybys

δ = 2 arcsin µM /rps

V 2
∞ + µM /rps

(3.12)

with rps the flyby periselenium, which can be determined by inverting the equation.
As already mentioned, for the second flyby, the rotation is δ+β.

The values of position and velocity at perigee (VP) are then rotated to the J2000 geo-
centric frame to determine the corresponding latitude, longitude and azimuth. Azimuth
and ∆VP = VP − VC can be used to evaluate the mass that the launcher can insert into
the escape trajectory.

In particular, all the calculations are made for the Delta IV Heavy rocket. The starting
mass on the initial 200-km parking orbit is the sum of useful mass (mu) and upper stage
dry mass md (3550 kg). The useful mass given by NASA’s Launch Vehicle Performance
Website is here approximated with the quadratic equation

mu = 26280 − 0.6642(A − 90)2 (3.13)
where mu is in kg and the azimuth A in degrees. The useful escape mass is evaluated

with the rocket equation

m∞ = (mu + md)e−∆V/c − md − mP AF (3.14)
where the stage dry mass and the payload attach fitting mass (800 kg) are subtracted

from the final mass. And also,

∆V = 1.046(Vp − VP O) (3.15)
as VP is the perigee velocity at the start of the trajectory to the Moon, and VPO is

the circular velocity on the parking orbit. An addition of a 4.6% margin has been added
to attain a reference value of 9995 kg for the escape mass when C3 = −1.5 km2/s2.

15



3 – Approximate analytical approach

3.3 Calculations
Software gives us the following information, in the geocentric reference:

1. position and velocity of the S/C at the perigee;

2. position and velocity of the S/C before the first flyby;

3. position and velocity of the S/C after the first flyby and velocity of the Moon;

4. position and velocity of the S/C before the second flyby and velocity of the Moon;

5. position and velocity of the S/C after the second flyby;

6. position and velocity of the S/C at the boundary of the sphere of influence.

In particular, Moon’s velocity is unchanged before and after the same flyby, and for
this reason is reported only once.

Furthermore, at the two flybys, position coincides both for spacecraft and Moon in
the model used to do the calculations. However the spacecraft will pass at a distance rP,
the periselenium, calculated with respect to the center of mass of the Moon.

From this data, it was possible to calculate the classical orbital parameters for the
three legs in which trajectory were split, for example as illustrated in section 4.4 of the
Curtis, Howard D. [4], knowing the components of r and V.

Then, were calculated the V∞{
V∞1− = V1− − VM1

V∞1+ = V1+ − VM1
(3.16)

Where V∞− indicates the velocity before the first flyby, V∞+ after it, while, V1− and
V1+ are the velocities of the spacecraft before and after the first flyby. VM is the velocity
of the Moon.

These two equations and all those that follow are the same for the second flyby too.
From these vectors, it was possible to determine the angle of rotation given by the

flyby, simply applying the scalar product

δ1 = arccos V∞1− · V∞1+

|V∞1−||V∞1+|
(3.17)

As said before, the S/C at both flybys passes at a certain distance from the Moon,
computable from the patched conics model, by inverting the equation 3.12

rP 1 = µM (1 − sin(δ1/2))
sin(δ1/2)V 2

∞1
(3.18)

Known the magnitude, the unit vector (d̂r) is taken from

d̂r1 =

⎡⎢⎣(V∞−1,x − V∞+1,x)/(|V∞1−| − |V∞1+|)
(V∞−1,y − V∞+1,y)/(|V∞1−| − |V∞1+|)
(V∞−1,z − V∞+1,z)/(|V∞1−| − |V∞1+|)

⎤⎥⎦ (3.19)
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3.3 – Calculations

So, to sum up, the position with respect to the Moon is

d̄r1 = rP 1 · d̂r1 (3.20)

V∞+

V∞-

∞+

∞-

Figure 3.4: Position at the flyby, with respect to the Moon

While, in the geocentric reference, the position of the spacecraft at both flybys is
obtained by adding to the position of the Moon (given by the software), the vector
calculated by equation 3.20

At last, ϑ and ϕ were calculated in the geocentric reference by the vectors’ components
seen above through trigonometry.
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Chapter 4

Exact numerical solution

4.1 Solution description

In order to obtain spacecraft trajectory, in this document, an indirect method has been
used. Indirect methods, are widely used to solve ODE boundary problems (BVP). In
particular BVP has been solved by means of shooting procedures.

The shooting methods, solve numerically the BVP problem by reducing it to the initial
value problem (IVP). We ’shoot’ out trajectories in different directions until we find a
trajectory that has the desired boundary value. This method allows you to estimate the
initial conditions.

The use of this method, provides many advantages, among which: allows you to get
a numerical exact optimization, the computational cost of indirect methods is typically
lower compared to direct methods and provides useful theoretical information on the
problem to be solved. Obviously, are also some downsides: first, it is required to derive
analytic expressions for the necessary conditions; second, the convergence region for a
shooting algorithm may be quite small.

To achieve convergence to the solution, it is extremely important to begin with an
appropriate tentative solution, as it can be seen in the next chapters. In particular, for
this document, the tentative solution is obtained via the solution of a similar but easier
problem.

The system is described by a set of state variables x̄; differential equations rule the
evolution from the initial to the final state

dx̄

dt
= f(x̄, ū, t) (4.1)

functions of x̄, of the control variables ū, and the independent variable t (usually, the
time).

The problem has the same number of parameters and of imposed conditions: consid-
ering the trajectory as a whole, the parameters are

(tf − t0), ϑ0, φ0, v0, w0
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4 – Exact numerical solution

while the imposed conditions are:

uf , vf , wf , rf , i0(inclination).

At first, the trajectory was split only in two phases: first one from perigee (circular
parking orbit) to the first flyby, second one from this point to the escape. So, the whole
problem has a single solution, because the number of free parameters is equal to the
number of conditions.

Due to numerical convergence problem, another two inner phases were added. There-
fore, on the whole, trajectory was divided into four phases:

1. From perigee to first flyby;

2. from first flyby to apogee;

3. from apogee to second flyby;

4. from second flyby to escape.

Among which, there are three internal boundaries, where the state variables are discon-
tinuous or constraints are imposed:

• first periselenium;

• apogee;

• second periselenium.

Considering internal points, for each one we add a parameter (time) and a condition
(relative velocity perpendicular to vector (S/C − Moon) for the periselenium, u = 0 at
the apogee).

By the division of the trajectory into 4 legs, the shooting method became the multi-
ple shooting method. In the multiple shooting, variables are added after the apogee as
parameters and continuity equations as conditions.

The method solves an initial value problem in each of the smaller intervals, and
imposes additional matching conditions to form a solution on the whole interval. The
division into smaller intervals guarantees improvement on numerical stability over single
shooting methods. So, all in all, are solved four BVP transformed into IVP.

Furthermore, nonlinear constraints at both internal and external boundaries are im-
posed. In general, these boundary conditions are grouped into a vector Ψ̄

Ψ(x̄(j−1)+ , x̄j− , t(j−1)+ , tj−) = 0 j = 1, ....., n (4.2)

where the jth arc starts at t(j−1)+ and ends at tj− (− and + denote values just before
and after point j).

The initial values of some of the variables are usually unknown, and the search for the
solution results is determined, through an iterative process. Known the initial values at
the r-th iteration, into p̄r, obtained through the previous iteration. Then, the equations
must be integrated along the whole trajectory, taking into account any discontinuities in

20



4.1 – Solution description

the internal boundaries. Obviously, p̄1 is derived from the tentative solution. At the end
of the integration the errors on the boundary conditions are calculated.

Then, a ∆p̄ that varies the error on the boundary conditions, is applied. In particular,
the unknowns are in turn varied by a small amount to evaluate the derivatives of the errors
with respect to the unknowns, according to a forward-finite-difference scheme. Newton’s
method is used to bring the errors to zero.

Taking into account only the terms of the first order, you get:

∆Ψ̄ =
[

∂Ψ̄
∂p̄

]
∆p̄ (4.3)

So, in order to undo the error on the boundary conditions (i.e. ∆Ψ̄ = −Ψ̄r), at each
iteration the initial values are corrected as

∆p̄ = p̄r+1 − p̄r =
[

∂Ψ̄
∂p̄

]−1

Ψ̄r (4.4)

until the boundary conditions are verified with the desired accuracy. Actually, in order
to not get too far from the solution, only a fraction of the correction is made:

p̄r+1 = p̄r + K1∆p̄ (4.5)

where K1 = 0.1 − 1.
A significant example, is here reported, derived from a tentative solution of one of the

cases studied in the next chapters (this is not the first tentative solution, it is the last
one before convergence).

From this example it is possible to evaluate which are the unknowns. Between them,
there are four times (the final one and the other three due to the internal points), six
variables that refer to the apogee in terms of positions and velocity components and five
that refer to the initial condition (as shown schematically in the Figure 4.1). In particular,
all the values in figure, for the first iteration, are obtained from the tentative solution as
already mentioned in Chapter 3.

r0 is not an unknown (as can be noted previously) because the circular parking orbit
is known. Moreover, the initial mass is equal to 26280 kg.

(a) Zoom in. (b) Variables
arrangement.

