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Abstract

This thesis investigates the advantages and disadvantages of using probabilistic optimization

methods in aircraft structural design.

The necessity to achieve a design insensitive to system’s variations (robust) and less likely to

fail (reliable) is addressed, in order to reduce costs and risk of accidents.

Mathematical formulations of Robust Design Optimization (RDO), Reliability-Based Design

Optimization (RBDO) and the hybrid Robust and Reliability-Based Design Optimization

(RRBDO) are presented, highlighting the differences between the concepts of robustness and

reliability. In these probabilistic formulations, uncertainties due to manufacturing tolerances

and material defects are considered.

Fundamentals of optimization are introduced, presenting different search methods and empha-

sizing the concept of multi-objective optimization. A brief review of statistics and probability

basics are presented as well, in order to better understand the stochastic optimization processes.

Because of the complex nature of composite structures, the need of surrogate models to pre-

dict structural responses arose. In order to build meta-models, Design of Experiments (DOE)

methods are used to determine the location of sampling points in the design space.

Monte Carlo Simulations (MCS), creating random samples, are used to propagate uncertainties

from the surrogate model inputs to variations in model outputs. MCS embedded in optimization

processes, are used to determine the statistical parameters of the responses and the probability

of failure.

Different flowcharts for the three probabilistic methods are developed, in order to better un-

derstand, through graphical representations, the design and optimization frameworks.

To validate these frameworks and to show the different results of the various approaches, an

application to a composite floor beam is considered.

Different optimization algorithms and surrogate models were compared, in order to speed up

the optimization process and reduce modelling errors.

The deterministic design resulted in a not robust and not reliable design. Whereas, stochas-

tic approaches accounting for uncertainties, resulted in enhanced robustness (Robust Design),

enhanced reliability (Reliable Design) or a combination of both (Robust and Reliable Design).

Robust Design Optimization resulted globally better in terms of robustness. As for reliability

based methods, either RBDO and RRBDO led to reliable designs, but the latter minimizes

variability of the responses, hence resulting in a more robust design.
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Chapter 1

Introduction

1.1 Motivation and Objectives

As modern structures require more critical and complex designs, the need for accurate ap-

proaches to assess uncertainties in computer models, geometry, material properties, manufac-

turing processes, loads and operational environments has increased significantly.

A number of probabilistic analysis tools have been developed to quantify uncertainties, but the

most complex systems are still designed with simplified rules and schemes, such as safety factor

design.

Design optimization methods have been applied to the structural design of rockets, satellites

and aircraft to the extent of, primarily, reducing the structural weight while satisfying the

shrinking design requirements.

However, conventional design procedures, do not directly account for the random nature of

most parameters. Thus, in order to compensate for performance variability induced by system

variations, a safety factor is introduced. Unfortunately, due to lack of knowledge regarding the

scatter of structural performance, especially for composite materials, safety factors specified in

current design practice, may lead into a too conservative or too dangerous design [17].

The sources of uncertainty involved in a structural system life-cycle, may be classified into four

stages (Fig.1.1):

1



2 Chapter 1. Introduction

Figure 1.1: Sources of uncertainty.

• system design;

• manufacturing;

• service;

• ageing.

In the first stage, incomplete knowledge of the system and errors in the model are the main

sources of uncertainty.

The manufacturing process has the potential for causing a wide range of defects in composite

materials, such as fibre misalignment and porosity (presence of small voids in the matrix),

leading to variations in material properties. During this stage, changes in the geometry are

caused by manufacturing and assembling tolerances.

External load fluctuations and temperature variations are major sources of uncertainty in the

service stage, while deterioration of material properties may become crucial to performance

variability in the ageing process.

Traditional design optimization techniques tend to over-optimize, producing solution that per-

form well at the design point but may have poor off-design characteristics. It is important

that the design ensures robustness of the structural performance, becoming less sensitive to the

random variations induced in different stages of the structure’s life-cycle.
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In a structural design problem involving uncertainties, a structure designed using a determinis-

tic approach may have a greater probability of failure than a structure of the same cost designed

using a probabilistic approach that accounts for uncertainties. Thus becomes crucial the study

of structural reliability, which is concerned with the calculation and prediction of the probabil-

ity of failure at any stage during a structure’s life.

The probability of the occurrence of such event is a numerical measure of the chance of its

occurring. Once the probability is determined, the next goal is to choose design alternatives

that improve structural reliability minimizing the probability of failure.

The main objective of this thesis is to compare two different philosophies of probabilistic opti-

mization and design: Robust Design Optimization (RDO) and Reliability-Based Design Opti-

mization (RBDO), developing a structured procedure to achieve an optimized design.

Particular emphasis will be placed upon the synergy between these two approaches, ultimately

leading to a mixed Robust and Reliability-Based Design Optimization formulation (RRBDO).

Finally, these different optimization algorithms, combined with surrogate models, will be ap-

plied on a composite floor beam, in order to show a possible application of these design and

optimization frameworks to composite components with a large number of degrees of freedom.

1.2 Literature review

Probabilistic design and optimization methods are useful techniques that improve structural

performance when applied to the design of composite structures.

These procedures, as previously outlined, can be broadly classified into: Robust Design Opti-

mization (RDO) and Reliability-Based Design Optimization (RBDO).

RDO concerns about reducing the variability of the system performance, while RBDO concen-

trates on finding an optimal design with low probability of failure. A comprehensive description

of robust design can be found in [17], while [6] gives an application of RDO to composite pan-

els.

To obtain a reliable and robust product, a hybrid algorithm named Robust and Reliability-

Based Design Optimization (RRBDO) exploits both RDO and RBDO techniques to search for
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robust optima while obeying reliability-based constraints. A number of RRBDO methods have

been reported for structural optimization in the past years [25] [3] [19].

Stochastic design optimization employing Monte Carlo simulation (MCS) is known as the most

suitable methodology, which can directly calculate the probability of failure [27]. Lagaros et

al. took into account the probabilistic constraints using MCS method combined with Latin

hypercube sampling [19].

Nevertheless, these methodologies are very time-consuming and, except for simple cases, they of-

ten reach an unacceptable computational cost, due to multiple evaluations of implicit functions

required to obtain the structural response. This is the one of the reasons why reliability-based

design optimization is not a dominant design technique in the field of composite structures.

Surrogate methods [16] [23] [20] [12] allow the transformation of a complex implicit model into

an analytic approximation that decreases in several orders of magnitude the computational cost

without a significant loss of accuracy.

Metamodeling techniques have been widely used for design evaluation and optimization in many

engineering applications; a comprehensive review of metamodeling applications in mechanical

and aerospace systems can be found in [28].

Finally, to search for the optimal design, genetic algorithms (GA) [15] [33] are preferred, due

to its extensive application in the industry, tested performance and availability in commercial

software.



Chapter 2

Structural optimization

Structural optimization methods are widely used in the design of engineering structures for the

purpose of improving the structural performance.

The use of structural optimization has rapidly increased during the last decades, mainly due

to the developments of refined computing techniques and large-scale applications of the finite

element method.

In an optimization problem, the design variables are the entities that define a particular design.

The type of these variables (continuous, discrete, integer, mixed) is extremely important in

identifying and setting up the optimal design problem.

In the search for the optimal design, the values of these entities will change over a prescribed

range, bounded by lower and upper limits (side constraints). The set of design variables

constitutes the design vector. The values that don’t change as different designs are generated,

are called design parameters.

The function that drives the search for the optimal design is called objective function. Generally,

to ensure that the design will exist and interact well with its operating environment, a number

of restrictions must be satisfied in a structural design problem.

These restrictions define the feasible domain in the design space and are referred to as design

constraints.

In a design optimization problem, the objective function and the constraints are often expressed

5
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as implicit functions of the design variables and the evaluation of these functions generally

involve numerical simulations such as by the finite element method.

2.1 Deterministic Optimization - DO

2.1.1 Mathematical formulation

The classical mathematical model for a deterministic optimization problem is expressed as:

find d

minimizing f(d)

subject to gi(d) ≤ 0 (i = 1, 2, ..., k),

dL ≤ d ≤ dU

(2.1)

where d is the vector of design variables (design vector), f(d) is the objective function, gi(d)

is the i − th inequality constraint, dL and dU are respectively the lower and upper bounds of

the design variables (side constraints).

The design variables for an optimization problem involving composite structures can be: the

geometrical dimensions, the number of layers, the layers orientation etc.

The objective and constraint functions can be the cost, mass, maximum displacements, maxi-

mum stresses, natural frequencies and others.

In the deterministic formulation of a structural optimization problem, the design variables and

the design parameters are considered deterministic (with no scatter) and the objective function

as well as the constraints are referred to their nominal values.
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2.2 Robust Design Optimization - RDO

2.2.1 Introduction

As the engineering environment becomes extremely competitive, better quality products are

required in industries. Unexpected deviations from the design that a designer initially intended

for are caused by variations at different stages of the service life-cycle. Such scatters may not

only significantly worsen the structural quality and cause deviations from the desired perfor-

mance, but may also add to the structural life-cycle costs, including inspection, repair and other

maintenance costs. Robust design is to prevent such phenomena, in fact it has been developed

to improve product quality in industrial engineering.

To decrease the scatter of the structural performance, one possible way is to reduce or even

to eliminate the scatter of the input parameters, which may either be practically impossible

or add much to the total costs of the structure; another way is to find a design in which the

structural performance is less sensitive to the variation of parameters without eliminating the

cause of parameter variations, as in robust design.

Three stages of engineering design are identified in the literatures: conceptual design, param-

eter design and tolerance design. Robust design may be involved in the stages of parameter

design and tolerance design.

