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Abstract

This master thesis focuses on modeling, control and trajectory tracking of a
hexacopter UAV (Unmanned Aerial Vehicle) used in fire-detection missions. A set
of non-linear dynamic equations describing the motion of the hexacopter were de-
rived. These equations were then implemented in Matlab/Simulink, which became
a good simulation environment for further studies. A PID controller was success-
fully implemented in simulation; a linear model was used to tune the parameters
of the inner PID controllers.
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Chapter 1

Introduction

The use and development of small unmanned aerial vehicles (UAVs) has in-
creased significantly over the last few decades. UAVs can be used in several field
and applications. People in possession of large grounds, such as farmers and forest
owners, can use UAVs to remotely inspect their properties. Being able to replace
human pilots with autonomous aerial vehicles is obviously a tremendous advan-
tage. The goal of this master thesis is modeling, control and trajectory tracking
of a hexacopter UAV (Unmanned Aerial Vehicle) used in fire-detection missions.
A set of non-linear dynamic equations describing the motion of the hexacopter
were derived. These equations were then implemented in Matlab/Simulink, which
became a good simulation environment for further studies. A PID controller was
successfully implemented in simulation; a linear model was used to tune the pa-
rameters of the inner PID controllers.

1.1 System modeling

The trajectory tracking system is based on a 4-dimension model, which needs
the desired position (x, y, z) and the time between every waypoint. Through-
out trajectory generation, the simulator prefers linear trajectories between one
waypoint and another, but it takes into account the presence of potential No-Fly
Zones; in addition, it chooses paths which guarantee a good GPS signal.

Once the desired position has been calculated, the control system generates the
desired velocities in order to reach that point, by the given time. In the lateral-
directional plane, the controller also generates the desired pitch and roll angles
(considering operating limits). The controller outputs are used to calculate forces
and moments (one vertical force and three moments around the three axes); those
ones are the input commands that the model needs to compute the actual position,
speed and orientation. At the end of the simulation, it is possible to assess the
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1 – Introduction

results with plots and animations of the flying drone.
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Chapter 2

Model

2.1 Reference frame
Let E = {xE, yE, zE} be an inertial frame with origin on the surface of the

earth. This earth fixed frame is a north-east-down-system (NED-system) with xE
pointing to the north, yE pointing to the east and zE pointing downwards.

Also, introduce B = {xB, yB, zB} as a body fixed frame with origin at the
hexarotor’s center of gravity. xB is equivalent with the forward direction of the
hexarotor, yB with right and zB with down. This choice of body fixed frame has
the advantage that the inertia tensor is time-invariant and that the body symmetry
will simplify the equations.

Figure 2.1: The two frames of reference and their relation

5



2 – Model

2.2 Kinematics

The body fixed frame’s position in the earth fixed frame can be described by
the vector ξ = [x, y, z]T and its orientation, attitude and heading, by the vector
η = [φ, θ, ψ]T . The angles used to represent the orientation are defined using
Tait-Bryan formalism. This type of formalism differs from proper Euler angles by
using three different axes when forming the rotation. Within aerospace literature
this representation is often referred to as Euler angles, which may cause some
confusion.

The adopted order of rotation is commonly used when describing aircraft mo-
tion. To bring the body fixed frame into coincidence with the earth fixed frame
the following rotations are considered:

• First, rotate the body-fixed frame about the xB-axis by the roll angle φ,
resulting in a new frame of reference called B1.

• Then, rotate the new frame B1 about the new axis y1B by the pitch angle θ,
resulting in a new frame of reference called B2.

• Lastly, rotate the new frame B2 about the new axis z2B (which coincide with
zE) by the yaw angle ψ, resulting in a new frame aligned with the earth fixed
frame.