Figure 4.1: Software solution output
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4 – Exact numerical solution

To sum up, in total there are 15 unknowns and there are the same number of condi-
tions. In particular these are:

• seven conditions at the escape (escape date, escape position components x y z and
escape velocity components u v w);

• radial velocity at the apogee was stated equal to zero (u = 0 );

• dot product between relative velocity and the relative distance at the second perise-
lenium equal to zero (perpendicular vectors);

• six continuity equations between phase 2 and 3 for r, ϑ, φ, u v and w.

Moreover, as previously mentioned, to have a continuous solution, at the internal
boundaries must be imposed continuity in terms of position and velocity.

Among all the outputs, extremely important will be the comparison between Moon’s
position and spacecraft’s position at both flybys. This aspect will be analyzed in the
following chapter, and one will understand the importance of relative positions.

4.2 Equations

The spacecraft is modeled as a point with variable mass. Position r̄, velocity v̄, and mass
m of the spacecraft are the problem state variables, described by differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dr̄
dt = v̄

dv̄
dt = −µr̄

r3 + T̄
m + āP

dm
dt = −T

c

(4.6)

The thrust vector T̄ in this document is assumed to be zero. āp is the perturbing
acceleration, given by

āP = āJ + ālsg + āsrp (4.7)

where: āJ is the perturbation due to the Earth asphericity, ālsg the luni-solar gravity
and āsrp is the solar radiation pressure.

It is adopted the EME2000 reference frame (Earth Mean Equator and Equinox of
Epoch J2000): Î, Ĵ , and K̂ are unit vectors along the axes of EME2000.

The position is expressed by spherical coordinates radius r, right ascension ϑ and
declination φ

r̄ = r cos ϑ cos φÎ + r sin ϑ cos φĴ + r sin φK̂ (4.8)

It is also defined a topocentric reference frame, whose unit vectors are î (radial), ĵ
(eastward), and k̂ (northward).
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4.3 – Perturbations

It can be written ⎧⎪⎨⎪⎩
î

ĵ

k̂

⎫⎪⎬⎪⎭ =

⎡⎢⎣ cos ϑ cos φ sin ϑ cos φ sin φ
− sin ϑ cos ϑ 0

− cos ϑ sin φ − sin ϑ sin φ cos φ

⎤⎥⎦ ·

⎧⎪⎨⎪⎩
Î

Ĵ

K̂

⎫⎪⎬⎪⎭ (4.9)

So, in this frame, the position is easily expressed as r̄ = r î, while the velocity as

v̄ = ˙̄r = uî + vĵ + wk̂ (4.10)

with u, v, and w being radial, eastward, and northward components, respectively.
The scalar state equations can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr
dt = u

dϑ
dt = v

r(cos φ)

dϕ
dt = w

r

du
dt = − µ

r2 + (v2+w2)
r + Tu

m + (aP )u

dv
dt = (−uv+vw tan φ)

r + Tv
m + (aP )v

dw
dt = (−uv+v2 tan φ)

r + Tw
m + (aP )w

dm
dt = −T

c

(4.11)

It must be remembered that the thrust T is assumed to be zero, along the whole
trajectory.

4.3 Perturbations

In this model,that implements perturbations, the following will be considered:

• perturbation due to the Earth asphericity;

• perturbation due to the gravitational attraction of the Sun;

• perturbation due to the gravitational attraction of the Moon;

• pressure of solar radiation.

In addition, it will be considered the eccentricity of Moon’s orbit.
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4.3.1 Earth asphericity

To take into account the perturbation due to the Earth asphericity, for this thesis it is
used the Earth potential description, based on the Earth Gravitational Model EGM200. It
provides normalized spherical harmonic coefficients for the Earth gravitational potential.
The potential corresponding to the Earth asphericity is expressed as

Φ = −µE

r

N∑
n=2

(
rE

r

)n n∑
m=0

(Cnm cos mλ + Snm sin mλ) Pmn(sin φ) (4.12)

where rE is the semi-major axis of the Earth ellipsoid. N is set to 8: it is considered an
8 × 8 model of the Earth gravitational potential. Pnm(sinφ) is the associated Legendre
functions while Cnm and Snm are the spherical harmonic coefficients. The declination φ
corresponds to the terrestrial latitude, while terrestrial longitude λ is obtained as
λ = ϑ − ϑGref − ωE (t − tref) where ϑGref is the Greenwich right ascension at the reference
time tref.
From the calculation of the gradient of − Φ, it is obtain the perturbing acceleration due
to the Earth asphericity. Its components in the topocentric frame are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(aJ)u = −∂Φ
∂r

(aJ)v = − (∂Φ/∂ϑ
(r cos φ)

(aJ)w = − (∂Φ/∂φ
r

(4.13)

Derivatives with respect to φ require the derivatives of the associated Legendre func-
tions, which are obtained recursively.

4.3.2 LuniSolar perturbation

The lunisolar perturbation is the sum of the gravitational perturbations due to Moon
and Sun. Positions of Sun and Moon are evaluated by DE405 JPL ephemeris [16]. It
provides the body position in rectangular coordinates xb, yb and zb with respect to the
Earth. Subscript b could be s for Sun or l for Moon.

The perturbing acceleration on the spacecraft

ābg = −
(

µb

R3

)
R̄ −

(
µb

r3
b

)
r̄b (4.14)

is caused by a body with gravitational parameter µb, whose position vector relative to
the Earth is r̄b = xbÎ + ybĴ + zbK̂. Where R̄ = r̄ − r̄b, is the spacecraft relative position
vector with respect to the perturbing body and −r̄b is the Earth relative position, as can
be seen in Figure 4.2.
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4.3 – Perturbations

Figure 4.2: Schematic geometry of gravitational perturbations [5].

The perturbing acceleration is not composed only by the gravitational acceleration
that the perturbing body causes on spacecraft, but also on the Earth. In the topocentric
frame (based on the spacecraft position), it can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ābg)u =
(

µb
R3

)
[(rb)u − r] −

(
µb

r3
b

)
(rb)u

(ābg)v =
(

µb
R3

)
(rb)v −

(
µb

r3
b

)
(rb)v

(ābg)w =
(

µb
R3

)
(rb)w −

(
µb

r3
b

)
(rb)w

(4.15)

with
R =

√
[r − (rb)u]2 + (rb)2

v + (rb)2
w

In this frame, the position components of the perturbing body b is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(rb)u = xb cos ϑ cos φ + yb sin ϑ cos φ + zb sin φ

(rb)v = −xb sin φ + yb cos ϑ

(rb)w = −xb cos ϑ sin φ − yb sin ϑ sin φ + zb cos φ

(4.16)
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4 – Exact numerical solution

4.3.3 Solar radiation pressure

For this perturbation, it must be taken into consideration the photon pressure: at a
distance R from the Sun, it can be evaluated as

p = Ls/4πR2clight

where Ls is the total power radiated by the Sun and clight is the speed of light. At a
distance R = 1 AU, p = 4.55682 10−6 N/m2. The acceleration on a spherical body is

āsrp = (1 + η)p∗
(

R∗

R

)2 ( S

m

)
R̄

R
= ΓR̄

mR3 (4.17)

with S the cross-section, m the mass of the spacecraft and η the reflectivity. Projected
onto the topocentric frame ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(asrp)u =
[

Γ
mR3

]
[(rs)u − r]

(asrp)v =
[

Γ
mR3

]
[(rs)v]

(asrp)w =
[

Γ
mR3

]
[(rs)w]

(4.18)

Since the solar radiation pressure acts along the Sun-spacecraft direction, this accel-
eration is parallel but with opposite directions to the solar gravity acceleration.

In the equation 4.17 it can be noted that, unlike equation 4.14, the perturbing accel-
eration depends on the instantaneous mass.
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Chapter 5

Approximate analytical approach
results

5.1 Features
The results reported refer to 5 different escape conditions, at the boundary of the Earth’s
sphere of influence. Among these, the first 3 (cases 0, 2 and 4) have the same escape date
(21/06/2022) but increasing V∞. However, with regard to the cases 4, 5 and 6 have the
same V∞ but antecedent escape date.

It is important to notice that, in the table below (Table 5.1), r ϑ and φ are those of
the Earth in its heliocentric motion:

• distances are expressed in AU;

• velocities are the relative ones of the S/C with respect to the Earth;

• velocities are dimensioned with the velocity of the Earth around the Sun (the ref-
erence is heliocentric-ecliptic):

V E =
√

µS
rS-E

≈ 29,78km/s (5.1)

First of all, the 5 different cases are defined.
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5 – Approximate analytical approach results

Table 5.1: Escape conditions

Case 0 Case 2 Case 4 Case 5 Case 6

r 1,016193 1,016193 1,016193 1,016111 1,016023
ϑ 4,702943 4,70294 4,702943 4,683577 4,664207
φ 4,843999E-5 4,84399E-5 4,84399E-5 4,84882E-5 4,85183E-5
u -3,6668E-3 -3,9547E-3 -4,2507E-3 -4,53042E-3 -4,8141E-3
v 1,66059E-2 1,69436E-2 1,72617E-2 1,70068E-2 1,67514E-2
w -4,0197E-2 -4,1853E-2 -4,3513E-2 -4,3585E-2 -4,3653E-2
Escape date 21/ 6/2022 21/ 6/2022 21/ 6/2022 19/ 6/2022 18/ 6/2022
V∞ 1,3 1,35 1,4 1,4 1,4

As previously said, this conditions refer to an Asteroid Redirect Mission. In particular,
the asteroid to be reached is 2008EV5. This asteroid, of the Aten group (a group of
asteroids, whose orbit brings them into proximity with Earth, with a semi-major axis of
less than 1 AU and with an high eccentricity), was first observed on 4 March 2008. EV5
rotates retrograde and its overall shape is a 400 ± 50 m oblate spheroid, so is defined
as a sub-kilometer asteroid. It is a near-Earth object and potentially hazardous. On 23
December 2008, 2008EV5 made a close approach to Earth at a distance of 3.2 million km
(0,022 AU), its closest until 2169. It has a semi-major axis of 0,958242 AU, an eccentricity
of 0,083401 and an inclination of 7,437 degrees.

