
POLITECNICO DI TORINO

Department of Mechanical and Aerospace Engineering
Master degree course in Aerospace Engineering

Master Degree Thesis

Dynamic and thermal model for
hydraulic shock absorbers

Advisor:
Domenic D’Ambrosio

Co-Advisor:
Roberto Marsilio

Candidate
Riccardo Andrighetto

Academic Year 2017-2018



This work is subject to the Creative Commons Licence, Attribution -Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org.

 www.creativecommons.org


Summary

The purpose of the thesis is to develop a compressible and thermal model for auto-
motive dampers. The selected approach is a lumped parameter modelling which shortens
preliminary design sizing process if compared to a time-consuming detailed CFD.
Twin tube configuration is taken as reference: four main regions are identified such as
rebound, compression and reserve chamber which are filled with the damper medium
while the fourth is constituted by the gas chamber.

Starting from the simplest formulation, the incompressible one, each model is analysed
including progressively compressibility and thermal effects.
In the lumped system analysis also damper main solid parts are modelled. Temperature
influence on viscosity is accounted for in both local and wall-friction losses.

Numerical verification is provided to guarantee mass and energy conservation. For
Matlab implementation classical ODE resolution and mass-matrix formulation is inves-
tigated in terms of CPU time.
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Introduction

The suspension system of a vehicle has to provide the best compromise of a number
of requirements which can be divided in two main subjects: Ride and Handling. Ride
means driving comfort and it is concerned with the protection of isolated side components
(e.g. chassis, driver and passengers) from the motion of the input side (e.g. road or
wheel)[3]. Handling is strictly related to vehicle reaction to steering manoeuvre. Usually,
a suspension system consists of a spring and a damper.
Energy temporary stored by the spring is dissipated and converted into heat by damper
with a decaying amplitude of oscillations. The effect of the spring and damper, which
together constitute the so called damper module, may be combined into a polar plot, the
passenger-tyre discomfort loop.

The opposing ride-handling qualities give birth to the conflict diagram (Figure 1). The
diagram needs to be plotted for various values of suspension ride-handling parameter
fSRH which takes into account stiffness k, damping coefficient C and mass m of the
equivalent system [8].

fSRH = 3

√
kC

m2

For normal vehicle it falls in the range 1-2 s−1.

Figure 1: Example of conflict diagram (Dp = passenger discomfort on the y-axis, Dr = tyre
discomfort on the x-axis)
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Introduction

Moving forward into the description, let’s concentrate on the subject of study: shock
absorbers. They can be divided in two categories:

• Monotube dampers;

• Dual tube dampers;

Figure 2: Monotube (left) and Twin-tube (right) shock absorber
[source:http://dsportmag.com/]

The difference between these two types of shock absorbers consists on how volume vari-
ation due to piston rod movement is compensated. The reader can see their schematic
configuration in Figure 2.

In both cases a compression chamber, a rebound and a gas chamber can be identified.
The dual tube (also twin tube) damper is characterized by a reserve chamber filled with
oil which is in direct contact with gas. Conversely, in the monotube configuration a
floating piston (also free piston) separates the compression chamber from the gas chamber
(typically nitrogen or air).
The role of the gas chamber is permitting volume variations in the compression and
extension phases due to the movement of the piston rod. In fact, the compressibility of
oil is not enough to compensate these volumetric changes, as performed by gas.

Rebound and compression chambers are separated by a piston valve assembly which
is a combination of blow-off valves, leak restrictions and intake valves. Intake valve is a
check valve that allows flow only in a predetermined direction, while restricted channels
engender pressure drop by viscous dissipation. On the other hand, blow-off valves consti-
tute a passive self tuning of the damper preventing the value of the damping force from
getting too high (Figure 3). What can be said is that the primary damping mechanism
is proportional to flow restrictions. Low speed damping forces are dominated by bleed
orifices (permanent flow) while blow-off valves progressively open at high velocity.

2
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Introduction

Figure 3: Scheme of a valve assembly [9]

Another flow path is the piston-wall leakage. Although undesirable, it is very difficult
to remove. A real-life piston assembly is reported in Figure 4.

Figure 4: Example of a real-life piston valve assembly

A brief comparison between dual-tube and monotube shock absorber is useful to
highlight how although similar physical principles respond differently to accomplish re-
quirements.
Pure monotube shock absorber

• Oil separated from gas;

• High pressure gas to prevent cavitation;

• Larger oil capacity and improved heat dissipation;

• High-pressure gas can lead to stress on seals and causes larger friction;

Pure twin tube shock absorber

• The presence of base valve allow to keep a lower gas pressure. Hence stress is
avoided and friction is low;

3



Introduction

• Aeration is possible;

• The size of the piston is not large as the one in the monotube;

• Minor manufacturing costs;

In concrete terms, this combination of valves is realized using assemblies of shim stacks
and extension/compression valve springs. Different flow paths are designed in rebound
and compression phase to obtain an asymmetric F-V diagram, which will be introduced
later.
Pre-charge forces, elastic constant of the shim stack and blow-off valve are the key factors
governing damper’s dynamics.

Figure 5: On the top, examples of real-life components of a shock absorber, on the bottom a
piston valve [8]

4



Chapter 1

Lumped parameter model

This part is focused on the basic elements the lumped parameter model is derived
from. It includes the definition of the geometrical configuration for a pure twin tube
damper, the law of motion for the piston rod and the introduction to compressibility and
to thermal expansion effects.

The distinctive mark of a lumped parameter analysis is that it relinquishes a point to
point description preferring modelling the phenomena with lumped elements.
The application of this integral approach assigns a set of properties (temperature, pres-
sure) at each working chamber.

1.1 Reference configuration description
The subject of study is a damper in a dual tube configuration. In the classical twin

tube damper we can identify three regions filled with the liquid medium (oil):

• A rebound chamber, the upper region in contact with the piston rod;

• A compression chamber, located in the middle between the rebound and the reserve
chamber. It communicates with the rebound chamber through the piston orifices
and with the reserve chamber through the base valve (also foot valve);

• A reserve chamber in communication with the compression chamber through the
base valve;

The system is completed by a gas chamber which is in direct contact with the oil in
the reserve chamber. The role of the gas is to compensate volume variations caused by
the variable length of the piston rod portion in the rebound chamber during the rebound
and compression phases.
The main difference between twin tube and monotube dampers lies in the presence, for the
latter, of a floating piston whose function is to separate the gas-oil interface introducing
an inertial factor.

Coming back to the twin tube description, the whole system is contained inside what
will be called the outer cylinder, with the internal regions (rebound and compression)
divided from the external ones from the inner cylinder. In this work, piston and base

5



1 – Lumped parameter model

valves are constituted only by bleed orifices. At the oil-gas interface, what will be called
compatibility condition reads:

pg = preserve (1.1)
dpg

dt
= dpreserve

dt
(1.2)

It is equivalent to say that the reserve chamber pressure is bounded to that assumed by
the gas.
A schematic representation of the model is reported in Figure 1.1.

In the upward movement of the piston, the oil flows from the rebound chamber into
the compression chamber, but to compensate the change of the compression chamber
volume an oil flow from the reserve chamber to the compression chamber takes place.
The key mechanism lies in the different volume variation of compression and rebound
chamber due to the presence of the piston in the latter one. The reverse scenario to that
described develops when the piston moves downward : the oil flows from the compression
to the rebound chamber; again, the volume occupied by the piston rod forces part of the
oil to flow through the base valve.

Figure 1.1: Reference model of the twin tube damper

1.2 Piston rod law motion
In order to analyse the damper behaviour, the motion of the piston rod is imposed

and therefore, known. The piston rod movement is derived from the inspection of the
slider-crank mechanism (Figure 1.2): From geometrical relations it is possible to write:{

xp = L cos ϕ + Amp cos θ

L = Amp cos(π − θ − ϕ) + xp cos ϕ
(1.3)

Expanding the second of (1.3), using trigonometry identity sin2 θ + cos2 θ = 1, we obtain

sin ϕ = Amp

L
sin θ (1.4)

6



1.2 – Piston rod law motion

Expression (1.4), after trigonometrical manipulation, lead to:

1 − cos2θ = Amp2

L2 sin2 θ (1.5)

Thus,
x =

√
L2 − Amp2 sin2 θ + Amp cos θ (1.6)

From the relation between angle θ and frequency of the stroke
θ = π + 2πft

The final form for the displacement reads:

xp =
√

L2 − Amp2 sin2(2πft) − Amp cos(2πft) (1.7)
Deriving with respect to time, we find the velocity of the piston:

ẋ = vp = − πfAmp2 sin(4πft)√
L2 − Amp2 sin2(2πft)

+ 2πfAmp sin(2πft) (1.8)

In Figure 1.3 the origin has been shifted by subtracting the quantity L−Amp from (1.7).

L

Amp

θ

φ
x

Figure 1.2: Slider crank mechanism

If not specified differently, the values of Amp and L assumed are respectively:
Amp = 15 · 10−3 [m] L = 4.5 · 10−2 [m]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
Piston Rod Motion

Displacement xp (t) [m]

Velocity vp (t) [m/s]

Figure 1.3: Piston rod displacement and velocity for excitation frequency f = 1 [Hz]
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1 – Lumped parameter model

1.3 Governing equations
The physical model is based on the application of the following governing equations:

1. Mass balance equation:

D

Dt

∫
V (t)

ρ dV = 0 (1.9)

∂

∂t

∫
V

ρ dV +
∫

S
ρV · ndS = 0 (1.10)

2. Energy balance equation:

∂

∂t

∫
V (t)

(ρE)dV +
∫

S(t)
(ρE)v · dS = Φ−

∫
V (t)

∇ · (pv)dV +
∫

V (t)
∇ · (τ · v)dV −

∫
V (t)

∇ · qdV −Ẇa

(1.11)

Each equation is specialized for the model adopted. For isothermal models, the energy
equation is not needed. The closure of the system of equation is obtained through the
state-equation.

1.4 Compressibility and coefficient of thermal expansion
for the damper medium

The density of a liquid is affected by the pressure level. The bulk modulus K of a
substance provide a measure of the volume variation caused by a pressure field:

K = −V
dP

dV
(1.12)

Compressibility β is the reciprocal of the bulk modulus:

β = 1
K

= 1
ρ

∂ρ

∂p
(1.13)

Density ρ of the medium increases with pressure. A typical value for pure clean oil [8] is

β ≈ 0.05%/MPa

In service condition the entrained air bubbles greatly increase compressibility. If not
specified, the value of β adopted in the simulation is β = 2.5 · 10−9 Pa−1. The coefficient
of thermal expansion is defined as:

ϕ = −1
ρ

∂ρ

∂T
(1.14)

An increment of temperature causes ρ to diminish. The order of magnitude of this
coefficient is φ ≈ 10−3 K−1.
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1.5 – Characteristic time and pressure variation in each chamber

1.5 Characteristic time and pressure variation in each cham-
ber

The development of a model requires the inspection of phenomena time scale taking
place inside the damper. A relationship which bounds the speed of sound a and the
isothermal compressibility factor β, yields to:

a2 = dp

dρ
(1.15)

Together with (1.13):

β = 1
ρ

dρ

dp
= 1

ρa2 (1.16)

Consequently a typical value of the speed of sound is:

a = 1√
βρ

≈ 1300 m/s (1.17)

At this point, considering a reference length Lref = 10−1 m for the column of oil, a
reference time-scale is found to be:

t = Lref

a
≈ 10−4 s (1.18)

The results obtained states that a perturbation of pressure propagates in each chamber
of oil almost instantaneously. In fact, this time corresponds to a frequency of approxi-
mately 10 KHz.

For the excitation frequency considered, the process can be regarded as quasi station-
ary and it is possible to attribute to each chamber a single pressure value at the generic
instant t.

1.6 Damping force computation

The piston rod assembly is subjected to a force FD generating from the differential
pressure between rebound and compression chamber. Pressure acts on different areas
because of the presence of piston rod. As a result, a static force (offset) exists at rest
which is given by the term pg0Ar.

FD = prebound(Ap − Ar) − pcompressionAp + pg0Ar − sgn
(dxp

dt

)
Ffric (1.19)

Ap and Ar indicate the piston area and the rod area respectively, while pg0 refers to the
initial gas pressure. In experimental testing the value of friction Ffric can be estimated
and is not considered in the model. The frictional force for standard dampers falls in
the range of 20 N and 60 N. An improvement in modelling friction phenomena in sliding
condition is given in [13].

9



1 – Lumped parameter model

Figure 1.4: Forces acting on the piston for damping force computation

1.7 Friction and local losses modelling

In principle, two kinds of losses are distinguished observing the mechanism of energy
dissipation:

• Wall friction losses: they have a close causal connection with the viscosity of the
fluid and no-slip condition. Friction loss arises from shear stress at the wall, pro-
ducing a momentum flux;

• Local losses (also concentrated losses) which appear in presence of geometrical
(cross-section) changes. Dissipation is produced by separation of the flow;

Friction losses are modelled using friction correlation for laminar, transition and turbulent
flow [7]. Friction factor λ is therefore expressed using a power law of Re. Precisely, the
correlation used is is given as a rational fraction of rational fractions of power laws [7].

λf = −Dh

dp
dx

ρU2

2
(1.20)

In fact, the non-dimensional parameter which governs the phenomenon is Reynolds num-
ber:

Re = ρvDh

µ
(1.21)

10



1.7 – Friction and local losses modelling

The geometrical input required are the hydraulic diameter Dh and the length of the
orifices. The correlation used is reported below:

Fa = 64
Re

Fb = 4.1 · 10−16Re4

Fc = 0.351Re−0.255

Fd = 0.118Re−0.165

F1 = Fa + Fb − Fa√
1 +

(
Re

2900
)−50

F2 = Fc + Fd − Fc√
1 +

(
Re

240000
)−1

(1.22)

λf = F1 + F2 − F1√
1 +

(
Re

3050
)−50

(1.23)

102 103 104 105 106

Re

10-3

10-2

10-1

100

f

f vs Re

Figure 1.5: λ − Re correlation used [7]

Even though roughness has negligible influence, the code contemplates also absolute
roughness as input. In this case, an efficient resolution of Colebrook-White equation is
provided [6]:

1√
λf

= −2 log10

(
ϵs

3.7 + 2.51
Re
√

λf

)
(1.24)

The flow rate Q through an orifice can be modelled introducing a discharge coefficient
Cd applying Bernoulli’s equation [16]. It is function of acceleration number al

ν2 , Reynolds
number ρνl

µ , Cauchy number βν2ρ and thickness to length ratio s
l .

Cd = f

(
al

ν2 ,
µ

ρνl
, βν2ρ,

s

l

)
(1.25)
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1 – Lumped parameter model

so that

Q = CdAorifice

√
2∆p

ρ
(1.26)

In first approximation Cd can be assumed as constant at high Reynolds number but
its value may change significantly especially for small openings. According to [22] the
following empirical model is used:

Cd = Cd∞(1 + ae
− δ1

Cd∞

√
Re + be

− δ2
Cd∞

√
Re) (1.27)

In case of sharp-edge orifice (1.27) becomes:

Cd = 0.61(1 + 1.07e−0.126
√

Re − 2.07e−0.246
√

Re) (1.28)

The discharge coefficient trend vs
√

Re is reported in Figure 1.6. When the flow is
turbulent and fully developed viscosity has negligible impact and Cd → Cd∞ . In some
cases the introduction of the flow resistance kloss is preferred. Its relation with discharge
coefficient is:

kloss = 1
Cd

2

so the flow rate is:

Q = Aorifice

√
2∆p

ρkloss
(1.29)
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Re
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d

Cd vs Re

Cd (Re)=0.61(1+1.07e-0.126 Re-2.07e-0.246 Re)

Figure 1.6: On the left the empirical function for sharp-edge orifices, on the right the
comparison with experimental data [22]
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Chapter 2

Incompressible twin tube damper
model

In this section the assumptions an incompressible model is based on will be inves-
tigated. The limits of these hypothesis are explored and compared to the benefits of a
more extended modelling including compressibility and thermal effects.