In order to transform any linear quantity from earth frame to body frame rotation
matrices are used. In order to simplify the notation sin(·) and cos(·) are abbrevi-
ated s· and c· respectively. The relation between B and B1 after the rolling can
be described by xByB

zB

 =

1 0 0
0 cφ sφ
0 −sφ cφ

x1By1B
z1B

 (2.1)

where the rotation matrix is denoted R(x, φ). In similar manner, after the pitching
B1 is related to B2 via x1By1B

z1B

 =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

x2By2B
z2B

 (2.2)

with the rotation matrix R(y, θ). After the final yawing B2 and E are related byx2By2B
z2B

 =

 cψ sψ 0
−sψ cψ 0

0 0 1

xEyE
zE

 (2.3)

6



2.2 – Kinematics

using the rotation matrix R(z, ψ). The total rotational matrix, to transform any
quantity from earth frame to body frame, is obtained by multiplying R(x, φ),
R(y, θ) and R(z, ψ). That yieldsxByB

zB

 =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

xEyE
zE

 (2.4)

and the total rotational matrix is denoted RL. This matrix is sometimes referred
to as the direction cosine matrix. One convenient feature of RL is that its inverse
is equal to the transpose, that is R−1

L = RT
L, since RL ∈ SO(3). This is useful

when transforming quantities in the body fixed frame to the earth fixed frame.
Denote the linear velocity of the hexarotor expressed in the body fixed frame

V = [u, v, w]T . Then the second time derivative of the position is

ξ̇ = RT
LV (2.5)

In order to relate the change of attitude with the body angular velocities the
different steps of the rotation have to be considered. First, denote the body angular
velocities ω = [p, q, r]T , where p is rotation around the xB-axis, q is rotation
around the yB-axis and r is rotation around the zB-axis.

The first rotation applied to the earth fixed frame, the yawing, is subject to
three successive angular transformation: rotation around zE, y1B and xB. The
second rotation, the pitching, is subject to two successive angular transformation:
rotation around y1B and xB. Lastly, the rolling is only subject to one attitude
transformation: rotation around xB. That gives the relationpq

r

 = R(x, φ)R(y, θ)R(z, ψ)

0
0

ψ̇

+R(x, φ)R(y, θ)

0

θ̇
0

+R(x, φ)

φ̇0
0

 =

=

1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

φ̇θ̇
ψ̇

 (2.6)

where the final transformation matrix is denoted RA. Then the time derivative of
the hexarotor’s attitude η is

η̇ = R−1
A ω (2.7)

and with t· short for tan(·) the inverse can be written

R−1
A =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ

 (2.8)

7



2 – Model

2.3 Dynamics

To begin with, the general equations of linear and angular motion of a rigid
body must be derived. To do this, Newton-Euler formalism is used. In order
to distinguish between quantities expressed in different frames of reference, the
following notation is used:

• A quantity expressed in the inertial earth frame is denoted XE

• A quantity expressed in the body fixed frame is denoted XB

• A quantity already defined in a frame of reference, e.g. ω, will not have the
notation above.

2.3.1 Translation dynamics

In the earth fixed inertial frame, Newton’s second law can be applied, giving

F E = mξ̈ = maE (2.9)

where the time derivative is with respect to the inertial frame and aE is the
acceleration of the body fixed frame expressed in the inertial frame, m is the mass
of the body which is constant and F E is the sum of all external forces applied
to the body expressed in the inertial frame. However, it would be convenient to
express the dynamics in the body fixed frame. By using the rotational matrix from
equation (2.5) a change of basis can be obtained and the expression becomes

RLF
B = mRLa

B = mRL

(
dV

dt

)
E

(2.10)

where the time derivative is still with respect to the inertial frame and V is the
velocity of the body fixed frame expressed in the body fixed frame. Computing
that derivative is rather cumbersome, but using a well-known relation, sometimes
called the transport theorem, yields

FB = m

((
dV

dt

)
B

+ ω × V
)

(2.11)

Let the time derivative with respect to the body fixed frame be denoted by a dot,
then the final equation of the translational dynamics expressed in the body fixed
frame is

FB = mV̇ + ω ×mV (2.12)

8



2.4 – Applied forces and torques

2.3.2 Rotational dynamics

Again starting in the inertial frame, Euler’s second axiom is

ME = L̇
E

(2.13)

where the time derivative is with respect to the inertial frame, LE is the angular
momentum of the body expressed in the earth frame and ME is the sum of all
external torques applied to the body expressed in the earth frame. The quantities
can be expressed in the body fixed frame by applying the rotational matrix for
angular velocities from equation (2.7), giving