Figure 5.1: Asteroid 2008 EV5’s orbit (white) compared with the nearest planets, in the
heliocentric reference system [14].
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5.2 – Case 0 (comparison between exact and approximated solution)

Figure 5.2: 3D visual of the asteroid and Earth orbit in the heliocentric reference system
[14].

As you can see, in all 5 cases presented, the component with the highest magnitude
is w. The latter, appears to be an order of magnitude greater than u and about double
or triple of v, so the off-plane component is predominant, with respect to those on the
plane.

Now that all the cases have been defined, solutions can be evaluated. First of all, it is
presented the case 0, which will then be treated as the reference case. Then, are reported
and analyzed the solutions separately between those with the same escape date and those
with the same V∞.

5.2 Case 0 (comparison between exact and approximated
solution)

In this section we will present the solution of the reference case with a comparison between
the approximate and the exact numerical solution.

The following tables (also of the following chapter), express the positions of spacecraft
and moon in spherical coordinates (radius r, longitude ϑ and latitude φ), at distinct points
of the trajectory like the two flybys, the departure (from a LEO orbit) and the escape.

The magnitude of the radii is adimensionalized with respect to the terrestrial radius
(6378,14 km), while the velocities with respect to the corresponding circular speed:√

µE
rE

(5.2)

Instead, as the name implies, the radius of periselenium is measured with respect to
the centre of the Moon and again, the adimensionalized value is calculated as the other
radii.
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5 – Approximate analytical approach results

The velocity has a radial component u (i.e. towards the Zenit), one in the east
direction v and a northward w. The classical orbital parameters were used (semi-major
axis, eccentricity, inclination, longitude of the ascending node, argument of periapsis and
true anomaly).

Table 5.2: Comparison of S/C-Moon positions at the two flybys between exact and
approximate solution

Parameter Exact Approximated

FB1

r S/C 64,30886 60,56857
Moon 64,02390 60,33634

ϑ
S/C 1,26703 1,34469
Moon 1,26452 1,34238

φ
S/C 0,42132 0,43526
Moon 0,42692 0,44035

FB2

r S/C 56,26755 60,04843
Moon 56,59549 60,33634

ϑ
S/C 4,41875 4,48059
Moon 4,42317 4,48397

φ
S/C -0,42654 -0,43773
Moon -0,43008 -0,44035

The distances at which the flyby occur are extremely different given that only in the
exact numerical solution it is considered Moon’s eccentricity

Table 5.3: Comparison of relative positions at the two flybys between exact and
approximate solution

Parameter Exact Approximated

FB1

ϑSC-ϑM 0,00251234 0,002312319
φSC-φM -0,00560428 -0,005092084
rperiselenium 0,48176806 0,4059
rperiselenium [km] 3072,78235 2588,885524

FB2

ϑSC-ϑM -0,004428128 -0,003376191
φSC-φM 0,00353543 0,002615465
rperiselenium 0,446113524 0,3762
rperiselenium [km] 2845,37283 2399,454876

You can appreciate that, even changing the model, relative positions maintain the
same sign (in terms of ∆ϑ and ∆φ, where a positive value indicates that the spacecraft
is forward or higher than the Moon). The biggest difference is found in the distances
between S/C and Moon at both flybys (the so-called radius of periselenium), with the
largest values calculated from the exact numerical solution. Remember that Moon’s
radius is equal to 1737 km. During the first flyby the spacecraft is located at an altitude
of only 1335 km from the lunar surface, while, at the second flyby, the altitude is lower
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5.2 – Case 0 (comparison between exact and approximated solution)

and is about 1108 km.

Table 5.4: Comparison of S/C positions between exact and approximate solution

Parameter Exact Approximated

Perigee
r 1,03020 1,03020
ϑ -1,60680 -1,54073
φ -0,47 -0,36676

FB1
r 64,30886 60,56857
ϑ 1,26703 1,34469
φ 0,42132 0,43526

FB2
r 56,26755 60,04843
ϑ 4,418746267 4,48059
φ -0.4265 -0,43773

Escape
r 156.7856 156,78561
ϑ 0,0314 -0,41
φ -1,3333 -1,32022

At both flybys, the values of ϑ calculated through the approximated model are greater
than those calculated with the exact model. As visible in the figures below (Figure 5.3
and 5.4), where the blue line refers to the Moon’s orbit in the case of the most complex
solution while, the red one it is relative to the simplest one.

Figure 5.3: Zoom on FB1, comparison between exact and approximate solution
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5 – Approximate analytical approach results

Figure 5.4: Zoom on FB2, comparison between exact and approximate solution

Furthermore, it can be noted that the the escape conditions have a strong component
outside the ecliptic plane, as clearly visible in Figure 5.5. The φ angle is extremely high
in module and in particular is negative. So, according to these data, the escape happens
with a latitude close enough to −90 degrees.

Table 5.5: Time comparison between exact and approximate solution

Time Exact Approximated

M-M leg 4457,20173 4417,12320
M-escape leg 778,52059 755,36979

Table 5.6: Comparison of orbital parameters between exact and approximate solution,
part 1

a e incl

Perigee-FB1 Approximated 300,64615 0,99657 0,50116
Exact 230,45124 0,99561 0,49854

FB1-FB2 Approximated 88,80794 0,56617 1,78919
Exact 88,35287 0,64325 1,77504

FB2-ESCAPE Approximated -70,00101 1,80220 1,32066
Exact -65,97308 1,81739 1,35454
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5.2 – Case 0 (comparison between exact and approximated solution)

Table 5.7: Comparison of orbital parameters between exact and approximate solution,
part 2

RA w TA

Perigee-FB1 Approximated 5,51959 5,44057 6,28318
Exact 0,32075 4,39435 2,83429

FB1-FB2 Approximated 1,44715 5,16438 1,57066
Exact 1,37996 5,05481 -3,12409

FB2-ESCAPE Approximated 1,22166 3,12853 1,56878
Exact 1,16179 3,22493 1,14145

The most important orbital parameters for our study are certainly the semi-major
axis, the eccentricity and the inclination. All these 3 values are about constant from one
model to another. Moreover, only the final leg turns out to be a hyperbolic orbit (for
obvious reasons), while the previous two are elliptic.

But, it can be seen that the semi-major axis from the first to the second leg decreases,
with the consequent reduction of energy. The importance of the first flyby is to achieve
the right inclination (from 0,5 to 1,78 radians) o then the right trajectory. The second
flyby, then is the one that significantly increases the energy.

Table 5.8: Energy comparison between exact and approximate solution

Energy

Perigee-FB1 Approximated -0,00166
Exact -0,00217

FB1-FB2 Approximated -0,00563
Exact -0,00566

FB2-ESCAPE Approximated 0,00714
Exact 0,00758

Energy values varies as said before, and as can be clearly seen from the table.
In particular, all the following figures have the equatorial plane as their XY plane

and the reference is centered in the centre of mass of the Earth. Therefore, a geocentric
reference system is being used. In fact, it can be seen that Moon’s orbit is inclined with
respect to the ecliptic.
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Figure 5.5: Comparison between exact and approximate solution, Case 0

5.3 Comparison between solutions with the same escape
date

In this section the solutions with the same escape date are compared with each other.

Table 5.9: Comparison of S/C-Moon positions at the two flybys between solutions with
the same escape date

Parameter Case 0 Case 2 Case 4

FB1

r S/C 60,56857 60,56831 60,56609
Moon 60,33634 60,33633 60,33633

ϑ
S/C 1,34469 1,41183 1,47594
Moon 1,34238 1,40951 1,47361

φ
S/C 0,43526 0,44515 0,45290
Moon 0,44035 0,44994 0,45738

FB2

r S/C 60,04843 60,07686 60,10411
Moon 60,33634 60,33633 60,33633

ϑ
S/C 4,48059 4,54773 4,61188
Moon 4,48397 4,55111 4,61520

φ
S/C -0,43773 -0,44747 -0,45508
Moon -0,44035 -0,44994 -0,45738
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The first thing you notice, as already mentioned, is that with the approximate solu-
tions the distances of the Moon from the Earth at both flybys is the same (about 384400
km, that is, the average Moon-Earth distance) because Moon’s orbit is circular. Whereas,
these distances, due to the eccentricity of Moon’s orbit, vary a lot, from a minimum value
of about 360000 km to a maximum value of 410000 km.

