
POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Matematica

Tesi di Laurea Magistrale

Exploring association of several
variables using mutual information

Relatori
Prof. Mauro Gasparini
Dr. Pavel Mozgunov

Candidato
Alessandra Serra

A. A. 2017-2018





“Exploratory data analysis can never be the whole story, but nothing else can serve as
the foundation stone - as the first step”

Tukey, 1977





Abstract

This work focuses on methods of data exploration using the mutual information and
other related information measures. In particular, the author proposes a method to dis-
cover pairwise correlations among variables and to classify them into clusters.

The master thesis presents the work done by the author during her internship in Tetra
Pak. The core products of the company are the filling machines. The performance of a
machine which fills shelf-stable food packages is called the aseptic performance and is
defined by the long-run ratio between the number of not commercially sterile packages
and the total number of packages filled by the machine.
Nowadays, Tetra Pak collects a large amount of data in order to improve the aseptic
performance.

The dependencies among variables, in real-world applications like the aseptic perfor-
mance characterisation, are often unknown and they are almost always characterized by
nonlinear relationships. The aim of this study was to find a way to discover correlations
among continuous and categorical variables in large datasets. A popular statistic in data
mining is a measure of dependence. In order to deal with a large amount of variables that
could have non-linear dependencies, an adequate measure is required.

The idea is to explore datasets with both continuous and categorical variables and to
group them into clusters using a distance based on the mutual information. This measure
of dependence is well-established in information theory and it can be used to have a
better understanding of the relationships among the features.

The principal use of the proposed method is to find a set of uncorrelated variables in
order to build predictive models and explain variables of interest.
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Chapter 1

Introduction

1.1 Tetra Pak

Tetra Pak is the global leader in food processing and packaging solutions. The founder
was Dr. Ruben Rausing on the Erik Wallenberg’s idea of applying the tetrahedral form
to packaging.

The company delivers end-to-end solutions in order to meet the needs of hundreds of
millions of consumers in more than 190 countries every day. Tetra Pak provides complete
solutions for the processing, packaging and distribution of food products. Dairy products,
beverages, ice cream, cheese and prepared food are examples of products that can be
processed or packaged in Tetra Pak processing and packaging lines.

Figure 1.1. Tetra Pak logo

The company offers a variety of package shapes, in order to meet customers’ re-
quirements and also different packaging materials in order to obtain the best possible
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1 – Introduction

performance with every different food product.

Figure 1.2. Package Portfolio

In addition to a large range of different packages, the company offers a big quantity
of filling machines, that are the connection point between packaging material and food
product.

Figure 1.3. Tetra Pak A3/Compact Flex

1.2 Aseptic Performance Support

Within Tetra Pak, the Aseptic Performance Support (APS) team provides support, ser-
vices and trainings to customers in order to develop competences and good production

2



1.3 – The objective of the work

performances.
The central APS office is based in Modena and the author worked in this team during her
internship.

APS team also develops methods and tools for quality data analysis. In addition, the
team gives international support to customers, organizing trainings and offering methods
to satisfy their quality needs.

1.3 The objective of the work

Nowadays, companies are collecting a large amount of data. We are in the era of Big
Data and the volume of available data is growing exponentially. However most of the
time there is a lack of knowledge in terms of ability to understand and explore data
in an appropriate way. This lack of knowledge and resources could bring economic
costs and delays. For example, it can be difficult to create predictive models or build up
advanced statistics models without an understanding about the behaviour of the variables.
Additional challenges arise as the big quantity of data available contains a lot of missing
values, incorrect information and other similar problems.

A part of the author’s work in Tetra Pak was to find solutions to these problems by
investigating methods for data exploration. Specifically, during the internship, the author
worked with different types of datasets concerning process parameters and quality, such
as measurements from filling machines and information about packaging material.

All these datasets have some common characteristics:

- the number of variables is high;

- the majority of variables is categorical and only few are on a continuous scale;

- the distributions of the variables are most of the time unknown.

The idea is to explore this type of datasets by grouping the variables into clusters in order
to have a better idea of the relationships among the features.

The aim of this work is:

• to compute pairwise correlations among all variables using a measure of depen-
dence;

• to compute hierarchical clustering among variables;

• to find, for each cluster, the variable that shares the most information with Y , given
a variable of interest Y .

3
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Chapter 2

Measures of dependence

2.1 Information Theory

Which measure of dependence should be used in order to detect dependencies among
categorical and continuous variables?

The usual correlation coefficient, the Pearson coefficient ρ , is commonly used to detect
linear associations among continuous variables. Dealing with both categorical and con-
tinuous variables other measures are required. We search for measures of dependence
and variability designed for general random variables, which work well especially for
categorical variables. The information theory approach is used to answer the question.

2.2 Definitions

One of the first information measure was proposed by Shannon (1948) [1] to describe
the quantity of information produced by a source. The first measure in the original work
was the entropy, described as the number of binary digits required to encode a message.
Considering a categorical random variable X , entropy H(X) is the amount of information
required, on average, to describe X . The second notion of information was the mutual
information. The mutual information is a measure of a statistical dependence between
two sets of random variables. Denoting by X and Y two categorical random variables,
the mutual information is the amount of information shared between X and Y .

Definitions concerning the information measures are given below. See, for example,
[2], [3].
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2 – Measures of dependence

Definition 2.1. Let X be a categorical random variable with probability density pX(x).
The Shannon entropy of X is defined by

H(X) =− ∑
x∈χ

pX(x) log pX(x) (2.1)

where χ is the support set of the random variable X .

The entropy could also be written as:

H(X) = E
[

log
1

pX(x)

]
The definition can be extended to a pair of random variables.

Definition 2.2. Let X , Y be two categorical random variables with joint probability den-
sity pX ,Y (x,y). The joint entropy is defined by

H(X ,Y ) =− ∑
x∈χ

∑
y∈γ

pX ,Y (x,y) log pX ,Y (x,y) (2.2)

where χ is the support set of the random variable X and γ is the support set of the random
variable Y .

Definition 2.3. Let X , Y two categorical random variables with joint probability density
pX ,Y (x,y) and marginal densities pX(x) and pY (y).
The mutual information between X and Y is defined as:

I(X ,Y ) = ∑
x∈χ

∑
y∈γ

pX ,Y (x,y) log
pX ,Y (x,y)

pX(x)pY (y)
(2.3)

with convention 0log0 = 0.

The mutual information could be written as

I(X ,Y ) = E
[

log
pX ,Y (x,y)

pX(x)pY (y)

]
or in terms of the entropies

I(X ,Y ) = H(X)+H(Y )−H(X ,Y ) (2.4)

The mutual information can also be written using the conditional entropy.

Definition 2.4. Let X , Y be two categorical random variables with joint probability den-
sity pX ,Y (x,y). The conditional entropy of X given Y is defined by

H(X |Y ) =− ∑
x∈χ

∑
y∈γ

pX ,Y (x,y) log pX |Y (x|y) (2.5)

where

pX |Y (x|y) =
pX ,Y (x,y)

pY (y)

6



2.2 – Definitions

It follows that

I(X ,Y ) = ∑
x∈χ

∑
y∈γ

pX ,Y (x,y) log
pX ,Y (x,y)

pX(x)pY (y)
=

∑
x∈χ

∑
y∈γ

pX ,Y (x,y) log
pX |Y (x|y)

pX(x)
=

∑
x∈χ

∑
y∈γ

pX ,Y (x,y) log
pY |X(y|x)

pY (y)

Therefore
I(X ,Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X).

The relationships among the information measures are given in Figure 2.1

Figure 2.1. Relationships between information measures.