Assuming as reference Figure 1.1, the incompressibility statement results in a isother-
mal compressibility coefficient equal to zero:

1
ρ

∂ρ

∂p
= β = 0 (2.1)

This consideration allows to face the problem writing an explicit relation between
volumetric fluxes Q and piston movement vp. In fact, when the piston rod progressively
enters the rebound chamber, the volume variation for this chamber is:

dVreb

dt
= vp(t)(Ap − Ar) (2.2)

At the same time, the piston causes a variation of the volume in the compression chamber:

dVcomp

dt
= −vp(t)Ap (2.3)

Considering the continuity equation for incompressible medium, the volumetric flow rate
interesting the rebound chamber (having the normal to the control volume pointing out-
ward) is:

vp(Ap − Ar) + Qreb−comp = 0 (2.4)

At this point should be evident that due to the volume occupied by the rod, an
amount of oil equal to vpAr (in volumetric terms) is forced to flow from the compression
to the reserve chamber. The total flow rate Qtot = vpAr is easily obtained writing the
mass conservation equation for the other two chambers containing oil:

− vpAp − Qreb−comp + Qcomp−res = 0 (2.5)
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2 – Incompressible twin tube damper model

For the reserve chamber:
dVres

dt
− Qcomp−res = 0 (2.6)

It follows that for an incompressible model, the volumetric fluxes are an explicit function
of the piston velocity, as mentioned at the beginning of the section:

Qtot = Qcomp−res = vp(t)Ar (2.7)

2.1 Adiabatic process for gas chamber
The process of compression - expansion of the gas in direct contact with the oil can

be expressed assuming adiabatic process. The frequency of excitation and the high speed
of the piston leave no time to the gas to exchange heat with the surroundings.
On this basis, the heat flux is neglected and the process is idealized as adiabatic:

pg1V γ
1 = pg2V γ

2 (2.8)

As the pre-charge pressure pg0 and the initial volume of the gas Vg0 are known, the volume
variation in the gas chamber is readily obtained:

dpg

dt
+ γ

pg

Vg

dVg

dt
= 0 (2.9)

2.2 Pressure field in a simplified incompressible model

Since dVg

dt = −dVres
dt and it is a quantity known from (2.7), the time integration is

carried out:
pg =

(
p

− 1
γ

g0 − Ar

p
1
γ
g0Vg0

(xp − xp0)
)−γ

(2.10)

Pressure in the gas chamber is a function of the initial condition (initial pressure pg0,
volume Vgo and piston position x0) and the piston position xp(t). Rearranging (2.5) and
(2.4) remembering that in the incompressible model the density ρ has a constant value,
mass conservation is simply a volumetric conservation:

vcomp−res = vpAr∑
Afcomp−res

(2.11)

vreb−comp = −vp
Ap − Ar∑
Afreb−comp

(2.12)

Using 1.29 on page 12 to represent the pressure drop in the pipe, the pressure of each
chamber is found:

pcomp = pres + 1
2 sgn(vcomp−res)klosscomp−resv2

comp−res (2.13)

preb = pcomp + 1
2 sgn(vreb−comp)klossreb−comp

v2
reb−comp (2.14)
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2.3 – Hysteresis effects on the F-V diagrams in the incompressible model

Once the pressure field in each chamber has been computed, the damping force is
found using 1.19 on page 9. The assumption of adiabatic process will be made also in
chapter 3 treating a compressible formulation for the damper medium.
We highlight that isothermal models such as the ones mentioned above (incompressible
and compressible) do not contemplate the temperature as variable involved in the balance
equations. This is the fundamental reason of introducing the adiabatic hypothesis.

2.3 Hysteresis effects on the F-V diagrams in the incom-
pressible model

The incompressible model, assuming as constant the value of density, is not able to
capture the non linearities caused by the compressibility effects. It follows that valve
openings and orifice flows are generated by pressure drops proportional to the piston
movement.
Idealizing the physical model as series connection of a damper and spring elements, the
system responds instantaneously. In other words there are no delays related to the com-
pressibility of the medium.

Nevertheless, Figure 2.1 shows large hysteresis in the force-velocity (F-V) diagram.
In fact, the presence of the gas gives the so called spring effect. In the incompressible
formulation, this contribution is independent from velocity and a function of only the
piston position.
As a result, the initial gas volume performs an important role in preventing the pressure
in the rebound chamber to drop below the vapour pressure of the oil and leading to cav-
itation.

A simplified geometry which includes three chambers filled with the oil and with the
gas chamber is taken as reference to explore pressure and damping force trends. Rebound,
compression and reserve chamber interchange the oil through the orifices as already indi-
cated in 1.1. The geometrical configuration of the twin tube damper is reported in Table
4.1.

Figure 2.1 shows the typical diagrams for a damper: the force - velocity and force -
displacement diagrams. As mentioned above, in the F - V diagram it is evident the
hysteresis effect caused by the gas compression. At the same velocity (i.e. vp = 0), the
force takes two different values.
The gas spring effect is responsible for the non-zero value of the damping force when the
piston is fully extended (where xp reaches the maximum value), as shown in Figure 2.2.

In that condition, the gas pressure reaches the peak value because the piston rod,
entering the rebound chamber for its maximum length allowed, forces the reserve chamber
to occupy a larger volume (its maximum for single cycle) and thus compressing the gas.
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2 – Incompressible twin tube damper model

Table 2.1: Geometry configuration for incompressible model

Data Geometry

Ap [m 2] 1.590 · 10−3

Ar [m 2] 3.142 · 10−4

N◦ piston orifices 3
Diameter piston orifice [m] 2.50 · 10−3

N◦ base valve orifices 1
Diameter base valve orifice [m] 2.50 · 10−3

Internal Cylinder Length Lcin [m] 1.425 · 10−1

γ (specific heat ratio) 1.4
pg0 [Pa] 1.00 · 105

Vg0 [m3] 3.584 · 10−5

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
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Figure 2.1: Characteristic diagrams
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2.3 – Hysteresis effects on the F-V diagrams in the incompressible model

In Figure 2.2, the pressure trends for each chamber are compared. As we can see, at
time = 0.5 s corresponding to half cycle (f = 1 Hz), the pressure value is the same in the
whole system. Thus, (1.19) reduces to

Fapp = −Ar(pres − pg0) with pg = pres = pcomp = preb

When the rod is inserted for its maximum value pg /= pg0, a non - zero force is acting on
the cylinder.
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Figure 2.2: Gas Pressure vs Time assuming incompressible medium
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Figure 2.3: Pressure trends vs Time assuming incompressible medium
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2 – Incompressible twin tube damper model

2.3.1 Initial gas volume effect on hysteresis

With reference to the same geometrical configuration reported in Table 4.1, we un-
derline the effect of the initial volume on hysteresis which is apparent in F-V diagram.

The behaviour of the gas in the twin tube chamber can be idealized to that of a
spring. Diminishing the volume occupied by the gas is equivalent to increase the elastic
constant k of the spring. Reminding (2.8), since the volume variation depends only on
the geometrical configuration:

pg0V γ
g0 =

(
pg + dpg

)(
Vg − dVg

)γ

(2.15)

The less the gas initial volume the more the gas pressure is increased for the same value
of volume variation dVg. Figure 2.4 shows the different hysteresis cycles for the initial
gas volumes listed in Table 2.2.

Table 2.2: Initial gas volume input on the incompressible model

Vg0 [m3]

2.628 · 10−5

3.584 · 10−5

7.168 · 10−5

9.557 · 10−5
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Initial gas volume Vg0 impact on hysteresis 

Vg0=3.58 10-5 [m3]

Vg0=7.17 10-5 [m3]

Vg0=9.56 10-5 [m3]

Vg0=2.63 10-5 [m3]

Figure 2.4: Effect of initial gas volume on F-V diagram hysteresis
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2.3 – Hysteresis effects on the F-V diagrams in the incompressible model

2.3.2 Initial gas volume and working point

Summarizing the main characteristics the gas introduces in the twin tube damper
behaviour:

• It introduces a force position dependent but velocity independent from the piston
movement;

• The gas acts like a non-linear spring force in which pressure evolves according to
(2.15);

It is necessary to point out that, even for the incompressible model, the pressure drop is
also related to the piston movement. So that, the damper working point has to be chosen
carefully. High pressure in the gas chamber can prevent cavitation from taking place.
On the other side, a very high velocity movement of the piston causes a large pressure
drop. This behaviour is illustrated in Figure 2.5 and 2.6 in which an incompressible model
which does not consider cavitation phenomena is used.
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Figure 2.5: Gas pressure for same input geometry and different excitation frequency
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2 – Incompressible twin tube damper model
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Figure 2.6: Reserve chamber pressure for same input geometry and different excitation frequency

It is clear that for different excitation frequencies gas pressure does not change (de-
pending only on piston position) but very fast movements cause large pressure drop
(negative pressure is not a physical situation, it means that cavitation phenomena will
appear).
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Chapter 3

Compressible model for an
isothermal twin tube damper

3.1 Formulation of the compressible model
The aim of this section is to include the compressibility of the damper medium within

the model. The formulation of a compressible model requires the revising of the continuity
equation (1.10).

∂(ρV )
∂t

+
∫

S
ρvdS = 0 (3.1)

The main difference with the incompressible model consists in considering the time vari-
ation of the density ρ. Expanding (3.1), using the definition of isothermal compressibility
β (1.13):

ρ
∂V

∂t
+ V

∂ρ

∂t
=
∫

S
ρvdS = 0

So that, for a generic chamber, we have:

V
∂p

∂t
β + ∂V

∂t
+ 1

ρ

∫
S

ρvdS = 0 (3.2)

It is important noting that the value of ρ dividing the mass flux has to be chosen
coherently with the value of density used to evaluate the velocity through the orifice.
Otherwise, the mass conservation in the whole system is not respected. The last term in
(3.2) is dimensionally a volumetric flow rate:

1
ρ

∫
S

ρvdS = Q
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3 – Compressible model for an isothermal twin tube damper

3.2 Mass conservation equation for the three chambers

Continuity equation (3.1) is specialized for each chamber as previously done for the
incompressible model. Assuming no deformation of the cylinder containing the oil, the
volume of each chamber is found. The negligible effect of cylinder compliance is treated
in 3.3.

Vreb = xp(t) · (Ap − Ar) (3.3)
Vcomp = (Lc − xp(t)) · Ap (3.4)

Vres = VB0 + Vg0 − Vg (3.5)

where Lc is the length of the internal cylinder, Ap the piston area, xp(t) the piston position
while the subscript 0 stands for the initial configuration.

βVreb
dpreb

dt
+ vp(Ap − Ar) + Qreb−comp = 0 Rebound chamber

(3.6)

βVcomp
dpcomp

dt
− vpAp − Qreb−comp + Qcomp−res = 0 Compression chamber

(3.7)

βVres
dpres

dt
− dVg

dt
− Qcomp−res = 0 Reserve chamber

(3.8)

The equation for the gas chamber is the same used in the incompressible model (2.8).
The presence of the compressibility term produces a system of ordinary differential equa-
tions (ODE).

Conceptually, the time derivative term brakes up the relation which bounds volume
variation and volumetric flux. The compressibility introduces a time delay between the
cause (volume variation) and the expected effect (volumetric flux).

Again, a parallel with a spring-damper system is possible: while in the incompressible
formulation the oil is an infinitely stiff element, assuming a non-zero compressibility means
admitting a finite value of stiffness for the damper medium. In particular, the oil behaves
like a spring which stores and then release flow at the successive instant.

3.2.1 Compressibility influence on characteristic diagrams

On the basis of the same geometrical input used for the incompressible version (Ta-
ble 4.1), the compressibility effect is analysed by varying the isothermal compressibility
factor β. Figure 3.1 depicts the effects of compressibility for strokes characterized by
low forces. The low forces are the direct consequence of the limited pressure differential
between chamber. This is the reason why the compressibility effect is not appreciated
and F-V diagrams seems to have nearly the same trend.
However, the compressibility is not negligible when the pressures (and forces) rise up.
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3.2 – Mass conservation equation for the three chambers

Table 3.1: Value of compressibility used to highlight compressibility effect

Frequency f = 1 [Hz]

β 0 2.5 · 10−9 2.5 · 10−10 2.5 · 10−8 1.5 · 10−8 1.5 · 10−6
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(b) Hysteresis at low forces for higher value of β

Figure 3.1: Hysteresis effect due to compressibility at frequency 1 Hz
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3 – Compressible model for an isothermal twin tube damper

What is more correct to say is that hysteresis becomes important in the range where dF
dv

is high.

The forces acting on the piston depends strictly on the geometry of the twin tube
damper once the damper oil has been chosen. There are two main ways to get higher
forces:

• Increasing the stroke frequency f ;

• Working on the valve assembly, by varying the orifice diameters and/or inserting
blow-off valves;

The first solution seems to be appropriate to emphasize the compressibility effect; in
fact, maintaining the same geometry used in Table 4.1 a comparison with the incom-
pressible model can be made. For further analysis, a more complex system valve will be
introduced.
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Figure 3.2: Compressibility effect at high frequency (f = 4 Hz)

As announced, high forces lead to large hysteresis as shown in Figure 3.2. In brief, the
oil compressibility adds another non-linearity to the damper which needs to be considered.

3.2.2 Mass flow through orifices

In Figure 3.3, it is reported the mass flow rate through the orifices by varying the
compressibility of the damper medium. The convention used for the flow sign is as
following:

- Qreb−comp is assumed positive if the volumetric flow is from the rebound to the
compression chamber;

- Qcomp−res is assumed positive if the volumetric flow is from the compression to the
reserve chamber;
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3.2 – Mass conservation equation for the three chambers
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Figure 3.3: Comparison of mass flow through orifices for different β at excitation frequency
f= 4 Hz

It is possible nothing that when the compressibility effect is negligible (also meaning
pressure variations not too high), the mass flow through orifices has a harmonic trend.
In this case (β = 2.5 ·10−9 for Figure 3.3a), the mass flow rate directly depends on piston
position and velocity.

For example, at the maximum extension of the cylinder, no flow through the base and
the piston valve may occur in the incompressible assumption.
The more the compressibility is magnified the more the retarding effect takes place. In
fact, considering again the fully extended condition but β = 2.5 · 10−7 we see that the
flow through the base valve has still a positive value.

On the whole, a compressible medium stores and releases volumetric flow modifying
the amount of oil flowing through the orifices. In Figure 3.3b), the compressibility causes
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3 – Compressible model for an isothermal twin tube damper

the mass flow rate through the base valve to reduce. The alteration of the mass flows
changes the pressure field established in the chambers.

In general, increasing the compressibility factor β, the mean pressure in each chamber
reduces (this fact explains why violet curve in Figure 3.1 shows less hysteresis in the range
where vp ≈ 0 m s−1).