Another aspect to consider are the angular positions (both of the S/C and of the
Moon) that vary from one case to another,

• ϑ: as can be seen, at both flybys, grows from case 0 to 4 (this indicates that the
two flybys occur in successive moments with respect to case 0);

• φ: grows from case 0 to 4 at the first flyby (when the Moon is intercepted it is at
a higher latitude, compared to the geocentric reference), while at the second one
decreases;

• The variation of ϑ is one order of magnitude greater than that of φ.

Table 5.10: Comparison of relative positions at the two flybys between solutions with the
same escape date

Parameter Case 0 Case 2 Case 4

FB1

ϑSC-ϑM 0,002312319 0,00232 0,00233
φSC-φM -0,005092084 -0,00479 -0,00448
rperiselenium 0,4059 0,39204 0,37690
rperiselenium [km] 2588,885524 2500,46514 2403,91321

FB2

ϑSC-ϑM -0,003376191 -0,00338 -0,00333
φSC-φM 0,002615465 0,00246 0,00230
rperiselenium 0,3762 0,35054 0,32481
rperiselenium [km] 2399,454876 2235,78593 2071,68764

For what concern about the relative angular positions between S/C and Moon at both
flybys, they can be summarized as:

• At the first flyby the spacecraft is later (ϑ) and lower (φ) than the Moon;

• At the second flyby, contrary to what happens to the first one, the spacecraft is
more backward (ϑ) and higher (φ) than the Moon.

The knowledge of these mutual positions was fundamental in order to calculate the
exact numerical solution. Only with this exact angular configuration it was possible to
obtain the searched solution.
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Table 5.11: Comparison of S/C positions between solutions with the same escape date

Parameter Case 0 Case 2 Case 4

Perigee
r 1,03020 1,03024 1,03024
ϑ -1,54073 -1,46317 -1,39009
φ -0,36676 -0,37910 -0,38550

FB1
r 60,56857 60,56831 60,56609
ϑ 1,34469 1,41183 1,47594
φ 0,43526 0,44515 0,45290

FB2
r 60,04843 60,07686 60,10411
ϑ 4,48059 4,54773 4,61188
φ -0,43773 -0,44747 -0,45508

Escape
r 156,78561 156,78561 156,78561
ϑ -0,41 -0,33177 -0,26772
φ -1,32022 -1,29728 -1,27605

It can be noted that the escape conditions seen at the beginning of this chapter
(Table 5.1) are not the same as those in the previous table (Table 5.11). This happens
only because they are expressed in two different reference systems: with the appropriate
conversions they would coincide.

Table 5.12: Time comparison between solutions with the same escape date

Time Case 0 Case 2 Case 4

M-M leg 4417,12320 4417,12320 4417,12320
M-escape leg 755,36979 730,07960 706,15763

The previous table (Table 5.12) shows the duration of the Moon to Moon and the
Moon to escape legs: you immediately notice that the first leg has the same duration in
all 3 cases while the second one decreases its duration. The explanation is that, as shown
in the figure below (Figure 5.6), the second flyby of case 4 takes place in a position closer
to the escape condition than the other 2 cases. For this reason it is less the time to reach
the boundary of the Earth’s sphere of influence.
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Table 5.13: Comparison of orbital parameters between solutions with the same escape
date, part 1

a e incl

Perigee-FB1
Case 0 300,64615 0,99657 0,50116
Case 2 640,87874 0,99839 0,49922
Case 4 -2938,48377 1,00035 0,50305

FB1-FB2
Case 0 88,80794 0,56617 1,78919
Case 2 88,80536 0,56616 1,80714
Case 4 88,79413 0,56612 1,83020

FB2-ESCAPE
Case 0 -70,00101 1,80220 1,32066
Case 2 -60,95783 1,92457 1,29743
Case 4 -53,74224 2,05185 1,27611

Table 5.14: Comparison of orbital parameters between solutions with the same escape
date, part 2

RA w TA

Perigee-FB1
Case 0 5,51959 5,44057 6,28318
Case 2 5,63918 5,39956 6,28318
Case 4 5,72239 5,38858 6,28318

FB1-FB2
Case 0 1,44715 5,16438 1,57066
Case 2 1,52610 5,17628 1,57070
Case 4 1,60460 5,18687 1,57080

FB2-ESCAPE
Case 0 1,22166 3,12853 1,56878
Case 2 1,27369 3,15889 1,54414
Case 4 1,32361 3,18454 1,52188

Talking about orbital parameters, the biggest difference can be seen in the calculation
of the semi-major axis for the Perigee-FB1 leg. The main problem you have is in case 4,
where the solution gives a negative semi-major axis (hyperbolic orbit), while in the other
cases a positive value is obtained (which refers to an elliptical orbit). According to what
has just been said, the eccentricity is greater than or less than 1 with minimal differences
from the unit.

One of the most important parameters, the inclination between the two flybys, remains
almost unchanged (the maximum difference is two degrees). As it happens in the other
2 legs. It can be noted that the initial inclination, about 0,5 radians (approximately 28
degrees), it’s the maximum angle between Moon’s orbit and Earth’s equator.

37



5 – Approximate analytical approach results

Table 5.15: Energy comparison between solutions with the same escape date

Energy Case 0 Case 2 Case 4

Perigee-FB1 -0,00166 -0,00078 0,00017
FB1-FB2 -0,00563 -0,00563 -0,00563
FB2-ESCAPE 0,00714 0,00820 0,00930

The values of energy vary in magnitude by an insignificant factor. As expected, the
values in the FB2-escape leg is positive which means that the trajectory is hyperbolic
(as can be seen also in the tables with the orbital parameters, in the fb2-escape leg) and
therefore you have a hyperbolic excess velocity.

Figure 5.6: Comparison between solutions with the same escape date

5.4 Comparison between solutions with the same V∞

In this section the solutions with the same V∞ are compared with each other and with
that of the case 0.
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Table 5.16: Comparison of S/C-Moon positions at the two flybys between solutions with
the same V∞

Parameter Case 0 Case 4 Case 5 Case 6

FB1

r S/C 60,56857 60,56609 60,64891 60,84856
Moon 60,33634 60,33633 60,43736 60,64968

ϑ
S/C 1,34469 1,47594 1,03329 0,66144
Moon 1,34238 1,47361 1,03033 0,65828

φ
S/C 0,43526 0,45290 0,36798 0,23709
Moon 0,44035 0,45738 0,37159 0,23950

FB2

r S/C 60,04843 60,10411 60,21413 60,46568
Moon 60,33634 60,33633 60,43736 60,64968

ϑ
S/C 4,48059 4,61188 4,16885 3,79767
Moon 4,48397 4,61520 4,17192 3,79988

φ
S/C -0,43773 -0,45508 -0,36783 -0,23490
Moon -0,44035 -0,45738 -0,37159 -0,23950

Contrary to what happened to the escape with the same date, in this case the value of
ϑ at both flybys and φ at the first one, decreases significantly by anticipating the escape.
Recalling that, the escape of case 6 occurs before the one of case 5, which in turn has
earlier escape with respect to case 4. At the second flyby, the value of φ, in antithesis
with the previous study, grows.

Table 5.17: Comparison of relative positions at the two flybys between solutions with the
same V∞

Parameter Case 0 Case 4 Case 5 Case 6

FB1

ϑSC-ϑM 0,002312319 0,00233 0,00296 0,00316
φSC-φM -0,005092084 -0,00448 -0,00361 -0,00241
rperiselenium 0,4059 0,37690 0,34707 0,30932
rperiselenium [km] 2588,885524 2403,91321 2213,68900 1972,89432

FB2

ϑSC-ϑM -0,003376191 -0,00333 -0,00307 -0,00221
φSC-φM 0,002615465 0,00230 0,00376 0,00460
rperiselenium 0,3762 0,32481 0,36216 0,35831
rperiselenium [km] 2399,454876 2071,68764 2309,91443 2285,33479

For what concern about the relative angular positions between S/C and Moon at both
flybys, they vary in magnitude but not in sign between all the 5 cases.

So, the reciprocal positions are fixed to obtain this type of trajectory.
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Table 5.18: Comparison of S/C positions between solutions with the same V∞

Parameter Case 0 Case 4 Case 5 Case 6

Perigee
r 1,03020 1,03024 1,03024 1,03024
ϑ -1,54073 -1,39009 -1,84844 -2,22219
φ -0,36676 -0,38550 -0,26785 -0,10829

FB1
r 60,56857 60,56609 60,64891 60,84856
ϑ 1,34469 1,47594 1,03329 0,66144
φ 0,435265 0,45290 0,36798 0,23709

FB2
r 60,04843 60,10411 60,21413 60,46568
ϑ 4,48059 4,61188 4,16885 3,79767
φ -0,43773 -0,45508 -0,36783 -0,23490

Escape
r 156,78561 156,78561 156,78561 156,78561
ϑ -0,41 -0,26772 -0,15988 2,16739
φ -1,32022 -1,27605 -1,48478 -1,43163

Table 5.19: Time comparison between solutions with the same V∞

Time Case 0 Case 4 Case 5 Case 6

M-M leg 4417,12320 4417,12320 4428,22166 4451,57664
M-escape leg 755,36979 706,15763 748,44815 779,77558

In this case, even the M-M leg varies its duration increasing it, while the M-escape
leg becomes shorter.