Taguchi, who is the pioneer of robust design, said ” Robustness is the state where the technol-

ogy, product, or process performance is minimally sensitive to factors causing variability (either

in the manufacturing or user’s environment) and ageing at the lowest unit manufacturing cost

”. [31]

Suh stated ” Robust design is defined as the design that satisfies the functional requirements

even though the design parameters and the process variables have large tolerances for ease

of manufacturing and assembly. This definition of robust design states that the information

content is minimized ”. [30]

Box said that ” Robustifying a product is the process of defining its specifications to minimize

the product’s sensitivity to variation ”. [8]



8 Chapter 2. Structural optimization

Although different expressions are used, their meanings are similar, which is that robust design

is a design insensitive to variations.

In Robust Design Optimization the concept of robustness is embedded into conventional opti-

mization process.

2.2.2 Concept of Robustness

The concept of robustness is schematically illustrated in Fig.2.1. The horizontal axis represents

the value of a structural performance (or cost) function f, which is required to be minimized.

The two curves show the distributions of the occurrence frequency of the value of f corresponding

to two different designs, when the system parameters are randomly perturbed from the nominal

values. In the figure, µ1 and µ2 represents, respectively, the mean values of the performance

function f for the two designs. Although the first design exhibits a smaller mean value of the

cost function, the second design is desirable from the robustness point of view, since it has

much less sensitivity to variations.

The principle behind the structural robust design is that, the quality of a design is justified

not only by the mean value but also by the variability of the structural performance. For the

optimal design of structures with stochastic parameters, one straightforward way is to define the

optimality conditions of the problems on the basis of mean values of the performance function.

However, the design which minimizes the expected value of the objective function may be still

sensitive to the fluctuation of the variable parameters and this raises the need of robustness of

the design.

Another way to understand the concept of robustness is to show the relation between the

objective function and its design variable (let’s suppose we have just one design variable).

From Fig.2.2 can be observed that, for a prescribed variation of the input (∆x), the variation

of the objective function (∆f) is larger for the design characterized by the global optimum

(∆f1 > ∆f2), whereas to the robust optimum corresponds a smaller variation of the objective

function.
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Figure 2.1: Concept of robustness.

Figure 2.2: Differences between global optimum and robust optimum.
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2.2.3 Mathematical formulation

The general mathematical formulation of a Robust Design Optimization problem can be stated

as:

find d

minimizing {µ (f(d)) , σ (f(d))}

subject to µ (gi(d)) + βiσ (gi(d)) ≤ 0 (i = 1, 2, ..., k),

σ (hj(d)) ≤ σ+
j (j = 1, 2, ..., l),

dL ≤ d ≤ dU

(2.2)

Where µ (f(d)) is the mean value (first statistical moment) of the objective function and

σ (f(d)) is the standard deviation (second statistical moment) of the objective function. Like-

wise µ (gi(d)) and σ (gi(d)) are respectively the mean value and standard deviation of the i-th

constraint function. σ (hj(d)) represents the j-th constraint on standard deviation of the re-

sponse, σ+
j is its upper limit. The quantity βi > 0 is a prescribed feasibility index for the i-th

original constraint.

To better understand the nature of the constraints in a RDO problem a schematic representa-

tion of them is given in Fig.2.3.

In Fig.2.3, g is the structural performance function and PDF is the probability density function

of g. We can observe how the first design violates the constraint (µ (g(d1)) + βσ (g(d1)) > 0),

while the latter satisfies it (µ (g(d2)) + βσ (g(d2)) < 0). In this RDO formulation, the ro-

bust structural optimization problem is shown to be an optimum vector problem in which two

criteria namely the statistical mean (µ (f(d))) and the standard deviation (σ (f(d))) of the

objective are to be optimized.

The feasibility index is a convenient measure of the robustness considering the design restric-

tions. It must not be confused with the reliability index used in RBDO employing the First

Order Reliability Method (FORM) for reliability analysis, whereas in the RBDO the response
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Figure 2.3: Constraints in RDO.

moments are evaluated at the most probable failure point (MPP), by which a sub-optimization

loop is required for locating such a point.
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2.3 Reliability-Based Design optimization - RBDO

2.3.1 Introduction

Reliability-based design optimization combines a conventional deterministic design optimization

algorithm with a reliability analysis method to evaluate the design constraints that depend on

the random variables of the problem.

In a RBDO problem both design variables and parameters can contain deterministic and/or

random quantities.

When the occurrence of catastrophic failure of a structural component is critical in a structural

system, the design optimization problem is usually defined as a problem of reliability-based

design optimization.

2.3.2 Mathematical formulation

From the mathematical point of view RBDO can be defined as:

find d

minimizing f(d)

subject to P [gi(d) ≥ 0]− Pallowi
≤ 0 (i = 1, 2, ..., k),

dL ≤ d ≤ dU

(2.3)

where P [gi(d) ≥ 0] is the probability of failure (Pfi), Pallowi
is the allowable probability of

failure, which is often expressed as:

Pallowi
= Φ(−βi)

where Φ is the Cumulative Distribution Function of the (0,1) standardized normal distribution

and βi is called the reliability-index.

Determining the probability of failure (Pfi) requires a reliability analysis, which can be exploited
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either via sampling through Monte Carlo methods or through techniques such as the First

Order Reliability Method (FORM) and the Second Order Reliability Method (SORM). In the

First Order Reliability Method (FORM) and the Second Order Reliability Method (SORM),

an additional nonlinear constrained optimization is needed to individuate the Most Probable

Point of failure (MPP). In RBDO, the large number of function evaluations is computationally

more expensive compared to a conventional deterministic design optimization, hence various

numerical techniques have been proposed to cut down the computational cost [14].

As mentioned in [7], inadequate assumptions on the probabilistic distribution of variables and

design parameters, may lead to considerable errors in the reliability analysis.

2.4 Differences between RDO and RBDO

Robust Design Optimization and Reliability-Based Design Optimization aim at incorporating

random performance variations into the optimal design process, and therefore sometimes they

are not clearly distinguished in the literature. The two approaches are different in some crucial

aspects.

First of all, the structural robustness is assessed by the measure of the performance variability

around the mean value, evaluating its standard deviation. On the other hand, reliability is

concerned about the probability of failure occurrence.

RBDO is about satisfying reliability requirements under known probabilistic distributions of

the input, while RDO aims at reducing the structural performances variability to unexpected

variations.

In RBDO, the cost function of the problem is to be minimized under observance of probabilistic

constraints. However, in RDO, the objective functions usually involve performance variations,

and the design constraints can be simply defined by limits on the standard deviation of the

performance function.

RDO is often achieved by reducing the performance variability (Fig.2.4), while RBDO is usually

accomplished by moving the mean of the performance function (Fig.2.5).
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Figure 2.4: RDO strategy.

As previously stated, both methods incorporate the effect of uncertainties into the design op-

timization process of structural systems. The main difference between RDO and RBDO is the

area of interest of the response distribution function.

RDO methods require stochastic analysis tools to approximate the influence of stochastic vari-

ations about the mean design of a system, RBDO methods generally require stochastic analysis

tools that can predict the likelihood of extreme events at the tails of the response distribution

(Fig. 2.6).

Additionally, RBDO requires more computational effort for its reliability analysis, while RDO

usually involves only calculation of basic statistical parameters of the performance function,

such as its standard deviation.

In RBDO, particular care is paid on structural safety in the case of extreme events, while in

RDO more emphasis is put on the structural behaviour under everyday fluctuations of the

system during the whole service life.
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Figure 2.5: RBDO strategy.

Figure 2.6: Areas of interest for RDO and RBDO.
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In [35] Zang et al. presented the different domains of applicability of the two types of problems

as shown in Fig.2.7.

Figure 2.7: Different domains of applicability of RDO and RBDO [35].

The two major factors are the frequency of the event and the impact of the event. No system

is viable if everyday fluctuations can lead to catastrophe. Instead, one would like the system

to be designed such that the performance is insensitive, i.e., robust, to everyday fluctuations.

On the other hand, one would like to ensure that the events that lead to catastrophe are ex-

tremely unlikely. This is the domain of reliability-based design.

In both cases, the design risk is a combination of the likelihood of an undesired event and the

consequences of that event. An example of risk in the robust design optimization context is the

likelihood that the aircraft design will fail to meet the aerodynamic performance targets and

will consequently lose sales and perhaps even go bankrupt. An example of risk in the reliability-

based design optimization context is the probability that a critical structural component will

fail, which could lead to the loss of the vehicle or spacecraft, payload, and passengers, and to

potential lawsuits.
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2.5 Robust and Reliability-Based Design Optimization -

RRBDO

2.5.1 Introduction

The need of a formulation which is both robust and reliable, rises from the high levels of

reliability required from aerospace industry to guarantee safety, meanwhile designs insensitive

to variations (robust) are needed to remain competitive in a market where quality standards

are constantly increasing.

Hence, to obtain a reliable and robust product, a hybrid formulation of RDO and RBDO is

addressed, in order to search for robust optima while obeying reliability type of constraints.

2.5.2 Mathematical model

In this mathematical model, the objective function defined for RBDO is replaced by the RDO

objective functions, while fulfilling RBDO constraints.

find d

minimizing {µ (f(d)) , σ (f(d))}

subject to P [gi(d) ≥ 0]− Pallowi
≤ 0 (i = 1, 2, ..., k),

dL ≤ d ≤ dU

(2.4)

Where µ (f(d)) and σ (f(d)) are respectively the mean value and the standard deviation of the

objective function. As seen in RBDO formulation, P [gi(d) ≥ 0] is the probability of failure of

the i-th constraint, Pallowi
is its allowable probability of failure.
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Fundamentals of optimization

3.1 Optimization vs design

In this chapter, some optimization concepts will be introduced. Generally, the optimization

procedure is integrated into the design process, so it’s not always clear the difference between

them [21].