3.3 Compliance of the cylinder wall

The pressure established in the working chamber may lead to a deformation of the
cylinder walls. For a cylinder of inner radius Ri and outer radius Re the compliance of
the cylinder can be expressed according to [2], [1]:

βc = 2
E

(
R2

i + R2
e

R2
e − R2

i

+ ν

)
(3.9)

where ν denotes the Poisson’s coefficient. The volume of the generic chamber can be
written:

Vith
= V0ith

(1 + βc∆p) (3.10)

where ∆p denotes the difference with respect to a reference pressure. In the following
sections is investigated the influence of cylinder deformation due to pressure and its order
of magnitude.

3.3.1 Another expression for cylinder compliance

In [19] the wall contribution to the volume change coming from the elastic strain of
the cylinder is derived in this way. Expanding using a Taylor series around the inner
diameter of the cylinder Di, the internal area cross section change Acyl can be evaluated:

Acyl + ∆Acyl = π

4
(
D2

i + 2Di∆Di + ∆D2
i

)
(3.11)

Indicating with U the circumference and multiplying by the length of the cylinder L, the
volume variation follows:

∆Vcyl = ∆U

π

(
2Di + ∆U

π

)
π

4 L (3.12)

where ∆U is the circumference variation. Neglecting terms superior to the second order:

∆Vcyl = ∆U

2 DiL (3.13)

Introducing the strain and Young’s modulus

ε = ∆U

U
E = σ

ε
(3.14)
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3.3 – Compliance of the cylinder wall

together with the tension in longitudinal direction:

σ = p
Di

De − Di
(3.15)

where De corresponds to the external diameter. The expression for ∆U can be found:

∆U = ∆pπ
D2

i

(De − Di) E
(3.16)

Combining (3.16) and (3.13) the volume variation is:

∆Vcyl = ∆pπD3
i L

2 (De − Di) E
(3.17)

At this point it is possible to define an apparent compressibility factor which accounts
for both the compressibility of the medium and the cylinder compliance. From the bulk
modulus definition we have:

K = −V
dp

dV
= ρ

dp

dρ
= 1

β
(3.18)

Using the preceding relations (3.18) and (3.17) the final relation for the damper volume
compliance yields:

∆Voil = ∆pVoil

K
(3.19)

where K is the compressibility modulus of the oil.

∆Vel = ∆pVoil

Koil

[
1 + Vcyl

Voil

Koil

E

Di

De − Di

]
= ∆pVoil

Koil
κ (3.20)

In (3.20), κ stands for the dimensionless compression modulus. Making explicit βc of the
cylinder we write:

βc = 2
E

Di

De − Di
(3.21)
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3 – Compressible model for an isothermal twin tube damper

3.3.2 Analysis of the compliance effect

It is analysed the impact the cylinder deformation has on the solution. Both of
the proposed formulation given in (3.3) and (3.3.1) are compared. Assuming the same
geometrical set of Table 4.1, the cylinder compressibility factor βc is easily found.

Table 3.2: Cylinder compressibility factor

E = 210000 [N mm−2] Re = 0.052 [m] Ri = 0.045 [m]

βc 6.947 · 10−11 (3.3) 6.122 · 10−11 (3.3.1)

Dealing with oil which as approximatively β ≈ 2.5 ·10−9, the hypothesis of neglecting the
cylinder deformation is explained. Damper external structure is more than two order of
magnitude stiffer than the damper medium. Figure 3.4 confirms the assumption made.
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3.4 – Piston-wall leakage modelling

3.4 Piston-wall leakage modelling

The simple model introduced in 1.1 is now extended taking into account detailed
phenomenologies, such as the leakage between the piston and the cylinder wall. In fact,
a thin film of oil has a lubricating role filling the small mechanical backlash present.
Otherwise, the damper is likely to seize up.

The leakage between the piston seal and the cylinder wall (Figure 3.5) can be modelled
as a flow between two parallel plates [16]. In fact, assuming laminar flow, Navier-Stokes
equations can be analytically resolved. By imposing the appropriate boundary conditions
(no-slip condition for the inner cylinder and moving wall for the piston wall) the expression
for velocity reads:

u(y) = vp

b
y − 1

2µ

dp

dx
y(b − y) (3.22)

The volume flow rate Q per unit width of the channel is:

Q′(per unit width) =
∫ b

0
u(y) dy = vp

b

2

[
1 − b2

6µvp

dp

dx

]
(3.23)

Approximating the pressure derivative with finite difference it is possible to obtain (3.24).

Qleakage =
(

∆pb3

12µl
+ vpb

2

)
πDp (3.24)

The term Dp in (3.24) indicates the diameter of the piston, µ the dynamic viscosity
while the geometrical parameters b and l represent the clearance between wall and cylin-
der and the thickness of the cylinder, respectively.

It is important to remind that this Navies-Stokes solution is founded on the assump-
tion of incompressible and parallel flow. The cylinder curvature justifies to treat the flow
as locally parallel.
The leakage term appears as a mass flux term in (3.2). Rewriting for instance the mass
balance equation for the rebound and the compression chambers:

Vrebβ
dpreb

dt
+ vp(Ap − Ar) + Qreb−comp + Qleak = 0 Rebound chamber

(3.25)

Vcompβ
dpcomp

dt
− vpAp − Qreb−comp + Qcomp−res − Qleak = 0 Compression chamber

(3.26)

As expected by adding (3.25) and (3.26), the leakage term vanishes as the mass leaving
the rebound chamber is entering the compression chamber and vice-versa.
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3 – Compressible model for an isothermal twin tube damper

Figure 3.5: Schematic representation of the leakage between wall and cylinder [16]

3.5 A geometrical model with a simplified blow-off valve

The simple geometrical twin tube damper which has the piston and the base valve
assembly both based on bleed orifices is now complicated. A blow-off valve is inserted in
the piston assembly. It is modelled introducing a pre-charge force (a fixed value below
that the valve does not open) and an elastic constant k which defines its spring rate.

Neglecting inertial effects, the progressive opening of the valve can be evaluated by
considering a free-body diagram for the blow-off valve.
The static balance of forces acting reads:

ky = ∆pvalveAvalve + Fmom − Fpre−charge (3.27)

where ∆pvalve denotes the pressure difference acting across the valve, Avalve the area the
pressure acts on, Fmom the momentum force and Fpre−charge the pre-charge force of the
equivalent spring. The momentum force, term which often arises in the design of the
valve, is equal to ρu2Avalve. Rearranging (3.27) we have:

ky = ∆pvalveAvalve + CcorrAvalveρu2 − Fpre−charge (3.28)

where Ccorr is a corrective term because the flow is not completely known near the valve
[16]. A blow-off valve is treated as an equivalent spring. In more detail, the valve imple-
mented oppose no flow resistance when preb < pcomp (it behaves like a simple orifice) while
the passive self-tuning governed by (3.27) appears when preb > pcomp (predominantly in
the rebound movement of the piston).

Matlab scripts have been implemented in app-designer to create a user-friendly in-
terface which permits to set up the oil properties, the geometrical configuration and the
initial conditions.
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Figure 3.6: Interface implemented in app-designer
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3 – Compressible model for an isothermal twin tube damper

3.5.1 The impact of blow-off valve on damper characteristics

The behaviour of the blow-off valve is shown in Figure 3.7 and 3.8. In general, the
presence of a valve system creates an asymmetrical response of the damper between
compression and rebound phases.
For comfort reasons, the damping force during compression stroke should be small to
respect the comfort requirements. If not, a large force force will be transmitted to the
passenger compartment.
These constraints reveal two main non-linearities characteristic of a damper:

• The first non linearity appears approximatively at zero velocity due to the asym-
metrical configuration;

• The second non linearity arises at medium-high velocity when the forces acting on
the blow-off valve (or system) are enough to open completely the orifice;

Figure 3.7 and 3.8 show the typical trends for the characteristic diagrams. The level of
forces can be adequately set choosing an appropriate geometrical configuration.
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Figure 3.7: Force displacement diagram for excitation frequency 1 Hz, k = 800 N m−1 and
Fpre-charge=20 N
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Figure 3.8: Force velocity diagram for excitation frequency 1 Hz, k = 800 N m−1 and
Fpre-charge=20 N

The twin tube damper changes deeply its property with the insertion of a simple
blow-off valve system. The non linearities mentioned above suddenly manifest; at the
same time the compressibility effect is magnified by the high level of pressure caused by
the blow-off valve.

A brief parameter study is done to understand the impact of the blow-off system on
pressure establishes in chambers. The geometrical configuration used is reported in Table
3.3

Table 3.3: Geometrical configuration for parameter study

Data Geometry

Ap [m 2] 1.59·10−3

Ar [m 2] 3.14·10−4

N◦ piston orifices 3
Diameter piston orifice [m] 2.50·10−3

N◦ base valve orifices 1
Diameter base valve orifice [m] 2.50·10−3

Lcin [m] 1.43·10−1

γ (specific heat ratio) 1.4
pg0 [Pa] 1.00·105

Vg0 [m3] 3.58·10−5
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3 – Compressible model for an isothermal twin tube damper

Compressibility effect: further comments

In Table 3.4 are listed the pair of values of compressibility factor used to underline,
again, the compressibility effect. One corresponds to the typical value for the oil, while
the other to that of an incompressible medium. The hysteresis phenomena is magnified
by the blow-off valve.
The most interested area is the one located at damping force level between 0 N and 800 N
on the rebound phase (when the blow-off controlling system is active).
Defining the damping stiffness as:

dFD

dv
(3.29)

Hysteresis is clearly visible when damping stiffness reaches high values.
Considering that:

dFD

dt
∝ dp

dt

which can be rewritten as:

a
dFD

dv
∝ dp

dt
Aref (3.30)

In (3.30), a denotes the acceleration of the piston rod. We note that both the acceleration
and the pressure derivative in time are especially high in the range of zero velocity of the
piston.
Moreover, when the damping constant is important, also the term multiplied by the
isothermal compressibility factor β in the continuity equation 3.1 gets high values.
Introducing the so called elastic flow:

Qelastic = dp

dt
Voilβ (3.31)

However, even for low acceleration and damping stiffness the force-velocity diagram
for a dynamic case may differ from a static one. The deviation takes birth in the difference
of the pressurized volume between compression and rebound stroke.

Table 3.4: Value of β used to show compressibility effect

k = 800 [N m−1] Fprecharge = 20 [N] f= 1 [Hz]

β [Pa −1] 2.50 · 10−9 2.50·10−11
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Figure 3.9: Hysteresis effect due to compressibility magnified by blow-off valve
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3 – Compressible model for an isothermal twin tube damper

Blow-off stiffness effect

Table 3.5 reports the values of spring stiffness varied in the parameter study. What
emerges from the force-displacement (Figure 3.10) diagram is that increasing the stiffness
of the equivalent spring brings to slightly higher damping forces. In fact, during rebound,
the force-displacement curve assumes a trend which can resemble a parabolic one.

This behaviour is confirmed in the F-V diagram reported in Figure 3.11: the stiffer
spring changes the slope of the F-V curve. As a matter of fact, the derivative of a
parabolic function (which resembles the trend of the F-X curve in 3.10) is a linear one
(as seen in 3.11).

Table 3.5: Blow-off equivalent effect on damper properties

β = 2.5 · 10−9 [Pa −1] Fprecharge = 20 [N] f= 1 [Hz]

k [N m−1] 80 800 10000
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Figure 3.10: Force-displacement diagram for different k
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3.5 – A geometrical model with a simplified blow-off valve

Pre-charge force effect

The pre-charge force Fpre−charge defines the pressure differential between the rebound
and the compression chamber necessary to open the blow-off valve. According to (3.28),
the equivalent spring rate k has a role only when the valve begins to open.

In the simplified model implemented, by doubling the pre-charge force, also the max-
imum force detected in the rebound stroke doubles. The behaviour is appreciated in
Figure 3.12.

Table 3.6: Input parameters to show the pre-load force effect

β = 2.5 · 10−9 [Pa −1] f = 1 [Hz] k= 800 [N m−1] Fprecharge= 40 [N]
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Figure 3.12: Force-velocity diagram for Fprecharge = 40 N
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Wall-cylinder leakage effect

Equation (3.24) implies a non-zero mass flow through the piston valve also when the
pressure differential ∆p = 0. In fact, a term depending only on the piston velocity is
present. The presence of the leakage strongly modifies F-V diagram in the range of low
velocity vp.

When the piston velocity is relatively high, the wall-leakage contribution is negligible
because the high pressure differentials lead to high flow rates. In Figure 3.13, it is possible
to take view of the different slope in the rebound phase near zero velocity.

Table 3.7: Value of cylinder-wall gap simulated in the compressible model

β = 2.5 · 10−9 f= 1 [Hz] k= 800 [N m−1] Fprecharge = 20 [N]

Piston-wall gap [m] 1.016·10−4 5.16·10−5 1.516·10−4
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Figure 3.13: Force-velocity diagram for cylinder-wall gap listed in Table 3.7
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3.5.2 Summary of the phenomenology appreciated

In the previous sections, several effects have been discussed separately. In general, in
analysing the behaviour of a twin tube damper, all the below characteristics should be
taken into account:

• Initial gas volume;

• Compressibility of damper medium;

• Piston-wall leakage;

• Geometry configuration of the valve system:

1. Type of valves (i.e. simple orifices or blow-off valves);
2. Equivalent spring rate of the blow-off valve;
3. Pre-charge force of the blow-off valve;

• The cylinder compliance is in general negligible but can be taken into account
depending on boundary conditions.

Figure 3.14 summarizes the mentioned aspects in typical F-X and F-V diagram.
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Figure 3.14: Characteristic diagram for a typical twin tube with blow-off valve
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Chapter 4

A simplified non-caviting twin
tube for experimental testing

The aim of the chapter is to define a simple twin tube damper configuration which
meets two main requirements:

• Preventing cavitation phenomena inside the chambers;

• Achieving high forces, in particular in the rebound movement that can be measured
by the test equipment;

The geometrical model has a reference geometry specified in Table 4.1.

Table 4.1: Geometry configuration for incompressible model

Data Geometry

Ap [m 2] 1.590 · 10−3

Ar [m 2] 3.142 · 10−4

Lcin [m] 1.425 · 10−1

γ (specific heat ratio) 1.4
pg0 [Pa] 1.00 · 105

Vg0 [m3] 3.584 · 10−5

4.1 Orifices geometry analysis
The damper has no blow-off valves, so that only orifice diameters are the parameters of

study. Prior to proceed further, the impact of orifice dimensions on pressure distribution
is analysed. Reminding the govern equation for orifices 1.26 on page 12, it is possible to
write:

Q ∝ CdAorifice

√
∆p (4.1)

The same value of flow rate requires an higher pressure drop for smaller orifices area
Aorifice.
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4 – A simplified non-caviting twin tube for experimental testing

4.1.1 Piston orifices

The piston orifice role should be analysed distinguishing between rebound and com-
pression phase.

Compression phase In the compression phase, the rebound chamber tends to expand.
As a consequence, a pressure decrease is observed in the rebound chamber in the first
phase. A wider orifice diameter in the piston permits the pressure not to drop below the
vapour pressure value. According to 4.1, a larger flowing area limits the pressure drop
on the rebound chamber. An example is reported in Figure 4.1.
However, enlarging the piston orifices cause a force decrease in the rebound movement.
In fact, this operation limits the pressure drop across chambers.