Table 5.20: Comparison of orbital parameters between solutions with the same V∞, part 1

a e incl

Perigee-FB1
Case 0 300,64615 0,99657 0,50116
Case 4 -2938,48377 1,00035 0,50305
Case 5 -472,11528 1,00218 0,50501
Case 6 -136,47187 1,00754 0,50274

FB1-FB2
Case 0 88,80794 0,56617 1,78919
Case 4 88,79413 0,56612 1,83020
Case 5 88,95768 0,56620 2,08356
Case 6 89,26654 0,566157 2,40302

FB2-ESCAPE
Case 0 -70,00101 1,80220 1,32066
Case 4 -53,74224 2,05185 1,27611
Case 5 -53,74761 2,09924 1,49193
Case 6 -53,74261 2,121569 1,70933
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Table 5.21: Comparison of orbital parameters between solutions with the same V∞, part 2

RA w TA

Perigee-FB1
Case 0 5,51959 5,44057 6,28318
Case 4 5,72239 5,38858 6,28318
Case 5 4,95423 5,70438 0,00001
Case 6 4,26003 6,05695 6,28318

FB1-FB2
Case 0 1,44715 5,16438 1,57066
Case 4 1,60460 5,18687 1,57080
Case 5 1,25153 5,14225 1,57074
Case 6 0,92981 5,07259 1,57068

FB2-ESCAPE
Case 0 1,22166 3,12853 1,56878
Case 4 1,32361 3,18454 1,52188
Case 5 0,99950 3,25602 1,49074
Case 6 0,69236 3,24931 1,47635

The semi-major axis of the first leg, in the last 3 cases, remains negative while the
eccentricity grows a little. In the same way, even the inclination of the second leg grows a
lot, with a margin of about 35 degrees. All these considerations can be seen in the figure
below (Figure 5.7).

Moreover, it can be notice that changing the escape date (cases 5 and 6) varies con-
siderably the Perigee-Moon leg: in fact, in cases 0 2 and 4 (considering the solution which
takes into account perturbations) this leg is elliptical while, in the other 2 cases, orbit is
hyperbolic.

Table 5.22: Energy comparison between solutions with the same V∞

Energy Case 0 Case 4 Case 5 Case 6

Perigee-FB1 -0,00166 0,00017 0,00106 0,00366
FB1-FB2 -0,00563 -0,00563 -0,00562 -0,0056
FB2-ESCAPE 0,00714 0,00930 0,00930 0,00930

In this case, the final energy maintains the same value that is still greater than the
reference case (case 0), because, compared to it, the final leg has greater semi-major axis
as well as V∞.

41



5 – Approximate analytical approach results

Figure 5.7: Comparison between solutions with the same V∞
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Chapter 6

Exact numerical solution results

In the following chapter, will be presented the exact numerical solutions. Then, them are
compared with the approximate ones (without perturbations), keeping the same escape
conditions (Table 5.1).

6.1 Comparison between solutions with the same escape
date

Table 6.1: Mass and times as the V∞ varies

Case 0 2 4

Mass [kg] 10318,06402 10310,76261 10301,86671
Mass correct [kg] 9768,06402 9760,76261 9751,86671
V∞ 1,3 1,35 1,4
T1 255,87464 254,22257 252,00386
T2 2457,49223 2452,95069 2449,59207
T2 4713,07637 4704,69311 4696,55410
T3 5491,59696 5454,88856 5420,41797
Date of FB1 30/4/2022 1/5/2022 1/5/2022
Date of apogee 3/5/2022 3/5/2022 3/5/2022
Date of FB2 13/6/2022 14/6/2022 14/6/2022
Date of escape 21/6/2022 21/6/2022 21/6/2022

It can be noticed immediately that, increasing V∞ the mass at the escape is a bit
lower. In the same way varies the time needed to reach the boundary of the sphere of
influence.

In particular, most of the time is occupied from the first flyby to the second one
(about the 80% of the total flight time).
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Table 6.2: Comparison of the periselenium radius at the 2 flybys

Case 0 2 4

rperiselenium FB1 [km] 3072,78235 3014,73755 2937,70777
rperiselenium FB2 [km] 2845,37283 2633,72663 2425,86125

The distances of the spacecraft at both flybys decreases as V∞ increases, in particular
that relating to the second one.

Table 6.3: Comparison of S/C-Moon positions at the two flybys

Case 0 2 4

FB1

r S/C 64,30885577 64,37878 64,42534
Moon 64,02390329 64,09538 64,14464

ϑ
S/C 1,26702922 1,33862 1,40507
Moon 1,26451688 1,33617 1,40266

φ
S/C 0,42131895 0,43392 0,44380
Moon 0,42692323 0,43937 0,44904

rperiselenium 0,48176806 0,47267 0,46059
rperiselenium [km] 3072,78234 3014,73757 2937,70780

FB2

r S/C 56,26755091 56,24613 56,24091
Moon 56,59548797 56,54160 56,50561

ϑ
S/C 4,418746267 4,49328 4,56346
Moon 4,423174 4,49765 4,56771

φ
S/C -0,4265 -0,43921 -0,44906
Moon -0,43007 -0,44245 -0,45203

rperiselenium 0,4461135243 0,41293 0,38034
rperiselenium [km] 2845,37286 2633,72663 2425,86123

As shown in the figure below (Figure 6.1 and 6.2), the 3 trajectories are very similar
to each other, but slightly rotated forward with respect to each other: if the values of φ
vary a little, ϑ grows much more.
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6.1 – Comparison between solutions with the same escape date

Table 6.4: Adimensional spherical coordinates of the S/C in points of particular interest
as the V∞ varies

Case 0 2 4

Perigee
r 1,03020 1,03020 1,03020
ϑ -1,60680 -1,52940 -1,45690
φ -0,47 -0,47850 -0,48420

FB1
r 64,30886 64,37878 64,42534
ϑ 1,26703 1,33862 1,40507
φ 0,42132 0,43392 0,44380

Apogee
r 145,18130 144,99180 144,81540
ϑ -1,24720 -1,18670 -1,11560
φ 1,17240 1,16130 1,14670

FB2
r 56,26755 56,24613 56,24091
ϑ 4,418746267 -1,78991 -1,71973
φ -0.4265 -0,43921 -0,44906

Escape
r 156.7856 156,78560 156,78560
ϑ 0,0314 0,03540 0,04470
φ -1,3333 -1,30850 -1,28620

An important aspect that can be seen here, are the escape conditions: as already
mentioned, the first 3 cases only differ for the escape velocity magnitude. Thus, asymp-
totically they have the same trajectory: the 3 lines, after the second flyby, are getting
closer and closer as they approach the boundary of the sphere of influence, Figure 6.1.
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Table 6.5: Adimensional velocities of the S/C in points of particular interest as the V∞
varies

Case 0 2 4

Perigee
u 0 0 0
v 1,37240 1,37810 1,38260
w -0,23120 -0,19620 -0,16510

FB1
u 0,19670 0,19870 0,20110
v -0,08760 -0,08730 -0,08800
w 0,09520 0,09700 0,09870

Apogee
u 0 0 0
v -0,02580 -0,02510 -0,02500
w -0,04230 -0,04300 -0,04330

FB2
u -0,01240 -0,01140 -0,01050
v -0,06550 -0,06320 -0,06220
w -0,2698 -0,27860 -0,28770

Escape
u 0,1452 0,15150 0,15780
v 0,0704 0,07350 0,07630
w 0,0317 0,02830 0,02540

As it should be, both at the perigee (departure of our trajectory) and at the apogee,
the radial velocity (u) is zero.

Table 6.6: Initial and final semi-axis and energy

Case 0 2 4

Initial semi-axis 231,72704 283,06109 387,81870
Final semi-axis -69,99874 -60,95273 -53,74490
Final energy 0,00714 0,00820 0,00930

Due to an increment on the final semi-major axis (in magnitude it is reduced), the
final energy grows.
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6.1 – Comparison between solutions with the same escape date

Figure 6.1: Comparison between solutions as the V∞ varies, 3D view

In this view (Figure 6.1, in which it is possible to have a 3-dimensional view of
the entire trajectory), you can realize that the Moon-Moon leg is obtained through a
retrograde orbit (inclination greater than 90 degrees).
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6 – Exact numerical solution results

Figure 6.2: Comparison between solutions as the V∞ varies, XY view

Figure 6.3: Comparison between solutions as the V∞ varies, YZ view
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6.2 – Comparison between solutions with the same V∞

6.2 Comparison between solutions with the same V∞

Table 6.7: Mass and times as the date of escape varies

Case 0 4 5 6

Mass [kg] 10318,06402 10301,86671 10246,20564 10163,21690
Mass correct [kg] 9768,06402 9751,86671 9696,20564 9613,21690
V∞ 1,3 1,4 1,4 1,4
T1 255,87464 252,00386 236,59710 216,06620
T2 2457,49223 2449,59207 2466,66770 2455,65680
T2 4713,07637 4696,55410 4742,98600 4801,47600
T3 5491,59696 5420,41797 5505,84100 5592,87430
Date of FB1 30/4/2022 1/5/2022 29/4/2022 27/4/2022
Date of apogee 3/5/2022 3/5/2022 1/5/2022 29/4/2022
Date of FB2 13/6/2022 14/6/2022 12/ 6/2022 11/ 6/2022
Date of escape 21/6/2022 21/6/2022 19/ 6/2022 18/ 6/2022

Talking about the flight time, it seems that the last case is the longest, although the
duration of all the transfers is very similar and on average it takes about 53 days.