Design, in general terms, can be defined as the creation of a plan and/or strategy for construct-

ing a physical system or process.

Optimization is the process of maximizing one or more objectives without violating specified

design constraints, by regulating a set of variables that influences both the objectives and the

design constraints.

3.2 Optimum design problem formulation

It is generally accepted that the proper definition and formulation of a problem take roughly

50 % of the total effort needed to solve it [5]. Therefore, it is critical to follow well-defined

procedures for formulating design optimization problems.

The importance of properly formulating a design optimization problem must be stressed because

18
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the optimum solution will only be as good as the formulation. Here’s a five-step formulation

procedure from [5]:

• Step 1 : Project/problem description;

• Step 2 : Data and information collection;

• Step 3 : Definition of design variables;

• Step 4 : Optimization criterion;

• Step 5 : Formulation of constraints.

The formulation process begins by developing a descriptive statement which describes the

overall objectives of the project and the requirements that shall be met.

To develop a mathematical formulation for the problem, information on the system must be

gathered. Besides, assumptions about modelling of the problem need to be made in order to

formulate and solve it.

In Step 3, the number of independent design variables gives the design’s degrees of freedom for

the problem. Once the design variables are given numerical values we have a design of a the

system.

The optimization criterion must be a scalar function whose numerical value can be obtained

once a design is specified; that is, it must be a function of the design vector.

Finally, restrictions on the design must be addressed.

3.3 Optimization methods

In an optimization process, we can broadly divide the methods to search for the optimum in 3

categories:

• Gradient-based search methods;
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• Direct search methods;

• Nature-inspired search methods.

3.3.1 Gradient-based search methods

These methods, as the name implies, use gradients of the problem functions to perform the

search for the optimum point. Therefore, all of the problem functions are assumed to be smooth

and at least twice continuously differentiable everywhere in the feasible design space.

Also, the design variables are assumed to be continuous that can have any value in their

allowable ranges.

The gradient-based methods have been developed extensively since the 1950s, and many good

ones are available to solve smooth nonlinear optimization problems. Since these methods use

only local information (functions and their gradients at a point) in their search process, they

converge only to a local minimum point for the cost function.

However, based on these methods strategies have been developed to search for global minimum

points for the cost function.

3.3.2 Direct search methods

The term ”direct search methods” was introduced by Hooke and Jeeves (1961) and refers to

methods that do not require derivatives of the functions in their search strategy. This means

that the methods can be used for problems where the derivatives are expensive to calculate or

are unavailable due to lack of differentiability of the functions. However, convergence of the

methods can be proved if functions are assumed to be continuous and differentiable.

The methods were developed in 1960s and 1970s. They have been employed quite regularly

since then because of their simplicity and ease of use.
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3.3.3 Nature-Inspired Search Methods

Nature-inspired methods also use only the function values in their search process. Problem

functions need not to be differentiable or even continuous. The methods, developed since

1980s, use stochastic ideas in their search. Many methods have been developed and evaluated.

It turns out that they tend to converge to a global minimum point for the cost function as

opposed to a local minimum as with gradient-based methods. Another good feature of the

methods is that they are more general than gradient-based methods because they can be used

for problems with continuous, integer, and mixed variables. Their main drawback is that they

are slower than gradient-based methods.

Some of the most common nature-inspired search methods are: Genetic Algorithms (GA), Ant

Colony Optimization (ACO), Particle Swarm Optimization (PSO).

Genetic Algorithms (GA)

Genetic algorithms loosely parallel biological evolution and are based on Darwin’s theory of

natural selection. The specific mechanics of the algorithm uses the language of microbiology,

and its implementation mimics genetic operations.

The basic idea of the approach is to start with a set of designs, randomly generated using the

allowable values for each design variable. To each design is also assigned a fitness value, usually

using the objective function for unconstrained problems or a penalty function for constrained

problems.

From the current set of designs, a subset is selected randomly with a bias allocated to more

fit members of the set. Random processes are used to generate new designs using the selected

subset of designs. The size of the design set is kept fixed. Since more fit members of the set are

used to create new designs, the successive sets of designs have a higher probability of having

designs with better fitness values. The process is continued until a stopping criterion is met.

To better understand how genetic algorithms work, various terms associated with the algorithm

must be defined and explained:
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• Population: The set of design points at the current iteration is called a population. It

represents a group of designs as potential solution points. Np = number of designs in a

population; this is also called the population size.

• Generation: An iteration of the genetic algorithm is called a generation. A generation

has a population of size Np that is manipulated in a genetic algorithm.

• Chromosome: This term is used to represent a design point. Thus a chromosome

represents a design of the system, whether feasible or infeasible. It contains values for all

the design variables of the system.

• Gene: This term is used for a scalar component of the design vector; that is, it represents

the value of a particular design variable.

The basic idea of a genetic algorithm is to generate a new set of designs (population) from the

current set such that the average fitness of the population is improved. The process is continued

until a stopping criterion is satisfied or the number of iterations exceeds a prescribed limit.

Three genetic operators are used to accomplish this task:

• Reproduction: It’s an operator where an old design is copied into the new population

according to the design’s fitness. There are many different strategies to implement this

reproduction operator. This is also called the selection process.

• Crossover: Corresponds to allowing selected members of the new population to exchange

characteristics of their designs among themselves. Crossover entails selection of starting

and ending positions on a pair of randomly selected strings (called mating strings), and

simply exchanging the string of 0s and 1s between these positions.

• Mutation: It’s the third step that safeguards the process from a complete premature

loss of valuable genetic material during reproduction and crossover. In terms of a binary

string, this step corresponds to selection of a few members of the population, determining

a location on the strings at random, and switching the 0 to 1 or vice versa.
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The preceding three steps are repeated for successive generations of the population until no

further improvement in fitness is attainable. The member in this generation with the highest

level of fitness is taken as the optimum design.

Decisions made in most computational steps of the algorithms are based on random number

generation. Therefore, executed at different times, the algorithm can lead to a different se-

quence of designs and a different problem solution even with the same initial conditions.

Continuity or differentiability of the problem functions is neither required nor used in calcula-

tions of the algorithms. Therefore, the algorithms are very general and can be applied to all

kinds of problems.

In addition, the methods determine global optimum solutions as opposed to the local optimum

ones determined by a derivative-based optimization algorithm.

These methods are relatively easy to use and program since they do not require the use of

gradients of objective or constraint functions.

The main drawbacks of genetic algorithms are as follows:

1 They require a large amount of calculation for even reasonably sized problems or for

problems where evaluation of functions itself requires massive calculation;

2 There is no absolute guarantee that a global solution has been obtained.

The first drawback can be overcome to some extent by the use of parallel computing. The

second drawback can be overcome by executing the algorithm several times and allowing it to

run longer.
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3.4 Multi-Objective optimization

There are many engineering applications where the designer may want to optimize two or more

objective functions simultaneously, e.g. minimizing mass while minimizing stress, minimizing

the mean value and the standard deviation of mass (as seen in RDO). These are called multi-

objective, multi-criteria, or vector optimization problems.

The main target in a single-objective optimization is to find a solution that minimizes the cost

function. On the contrary, the process of determining a solution for a multi-objective optimiza-

tion problem is slightly more complex and it is often characterized by conflicting objectives.

Therefore, a multi-criteria optimization gives rise to a set of optimal solutions.

In this set, a solution is called Pareto optimal if there is no other solution that reduces at least

one objective function without increasing another one.

This set of optimal solutions is known as Pareto Optimal set (Fig.3.1).

Figure 3.1: Pareto Optimal set minimizing objective 1 and 2.

One property commonly considered as necessary for any candidate solution to the multiobjective

problem is that the solution is not dominated. The Pareto set consists of solutions that are not
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dominated by any other solution. A solution A is said to dominate B if A is better or equal to

B in all attributes, and strictly better in at least one attribute [4].

Figure 3.2: Concept of domination.

The concept of domination is illustrated in Fig. 3.2 where Objective 1 and Objective 1 must be

minimized. Solution B dominates solution D, solution C dominates solution D, neither solution

B nor C dominates each other, solution A dominates solutions B, C and D.

A predominant practice in solving multi-criteria optimization problem is by scalarization meth-

ods, in which the components of objective function vectors are combined to form a scalar ob-

jective function.

The most common scalarization method to solve multi-objective optimization problems is the

weighted sum method :

S =
k∑

i=1

wifi(d) (3.1)

Where S is a scalar merit function, wi is the weighting factor for the i-th objective function

fi(d).
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As with most methods that involve objective function weights, setting one or more of the weights

to 0 can result in weakly Pareto optimal points. The relative value of the weights generally

reflects the relative importance of the objectives, and can be managed by the designer.
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Fundamentals of statistics and

probability

In order to understand the probabilistic approach in the design optimization process, as well

as the characterization of the design variables and parameters, some basic concepts regarding

probability and statistics are compulsory.

The main difference between probability and statistics is that: probability deals with predicting

the likelihood of future events, while statistics involves the analysis of the frequency of past

events.

4.1 Probability density and Cumulative distribution func-

tion

A random variable X is a variable that, instead of having a single value, can assume a set of

possible x values, to which is associated a given probability.

The mathematical function that describes the distribution of a random variable is called the

Probability Density Function (PDF), fX(x) (Fig. 4.1). This function assigns a certain proba-

bility density to each value of the random variable.

27
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Figure 4.1: Probability density function of normal distributions.