Rebound phase The rebound phase is not critical for the rebound chamber as the oil
is compressed by the piston. A drawback of having large orifices in the piston valve is
the reduced rebound force, as already mentioned.
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Figure 4.1: Rebound chamber pressure for two diameters of the piston orifices

4.1.2 Base valve orifices

The base valve orifice area has an important impact on the two upper chamber (com-
pression and rebound). It has a direct influence on the compression chamber which in
turn interacts with the rebound chamber. To simplify the comprehension, let’s consider
the incompressible model; rewriting (2.11):

vcomp−res = vpAr∑
Afcomp−res

(4.2)

vreb−comp = −vp
Ap − Ar∑
Afreb−comp

(4.3)

It follows that a small base valve orifice produces high velocities and high pressure
in the compression compartment. A the same time, the pressure value in the rebound
chamber depends on the pressure in the compression chamber and on the velocity of the
flow through orifices. Making prebound explicit, and assuming kloss constant:

preb = pres + 1
2kloss

(
sgn(vcomp−res)v2

comp−res + sgn(vreb−comp)v2
reb−comp

)
(4.4)

Compression phase Since pres is defined mainly by the piston position 1, in the
compression movement preb can display an increasing or decreasing trend depending on
the mutual choice of piston and valve orifices. In fact, in (4.4) sgn(vreb−comp) has a
negative value in compression. These two kind of trends are shown in Figure 4.2.

1In a compressible model there is a small effect of elastic flow Qel while in an incompressible model
pres depends only on the piston position.
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Figure 4.2: Rebound chamber pressure for two diameters of the piston orifices

Rebound phase The rebound phase is critical for the compression chamber. Very
small diameters of the base valve can lead to pressure drops too high. For this reason,
the most of base valve assemblies operate in different ways in rebound and compression
stages.
Accordingly, higher orifice areas are preferable in the rebound phase. Consequence of not
selecting the proper area is cavitation as reported in Figure 4.3.
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Figure 4.3: Compression chamber pressure for two diameters of the piston orifices, with a
condition of cavitation

4.2 Possible configurations for experimental testing

To sum up what explained in the previous section, we have to deal with two main
problems:

1. The reduction of piston orifice diameters cause the pressure in the rebound cham-
ber to drop below zero; on the other side, enlarging too much the piston orifices
diameters decreases the force;

2. The reduction of the base valve orifice diameters produce higher forces but can
trigger cavitation during the rebound movement;

On these basis three configurations are proposed:

• Simple twin tube with fixed-diameter orifices;
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4 – A simplified non-caviting twin tube for experimental testing

• Twin tube with fixed orifices area in compression and reduction of the piston orifice
area in rebound;

• Twin tube with fixed orifices area in compression and reduction of 50% of the piston
area orifice in rebound;

The optimal configuration is found by running a Matlab script of the compressible
model by varying at each iteration the piston and the base valve orifice areas in the range
Asearch = 10−5 − 10−6 [m2]; the limits of the boundary lie in a ratio Amaxsearch

Aminsearch
= 10.

The choice of the range has been made considering the absolute size of real-life damper
orifices.
Due to time-consuming considerations, the model simulates flow resistance kloss as con-
stant. When the flow is turbulent, the viscous effects are negligible and both Cd and kloss

can be assumed as constant:

kloss = 1
C2

d

with kloss∞ ≈ 2.6874

The configuration obtained is then compared to the one in which viscous effect are mod-
elled.

4.2.1 Configuration with fixed orifice

In Table 4.2, the areas found for piston and base valve orifices are reported; also the
corresponding number of holes are indicated.

Table 4.2: Orifice configuration for the fixed orifice model

Model with fixed orifice

Fmax [N] 341.97
Fmin [N] -357.80
Pminreb [Pa] 1.872 · 103

Pmincomp [Pa] 2.048 · 103

Abase orifice [m2] 3.020 · 10−6

Apiston orifice [m2] 8.714 · 10−6

n◦ of holes 1 2 3 4

diameterbase orifice [mm] 1.96 1.39 1.13 0.98
diameterpist orifice [mm] 3.33 2.35 1.92 1.66
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Figure 4.4: F-V diagram for fixed orifice model

4.2.2 Twin tube with 60% reduced piston orifice area in the rebound
phase

The second configuration is found by considering three parameters as variables:

• The piston orifice area;

• The base valve orifice area;

• The percentage of closure of piston orifices in the rebound phase;

In the rebound movement, the piston orifices partially close in order to get higher damping
forces.

Table 4.3: Orifice configuration for the third orifice model with 50% area reduction in rebound

Model with reduced orifice area in rebound

Fmax [N] 1.987 · 103

Fmin [N] −3.578 · 102

Pminreb [Pa] 1.872 · 103

Pmincomp [Pa] 5.349 · 103

Abase orifice [m2] 3.020 · 10−6

Apiston orifice [m2] 8.714 · 10−6

% reduction in rebound 60%

n◦ of holes2 1 2 3 4

diameterbase orifice [mm] - 1.39 - 0.98
diameterpist orifice [mm] - 2.35 - 1.66
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Figure 4.5: F-V diagram with 60% closure of orifice in piston valve in rebound phase

4.2.3 Twin tube with 50% reduced piston area orifice in the rebound
phase

The final configuration introduces the constraint that the piston orifice area in re-
bound is 50% of the value we have in compression. This assumption allows to close half
of the orifices in the rebound stage (the number of orifices must be even). The results
obtained are reported in Table 4.4.

Table 4.4: Orifice configuration for the third orifice model with 50% area reduction in rebound

Model with fixed orifice

Fmax [N] 1.280 · 103

Fmin [N] −3.578 · 102

Pminreb [Pa] 1.872 · 103

Pmincomp [Pa] 3.972 · 103

Abase orifice [m2] 3.020 · 10−6

Apiston orifice [m2] 8.714 · 10−6

% reduction in rebound 50%

n◦ of holes 1 2 3 4

diameterbase orifice [mm] - 1.39 - 0.98
diameterpist orifice [mm] - 2.35 - 1.66

2The system should be configured to allow 60% reduction of area in rebound phase.
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4.3 – Constant k model and Reynolds dependent model comparison

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
vp [m/s]

-400

-200

0

200

400

600

800

1000

1200

1400

F ap
p [N

]

50% Piston orifice reduction: F-V diagram

Apiston orifice=8.71  10-6

Abase orifice=3.02  10-6

Apiston % 50 reduction in rebound

Figure 4.6: F-V diagram with closure of orifice in piston valve in rebound

4.3 Constant k model and Reynolds dependent model com-
parison

The configuration outlined assuming the flow resistance kloss as constant is now com-
pared with a model in which kloss is function of Reynolds number. The modelling is based
on both frictional losses along the channel and concentrated losses as described in 1.7 on
page 10. In order to shorten the process of sizing, a first attempt with a simplified model
in which Reynolds number has no influence is recommended. Then, a more complicated
model in which viscous effects are expressed in function of Reynolds number can be in-
voked.
As reported in Figure 4.7, 4.9 and 4.8, differences of 5-10% in terms of forces can be seen
between the two models.
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Figure 4.7: Constant k model and Reynolds dependent model for fixed orifice configuration
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Figure 4.8: Constant k model and Reynolds dependent model with 60% reduction in rebound
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Figure 4.9: Constant k model and Reynolds dependent model with 50% reduction in rebound
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Chapter 5

Dynamic behaviour of the damper
at high frequency

This chapter treats the dynamical behaviour of a twin tube damper, analysing the re-
sponse by changing the stroke frequency. Remembering the slider-crank motion discussed
in 1.2 on page 6, it is clear that

vpiston ∝ f (5.1)

As a consequence, the damping force on the piston gets high with the excitation fre-
quency. At the same time also the damping energy and the spring power increase. In
first approximation FD ∝ f2. In an incompressible model, F-V diagram is the same for
all frequencies in the region where vp = 0 [m/s].

Some discrepancies begin to appear if the medium is very compressible (β ≈ 10−8).
This behaviour is compatible with what seen in Figure 3.3. Even at the beginning of
each period where (prebound = pcompression), the pressure established depends slightly on
the frequency, as underlined in Figure 5.2.
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Figure 5.1: Frequency behaviour for incompressible model
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Figure 5.2: Frequency behaviour for compressible model

Another point to underline is that, in the compressible case (assuming the same piston
law motion of the incompressible model), the rise of excitation frequency changes the F-V
diagram . This result has the following meaning: rising the frequency, the compressibility
effects are magnified and the so-called spring power gets higher values. Spring power is
the area enclosed by F-V diagram and is the symptom of dissipative forces to become
less important than spring forces (which are conservative).
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5.1 – Damping work

5.1 Damping work
According to [19], it is possible to introduce the damping energy which is defined as:

Wd =
∫ T

0
FD dz (5.2)

The dynamic behaviour is studied for one maximum excitation velocity by changing
the stroke. Increasing the frequency, the damping work done per cycle by the system
diminishes. An example is reported in Figure 5.3 for various frequency strokes.
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Figure 5.3: Damping work for various frequencies

In order to keep constant the maximum velocity, the stroke is changed according to
the rule:

amp′ = amp
frequency L′ = L · amp′/amp (5.3)

Modifying the stroke, the damper work (area enclosed in the F-X diagram) diminishes.

5.2 Spring Power
Introducing a new parameter, the so-called spring power, which is defined as:

Psp =
∫ T

0
FD dv (5.4)

We notice that it decreases when the frequency rises up and the maximum velocity is
maintained; this is the consequence of the new motion law imposed to the piston.

The amplitude of the motion is reduced and the gas spring effect is reduced. In fact,
the spring effect is provided both by the gas chamber and the compressibility of the oil.
In this case, the important changes in the stroke limit the impact of the gas on hysteresis
(visible in the F-V diagram). The unchanged stroke is reported in Figure 5.4a) for 5
cycles. The modified stoke to maintain constant the maximum velocity with frequency
is shown in Figure 5.4b).
In Figure 5.6, the hysteresis effect due to the gas compression is plotted for increasing
frequencies.
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Figure 5.4: Stroke of the piston for different excitation frequencies (Hz), for classical stroke (a)
and fixed maximum velocity (b)
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Chapter 6

A compressible and thermal
model for a dual tube damper

The purpose of this chapter is to extend the compressible model including the effect
of temperature on the system. Therefore, the working fluid equation for density ρ is
revisited. Two main models are presented: the first presents the temperatures of each
chamber as new variables while the second models also the solid element temperatures
such as the ones of inner cylinder, outer cylinder and piston.

The increased number of unknowns requires the energy equation to be involved. Two
different ways for fluxes definition has been carried out in order to achieve numerical
stability and physical results.

6.1 Thermal working fluid

The thermal model is developed considering the density variation due to pressure and
temperature departures from their respective reference values. Reminding the definition
of the coefficient of isothermal compressibility:

∂ρ

∂p
= βρ (6.1)

and of the coefficient of thermal expansion:

ϕ = −1
ρ

∂ρ

∂T
(6.2)

Solving the system in term of density ρ, we can find the dependence on temperature and
pressure as:

ρ = ρ0eβ(p−p0)−ϕ(T −T0) (6.3)

where p0 and T0 correspond to the pressure and to the temperature of reference. The
basic assumptions under which the damper medium properties are modelled are:

β = constant ϕ = constant (6.4)
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6 – A compressible and thermal model for a dual tube damper

The density derivative term dρ
dt appearing in the mass conservation equations will lead

to new terms which are temperature dependent:
∂ρ

∂t
= ρβ

∂p

∂t
− ρϕ

∂T

∂t

6.2 Equation of state for gas
The reserve chamber oil is in direct contact with the gas chamber with no physical

separation between them. The gas (usually nitrogen) is treated as ideal. The constitutive
equation reads:

pgVg = mg
R

Mmg
Tg (6.5)

The state equation is needed to compute the gas temperature in the thermal model;
by the way, the specific heat ratio does not appear on equation. However, assuming no
heat flux between parts (solid and fluid ones) the isothermal condition can be reproduced.

6.3 Mass conservation equations for the thermal model
Continuity equation is rewritten for each of the three damper chambers (rebound,

compression and reserve). The volume chamber deformation caused by thermal expansion
and elastic deformation (due to pressure) has a negligible impact and therefore it is not
considered in the proposed model.

For clearness, the following symbols are adopted to refer briefly to each chamber
property:

* rebound → E

* compression → C

* reserve → B

* gas → g
The mass conservation equations for the damper configuration analysed are:

VE

(dpE

dt
β − dTE

dt
ϕ

)
= −vp(Ap − Ar) − QEC (6.6)

VC

(dpC

dt
β − dTC

dt
ϕ

)
= vAp − QBC + QEC (6.7)

VB

(dpB

dt
β − dTB

dt
ϕ

)
−dVg

dt
= QBC (6.8)

The gas volume variation has a key role also in the energy equation; for clearness, dVg

dt
is explained:

dVg

dt
= mg

R

Mmg

(
pg

∂Tg

∂t − Tg
∂pg

∂t

p2
g

)
(6.9)
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6.4 – Energy equations

6.4 Energy equations
The closure of the system of differential equations needs the energy equation to be

taken into account. The general form of the first principle of Thermodynamics takes the
form:

d
dt

∫
V (t)

ρudV = Φ − Ẇ (6.10)

where Φ denotes the heat flow, u the internal energy of the fluid and Ẇ the power
the system interchange with the environment, assuming as positive the work (or power if
derived in time) done by the system on the external.

Expression (6.10) is equivalent to the following in which the total derivative has been
expanded in the eulerian time derivative and convection term:

∂

∂t

∫
V (t)

(ρE)dV +
∫

S(t)
(ρE)v · dS = Φ −

∫
V (t)

∇ · (pv)dV +
∫

V (t)
∇ · (τ · v)dV −

∫
V (t)

∇ · qdV − Ẇa

(6.11)
where Ẇa denotes the external power provided to the control volume. Remembering

that
E = u + ek + ep

Under the assumption that the kinetic energy ek and the potential energy ep are negligible:

E ≈ u

∂

∂t
(ρuV ) = Φ −

∫
S(t)

ρ

(
u + p

ρ

)
v · dS − Ẇa (6.12)

The integration has been carried out considering constant the fluid properties on the
chamber. Expanding the time derivative:

∂ρ

∂t
uV + ∂T

∂t
cpρV + ∂V

∂t
uρ = Φ − Ẇa −

∫
S(t)

ρhv · dS (6.13)

The energy is redistributed in the system through the enthalpy fluxes coming from
the orifices interconnecting each chamber to the other.
For the rebound chamber it is possible to write:

dpE

dt
ρEuEVEβ+dTE

dt
(cpρEVE−ρEuEVEϕ) = ΦE−vp(Ap−Ar)(pE+ρEuE)−

∑
ρ·Q·h|EC (6.14)

While for the compression chamber:
dpC

dt
ρCuCVCβ+ dTC

dt
(cpρCVC −ρCuCVCϕ) = ΦC +vAp(pC +ρCuC)−

∑
ρQ·h|BC +

∑
ρQ·h|EC

(6.15)
The gas chamber energy equation must account for the gas volume variation (6.9):

dpB

dt
ρBuBVBβ + dTB

dt
(cpρBVB − ρBuBVBϕ) + pB

dVB

dt
+ ρBuB

dVB

dt
= ΦB (6.16)

Introducing (6.5), we obtain:
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6 – A compressible and thermal model for a dual tube damper

dpB

dt
ρBu3VBβ+dTB

dt
(cpρBVB − ρBuBVBϕ) − mg

R

Mmg

(
dTg

dt
− Tg

pg

dpg

dt

)
+

− ρBuB
dTg

dt

mg

pg

R

Mmg
+ mgρBuB

R

Mmg

Tg

p2
g

dpg

dt
= ΦB +

∑
ρ · Q · h|BC

(6.17)

6.4.1 Gas energy equation

It is important to point out that the gas in the reserve chamber is treated as ideal
because the pressure it is subjected to does not justify the characterization as real. Writing
the first principle for a closed system, assuming reversible process:

du = dΦ − L (6.18)

The pressure work is:
dL = pdV

introducing the enthalpy:
h = u + p

ρ
= cpdT

which lead to:
dTg

dt
= 1

mgcp

(
Φ + Vg

dpg

dt

)
(6.19)

6.4.2 Energy equation for orifices

It is necessary to introduce the total energy equation for the flow inside the orifices:

ρV
dE

dt
+
∫

V
∇ · (pv)dV = ṁ(h + ek + ep)inlet − ṁ(h + ek + ep)outlet +

✚
✚
✚✚

ρV
∂E

∂t
(6.20)

there is no energy transfer as heat flux or power through the control volume so those
terms have been omitted. Unsteady effects are negligible in the orifice so the time deriva-
tive can be neglected [14].
Assuming negligible the potential energy and the kinetic energy time variation, the en-
thalpy conserves throughout the pipe:

hinlet = houtlet (6.21)

Although the enthalpy is conserved, according to the generalized Bernoulli’s equation,
the internal energy is increased by friction and irreversibilities:

v2
out − v2

in

2 + g(zout − zin) +
∫ 2

1
vdp + R12 = 0 (6.22)

Under the listed assumptions, assuming incompressible flow inside the pipe:

pout − pin

ρ
= −R12 (6.23)
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6.5 – Heat transfer modelling on solid parts

The pressure drop due localized and distributed loss indicated with the term R12
causes the oil to leave the orifice with an increased temperature. Since the flow direction
in orifices is determined by the relative velocity of the piston, the enthalpy (or in general
the physic property) assumed at the inlet of the orifice (and conserved through outlet as
seen in (6.21)) depend on the piston movement.
A way to choose the right value at the inlet can be made by a if - else statement or
referring to the function sgn:

s1 = 1 + sgn(ẋ(t))
2 s2 = 1 − sgn(ẋ(t))

2

6.5 Heat transfer modelling on solid parts
The right hand side Φ appearing in the energy equations represents the heat flux

absorbed by the fluid elements (gas and oil) which fill the respective chambers. In order
to provide the information about the temperature reached by the solid parts, also three
main damper components are introduced in the thermal model: the inner cylinder, the
outer cylinder and the piston.