RAM
B = RAL̇

B
= RA

(
dJω

dt

)
E

(2.14)

where L = Jω and J is the inertia matrix expressed in the body frame. Dif-
ferentiating J with respect to the earth frame is rather difficult since it will be
time-dependent. Instead, using the transport theorem again, the expression be-
comes

MB =

(
dJω

dt

)
B

+ ω × Jω (2.15)

Since the choice of body fixed frame ensured that the inertia matrix is time invari-
ant, the final equation is

MB = Jω̇ + ω × Jω (2.16)

2.4 Applied forces and torques

The relations in equation (2.12) and (2.16) are general equations of motion for
a rigid body. Now, it is time to apply them to the hexarotor system by finding
the different components of the external forces F and torques M .

The forces and torques acting on the hexacopter are gravity, air friction aero-
dynamic forces and torques produced by the propellers and the gyroscopic effects
from the rotation of the propellers. The torque caused by the angular acceleration
of the propeller has been neglected. All quantities are expressed in the body fixed
frame unless anything else is stated.

2.4.1 Gravity

First off is the gravity which is the only force or torque which is naturally
expressed in the earth frame. The gravitational force is acting on the hexacopter’s

9



2 – Model

center of gravity according to Euler’s first axiom and is directed along the zE-axis.
In the body fixed frame the contribution of the gravitational force FB

G is

FB
G = RL

 0
0
mg

 = mg

 sθ
sφcθ
cφcθ

 (2.17)

where g is the acceleration due to gravity.

2.4.2 Thrust and torque from propellers

The second contribution is the thrust produced by the aerodynamics of the
propellers and reaction torque from the rotation of the rotors. Figure 2.2 shows
where the forces are applied on the air frame.

Figure 2.2: Forces and torques produced by rotors k = 2, 4, 6 and j = 1, 3, 5

The sum of the thrust from the different propellers is total lift force and is
always directed along the negative zB-axis. If the thrust from propeller i is denoted
Ti, then the lift force Fw is

Fw =
6∑
i=1

Ti = T1 + T2 + T3 + T4 + T5 + T6 (2.18)

Since the sources of thrust, i.e. the propellers, are not located in the center of
gravity, they will create torques around the different axes of rotation. With some
basic geometry seen in Figure 2.3, it’s easy to find the produced torque. Around
the xB-axis the torque Mp from propeller thrust is

Mp = − l
2
T1 − lT2 −

l

2
T3 +

l

2
T4 + lT5 +

l

2
T6 (2.19)

10



2.4 – Applied forces and torques

where l is the length of each arm. Around the yB-axis the torque Mq is

Mq =
l
√

3

2
T1 −

l
√

3

2
T3 −

l
√

3

2
T4 +

l
√

3

2
T6 (2.20)

The torque around the zB-axis is a result of Newton’s third law. When the DC-
motor accelerates and keeps the propeller rotating, it exerts a torque on the pro-
peller shaft. The motor will be subject to an equally sized torque in opposite
direction from the propeller shaft. Since the motor is mounted to the airframe,
the torque will propagate to the airframe. This torque is often called reaction
torque. If the reaction torque from propeller i is called τi the total torque around
the zB-axis denoted Mr is

Mr = −τ1 + τ2 − τ3 + τ4 − τ5 + τ6 (2.21)

The reaction torque is produced by two different sources. When the motors and
propellers accelerate, they will exert a torque on the air frame. Also, pressing
the propeller through the air creates friction. This friction is called aerodynamic
torque. The contribution from accelerating the propeller is neglected since its
duration will be very quick, and thus the reaction torque will be equal to the
aerodynamic torque.