Another way to describe the probability distribution is the Cumulative Distribution Function

(CDF), FX(x) (Fig. 4.2). The CDF is defined for all values of a random variable X from

−∞ to+∞ and is equal to the probability that X is less than or equal to a certain value x.

For a continuous random variable, FX(x) is calculated by integrating the PDF for all values X

less than or equal to x :

CDF = FX(x) =

∫ x

−∞
fX(t)dt (4.1)

Furthermore, if FX(x) is continuous, then the probability of X having a value between a and

b can be calculated as:

FX(b)− FX(a) =

∫ b

a

fX(x)dx (4.2)

If the random variable X is continuous and if the first derivative of the distribution function

exists, then the PDF is given by the derivative of the CDF:

PDF = fX(x) =
dFX(x)

dx
(4.3)
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Figure 4.2: Cumulative distribution function of normal distributions.

The CDF is a non-decreasing function of x (its slope is always greater than or equal to zero),

with lower and upper limits of 0 and 1 (blue curve in Fig.4.1 and 4.2).

4.2 Central measures

The population mean (µ), also referred as the expected value or average, is used to describe the

central tendency of a random variable. This is a weighted average of all the values a random

variable may take. The mean is given by:

µX = E[X] =

∫ +∞

−∞
xfX(x)dx (4.4)

It’s called first moment, since it is the first moment of area of the PDF.

Other useful central measures are the median and mode of the data: the median is the value

X at which the CDF has a value of 0.5, the mode is the value of X corresponding to the peak

value of the PDF (Fig.4.3).
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Figure 4.3: Central measures.

4.3 Dispersion measures

The variance V [X], is the second central moment and is a measure of spread in the data about

the mean:

V [X] = E[(X − µX)2] =

∫ +∞

−∞
(X − µX)2fX(x)dx (4.5)

Geometrically, it represents the moment of inertia of the PDF about the mean value.

A measure of the variability if the random variable is usually given by a quantity known as the

standard deviation:

σX = E[X] =
√
V [X] (4.6)

The ratio between the standard deviation and the mean value is called the Coefficient Of

Variation (COV), which indicates the relative amount of uncertainty or randomness.

COV =
σX
µX

(4.7)
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Although the most used statistical moments are the former described, there are some other

central moments worth to be mentioned.

The skewness, or third central moment, is a measure of the asymmetry of the distribution.

The kurtosis, or fourth central moment, is a measure of the steepness of the PDF.

For methods involving sampling techniques, the discrete definitions for the mean value and the

variance are used:

µX = E[X] =
1

Ns

Ns∑
i=1

ti (4.8)

σ2
X = V [X] = E[(X − µX)2] =

1

Ns

Ns∑
i=1

(ti − µX)2 (4.9)

where Ns is the number of samples.

4.4 Probability distributions

The selection ir determination of the distribution functions of random variables is known as

statistical tolerancing.

The central limit theorem states that the sum of many arbitrary distribution of random variables

asymptotically follows a normal distribution when the sample size becomes large. A normal

distribution, also called Gaussian distribution, is often used for small coefficient of variation

cases, such as Young’s modulus, Poisson’s ratio and other material properties [9]. The PDF of

a normal distribution is given by:

fX(x) =
1

σX
√

2π
e
−

1

2

(x− µX

σX

)2

(4.10)

The simplest Gaussian distribution is called standard normal distribution, which is a normal

distribution with 0 as mean value and 1 as standard deviation.
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Other interesting distributions, from an engineering perspective, are:

• Lognormal distribution which is often used to describe cycles to failure, material strength;

• Weibull distribution, well suited for describing the weakest link phenomena, or a situation

where there are competing flaws contributing to failure. It is often used to describe

fracture of brittle materials and strength in composites.
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Design and optimization framework

5.1 Introduction

In this chapter, we’ll introduce some fundamental concepts regarding mathematical modelling

of complex systems and sampling techniques.

Once introduced every component of the design and optimization process, we’ll outline the

workflow for DO, RDO, RBDO, RRBDO.

5.2 Surrogate modelling

Many practical applications require a detailed model of the system to accurately predict the

structural response to various inputs.

Optimization of such systems can be difficult, if not impossible, because evaluation of objective

and constraint functions requires a large number of calculations.

Therefore, to overcome the computational difficulties, it is useful to develop simplified functions

to use in the optimization process that have explicit forms in terms of the design variables.

The explicit function is a model of the model and is called a meta-model (or surrogate model).

A surrogate model can be generated by conducting experimental observations and/or numerical

33
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simulations. Suppose that we have a mathematical model of the form:

f = f(x) (5.1)

where f(x) (e.g. strength of a composite structure) does not have an explicit expression in terms

of the design variables x (e.g. plies’ orientations). The function f(x) can be approximated by

a simplified explicit function (surrogate model) using the information at some sample points

xi. To make the meta-model, f is evaluated at k points as follows:

fi = f(xi), (i = 1, .., k) (5.2)

The meta-model is constructed using the fi that may be obtained by experiments and/or

numerical simulations (Fig.5.1).

Figure 5.1: Example of metamodels.

Once a surrogate model has been developed, we can use it instead of the original model in the

optimization process. Generally, the meta-model has errors due to mathematical approxima-

tions, experimental errors, or computational approximations. The error ε(x) in the meta-model
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is expressed as:

ε(x) = f(x)− f̂(x) (5.3)

where f(x) is the original model for which we don’t have an explicit expression, while f̂(x) is

the constructed meta-model.

There are different global approximation techniques (meta-models) that can be created, e.g.

Response Surfaces, Kriging and Radial Basis Functions.

However, one of the main limitations of these methods is that it is not possible to identify a

priori which approximation technique is the best [16].

5.2.1 Response Surfaces

Response surfaces are normally used for model prediction in the Response Surface Methodology

(RSM) [22].

The response surface of a model is approximated by an explicit polynomial function usually

using the least squares method to minimize the error in Eq. 5.3.

The most widely used response surface approximating functions are low-order polynomials [29].

For low curvature, a first order polynomial can be used as in Eq. 5.4; for significant curva-

ture, a second order polynomial which includes all two-factor interactions is available (Eq. 5.5):

f̂(x) = β0 +
k∑

i=1

βixi (5.4)

f̂(x) = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

k∑
i=1

k∑
j=1,i<j

βijxixj (5.5)

As above stated, the parameters of the polynomials in Eqs. 5.4 and 5.5 are usually determined

by least squares regression analysis by fitting the response surface approximations to existing

data. A more complete discussion of response surfaces and least squares fitting can be found

in [22].
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5.2.2 Radial Basis Functions

Radial Basis Functions (RBFs) are a type of neural networks using a hidden layer of radial

units. The RBF has been traditionally used in applications with large sizes of data points. In

recent years, research has been conducted on creating RBF models with limited numbers of

samples. An RBF model has the general form of:

f̂(x) =
k∑

i=1

λiφ(‖ x− xi ‖) (5.6)

where k is the number of sampling points, x is a vector of design variables, xi is a vector of

design variables at the i-th sampling point, (‖ x − xi ‖) is the Euclidean norm, φ is a basis

function, and λi is the coefficient for the i-th basis function.

The approximation function f̂(x) is actually a linear combination of some RBFs with weight

coefficients. Some of the most commonly used basis functions are linear, cubic, thin-plate

spline, Gaussian, multiquadric, and inverse-multiquadric (Tab. 5.1) [11].

Table 5.1: Commonly used basis functions.

Name Symbol Basis function

Linear RBF-LN φ(r) = r

Cubic RBF-CB φ(r) = r3

Thin-plate spline RBF-TPS φ(r) = r2 ln(cr), 0 < c ≤ 1

Gaussian RBF-GS φ(r) = e−cr
2
, 0 < c ≤ 1

Multiquadric RBF-MQ φ(r) =
√
r2 + c2, 0 < c ≤ 1

Inverse Multiquadric RBF-IMQ φ(r) =
1√

r2 + c2
, 0 < c ≤ 1
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5.2.3 Kriging

A Kriging model is a surrogate model based on a stochastic process. It was originally put

forward in geostatistics from Krige, a South African mining engineer, then made its way into

engineering design following the work of Sacks, et al. [26].

For a given set of sample data (input), x = [x1,x2, ...,xns ]
T , and the observed responses y =

[y1, y2, ..., yns ]
T , the expression of Kriging model that reflects the relationship between them is:

y(xi) = fT (xi)β + Z(xi), i = 1, ..., ns (5.7)

where f(x) is a polynomial vector of the sample x, β is the vector of the linear regression coef-

ficients to be estimated and Z(x) represents errors and is assumed to be a stochastic process

that follows a normal distribution with zero mean and variance σ2 (i.e. the behaviour of Z(x)

follows a Gaussian distribution).

As seen above, Kriging models combine a global model fT (x)β plus localized departures Z(x).

The fT (x)β term in Eq. 5.7 is similar to a polynomial response surface, providing a ”global”

model of the design space, whereas Z(x) creates ”localized” deviations from the global model,

so that the kriging model interpolates the sampled data points.

To estimate the stochastic process Z(x), Kriging assumes that any two points will tend to have

the same value as the distance in between approaches zero and it is the same for Z(x) of two

points. Thus, the correlation between Z(x) of any two sample points can be expressed as a

function of their spatial distance. Two of the most widely used correlation functions are the

Exponential correlation function (Eq. 5.8) and the Gaussian correlation function (Eq. 5.9).

R(Z(xi), Z(xj)) = exp

(
−

m∑
k=1

θk | xki − xkj |

)
(5.8)

R(Z(xi), Z(xj)) = exp

(
−

m∑
k=1

θk | xki − xkj |2
)

(5.9)
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where xki and xkj are the k− th components of the two sample points xi and xj, m denotes the

number of design variables, θk controls the decay rate of correlation.