The mutual information has the following properties:

• Symmetry: I(X ,Y ) = I(Y,X);

• Non negativity: I(X ,Y )≥ 0;

• I(X ,Y ) = 0 ⇔ X and Y are independent.

The natural extension of the finite entropy was introduced by Shannon [1], replacing
the sum in Equation (2.1) with the integral.

Definition 2.5. Let X be a continuous random variable with probability density f (x).
The differential entropy h(X) of X is defined by

h(X) =−
∫

Ω

f (x) log f (x)dx (2.6)

where Ω is the support set of the random variable.

7



2 – Measures of dependence

Similarly, the mutual information between two continuous random variables X and Y
can be defined as

I(X ,Y ) =
∫

x∈Ω

∫
y∈ξ

pX ,Y (x,y) log
pX ,Y (x,y)

pX(x)pY (y)
dxdy (2.7)

or in terms of the entropies as

I(X ,Y ) = h(X)+h(Y )−h(X ,Y ) (2.8)

2.2.1 Properties of entropy and mutual information

Let analyse the main properties of entropy and mutual information, separately for the
categorical and continuous cases.

Properties of the entropy and the mutual information of categorical variables
Let X and Y be two categorical random variables. It holds [4]:

H(X)≥ 0.

In particular, H(X) = 0 ⇔ for some i, pX(xi) or pX(x j) = 0 ∀ j /= i. It means that
X is a degenerate random variable;

a)

H(X) ≤ log |A| where |A| is the cardinality of the support of X . Equality holds if
and only if X has a uniform distribution over A;

b)

H(X) = I(X ,X);c)

max(H(X),H(Y ))≤ H(X ,Y )≤ H(X)+H(Y );d)

min(H(X),H(Y ))≥ I(X ,Y ) = H(X)−H(X |Y ).e)

The differential entropy does not share the same properties.

Properties of the entropy and the mutual information of continuous variables
Let X and Y be two continuous random variables.

h(X) can be negative;a)

since 2h(X) is the volume of the support set of the random variable X (see [3]), if
h(X)→ ∞ the support set of the random variable is high and the variable is widely
dispersed;

b)

I(X ,Y ) is not bounded;c)
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2.3 – Mutual information of bivariate binary random vector

I(X ,Y ) is invariant under linear transformations, while h(X) is not. In particular
[3]:

• h(X + c) = h(X);

• h(aX) = h(X)+ log |a|, a ∈ R;

• h(AX) = h(X)+ log |det(A)|, A ∈ Rn×n.

Consider X = aZ1 + b and Y = cZ2 + d where a,b,c,d ∈ R and X ,Y,Z1,Z2 are
random variables. In matrix equation(

X
Y

)
=

(
a 0
0 c

)(
Z1
Z2

)
+

(
b
d

)

Denoting matrix
(

a 0
0 c

)
by A, it follows that

I(X ,Y ) = h(X)+h(Y )−h(X ,Y )
= h(Z1)+ log |a|+h(Z2)+ log |c|−h(Z1,Z2)− log |det(A)|
= h(Z1)+ log |a|+h(Z2)+ log |c|−h(Z1,Z2)− log |ac|
= h(Z1)+ log |a|+h(Z2)+ log |c|−h(Z1,Z2)− log |a|− log |c|
= h(Z1)+h(Z2)−h(Z1,Z2)

= I(Z1,Z2)

d)

The mutual information could be determined analytically in some particular cases,
when the joint distribution is given. Moreover, in some special cases, it has been proved
that the correlation function and mutual information are directly connected to each other.

In the following sections let focus on two special cases. Firstly, the mutual informa-
tion between two particular binary random variables is computed. Secondly, we consider
two random variables with a Gaussian joint distribution.

2.3 Mutual information of bivariate binary random vec-
tor

Let X and Y be Bernoulli with the same marginal distributions.

X ∼ Bernoulli(p), Y ∼ Bernoulli(p)

9



2 – Measures of dependence

Let denote with π = Pr(X = 1,Y = 1), σX =
√

Var(X) and the joint distribution be
defined as

Y = 0 Y = 1 total
X = 0 1−2p+π p−π 1− p
X = 1 p−π π p
total 1− p p 1

Table 2.1. Joint distribution of X and Y .

Let compute, firstly, the Pearson correlation coefficient. Since X and Y have the same
distribution, the correlation coefficient takes the form

ρ(X ,Y ) =
Cov(X ,Y )

σX σY
=

Cov(X ,Y )
σ2

X

=
E[XY ]−E[X ]E[Y ]

σ2
X

=
π − p2

p(1− p)
(2.9)

From Equation (2.9), the following equalities can be proven

• 1−ρ(X ,Y ) = 1− π − p2

p(1− p)
=

p(1− p)−π + p2

p(1− p)
=

p−π

p(1− p)

• (1−ρ)2 =
p2 +π2 −2pπ

p2(1− p)2 =
1

(1− p)2 +
π2 −2pπ

p2(1− p)2

•
π2 −2pπ

p2(1− p)2 = (1−ρ)2 − 1
(1− p)2

The mutual information can be computed as

I(X ,Y ) = ∑
x∈χ

∑
y∈γ

fX ,Y (x,y) log
fX ,Y (x,y)

fX(x) fY (y)

= fX ,Y (0,0) log
fX ,Y (0,0)

fX(0) fY (0)
+2 fX ,Y (0,1) log

fX ,Y (0,1)
fX(0) fY (1)

+ fX ,Y (1,1) log
fX ,Y (1,1)

fX(1) fY (1)

= (1−2p+π) log
(

1−2p+π

(1− p)2

)
+2(p−π) log

(
p−π

p(1− p)

)
+π log

(
π

p2

)
10



2.3 – Mutual information of bivariate binary random vector

Using the first equality we can replace
p−π

p(1− p)
by 1−ρ(X ,Y ) and we obtain

I(X ,Y ) = (1−2p) log
(

1−2p+π

(1− p)2

)
+π

[
log
(

1−2p+π

(1− p)2

)
+ log

(
π

p2

)]
+(p−π) log((1−ρ)2)

= (1−2p) log
(

1−2p+π

(1− p)2

)
+(p−π) log((1−ρ)2)+π log

(
π −2π p+π2

p2(1− p)2

)

Using the third equality we can replace
π2 −2pπ

p2(1− p)2 by (1− ρ)2 − 1
(1− p)2 and we

obtain

I(X ,Y ) = (1−2p) log
(

1−2p+π

(1− p)2

)
+(p−π) log((1−ρ)2)+

π log
(

π

p2(1− p)2 +(1−ρ)2 − 1
(1− p)2

)
= (1−2p) log

(
1−2p+π

(1− p)2

)
+(p−π) log((1−ρ)2)+π log

(
π − p2

p2(1− p)2 +(1−ρ)2
)

= (1−2p) log
(

1−2p+π

(1− p)2

)
+(p−π) log((1−ρ)2)+π log

(
ρ

p(1− p)
+(1−ρ)2

)
= (1−2p) log

(
1−2p+π

(1− p)2

)
+ p log((1−ρ)2)+

π

[
− log((1−ρ)2)+ log

(
ρ

p(1− p)
+(1−ρ)2

)]
= (1−2p) log

(
1−2p+π

(1− p)2

)
+ p log((1−ρ)2)+π

[
log

(
(1−ρ)2 + ρ

p(1−p)

(1−ρ)2

)]

= (1−2p) log
(

1−2p+π

(1− p)2

)
+ p log((1−ρ)2)+π

[
log
(

1+
ρ

(1−ρ)2 p(1− p)

)]
= log

(
1−2p+π

(1− p)2

)
+ p

[
log((1−ρ)2)− log

(
(1−2p+π)2

(1− p)4

)]
+

π

[
log
(

1+
ρ

(1−ρ)2 p(1− p)

)]
= log

(
1−2p+π

(1− p)2

)
+ p

[
log
(
(1−ρ)2 (1− p)4

(1−2p+π)2

)]
+

π

[
log
(

1+
ρ

(1−ρ)2 p(1− p)

)]
11



2 – Measures of dependence

If we denote
1−2p+π

(1− p)2 = t, the mutual information takes the form

I(X ,Y ) = log t + p log
[
(1−ρ)2 1

t2

]
+π log

[
1+

ρ

(1−ρ)2 p(1− p)

]
= log t + p log

[
(1−ρ)2

t2

]
+π log

[
1+

ρ

(1−ρ)2 p(1− p)

]
= log t +2p log

[
(1−ρ)

t

]
+π log

[
1+

ρ

(1−ρ)2 p(1− p)

]
We can note that, in this case, the mutual information depends on different parameters:
t,π,ρ and p. The interpretation of the mutual information is challenging, because the
behaviour is determined by the values of the parameters.