Figure 2.3: The geometry of the hexarotor seen from above

The thrust and aerodynamic torque produced by a propeller can be related to
the rotational speed of the propeller blades. If the rotational speed of propeller i

11



2 – Model

is denoted Ωi, then the generated thrust Ti is

Ti = kTΩ2
i (2.22)

where kT is a propeller specific constant explained more thoroughly later. In the
same way, the aerodynamic torque Qi of propeller i becomes

Qi = kQΩ2
i (2.23)

where kQ is a propeller specific constant.
Now, the total torque MA from the aerodynamic effects of the propeller can

be written

MA =


− l

2
kTΩ2

1 − lkTΩ2
2 −

l

2
kTΩ2

3 +
l

2
kTΩ2

4 + lkTΩ2
5 +

l

2
kTΩ2

6

l
√

3

2
kTΩ2

1 −
l
√

3

2
kTΩ2

3 −
l
√

3

2
kTΩ2

4 +
l
√

3

2
kTΩ2

6

−kQΩ2
1 + kQΩ2

2 − kQΩ2
3 + kQΩ2

4 − kQΩ2
5 + kQΩ2

6

 (2.24)

and the total force F A becomes

F A =

 0
0

−kT (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4 + Ω2
5 + Ω2

6)

 (2.25)

2.4.3 Gyroscopic effects from propellers

A propeller is a mass which rotates both around the propeller shaft, but since
it is connected to the airframe, it will follow the rotations of the airframe. If
the rotation around the shaft is the spin and the rotation of the airframe is the
precession, the gyroscopic torque produced by the propeller can be found. The spin
quantity is already defined as Ωi and the precession vector as ω. The gyroscopic
torque MGi

from propeller i is

MGi
= ω × JP

 0
0

(−1)iΩi

 (2.26)

where JP is the inertia matrix of the propeller around the propeller axis and the
factor (−1)i comes from the fact that the propellers rotate in opposite directions.
Using the fact that the inertia matrix is a diagonal matrix the expression can be
simplified to

MGi
= ω ×

 0
0

JP,zz(−1)iΩi

 =

 qJP,zz(−1)iΩi

−pJP,zz(−1)iΩi

0

 (2.27)
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2.5 – Rotor model

Summing up all propellers, the total gyroscopic torque MG is

MG =

 qJP,zz(−Ω1 + Ω2 − Ω3 + Ω4 − Ω5 + Ω6)
−pJP,zz(−Ω1 + Ω2 − Ω3 + Ω4 − Ω5 + Ω6)

0

 (2.28)

2.4.4 Air friction

The air frames movement through the air will cause friction. Because of the
shape of the air frame, the air friction is assumed to be low and a simple model is
sufficient. The model of the air friction is given by

FR = −AT · V (2.29)
MR = −AR · ω (2.30)

where AT and AR are diagonal matrices with diagonal elements aT and aR respec-
tively.

2.5 Rotor model
The rotor model can be separated into two subsystems: the propeller and

the electric motor. The propeller converts rotational speed into thrust and the
electrical motor converts voltage into rotational speed. This part of the modeling
is quite often neglected, but can have a big impact of the performance. The most
important part is the time delay of the propulsion system which is the time between
the pwm-signal is calculated and the propeller reaching the desired speed.

2.5.1 Propeller model

A proper, accurate propeller model includes studying of momentum theory,
blade element theory, relative airflow, blade flapping and the bending and twisting
of the propeller blade; it is a quite complicated subject, and much of the result
comes out as empirical data. A basic propeller model states that the generated
thrust T is

T = CTρr
4
PπΩ2 (2.31)

where ρ is the air density, rP is the propeller radius and CT is the thrust coefficient
of the propeller. Similarly, the aerodynamic torque Q can be expressed as

Q = CQρr
5
PπΩ2 (2.32)

where CQ is the propeller torque constant. Modeling CT and CQ is the complicated
part of the propeller model and is mostly done empirically. The constants will
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2 – Model

depend on the geometry of the propeller as well as the direction the propeller is
traveling in.

2.5.2 Electric motor model

The electrical motors used on the platform are rather complex to model in
detail. The esc receives a pwm-signal which it decodes to a desired rotor speed.
The motor contains permanent magnets. To make the magnets rotate, a magnetic
field is moved around the housing of the motor. The magnets are trying to follow
that magnetic field, and a rotation is created. The speed of this rotation depends
on how fast the magnetic field is moved around which is made by turning on and
off the poles in the housing.