Interested readers can refer to reference [12] for a more detailed presentation of the theory, and

to reference [26] for a more detailed formulation.

5.3 Design Of Experiments - DOE

To build a meta-model, Design Of Experiments methods are usually used to determine the

location of sample points in the design space. DOE is a procedure with the general goal of

maximizing the amount of information gained from a limited number of sample points [13].

These methods can be broadly classified into two categories: classic and modern methods.

The classic DOE methods, such as full-factorial design, central composite design (CCD), Box-

Behnken, were developed for laboratory experiments, with the consideration of reducing the

effect of random error.

Whereas, modern methods such as Latin Hypercube Sampling (LHS), Optimal Latin Hyper-

cube Sampling (OLHS) Orthogonal Array Design (OAD) were developed for computer based

experiments.

(a) LHS (b) OLHS

Figure 5.2: Differences between LHS and OLHS.
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DOE methods can manage multi-dimensional design spaces, creating a design matrix of size

ns x nv, which explores the design space (ns =number of samples and nv =number of design

variables).

To better understand how DOE works, in Fig. 5.2 the difference between LHS and OLHS

is shown. A design of experiments created with fifty samples and two variables is presented,

leading to a design matrix with dimensions 50 x 2. It can be observed that with Latin Hy-

percube Sampling the distances amongst design points are very different, whereas in Fig. (b)

Optimal Latin Hypercube Sampling optimizes the spread of the input values (design points are

separated as evenly as possible throughout the design space).
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5.4 Monte Carlo Simulation

The term Monte Carlo Simulation was named after the city in Monaco (famous for its casino)

where games of chance (e.g., roulette) involve repetitive events with known probabilities [3].

In general terms, the Monte Carlo method (or Monte Carlo Simulation) can be used to de-

scribe any technique that approximates solutions to quantitative problems through statistical

sampling.

It belongs to the sampling category of uncertainty propagation methods. This means that, to

propagate uncertainties from the (surrogate) model inputs into uncertainties in the outputs,

they use random samples. Hence, it is a type of simulation that explicitly and quantitatively

represents variabilities.

Monte Carlo Simulation relies on the process of explicitly representing uncertainties by speci-

fying probability distributions of the inputs (design variables and/or design parameters). If the

input describing a system are uncertain, the prediction of future performances, which obviously

depend on the probabilistic input, are necessarily uncertain.

In Monte Carlo simulation, the entire system is simulated a large number (e.g. 1000) of times.

Each simulation is equally likely, referred to as a realization of the system.

For each realization, all of the uncertain parameters are sampled (i.e. a single random value is

selected from the specified distribution describing each parameter). The system is then simu-

lated (given the particular set of input parameters) such that the performance of the system

can be computed.

The results of the independent system realizations are assembled into probability distributions

of possible outcomes, therefore the outputs are not single values, but probability distributions.

Monte Carlo analysis is suitable for cases when many stochastic variables are present, and it

is a simple and straightforward method to incorporate variability in the model. The main

drawback of the method is that a large number of simulations are required in order to achieve

accuracy in the statistics of the response.
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5.4.1 MCS in RDO

Monte Carlo methods can be embedded in the Robust Design Optimization process, where they

are used to compute the mean values and the standard deviations of the response functions

(5.3). First, Ns random samples are generated and stored for each design variable and/or

Figure 5.3: MCS in Robust Design Optimization [3].

design parameter, based on their mean and standard deviation. Then, the response functions

are evaluated at each of the Ns stored points and their results are saved. Finally, the expected

values and variances of the functions can be computed with Eq. 4.8 and Eq. 4.9.

The accuracy of the model depends on the number of samples (Ns) that are generated. Although

it’s possible to generate a large amount of samples, to get increased accuracy, the computational

effort greatly rises due to an increase in function evaluations, meaning that the bigger the vector

of stochastic design variables and parameters, the more inefficient is using a method such as

MCS in an optimization loop.



42 Chapter 5. Design and optimization framework

5.4.2 MCS in RBDO

In Reliability-Based Design Optimization, Monte Carlo Simulations, instead of estimating the

mean and standard deviation of the response, are used to evaluate the probability of failure,

computing the probability of violating a limit state function (constraint). In 5.4, the first step

Figure 5.4: MCS in Reliability-Based Design Optimization [3].

is creating the samples of the random design variables and/or parameters, then they are sub-

stituted into the limit state function to evaluate its response.

The difference is that, instead of storing values, what is stored, is the number of times the func-

tion is greater than zero, subsequently the probability of it being higher than zero is computed

according to:

Pf =
Nsfailure

Ns

(5.10)
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where Nsfailure is the number of samples for which the limit state function was higher than zero

(design points of failure) and Ns is the total number of samples.

It could be noted that, the computed probability, is referred to the function being greater than

zero, but that is not the only probability that can be computed (e.g. the probability of the

limit state function being lower than zero is exactly the probability of success).

5.4.3 MCS in RRBDO

In the Robust and Reliability-Based Design Optimization framework, Monte Carlo methods

are used to compute both the probability of limit state violations (probability of failure) and

the statistical parameters of the objective and constraint functions (5.5).

Figure 5.5: MCS in Robust and Reliability-Based Design Optimization.



44 Chapter 5. Design and optimization framework

5.5 Design and Optimization flowcharts

In the subsequent pages, to better understand the design and optimization processes used in

this thesis, different flowcharts will be presented. It must be noted that these flowcharts are

for optimization problems in which exact analytical functions don’t exist, therefore creating a

surrogate model is compulsory.

In these different frameworks we can observe a common section (DOE, FEM, Metamodel) and

a second part (Optimization), which is slightly different for the three probabilistic approaches.

The process starts with a nominal design. Once chosen the design variables, the design space

is explored with a DOE, creating ns sampling points.

Successively, the responses we are interested in, are acquired from the ns non-linear finite

element simulations.

The inputs from DOE and outputs from the FEM model, are used to create surrogate models

(e.g. RSM, RBF, Kriging) for the responses. After a cross validation error analysis, the

best model (with less error) is selected. If the error is not acceptable, more samples must be

generated in the DOE.

In the optimization part, we set the weighting factors (according to which objective must be

preferred, from high level information). The allowable probability of failure is set only for

RBDO (Fig. 5.7) and RRBDO (Fig. 5.8). The RDO scheme, as we can see from Fig. 5.6,

doesn’t take into account the probability of failure.

Successively, it must be decided the genetic algorithm to use, then a convergence analysis

(sub-loop on the deterministic problem) must be run to assess the number of population and

generations to use.

Afterwords, the MCS sub-loop (different for each method) is run, leading to the mean values

and standard deviations of the cost and constraint functions (RDO, RRBDO), and assessing

the probability of failure (RBDO, RRBDO).

Finally, the optimization process exits with the optimal design.
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Figure 5.6: Robust Design Optimization flowchart.
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Figure 5.7: Reliability-Based Design Optimization flowchart.
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Figure 5.8: Robust and Reliability-Based Design Optimization flowchart.



Chapter 6

Composite C-Beam

6.1 Problem description

In this chapter, either to validate the optimization frameworks previously discussed and to show

the differences amongst the various approaches, an application to a composite floor beam will

be considered.

Figure 6.1: Airbus A350 floor beam structure in Aluminium-Lithium.

The analysed floor beam is a part of SHERLOC project (Structural HEalth monitoring, man-

48
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ufacturing and Repair technologies for Life management Of Composite fuselage).

The original structure has an overall length of 3000 mm, while the distance between struts is

2115.4 mm. Now, because of the main purpose of this thesis is to develop a framework and to

show the differences between the probabilistic approaches, a composite floor beam with half of

its nominal length (1057.7 mm) will be considered.

The beam is fixed at both edges (coincident with the struts), and vertically loaded by uni-

form increasing displacements (in correspondence of the seat rails) applied on the upper flange

(Fig.6.2). The distance between struts is 1057.7mm, whereas the prescribed displacements are

applied at 794.2mm and 263.5mm (seat rails’ locations) from the right strut (Fig.6.4).

Prescribed displacements

Fixed supports

Figure 6.2: 3D structural scheme.

The realization of the FEM model and the structural analysis, will be accomplished by Simulia

Abaqus™ (further explained in Subsection 6.2.3), whereas the Design Of Experiments, as well

as surrogate modelling creation, Monte Carlo Simulations and the optimization via genetic

algorithm, will be carried out by Simulia Isight™ and Matlab™.
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Figure 6.3: Composite floor beam.

Figure 6.4: Longitudinal dimensions.
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6.2 Data and information

The composite floor beam to be analysed, is a 16-ply symmetric laminate with stacking sequence

[45, 90,−45, 0, 45, 0, 0,−45]s (Fig.6.7), ply thickness tp = 0.2mm, hence the total thickness of

the laminate is tl = 3.2mm.

The fixed design parameters are the distance between struts L = 1057.7mm, the ply thickness,

the number of plies and the layup. Whereas, the design variables of the optimization problem

are the geometrical characteristics of the cross section: width, height and radius (Fig.6.5).

Figure 6.5: Nominal geometry of the cross-section.

The floor beam is modelled as fixed at the ends and loaded by a prescribed displacement at

two loading points. As a consequence of having a ”C” cross-sectional shape, the shear centre

is located outside the section, so, when the beam is loaded on the flange in a vertical direction

(not aligned with the shear centre), it twists as well (Fig.6.6).