The field of temperature is considered uniform inside the entire part. This assumption
allows to express the first principle of thermodynamics for the generic part as:

micv
dTi

dt
= Φi (6.24)

The terms mi and cv stands for the mass of the solid part and the specific heat at constant
volume. The only kind of heat transfer considered is a convection flux between the solid
part and the fluid region.
According to Newton’s equation for convection the heat flux can be expressed through:

Φi = αcA(Ti − Tf ) (6.25)

where αc is the convection coefficient which depends not only on the fluid involved but
mostly on the condition under which the flow takes place. For its calculations, semi-
empirical correlation will be used. Symbols A, Ti and Tf refer to the area involved in the
heat interchange, to the temperature of the solid component and to the temperature of
the fluid respectively.
It is important to underline that the gas oil interface changes position due to the piston
movement. In evaluating the heat fluxes this consideration has to be taken into account.
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6 – A compressible and thermal model for a dual tube damper

6.6 Justification of the lumped system analysis

In general, the temperature of a body varies with time and position. Assuming this
dependence, in rectangular coordinates the temperature can be expressed as T (x, y, z, t).
In a lumped system, the temperature is considered uniform at the generic time instant
during the heat transfer process. The energy balance for the body can be expressed as in
(6.24). Denoting with m the mass of the body, A the area of heat exchange and cv the
specific heat:

m · cvdT = αc(T∞ − T )dt (6.26)

The equation takes the form of a first order model with a time constant τ which can
be defined as:

τ = m · cv

αcA
(6.27)

The time constant identifies the time required by the system to reach the 63% of the final
value. Moreover, integrating (6.24), it easy to show that it has an exponential trend.

Figure 6.1: The convection-conduction in the lumped system, [5], pp.212

According to [5], the criterion which establishes the applicability of the lumped system
idealization is based on the Biot number:

Bi = αc · Lc

λ
(6.28)

where in (6.28) Lc defines a characteristic length:

Lc = V

A
(6.29)

The Biot number can be viewed as the ratio between the convection involving the heat
exchange area A and the conduction which takes place inside the body:

Bi = αc

λ/Lc

∆T

∆T
= Convection at the body surface

Conduction within the body (6.30)
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6.6 – Justification of the lumped system analysis

At the same time (6.30) can be rearranged in the ratio between the conduction resistance
and the convection resistance at the surface of the body.

Bi = Lc/λ

1/αc
= Conduction resistance within the body

Convection resistance at the body surface (6.31)

Assuming as uniform the temperature of the generic element means that the Biot
number is zero. Thus, when the thermal resistance to conduction is zero, the lumped
system analysis is exact and rigorous.
However, a good approximation is obtained if

Bi 6 0.1

When the above criterion is satisfied, the temperature field varies very slight inside the
body and can be approximated as uniform.

6.6.1 Biot number computation for the solid parts

The Biot number for the three solid parts modelled in the damper is calculated.

Table 6.1: Calculation of Biot number for solid parts

Conductivity λ [W m−1 K−1] ≈ 40
Coefficient of thermal convection oil-wall [W m−2K−1] 100-1000

Lcinner [m] 0.007
Lcouter [m] 0.005
LcP iston [m] 0.045

Biot number

Inner Cylinder 0.0125-0.125
Outer Cylinder 0.0175-0.175

Piston 0.05625-0.5625

Table 6.1 shows the Biot number for the range of the thermal convection coefficient
oil-cylinder wall 100 − 1000 W m−2 K−1. It can be seen that also in the worst condition
the assumption of the lumped system modelling is acceptable. In fact, the value of 1000
W m−2 K−1 is over estimated and reported as a limit case. An important information is
that the most problematic part to which apply the lumped analysis is the piston. In fact,
it is characterized by the largest Biot number.
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6 – A compressible and thermal model for a dual tube damper

6.7 Temperature influence on viscosity
The implementation of the thermal model in which temperatures of the system ap-

pears explicitly in govern equations allow to consider their influence on viscosity. The
linear approximation

µ = µref

(
1 + kµT (T − Tref )

)
kµT ≈ −2% ◦C (6.32)

is acceptable only for a narrow temperature range so the Guzmann-Carrancio equation
is preferred:

µ = µ0e
E

RT (6.33)
in which E is the characteristic energy value, R the universal gas constant and T the
absolute temperature. Re-expressing (6.33):

µ = µ0e
C( 1

T
− 1

T1
) (6.34)

denoting with C a positive coefficient and µ0 is the viscosity at temperature (absolute)
T0. Moreover we have:

log µ = log µ0 + C

T
− C

T1
(6.35)

log µ = A + C

T
(6.36)

By inspection of (6.36), this model of viscosity predicts a linear relation between the
logarithm of the viscosity and the reciprocal of the temperature.
In absence of other data, a reasonable estimate of parameter C is

C = 5693 − 304 log10(µref ) − 646 log2
10(µref ) Tref = 15◦C (6.37)

Once the values of µ and ρ have been computed, the contribution of concentrated and
distributed friction loss can be evaluated. In particular, reminding 1.26 on page 12, flow
rate and velocity is readily known:

Q = CdA

√
2∆P

ρ

If in the first phase Cd is considered constant, the temperature influences only the
density value. The decreasing trend of density with temperature diminishes the damping
force:

Q = CdA

√
2∆P

ρ0

ρ0
ρ

ρ0
ρ

> 1 for T > T0

In general, the evaluation of the global Cd (due to distributed and concentrated losses)
needs an iterative process with an initial guess. In fact, Reynolds number is also a function
of flow rate:

Re =
ρQ

A Dh

µ
(6.38)

The calculation is carried on with the analytical formulation of Cd given in 1.7 on page 10.
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6.8 Definition of fluxes through boundaries

We refer to flux of a property f through a surface S as the integral:

flux of f =
∫

S
f · v · ndS

where in this case the advected is a scalar property (e.g. density or enthalpy).
Implementing the thermal model of the damper, the definition of how the enthalpy

flux is defined within orifices is found to have an important impact on solution. Precisely,
two ways are exploited:

1. Approximating the enthalpy as the mean of the value assumed in the adjacent
chambers;

2. Choosing the value of enthalpy according to piston movement;

The solution 2, as mentioned in 6.4.2, is considered more suitable for modelling approach
and for stability reasons, as it will be investigated later.
Denoting with Qm the mass flow rate, for the approach 1 the enthalpy flux is:

hij = cv · Ti + Tj

2 +
(

pi + pj

2

)
/ρij where i, j = E, C, B (6.39)

while in the second case the appropriate value of enthalpy is assigned according the to
sign of the mass flow; in particular, the properties of the fluid in the orifice are the same
of the chamber the oil is coming from. A possible choice to implement this condition is
a if-else statement:

if Qmij > 0
hij = cv · Ti + pi/ρij

else
hij = cv · Tj + pj/ρij where i,j = E, C, B

(6.40)

In order to study the difference the above implementations offer, the more general
thermal model with heat fluxes enabled is considered as reference. With "heat fluxes
enabled" we refer to the thermal model in which also the solid parts are present. From
inspection of Figure 6.2 and Figure 6.3 the dependence of the solution from the enthalpy
definition is remarked.

When the enthalpy is computed with the algebraic method considering the mean of
the properties (temperature and pressure) of the adjoining chambers, the amplitude of
temperature oscillations increase in a non-physical way. The increasing amplitude is evi-
dent in expansion and compression chamber.
This divergent behaviour is responsible for the abortion of simulation when either the
simulation time or the frequency are increased. As announced, the second solution is im-
plemented because shows a more stable evolution. To be coherent with enthalpy definition
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6 – A compressible and thermal model for a dual tube damper

also the mass fluxes are computed taking into account the value of density appropriate:

if sgn(pi − pj) > 0
ρij = ρ(pi, Ti)
else
ρij = ρ(pj , Tj) where i,j = E,C,B

(6.41)
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Figure 6.2: Pressure and temperature trends with enthalpy convected by the mass flow rate Qm
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Figure 6.3: Pressure and temperature trends with enthalpy computed as mean value of the
properties of adjacent chambers
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Chapter 7

Implementation of the model in
Matlab

The system of equation presented in Chapter 6 is implemented in Matlab. Two
different methods are exploited. The mathematical model consists in a system of ordinary
differential equations (ODE). The number of equation depends also on the number of the
solid parts modelled. A typical dual tube is considered with: three chambers filled with
the oil, one gas chamber and piston assembly, inner cylinder and outer cylinder as solid
parts.

On this basis, the number of equations sets to 11. In fact, we have six equations for
the oil (3 eqns. of continuity + 3 eqns. of energy), two equations for the gas (1 eqn. of
state + 1 eqn. of energy) and one for each solid element (1 × 3 - three solid parts -).

7.1 Classical ODE resolution

The first method implemented is the classical method for resolution of a system of
ODE. Once the equations are written, the linear system of equation is solved. In partic-
ular, calling A the matrix of coefficients of the ODE systems:

A(t, y)y′ = b(t) (7.1)

where y denotes the dependent variables which in the specific case is a 11×1 vector. When
the linear system is solved by Matlab command \ (mldivide) the vector of derivatives is
the input for the Matlab ODE solver.

y′ = A(t, y)−1 b(t) (7.2)

where

A =

⎡⎢⎣a11 . . . a1n
... . . . ...

an1 . . . ann

⎤⎥⎦
n×n

b =

⎡⎢⎣b1
...

bn

⎤⎥⎦
n×1

n = 11
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7.2 Mass matrix implementation method

A different way to solve the system of ODE is to exploit Matlab functionality of
solving problems containing a mass matrix M(t, y)y′ = b(t) where M is a sparse or
full matrix. The ode15s solver is able to solve systems where the mass matrix is time
dependent. In the specific case, the mass matrix coincides with the matrix A previously
introduced.

7.3 CPU time measurements for the two methods

The CPU time taken by each method is measured for different simulation times and
frequency excitations. The results obtained are reported below. Table 7.1 refers to the
model in which the heat fluxes interesting the solid parts are disabled while Table 7.2 to
the case in which the heat fluxes are enabled. The resolution involving the mass matrix
appear to be always faster than the classical resolution. The comparison of the solution
at the same instant of time is not possible since in the variable step approach of ode 15s
time vectors (in which solutions are computed) are different.

However, reconstructing the solution at the desired time using the function deval, the
difference between the solutions are compatible with the relative and absolute tolerances
given as input. The CPU time obtained justifies the implementation of the thermal model
according to the mass matrix approach.

7.3.1 CPU time: Heat fluxes disabled

Table 7.1: CPU time required by the simulation with the with heat flux disabled model

CPU time [s] CPU time [s]
Simulation time [s] Freq. [Hz] Classical ODE Mass Matrix Resolution

3 1 16.56 16.55
3 2 21.09 15.41
3 3 28.67 20.41
12 1 31.16 14.75
12 2 81.45 54.86
12 3 124.77 90.25
24 1 74.83 39.47
24 2 168.50 115.55
24 3 264.20 174.63
64 1 306.30 111.83
64 2 649.61 403.48
64 3 875.52 543.78
300 1 926.47 519.97
300 2 3333.73 1453.06
300 3 5044.75 4007.94
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7.3.2 CPU time: Heat fluxes enabled

Table 7.2: CPU time required to run the simulation by the thermal model with heat flux enabled

CPU time [s] CPU time [s]
Simulation time [s] Freq. [Hz] Classical ODE Mass Matrix Resolution

3 1 15.78 11.48
3 2 19.55 13.17
3 3 46.72 27.23
12 1 34.48 19.86
12 2 88.86 60.27
12 3 131.17 92.38
24 1 77.22 42.64
24 2 276.72 178.44
24 3 412.38 269.75
64 1 322.53 166.63
64 2 452.02 343.50
64 3 1030.80 513.14
300 1 1494.61 753.44
300 2 3087.20 2121.05
300 3 5070.42 3297.00

Analysing the results obtained it is possible to point out the following peculiarities:

• The resolution time increases with frequency as speeding up the dynamic a smaller
step integration time is required to achieve the tolerances;

• The implementation with the mass matrix is faster than the classical resolution;

• The CPU time difference taken by the two methods is less evident for short sim-
ulation times because Matlab ode15s makes attempts with different step time to
respect the tolerances;
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Figure 7.1: CPU time comparison for the thermal model with heat flux disabled
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Figure 7.2: CPU time comparison for the thermal model with heat flux enabled
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7.4 Numerical verification of mass and energy conservation
The present section is dedicated to the description of the numerical verification of the

code. In particular, it is important to verify that the system of ODE implemented in
the system works correctly. Since the equation written are essentially the conservation of
mass and the conservation of energy (first principle of thermodynamics) it is possible to
check:

1. If the final mass equals (within numerical errors) the initial one;

2. If the energy input on the system has been transformed in internal energy;
The condition number 2 is easily applicable to an adiabatic system that is a system

which does not exchange heat with the environment. Two thermal versions are reported:
in the first one the heat fluxes are suppressed while in the second the heat fluxes are
enable and solid parts will see their temperature changing in time.