The interesting part of the dynamics of the rotor is the time constant and the
pwm to rotor speed relation. Because of that, a pwm to voltage mapping and a
classic model of a dc-motor is considered sufficient for the purpose of this thesis.
By assuming that the inductance and the friction caused by the moving parts of
the motor are zero the model becomes a first order model which is considered
enough. The model is defined by

I =
Vin −KvΩ

R
(2.33)

Ω̇ =
Kt

JP
+ I − τ

JP
(2.34)

τ = Q (2.35)

where I is the current, Vin is the voltage input, Kv and Kt are speed and torque
constants, Ω is the motor speed, τ is the reaction torque and Q is the aerodynamic
torque.

2.6 Final model

Combining the first derivative of the position equation (2.5), the first deriva-
tive of the orientation equation (2.7), the translational dynamics equation (2.12),
the rotational dynamics equation (2.16), and the external forces equations (2.17),
(2.24), (2.25) and (2.28) the final model becomes

2.6.1 System input

The input to the system can be chosen as several physical quantities. To fulfill
the requirement of platform independence, or at least make the model as modular
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2.6 – Final model

as possible, one can choose the system input as total aerodynamic force and torque
produced by the propellers and the gyroscopic torque as a disturbance.

To extend the model, the rotational speed of the propellers can be chosen as
input to the system. Then the model can include a complex relation between rota-
tional speed of the propellers and generated trust and reaction torque. Going even
further, one can include the electrical motors in the model. These are controlled
by the pwm-input to the esc, and then the duty cycle of the pwm-signals could
be the input signal.

In this model, the rotational speed of the propellers will be chosen as input.
To simplify notation, these will be mapped to the virtual input signals by

Fw = kT
(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4 + Ω2

5 + Ω2
6

)
(2.36a)

Mp = − l
2
kTΩ2

1 − lkTΩ2
2 −

l

2
kTΩ2

3 +
l

2
kTΩ2

4 + lkTΩ2
5 +

l

2
kTΩ2

6 (2.36b)

Mq =
l
√

3

2
kTΩ2

1 −
l
√

3

2
kTΩ2

3 −
l
√

3

2
kTΩ2

4 +
l
√

3

2
kTΩ2

6 (2.36c)

Mr = −kQΩ2
1 + kQΩ2

2 − kQΩ2
3 + kQΩ2

4 − kQΩ2
5 + kQΩ2

6 (2.36d)
WG = −Ω1 + Ω2 − Ω3 + Ω4 − Ω5 + Ω6 (2.36e)

where Fw corresponds to the third component of aerodynamic force F A from the
propellers defined by equation (2.25) and Mp, Mq and Mr to the components in
the aerodynamic torques MA defined by equation (2.24) and where WG is the
input to the disturbance caused by gyroscopic torques.
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2 – Model

2.6.2 Final system model

For convenience, the system model is written in component form where the
inputs have been included

ẋ = cθcψu+ (sφsθcψ − cφsψ)v + (cφsθcψ + sφsψ)w (2.37a)
ẏ = cθsψu+ (sφsθsψ + cφcψ)v + (cφsθsψ − sφcψ)w (2.37b)
ż = −sθu+ sφcθv + cφcθw (2.37c)

u̇ = rv − qw + sθg − aT
m
u (2.37d)

v̇ = pw − ru+ sφcθg − aT
m
v (2.37e)

ẇ = qu− pv + cφcθg − 1

m
Fw −

aT
m
w (2.37f)

φ̇ = p+ sφtθq + cφtθr (2.37g)

θ̇ = cφq − sφr (2.37h)

ψ̇ =
sφ

cθ
q +

cφ

cθ
r (2.37i)

ṗ =
Jyy − Jzz
Jxx

qr +
1

Jxx
Mp +

JP,zz
Jxx

qWG −
aR
Jxx

p (2.37j)

q̇ =
Jzz − Jxx

Jyy
rp+

1

Jyy
Mq −

JP,zz
Jyy

pWG −
aR
Jyy

q (2.37k)