Table 6.8: Comparison of the periselenium radius at the 2 flybys

Case 0 4 5 6

rperiselenium FB1 [km] 3072,78235 2937,70777 2451,39282 2058,06497
rperiselenium FB2 [km] 2845,37283 2425,86125 2595,54766 2504,02244
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Table 6.9: Comparison of S/C-Moon positions at the two flybys

Case 0 4 5 6

FB1

r S/C 64,30885577 64,42534 64,11500 63,18250
Moon 64,02390329 64,14464 63,86302 62,95801

ϑ
S/C 1,26702922 1,40507 0,97670 0,59560
Moon 1,26451688 1,40266 0,97355 0,59234

φ
S/C 0,42131895 0,44380 0,35140 0,20930
Moon 0,42692323 0,44904 0,35484 0,21108

rperiselenium 0,48176806 0,46059 0,38434 0,32267
rperiselenium [km] 3072,78234 2937,70780 2451,39280 2058,06496

FB2

r S/C 56,26755091 56,24091 56,56920 57,56510
Moon 56,59548797 56,50561 56,80579 57,74568

ϑ
S/C 4,418746267 4,56346 4,13269 3,77159
Moon 4,423174 4,56771 4,13647 3,77433

φ
S/C -0,4265 -0,44906 -0,35670 -0,22320
Moon -0,43007 -0,45203 -0,36128 -0,22865

rperiselenium 0,4461135243 3 0,38034 0,40694 0,39259
rperiselenium [km] 2845,37286 2425,86123 2595,54766 2504,02244

It can be noted that the distance of the Moon from the Earth at flybys is different:
it is farther at the first one, and overall the difference of radius is about 50000 km. This
happens because it is considered the eccentricity of Moon’s orbit, which did not happen
in the approximate approach.
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Table 6.10: Adimensional spherical coordinates of the S/C in points of particular interest
as the date of escape varies

Case 0 4 5 6

Perigee
r 1,03020 1,03020 1,03020 1,03020
ϑ -1,60680 -1,45690 -1,87860 -2,25250
φ -0,47 -0,48420 -0,43210 -0,33190

FB1
r 64,30886 64,42534 64,11500 63,18250
ϑ 1,26703 1,40507 0,97670 0,59560
φ 0,42132 0,44380 0,35140 0,20930

Apogee
r 145,18130 144,81540 146,64740 148,83120
ϑ -1,24720 -1,11560 -0,98700 -0,98710
φ 1,17240 1,14670 0,96820 0,68700

FB2
r 56,26755 56,24091 56,56920 57,56510
ϑ 4,418746267 -1,71973 4,13269 3,77159
φ -0.4265 -0,44906 -0,35670 -0,22320

Escape
r 156.7856 156,78560 156,78560 156,78560
ϑ 0,0314 0,04470 0,57250 1,69739
φ -1,3333 -1,28620 -1,43320 -1,38430

Table 6.11: Adimensional velocities of the S/C in points of particular interest as the date
of escape varies

Case 0 4 5 6

Perigee
u 0 0 0 0
v 1,37240 1,38260 1,34950 1,29930
w -0,23120 -0,16510 -0,35130 -0,35130

FB1
u 0,19670 0,20110 0,21820 0,24100
v -0,08760 -0,08800 -0,12540 -0,15360
w 0,09520 0,09870 0,07570 0,04100

Apogee
u 0 0 0 0
v -0,02580 -0,02500 -0,04230 -0,04740
w -0,04230 -0,04330 -0,02400 -0,00710

FB2
u -0,01240 -0,01050 -0,02950 -0,03980
v -0,06550 -0,06220 -0,12210 -0,17810
w -0,2698 -0,28770 -0,25820 -0,22040

Escape
u 0,1452 0,15780 0,15660 0,15550
v 0,0704 0,07630 0,03170 -0,07340
w 0,0317 0,02540 0,07640 0,04250
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6 – Exact numerical solution results

Table 6.12: Initial and final semi-axis and energy

Case 0 4 5 6

Initial semi-axis 231,72704 387,81870 -293,13240 -80,62070
Final semi-axis -69,99874 -53,74490 -53,74515 -53,74510
Final energy 0,00714 0,00930 0,00930 0,00930

Figure 6.4: Comparison between solutions as the escape date varies, 3D view
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6.2 – Comparison between solutions with the same V∞

Figure 6.5: Comparison between solutions as the escape date varies, XY view

Figure 6.6: Comparison between solutions as the escape date varies, YZ view
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6 – Exact numerical solution results

6.3 Comparison between exact and approximated solutions
In this section the results of the remaining 4 cases are reported and each of them is
compared to the solution without perturbations.

6.3.1 Case 2

The same conclusions obtained previously (Section 6.1), can be even obtained from the
following tables and figures.

Table 6.13: Comparison of S/C-Moon positions at the two flybys between exact and
approximate solution

Parameter Exact Approximated

FB1

r S/C 64,37878 60,56831
Moon 64,09538 60,33633

ϑ
S/C 1,33862 1,41183
Moon 1,33617 1,40951

φ
S/C 0,43392 0,44515
Moon 0,43937 0,44994

FB2

r S/C 56,24613 60,07686
Moon 56,54160 60,33633

ϑ
S/C 4,49328 4,54773
Moon 4,49765 4,55111

φ
S/C -0,43921 -0,44747
Moon -0,44245 -0,44994

Table 6.14: Comparison of relative positions at the two flybys between exact and
approximate solution

Parameter Exact Approximated

FB1

ϑSC-ϑM 0,00245 0,00232
φSC-φM -0,00545 -0,00479
rperiselenium 0,47267 0,39204
rperiselenium 3014,73755 2500,46514

FB2

ϑSC-ϑM -0,00437 -0,00338
φSC-φM 0,00325 0,00246
rperiselenium 0,41293 0,35054
rperiselenium 2633,72663 2235,78593

Probably this table remains one of the key points of the discussion. It is important to
underline that the reciprocal positions between S/C and Moon remain unchanged (they
only vary in magnitude), both by changing cases and by the model used to derive the
solution.
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6.3 – Comparison between exact and approximated solutions

Table 6.15: Comparison of S/C positions between exact and approximate solution

Parameter Exact Approximated

Perigee
r 1,03020 1,03024
ϑ -1,52940 -1,46317
φ -0,47850 -0,37910

FB1
r 64,37878 60,56831
ϑ 1,33862 1,41183
φ 0,43392 0,44515

FB2
r 56,24613 60,07686
ϑ 4,49328 4,54773
φ -0,43921 -0,44747

Escape
r 156,78560 156,78561
ϑ 0,03540 -0,33177
φ -1,30850 -1,29728

Table 6.16: Time comparison between exact and approximate solution

Time Exact Approximated

M-M leg 4450,47054 4417,12320
M-escape leg 750,19545 730,07960

Table 6.17: Comparison of orbital parameters between exact and approximate solution,
part 1

a e incl

Perigee-FB1 Approximated 640,87874 0,99839 0,49922
Exact 279,34356 0,99637 0,49844

FB1-FB2 Approximated 88,80536 0,56616 1,80714
Exact 88,34860 0,64122 1,77393

FB2-ESCAPE Approximated -60,95783 1,92457 1,29743
Exact -57,97184 1,92945 1,32632
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Table 6.18: Comparison of orbital parameters between exact and approximate solution,
part 2

RA w TA

Perigee-FB1 Approximated 5,63918 5,39956 6,28318
Exact 0,34236 4,44475 2,82777

FB1-FB2 Approximated 1,52610 5,17628 1,57070
Exact 1,46047 5,06774 -3,11958

FB2-ESCAPE Approximated 1,27369 3,15889 1,54414
Exact 1,21928 3,24309 1,15813

Again, it is extremely important the inclination of the FB1-FB2 leg to achieve a
backflip transfer and obviously having a hyperbolic solution in the final leg.