[5] proposed a formula that links the mutual information and the covariance for binary
sequences. In particular, considering two binary exchangeable random variables X , Y and
denoting with Cov(X ,Y ) the covariance of X and Y and with fX(i) = Pr(X = i), fY ( j) =
Pr(Y = j), it can be demonstrated that, when

Cov(X ,Y )
fX(i) fY ( j)

→ 0,with i ∈ {0,1}, j ∈ {0,1},

it follows [5]

I(X ,Y )≈ 1
2

(
Cov(X ,Y )
fX(0) fX(1)

)2

(2.10)

Let observe that
Cov(X ,Y )
fX(0) fX(1)

is exactly the correlation coefficient ρ(X ,Y ), in Equation

(2.9), since
fX(0) fX(1) = σ

2
X

In summary,

I(X ,Y )≈ 1
2

ρ(X ,Y )2, when
Cov(X ,Y )
fX(i) fY ( j)

→ 0 (2.11)

Two interesting observations from this equation, in this particular case, are that mutual
information functions decay to zero at a faster rate than the corresponding correlation
functions and that I(X ,Y ) = 0 ⇔ ρ(X ,Y ) = 0.

Let analyse, in the following section, the behaviour of mutual information in a specific
case of bivariate binary random vector. The same example is proposed, but with the use
of the Beta function for the probability distribution.
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2.3 – Mutual information of bivariate binary random vector

2.3.1 A specific case

Consider the following Directed Acyclic Graph

θ

X Y

where

θ ∼ Beta(a,b), X|θ=p ∼ Bernoulli(p), Y|θ=p ∼ Bernoulli(p)

and let density of θ be

fθ (x) =
xa−1(1− x)b−1

B(a,b)
=

Γ(a+b)
Γ(a)Γ(b)

xa−1(1− x)b−1, x ∈ [0,1], a,b ∈ (0,∞)

and the conditional density of X be

fX |θ=p(i) = P(X = i|θ = p) = pi(1− p)1−i, i ∈ {0,1}, p ∈ [0,1]

The joint density takes the form

fX ,Y,θ (i, j, p) = fX |θ=p(i) fY |θ=p( j) fθ (p)

= pi(1− p)1−i p j(1− p)1− j Γ(a+b)
Γ(a)Γ(b)

pa−1(1− p)b−1 (2.12)

with i ∈ {0,1}, j ∈ {0,1}.
The joint density of X and Y can be obtained by marginalizing out θ .

fX ,Y (i, j) =
∫ 1

0
fX ,Y,θ (i, j, p)dp

=
∫ 1

0
pi+ j+a−1(1− p)2−i− j+b−1 Γ(a+b)

Γ(a)Γ(b)
dp

=
Γ(a+b)
Γ(a)Γ(b)

∫ 1

0
pi+ j+a−1(1− p)1−i− j+bdp

=
Γ(a+b)
Γ(a)Γ(b)

B(i+ j+a,b− i− j+2)

=
Γ(a+b)
Γ(a)Γ(b)

Γ(a+ i+ j)Γ(b+2− i− j)
Γ(a+b+2)

(2.13)
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2 – Measures of dependence

It follows that

fX ,Y (0,0) =
b(b+1)

(a+b)(a+b+1)

fX ,Y (0,1) =
ab

(a+b)(a+b+1)
= fX ,Y (1,0)

fX ,Y (1,1) =
a(a+1)

(a+b)(a+b+1)

Note that the marginal densities of X and Y are identical:

fX(0) = P(X = 0) = ∑
j∈{0,1}

fX ,Y (0, j) =
b

a+b
= fY (0) = P(Y = 0) (2.14)

fX(1) = P(X = 1) = 1−P(X = 0) =
a

a+b
= fY (1) = P(Y = 1) (2.15)

The mutual information can be computed as

I(X ,Y ) = ∑
x∈χ

∑
y∈γ

fX ,Y (x,y) log
fX ,Y (x,y)

fX(x) fY (y)

= fX ,Y (0,0) log
fX ,Y (0,0)

fX(0) fY (0)
+2 fX ,Y (0,1) log

fX ,Y (0,1)
fX(0) fY (1)

+ fX ,Y (1,1) log
fX ,Y (1,1)

fX(1) fY (1)

=
b(b+1)

(a+b)(a+b+1)
log
(

b(b+1)
(a+b)(a+b+1)

(a+b)2

b2

)
+

2
ab

(a+b)(a+b+1)
log
(

ab
(a+b)(a+b+1)

(a+b)2

ba

)
+

a(a+1)
(a+b)(a+b+1)

log
(

a(a+1)
(a+b)(a+b+1)

(a+b)2

a2

)
which reduces to

I(X ,Y ) = log
(

a+b
a+b+1

)
+

b2 +b
(a+b)(a+b+1)

log
(

1+
1
b

)
+

a2 +a
(a+b)(a+b+1)

log
(

1+
1
a

)
Some considerations:

• when the density of θ is uniform in the interval [0,1] (a = b = 1)

I(X ,Y ) = log
(

2
3

)
+

2
6

log(2)+
2
6

log(2)

=

(
1+

4
6

)
log(2)− log(3)

=
5
3

log(2)− log(3)≈ 0.057

It means that the X and Y share a little amount of information.
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2.3 – Mutual information of bivariate binary random vector

• Let try to rewrite I(X ,Y ) in a more interpretable way. Let denote with{
p = fX(1) =

a
a+b

u = a+b

It follows that {
a = pu
b = u(1− p)

The mutual information takes the form

Ip,u(X ,Y )= log
(

u
u+1

)
+

1
u+1

[(
(1− p)2u+(1− p)

)
log
(

1+
1

u(1− p)

)
+(p2u+ p) log

(
1+

1
up

)]
We use R [6] to illustrate the trend of the mutual information as a function of u and p.

p

0.2
0.4
0.6

0.8 u0.2
0.4

0.6
0.8

I=
f(p
,u
)

2

4

6

8

Figure 2.2. The graph shows the trend of the mutual information as a function
of u and p, with 0 < u ≤ 1.
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2 – Measures of dependence

p

0.2
0.4
0.6

0.8 u1
2

3

I=
f(p
,u
)

2

4

6

8

Figure 2.3. The graph shows the trend of the mutual information as a
function of u and p, with 0 < u ≤ 5.

From these figures we can see that the mutual information decreases quickly as the
sum of the Beta parameters increases. In particular, we have previously shown that when
a = b = 1, the mutual information takes value close to zero.