This is a phenomenon that we want to avoid or, at least, to reduce at its minimum. Therefore,

the goal of the optimization problem is to obtain a floor beam with minimum mass, minimum

twisting angle while being able to carry as much load as possible. The latter objective (how

much force the floor beam can withstand) is gathered through the value of the reaction force.

For the three probabilistic design and optimization methods (RDO, RBDO and RRBDO) and
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S.C.

S.C.

S.C.

S.C.

F

F

Figure 6.6: Shear centre effect on C shaped beams.

for the Deterministic Optimization, the design variables and design parameters will be the same,

whereas objective functions and constraints will be different (detailed problem formulations in

Subsection 6.3.1).

Table 6.1: Initial design.

Description Value

Height [mm] 70

Radius [mm] 4

Width [mm] 40

Twisting angle [°] 27.06

Mass [Kg] 0.7516

Reaction Force[KN ] 14.82
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Table 6.2: Material properties.

Symbol Value Description

ρ [Kg/m3] 1600 Density

E11 [GPa] 166 Longitudinal modulus of elasticity

E22 = E33 [GPa] 8.1 Transversal modulus of elasticity

ν23 0.45 In-plane Poisson’s ratio

ν12 = ν13 0.33 Out-of-plane Poisson’s ratio

G23 [GPa] 3.1 In-plane shear modulus

G12=G13 [GPa] 5.1 Out-of-plane shear modulus

Figure 6.7: Layup.
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6.2.1 Uncertainties quantification

In the previous chapters we discussed about the importance of incorporating uncertainties into

the design and optimization framework. This section is about the quantification of these sources

of uncertainty, explaining how they can be introduced in an optimization process.

The manufacturing tolerances are integrated in the optimization process assuming that the

design variables (geometry) have a truncated normal distribution with mean, standard deviation

and bounds shown in Tab.6.3. These tolerances can be included by setting the correct lower

and upper bound, i.e. ±0.5% of the nominal dimensions of profile height and flange width

(Fig.6.8 [BS EN 13706-2:2002]).

EN 13706-2:2002 (E)

12

Annex B
(normative)

Dimensional tolerances for pultruded profiles
Table B.1

Property Tolerance

Wall thickness of open and closed profiles Nominal dimensions (mm)

Thickness T1 T2

0 to 2 ± 0,15 ± 10 %

2 to 5 ± 0,20 with

5 to 10 ± 0,35 minimum

± 0,45 of ± 0,30

Flatness in transverse direction Tolerance

F < 0,008 × B mm

Profile height and width of flange Nominal dimensions (mm)

B and H: ± 0,5 % with minimum ± 0,20 mm

and maximum ± 0,75 mm

Size of angle Tolerance

Y ± 1,5 °

Nominal dimensions (mm)

B and H: ± 0.5 %  

minimum ± 0.20 mm 
maximum ± 0.75 mm 

Profile height and width of flange 

Property Tolerance

Figure 6.8: Manufacturing tolerances.

To account for uncertainties in the material properties, they’re assumed as normal distributions

with a 5% of Coefficient Of Variation (ratio of the standard deviation to the mean value). The

former assumption is based on the literature [34].

Table 6.3: Distribution of Design Variables.

Design Variable Mean Standard Deviation Lower Bound Upper Bound

Width [mm] w w ∗ 0.001 w − w ∗ 0.005 w + w ∗ 0.005

Height [mm] h h ∗ 0.001 h− h ∗ 0.005 h+ h ∗ 0.005

Radius [mm] r r ∗ 0.01 r − 0.2 r + 0.2
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Table 6.4: Distribution of Design Parameters.

Design Parameter Distribution Mean Std. Dev.

E11 [GPa] Normal 166 8.3

E22 = E33 [GPa] Normal 8.1 0.405

G23 [GPa] Normal 3.1 0.155

G12 = G13 [GPa] Normal 5.1 0.255
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6.2.2 DOE

To create a meta-model, as examined before, a Design of Experiments must be run. In order

to explore the design space, maintaining the distance between samples as evenly as possible,

the Optimal Latin Hypercube Sampling technique is selected.

In Tab.6.5, are reported the minimum number of samples required for different kinds of ap-

proximation techniques. However, for fit, fidelity and exploration purposes, the recommended

best practice is to double the minimum values [2].

Table 6.5: Minimum number of samples required.

RSM
RBF Kriging

Linear Quadratic Cubic Quartic

(n+ 1)

[
(n+ 1)(n+ 2)

2

] [
(n+ 1)(n+ 2)

2

]
+ n

[
(n+ 1)(n+ 2)

2

]
+ 2n (2n+ 1) (2n+ 1)

In order to assess which meta-modelling technique is best suited to approximate our responses

(comparing all of them), the RSM of fourth order (quartic) is chosen to define the number of

samples required. For 7 inputs (3 design variables and 4 design parameters), the minimum

sampling points required are 50. Following the best practice suggestion, this number has been

doubled and a final value of 109 samples has been chosen.
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6.2.3 FEM

Structural analysis

For our problem, the prediction of the collapse load is difficult because of the susceptibility of

composites to the effect of through-thickness stresses. It follows that there are a number of

locations in the beam and a variety of damage mechanisms which could lead to final collapse.

The main damage mechanisms experienced by composites can be divided into intralaminar

(fiber failure, matrix cracking or crushing and fiber-matrix shear), and interlaminar (skin-

stiffener debonding) [32] [24].

For the above stated reasons, the floor beam will be analysed with non-linear explicit dynamics

finite element analysis using Abaqus™ [1].

Conventional Shell vs Continuum Shell

The symmetry with respect to the middle section of the beam is exploited (applying proper

constraints), hence conveniently modelling the structural part with shell elements. Abaqus™

has two different categories of shell elements: conventional shell and continuum shell.

Shell elements are used to model structures in which one dimension, the thickness, is signif-

icantly smaller than the other dimensions. Conventional shell elements use this condition to

discretize a body by defining the geometry at a reference surface. In this case the thickness is

defined through the section property definition. Conventional shell elements have displacement

and rotational degrees of freedom.

In contrast, continuum shell elements discretize an entire three-dimensional body. The thick-

ness is determined from the element nodal geometry. Continuum shell elements have only

displacement degrees of freedom. From a modelling point of view continuum shell elements

look like three-dimensional continuum solids, but their kinematic and constitutive behaviour is

similar to conventional shell elements.

The continuum shell elements are general-purpose shells that allow finite membrane defor-
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Structural body

Continuum shell model:
• Full 3D geometry is

specified;
• Element thickness is defined

by nodal geometry.

Conventional shell model:
• Geometry is specified at the 

reference surface;
• Thickness is defined by 

section property.

Displacement and rotational
degrees of freedom

Displacement degrees of 
freedom only.

Figure 6.9: Conventional shell model vs Continuum shell model.

mation and large rotations and, thus, are suitable for non-linear geometric analysis. These

elements include the effects of transverse shear deformation and thickness change. They em-

ploy first-order layer-wise composite theory, and estimate through-thickness section forces from

the initial elastic moduli. Unlike conventional shells, continuum shell elements can be stacked

to provide more refined through-thickness response. Stacking continuum shell elements allows

for a richer transverse shear stress and force prediction.

For the above stated reasons, continuum shells are used to model our floor beam.

FEM workflow

Once set the FEM model, the non-linear structural analysis can be performed.

Because of a large number of samples (109) must be analysed, a Python™ script, parametrising

all the variable inputs, is predisposed. Then, with a Matlab™ program accessing the design

matrix and modifying the inputs of the Python™ script, 109 Abaqus™ input files are generated.

To speed up the computing time, the simulations are run on the High Performance Computing

(HPC) facilities at Imperial College London. To create the surrogate model, the information

regarding the reaction force and twisting angle must be gathered from the FEM results. The
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Figure 6.10: Vertical displacement of the composite floor beam.

upper flange’s rotation is computed in the middle section (where is highest) evaluating the

different displacements at the edges of the flange. Whereas the reaction force data is gathered

in the loading point.

Here’s a brief summary of the various steps to be performed:

• Step 1 : plot reaction force (RF2) and displacement (U2) in the loading point versus time,

and store RF2 and time at which the structure collapses (it is when the reaction force

sharply diminishes, then becomes fuzzy) (Fig.6.11);

• Step 2 : plot reaction force versus displacement, storing U2 at known RF2 (Fig.6.12);

• Step 3 : plot displacements of the border points of the middle section’s upper flange

(MOP: Middle Outer Point, MIP: Middle Inner Point, Fig.6.14), and storing their values

at the time of collapse (previously saved). Then, with their values the rotation of the

middle section can be computed (Fig.6.13).
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Figure 6.11: Step 1: Reaction force and displacement versus time.

Figure 6.12: Step 2: Reaction force versus displacement.
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Figure 6.13: Step 3: Vertical displacement of the middle section’s upper flange (border points).

M.I.P.

M.O.P.

!

Figure 6.14: Middle section upper flange’s rotation (α) computed via Middle Inner Point
(M.I.P) and Middle Outer Point (M.O.P.) locations.
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6.2.4 Surrogate Model

As discussed in the previous chapters, surrogate models are necessary when the problem is too

complex and there are no exact analytical solutions.

For our problem, we want to create two meta-models, one relating the reaction force to the

design variables and parameters, the other relating the rotation of the upper flange to the same

inputs of the former surrogate model. With regard to the mass, a meta-model is not needed

because the function is known.

Cross-validation error analysis

To choose which surrogate model approximates the best our sampled data, a cross-validation

error analysis is run.

The compared meta-models involved in the error analysis are quartic RSM, RBF and Kriging.

For cross-validation error analysis, all of the 109 data points are removed from the sampling

data set, one at a time. For each of the removed points, the approximation coefficients are

re-calculated, and the exact and approximate output values are compared. The removed point

is then put back into the data set and the next point is removed. The points are selected

randomly.