ṙ =
Jxx − Jyy

Jzz
pq +

1

Jzz
Mr −

aR
Jzz

r (2.37l)
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Chapter 3

Control

3.1 The pid controller

Position, velocity and angle controllers are initially implemented using pid
techniques. pid controllers are very popular, easily implemented and can be tuned
by common users.

y(t) = KP e(t) +KI

∫ t

t0

e(τ)dτ +KD
de(t)

dt
(3.1)

where KP , KI and KD are proportional, integral and derivative gains respectively,
and e(t) is the error between reference signal and measured value. The controllers
were implemented on the autopilot and tuned empirically. They consist of position,
velocity and attitude control.

3.2 Position control

The position of the hexarotor is controlled by the following equation:

Vd(t) = KP ep(t) +KI

∫ t

t0

ep(τ)dτ +KD
dep(t)

dt
(3.2)

with
ep(t) = pd(t)− p̂(t) (3.3)

where ep is the position error, pd is the desired position and p̂ is the measured
one, whereas Vd is the desired velocity of the hexarotor. A block diagram of this
controller is shown in Figure 3.1.
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3 – Control

Figure 3.1: Block diagram of the position controller

The velocity along x-axis, u, will be given by the equation (3.2) using epx(t) =
xd(t)− x̂(t), where xd and x̂ are the desired and measured position. The same pro-
cedure can be repeated for velocities v and w, using y and z positions respectively,
thus obtaining the following equations:

ud(t) = KP epx(t) +KI

∫ t

t0

epx(τ)dτ +KD
depx(t)

dt
(3.4)

vd(t) = KP epy(t) +KI

∫ t

t0

epy(τ)dτ +KD

depy(t)

dt
(3.5)

wd(t) = KP epz(t) +KI

∫ t

t0

epz(τ)dτ +KD
depz(t)

dt
(3.6)

with

epx(t) = xd(t)− x̂(t) (3.7)
epy(t) = yd(t)− ŷ(t) (3.8)
epz(t) = zd(t)− ẑ(t) (3.9)

3.3 Velocity control

This controller needs to be split into two different blocks: the first one controls u
and v velocities, in order to generate pitch and roll angles, respectively, as outputs;
the second one controls the w velocity, and this gives the desired vertical force as
output.
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3.3 – Velocity control

3.3.1 Velocities along x and y axes

The velocities u and v of the hexarotor are controlled by the following equations:

φd(t) = KP eVu(t) +KI

∫ t

t0

eVu(τ)dτ +KD
deVu(t)

dt
(3.10)

θd(t) = KP eVv(t) +KI

∫ t

t0

eVv(τ)dτ +KD
deVv(t)

dt
(3.11)

with

eVu(t) = ud(t)− û(t) (3.12)
eVv(t) = vd(t)− v̂(t) (3.13)

where where eVu and eVv are the velocities error along x and y axes respectively,
ud and vd are the desired velocities, û and v̂ are the measured ones. The block
diagrams of these controllers are shown in Figures 3.2 and 3.3.

Figure 3.2: Block diagram of the u velocity controller

It is necessary to limit these outputs, so that desired angles will never exceed
±90°. In order to avoid large values in pitch and roll rates, a filter block has been
implemented to limit φd and θd at ±45°

3.3.2 Velocity along z axis

The velocity w of the hexarotor is controlled by the following equation:

U1(t) = KP eVw(t) +KI

∫ t

t0

eVw(τ)dτ +KD
deVw(t)

dt
(3.14)
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3 – Control

Figure 3.3: Block diagram of the v velocity controller

with

eVw(t) = wd(t)− ŵ(t) (3.15)

where where eVw is the velocity error along z axis, wd is the desired velocity, ŵ is
the measured one and U1d is the desired vertical force. A block diagram of this
controller is shown in Figure 3.4.