Also in this case, as it is the same proposed in the section 2.3, we can approximate
(see Equation 2.10) the mutual infomation as

I(X ,Y )≈ 1
2

(
Cov(X ,Y )
fX(0) fX(1)

)2

=
1
2

(
f(X ,Y )(1,1)− fX(1)2

fX(0) fX(1)

)2

=
1
2

(
1

a+b+1

)2

=
1
2

(
1

u+1

)2

under the sufficient conditions listed in [5]

Cov(X ,Y )
fX(i) fY ( j)

→ 0,with i ∈ {0,1}, j ∈ {0,1}
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2.4 – The Gaussian case

that are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cov(X ,Y )
fX(0) fY (0)

=
f(X ,Y )(1,1)− fX(1)2

fX(0)2 =
a

b(a+b+1)
→ 0

Cov(X ,Y )
fX(1) fY (1)

=
f(X ,Y )(1,1)− fX(1)2

fX(1)2 =
b

a(a+b+1)
→ 0

Cov(X ,Y )
fX(0) fY (1)

=
1

a+b+1
→ 0

With this approximation we can note that the mutual information depends only on the
inverse squared sum of the Beta parameters.

Finally, it is of interest to consider a bivariate gaussian mutual information, as it is
directly related to the Pearson correlation coefficient. The following section focuses on
the Gaussian case.

2.4 The Gaussian case

The mutual information between two Gaussian random variables can be determinated
analytically using Equation (2.8).
Let Z = (X ,Y )∼ N(µ,Σ) with

f (z) =
1

(
√

2π)2|Σ| 1
2

e
−(z−µ)T Σ−1(z−µ)

2 and Σ =

[
σ2

x ρσxσy
ρσxσy σ2

y

]
, µ =

[
µx
µy

]

The joint entropy takes the form

h(X ,Y ) =−
∫

f (z)[
−(z−µ)T Σ−1(z−µ)

2
− log((

√
2π)2|Σ|

1
2 )]dz

=
E[∑i, j(zi −µi)(Σ

−1)i j(z j −µ j)]

2
+

log((2π)2|Σ|)
2

=
∑i, jE[(zi −µi)(z j −µ j)](Σ

−1)i j

2
+

log((2π)2|Σ|)
2

=
∑ j ∑i Σ ji(Σ

−1)i j

2
+

log((2π)2|Σ|)
2

=
∑ j(ΣΣ−1) j j

2
+

log((2π)2|Σ|)
2

=
∑ j I j j

2
+

log((2π)2|Σ|)
2

17



2 – Measures of dependence

=
2
2
+

log((2π)2|Σ|)
2

=
log(2πe)2|Σ|

2

Then, the mutual information can be written as

I(X ,Y ) =
log(2πeσ2

x )

2
+

log(2πeσ2
y )

2
− log(2πe)2|Σ|

2

=− log(1−ρ2)

2

In this case, is a function of ρ , the Pearson correlation coefficient. In particular, when
two Gaussian variables are strictly correlated, ρ =±1, I(X ,Y ) = ∞. In contrast, if the
two random variables are uncorrelated, ρ = 0, then I(X ,Y ) = 0. Indeed, the mutual
information is a strictly increasing function of ρ2, as displayed in Figure 2.4. It follows
that in the Gaussian case, the mutual information does not add any information to the
linear correlation coefficient ρ .

0.0

0.5

1.0

1.5

0.0 0.5 1.0
rhoSquared

Ig
au

ss

Figure 2.4. The dependence of the mutual information of a bivariate Gaus-
sian vector for different values of ρ2.

In general the mutual information can detect all types of dependencies, both linear and
nonlinear. [5] demonstrates that the mutual information function is capable of capturing
the nonlinear dependencies that the covariance might have missed. Indeed, [5] shows
that Cov(X ,Y ) = 0 ; I = 0 for ternary sequences in general.

In summary, the mutual information is a more general statistical measure of correla-
tion rather than the Pearson correlation coefficient. It is a dependence measure well de-
fined both for continuous and for categorical variables and we have shown that, in some
particular cases and under several sufficient conditions, it can be directly connected to
the Pearson correlation coefficient.
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Chapter 3

The estimation of entropies and
mutual informations

In applications, the data available is often a random sample. To estimate I(X ,Y ) one
begins from N bivariate measurements (xi,yi), i = 1, ...,N each of which are assumed
to be i.i.d. (independent identically distributed) realizations of random variables. For
two categorical random variables, estimating the joint probability is straightforward, as
it consists of counting the number of samples in each combination of categories of the
two variables. If two continuous random variables are considered, it becomes more
challenging to estimate their joint distribution.

While the problem of the mutual information estimation was extensively studied, it
still attracts a lot of attention in the literature. There are two basic approaches to esti-
mation: non-parametric and parametric. Non-parametric estimators are flexible, because
they do not assume that the variable is from a known family of distribution, but in con-
trast they are less powerful (in terms of efficiency and accuracy) than the parametric
ones [7]. So the challenge is to find an estimation method that covers both parametric
and non-parametric density methodologies and still can be applied to the most if not
all applications effectively [7]. Examples of non-parametric entropy estimators are the
Kernel Density Estimator [8, 9] and the Kozachenko-Leonenko estimator [10], extended
later by [11].

In R [6] there are two packages: infotheo [12] and IndepTest [13] that implement
estimators for categorical variables and the Kozachenko-Leonenko estimator, respec-
tively.

The first part of this chapter focuses on the estimation of the mutual information,
while the second part considers normalization of mutual information.
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3 – The estimation of entropies and mutual informations

3.1 Mutual information of two categorical variables

Let A and B be two categorical random variables. Then, the mutual information can
be computed estimating the joint probability from the frequency of observed samples
in each combination of variable categories. The estimated mutual information takes the
form

Î(A,B) = ∑
a∈supp(A)

∑
b∈supp(B)

p̂A,B(a,b) log
p̂A,B(a,b)

p̂A(a)p̂B(b)

= ∑
a∈supp(A)

∑
b∈supp(B)

na,b

N
log

na,b
N

na
N

nb
N

= ∑
a∈supp(A)

∑
b∈supp(B)

na,b

N
log

Nna,b

nanb

where na,b is the number of samples with categories a and b, N is the total number of
samples, na is the number of samples with category a and nb is the number of samples
with category b.

However, the conventional calculation of mutual information based on frequencies of
all possible combinations might be not efficient for variables with many categories [14].
In this article, to overcome the inefficiency problem, a recursive partitioning algorithm
is proposed. Nevertheless, this algorithm was not considered during the internship. We
will not focus on categorical data with a large amount of categories.

3.2 Mutual information of two continuous variables

Let X and Y be two continuous random variables. Below we consider two estimation
methods of the mutual information:

1. an estimation using discretization, where the support sets of the random variables
are discretized;

2. a non-parametric estimation without discretization.

3.2.1 Estimation using discretization

To estimate the mutual information, we start from the estimation of the entropy and, at
a later stage, the estimation of the mutual information can be computed, using Equation
(2.4).
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3.2 – Mutual information of two continuous variables

Let X be a continuous random variable. We divide the interval of support set into k
sub-intervals, called bins and adapt the following notation:

• nk = the number of samples in bin k;

• N = the total number of samples;

• c = the total number of bins.

The partition of the support set into sub-intervals can be done in R with the package
infotheo [12] using the function discretize and one of three different methods of dis-
cretization:

• equalfreq: division of the interval [α,β ] into sub-intervals, each having the same
number of data points;

• equalwidth: division of the interval [α,β ] into sub-intervals of equal size;

• globalequalwidth: uses the same interval width for both random variables.