7.4.1 Thermal model with no heat fluxes

The first thermal model developed does not contemplate the thermal fluxes between
the fluid elements and the solid parts. Under the basis of this modelling, the solid part
temperature remains constant in time to the initial value.
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Figure 7.3: Temperature trends for solid parts (heat fluxes disabled)

From Figure 7.3 is evident that the temperature of the solid elements is stuck to
the initial one, since the heat fluxes inside the solid parts are set to zero. However, this
modelling provides the information of evolution of the temperature in the oil chambers: on
average, it increases monotonically because energy is continually inserted in the system.
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Figure 7.4: Pressure and temperature trends for fluid parts in the thermal model with no heat
fluxes
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7.4.2 Thermal model with heat fluxes enabled

A more complete system is modelled considering the presence of the solid parts and
the heat fluxes they interchange with the solid elements. In this case also the piston, the
inner and the outer cylinder increase their temperature with time.

The internal energy stored by the solid elements is removed from the one potentially
available for the fluids region: this is found to be the reason why the fluid regions reach
in the same time of simulation a lower maximum temperature if compared to the system
in which the fluxes are disabled (Figure 7.3, 7.4). Moreover, as highlighted by Figure 7.5,
their mean temperature trends resemble an exponential evolution, coherently with what
explained in 6.6.
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Figure 7.5: Temperature trends for solid parts (heat fluxed enabled)
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Figure 7.6: Pressure and temperature trends for fluid parts in the thermal model with heat
fluxes enabled
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In Table 7.3 the initial and the final mass value are computed. It can be stated that
the absolute error is of order ≈ 10−8 − 10−9, which is compatible with the relative and
the absolute errors set in Matlab solver ode 15s to 10−8 and 10−10, respectively. The
adiabatic modelling towards the external environment allows also to verify if the energy
has been conserved integrally in the system.
The difference of energy is computed once the temperatures, the densities and the volumes
occupied are known at the beginning and at the end of the simulation. The reference value
for the energy check can be computed analysing the energy dissipated by the system:

∆E =
∫ T

0
FD dx or equivalently ∆E =

∫
FD · v dt (7.3)

These two modes are considered because the integral is computed numerically using
trapezoidal rule (second order accuracy). In both cases, the energy dissipated by the
system is converted in internal energy (temperature), confirming the conservativeness of
energy in the system.

Table 7.3: Mass and energy conservation for the thermal model - numerical verification

Fluxes Disabled Yes No
β 2.50·10−9 2.50·10−9

tspan [s] 30 30
Freq [Hz] 1 1
∆E [J] 1.5879657227 ·102 1.5996459066 ·102

∆E (Fx) [J] 1.5878240222 ·102 1.5994962704 ·102

∆E (Fvt) [J] 1.5879562390 ·102 1.5996314449 ·102

∆ Energy Error [J](%) 7.55921·10−3(4.76·10−3 %) 8.204895·10−3(5.13·10−3 %)
Initial Mass [kg] 2.08823475451 2.08823475451
Final mass [kg](%) 2.08823475615 2.08823475379
∆ Mass Error [kg] (%) 1.64·10−9(7.85·10−8 %) 7.20·10−10(3.44·10−8 %)

7.5 A mass non-conserving model

A mass conservative model is a model in which the total final mass matches the initial
mass value. The above statement is guaranteed if the following conditions are verified:

1. The model should provide a density variation due to pressure (and also due to
temperature if the temperature effects are implemented);

2. The mass flow rate needs to be computed coherently referring to the value of density
used in the velocity calculation;

Non conservation of mass can be appreciated not only comparing the mass values at
the beginning and at the end of the time simulation; in fact, it can be seen in Figure 7.7
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that when mass is non conserved but decreases in time, also the gas pressure shows a
decreasing trend. If the mass conservation is respected, the gas pressure has a constant
mean value (Figure 7.8).

Table 7.4: Mass value comparison for excitation frequency f=3 Hz and simulation time T=5 s

f= 3 [Hz], T=5 [s] Initial Mass [kg] Final Mass [kg]

Non conserving model 3.7369 · 10−1 3.7337 · 10−1

Conserving model 3.7369 · 10−1 3.7369 · 10−1
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Figure 7.7: Example of pressure trend for a non conserving model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

1

1.1

1.2

1.3

1.4

1.5

1.6

p ga
s [P

a]

105 Gas Pressure trend for a conserving model

Conserving mass model

Figure 7.8: Example of pressure trend for a conserving model

As a consequence, the investigation of the gas pressure evolution can be regarded as
a check to ensure the correct implementation of the code. The condition 1 assures that a
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pressure increase in a compressible model causes a density increase in that chamber while
the condition 2 guarantees that the mass flux entering the orifice is the same amount
leaving it.

What it is important to underline is that the mean value of the gas pressure takes
a constant value strictly in isothermal condition. In the thermal model the effect of
coefficient of thermal expansion can be seen.

Let’s consider the thermal model of a damper which is adiabatic with respect to the
environment in more depth.
The system does not exchange heat with the surroundings. Hence, the dissipative force
acting on the piston introduces power into the system which converts this energy per
unit time in internal energy. Then, the mean temperature of the system increases. The
volume of oil for the rebound and the compression chambers is defined by the piston
movement but according to (6.3) the density falls down with the temperature increase.

This fact means that less mass is contained in these two chambers if compared to the
analogous system under isothermal assumption. To preserve mass, the volume occupied
by the oil in the reserve chamber must increase (the mean value of density is decreasing
due to temperature if compared to the isothermal one). If the oil in the reserve chamber
occupies more volume, the pressure in the gas chamber increases because of the less
volume available for the gas.

7.5.1 Coefficient of thermal expansion effect on density

The evolution of the gas pressure is reported for two values of coefficient of thermal
expansion ϕ. One is a typical value for a damper medium while the other is for a liquid
which does not expands (ϕ ≪ 1) with the temperature variation . Figure 7.9 shows that
when the temperature effect on density is negligible, the mean value of the gas pressure
tends to switch back to a constant value (as in the isothermal model). Below trends are
obtained for f= 3 Hz and simulation time T= 15 s.
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Figure 7.9: Pressure trend for a typical coefficient of thermal expansion
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Figure 7.10: Pressure trend for coefficient of thermal expansion ϕ ≪ 1 (in this case ϕ = 0)
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Chapter 8

Conclusions

A compressible and thermal model of a pure twin tube damper has been developed. It
was pointed out that the compressibility introduces a delay between the piston motion and
the flow rate Q. The results is a reduced stability of the system: very small integration
time step have to be taken and the problem becomes numerically stiff.

It has been shown that the compressibility is responsible of an elastic flow
Qelastic = dp

dt
Voilβ, which is not negligible at high excitation frequency. The compliance

of the cylinder wall may enlarge the compressibility effects; for the geometrical configura-
tion considered, its value is two orders of magnitude smaller than the oil compressibility.
However, its impact can be easily taken into account once the physical properties of the
cylinder are known.

The piston-wall leakage, if not accurately limited, has an impact on the characteristic
diagrams because an undesirable flow rate reduces the effectiveness of the blow-off valve.
In fact, for the same flow displacement (and therefore flow rate) a wider "equivalent"
cross-sectional area limits the flow lamination producing a minor pressure differences be-
tween chambers.

The original contribution provided comes from the inclusion of the thermal effects.
The energy equation has been considered and coupled with the state equation for gases.
The modelling has been carried out accordingly to a lumped system analysis, which offers
the opportunity of speeding up the process of sizing in a preliminary phase compared to
a time-consuming detailed CFD process.

A preliminary identification of the heat exchange coefficients may be needed to set the
correct range of values. The presence of orifices with geometry different from the sharp-
edge proposed is easily implemented in Matlab script adapting the empirical correlation
for the discharge coefficient Cd.
The state equation for the oil is based on the assumption β = const and ϕ = const
but in the presence of detailed information about the damper medium properties, their
value can be parametrized as function of temperature and pressure. This will lead to an
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8 – Conclusions

additional term in dρ

dp
and dρ

dt
according to the derivative chain rule.

The implementation of the model in the mass-matrix form (DAE’s systems of equa-
tions) showed better performance in terms of CPU time than the classical ODE resolution.
The numerical verification with an integral approach confirms that the model is mass and
energy conservative.
A possible definition of fluxes through boundary is given to provide numerical stability
and to prevent non-physical oscillations.

The temperature affects not only the density value ρ but also the dynamic viscosity µ.
Both terms influence the Reynolds number whose value governs friction and local losses.
In order to be evaluated correctively, an iterative loop is required to compute the total
flow resistance klosstot .

The proposed model can be extended to more complex configurations which contem-
plate complicated piston valve and base valve assemblies. Depending on the information
required, different ways of modelling can be chosen:

1. Writing the mass and energy balance equations for each region of interest;

2. Modelling the regions inside the piston and the valve assemblies as compressible
but isothermal;

3. Modelling the piston and the base valve assemblies as self entities ("black box")
with a characteristic ∆p = f(Q);

The approach 1 gives more accurate results but for each new region two new equations
(mass and energy) are needed. Clearly, having many regions the systems of equation
becomes progressively larger and the quick implementation-evaluation quality of lumper
parameter analysis may be lost.
The third approach is the quicker one if no information about the pressure and the
temperature distributions inside valves are requested. On the other hand, the procedure 2
stands in the middle between the choices 1 and 3: the pressure distribution is known while
the temperature information may be provided by interpolation methods. A combined
implementation (1-2-3) is even possible.
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Appendix

Matlab code used for thermal and compressible model implementation is reported
below.

1 %% Dynamic and Thermal model of a twin tube damper
2 function [Energy,Energy2,DeltaE,Potinitial,Potfin,y,t,mgas,Minitial,...
3 Mfinal,Fapp,xpist,vpist,DM]=Thermal_model_Damper
4 close all;
5 clear all;
6 %% Initialization
7 trasporto=true; %% Model enthalphy choice: true=convection,
8 % false= mean value
9 heat_fluxes=true; %% Presence of solid part choice:

10 % true= heat fluxes enabled,
11 % false=heat fluxes disabled;
12 Abs=1e-10; %% Absolute tolerance ODE solver
13 Rel=1e-8; %% Relative tolerance ODE solver
14 pio4 = atan(1);
15 pi = 4*pio4;
16 amp=15.e-3; %% Crank length [m]
17 freq=1.0; %% Excitation frequency [m]
18 tmax=30; %% Simulation time [s]
19 ome=2*pi*freq;
20 L=0.045; %% Connecting rod length [m]
21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 %% Activate to simulate stroke with same max velocity
23 % amp=amp*1/freq;
24 % L=L*amp/15e-3;
25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26 %% Geometry and cylinders data
27 % ***************************
28 % ***************************
29 Lc1 = 142.5e-3; %% Inner cylinder length [m]
30 dc1e = 52.e-3; %% Diameter of external cylinder [m]
31 Ac1e = pio4*dc1e^2;
32 Lc2 = 170e-3; %% External cylinder lenght [m]
33 dc2i = 65.e-3; %% Internal diameter of outer cylinder [m]
34 Ac2i = pio4*dc2i^2;
35 dc2e=70e-3; %% Outer diameter of outer cylinder [m]
36 Ac2e=pio4*dc2e^2;
37 %% Orifices length
38 Lh=1e-2; %% Piston orifice length [m]
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39 Ld=7.5e-3; %% Base valve orifice length [m]
40 EOD=0; %% Absolute roughness [m]
41 %% Oil properties
42 % ***********
43 % ***********
44 rhooil = 8.57e2; %% Oil density [kg/m^3]
45 nuoil = 46.e-6; %% Kinematic viscosity [m^2/s]
46 muoil = rhooil*nuoil; %% Dynamic viscosity [Pa*s]
47 % **********
48

49 %% Initial length of gas in gas chamber
50 Lg0=3.e-2;
51 %%
52 Vg0 = Lg0*(Ac2i-Ac1e); %% Gas chamber intial volume [m^3]
53 pg0 = 1.0e5; %% Initial gas pressure [Pa]
54 %% Geometry and piston data
55 % **************************
56 % **************************
57 dp=45.e-3; %% Piston diameter [m]
58 dr=20.e-3; %% Rod diameter [m]
59 Ap=pio4*dp^2; %% Piston area [m^2]
60 Ar=pio4*dr^2; %% Rod area [m^2]
61 tp = 22.5e-3; %% Piston height [m]
62

63 dc1i=dp;
64

65 kEC = 1/0.61^2; %% Flow resitance k for piston assembly orifices
66 nhp1=3; %% n. of orifices in piston assembly
67 dhp1=2.50e-3; %% Orifice diameter for piston assembly [m]
68 sumAfEC = nhp1*pio4*dhp1^2; %% Total area of piston valve orifices [m^2]
69

70 %% Geometry and base valve data
71 % ************************
72 % ************************
73 kBC = 1/0.61^2; %% Flow resistance k for base valve assembly orifices
74 nhbc1=1; %% n. of orifices in base vake assembly
75 dhbc1=2.5e-3; %% Diameter of base valve orifices [m]
76 hB = 2.e-2; %% Distance between inner and outer cylinder [m]
77 sumAfBC = nhbc1*pio4*dhbc1^2; %% Total area of base valve orifices [m^2]
78

79 %%--------------------------------------------
80 %% Intial and reference pressure/temperature
81 Ti=293.15; %% Initial temperature [K]
82 T_air=293.15; %% Environmental temperature [K]
83 pref=1e5; %% Reference pressure [Pa]
84 Tref=293.15; %% Reference temperature [K]
85 %%--------------------------------------------
86 %% Thermodynamics data
87 Mmg=28.96; %% Gas molar mass [g/mol]
88 cpg=1005; %% cp of the gas [J/kg/K]
89 cpoil=1850; %% cp of the oil [J/kg/K]
90 betaf=2.5e-9; %% Isothermal compressibility of oil [1/Pa]
91 %betaf=0; % for incompressbile model
92 phif=6.6e-4; %% Coefficient of thermal expansion [1/K]
93 %phif=0; % for isothermal model
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94 R=8314.47; %% Universal constant for gases
95 n=cpg/(cpg-R/Mmg); %% specific heat ratio
96 rhogas=pg0*Mmg/(R*Ti); %% Initial gas density [kg/m^3]
97 mgas=rhogas*Vg0; %% Gass mass [kg]
98 E=210000e6; %% Young's modulus inner cylinder [Pa]
99 Ri=45e-3; %% Internal radius inner cylinder [m]

100 Re=52e-3; %% External radius inner cylinder [m]
101 %betac=2/E*((Ri^2+Re^2)/(Re^2-Ri^2) +0.33); %% Compliance of cylinder wall
102 betac=0;
103 alpha=450; %% Coefficient of thermal convection oil-wall [W/m^2/K]
104 alphagas=50; %% Coefficient of thermal convection gas-wall [W/m^2/K]
105 alpha_air=20; %% Natural convection with environmment [W/m^2/K]
106 lamb_oil=0.15;%% Oil conductivity [W/mK]
107 lamb_air=0.03;%% Air conductivity [W/mK]
108 alpha_oil_gas=8*lamb_air/Lc2+...
109 8/3*lamb_oil/Lc2; %% Thermal conductivity oil-gas [W/m^2/K]
110 %% Piston material properties
111 rhocylE=7860; %% Inner cylinder density [kg/m^3]
112 rhocylB=7860; %% Outer cylinder density [kg/m^3]
113 rhopist=7860; %% Piston density [kg/m^3]
114 ccyl=460; %% cv specific heat cylinder [J/kg/K]
115 cpist=460; %% cv specific heat piston [J/kg/K]
116 F_Coul=10; %% Coulumbian Friction [N]
117 %------------------------------------------------------------------------------
118 %%
119 %****************************************************
120 % Expression for density
121 rho=@ (p,T) rhooil*exp(betaf*(p-pref)-phif*(T-Tref));
122 u=@ (T) cpoil*T;
123 rhoc=@(p)rhooil*exp(betaf*(p-pref));
124

125 mcyl=Lc1*(Ac1e-Ap)*rhocylE;
126 mB=(Ac2e-Ac2i)*Lc2*rhocylB;
127 mpist=(Ar*(Lc1-tp)+tp*Ap)*rhopist;
128

129 str=sprintf('Discharge_time%2dfreq_%2d_Rel_%3e_Abs_%3e.txt',...
130 tmax,freq,Rel,Abs);
131 filePA5=fopen(str,'w');
132 fprintf(filePA5, '%20s %20s %20s %20s %20s %20s %20s %20s %20s %20s ...