Figure 3.4: Block diagram of the w velocity controller

20



3.4 – Attitude control

3.4 Attitude control
Pitch, roll and yaw controllers generate the remaining outputs that the motor

model needs to assess the right angular velocities of the rotors, as shown in the
following equations:

U2(t) = KP eφ(t) +KI

∫ t

t0

eφ(τ)dτ +KD
deφ(t)

dt
(3.16)

U3(t) = KP eθ(t) +KI

∫ t

t0

eθ(τ)dτ +KD
deθ(t)

dt
(3.17)

U4(t) = KP eψ(t) +KI

∫ t

t0

eψ(τ)dτ +KD
deψ(t)

dt
(3.18)

with

eφ(t) = φd(t)− φ̂(t) (3.19)

eθ(t) = θd(t)− θ̂(t) (3.20)

eψ(t) = ψd(t)− ψ̂(t) (3.21)

where eφ is the error between the desired pitch command U2 and the actual one;
the same notation is applied to the roll command U3 and the yaw command U4.
The block diagram of these controllers are shown in Figure 3.5-3.6.

Figure 3.5: Block diagram of the pitch angle controller
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3 – Control

Figure 3.6: Block diagram of the roll angle controller

Figure 3.7: Block diagram of the yaw angle controller
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Chapter 4

Simulation and results

Once the model of the hexarotor is complete and the control laws are suc-
cessfully defined, the system needs something that can easily generate the desired
position or trajectory to follow. The simulation has been implemented in Simulink,
linking all blocks together, as shown in Figure 4.1

Figure 4.1: Overview of the complete system

The trajectory generator block has the purpose to provide the desired coordi-
nates (x, y, z) to the controller block; those coordinates are time-dependent and
each one of them can be easily linked to the previous one and to the next one, in
order to shape any type of trajectory, both static and dynamic.
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4 – Simulation and results

4.1 Linear trajectory along x and y axes
The first trajectory that has been tried is the linear one, in the xy plane. It is

represented by the following equation:
x = 5t

y = 5t

z = 10(e−0.1t − 1)

(4.1)

The trajectory along the z axis simply represents a soft ascent until the hexaro-
tor reaches 10 m (the value on the graph is negative because of the z axis pointing
toward the ground). The trajectories along x and y axes are linear and the deriva-
tive of the trajectory equation defines the speed at which the UAV has to reach:
5 m/s along x and 5 m/s along y.
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200
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300

y 
[m

]

Actual position
Desired position

Figure 4.2: Trajectory of the hexarotor in xy plane

The UAV is capable of following perfectly this type of trajectory; the error
between the desired and the actual position is quickly canceled in the first seconds
of flight.

24



4.1 – Linear trajectory along x and y axes
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Figure 4.3: Trajectory of the hexarotor along the three axes

The maximum absolute values of the roll and pitch angles are 25°, and then,
after few seconds, the attitude of the drone stabilizes and low value of those angles
are sufficient to maintain the desired velocity.

25



4 – Simulation and results

0 10 20 30 40 50 60
time [s]

-30

-20

-10

0

10

20

30

An
gl

es
 [d

eg
]

Figure 4.4: Roll, pitch and yaw angles of the hexarotor
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4.2 – Linear trajectory along y axis

4.2 Linear trajectory along y axis
The next step is to add a non-linearity on one axis, the x one in this case. This

trajectory is really quick and harder to follow, and it introduces some disturbance
in the attitude controller. 

x = 5(1− cos(0.9t))

y = 5t

z = 10(e−0.1t − 1)

(4.2)
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Figure 4.5: Trajectory of the hexarotor in xy plane

It is evident that the UAV can not follow perfectly the desired trajectory,
because it can not predict the right path. However, this is a good result, since the
error on the x axis is no more than 5%
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4 – Simulation and results
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Figure 4.6: Trajectory of the hexarotor along the three axes

The disturbance in pitch and yaw angles in the very first seconds are caused
by the speed of the desired trajectory, that makes the system behave as there be
a step input. Despite this disturbance, the system is able to stabilize quickly and
keeps oscillating between ±20°.
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4.2 – Linear trajectory along y axis
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Figure 4.7: Roll, pitch and yaw angles of the hexarotor
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4 – Simulation and results