After the discretization of the variable, the entropy can be estimated using, for exam-
ple, one of the following methods [15]:

Empirical estimator

Ĥemp =−
c

∑
k=1

nk

N
log(

nk

N
)

The empirical estimator is biased [16] and it underestimates the entropy. To adjust
it, the Miller-Madow estimator was proposed [15].

Miller-Madow estimator
Ĥmm = Ĥemp +

c−1
2N

Shrinkage estimator

Ĥsk =−
c

∑
k=1

p̂λ (nk) log(p̂λ (nk))

where
p̂λ (nk) = λ

1
c
+(1−λ )

nk

N
and the weighting parameter λ is estimated by minimizing:

λ
∗ = arg min

λ∈[0,1]
E[(∑

k∈c
p̂λ (nk)− p(nk))

2]

Note that if the parameter λ → 0 the shrinkage estimator converges to the empirical
one. Instead, if λ → 1 the probability p̂λ (nk) follows a uniform distribution.
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3 – The estimation of entropies and mutual informations

Schurmann-Grassberger estimator

The Schurmann-Grassberger estimator uses the Dirichlet probability distribution
as a conjugate prior for the likelihood given by the empirical estimator. The prior
parameter is chosen as 1

c . Then, the entropy is estimated as follow:

Ĥdir =−
c

∑
k=1

p̂k log p̂k

where

p̂k =
nk +

1
c

N +1

3.2.2 Estimation without discretization

Kernel Density Estimator

The kernel density estimation was introduced by [8, 9]. The general form of a Kernel
Density Estimator (KDE) in d dimensions is

p̂(x) =
1

Nhd

N

∑
k=1

K
(

x−xk

h

)
where K(x) is the kernel function, which is required to integrate to one [9], x is a d-
dimensional random vector, N is the number of samples and h is the kernel width. The
performance of KDE estimators strongly depends on the choice of the kernel width.

The mutual information, using the KDE estimator, can be estimated as

Î(X ,Y ) = ∑
x∈χ

∑
y∈γ

p̂X ,Y (x,y) log
p̂X ,Y (x,y)

p̂X(x)p̂Y (y)
(3.1)

Several articles, in the literature, focused on KDE estimator and the choice of the optimal
bandwidth. However, [17] states that the Kozachenko-Leonenko estimator is computa-
tionally more effective and stable than the KDE estimator. During the internship, we
have decided to focus on the Kozachenko-Leonenko estimator.

Kozachenko-Leonenko estimator

A non-parametric entropy estimator is the Kozachenko-Leonenko [10]. This was subse-
quently modified by [18] to estimate the mutual information.

In particular, in the package IndepTest [13], the function mutinfo computes the mu-
tual information using the estimator I(1)(X ,Y ) described by Kraskov [18].
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3.2 – Mutual information of two continuous variables

Consider two continuous random variables X and Y and the space Z = (X,Y). The
point in the space is zi = (xi,yi). The norm in the metric space is defined as

∥zi − z j∥= max{∥xi − x j∥,∥yi − y j∥}

For each point zi we can compute the distances di, j = ∥zi − z j∥,∀ j /= i and rank the
neighbours of zi by distance: di, j1 ≤ di, j2 ≤ di, j3 ≤ ...
Following the original work, we use the notation below:

•
ε(i)

2
is the distance between zi and his k-nearest neighbour.

•
εx(i)

2
and

εy(i)
2

are the distance as above projected into the subspace X and Y , it

follows that ε(i) = max{εx(i),εy(i)}

• nx(i) is the number of points x j whose distance from xi is strictly less than
ε(i)

2
.

An example of the space Z is given in Figure 3.1.

Figure 3.1. k=1, nx(i) = 2 and ny(i) = 2.

The Kozachenko-Leonenko estimator is defined as [18]

Ĥ(X) =−ψ(k)+ψ(N)+ logcd +
d
N

N

∑
i=1

logε(i) (3.2)

where ψ is the digamma function, defined as ψ(x) = d
dx ln(Γ(x)) = Γ′(x)

Γ(x) , d is the dimen-
sion of X , cd is the volume of the d-dimensional unit ball and N is the total number of
samples.
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3 – The estimation of entropies and mutual informations

To avoid the different bias obtained in Ĥ(X), Ĥ(Y ) and Ĥ(X ,Y ), [18] proposed to
estimate the entropy in the following way

Ĥ(X) =− 1
N

N

∑
i=1

ψ[nx(i)+1]+ψ(N)+ logcdx +
dx

N

N

∑
i=1

logε(i) (3.3)

and the Kraskov estimator for the mutual information takes the form

Î(X ,Y ) = ψ(k)+ψ(N)− 1
N

N

∑
i=1

ψ[nx(i)+1]+ψ[ny(i)+1] (3.4)

Recent papers have explored the main properties of the Kraskov estimator (KSG es-
timator). Specifically, [19] demonstrates the consistency of the estimator and proposed a
bias-improved KSG estimator.

3.3 Mutual information of a categorical and a
continuous variable

Let X be a continuous random variable and A be a categorical random variable defined
by a number of distinct classes. The estimator of the mutual information of categorical
and continuous random variables is proposed in [20].

Let

• X be a continuous random variable and A be a categorical random variable with L
classes

• Pr(A = al) =
nl

N

•
ε(n,k)

2
be the distance between xn and his k-nearest neighbour.

•
εl(n,k)

2
be the distance between xn and his k-nearest neighbour, but the set of neigh-

bours of xn is computed using the data having class al only.

The estimator is

Î(X ,A) = ψ(N)− 1
N

L

∑
l=1

nlψ(nl)+
d
N

(
N

∑
n=1

logε(n,k)−
L

∑
l=1

∑
y∈yl

logεl(n,k)

)
(3.5)

where d is the dimension of X , ψ is the digamma function and N the total number of
samples.

It was implemented in the software R by the author, during the internship. For details,
see the code in Appendix B.
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3.4 – The normalization

3.4 The normalization

The mutual information can take values from zero to infinity. To compute hierarchical
clustering among the variables, a distance or a measure of dissimilarity defined on the
same scale is needed. To define a measure of distance, the mutual information has to be
upper bounded.

We start by separating the case of two categorical random variables and the case of
two continuous random variables.

3.4.1 Categorical random variables

Let A and B be two categorical random variables. [21] defines the following measure of
similarity using the disequality e) from the properties listed in Chapter 2:

0 ≤ I(A,B) = H(A)−H(A|B)≤ min(H(A),H(B))

and takes the normalized mutual information as:

I(A,B)norm =
I(A,B)

min(H(A),H(B))
, 0 ≤ I(A,B)norm ≤ 1 (3.6)

Then, the dissimilarity measure takes the form

d′(A,B) = 1− I(A,B)
min(H(A),H(B))

(3.7)

However, it can be demonstrated that d′(A,B) is not a distance, as it does not fulfill
the identity of indiscernibles: the distance can reach zero even if the entropies H(A) and
H(B) are not identical. For example, if we consider

H(A) = min(H(A),H(B))

then

d′(A,B) = 1− I(A,B)
H(A)

= 0 ⇔ H(A) = I(A,B) = H(A)+H(B)−H(A,B)

which implies H(B) =H(A,B) and not A=B. However, this measure is useful in content
recognition [21], where a metric is not necessary.

The second normalized version is:

I(A,B)norm =
I(A,B)
H(A,B)

, 0 ≤ I(A,B)norm ≤ 1 (3.8)
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3 – The estimation of entropies and mutual informations

Indeed, if B coincides with A, then

I(A,A) = H(A), H(A,A) = H(A)

and
I(A,A)norm = 1

The distance measure can be defined as

d(A,B) = 1− I(A,B)
H(A,B)

(3.9)

and it can be demonstrated that this measure is a metric [22].