Table 6.6: Cross-validation error analysis.

RSM RBF Kriging

ε(RF ) [%] 10.42 8.169 6.517

ε(Alpha) [%] 5.195 4.647 4.617

In Tab.6.6, the average errors of different meta-models are presented. As can be observed, for

our case, Kriging models (with exponential correlation function) have the smallest errors, either

for the approximation of the reaction force and for the twisting angle.

Therefore, Kriging models (Fig.6.15) are best suited to approximate our responses.

In Fig.6.15 a, the reaction force is plotted as a function of E11 and E22 = E33. It can be observed

that, the reaction force (as can be expected) depends more on the longitudinal modulus of
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RF	[KN]

RF	[KN] α	[°]

(a) Kriging model for the reaction force. (b) Kriging model for the twisting angle.

Figure 6.15: Surrogate models of the responses.

elasticity rather than the transversal one.

In Fig.6.15 a, instead, can be observed the twisting angle (upper flange’s rotation) as a function

of height and width. Clearly, an increase in the width of the cross section corresponds to an

increment of the twisting angle.



64 Chapter 6. Composite C-Beam

6.3 Optimization

6.3.1 Problem formulation

Deterministic Optimization - DO

In the DO problem proposed, the material properties and the design variables have their nom-

inal values, without accounting for uncertainties.

The adopted constraints’ values are the results of an on-design structural analysis (Inputs :

w = 40mm,h = 70mm, r = 4mm; Outputs : m = 0.7516Kg,RF = 14.82KN,α = 27.06 °).

It has been decided to set the values in Tab.6.7 as design constraints (for all the formulations)

so that, the final design will have an overall better performance than the original floor beam,

in terms of less mass, less twisting angle and higher reaction force.

Table 6.7: Deterministic Optimization problem formulation.

Description Values

Design variables

Width [mm] 32 ≤ w ≤ 48

Height [mm] 56 ≤ h ≤ 84

Radius [mm] 3.2 ≤ r ≤ 8.4

Constraints

Mass [Kg] m ≤ 0.7516

Reaction Force [KN ] RF ≥ 14.82

Twisting angle [°] α ≤ 27.06

Objectives

Description Operation

Mass minimize

Reaction Force maximize

Twisting angle minimize
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Robust Design Optimization - RDO

Contrarily to the Deterministic Optimization previously described, this RDO problem formu-

lation accounts for uncertainties, either for manufacturing tolerances and material properties.

The statistical descriptions of design variables and parameters are not reported for clarity of

exposition, because they’ve already been defined in Subsection 6.2.1.

In this formulation we can see that, besides the values of the objectives (actually mean values

because now the objective and constraint functions are distributions), the standard deviations

of the cost functions are to be minimized in order to achieve a robust design.

Table 6.8: Robust Design Optimization problem formulation.

Description Values

Design variables

Width [mm] 32 ≤ w ≤ 48

Height [mm] 56 ≤ h ≤ 84

Radius [mm] 3.2 ≤ r ≤ 8.4

Constraints

Mass [Kg] m ≤ 0.7516

Reaction Force [KN ] RF ≥ 14.82

Twisting angle [°] α ≤ 27.06

Objectives

Description Operation

Mass minimize

Reaction Force maximize

Twisting angle minimize

Std. Dev. Mass minimize

Std. Dev. Reaction Force minimize

Std. Dev. Twisting angle minimize
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Reliability-Based Design Optimization - RBDO

In RBDO problem formulation, which accounts for uncertainties, the original constraint related

to the reaction force has been substituted with a reliability-based constraint (limit state func-

tion). In this formulation, a reliability-index β = 3 is chosen, hence the allowable probability

of failure is Pa = φ(−β) = 0.135%. In other words, it entails (for normal distributions with

only one limit) that at least the 99.865% of the population must have a reaction force higher

than RFlim = 14KN (ultimate load). Here, conversely to RDO formulation, we don’t have the

standard deviations of the objective functions.

Table 6.9: Reliability-Based Design Optimization problem formulation.

Description Values

Design variables

Width [mm] 32 ≤ w ≤ 48

Height [mm] 56 ≤ h ≤ 84

Radius [mm] 3.2 ≤ r ≤ 8.4

Constraints

Mass [Kg] m ≤ 0.7516

Twisting angle [°] α ≤ 27.06

P [RF < 14]− Pa ≤ 0

Objectives

Description Operation

Mass minimize

Reaction Force maximize

Twisting angle minimize
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Robust and Reliability-Based Design Optimization - RRBDO

Finally, the mixed Robust and Reliability-Based Design Optimization formulation, aims at

finding a robust solution (robust objectives) while satisfying reliability-based constraints. In

this formulation, as well as in RBDO, a reliability-index β = 3 is adopted.

Table 6.10: Robust and Reliability-Based Design Optimization problem formulation.

Description Values

Design variables

Width [mm] 32 ≤ w ≤ 48

Height [mm] 56 ≤ h ≤ 84

Radius [mm] 3.2 ≤ r ≤ 8.4

Constraints

Mass [Kg] m ≤ 0.7516

Twisting angle [°] α ≤ 27.06

P [RF < 14]− Pa ≤ 0

Objectives

Description Operation

Mass minimize

Reaction Force maximize

Twisting angle minimize

Std. Dev. Mass minimize

Std. Dev. Reaction Force minimize

Std. Dev. Twisting angle minimize
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6.3.2 Genetic Algorithm

Once set the problems’ formulations, to search for the different solutions, a genetic algorithm

must be chosen.

The Non-dominated Sorting Genetic Algorithm (NSGA-II) [10] is selected, because is a multi-

objective technique, and deals with the high computational complexity of non-dominated sort-

ing. Feasible solutions come first, and then infeasible solutions are sorted by increasing degree

of constraint violations. Feasible solutions and every set of solutions with the same violation

degree are then respectively sorted according to pareto dominance. All the solutions in a front

are given the same rank value, beginning at 0 for the first front extracted, 1 for the second and

so on. In this manner, solutions can be sorted according to rank.

Finally, within every group of solutions having the same rank, these results are sorted according

to crowding distance. This criterion places first those solutions whose closest neighbours are

farther, thus enhancing diversity.

Even though the optimization problems are all constrained optimizations, it is interesting to

show how NSGA-II explores the design space and it doesn’t stuck on local minima (Figs. 6.16,

6.17, 6.18, 6.19).

Figure 6.16: Scatter 2D plot of Twisting angle vs Reaction force, showing Pareto front.



6.3. Optimization 69

Figure 6.17: Scatter 2D plot of Twisting angle vs Mass, showing Pareto front.

Figure 6.18: Scatter 2D plot of Mass vs Reaction Force, showing Pareto front.
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Figure 6.19: Scatter 3D plot of objectives, showing Pareto front.

Convergence analysis

Chosen the genetic algorithm, a convergence analysis is mandatory in order to get consistent

results. For this purpose, the optimization is conducted on the deterministic optimization

problem, which is faster to evaluate because it doesn’t have the aggravating factor of considering

uncertainties.

Figure 6.20: NSGA-II Convergence analysis for DO.
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From Fig. 6.20 can be noticed that a genetic algorithm with higher population converges faster,

but the computational time is higher as well. However, for number of generations greater than

20 both GAs are converging. In order to maintain the computing time as low as possible, a

genetic algorithm with population size and number of generations equal to 24 is adopted.

6.3.3 MCS

To consider uncertainties, a certain number of realizations (Ns) of Monte Carlo Simulations

must be chosen. The analysed techniques to generate these samples are (Fig.6.21):

• Simple random sampling : generates sample points by generatingNs uniformly distributed

random numbers between 0 and 1 for each stochastic variable and/or parameter, obtaining

corresponding values from each random variable/parameter distribution;

• Descriptive sampling : generates Ns sample points by dividing each random variable

distributions into Ns interval of equal probability and randomly combining samples from

these intervals for each random variable to produce design points. One point is sampled

from each interval, thus ensuring a broad spread of data across the distributions of each

random variable;

• Sobol sampling : is a sub-random sequence of numbers that are more uniformly distributed

than both simple random and descriptive sampling.

In light of the fact above, as well as keeping a reasonable computational time, a Ns = 1000

realizations created with Sobol sampling technique has been chosen.
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Figure 6.21: MCS sampling techniques.
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6.4 Results

For the sake of clarity, the exposition of the results are structured according to each output’s

solutions (geometry, mass etc.), rather than different optimization approaches. In this way, it’s

easier to compare the various methods.

To contrast the deterministic optimization with the probabilistic ones, it has been applied (after

the optimization process) variability to the deterministic design (manufacturing and material).

Additionally, to gather the statistical values of the responses for the RBDO (because of their

values are not stored in MCS loop), a robustness evaluation has been performed on the Reliable

design.

Finally, to assess the probability of failure of the robust design (not stored during MCS loop),

a reliability analysis has been performed. The hybrid robust and reliabilty-based method has

all the values stored for each realization, thus no further analysis is needed.

It should be noted that, concerning the graphical representation of the results, the objectives

are plotted as normal distributions with respective mean values and standard deviations.

Actually, they’re not exactly normal distributions, but considering the central limit theorem

[9], which states that the sum of many arbitrary distributed random variables asymptotically

follows a normal distribution when the sample size becomes large, the assumption is reasonable.

Furthermore, this is only a post-processing assumption, thus not invalidating the results.
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6.4.1 Geometry

The first result we’re going to discuss is the geometry of the cross section (Tab.6.11).