4.3 Linear trajectory along x axis
This time the non-linearity has been added on y axis. The behavior of the

system is similar to the previous one: position error in y axis doesn’t exceed 5%
and linear trajectory on x axis is successfully obtained.

x = 5t

y = 5sin(0.9u)

z = 10(e−0.1t − 1)

(4.3)
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Figure 4.8: Trajectory of the hexarotor in xy plane
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4.3 – Linear trajectory along x axis
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Figure 4.9: Trajectory of the hexarotor along the three axes

It is notable that less disturbance is present in pitch and yaw angles: this
is caused by the non-symmetry between x and y axes. In fact, the higher inertia
about y axis, guarantee that the system is less unstable when changing the attitude
quickly.

31



4 – Simulation and results
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Figure 4.10: Roll, pitch and yaw angles of the hexarotor
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4.4 – Non-linear trajectory

4.4 Non-linear trajectory
In this case, the trajectory is non-linear along all the three axes. It consists of

a helicoidal trajectory, that climbs until it reaches 10 m.
x = 3(1− cos(0.9t)

y = 3sin(0.9u)

z = 10(e−0.1t − 1)

(4.4)

This can be considered a good result, since on the x axis the error never exceed
5%; on the y axis a slightly higher error can be observed, but it never goes beyond
10%.
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Figure 4.11: Trajectory of the hexarotor in xy plane

A light disturbance on pitch angle is present. However, this never cause in-
stability, because the controller is able to easily and quickly adjust those values,
granting stability after about 1 second.
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4 – Simulation and results
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Figure 4.12: Trajectory of the hexarotor in a 3D plot
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4.4 – Non-linear trajectory
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Figure 4.13: Trajectory of the hexarotor along the three axes
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4 – Simulation and results
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Figure 4.14: Roll, pitch and yaw angles of the hexarotor
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4.5 – Non-linear dynamic trajectory

4.5 Non-linear dynamic trajectory
In this case, the trajectory is non-linear along all the three axes and the radius

of the circle expands constantly. It consists of a dynamic helicoidal trajectory, that
climbs until it reaches 10 m. 

x = 3(1− cos(0.9t)

y = 3sin(0.9u)

z = 10(e−0.1t − 1)

(4.5)
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Figure 4.15: Trajectory of the hexarotor in xy plane

This case can be considered in an application of a fire-detection mission, where
the trajectory changes his path dynamically. It is a good result, since on the x
and y axes the error never exceed 5%.
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4 – Simulation and results
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Figure 4.16: Trajectory of the hexarotor in a 3D plot
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4.5 – Non-linear dynamic trajectory
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Figure 4.17: Trajectory of the hexarotor along the three axes
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4 – Simulation and results

0 10 20 30 40 50 60
time [s]

-25

-20

-15

-10

-5

0

5

10

15

20

25

An
gl

es
 [d

eg
]

Figure 4.18: Roll, pitch and yaw angles of the hexarotor
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Chapter 5

Conclusion

The model implemented is capable of fairly well simulating the behavior of a
hexarotor during different flight conditions. Several PID blocks have been used to
lower the error between position, velocity and attitude and they have been tuned
so that the stability of the UAV is granted.

The trajectory block is able to generate any path in any shape, and the system
proved that it is able to follow any of them, with a small error in the worst
case. Above all, the UAV demonstrated that it is capable of following a dynamic
trajectory as well, and this can be considered the best result in a fire-detection
mission.

5.1 Further work
The system is ready to follow dynamic paths and moving waypoints, without

excessive error in position and velocity. A future work may have as purpose the
installation of a thermal camera, that takes information from the burning ground.
The flames keep moving if not extinguished, so it would be a good idea to track
at which speed they move and adjust velocity and position.

It would be also a great work trying to swap the PID controller with another
one, for example with the Backstepping method, that has a good application in
non-linear models.

Finally, building the UAV so that it would be possible to validate the modeled
system with a real one could be useful to have a good gain tuning during the
controller development.
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