Table 6.19: Energy comparison between exact and approximate solution

Energy

Perigee-FB1 Approximated -0,00078
Exact -0,00179

FB1-FB2 Approximated -0,00563
Exact -0,00566

FB2-ESCAPE Approximated 0,00820
Exact 0,00862
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Figure 6.7: Comparison between exact and approximate solution, Case 2

6.3.2 Case 4

Table 6.20: Comparison of S/C-Moon positions at the two flybys between exact and
approximate solution

Parameter Exact Approximated

FB1

r S/C 64,42534 60,56609
Moon 64,14464 60,33633

ϑ
S/C 1,40507 1,47594
Moon 1,40266 1,47361

φ
S/C 0,44380 0,45290
Moon 0,44904 0,45738

FB2

r S/C 56,50561 60,33633
Moon 56,59549 60,33634

ϑ
S/C 4,56346 4,61188
Moon 4,56771 4,61520

φ
S/C -0,44906 -0,45508
Moon -0,45203 -0,45738

57



6 – Exact numerical solution results

Table 6.21: Comparison of relative positions at the two flybys between exact and
approximate solution

Parameter Exact Approximated

FB1

ϑSC-ϑM 0,00241 0,00233
φSC-φM -0,00525 -0,00448
rperiselenium 0,46059 0,37690
rperiselenium 2937,70777 2403,91321

FB2

ϑSC-ϑM -0,00425 -0,00333
φSC-φM 0,00297 0,00230
rperiselenium 0,38034 0,32481
rperiselenium 2425,86125 2071,68764

Table 6.22: Comparison of S/C positions between exact and approximate solution

Parameter Exact Approximated

Perigee
r 1,03020 1,03024
ϑ -1,52940 -1,39009
φ -0,47850 -0,38550

FB1
r 64,37878 60,56609
ϑ 1,33862 1,47594
φ 0,43392 0,45290

FB2
r 56,24613 60,10411
ϑ 4,49328 4,61188
φ -0,43921 -0,45508

Escape
r 156,78560 156,78561
ϑ 0,03540 -0,26772
φ -1,30850 -1,27605

Table 6.23: Time comparison between exact and approximate solution

Time Exact Approximated

M-M leg 4444,55024 4417,12320
M-escape leg 723,86387 706,15763
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Table 6.24: Comparison of orbital parameters between exact and approximate solution,
part 1

a e incl

Perigee-FB1 Approximated -2938,48377 1,00035 0,50305
Exact 383,49735 0,99736 0,49847

FB1-FB2 Approximated 88,79413 0,56612 1,83020
Exact 88,35795 0,63905 1,77912

FB2-ESCAPE Approximated -53,74224 2,05185 1,27611
Exact -51,49384 2,04590 1,30099

The semi-axis of the first leg of this case is certainly the one that, when compared
with all cases, differs more between the two types of solution.That is, because in one
instance it gives you an elliptical orbit, in the other a hyperbolic one.

Table 6.25: Comparison of orbital parameters between exact and approximate solution,
part 2

RA w TA

Perigee-FB1 Approximated 5,72239 5,38858 6,28318
Exact 0,36645 4,48802 2,82557

FB1-FB2 Approximated 1,60460 5,18687 1,57080
Exact 1,53892 5,08183 -3,11944

FB2-ESCAPE Approximated 1,32361 3,18454 1,52188
Exact 1,27380 3,25850 1,17309

Table 6.26: Energy comparison between exact and approximate solution

Energy

Perigee-FB1 Approximated 0,00017
Exact -0,00130

FB1-FB2 Approximated -0,00563
Exact -0,00566

FB2-ESCAPE Approximated 0,00930
Exact 0,00971
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Figure 6.8: Comparison between exact and approximate solution, Case 4

6.3.3 Case 5

Table 6.27: Comparison of S/C-Moon positions at the two flybys between exact and
approximate solution

Parameter Exact Approximated

FB1

r S/C 64,11500 60,64891
Moon 63,86302 60,43736

ϑ
S/C 0,97670 1,03329
Moon 0,97355 1,03033

φ
S/C 0,35140 0,36798
Moon 0,35484 0,37159

FB2

r S/C 56,56920 60,21413
Moon 56,80579 60,43736

ϑ
S/C 4,13269 4,16885
Moon 4,13647 4,17192

φ
S/C -0,35670 -0,36783
Moon -0,36128 -0,37159
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Table 6.28: Comparison of relative positions at the two flybys between exact and
approximate solution

Parameter Exact Approximated

FB1

ϑSC-ϑM 0,00315 0,00296
φSC-φM -0,00344 -0,00361
rperiselenium 0,38434 0,34707
rperiselenium 2451,39281 2213,68900

FB2

ϑSC-ϑM -0,00378 -0,00307
φSC-φM 0,00458 0,00376
rperiselenium 0,40694 0,36216
rperiselenium 2595,54766 2309,91443

Table 6.29: Comparison of S/C positions between exact and approximate solution

Parameter Exact Approximated

Perigee
r 1,03020 1,03024
ϑ -1,87860 -1,84844
φ -0,43210 -0,26785

FB1
r 64,11500 60,64891
ϑ 0,97670 1,03329
φ 0,35140 0,36798

FB2
r 56,56920 60,21413
ϑ 4,13269 4,16885
φ -0,35670 -0,36783

Escape
r 156,78560 156,78561
ϑ 0,57250 -0,15988
φ -1,43320 -1,48478

Table 6.30: Time comparison between exact and approximate solution

Time Exact Approximated

M-M leg 4506,38890 4428,22166
M-escape leg 849,88830 748,44815
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Table 6.31: Comparison of orbital parameters between exact and approximate solution,
part 1

a e incl

Perigee-FB1 Approximated -472,11528 1,00218 0,50501
Exact -300,06129 1,00338 0,49827

FB1-FB2 Approximated 88,95768 0,56620 2,08356
Exact 88,71392 0,65308 2,08689

FB2-ESCAPE Approximated -53,74761 2,09924 1,49193
Exact -51,29322 2,09010 1,51855

Table 6.32: Comparison of orbital parameters between exact and approximate solution,
part 2

RA w TA

Perigee-FB1 Approximated 4,95423 5,70438 0,00001
Exact 0,24832 4,21123 2,81070

FB1-FB2 Approximated 1,25153 5,14225 1,57074
Exact 1,18478 5,03675 -3,12839

FB2-ESCAPE Approximated 0,99950 3,25602 1,49074
Exact 0,95839 3,31690 0,99325

Table 6.33: Energy comparison between exact and approximate solution

Energy

Perigee-FB1 Approximated 0,00106
Exact 0,00167

FB1-FB2 Approximated -0,00562
Exact -0,00564

FB2-ESCAPE Approximated 0,00930
Exact 0,00975
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Figure 6.9: Comparison between exact and approximate solution, Case 5

6.3.4 Case 6

Table 6.34: Comparison of S/C-Moon positions at the two flybys between exact and
approximate solution

Parameter Exact Approximated

FB1

r S/C 63,18250 60,84856
Moon 62,95801 60,64968

ϑ
S/C 0,59560 0,66144
Moon 0,59234 0,65828

φ
S/C 0,20930 0,23709
Moon 0,21108 0,23950

FB2

r S/C 57,56510 60,46568
Moon 57,74568 60,64968

ϑ
S/C 3,77159 3,79767
Moon 3,77433 3,79988

φ
S/C -0,22320 -0,23490
Moon -0,22865 -0,23950
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Table 6.35: Comparison of relative positions at the two flybys between exact and
approximate solution

Parameter Exact Approximated

FB1

ϑSC-ϑM 0,00326 0,00316
φSC-φM -0,00178 -0,00241
rperiselenium 0,32267 0,30932
rperiselenium 2058,06497 1972,89432

FB2

ϑSC-ϑM -0,00275 -0,00221
φSC-φM 0,00545 0,00460
rperiselenium 0,39259 0,35831
rperiselenium 2504,02244 2285,33479

Table 6.36: Comparison of S/C positions between exact and approximate solution

Parameter Exact Approximated

Perigee
r 1,03020 1,03024
ϑ -2,25250 -2,22219
φ -0,33190 -0,10829

FB1
r 63,18250 60,84856
ϑ 0,59560 0,66144
φ 0,20930 0,23709

FB2
r 57,56510 60,46568
ϑ 3,77159 3,79767
φ -0,22320 -0,23490

Escape
r 156,78560 156,78561
ϑ 1,69739 2,16739
φ -1,38430 -1,43163

Table 6.37: Time comparison between exact and approximate solution

Time Exact Approximated

M-M leg 4585,40980 4451,57664
M-escape leg 791,39830 779,77558
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Table 6.38: Comparison of orbital parameters between exact and approximate solution,
part 1

a e incl

Perigee-FB1 Approximated -136,4718737 1,007549109 0,502741029
Exact -81,57112353 1,01240796 0,49824355

FB1-FB2 Approximated 89,26654297 0,566157657 2,403023381
Exact 89,81218254 0,65722618 2,44155830

FB2-ESCAPE Approximated -53,74261137 2,121569165 1,709328516
Exact -51,22076875 2,12232135 1,73264129

Table 6.39: Comparison of orbital parameters between exact and approximate solution,
part 2

RA w TA

Perigee-FB1 Approximated 4,26003 6,05695 6,28318
Exact 0,20047 3,89262 2,79412

FB1-FB2 Approximated 0,92981 5,07259 1,57068
Exact 0,81271 4,88578 -3,12340

FB2-ESCAPE Approximated 0,69236 3,24931 1,47635
Exact 0,65587 3,30008 0,77187

Table 6.40: Energy comparison between exact and approximate solution

Energy

Perigee-FB1 Approximated 0,003663759
Exact 0,00612962

FB1-FB2 Approximated -0,005601203
Exact -0,005567173

FB2-ESCAPE Approximated 0,009303604
Exact 0,009761665
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Figure 6.10: Comparison between exact and approximate solution, Case 6
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Chapter 7

Conclusions

In this chapter, we will find a summary of all the fundamental concepts that describe all
the system, already analyzed in the previous chapters.

To begin, we can underline the importance of the two flybys and the usefulness of
each one. As well described, the two flybys happen after around 180 degrees because we
have treated the backflip transfer. It is extremely important to notice that:

• after the first flyby, the semi-major axis decreases. All this means a slight decrease
in orbital energy. Although there is this energy loss, the first flyby it is necessary
to adjust the inclination: for example, as visible in Table 5.6, the inclination passes
from 0.5 radians (about 28.5 degrees) to 1.78 radians (more than 100 degrees);

• the second one instead, keeps about constant the inclination and increases signifi-
cantly the energy.