%20s\r\n','tempo','CdEC','ReEC','\Delta ...
PEC','muEC','ncicli','CdbC','ReBC','\Delta PBC','muBC','ncicli');

133 fclose(filePA5);
134 %% Mass and Energy Check
135 [t,y,Fapp,xpist,vpist]=dumper;
136 Potenza=Fapp.*vpist;
137 Energy=trapz(t,Potenza);
138 Energy2=trapz(xpist,Fapp);
139 %******************************
140 % Initial and final volume computation + energy computations
141 VolEf_finale=(Ap-Ar)*xpist(end);
142 VolCf_finale=Ap*(Lc1-xpist(end));
143 VolBf_finale=Ac1e*hB+(Ac2i-Ac1e)*Lc2-mgas*R/Mmg*y(end,8)/y(end,7);
144 rhogas0=pg0*Mmg/(R*Ti);
145 mgas=rhogas0*Vg0;
146 cvg=cpg/n;
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147 Potfin=cpoil*rho(y(end,1),y(end,2))*VolEf_finale*((y(end,2)))+...
148 cpoil*rho(y(end,3),y(end,4))*VolCf_finale*((y(end,4)))+...
149 cpoil*rho(y(end,5),y(end,6))*VolBf_finale*((y(end,6)))+...
150 cvg*mgas*((y(end,8)))+ccyl*mcyl*((y(end,9)))+...
151 ccyl*mB*((y(end,10)))+cpist*mpist*(y(end,11));
152

153 VolEf_baseinizio=(Ap-Ar)*xpist(1);
154 VolCf_baseinizio=Ap*(Lc1-xpist(1));
155 VolBf_baseinizio=Ac1e*hB+(Ac2i-Ac1e)*Lc2-mgas*R/Mmg*y(1,8)/y(1,7);
156

157 Potinitial=cpoil*rho(y(1,1),y(1,2))*VolEf_baseinizio*((y(1,2)))+...
158 cpoil*rho(y(1,3),y(1,4))*VolCf_baseinizio*((y(1,4)))+...
159 cpoil*rho(y(1,5),y(1,6))*VolBf_baseinizio*((y(1,6)))+...
160 cvg*mgas*((y(1,8)))+ccyl*mcyl*((y(1,9)))+...
161 ccyl*mB*((y(1,10)))+cpist*mpist*(y(1,11));
162 DeltaE=Potfin-Potinitial;
163 Minitial=rho(y(1,1),y(1,2))*VolEf_baseinizio+...
164 rho(y(1,3),y(1,4))*VolCf_baseinizio+...
165 rho(y(1,5),y(1,6))*VolBf_baseinizio+...
166 mgas+mcyl+mB+mpist;
167 Mfinal=rho(y(end,1),y(end,2))*VolEf_finale+...
168 rho(y(end,3),y(end,4))*VolCf_finale+...
169 rho(y(end,5),y(end,6))*VolBf_finale+...
170 mgas+mcyl+mB+mpist;
171 %% Text file Output
172 filePARAMETRI=fopen('Damperdata.txt','a');
173 if fseek(filePARAMETRI, 1, 'bof') == -1
174 fprintf(filePARAMETRI, '%18s %18s %18s %18s %18s %18s %18s %18s ...

%10s\r\n','tspan','freq', 'DeltaE', ...
'Energia(F_x)','Energia(F_v_t)','Massa_iniziale',...

175 'Massa_finale','Adiabatic','beta');
176 fprintf(filePARAMETRI, '%18.6f %18.6f %18.8f %18.8f %18.8f %18.11f ...

%18.11f %18s %10.8e\r\n', [max(t); freq; DeltaE; Energy2; ...
Energy; Minitial; Mfinal; heat_fluxes; betaf]);

177 else
178 frewind(filePARAMETRI)
179 fprintf(filePARAMETRI, '%18.6f %18.6f %18.8f %18.8f %18.8f %18.11f ...

%18.11f %18s %10.8e\r\n', [max(t); freq; DeltaE; Energy2; ...
Energy; Minitial; Mfinal; heat_fluxes; betaf]);

180

181 end
182

183 fclose(filePARAMETRI);
184 Miniziale0=Minitial-mgas-mB-mcyl-mpist;
185 [DM]=scrivi(t,y,Miniziale0);
186 %%
187

188 function [t,y,Fapp,xpist,vpist]=dumper
189 %% ODE call with Mass Matrix formulation (DAE's systems)
190 tspan = [0 tmax];
191 y0 = [1e5 Ti 1e5 Ti 1e5 Ti 1e5 Ti Ti Ti Ti];
192 opts=odeset('Mass',@(t,y) ...

myode1(t,y),'RelTol',Rel,'AbsTol',Abs,'MaxStep',0.9,...
193 'MStateDependence','strong');
194 [t,y] = ode15s(@(t,y) myode(t,y), tspan, y0, opts);
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195 xpist = xp(t);
196 vpist = vp(t);
197 %*************************************
198 % Damping force computation
199 Fapp = y(:,1)*(Ap-Ar)-y(:,3)*Ap+pg0*Ar;
200 % Uncomment to take friction into account
201 Fapp_c=Fapp-sign(vpist).*F_Coul;
202 % % Uncomment for Stribeck curve formulation for friction
203 % % Fs=0 static friction force [N]
204 % % Ft=0 value of friction in Stribeck curve at zero relative velocity [N]
205 % % Fv=0 Viscous friction [N]
206 % % Fc=0 Dynamic friction force [N]
207 % % vfs=0 Value of vel. corresponding to max force in Stribeck curve [m/s]
208 % % vs=0 Stribeck velocity [m/s]
209

210 % for i=1:length(vpist)
211 % if abs(vpist(i))<vfs
212 % Fric(i)=sign(vpist(i)).*((Fs-(Fs-Ft)*(1-abs(vpist(i)/vfs).^c).^d)+...
213 % +Fv.*vpist(i).^2);
214 % else
215 % Fric(i)=sign(vpist(i)).*((Fc-(Fs-Fc)*(abs(vpist(i)/vs).^c).^d)...
216 % +Fv.*vpist(i).^2);
217 % end
218 % Fapp=Fapp-Fric;
219 %% Plot of the results
220 figure
221 plot(t,y(:,1),'-o','LineWidth',1.5,'MarkerSize',3)
222 xlabel('t [s]')
223 ylabel('pE [Pa]')
224 title('Pressure in chamber E');
225 grid on;
226 print('-depsc2','pE');
227

228 figure
229 plot(t,y(:,3),'-o','LineWidth',1.5,'MarkerSize',3)
230 xlabel('t [s]')
231 ylabel('pC [Pa]')
232 title('Pressure in chamber C');
233 grid on;
234 print('-depsc2','pC');
235

236 figure
237 plot(t,y(:,7),'-o','LineWidth',1.5,'MarkerSize',3)
238 xlabel('t [s]')
239 ylabel('p_g [Pa]')
240 title('Pressure in gas chamber');
241 grid on;
242 print('-depsc2','pg');
243

244 figure
245 plot(t,y(:,2),'-o','LineWidth',1.5,'MarkerSize',3)
246 xlabel('t [s]')
247 ylabel('T_E [K]')
248 title('Temperature in chamber E');
249 grid on;
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250 print('-depsc2','TE');
251

252 figure
253 plot(t,y(:,4),'-o','LineWidth',1.5,'MarkerSize',3)
254 xlabel('t [s]')
255 ylabel('T_C [K]')
256 title('Temperature in chamber C');
257 grid on;
258 print('-depsc2','TC');
259

260 figure
261 plot(t,y(:,5),'-o','LineWidth',1.5,'MarkerSize',3)
262 xlabel('t [s]')
263 ylabel('p_B [Pa]')
264 title('Pressure in chamber B');
265 grid on;
266 print('-depsc2','pB');
267

268 figure
269 plot(t,y(:,6),'-o','LineWidth',1.5,'MarkerSize',3)
270 xlabel('t [s]')
271 ylabel('T_B [K]')
272 title('Temperature in chamber B');
273 grid on;
274 print('-depsc2','TB');
275

276 figure
277 plot(t,y(:,8),'-o','LineWidth',1.5,'MarkerSize',3)
278 xlabel('t [s]')
279 ylabel('T_g [K]')
280 title('Temperature in gas chamber ');
281 grid on;
282 print('-depsc2','Tg');
283

284 figure
285 plot(t,y(:,9),'-o','LineWidth',1.5,'MarkerSize',3)
286 xlabel('t [s]')
287 ylabel('T_{cylinderint} [K]')
288 title('Temperature of the inner cylinder');
289 grid on;
290 print('-depsc2','Tci');
291

292 figure
293 plot(t,y(:,10),'-o','LineWidth',1.5,'MarkerSize',3)
294 xlabel('t [s]')
295 ylabel('T_{cylinderext} [K]')
296 title('Temperature of the outer cylinder');
297 grid on;
298 print('-depsc2','Tce');
299

300 figure
301 plot(t,y(:,11),'-o','LineWidth',1.5,'MarkerSize',3)
302 xlabel('t [s]')
303 ylabel('T_{piston} [K]')
304 title('Temperature of the piston');
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305 grid on;
306 print('-depsc2','Tp');
307

308 figure
309 plot(t,Fapp,'-o','LineWidth',1.5,'MarkerSize',3)
310 xlabel('time [s]')
311 ylabel('Fapp [N]')
312 grid on;
313

314 figure
315 plot(xpist,Fapp,'-o','LineWidth',1.5,'MarkerSize',3)
316 xlabel('x_p [m]')
317 ylabel('Fapp [N]')
318 grid on;
319

320 figure
321 plot(vpist,Fapp,'-o','LineWidth',1.5,'MarkerSize',3)
322 xlabel('v_p [m/s]')
323 ylabel('Fapp [N]')
324 grid on;
325

326 figure
327 plot(xpist,Fapp_c,'-o','LineWidth',1.5,'MarkerSize',3)
328 xlabel('x_p [m]')
329 ylabel('Fapp (Friction included) [N]')
330 grid on;
331

332 figure
333 plot(vpist,Fapp_c,'-o','LineWidth',1.5,'MarkerSize',3)
334 xlabel('v_p [m/s]')
335 ylabel('Fapp (Friction included) [N]')
336 grid on;
337

338 %% Right-hand side term of DAEs : Ay'=bb
339 function bb=myode(t,y)
340 %% Heat Exchage areas for fluid regions
341 AcE=dc1i*pi*xp(t); %% Internal area rebound
342 AcC=dc1i*pi*(Lc1-xp(t)); %% Internal area compression
343 Lgas=mgas*R/Mmg*y(8)/y(7)/(Ac2i-Ac1e); %% Position of gas-oil interface
344 AcB=dc2i*pi*(Lc2-Lgas); %% Area reserve (outer cyl)
345 AcB_i=dc1e*pi*(Lc2-Lgas); %% Area reserve (inner cyl)
346 Acgas=dc2i*pi*Lgas; %% Area gas (outer cyl)
347 Acgas_i=dc1e*pi*Lgas; %% Area gas (inner cyl)
348 Ap_scambioC=Ap-sumAfEC; %% Piston area within compression
349 Ap_scambioE=Ar+(Ap-Ar-sumAfEC); %% Piston area within rebound
350

351 %uncomment to heat exchage with surroundings
352 Ac_environ=dc2e*pi*Lc2; %% External area of outer cylinder
353 %%
354 Volg=mgas*R/Mmg*y(8)/y(7);
355 flagEC=2;
356 flagBC=2;
357 b=zeros(11,1);
358 if trasporto==false
359
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360 rhoEC=rho((y(1)+y(3))/2, (y(2)+y(4))/2);
361 rhoBC=rho((y(3)+y(5))/2,(y(4)+y(6))/2);
362

363 else
364

365 flagEC=0;
366 flagBC=0;
367

368 if sign(y(1)-y(3))>0
369 rhoEC=rho(y(1),y(2));
370 else
371 rhoEC=rho(y(3),y(4));
372 flagEC=1;
373 end
374 if sign(y(3)-y(5))>0
375 rhoBC=rho(y(3),y(4));
376 else
377 rhoBC=rho(y(5),y(6));
378 flagBC=1;
379 end
380 end
381

382 %% Discharge coefficient definition
383 cd0=0.61;
384 cdEC=cd0;
385 cdBC=cd0;
386

387 %***********************************
388 % Flow velocity through piston assembly
389 ∆p12 = abs(y(1)-y(3));
390 if ∆p12 == 0
391 vEC = 0;
392 else
393 % Initial velocity guess for Cd(Re) loop
394 vECguess = abs(vp(t))*(Ap-Ar)/sumAfEC;
395 if vECguess == 0
396 vECguess = 1.e-6;
397 end
398 vEC=nr(y(1),y(3),rhoEC,dhp1,Lh,EOD,kEC,vECguess,flagEC,y(2),y(4),muoil);
399 end
400

401 fluxvEC=vEC*sign(y(1)-y(3))*rhoEC;
402 %**************************************
403 % Flow velocity through base valve
404 ∆p = abs(y(3)-y(5));
405 if ∆p == 0
406 vBC = 0;
407 else
408 vBCguess = vp(t)*Ar/sumAfBC;
409 if vBCguess == 0
410 vBCguess = 1.e-6;
411 end
412 vBC=nr(y(3),y(5),rhoBC,dhbc1,Ld,EOD,kBC,vBCguess,flagBC,y(4),y(6),muoil);
413 end
414
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415 fluxvBC=vBC*sign(y(3)-y(5))*rhoBC;
416

417 Reduction=0.0; %% Piston orifice closure in rebound [0-1]
418

419 if sign(y(1)-y(3))>0
420 QECm=fluxvEC*sumAfEC*(1-Reduction);
421 else
422 QECm=fluxvEC*sumAfEC;
423 end
424 QBCm=sumAfBC*fluxvBC;
425 ∆pE=y(1)-pref;
426 ∆pC=y(3)-pref;
427

428 %% Heat exchange to fluid regions (3 of oil + 1 of gas)
429 if heat_fluxes==true
430 % heat flux oil in rebound receives
431 qE=alpha*AcE*(y(9)-y(2))+alpha*Ap_scambioE*(y(11)-y(2));
432 % heat flux oil in compression receives
433 qC=alpha*AcC*(y(9)-y(4))+alpha*Ap_scambioC*(y(11)-y(4));
434 % heat flux oil in reserve receives
435 qB=alpha*AcB*(y(10)-y(6))+alpha*AcB_i*(y(9)-y(6))+...
436 (Ac2i-Ac1e)*alpha_oil_gas*(y(8)-y(6));
437 % heat flux gas receives
438 qgas=alphagas*(Acgas*(y(10)-y(8))+Acgas_i*(y(9)-y(8)))+...
439 (Ac2i-Ac1e)*alpha_oil_gas*(y(6)-y(8));
440 else
441 % heat fluxes are disabled
442 qE=0;
443 qB=0;
444 qC=0;
445 qgas=0;
446 end
447