3.4.2 Continuous random variables

Considering continuous random variables, the differential entropy can be negative. There-
fore, the normalization cannot be well defined.

A normalized version of the mutual information was proposed by [23] and was sub-
sequently used by [24, 25].

Let X and Y be two continuous random variables, then

r(X ,Y ) =
√

1− exp−2I(X ,Y ) (3.10)

is called the information coefficient of correlation. Note that if X and Y are normally
distributed, r(X ,Y ) = |ρ|, where ρ is the Pearson correlation coefficient. Indeed:

r(X ,Y ) =
√

1− exp−2I(X ,Y ) =

√
1− exp−2(− ln(1−ρ2)

2 ) =
√

1− (1−ρ2) = |ρ|.

3.4.3 Continuous and categorical random variables

Dealing with mixed dataset, containing both categorical and continuous variables, there
is also the case of the mutual information between a continuous and a categorical random
variables.

We do not focus on the normalization of the estimator of mutual information (Eq. 3.5),
because, as we will see in Chapter 5, the dataset of interest will be split in two parts: a
group with continuous variables only and a group with categorical variables only. In this
way, just two distance measures (Eq. 3.9 and the dissimilarity from Eq. 3.10) are needed
and they will be analized in the simulation study in Chapter 5.
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3.4 – The normalization

To summarize, the mutual information has been widely studied in the past and several
estimators were proposed during the years. During the internship we have decided to use
one of them and we have analysed the results obtained.
Next chapters regard the description of the work done during the internship and the
application of mutual information to an artificial example.

27



28



Chapter 4

A solution to explore associations
between variables

In literature, [21, 22, 25] use the mutual information for hierarchical clustering and clas-
sification problems. In particular [22] proposed a hierarchical clustering based on the
mutual information and applied it to two datasets containing continuous variables. It
uses the mutual information as a proxy to group objects into clusters. Also [25] suggests
an agglomerative hierarchical clustering to study interdependencies among continuous
variables. In Tetra Pak we have decided to explore the data using a similar method de-
scribed in this chapter. The second part of the chapter focuses on another approach used
in the literature to group mixed variables.

4.1 A description of the method

In the following section the explanation of the work done during the internship is given.
In Tetra Pak the described method was applied to real datasets and the results obtained
were verified and used for development activities. However, for confidentiality reasons,
the real dataset cannot be reported in this document. For this, in Chapter 5, a simulation
study is reported.

4.1.1 The idea elaborated during the internship

The idea, elaborated during the internship, is to solve the points described in the section
1.3 in this way:
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4 – A solution to explore associations between variables

• Compute pairwise correlations among all pairs of variables using a measure of de-
pendence:

– considering mixed datasets with categorical and continuous variables, we use
a unique estimator of the mutual information. For continuous variables the
equalfreq discretization is used. The mutual information is estimated using
the Shurmann-Grassberger estimator.

• Compute hierarchical clustering among variables using the distance (3.9) and the
complete-linkage clustering. Denoting with V1 and V2 two clusters, the complete-
linkage is the distance between V1 and V2 and it is defined as

D(V1,V2) = max{d(v1,v2) : v1 ∈V1,v2 ∈V2}

• Given a variable of interest Y , for each cluster, find the variable that shares the most
information with Y :

– two different cases are considered:

Y is continuous: if the response variable is continuous, the mutual in-
formation between Y and the others variables can be estimated using the
Kraskov estimator [18] and the estimator proposed in Equation (3.5) for
the case of a continuous and a categorical variables.

a)

Y is categorical: the mutual information between the response variable
and the others is estimated using the Shurmann-Grassberger estimator.

b)

As previously mentioned, the proposed method cannot be presented, in the thesis, for
the real data stored in Tetra Pak. Therefore, to have a comparison measure on a fictional
dataset, another method to explore associations is proposed in the following section.

4.2 An alternative approach to explore mixed dataset

In literature another method is proposed for the clustering of variables and it is imple-
mented in R in the package ClustOfVar [26].

The method developed in the package works with all types of variables (both con-
tinuous and categorical) and there is a function hclustvar that computes a hierarchical
clustering among the features of the dataset. The method is based on PCAMIX [27], a
principal component method for both continuous and categorical variables. The function
hclustvar is used to compare the results of the two different methods (PCAMIX and the
mutual information approach) on an artificial dataset.
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4.2 – An alternative approach to explore mixed dataset

4.2.1 A brief description of the ClustOfVar package

The clustering method used in the ClustOfVar package aims to maximize the homogen-
ity criterion: a cluster of variables is considered to be homogenous if the variables into
the cluster are strongly linked to a central quantitative synthetic variable. The central
quantitative variable of a cluster is the first principal component of PCAMIX applied to
all the variables in the cluster.

Let us consider two sets:

• X = {x1, ...,xp1}, a set of continuous variables; X is a matrix of dimension n× p1,
where n is the number of the observations;

• Y = {y1, ...,yp2}, a set of categorical variables; Y is a matrix of dimension n× p2.

For simplicity, denote the j-th column of X by x j, the j-th column of Y by y j and the
set of categories of y j by M j. Let Pk = (C1, ...,Ck) be a partition into K clusters of the
p = p1 + p2 variables.

The synthetic variable of a cluster Ck is defined below

Definition 4.1.
ck = argmax

u∈Rn
{ ∑

x j∈Ck

r2
u,x j

+ ∑
y j∈Ck

η
2
u|y j

} (4.1)

where r2 is the squared Pearson correlation coefficient and η2 denotes the correlation
ratio, that is defined as

η
2
u|y j

=
∑s∈M j ns(us −u)2

∑
n
i=1(ui −u)2 (4.2)

where ns is the frequency of category s, us is the mean value of u calculated on the
observations belonging to category s and u is the mean of u.

Let us define the homogeneity H of a cluster Ck.

Definition 4.2.
H(Ck) = ∑

x j∈Ck

r2
x j,ck

+ ∑
y j∈Ck

η
2
ck|y j

(4.3)

The aim is to find a partition of a set of continuous and categorical variables such
that the variables within a cluster are strongly related to each other. In the package a
hierarchical clustering algorithm is proposed.

The hierarchical clustering algorithm

1. Step i = 0: start with the partition in p clusters.
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4 – A solution to explore associations between variables

2. Step i = 1, ..., p− 2: aggregate two clusters of the partition in p− i+ 1 clusters
to get a new partition in p− i clusters. The clusters A and B are chosen with the
smallest dissimilarity d defined as

d(C1,C2) = H(C1)+H(C2)−H(C1 ∪C2) (4.4)

3. Step i = p−1: stop. The partition in one cluster is obtained.

In summary, in this chapter the idea elaborated during the internship was presented.
However, for privacy conditions, the tests and the results analysed during the internship
cannot be stated in the document. For this reason, the Chapter 5 presents a simulation
study and the application of the previous approaches to an artifical dataset created by the
author.
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Chapter 5

Simulation study

The aim of this chapter is to simulate an artificial dataset in order to investigate the
behaviour of exploratory method. Initially, we analyse the first two points listed in 1.3:

1. Compute pairwise correlations among all variables using a measure of dependence;

2. Compute hierarchical clustering among variables.

The last point, that is to find, for each cluster, the variable that shares the most informa-
tion with a variable of interest Y , is taken into account in the second part of this chapter.

5.1 Artificial dataset

To have a prior idea of the clusters and the dependencies among variables, an artificial
dataset was simulated. The code used is reported in Appendix A. The artificial dataset
contains both continuous and categorical variables. In particular, there are both linear
and nonlinear functional dependencies among the continuous variables and some of the
categorical variables are linked to the continuous ones. For example, the categorical vari-
able exponentialSign assumes value "+" if the continuous random variable exponential
is greater than three and the value "−" if the continuous random variable exponential is
less or equal to three.
The response variable is risp.