Although the main goal is to increase the final energy, the first flyby, that instead reduces
it, is necessary to achieve the right trajectory and the desired escape conditions.

The energy values in Chapter 5 and 6 are, like all other values, dimensionless. For
example, talking about the magnitude of energy of case 0, value has been increased from
0,00217 to 0,00758, with an increase of 250%. In another case, the increase reaches about
750%.

At the flybys, the S/C passes very close to the Moon. In particular the shortest
distances are: for the first one, case 6, altitude of only 235 km while, for the second one,
the closest is reached at case 4, with 334 km.

Another important aspect to take into account is the difference of the two model used
in this document. The comparison between exact and approximated solutions shows that
the results obtained through the analytical model are quite good solely for a preliminary
analysis not too in-depth. It provides you the whole trajectory with a fair accuracy and
the final desired shape. It provides also dates, times, positions and velocities compo-
nents. As already widely underlined, positions of S/C and Moon are not exact due to the
hypothesis on which the model is based. However, a good approximation is ensured. In
general, this solution is only used as tentative solution for more accurate models: these
approximate solutions are necessary to achieve easily convergence in the more complex
models.
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Even if this model has extremely simplified hypothesis, is important to notice that
the relative positions between spacecraft and Moon, at both flybys, are kept. This is a
key point to maintain the whole trajectory with the same shape.

Examining now the results, different considerations can be made. Talking about dates,
as in Table 5.1, all the escape dates are in June 2022, while the departure takes place
around April, same year. So the journey will last for about 2 months (on average 53
days). Most of this time is spent form one flyby to the other: this leg lasts for about 40
days, while from the second flyby to the escape it takes about a week. The longest leg,
is characterized by an elliptical trajectory with a very high apogee (between 9·105 and
1·106 km).

Depending on the escape date, the trajectory in its entirety maintains almost constant
the orbital parameters. Only change the angular positions at which the Moon is encoun-
tered because different times mean different Moon’s positions along its orbit (increased
escape date corresponds to a trajectory slightly rotated forward, counterclockwise). An-
alyzing Table 6.7 and Table 6.9, it can be noted that among the three cases, first flyby
happens 2 days apart from each case. Remembering that Moon completes its orbit on
average on 27 days, two days correspond to about 24 degrees. This angle is exactly the
angular difference between Moon (and so S/C) position at the first flyby between one
case to another.

That was the case of different escape dates. On the other hand, when the V∞ is
changed, it can be noted that an increase of 0.1 km/s connotes a reduction in the escape
mass of only 18kg (0.2 %). Obviously, decreases also the time needed to reach the
boundary of Earth’s SOI.
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β: Misalignment angle between the velocity directions at infinity and at the escape;
γ∞: Flight path angle at escape;
δ: Angle of rotation of the velocity at both flybys;
ε: Energy of an orbit;
η: Reflectivity of the external surface of the S/C;
ϑ: Right ascension;
µE: Standard gravitational parameter of the Earth (398600.4415 [km3s−2]);
µM: Standard gravitational parameter of the Moon (4902.8011 [km3s−2]);
µS: Standard gravitational parameter of the Sun (1.32712440018·1011 [km3s−2]);
γ∞: Flight path angle at escape;
ν∞: True anomaly at escape;
νfb: True anomaly at flyby;
Φ: True anomaly of the asymptote;
φ: Declination;

a: Semi-major axis;
aJ : Perturbation due to the Earth asphericity;
alsg: Perturbation due to the luni-solar gravity;
aP : Perturbing acceleration;
asrp: Perturbation due to the solar radiation pressure;
ARM: Asteroid Redirect Mission;
ARRM: Asteroid Retrieval Robotic Mission;
ARU: Asteroid Retrieval and Utilization;
AU: Astronomical unit;
BVP: Boundary value problem;
C3: Hyperbolic escape energy;
Cmn & Smn: Spherical harmonic coefficients;
d̄r1: Position with respect to the Moon, at the first flyby;
e: Eccentricity;
FB1: First flyby;
FB2: Second flyby;
incl: Inclination;
IVP: Initial value problem;
LGA: Lunar gravity assist;
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Ls: Total power radiated by the Sun;
M−M: Moon to Moon leg;
mu: Useful mass;
m∞: Useful escape mass;
md: Stage dry mass;
mPAF: Payload attach fitting mass;
ODE: Ordinary Differential Equation;
Pmn (sinφ): The associated Legendre functions;
rM: Radius of Moon’s circular orbit;
rp: Radius of the circular parking orbit;
RA: Right ascension;
S/C: Spacecraft;
SOI: Sphere of influence;
TA: True anomaly;
∆V: Change in velocity;
VE: Circular velocity of the Earth around the Sun;
VH1: Speed of the space vehicle on the Hohmann transfer ellipse, relative to the Sun;
V̄ M1: Moon’s velocity during the first flyby;
VP: Velocity at the perigee radius rp of the departure hyperbola;
VPO: Velocity of the circular parking orbit;
V∞: Hyperbolic escape energy;
V̄ ∞1−: Velocity before the first flyby;
V̄ ∞1+: Velocity after the first flyby;
V1: Circular orbital speed of planet 1, relative to the Sun;
V̄ 1−: Spacecraft’s velocity before the first flyby;
V̄ 1+: Spacecraft’s velocity after the first flyby;
V̄ r: Spacecraft’s radial velocity;
V̄ ⊥: Spacecraft’s tangential velocity;
(xb, yb, zb): Position of Sun (b=s) or Moon (b=l) with respect to the Earth;
w: Argument of periapsis.

70



Bibliography

[1] Lorenzo Casalino and Gregory Lantoine. “Design of Lunar-GravityAssisted Escape
Maneuvres”. In: 2017 AAS/AIAA Astrodynamics Specialist Conference. AAS/AIAA.
Aug. 22, 2017.

[2] Colasurdo, Guido, and Lorenzo Casalino. "Indirect methods for the optimization of
spacecraft trajectories." Modeling and Optimization in Space Engineering. Springer,
New York, NY, 2012. 141-158.

[3] Ceriotti, Matteo. "Global optimization of multiple gravity assist trajectories". Diss.
University of Glasgow, 2010.

[4] Curtis, Howard D. "Orbital mechanics for engineering students". Butterworth-
Heinemann, 2013.

[5] Simeoni, F., Casalino, L., Zavoli, A., and Colasurdo, G. "Indirect optimization of
satellite deployment into a highly elliptic orbit". International Journal of Aerospace
Engineering, 2012.

[6] Colasurdo, Guido, and Lorenzo Casalino. "Indirect methods for the optimization of
spacecraft trajectories." Modeling and Optimization in Space Engineering. Springer,
New York, NY, 2012. 141-158.

[7] Wakker, Karel F. "Fundamentals of astrodynamics." (2015).
[8] Papkov, O. V. Multiple gravity assist interplanetary trajectories. Routledge, 2017.
[9] https://en.wikipedia.org/wiki/Interplanetary_mission
[10] https://en.wikipedia.org/wiki/Sphere_of_influence_(astrodynamics)
[11] http://ssd.jpl.nasa.gov/?planetephexport,2011
[12] https://www.nasa.gov/content/what-is-nasa-s-asteroid-redirect-mission
[13] https://en.wikipedia.org/wiki/Asteroid_Redirect_Mission
[14] https://en.wikipedia.org/wiki/(341843)_2008_EV5
[15] https://echo.jpl.nasa.gov/asteroids/2008EV5/2008ev5.html
[16] https://ssd.jpl.nasa.gov/?horizons

71

https://en.wikipedia.org/wiki/Interplanetary_mission
https://en.wikipedia.org/wiki/Sphere_of_influence_(astrodynamics)
http://ssd.jpl.nasa.gov/?planetephexport, 2011
https://www.nasa.gov/content/what-is-nasa-s-asteroid-redirect-mission
https://en.wikipedia.org/wiki/Asteroid_Redirect_Mission
https://en.wikipedia.org/wiki/(341843)_2008_EV5
https://echo.jpl.nasa.gov/asteroids/2008EV5/2008ev5.html
https://ssd.jpl.nasa.gov/?horizons

	List of Figures
	List of Tables
	Introduction
	Evasion maneuvers
	Short background on interplanetary missions
	Escape
	Flyby

	Approximate analytical approach
	Introduction
	Trajectory analysis
	Moon to Escape
	Moon to Moon
	Perigee to Moon

	Calculations

	Exact numerical solution
	Solution description
	Equations
	Perturbations
	Earth asphericity
	LuniSolar perturbation
	Solar radiation pressure


	Approximate analytical approach results
	Features
	Case 0 (comparison between exact and approximated solution)
	Comparison between solutions with the same escape date
	Comparison between solutions with the same V∞

	Exact numerical solution results
	Comparison between solutions with the same escape date
	Comparison between solutions with the same V∞
	Comparison between exact and approximated solutions
	Case 2
	Case 4
	Case 5
	Case 6


	Conclusions
	Glossary
	Bibliography

		Politecnico di Torino
	2018-09-11T13:44:05+0000
	Politecnico di Torino
	Lorenzo Casalino
	S