448 %% Right hand side of continuity equations
449 b(1)=-vp(t)*(Ap-Ar)*(1+betac*∆pE)-QECm/rho(y(1),y(2));
450 b(2)=vp(t)*Ap*(1+betac*∆pC)-QBCm/rho(y(3),y(4))+QECm/rho(y(3),y(4));
451 b(3)=QBCm/rho(y(5),y(6));
452

453

454 %% Enthalpy fluxes
455 switch trasporto
456 case false
457 hEC=cpoil*((y(2)+y(4))/2)+(y(1)+y(3))/2/rhoEC;
458 HfluxEC=-QECm*hEC;
459 case true
460 if sign(QECm)>0
461 HfluxEC=-QECm*(cpoil*y(2)+y(1)/rho(y(1),y(2)));
462 else
463 HfluxEC=-QECm*(cpoil*y(4)+y(3)/rho(y(3),y(4)));
464 end
465

466 end
467

468 switch trasporto
469 case false
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470 hBC=cpoil*((y(6)+y(4))/2)+(y(3)+y(5))/2/rhoBC;
471 HfluxBC=-QBCm*hBC;
472 case true
473 if sign(QBCm)>0
474 HfluxBC=-QBCm*(cpoil*y(4)+y(3)/rho(y(3),y(4)));
475 else
476 HfluxBC=-QBCm*(cpoil*y(6)+y(5)/rho(y(5),y(6)));
477 end
478

479 end
480 %*************************************
481 % Right hand side of energy equations
482 b(4)=qE-vp(t)*(Ap-Ar)*(y(1)+rho(y(1),y(2))*u(y(2))*(1+betac*∆pE))+...
483 HfluxEC;
484 b(5)=qC+vp(t)*Ap*(y(3)+rho(y(3),y(4))*u(y(4))*(1+betac*∆pC))-...
485 HfluxEC+HfluxBC;
486 b(6)=qB-HfluxBC;
487 %***********************************
488 % Right hand side of compatibility condition at the interface oil-gas
489 b(7)=0;
490 if heat_fluxes==true
491 %*****************************************
492 %Right hand side of energy equation
493 b(8)=qgas;
494 b(9)=-alpha*AcE*(y(9)-y(2))-alpha*AcC*(y(9)-y(4))-...
495 alphagas*Acgas_i*(y(9)-y(8))-alpha*AcB_i*(y(9)-y(6));
496 b(10)=-alpha*AcB*(y(10)-y(6))-alphagas*(Acgas*(y(10)-y(8)));
497 b(11)=-alpha*Ap_scambioE*(y(11)-y(2))-alpha*Ap_scambioC*(y(11)-y(4));
498 %Uncomment if heat exchange with surroundings is possible
499 % b(11)=-alpha_air*Ac_environ*(y(11)-T_air)+b(11);
500 end
501 bb=b;
502

503 end
504

505 %% Mass matrix A computation Ay'=b(t)
506 % Columns matrix A: [pE TE pC TC pB TB pg Tg Tinncyl Toutercyl Tpist]
507 function A=myode1(t,y)
508 t
509 VolEf_base=(Ap-Ar)*xp(t);
510 VolCf_base=Ap*(Lc1-xp(t));
511 VolBf_base=Ac1e*hB+(Ac2i-Ac1e)*Lc2-mgas*R/Mmg*y(8)/y(7);
512

513 Volg=mgas*R/Mmg*y(8)/y(7);
514 VolCcyl=VolCf_base;
515 VolEcyl=VolEf_base;
516

517 ∆pE=y(1)-pref;
518 ∆pC=y(3)-pref;
519 ∆pB=y(5)-pref;
520 VolEf=VolEf_base*(1+betac*∆pE);
521 VolCf=VolCf_base*(1+betac*∆pC);
522 VolBf=VolBf_base;
523 A=zeros(10,10);
524
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525 %**********************************************
526 % Coefficients relative to continuity equation
527 AA(1,1)=VolEf*betaf+VolEcyl*betac;
528 AA(1,2)=-VolEf*phif;
529

530 AA(2,3)=VolCf*betaf+VolCcyl*betac;
531 AA(2,4)=-VolCf*phif;
532

533 AA(3,5)=VolBf*betaf+mgas*R/Mmg*y(8)/((y(5))^2);
534 AA(3,6)=-VolBf*phif;
535 AA(3,8)=-mgas*R/Mmg/y(5);
536 %************************************************
537 % Energy equation coefficients
538 AA(4,1)=rho(y(1),y(2))*u(y(2))*(VolEf*betaf+VolEcyl*betac);
539 AA(4,2)=cpoil*rho(y(1),y(2))*VolEf-rho(y(1),y(2))*u(y(2))*(VolEf*phif);
540

541 AA(5,3)=rho(y(3),y(4))*u(y(4))*(VolCf*betaf+VolCcyl*betac);
542 AA(5,4)=cpoil*rho(y(3),y(4))*VolCf-rho(y(3),y(4))*u(y(4))*(VolCf*phif);
543

544 AA(6,5)=rho(y(5),y(6))*u(y(6))*(VolBf*betaf+...
545 mgas*R/Mmg*y(8)/(y(5))^2)+mgas*R/Mmg*y(8)/y(5);
546 AA(6,8)=-rho(y(5),y(6))*u(y(6))*mgas*R/Mmg/(y(5))-mgas*R/Mmg;
547 AA(6,6)=cpoil*rho(y(5),y(6))*VolBf-rho(y(5),y(6))*u(y(6))*(VolBf*phif);
548

549 A(1:6,1:8)=AA;
550 %************************************
551 % Compatibility condition at the interface pg=pB
552 A(7,7)=1;
553 A(7,5)=-1;
554 %************************************
555 % Energy equation for gas
556 A(8,8)=mgas*cpg;
557 A(8,7)=-Volg;
558

559 %************************************
560 % Solid parts coefficient equations
561 A(9,9)=mcyl*ccyl;
562 A(10,10)=mB*ccyl;
563 A(11,11)=mpist*cpist;
564 end
565

566 end
567 %% Output file (writing)
568 function DeltaM=scrivi(t,y,Miniziale0)
569 s=sprintf('DeltaM_time_%2dfreq_%2d_Rel_%3e_Abs_%3e.txt',tmax,freq,Rel,Abs);
570 s1=sprintf('Density_time_%2dfreq_%2d_Rel_%3e_Abs_%3e.txt',...
571 tmax,freq,Rel,Abs);
572 s2=sprintf('Volume_time_%2dfreq_%2d_Rel_%3e_Abs_%3e.txt',tmax,freq,Rel,Abs);
573 filePA1=fopen(s1,'w');
574 fprintf(filePA1, '%38s\r\n',' ...

Density------------------------------------');
575 fprintf(filePA1, '%18s %18s %18s\r\n','rhoE','rhoC','rhoB');
576 filePA2=fopen(s2,'w');
577 fprintf(filePA2, ...

'%38s\r\n','Volumi--------------------------------------');
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578 fprintf(filePA2, '%18s %18s %18s %18s\r\n','VolE','VolC','VolB','Volg');
579

580 filePA=fopen(s,'w');
581 fprintf(filePA, ...

'%38s\r\n','----------------------------------------------');
582 fprintf(filePA, '%18s %18s %18s\r\n','∆M',['tspan=',num2str(tmax)],...
583 ['freq=', num2str(freq)]);
584 for i=1:length(t)
585 VolEf_corr=(Ap-Ar)*xp(t(i));
586 VolCf_corr=Ap*(Lc1-xp(t(i)));
587 VolBf_corr=Ac1e*hB+(Ac2i-Ac1e)*Lc2-mgas*R/Mmg*y(i,8)./y(i,7);
588

589 Mfin=rho(y(i,1),y(i,2)).*VolEf_corr+rho(y(i,3),y(i,4)).*VolCf_corr+...
590 rho(y(i,5),y(i,6)).*VolBf_corr;
591 DeltaM=Mfin-Miniziale0;
592

593 fprintf(filePA, '%18.10e\r\n', DeltaM);
594 fprintf(filePA1, '%20.12e %20.12e %20.12e\r\n', rho(y(i,1),y(i,2)),...
595 rho(y(i,3),y(i,4)),rho(y(i,5),y(i,6)));
596 fprintf(filePA2, '%20.12e %20.12e %20.12e %20.12e\r\n', VolEf_corr,...
597 VolCf_corr,VolBf_corr,mgas*R/Mmg*y(i,8)./y(i,7));
598

599 end
600 fclose(filePA);
601 fclose(filePA1);
602 fclose(filePA2);
603 end
604 %% Piston rod motion (Slider crank mechanism)
605 function disp = xp(t)
606 disp = 1e-3 + sqrt(L^2-(amp*sin(ome*t)).^2)-...
607 amp*cos(ome*t)-L+amp;
608 end
609 function vel = vp(t)
610 vel = ...

ome*amp*sin(ome*t)-.5*ome*amp*sin(2*ome*t)./sqrt((L/amp).^2-...
611 (sin(ome*t)).^2);
612 end
613

614

615 function voil = nr(p1,p2,rho,D,L,EOD,klossin,v,flag,T1,T2,muoil)
616 ∆p=abs(p1-p2);
617 f = fval(v);
618 eps = 0.01;
619 it = 0;
620 vn = v;
621 fneg = -10000000;
622 fpos = 10000000;
623 vfneg = 10000000;
624 vfpos = 10000000;
625 dvmin = 1e9;
626 pw = 0;
627 nw = 0;
628 while abs(f)>1.e-10
629 it = it + 1;
630 if f < 0
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631 if abs(v-vfpos) ≤ dvmin
632 vfneg = v;
633 fneg = f;
634 end
635 nw=1;
636 else
637 if abs(v-vfneg) ≤ dvmin
638 vfpos = v;
639 fpos = f;
640 end
641 pw=1;
642 end
643 if it > 50 & pw == 0
644 vd = logspace(-15,4,20);
645 fd = fval(vd);
646 fpos=min(fd(fd≥0));
647 ip = find(fpos==fd);
648 vfpos= vd(ip);
649 pw = 1;
650 end
651 if it > 50 & nw == 0
652 vd = logspace(-15,4,20);
653 fd = fval(vd);
654 fneg=min(fd(fd<0));
655 in = find(fneg==fd);
656 vfneg= vd(in);
657 nw = 1;
658 end
659 dvmin = abs(vfpos-vfneg);
660 if it > 50
661 v = min(vfpos,vfneg) + .5*dvmin;
662 sw = 1;
663 end
664 if it ≤ 50
665 vm = v*(1-eps);
666 fm = fval(vm);
667 vp = v*(1+eps);
668 fp = fval(vp);
669 df = (fp-fm)/(vp-vm);
670 vn = v - f/df;
671 if vn < 0
672 vn = 1.e-10;
673 end
674 v = vn;
675 end
676 f = fval(v);
677 end
678 voil = v;
679 return
680 function fdum = fval(vdum)
681 [klossdum,klossin] = loss(vdum,D,L,EOD,rho,muoil,flag,T1,T2);
682 fdum = vdum-sqrt(2*∆p/rho./(klossdum+klossin));
683 end
684 end
685 function [kloss,klossin]=loss(vel,D,L,EOD,rho,muoil,flag,T1,T2)
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686

687 % Laminar, transitional and turbulent friction in cylidrical pipes
688 if flag==2
689 T=(T1+T2)/2;
690 elseif flag==0
691 T=T1;
692 else
693 T=T2;
694 end
695 C=5693-304*log10(muoil)-646*(log10(muoil))^2;
696 % Variation of dynamic viscosity with temperature
697 mu=muoil*exp(C*(1/T-1/(293.15)));
698 % Reynolds number
699 Re=abs(vel).*D*rho/mu;
700

701 %***********************************************************
702 % Correlation for friction coeffcient
703 if EOD==0
704 if (Re<1.e-15)
705 F=0;
706 else
707 FA = 64./Re;
708 FB = 4.1e-16*Re.^4.;
709 FC = 0.351*Re.^-0.255;
710 FD = 0.118*Re.^-0.165;
711 F1 = FA+(FB-FA)./sqrt(1.+(Re/2900.).^-50.);
712 F2 = FC+(FD-FC)./sqrt(1.+(Re/240000.).^-1.);
713 F = F1+(F2-F1)./sqrt(1.+(Re/3050.).^-50.);
714 end
715 else
716 indici=Re<2300;
717 F(indici)=PowRe(Re(indici));
718 F(¬indici)=colebrook(Re(¬indici),EOD/D);
719 end
720 %******************************************************
721 %Discharge coefficient computation
722 cd_new=0.61*(1+1.07*exp(-0.126*sqrt(Re))-2.07*exp(-0.246*sqrt(Re)));
723 %******************************************************
724 % Flow resitance for concentrated and distributed losses
725 klossin=1./(cd_new).^2;
726 kloss=F*L/D;
727

728 end
729 function F = colebrook(R,K)
730 % F = COLEBROOK(R,K) fast, accurate and robust computation of the
731 % Darcy-Weisbach friction factor F according to the Colebrook equation:
732 % - -
733 % 1 | K 2.51 |
734 % --------- = -2 * Log_10 | ----- + ------------- |
735 % sqrt(F) | 3.7 R * sqrt(F) |
736 % - -
737 % INPUT:
738 % R : Reynolds' number (should be ≥ 2300).
739 % K : Equivalent sand roughness height divided by the hydraulic
740 % diameter (default K=0).
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741 %
742 % OUTPUT:
743 % F : Friction factor.
744 %
745 % Method: Quartic iterations.
746 % Reference: http://arxiv.org/abs/0810.5564
747 % Author: D. Clamond, 2008-09-16.
748

749 % Check for errors.
750 if any(R(:)<2300) == 1,
751 warning('The Colebrook equation is valid for Reynolds'' numbers ≥ ...

2300.');
752 end,
753 if nargin == 1 || isempty(K) == 1,
754 K = 0;
755 end,
756 if any(K(:)<0) == 1,
757 warning('The relative sand roughness must be non-negative.');
758 end,
759

760 % Initialization.
761 X1 = K .* R * 0.123968186335417556; % X1 <- K * R * log(10) / 18.574.
762 X2 = log(R) - 0.779397488455682028; % X2 <- log( R * log(10) / 5.02 );
763

764 % Initial guess.
765 F = X2 - 0.2;
766

767 % First iteration.
768 E = ( log(X1+F) - 0.2 ) ./ ( 1 + X1 + F );
769 F = F - (1+X1+F+0.5*E) .* E .*(X1+F) ./ (1+X1+F+E.*(1+E/3));
770

771 % Second iteration (remove the next two lines for moderate accuracy).
772 E = ( log(X1+F) + F - X2 ) ./ ( 1 + X1 + F );
773 F = F - (1+X1+F+0.5*E) .* E .*(X1+F) ./ (1+X1+F+E.*(1+E/3));
774

775 % Finalized solution.
776 F = 1.151292546497022842 ./ F; % F <- 0.5 * log(10) / F;
777 F = F .* F; % F <- Friction factor.
778

779 end
780 function Fric=PowRe(Rey)
781 FA = 64./Rey;
782 FB = 4.1e-16*Rey.^4.;
783 FC = 0.351*Rey.^-0.255;
784 FD = 0.118*Rey.^-0.165;
785 F1 = FA+(FB-FA)./sqrt(1.+(Rey/2900.).^-50.);
786 F2 = FC+(FD-FC)./sqrt(1.+(Rey/240000.).^-1.);
787 Fric = F1+(F2-F1)./sqrt(1.+(Rey/3050.).^-50.);
788 end
789 end
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