The exploration analysis is organized as follow:

• the dataset is divided into two subsets: one containing the continuous variables only
and the other the categorical ones;

• the full dataset is considered.
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5 – Simulation study

5.1.1 Continuous variables

Let us take into account only the continuous variables and let investigate the associations
among them.

The pairwise distributions among the continuous variables are shown in the following
figure:

normal
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−
3

1

−
1
.0

1
.0

sinusoid

normalNoisy

−
3

1

−
2
6

exponential

exponentialTranslated

0
8

−
1
.0

1
.0

uniform

poweruniform

0
.0

0
.8

−3 0 2

−
1
.0

1
.0

−3 0 2 0 4 8 12 0.0 0.4 0.8

cubeuniformNoisy

Figure 5.1. Distributions of the continuous variables.

Figure 5.1 shows that there are three main clusters among the variables. Specifically,
we expect to find the following groups of variables:

- normal, sinusoid, normalNoisy;

- exponential, exponentialTranslated;

- uniform, poweruniform, cubeuniformNoisy.

To search these main dependencies, we use:

• the Kraskov estimator, Eq. (3.4), to compute correlations pairwise.

34



5.1 – Artificial dataset

• dist(X ,Y ) = 1− r(X ,Y ) = 1−
√

1− exp−2I(X ,Y ), as the distance between two ran-
dom variables, where r(X ,Y ) is the information coefficient of correlation given in
Equation (3.10).

The hierarchical tree obtained is given in Figure 5.2

Figure 5.2. Clustering of continuous variables.

Using the proposed approach, all the clusters are consistent with the definitions of the
variables and the groups found coincide with the expected ones.

5.1.2 Categorical variables

Let now take into account only the categorical variables of the dataset. To create the
hierarchical clustering we use the method described in the Chapter 4.

Looking at the definitions of the variables in Appendix A, we expect to find the fol-
lowing groups of variables:

- capitalLetter, lowercaseLetter, letterGroup;

- exponentialSign, exponentialSignLetter;

- letterUniform, uniformdiscretize;

- sinusoidDomainSign.
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5 – Simulation study

The hierarchical tree is presented in Figure 5.3

Figure 5.3. Clustering of categorical variables.

Clearly, all the clusters found coincide with the expected ones.

5.1.3 Full Dataset

Let us consider the full dataset and also in this case, the method described in Chap-
ter 4 is used. Let us compute pairwise correlations using the two different methods of
discretization which are described in the section 3.2.1: equalfreq and equalwidth.

Looking at the variables in Appendix A, we expect that the categorical variables de-
fined from the continuous ones fall into the same cluster. In particular:

- sinusoid, sinusoidDomainSign;

- exponential, exponentialSign, exponentialSignLetter;

- uniform, letterUniform, uniformdiscretize.
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5.1 – Artificial dataset

The hierarchical tree obtained using the discretization equalfreq is given in Figure
5.4

Figure 5.4. Clustering of variables of the artificial dataset.

The hierarchical tree obtained using the discretization equalwidth is provided in
Figure 5.5

Figure 5.5. Clustering of variables of the artificial dataset.

We compare these hierarchical trees with the hierarchical tree created by the function
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5 – Simulation study

hclustvar in the package ClusOfVar.

The hierarchical tree obtained is demonstrated in Figure 5.6

Figure 5.6. Clustering of variables of the artificial dataset using the ClustOfVar package.

Some considerations:

• the choice of the discretization method in the first two hierarchical trees does not
influence the result. The clusters obtained are exactly the same.

• Having a look at Figure 5.4 and Figure 5.6, it can be noted that the main clusters
found are the same. The difference is in the cluster letterUniform and uniformdis-
cretize. Using the first method (see Figure 5.4), the cluster is isolated from the
others, while using the ClustOfVar package (Figure 5.6) the cluster is correctly
connected to the cluster of the variable uni f orm.

• In the second method, the non-linear dependencies are difficult to find out, due
to the fact that in the ClustOfVar package the correlation is computed using the
Pearson correlation coefficient. Indeed a strong dependency is detected between the
variable uniform and the variable cubeuniformNoisy (see Figure 5.6). Moreover the
variable poweruniform is wrongly associated in the cluster of exponential variables.
Instead, the first method, is better in this case, because it combines correctly the
variable poweruniform and it finds out a stronger correlation between uniform and
poweruniform than uniform and cubeuniformNoisy.

In general, paying attention to the results obtained, the method proposed finds out
the main expected correlations. It means that, in this case, the loss of information due
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5.1 – Artificial dataset

to the discretization of the continuous variables does not influence the conclusion of the
analysis. However, this analysis refers only to one realization of the simulated dataset.
Therefore, the final results could be affected by chance.

In Appendix C the results of ten simulations are reported. To discover the clusters
obtained the author has to look at the hierarchical trees, so the number of simulations is
restricted because it becomes difficult to compare hundred of hierarchical trees manually.
Observing all the simulations we can say that, in general, the associations found coincide
with the expected ones. The hierarchical trees obtained using the mutual information
approach are almost the same in all the simulations, while the trees obtained using the
ClustOfVar package present some differences:

- the variable poweruniform is wrongly placed in all the simulations;

- in some simulations the cluster formed by the variables normal, normalNoisy is
strongly connected to the cluster formed by exponential, exponentialTranslated and
sometimes is connected with the cluster exponential, exponentialTranslated,
exponentialSign, expSignLetter.

In conclusion, the method based on mutual information, in comparison with the hi-
erarchical algorithm proposed in the ClustOfVar package, works pretty well, because
it finds all the expected associations among the variables. However, particular attention
must be paid for the noise term. All the conclusions refer to simulations not affected by
noise.

5.1.4 Artificial dataset affected by noise term

In the following section we analyse the results on a noisy dataset. In particular, we use the
artificial dataset and we include a term of noise. Specifically, we add a uniform random
term to the continuous variables of the dataset and we compare each result with the trees
obtained with the ClustOfVar package. All the results obtained by one realization of
the dataset are reported in the Appendix D.

Having a look at the figures in the Appendix D, we can say that the main expected
clusters are always found. However there are some differences between the proposed
method and the ClustOfVar package.

• Looking at the figures obtained with the method based on mutual information: the
variable uniform, with the increase of noise, is associated to the variable cubeu-
niformNoisy instead of being correlated to the variable poweruniform. The other
clusters remain the same with the increase of the noise term.

• Looking at the figures obtained with the method based on the ClustOfVar package:
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5 – Simulation study

the principal clusters are always found; the only problem is the position of the
variable poweruniform, that is, most of the times, wrongly collocated.

We can conclude that the add of noise does not influence so much the groups found.

In the following section let consider a variable of interest and let investigate how the
method based on mutual information works.

5.1.5 Hierarchical clustering with the variable of interest

In this section we analyse the third point cited in the section 1.3:

3. Given a variable of interest Y , for each cluster find the variable that shares the most
information with Y

The variable of interest Y , in this simulation, is risp. The variable risp is a discretiza-
tion of the variable normal. Look at Appendix A for details.
In particular, Y assumes values:

• "sdout" if normal >= 1 or normal <=−1

• "sdin" if −1 < normal < 1

Therefore we expect normal to be the variable that shares most information with Y .
The hierarchical tree, obtained using the method proposed in the previous chapter, is
reported in Figure 5.7.
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5.1 – Artificial dataset

Figure 5.7. Clustering of variables with the response variable.