The genetic algorithm found that, maximizing the height of the cross section while minimizing

the width of the flanges, leads to a robust design. Whereas, a reliable design is achieved

minimizing the height of the cross section while maximizing the width. It’s interesting to

notice that the approaches that involve the minimization of the standard deviations (RDO and

RRBDO) have the minimum values of fillet radius, which is the design variable with the highest

coefficient of variation (Tab.6.3).

In addition, emphasizing its hybrid nature, the robust and reliability-based formulation, has

values of the design variables (geometry) in between the original approaches.

DO RDO RBDO RRBDO

Figure 6.22: Cross-sections’ geometry comparison.

Table 6.11: Geometry results.

DO RDO RBDO RRBDO

Height [mm] 79.01 81.88 73.10 76.02

Radius [mm] 4.196 3.275 3.941 3.726

Width [mm] 35.48 33.37 38.36 36.91
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6.4.2 Mass

As for the mass, we can observe very small standard deviations, mainly because we provided

the function that relates its value to only geometrical parameters, obviously. In this case, even

if the uncertainties in the material properties were embedded into the optimization process,

the mass response isn’t affected by their variability. Here we can see that, the optimization

methods for which the standard deviations were to be minimized (i.e. RDO, RRBDO) have the

minimum values for those objectives. Even if it could seem counter-intuitive, those approaches

have also the smallest mean values of the mass.

Table 6.12: Mass results.

DO RDO RBDO RRBDO

Mass [Kg] 0.7506 0.7475 0.7505 0.7426

σ (Mass) 6.040E-04 5.884E-04 5.992E-04 5.836E-04

Figure 6.23: Probability distribution functions’ comparison of mass results.

In Figs.6.23 and 6.24, the statistical representations of the mass for the different optimization

approaches can be observed. In particular, in Fig.6.23 can be clearly noticed that all the

probabilistic approaches have lower mass than the deterministic one, whereas focusing our

attention on the normal curves’ widths, we can observe the similar standard deviations’ values.

So, the design which minimizes both the mean value and the variability of mass is the robust

and reliable design.
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Figure 6.24: Mass results.
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6.4.3 Reaction Force and Probability of failure

The results’ analyses of reaction force and probability of failure are presented in conjunction,

due to the relation between the failure’s probability and the limit value of the reaction force

(limit state constraint).

At first glance, we can see from Tab.6.13, that the RDO has a much higher value of failure’s

probability if compared to other methods. The rationale is that, in its formulation, it doesn’t

have any constraints or objectives predisposed to the minimization of failure’s probability, as

well as in the deterministic one. Even though the latter doesn’t take into account the probability

of failure, the deterministic design is more reliable than the robust.

As expected, the formulations that consider failure’s probability (RBDO, RRBDO) have the

smallest values of the above mentioned probability. Considering the reaction force’s results,

it’s clear how the reliable formulation accounting for robustness (RRBDO) has the minimum

standard deviation (Fig.6.25).

Table 6.13: Reaction force and probability of failure results.

DO RDO RBDO RRBDO

Reaction Force [KN ] 15.38 14.92 15.36 14.78

σ (RF) 0.3850 0.2982 0.2130 0.1675

Pfailure [%] 0.3 8.2 0.1 0.1

Figure 6.25: Probability distribution functions’ comparison of reaction force results, showing
limit state value.
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In Figs.6.25 and 6.26, we can observe a concept already introduced in Chapter 2, Section 2.4,

that is a more robust solution is achieved through shrinking the distribution.

Although the main aim of the robust optimization is to minimize the standard deviations of

the objectives, here the robust design isn’t the most robust because we have to remember that

we’re conducting a multi-objective optimization, that is minimizing all the standard deviations

of all the objectives (not only the reaction force).

As for the design accounting for reliability (green and cyan curves), the strategy to have a

more reliable design isn’t just distancing the curves from the limit state value (towards right),

but also diminishing the spread of the data, thus reducing the population in the tails of the

distribution. In this case, the reaction force is maximum for the deterministic design, whereas

the robust and reliable design (as the name suggests) has minimum variability of the reaction

force and probability of failure.
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Figure 6.26: Reaction force results.
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6.4.4 Twisting Angle

Concerning the rotation of the floor beam’s upper flange, the design which minimizes the ro-

tation angle is the deterministic one, while the robust design minimizes its variability. Here’s

clear to spot the difference between RDO (red) and RBDO (green), highlighting the fact that

the latter doesn’t account for minimization of objectives’ variability (standard deviations) in

its formulation.

From Figs.6.27 and 6.28, the red curve (robust design) evidently minimizes the variation of

the rotation angle, while the cyan one (robust and reliable design) has the maximum value of

twisting angle. However, it’s useful to remind, that every optimized design has smaller values

of twisting angle than the nominal one (αnominal = 27.06°).

Table 6.14: Twisting angle results.

DO RDO RBDO RRBDO

Twisting angle [°] 23.11 24.27 24.13 26.93

σ (Twisting angle) 0.5356 0.2456 0.9999 0.7611

Figure 6.27: Probability distribution functions’ comparison of twisting angle results.
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Figure 6.28: Twisting angle results.
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6.4.5 Comparison

In Fig.6.29 we can observe a matrix having the various design as rows, while the different ob-

jective functions as columns.

As could be expected, the deterministic design is nor the most robust nor the most reliable,

once introduced the variability in the geometry and in the material properties.

As previously mentioned regarding the reaction force (first column in Fig.6.29), the robust

design has not the smallest standard deviation of the reaction force, but if we look at the

other columns (mass and alpha) we can easily understand that the robust optimization found

a trade-off minimizing the standard deviation of all the objectives.

Here, high level choices come into play. If, for instance, it is much more important to reduce

the variability of the mass (thus geometry) due to reasons related to manufacturing costs (e.g.

cut material, trim, collect and locate into mould etc. [18]), the weight factor of the mass in the

multi-objective optimization function will be increased.

Finally, contrasting the reliable design (green) with the robust and reliable one (cyan), we can

see that, apart from satisfying the reliable constraint, the latter has smaller overall variability.

Table 6.15: Complete results of different optimization approaches.

DO RDO RBDO RRBDO

Height [mm] 79.01 81.88 73.10 76.02

Radius [mm] 4.196 3.275 3.941 3.726

Width [mm] 35.48 33.37 38.36 36.91

Twisting angle [°] 23.11 24.27 24.13 26.93

Mass [Kg] 0.7506 0.7475 0.7505 0.7426

Reaction Force [KN ] 15.38 14.92 15.36 14.78

σ (Twisting angle) 0.5356 0.2456 0.9999 0.7611

σ (Mass) 6.040E-04 5.884E-04 5.992E-04 5.836E-04

σ (RF) 0.3850 0.2982 0.2130 0.1675

Pfailure [%] 0.3 8.2 0.1 0.1
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Figure 6.29: Graphical results’ matrix.



Chapter 7

Conclusion

7.1 Thesis Achievements and Future Work

It this Thesis has been shown that, once introduced uncertainties due to manufacturing tol-

erances and material properties, the deterministic design led to a not robust and not reliable

design. As extensively reminded, lack of robustness causes increasing costs throughout the

structure’s life-cycle, while lack of reliability may lead to incidents or even fatal accidents.

Stochastic approaches accounting for uncertainties, on the other hand, proved enhanced robust-

ness (Robust Design), enhanced reliability (Reliable Design), or a combination of both (Robust

and Reliable Design).

However, achieving a better design comes at a price, which is added complexity in process

modelling, problem formulation and increased computational time. To partially overcome dif-

ficulties in process modelling, logical schemes for probabilistic optimization methods have been

proposed. The need of a surrogate model to approximate the system’s responses arose, and, by

all of the meta-models analysed, Kriging models resulted in better approximations for either

reaction force and twisting angle.

Amongst the stochastic approaches, Robust Design Optimization resulted globally better in

terms of reducing performances’ sensitivity to system’s variations.

Both Reliability-Based Design Optimization and Robust and Reliability-Based Design Opti-

84



7.1. Thesis Achievements and Future Work 85

mization, satisfied the reliability constraint resulting in reliable designs. Although they’re both

reliable, the latter performs better in terms of robustness.

Adopting MCS to assess the probability of failure and the statistical parameters of the re-

sponses, resulted in comparable computational times for the three probabilistic methods, thus

not justifying a formulation that doesn’t account for either robustness and reliability.

The main disadvantage of the proposed framework is in the accuracy of the reliability assess-

ment. Because even though MCS is easier to implement, gives an exact probability of failure

and doesn’t need derivatives of the objective and constraint functions, unlike different reliability

methods (FORM, SORM), it requires higher number of realizations to achieve better accuracy,

hence increased computational time. A comparison with different reliability analysis techniques

could be interesting for future developments.

It’s also interesting to observe that, in the optimization methods accounting for reliability

(RBDO, RRBDO), the limit state function is related to the maximum force that the beam can

withstand before collapsing (RFlim), which is strongly dependent on the longitudinal modulus

of elasticity (Fig.6.15). Besides, variability in the mass (thus geometry), as previously stated,

is crucial for cost reduction in manufacturing processes.

For the above stated reasons, these strong correlations between responses and variable param-

eters could be exploited in an efficient multi-level optimization: performing a Reliability-Based

Design Optimization considering only uncertainties in material properties, and a Robust Design

Optimization accounting only for manufacturing tolerances.

In addition, to find the optimum design of a real composite part subjected to different types of

loads, a more realistic design should include more load cases (ground loads, gust loads), hence

more objective and constraint functions.

Finally, to improve the described formulations, more design variables (stacking sequence, fibres

orientations) could be added to achieve better designs, at the expense of an increased design

space, increased complexity and computational time.
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