For each cluster the most representative variable is chosen. The root of the tree rep-
resents the variable that shares the most information with the response Y .
The method used finds that the variable normal explains lots of the information contained
in Y . The result obtained coincides with our expectations.
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Chapter 6

Conclusion and future works

The aim of this thesis was to find a method to explore data and discover correlations
among the variables of a dataset.
A possible solution to group variables of datasets is proposed, but there are several points
that could be explored in the future works, for example:

• more exhaustive testings on real data are necessary;

• several testings with other distance measures;

• study if it is possible to define a measure, based on information theory, that could
be used for both categorical and continuous variables;

• understand how to compare results using two or more different normalization mea-
sures.

The work presented in this document can be a basis for future works focused on
searching a set of uncorrelated variables in order to build predictive models to explain
variables of interest. This type of works, in the specific case of Tetra Pak, would be an
important step in the direction of modeling and predicting the risk of having cases of
unsterility.
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Appendix A

Artificial dataset

i <- 1000
# numericData
normal <- rnorm (i ,0 ,1)
sinusoid <- sin (2* normal )
normalNoisy <- normal + rnorm (i ,0 ,0.2)
uniform <- runif (i , -1 ,1)
poweruniform <- uniform ^2
cubeuniformNoisy <- uniform ^3 + rnorm (i ,0 ,0.1)
exponential <- rexp(i ,1) + normal
exponentialTranslated <- exponential + 3
# categoricalData
capitalLetter <- rep(c("A","B", "C","D"), times = c(5 ,200 ,695 ,100) , replace =

TRUE)
lowercaseLetter <- replace ( capitalLetter , which ( capitalLetter == "A"), "a")
lowercaseLetter <- replace ( lowercaseLetter , which ( lowercaseLetter == "B"), "b")
lowercaseLetter <- replace ( lowercaseLetter , which ( lowercaseLetter == "C"), "c")
lowercaseLetter <- replace ( lowercaseLetter , which ( lowercaseLetter == "D"), "d")
sinusoidDomainSign <- ifelse (sinusoid <0, "NEG", "POS")
letterGroup <- ifelse ( capitalLetter == "A" | capitalLetter == "B", "0", "1")
exponentialSign <- ifelse ( exponential >3, "+", "-")
expSignLetter <- ifelse ( exponentialSign =="+", " MORETHAN3 ", " LESSTHAN3 ")
letterUniform <- ifelse (uniform >0 & capitalLetter =="C", "0", "1")
uniformdiscretize <- ifelse (uniform <=0 , " UNINEG ", " UNIPOS ")
risp <- ifelse ( normal >=1 | normal <=-1 , " sdout ", "sdin")

dataset <- data. frame (normal ,sinusoid , normalNoisy , exponential ,
exponentialTranslated , uniform , poweruniform , capitalLetter , lowercaseLetter ,
sinusoidDomainSign , letterGroup , exponentialSign , expSignLetter ,
cubeuniformNoisy , letterUniform , risp , uniformdiscretize )
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Appendix B

R codes

Mutual information between a categorical and a continuous random variable
miDiscCont <- function (x,k)
{

dim = dim(as. matrix (x))
n = dim [1]
d = dim [2] -1

# categorical feature
y <- x[, which ( sapply (x,is. factor ))]
# continuous feature
r <- x[, which ( sapply (x,is. numeric ))]

Table <- as.data. frame ( table (y[,drop = TRUE ]))
# k has to be always smaller than the minimum number of nl
if (k >= min( table (y[,drop = TRUE ]))){

print ( paste ("The problematic class label is",
Table [ Table $Freq == min( table (y[,drop = TRUE ])) ,1], sep = " "))

stop("K has to be less than the smaller class label : change the value of
K or eliminate the problematic rows")

}

logepsl <- array (0,c(1, length ( table (y[,drop = TRUE ]))))
nl <- as. vector ( table (y[,drop = TRUE ]))
dig <- as. vector ( digamma (nl))
eps <- 2*knn.dist(r, k= k)[,k]
class <- as. character ( Table [ ,1])
for (i in 1: length ( table (y[,drop = TRUE ]))){

epsl <- 2*knn.dist(x[ which (y == class [i]) , which ( sapply (x,is. numeric ))], k=
k)[,k]

logepsl [i] <- sum(log(epsl))
}

MI <- digamma (n) - (1/n) *sum(nl*dig) + (d/n) * (sum(log(eps)) - sum( logepsl ))

if(MI < 0)
MI <- 0

return (MI)
}
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Appendix C

Multiple simulations

The appendix contains the proportion of correctly identified associations for ten differ-
ent simulations of the artificial dataset. The correct clusters, which coincide with the
definitions of the variables, are reported in italics.

In particular with the mutual information approach we obtained the following clusters
in all the simulations.

Cluster Proportion
of clusters

capitalLetter, lowercaseLetter, letterGroup 10
10

exponentialSign, exponentialSignLetter 10
10

exponential, exponentialTranslated 10
10

sinusoid, sinusoidDomainSign 10
10

normal, normalNoisy 10
10

letterUniform, uniformdiscretize 10
10

uniform, poweruniform, cubeuniformNoisy 10
10

Table C.1. Proportion of obtained clusters on ten simulations.
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C – Multiple simulations

Note that the associations letterUniform, uniformdiscretize and uniform, poweruni-
form, cubeuniformNoisy are correct, but they were expected to be in the same cluster
and not separated.

However, using the ClustOfVar package we obtain the following clusters.

Cluster Proportion
of clusters

capitalLetter, lowercaseLetter, letterGroup 9
10

uniform, cubeuniformNoisy, letterUniform, uniformdiscretize 8
10

exponential, exponentialTranslated, exponentialSign, exponentialSignLetter 6
10

sinusoid, sinusoidDomainSign 6
10

normal, normalNoisy 4
10

normal, normalNoisy, exponential, exponentialTranslated 4
10

poweruniform, sinusoid, sinusoidDomainSign 4
10

exponentialSign, exponentialSignLetter 3
10

uniform, poweruniform, cubeuniformNoisy, letterUniform, uniformdiscretize 2
10

normal, normalNoisy, poweruniform 2
10

exponentialSign, exponentialSignLetter, poweruniform 1
10

capitalLetter, lowercaseLetter, letterGroup, poweruniform 1
10

Table C.2. Proportion of obtained clusters on ten simulations.
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Appendix D

Artificial dataset with noise

In the following pages five different comparisons among the hierarchical trees are re-
ported. In each page the trees refer to a specific dataset obtained using the artificial
dataset and adding a uniform term of noise.
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D – Artificial dataset with noise
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Figure D.1. Clustering of variables for dataset with add of noise N ∼U(0.01,0.1).
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Figure D.2. Clustering of variables for dataset with add of noise
N ∼U(0.01,0.1) using ClustOfVar.
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Figure D.3. Clustering of variables for dataset with add of noise N ∼U(0.11,0.5).
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Figure D.4. Clustering of variables for dataset with add of noise
N ∼U(0.11,0.5) using ClustOfVar.
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Figure D.5. Clustering of variables for dataset with add of noise N ∼U(0.51,1).
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Figure D.6. Clustering of variables for dataset with add of noise
N ∼U(0.51,1) using ClustOfVar.
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Figure D.7. Clustering of variables for dataset with add of noise N ∼U(1.01,1.5).
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Figure D.8. Clustering of variables for dataset with add of noise
N ∼U(1.01,1.5) using ClustOfVar.
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D – Artificial dataset with noise
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Figure D.9. Clustering of variables for dataset with add of noise N ∼U(1.5,4).
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Figure D.10. Clustering of variables for dataset with add of noise
N ∼U(1.5,4) using ClustOfVar.
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